EFFECT OF SULPHUR AND BORON ON CANOLA YIELD

by W.F. Nuttall and H. Ukrainetz Melfort and Saskatoon Research Stations

I. Northeastern Saskatchewan

For many years, crops grown on Gray Wooded soils have often shown sulphur (S) deficiency. Not all Gray Wooded soils cause this problem, so a soil test was developed recently to determine specific deficiencies in farm fields. Previously general recommendations were to apply sulphur on Gray soils in combination with nitrogen (N) and phosphorus (P). Two common fertilizers are 16-20-0 (14% S) and 21-0-0 (24% S). The latter is ammonium sulphate and the former a mixture of monoammonium phosphate and ammonium sulphate; the sulphur could be obtained as a bonus when purchasing these fertilizers.

A trend towards applying higher analysis fertilizers has led to a depletion of sulphur in many Gray Wooded soils and also in some Gray-Black soils. In 1977 and 1978, about 500 ha of canola in northern Saskatchewan did not set seed. The symptoms were typical of boron (B) deficiency. Soil tests showed that the fields were deficient in sulphur as well.

Greenhouse experiments on soils from two sites showed that both S and B affected growth and yield of Regent canola. Field experiments in 1979 showed a dramatic increase in yield of canola cultivars from applied S. Boron increased the yield of one cultivar. However, yields were poor because of dry soil conditions.

In 1980 and 1981, yield response to both S and B were obtained, but was not consistent from one year to the next or among varieties. For example, in 1980 (Tables 1 and 2), sulphur alone increased yield of 'Regent' canola by an average of 130 kg/ha. Boron increased yield by 180 kg/ha, but with the cultivar 'Candle' little or no response was obtained. In 1981, S and B enhances the yield of Candle, but yield response was not consistent with the variety Regent (Tables 3 and 4).

> Table 1. YIELD RESPONSE OF CANDLE AND REGENT CANOLA TO SULPHUR AND BORON --1980 GRONLID, SYLVANIA FINE SANDY LOAM

Fert	iliz	er E	Cultivars		
N	Ρ	K	S	В	Candle Regent
en <u>engi</u> rritagnatiknog	(k	g/ha)		(Yield kg/ha)
100 100 100 100	20 20 20 20	50 50 50 50	25 25	1.4 1.4	1093159299617051136210311471782

Table 2.	YIELD	RESPONSE OF CANDLE AND
REGENT CAN	OLA TO	SULPHUR AND BORON
1980 VALPA	RAISO,	WAITVILLE LOAM

Fert	iliz	er E	Cultivars		
N	P	K	S	В	Candle Regent
nterstein für Oktoberson	(k	g/ha	(Yield kg/ha)		
100	20	50			956 1083
100	20	50	25		1093 1230
100	20	50	25	1.4	843 1558
100	20	50		1.4	1113 1258

Table 3. YIELD RESPONSE OF CANDLE AND REGENT CANOLA TO SULPHUR AND BORON -- 1981 GRONLID, SYLVANIA FINE SANDY LOAM

Fert	iliz	er E	leme	Cultivars	
Ν	P	K	S	В	Candle Regent
68.668.7552.88 AU	(k	g/ha)	(Yield kg/ha)	
100	20	50			1354 1627
100	20	50	25		1624 2205
100	20	50	25	1.4	1818 1975
100	20	50		1.4	1621 1625

Table 4. YIELD RESPONSE OF CANDLE AND REGENT CANOLA TO SULPHUR AND BORON --1981 BEATTY, MELFORT LOAM

Fert	iliz	er E	Cultivars		
N	P	K	S	В	Candle Regent
	(k	g/ha)	(Yield kg/ha)	
100	20	50			1598 2319
100	20	50	25		1792 2624
100	20	50	25	1.4	1954 2487
100	20	50		1.4	1718 2886

In 1982, frost was a factor in affecting yield. Boron together with sulphur increased yield of Regent 655 kg/ha at Gronlid (Table 5). Boron without added sulphur gave the highest yield of Regent at the Beatty site (Table 6). Frost damage severely reduced the yield of Regent at Beatty. Sulphur and boron together increased the oil concentration in the grain of Candle and Regent at Gronlid, but not at Beatty (Tables 7 and 9). Gluconsinolate concentration increase was greater in Candle than Regent canola from the application of S and B fertilizer nutrients (Tables 8 and 10). At Beatty, S and B fertilizers actually reduced glucosinolate concentration in Regent canola.

Table 5.YIELD RESPONSE OF CANDLE ANDREGENT CANOLA TO SULPHUR AND BORON --1982 GRONLID, SYLVANIA FINE SANDY LOAM

Fert	iliz	er E	leme	Cultivars	
N	Ρ	K	S	в	Candle Regent
	(k	g/ha)	anatan <u>30000 (1000) in 10</u>	(Yield kg/ha)
100 100 100	20 20 20	50 50 50	25 25	1.4	1868 1278 2750 1844 2319 1933
100	20	50		1.4	1993 1190

F test significant at 1% probability level

Table 6. YIELD RESPONSE OF CANDLE AND REGENT CANOLA TO SULPHUR AND BORON --1982 BEATTY, MELFORT LOAM

Fert	iliz	er E	leme	nts	Cultivars	
Ν	Ρ	К	S	В	Candle Regent	
	(k	g/ha).		(Yield kg/ha)	
100	20	50			1632 801	
100	20	50	25		1576 856	
100	20	50	25	1.4	1638 843	
100	20	50		1.4	1306 943	

F test not significant

Table 7. EFFECT OF SULPHUR AND BORON ON OIL PERCENTAGE OF CANOLA, 1981 GRONLID, SYLVANIA FINE SANDY LOAM

Fért	iliz	er E	leme	nts	Cultivars
N	Ρ	K	S	в	Candle Regent
	(k	g/ha)	- % -	
100 100 100 100	20 20 20 20	50 50 50 50	25 25	1.4 1.4	40.640.540.542.141.541.940.741.1

Fert	iliz	er E	Cultivars			
N	Ρ	K	S	В	Candle Regent	
and the grade of the state of the	(k	g/ha)	mg/g		
100 100 100 100	20 20 20 20	50 50 50 50	25 25	1.4 1.4	0.70 0.35 2.58 0.65 2.45 1.00 1.03 0.10	

Table 9. EFFECT OF SULPHUR AND BORON ON OIL PERCENTAGE OF CANOLA, 1981 BEATTY, MELFORT LOAM

Fertilizer Elements					Cultivars	
Ν	Ρ	K	S	В	Candle Regent	
CHOLONDOLDANIA	(k	g/ha)	ac 2 ac		
100	20	50			40.2 42.7	
100	20	50	25		40.0 42.9	
100	20	50	25	1.4	40.2 42.5	
100	20	50		1.4	39.9 42.8	

Table 10. EFFECT OF SULPHUR AND BORON ON GLUCOSINOLATE CONCENTRATION OF CANOLA, 1981 BEATTY, MELFORT LOAM

Fert	iliz	er E	Cultivars			
N	P	K	S	В	Candle Regent	
6000-(24150-1240-)-49	(k	g/ha)	mg/g		
100 100 100 100	20 20 20 20	50 50 50 50	25 25	1.4 1.4	2.800.953.230.853.000.703.550.55	

II. Northwestern Saskatchewan

Yield of Regent canola (1982) appears to be higher (Table 1) with applied S and B fertilizer. Maturity and development of seed pods has been observed to be increased with B application. No effect of boron on Candle grain yield is apparent. Similarly with

Candle canola (Table 2), no boron effect is evident. Similarly, in 1981, there is no effect of boron on yield of Regent and Candle (Table 3). However, in Table 4, response in grain yield to boron is quite evident. The highest yielding treatment (1991) obtained with 200 kg N/ha applied, also had the lowest oil percentage (46.2%). Sulphur increased glucosinolate concentration in Regent canola (Table 5). Boron had no apparent effect on glucosinolate content.

In general, response to B was inconsistent. Soil tests and plant analyses diagnosis techniques could give more precise estimates of boron deficiency. As soil moisture, soil pH, percentage organic matter and clay and exchangeable calcium may affect B availability, some inconsistency in response to B may be expected.

Table 1. EFFECT OF SULPHUR AND BORON APPLICATION ON YIELDS OF CANOLA ON A SULPHUR-DEFICIENT LUVISOLIC LOON RIVER LOAM - 1982

Trea	tment	Seed Yield
Variety	Fertilizer	kg/ha
Regent*	Check	730
	NPK	521
	NPKS 1	812
	NPKS ₂	864
	NPKB	794
	NPKS 1 B	978
Candle	Check	990
	NPK	1482
	NPKS 1	1741
	NPKS ₂	1610
	NPKB	1415
	NPKS 1 B	1716

*Frost damage N, P, K = 100, 20, 50 kg/ha respectively $S_1 = 25$ kg/ha, $S_2 = 50$ kg/ha B = 1.4 kg/ha

Soil Tests N = 105, P = 12, K = 146, S = 8, B = 1.26 kg/ha

Ň	P	Kg/Ha K	S	В	Seed Yield kg/ha
0	20	50	25	1.4	1742
25	20	50	25	1.4	1918
100	20	50	25	1.4	2042
200	20	50	25	1.4	1876
100	20	50	0	1.4	1248
100	20	50	10	1.4	1319
100	20	50	50	1.4	2164
100	20	50	25	0	2046
100	20	50	0	0	1395
100	20	0	25	1.4	1956
Check 1570					

Table 2.EFFECT OF FERTILIZERS ON THEYIELD OF CANDLE CANOLA ON A LUVISOLICLOON RIVER LOAM SOIL - 1982

Table 3. RESPONSE OF CANOLA TO SULPHUR AND BORON ON A LOON RIVER LOAM SOIL - 1981

Variety	Fertilizer	Seed Yield kg/ha	% Oil In Seed (ODB)
Regent	Check	847	48.09
	NPK	1266	44.27
	NPKS 1	1841	47.19
	NPKS ₂	1736	47.03
	NPKB	747	44.14
	NPKS ₁ B	1764	47.73
Candle	Check	245	44.76
	NPK	492	39.34
	NPKS 1	937	42.54
	NPKS 2	977	43.63
	NPKB	670	40.97
	NPKS ₁ B	868	43.68

N, P, K = 100, 20, 50 kg/ha S₁ = 25 kg/ha, S₂ = 50 kg/ha B = 1.4 kg/ha

Treatment kg/ha					Seed Yield	 Oil
N	Р	К	S	В	kg/ha	(ODB)
200	20	50	25	1.4	1991	46.2
100	20	50	25	2.8	1864-	47.1
100	20	50	25	1.4	1898-	46.8
100	20	50	25	1.4	1747	47.7
100	20	50	25	1.4	1636	48.2
100	20	50	25	0	1625	47.0
Checł	ĸ				703	

Table 4.RESPONSE OF REGENT CANOLA TO N AND SFERTILIZERS ON A LOON RIVER LOAMSOIL - 1981

Table 5. EFFECT OF NITROGEN AND SULPHUR FERTILIZERS ON GLUCOSINOLATE CONTENTS IN REGENT CANOLA GROWN ON A LUVISOLIC LOON RIVER LOAM - 1981

Fertilizer Applied kg/ha					Clusseineletes in Cood
N	Ρ	K	S	В	Glucosinolates in Seed µ Moles/gm Oil Free Meal
40 40 160 160	20 20 20 20	50 50 50 50	10 40 10 40	0.6 0.6 0.6 0.6	8.97 11.67 8.49 16.73
0 100 200 ·	20 20 20	50 50 50	25 25 25	1.4 1.4 1.4	11.69 15.16 9.02
100 100	20 20	50 50	0 50	1.4 1.4	2.89 14.28
100	20	50	0	0	3.87
Check					8.91