
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig
Towards flexible Software Processes by using Process Patterns

Mariele Hagen, Volker Gruhn
Chair of Applied Telematics/e-Business*, Department of Computer Science, University of Leipzig

{hagen, gruhn}@ebus.informatik.uni-leipzig.de

Although the concept of process patterns is very prom-
Abstract
Process patterns allow the modular modelling and adapt-
able application of software processes. Present descrip-
tions of process patterns show defects like non-uniform
and unequivocal description forms and missing relation-
ship definitions. These defects disadvantageously affect
the effective usage of process patterns. In this work we
present the language PROPEL (Process Pattern
Description Language), which provides concepts for the
semiformal description of process patterns and relation-
ships between process patterns. With the help of PROPEL
single process patterns can be modelled and, by definition
of relationships, be composed to more complex processes.
With the representation of different views of a process pat-
tern catalog the process patterns and their relationships can
be shown clearly. An example illustrates how a process
pattern catalog and the contained process patterns are mod-
elled. It is shown that in applying PROPEL the complexity
of a process model can be reduced, the inconsistencies of
processes can be eliminated and the flexibility of processes
can be improved.

Key Words
Software Tools and Techniques, Modelling Languages,
Process Modelling, Process Patterns

1. Motivation

A process pattern represents a proven process which
solves an frequently recurring problem in a pattern like
way (cf. [5] for an introduction to patterns). The problem
embodies a concrete situation which may emerge e.g. dur-
ing the software development. The process describes a set
of activities, which can be executed to solve the problem.
Process patterns offer the documentation of proven knowl-
edge by abstracting from details and facilitate the commu-
nication [7]. Process patterns especially enable a flexible
process support since one can select and apply a suitable
process pattern according to the present situation. For this
reason process patterns are considered as an alternative to
complex and heavyweight process models like Rational’s
Unified Process [11], the German Process Model [16] etc.,
since process patterns can be used to adapt the software
process to the respective project situation [3].
* The Chair of Applied Telematics/e-Business is endowed by Deutsche Telekom
ising, it has not matured yet [10]. Current research focuses
rather on the identification of new process patterns,
neglecting the identification of a suitable presentation.
Present process pattern descriptions reveal two crucial
deficiencies:
• Up to now patterns were described in an informal way

by natural language. This is on the one hand an advan-
tage, since no knowledge about notation, syntax and
semantics is necessary for understanding a pattern. On
the other hand, natural language produces ambiguous
and inexact expressions (e.g., the relationships „is pre-
requisite of“ and „may contain“ in [15]). In addition to
the informal description of relationships the descrip-
tions of the processes themselves are surprisingly infor-
mal. A step wise description of the process is often
missing, and there are even process patterns which con-
tain no process as a solution (e.g. in [4]).

• Moreover, process patterns can unfold their full strength
only in combination with other process patterns [5].
Unfortunately, present descriptions of pattern relati-
onships are not formally specified and give no informa-
tion about their syntactic or semantic meaning (e.g.,
„pattern X uses pattern Y“ or „pattern A can be com-
bined with pattern B“ in [12]). In considering the pat-
terns’ relationships, more complex process patterns can
be modelled therefore in combining single process pat-
terns. This information about possible combinations of
patterns must be provided by an explicit description of
the patterns’ relationships.

Because of the aforementioned reasons we have devel-
oped the language PROPEL (Process Pattern Description
Language) for the description of process patterns (cf. [9]
for a detailed overview). This language is an extension of
the Unified Modeling Language (UML) [14]. Hence, many
proven and widespread modelling concepts of the „Lingua
Franca“ of the software engineering domain can be reused.
The UML already offers concepts like activity diagrams
for modelling processes which we make use of for model-
ling the process element of a process pattern. PROPEL
suggests a uniform description schema for process patterns
and defines relationships between process patterns. Here-
with PROPEL allows to describe process patterns and their
relationships in a semiformal way.
AG.

https://core.ac.uk/display/226138178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In section 2 we describe the PROPEL meta model and
illustrate it with some examples. Section 3 presents a pro-
cess pattern catalog consisting of a set of process patterns
and relationships. Similar approaches are characterized in
section 4. In section 5 we summarize and evaluate our
statements and give some perspectives of our work.

2. The Concepts of PROPEL

In the subsequent sections we present the basic con-
cepts of PROPEL. A detailed description of the underlying
meta model in terms of UML class diagrams can be found
in [9], an overview over the OCL constraints in [6].
Figure 1 lists some of the notational elements specified
within PROPEL, which are used in the subsequent exam-
ples.

Figure 1: Notational elements of PROPEL

A single process pattern consists of a process, which
solves a problem which has recurred in a certain context:

A problem can be grouped thematically via its aspect.
There can be an arbitrary set of solutions (i.e. process pat-
terns) for a problem.

A context is a set of objects and and events. It defines
the conditions which must be fulfilled before and after
application of the process pattern. A context is a part of a
process pattern. It is either consumed or produced by this
process pattern.

Figure 2: Problem Diagram

As an example, we consider a project for which a
project vocabulary is to be developed, in order to improve
communication between the project workers and to
achieve a clear and unambiguous terminology in the docu-
ments. This situation is represented by the problem "How

Process
Pattern

object / event

object
flow

sequence
relationship

use
relationship

processvariance
relationship

refinement
relationship

aaaactivity

role tool

control
flow

start
state

end
state

RM aspect

Pro-
blem

Problem Diagram

Capture a
Common

Vocabulary

Capture
Vocabulary
participa-

torily

Capture
Vocabulary

centrally

How can a
Glossary

be
produced?

RM

Glossary

Requirements
Documents
can a Glossary be produced?". Figure 2 shows on the left
the problem to be solved and its initial ("Requirements
Documents") and resulting context ("Glossary").

On the right side the solving process patterns are pre-
sented. The problem is solved by the process pattern "Cap-
ture A Common Vocabulary". There are two refining
process patterns of this pattern, namely process pattern
"Capture Vocabulary centrally" and process pattern "Cap-
ture Vocabulary participatorily", which solve the problem
too. These two process patterns provide a more detailed
process and context as the refined process pattern.

A process can be an element of an arbitrary set of pro-
cess patterns. If a process is an element of more than one
process patterns, we speak of processvariant process pat-
terns (cf. relationship processvariance, beneath).

The process (modelled by the UML meta class "Activi-
tyGraph") of the process pattern specifies activities which
are necessary to solve the problem. It describes the control
flow of and the object flow between its activities. A pro-
cess has to fulfil the conditions specified by the initial and
resulting context of the problem to be solved. In our exam-
ple, figure 3 presents the process of process pattern "Cap-
ture a Common Vocabulary". Note that the process takes
exactly these objects as input and ouput that correspond to
the context specified by the problem. That means that the
process is encapsulated by the process pattern. The prob-
lem and its solving process patterns are a sufficient infor-
mation for a pattern user to select a process pattern
according to his needs.

Figure 3: Example process

Furthermore, roles can be assigned to activities and
processes. A role (e.g. "System Analyst") describes experi-
ences, knowledge and abilities, which are necessary in
order to carry out activities. The definition of the meta
class "Role" may be irritating, since the UML specification
contains the similar meta class "Actor". However, the asso-
ciation of actors to model elements is limited to the system
which is to be developed, i.e. only associations to uses
cases, subsystems and classes are permitted. However, for
the modelling of software development processes we need
a broader term and therefore we introduce the meta class
Role. The activities and tasks of a Role are described in
detail within a profile (not shown here).

Find Common Terms

Evaluate Your Results

System Analyst

Common Terms

Glossary

Requisite
Pro

Requirements
Documents

A tool (e.g. "Requisite Pro") supports the execution of
an activity and appear often as a software system. Different
goals are linked with the usage of a tool, these goals can
differ from activity to activity.

The aspect (e.g. "RM" for Requirements Management)
specifies a certain theme (e.g.: project acquisition, man-
agement project, risk management etc.) problems and pro-
cess patterns are belonging to. By using aspects a set of
process patterns or problems can be structured into sub-
sets.

The subsequent four figures show the concepts of
PROPEL which allow modelling relationships between
process patterns.

The sequence relationship connects one or more pre-
ceding patterns and one succeeding pattern. Such a rela-
tionship exists, if the preceding process patterns altogether
produce all objects and events, which the following pro-
cess pattern needs for its application.

Figure 4: Example sequence relationship

In our example (figure 4), the two process patterns
"Define Review Criteria" and "Develop Software Compo-
nent" together produce all objects ("Review Criteria",
"Review Request" and "Software Component") the process
pattern "Review" needs. The three process patterns there-
fore are connected via a sequence relationship.

The use relationship associates a component pattern
and a composite pattern. Such a relationship exists, if the
component pattern describes a subprocess of the composite
patterns, i.e. a part of the solution. In our example (figure
5), the process pattern "Review" uses three other process
patterns, namely "Introductional Session", "Review Ses-
sion" and "Release". The process of pattern "Review" con-
tains the activity "Perform Review-Session", which needs
to be described more detailed. This can be done in specify-
ing a problem (e.g. "How can a Review be performed?")
representing the activity. Then, for this problem can be
found another solving process pattern, e.g. "Review Ses-
sion". This means that the hierarchical composition of a

Develop Software
Component

Review

Define Review
Criteria

Notation...

Develop Software
Component

Review

Define Review
Criteria

Review
Criteria

Review
Request

Software
Component

... and its
meaning
process is established by the mapping of problems onto
activities.

Figure 5: Example use relationship

The processvariance relationship associates two vari-
ant process patterns. Such a relationship exists, if the vari-
ant patterns solve the same problem but with different
solutions.

Figure 6: Example processvariance relationship

In our example (figure 6), the two process patterns
"Capture&Replay" and "Program Test" are variant process
patterns, since they both solve the same problem, ie.e. ful-
fill the same context.

The refinement relationship associates a superpattern
and a subpattern. Such a refinement relationship exists, if
the context and process of the superpattern have been
refined by the subpattern. This means in addition, that the
problems of these two patterns are connected by a refine-

ReleaseReview-SessionIntroductional
Session

Review

Review-Session

Individual
Defect / CR

List

Review Log

Individual
Defect / CR

List

Review Log

Notation...

... and its
meaning How can a

Review be
performed

?

activity of process
pattern "Review-Session"

Perform
Review-Session

Problem Diagram

Capture &
Replay Program Test

Test
Case

Tool Tool
Guidelines

Test Script Test Skript

Capture &
Replay Program TestNotation...

... and its
meaning

Test
Case

Tool Tool
Guidelines

ment relationship. In our example (figure 7), the process
pattern "Manual QA" is refined by the process pattern
"Review". The initial context of "Review" not only con-
tains the "Review Object", but also "Review Criteria" and
"Review Request".

Figure 7: Example refinement relationship

A process pattern catalog represents a set of process
patterns and relationships, which tie process patterns
together. Process patterns and problems are always
assigned to a process pattern catalog. We will show details
of the concept and usage of process pattern catalogs in sec-
tion 3.

Finally, we present in figure 8 the condensed descrip-
tion of the process pattern "Capture A Common Vocabu-
lary" with the concepts introduced before. This view is
also called the process pattern diagram. First, the problem
to be solved is named (above). Then, all process patterns
the process pattern is connected with via a relationship are
presented (middle). Finally, the process of the process pat-
terns is presented (bottom).

As we have seen, the process pattern diagram presents
all necessary information of a process pattern as well as the
problem diagram presents all necessary information of a
problem. In practice, this type of presentation is an advan-
tage since it uses the principle of information hiding.

If a user faces a certain problem, he can first search an
appropriate problem. Via the problem diagram, (maybe)
several process patterns are indicated that solve this prob-
lem. In a second step, the user can examine and select one
of these process patterns. From this point of view, he can
then see via the relationship diagram, which other process
patterns he can possibly apply before or after this process
pattern, or which variants or refinements are available. If
the pattern user has carried out e.g. the process pattern
"Capture a Common Vocabulary", it is clear that after-
wards the process pattern "Review Requirements" can be
applied.

ReviewManual QA

ReviewManual QA

Review
Object

Released
Object

Review
Criteria

Review
Object

Released
Object

Review
Request

Notation...

... and its
meaning
Figure 8: Process Pattern Diagram

3. The Process Pattern Catalog

For validating the concepts of PROPEL we developed
the process pattern catalog CADS (Catalog for the
Development of Software), which illustrates the use of
PROPEL. We derived the catalog from the Rational Uni-
fied Process (RUP) [11]. Thus we were able to use already
proven, widespread processes and concentrate on the form
of the description.

The representation of the process patterns specified in
this section is limited to process patterns, which belong to
the aspect "Requirements Management". Considering the
aspect "Requirements Management" we identified 31
problems and 44 process patterns. The difference between
the number of problems and process patterns is based on
the existence of variant process patterns which belong to
the same problem. The modelling effort was a couple of
days. The greatest part of this modelling effort was to iden-
tify and eliminate inconsistencies of the RUP processes.
But with help of the PROPEL relationship definitions we
could decide if two processes are consistent, and if not,
how this consistency may be established. The effort was
reasonable because of two reasons: We gained consistent
process descriptions and could reduce the process model‘s
complexity.

In the following we show a selected part of the process
pattern catalog with help of different views. Each view
represents an overview of the relationships of a certain

Find Common Terms

Evaluate Your Results

System
Analyst

How can a
Glossary

be
produced?

Relationship
Diagram

Process
Diagram

Common Terms

Glossary

Capture a
Common

Vocabulary

Problem

Analyze the
Problem

Capture
Vocabulary
participa-

torily

Capture
Vocabulary

centrally

Define the
System

Understand
Stakeholders

Needs

Requisite
Pro

Review
Requirements

Requirements
Documents

Elicit
Stakeholder
Requests

Find
Business
Actors a.

Use-Cases

Develop
Vision

Maintain
Business

Rules
BM

BM

Inspect
Requirements

Walkthrough
Requirements

Find Actors
and Use-

Cases

Find
Business

Workers a.
Entities

Develop
Business

Case
PM

BM

type. We could also merge all views into one single view
(to represent the catalog as a whole), but this would endan-
ger clarity and understanding.

For reasons of space we only present the use and the
sequence view.

Figure 9: Catalog Diagram - View „Use“

Figure 9 presents part of the hierarchical view of the
catalog CADS with help of the use relationship. This hier-
archical structure was taken over as far as possible from
the RUP (for the RUP is already hierarchically structured
by disciplines (e.g. „Requirements Management“), work-
flow details (e.g. „Refine the Problem“) and activities
(„Develop Requirements Management Plan“). Looking at
this view it becomes clear that some process patterns are

Reanalyse
the

Require-
ments

Refine the
Problem

Understand
Stake-
holders
Needs

Define the
System

Manage the
Scope of

the System

Develop
Req. Mgmt.

Plan

Capture a
Common

Vocabulary

Find Actors
and Use
Cases

Develop
Vision

Elicit Stake-
holder

Requests

Prioritize
Use Cases

Describe
How Act. a.
Use Cases

interact

Package
Use-Cases
and Actors

...
used several times, e.g. the process pattern "Develop
vision". The process pattern „Review requirements“ uses
itself and is therefore associated with itself via a recursive
use relationship. The RUP is lacking such a hierarchical
overview.

Figure 10 presents a selection of the existing sequence
relationships. This information is only implicitly present in
the RUP. We made the experience that the number of
sequence relationships with one single predecessor pattern
is rather small. The reason is that the RUP is divided into
nine different disciplines, but processes (i.e. workflow
details or activities) of several disciplines cooperate, in
order to produce an object or an event. Because of this
close linkage of the processes the number of sequence rela-
tionships with more than one predecessor pattern is much
higher than sequence relationships with only one predeces-
sor pattern.

The representation of the sequence relationship is an
advantage compared to the RUP, in which the input and the
output artifacts of a workflow detail or an activity are indi-
cated, but possible sequences of processes are not
described. Since the RUP activities, workflow details and
disciplines are closely interlocked, this information is
helpful for the user.

By this example it becomes clear that a complex pro-
cess model like RUP can be described by PROPEL process
patterns. Furthermore, the complexity of the process model
can be reduced and disentangled by identifying process
patterns and their relationships. Inconsistencies between
process can be identified and eliminated. Finally, the flexi-
ble selection and use of process patterns is ensured.
Figure 10: Catalog Diagram - View „Sequence“

Describe
How Actors

a. Use
Cases
Interact

Package Use
Cases and

Actors

Develop
Vision Develop

Req.
Management

Plan
Find Actors

and Use
Cases

Review
Require-
ments

Walkthrough
Require-
ments

Inspect
Require-
ments

Reanalyse
the Re-

quirements

Refine the
Problem

Find Actors
and Use
Cases

Package Use
Cases and

Actors

Find
Business

Actors and
Use-Cases

Find
Business

Workers and
Entities

Maintain
Business

Rules

Develop
Use-Case
Modeling

Guidelines

Develop
Business

Case

usw.

Find
Business

Actors and
Use-Cases

Find
Business

Workers and
Entities

Maintain
Business

Rules

Develop
Use-Case
Modeling

Guidelines

Develop
Business

Case

Elicit
Stakeholder
Requests Maintain

Business
Rules

Find
Business

Actors and
Use-Cases

Find
Business

Workers and
Entities

Develop
Vision

Elicit
Stakeholder
Requests

Find
Business

Actors and
Use-Cases

Find
Business

Workers and
Entities

Develop
Vision

Capture a
Common

Vocabulary

Develop
Use-Case
Modeling

Guidelines

Find Actors
and Use-

Cases

Elicit
Stakeholder
Requests

Find
Business

Actors and
Use-Cases

Find
Business

Workers and
Entities

Develop
Vision

Develop
Business

Case

Maintain
Business

Rules

Define
Assessment
/Traceability

Needs

Detail a Use-
Case

Detail the
Software
Require-
ments

Launch
Development

Case

Compile
Software

Development
Plan

Manage
Depen-
dencies

Structure the
Use-Case

Model

Review
Requirement

s

Reanalyse
the Require-

ments

Refine the
Problem

Develop
Req.

Management
Plan

Capture a
Common

Vocabulary

Find Actors
and Use
Cases

Develop
Vision

Capture
Vocabulary
by System

Analyst

Capture
Vocabulary
by Project

Team

Develop
Vision

Develop
Req.

Management
PlanFind Actors

and Use-
Cases
4. Related Work

Up to now there are only few approaches exploring the
concepts of process patterns. Most publications concen-
trate on presenting new process patterns and do not bother
neither with presentation nor precision (e.g. [4], [2]). Even
if relationships are mentioned, their meaning is not speci-
fied (e.g. [15], [2]).

Gnatz et. al. identified in [8] the two process pattern
relationships „realized by“ and „execute“. The relationship
„realized by“ is applied for two variant process patterns
that solve the same problem. The relationship „execute“

represents a composition relationship. A formal specifica-
tion of these relationships is missing.

Bergner et. al. represented in [3] process patterns for
component based software development. Instead of pro-
cess pattern relationships they represent relationships
between artifacts. In considering the artifact relationships
corresponding process patterns can be selected. How this
selection is done remains unclear. Again, the artifact rela-
tionships are not specified precisely.

Note that process pattern are not to be mixed up with
workflow patterns by van der Aalst [1]. The main goal of
workflow patterns is to provide the basis for an compari-
son of workflow management systems and to provide con-
cepts, how business processes can be implemented.
Process patterns instead describe all kinds of business pro-
cesses independent of any system which supports the pro-
cess enaction.

5. Conclusions and Future Work

The Process Pattern Description Language PROPEL
introduced in this paper offers all necessary means in order
to describe process patterns in a uniform way. PROPEL
encloses the description of problems, contexts, objects and
events, roles and tools. Particularly the possibility of
describing relationships between process patterns and thus
between processes has to be emphasized. Most process
models do not offer the representation of process relation-
ships. The semiformal representation of processes
increases the accuracy of the description. It permits to set
up rules for the hierarchical structure of process patterns
and therefore for defining the use relationship between
process patterns. Furthermore, rules for specifying
sequences, refinements and variants of process patterns are
given.

With the means of PROPEL we described a process
pattern catalog based on processes of the RUP. The catalog
presents both the process patterns and the relationships
between process patterns with the help of different views.
We showed that with PROPEL a complex process model
like the RUP can be simplified in modularizing the pro-
cesses, identifying formerly hidden relationships and elim-
inating inconsistencies.

To enhance the accuracy of process pattern descriptions
we presently work on the formalization of the semantics of
PROPEL. We accomplish this by defining a semantic map-
ping of PROPEL’s abstract syntax onto the semantic
domain of petri nets. With petri nets we can define the
dynamic conditions of process pattern relationships (i.e.
not only the structural conditions). For a improved man-
agement of process patterns we develop the Process Pat-
tern Workbench, a platform for the documentation and
administration of process patterns. Details about a proto-
type are available in [13]. A further research question is to
log the application of process patterns, on the one hand to
inform the project workers about which patterns should be
and have already been applied, and on the other hand to
log statistically which process pattern combinations are
more frequently used than others.

6. References

[1] van der Aalst, W. et al.: Workflow Patterns. Distributed
and Parallel Databases, 14(3), pages 5-51, July 2003.

[2] Ambler, S. W.: Process Patterns, Cambridge University
Press, 1998, Cambridge.

[3] Bergner, K. et.al.: A Component Methodology based on
Process Patterns. TUM-I9823, University Munich, 1998.

[4] Coplien, J.: A Development Process Generative Pattern
Language. In: Proceedings of PLoP 94, 1994.

[5] Coplien, J.: Software Patterns. SIGS Book & Multimedia,
1996.

[6] Dittmann, T.: PPDL - A Description Language for Process
Patterns (in German), Thesis, University Dortmund, 2002.

[7] Dittmann, T., Gruhn, V., Hagen, M.: Improved Support for
the definition and usage of process patterns. 1st Workshop
on Process Patterns, OOPSLA 2002, Seattle, 2002.

[8] Gnatz, M. et.al.:Towards a Living Software Development
Process Based on Process Patterns. In:Software Process
Technology, LNCS 2077, Springer, 2001, pp. 182-202.

[9] Hagen, M.; Gruhn V.: Process Patterns - a Means to
Describe Processes in a Flexible Way. In: Proc. of ProSim
2004, Edinburgh, Scotland, 2004, pp. 32-39.

[10] Hagen, M.: Support for the definition and usage of process
patterns. EuroPloP 2002.

[11] Kruchten, P.: The Rational Unified Process, Addison-Wes-
ley Professional, 2000.

[12] Noble, J.: Classifying Relationships Between Object-Ori-
ented Design Patterns. ASWEC ’98, 1998.

[13] Schröder, J.: The Process Pattern Workbench, Thesis (in
German), University Dortmund, 2003.

[14] Object Management Group: OMG Unified Modeling Lan-
guage Specification, March 2003, Version 1.5.

[15] Störrle, H.: Models of Software Architecture. Dissertation,
University Munich, 2000.

[16] V-Modell ’97: Entwicklungsstandard für IT-Systeme des
Bundes. BWB IT 15, 1997.

	1. Motivation
	2. The Concepts of PROPEL
	3. The Process Pattern Catalog
	4. Related Work
	5. Conclusions and Future Work
	6. References

