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ABSTRACT  

The overarching goal of this research was to investigate the differences in the 

physicochemical and functional properties of protein isolates produced from seven different faba 

bean genotypes (CDC Fatima, Taboar, SSNS-1, FB9-4, FB18-20, Snowbird and CDC 

Snowdrop) grown at different locations in Canada (Saskatchewan, Alberta and Manitoba) in 

2011 and 2012. The protein isolates were prepared by alkaline extraction (pH 9.5) followed by 

isoelectric precipitation at pH 4.5. The isolates had an average protein content of ~94% and 

average protein and isolate yields of ~77% and ~25%, respectively. The physicochemical 

properties assessed in this study included surface charge/zeta potential (ZP), surface 

hydrophobicity (SH), and surface and interfacial tension (ST and IT). The functional properties 

tested included foaming capacity (FC) and foam stability (FS), emulsion capacity (EC) and 

creaming stability (CS), emulsion activity index (EAI) and emulsion stability index (ESI), oil 

holding capacity (OHC), and protein solubility.  

The findings indicated that all physicochemical properties for all isolates were 

independent of genotype. Overall, an average ZP of + 22.1 mV, SH of 47.2 arbitrary units, and 

ST and IT of 65.0 mN/m and 10.7 mN/m, respectively, were observed. However, with the 

exception of ZP considerable differences were observed due to the effect of environment. The 

ratio of the major globulin protein fractions [legumin:vicilin (L/V)] was found to shift during 

processing, from 3.8 (range: 3.4-4.6) in the flour to 4.5 (range 4.0-4.9) in the isolates. The L/V 

ratio for faba bean flour and isolate samples was also found to be independent of genotype. For 

all genotypes, with the exception of the zero-tannin varieties (Snowbird and CDC Snowdrop), 

the L/V ratio was affected by the environment.  

Similar to the physicochemical properties, all functional attributes were found to be 

independent of genotype. However, environmental effects were observed for all functional 

properties with the exception of EAI and ESI. Average values for FC of 162.0%, for FS of 

65.0%, for EC of 184.0 g/g, for CS of 94.0%, for OHC of 5.7 g/g, for EAI of 13.0 m
2
/g, for ESI 

of 10.7 min and for solubility of 81.0% were reported. Zeta potential was observed to be 

positively correlated with CS (r = 0.46; p<0.05) and FS (r = 0.54; p<0.01), whereas SH and L/V 

ratio were not. The L/V ratio in the isolate, however, was correlated positively with SH (r = 0.40; 

p<0.05) and negatively with ZP (r = -0.39; p<0.05). Moreover, the solubility of faba bean 
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isolates was found to be positively correlated with ZP (r = 0.44; p<0.05) and negatively 

correlated with both IT (r = -0.38; p<0.05) and OHC (r = -0.38; p<0.05).  

The functional properties of some commercial protein isolates (soy, pea, whey, egg and 

wheat) were evaluated for comparative purposes. The OHC of the faba bean isolate was found to 

be higher than that of any of the commercial isolates. With the exception of CS (soy and pea) 

and FC (egg), all of the emulsifying (EC, EAI and ESI) and foaming (FC and FS) properties of 

the faba bean protein isolates were comparable to those of soy, pea and egg isolates. In contrast, 

values for most of the other functional properties were greater for faba bean isolates than for the 

pea and wheat isolates, but lower than for the whey isolate. For example, the solubility of the 

protein isolates was observed to decrease in the following order: whey (89.0%) = egg (88.1%) > 

faba bean (81.0%) > soybean (30.5%) > pea (20.1%) > wheat (10.7%).  
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1. INTRODUCTION 

 

1.1 Overview  

In human food, proteins from different sources are consumed for their nutritional and 

health promoting benefits. However, in recent times, food industries are leaning towards plant-

based alternatives in the formulation of food products due to “increasing dietary preferences 

among consumers; growing cost difference between animal and plant proteins; and rising 

concerns over the safe consumption of animal-based products” (Liu et al., 2010). Pulses 

represent a good source of protein (>20 g protein/100 g dry matter), with protein levels being 

significantly higher than those of cereal grains or root crops (Ustimenko-Bakumovsky, 1983; 

Schutyser et al., 2015). Pulses can be used in many ways, either through the direct consumption 

of regional crops (a frequent practice in developing countries) including chickpea (Cicer 

arietinum), pea (Pisum sativum) and faba bean (Vicia faba L.), or as functional ingredients 

(flours, concentrates, isolates) in prepared or processed foods. Faba bean (also known as broad 

bean when used in vegetable form) is widely grown in countries such as China, India and 

Pakistan (Vioque et al., 2012) and has a high protein level (32.5% on a dry weight basis, 

Gueguen and Cerletti, 1994). It has a well-balanced amino acid composition when consumed 

with cereals (Alamanou et al., 1996; Dervas et al., 1999; Pozani et al., 2002) and is a good source 

of vitamins, minerals and fibre (Ofuya and Akhidue, 2005). However, its use in the form of a 

protein isolate is very limited, in part because of the poor understanding of structure-function 

relationships, a decrease in production of faba bean (Rubiales, 2011), and the presence of anti-

nutritional compounds such as glycosides which are reported to cause favism, a severe form of 

anemia in some people (McMillan et al., 2001).   

 The major storage proteins in pulses, known as globulins, are categorized into legumins 

(L) (11S, S = Svedberg unit), vicilins (V) (7S) and convicilin. The legumin:vicilin (L/V) ratio is 

not fixed and varies among cultivars (Gatehouse et al., 1980; Martensson, 1980; Casey et al., 

1982; Schroeder, 1982; Murphy and Resurrecceon, 1984; Gueguen and Barbort, 1988; Kim et 

al., 1994; Cai and Chang, 1999; Mujoo et al., 2003; Tzitzikas et al., 2006; Mertens et al., 2011). 

Variability in the L/V ratio may be associated with various intrinsic and extrinsic factors. 
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Intrinsic factors include seed coat type (wrinkled or smooth), flower colour, seed colour and size 

(Black et al., 1998; Vidal-Valverde et al., 2003) whereas extrinsic factors comprise of agronomic 

factors, and method of analysis (Mertens et al., 2011). Variation in the L/V ratio may influence 

the physicochemical and functional properties of pulse protein products (Swanson, 1990; Utsumi 

et al., 1997; Can Karaca et al., 2011). For instance, Bora et al. (1994) observed that 7S pea 

globulins underwent heat gelation, whereas 11S globulins did not under the same processing 

conditions. Barac et al. (2010) reported that pea genotypes with high 7S protein levels or low 

11S protein levels yielded higher amounts of protein (higher protein extractability) as compared 

to other genotypes. The Mertens et al. (2011) study on smooth pea reported significant 

differences in protein content and L/V ratio for different genotypes, locations and years of 

growth. The variability in the L/V ratio could also be used in preparation of a wide range of 

foods with specific functional attributes such as foaming, emulsification or gelation. However, 

limited work has been done which describes the impact of environmental factors on the 

functionality of faba bean protein isolates, and the relationship between the L/V ratio and its 

functional attributes.  

The overall goal of this research was to investigate structure-function relationships 

determining the functionality of faba bean protein isolates in response to genotype and growth 

environment. Seven genotypes (CDC Fatima, Taboar, SSNS-1, FB9-4, FB18-20, Snowbird and 

CDC Snowdrop) grown in 2011 and 2012 at various locations in Canada (Manitoba, 

Saskatchewan and Alberta) were assessed. These genotypes were selected based on their 

physical and chemical characteristics such as tannin level, seed size and colour. For instance, 

both Snowbird and CDC Snowdrop are zero tannin genotypes for which seeds are observed to be 

very light in colour with no redness as compared to other tannin containing genotypes which are 

darker in colour with a redness character. Although the effect of environment was examined, a 

true genotype X environment study could not be undertaken due to limited seed availability from 

some locations. A genotype x location and genotype x year effect was studied only for SSNS-1, 

FB9-4 and FB18-20 which were grown at same locations in 2011 and 2012. It was hypothesized 

that the L/V ratio would be a significant determinant of the functionality (e.g., solubility, 

foaming, emulsification, oil/water holding, etc.) of faba bean protein isolates, and that 

functionality would differ depending on the genotype and the environmental conditions in which 

the seed was grown. Confirmation of these hypotheses might make possible the selection of 
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genotypes or production lots particularly suitable for producing isolates to compete in the plant 

protein market. 

 

1.2 Objectives 

      The specific objectives of this research were: 

1) To characterize the effect of genotype and environment on the composition, including the 

legumin:vicilin (L/V) ratio, of faba bean flours and protein isolates; 

2) To characterize the effect of genotype and environment on the physicochemical properties of 

faba bean protein isolates; 

3) To characterize the effect of genotype and environment on the functional properties of faba 

bean protein isolates, and to compare them to those of commercial protein ingredients; and 

4) To discern structure-function relationships.  

 

1.3 Hypotheses 

The specific hypotheses of this research were: 

1) Significant differences exist in the protein composition and the legumin:vicilin (L/V) ratio of 

faba bean flours and protein isolates and these differences are related to genotype and 

environment;  

2) Significant differences exist in the functional and physicochemical properties of faba bean 

protein isolates and these differences are related to genotype and environment; 

3) Significant correlations exist between the physicochemical and functional properties and the 

L/V ratio of faba bean protein isolates. 
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2. LITERATURE REVIEW 

 

2.1 Pulse proteins: An overview  

 Pulses such as beans, peas and lentils have been consumed for thousands of years and 

represent one of the most extensively consumed food in the world (Mudryj et al., 2014). Pulses 

play crucial roles in fulfilling the nutritional requirements of the growing population in a cost 

effective manner, especially for developing or underdeveloped countries where animal protein 

consumption is either limited or expensive (Aguilera et al., 2013). Pulses are widely used for 

food purposes because of their high protein content; high nutritional and health beneficial 

properties; appropriate functional attributes; and associated low production cost and abundance 

(Duranti, 2006). The health benefits associated with pulse consumption include lowering of 

cholesterol levels, reducing the risks of various cardiovascular diseases and cancers, and 

decreasing the risk of type-2 diabetes (Roy et al., 2010). Along with protein, pulse provides 

dietary fibre and, vitamins and minerals such as iron, zinc, folate, and magnesium (Mudryj et al., 

2014). Pulses also have an antioxidant and anti-carcinogenic effect because of the presence of 

phytochemicals, saponins and tannins in them (Mudryj et al., 2014).  

 For many years, pulses have been used in the preparation of wholesome nutritional meals 

in combination with other food sources or ingredients. Pulse crops such as pea, chickpea and 

common bean (Phaseolus vulgaris L.), when blended with regionally grown cereal grains, could 

be of immense value in helping to fulfill the nutritional requirements of people relying just on 

mono-carbohydrate diets (Boye et al., 2010a). However, the nutritional quality of pulses is 

limited because of the presence of heat labile and heat stable anti-nutritional factors (ANFs) 

(Aguilera et al., 2013). The ANFs include proteins such as lectins and protease inhibitors, and 

other compounds such as phytate, tannins, saponins, and alkaloids (Aguilera et al., 2013). The 

negative impact of these ANFs on consumption of pulses in human and animal diets has been 

extensively reported (Adebowale et al., 2005). However, the processed forms of legumes (flours, 

concentrates or isolates) reported to have lower levels of ANFs than their corresponding raw 

material form (seeds) (Hajos and Osagie, 2004). For instance, during the germination process, 
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legumes found to have a higher digestibility, soluble protein (Vernaza et al., 2012) and dietary 

fibre (Martin-Cabrejas et al., 2008; Benitez et al., 2013), and reduced levels of ANFs (Vidal-

Valverde et al., 2002). Furthermore, protein isolates prepared by extraction or precipitation 

methods also found to have reduced anti-nutritional factors such as trypsin inhibitors, glycosides 

(such as convicine and vicine) and haemagglutinins which would otherwise impair protein 

digestion and could be toxic for human consumption (Frias et al., 1995; Kothekar et al., 1996; 

Kozlowska et al., 1996; Boye et al., 2010a). The exploitation of protein isolates or concentrates 

in new food formulations is of great importance because of their high nutrition and functionality 

(Lecomte et al., 1993). The utilisation of right individual functional properties might be useful in 

producing different food products such as cakes, biscuits, beverages and breads.    

  

2.2 Protein structure and legumin/vicilin (L/V) ratio 

The majority of pulse proteins are albumin and globulin fractions, where globulins 

represent ~70% and albumins constitute 10-20% of the total pulse protein (Boye et al., 2010a; 

Can Karaca et al., 2011). In addition, other proteins which are present in minor proportions such 

as prolamins and glutelins (Gupta and Dhillon, 1993; Saharan and Khetarpaul, 1994). These four 

proteins can be classified according to their solubility in various solvents based on the Osborne 

classification scheme (Osborne, 1924). For example, globulin proteins are soluble in dilute salt 

solution, albumins in water, prolamins in 70% ethanol solution, and glutelins are solubilized in 

dilute alkali solutions (Osborne, 1924; Oomah et al., 2011).  

Albumins encompass structural and enzymatic proteins, lectins and protease inhibitors, 

with their overall molecular mass (MM) ranging between 5 and 80 kDa (Boye et al., 2010a). In 

contrast, the salt soluble globulins include legumin (11S, S = Svedberg Unit) and vicilin (7S) 

proteins. The 11S fraction is a hexamer (MM of ~340-360 kDa) comprised of six subunits (MM 

of ~60 kDa) linked by non-covalent interactions. Each subunit pair is comprised of an acidic 

(MM of ~40 kDa) and basic (MM of ~20 kDa) chain joined by a disulfide bond (Swanson, 1990; 

Can Karaca et al., 2011). In contrast, the 7S fraction is a trimer with a MM of ~175-180 kDa, and 

lacks disulfide bridging (Boye et al., 2010a). Vicilin protein molecules also have been reported 

to have various subunits of 75, 43, 33, 56, 12 and 25 kDa (Swanson, 1990; Can Karaca et al., 

2011). A third type of globulin is also present, although in lesser amounts as compared to other 

globulins, and is known as convicilin (Croy et al., 1980). It is a 7S globulin, and a single 
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convicilin molecule has an overall MM of 220-290 kDa, and consists of 3 or 4 subunits each 

with a MW of 70 kDa. This protein has a different amino acid profile than vicilin as it contains 

sulfur-containing amino acids, is immunologically similar to 7S vicilin, and contains very little 

carbohydrate (Boye et al., 2010a). Various pulse species have been reported to contain 

convicilin-type proteins. For example, Saenz de Miera et al. (2008) investigated 29 different 

legume species from 4 genera (Pisum, Lens, Vicia and Latyruus spp.), and reported the presence 

of 34 new convicilin gene sequences. All of the above studies considered convicilin as a third 

class of globulin molecules. However, O‟Kane et al. (2004) deny the consideration of convicilin 

as a third pea globulin based on their findings and reported that convicilin (a polypeptide) should 

be denoted as the R-subunit of pea vicilin molecules (salt extracted).    

The ratio of legumin:vicilin (L/V) is not fixed and may vary among different pulse 

varieties and species. The ratio of L/V for pea, soybean and faba bean varies in the range of 0.2-

8.0, 1.3-3.4 and 1.7-3.7, respectively (Gatehouse et al., 1980; Martensson, 1980; Casey et al., 

1982; Schroeder, 1982; Murphy and Resurrecceon, 1984; Gueguen and Barbort, 1988; Kim et 

al., 1994; Cai and Chang, 1999; Mujoo et al., 2003; Tzitzikas et al., 2006; Mertens et al., 2011). 

Various studies reported that L/V ratio for wrinkled pea seeds (0.2-0.6) represent a smaller ratio 

compared to the smooth pea seeds (0.3-2.0) (Schroeder, 1982; Gueguen and Barbot, 1988; 

Cousin, 1997; Mertens et al., 2011). Various factors including the methods used in the 

preparation of protein materials (concentrates or isolates); processing parameters like pH and 

temperature and environmental or agronomic factors may account for the variation in these 

ratios, which in turn could also have influential effects on the physiochemical properties of pulse 

protein materials (Swanson, 1990; Utsumi et al., 1997; Can Karaca et al., 2011). As a part of 

their studies, Barac et al. (2010) extracted the proteins from six varieties (genotypes) of pea 

(Calvedon, L1, L2, L3, Maja and M.A) and indicated that genotypes with high 7S protein levels 

or low 11S protein levels yielded higher amounts of protein (protein extractability) compared to 

the other genotypes. Moreover, pure vicilin solutions were observed to have better functional 

properties (such as emulsification and gelation) than the pure legumin solutions (Barac et al., 

2010). It was indicated that a low L/V ratio for preparation of protein isolates could be desirable. 

In the Mertens et al. (2011) study on smooth pea seeds, it was reported that agronomic factors, 

including variety, cultivar type and location, affected the protein content and L/V ratio with high 

significance. However, some varieties were less sensitive to the prevailing climatic conditions 
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than others. This approach could be beneficial from an industrial point of view as it could 

manifest in picking stable and less sensitive L/V ratio lines for specific product quality 

characteristics (Mertens et al. 2011). 

 Various groups have researched relationships between L/V ratios and their functional 

attributes. A number of studies noted that pea vicilin showed higher emulsifying properties than 

corresponding pea legumin (Cserhalmi et al., 1998; Rangel et al., 2003; Kimura et al., 2008), 

which was attributed due to higher solubility (Koyoro and Powers, 1987) and surface 

hydrophobicity (Boye et al., 2010a) of vicilin proteins. Furthermore, Shen and Tang (2014) 

reported that emulsifying properties of vicilins were found to be dependent on both the legume 

source (Kidney bean, red bean and mung bean) and their protein concentration (0.25-2.5% w/v). 

The differences in the emulsion properties of vicilins at different concentrations were majorly 

related to the variation in zeta potential and interfacial characteristics, and were also found to be 

dependent on other factors such as protein folding, penetration and structural rearrangement at 

the interface (Shen and Tang, 2014). Bora et al. (1994) studied the heat induced gelation of 

mixed pea globulins and found that 7S globulin had the capacity to undergo heat gelation while 

11S globulin did not although used the same optimal conditions of gelation with 15% globulin 

solutions, pH 7.1 and heating at 87°C for 20 min. However, Nakamura et al. (1986) observed 

that the gels formed by 7S globulins of soybean are less strong and transparent as compared to 

those formed by 11S globulins, which were much harder and turbid in nature. The study 

suggested that the extent of interaction in gel formation of a mixed system of 7S and 11S 

globulins is affected by factors such as the 11S/7S ratio and the composition of their subunits. 

Cserhalmi et al. (1998) reported that mixed globulins and 7S fractions of pea proteins had 

increased surface hydrophobicity and emulsifying properties compared to the albumins and 11S 

fractions. Moreover, for all the pea varieties tested, the emulsifying and surface hydrophobicity 

properties were different from each other. Thus, varying the L/V ratio could be used in obtaining 

the desired functional attribute in new food formulations.  

The quantification of 7S and 11S fractions present in isolates or concentrates is an 

essential step for calculation of L/V ratio which can be achieved using various methods 

described in literature. Methods include ammonium sulfate salt extraction (Danielsson, 1949), 

isoelectric precipitation (Derbyshire et al., 1976), sodium dodecyl sulfate-polyacrylamide-gel 

electrophoresis (SDS-PAGE), gel chromatography (Gwiazda et al., 1980), selective thermal 
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denaturation (Varfolomeeva et al., 1985), sucrose gradient centrifugation (Mori and Utsumi, 

1978) and zonal isoelectric precipitation (Scholz et al., 1974; Wright and Boulter, 1974). The 

effective separation and the choice of technique should be depend on factors such as nature of 

sample (isolates, concentrates, seed), extraction technique employed and the level of purification 

required. For testing of functional and physicochemical properties of 7S and 11S fractions, it is 

required that enough quantity of these samples is obtained whichever technique is used without 

compromising the purity.  

 

2.3 Protein extraction  

Protein extraction is dependent on many factors such as pH, temperature, particle size, 

ionic strength, type of salt used, and solvent to flour ratio (Kinsella, 1979; Aguilera and Gracia, 

1989). Various extraction methods are being studied so to maximize the protein yield without 

compromising the protein functionality of the concentrate or isolate product. The protein 

extraction processes which are being exploited in the preparation of protein-rich materials (such 

as isolates and concentrates) can be classified into dry and wet methods (Tyler et al., 1981; 

Zheng et al., 1998; Tian et al., 1999). 

 

2.3.1 Dry processing 

Dry processing of pulses is typically done by air classification, which involves the 

separation of flours on the basis of particle size and density using an air stream into protein and 

starch rich fractions (Tyler, 1984; Swanson, 1990). Air classification has been found to be 

suitable for legume crops low in fat, such as field pea and common bean. Flours are first 

fractionated into starch (SI) and protein (PI) rich concentrates using an air classification method. 

SI is then remilled and fractionated to give SII and PII concentrates (Tyler et al., 1981). Protein 

separation efficiency (PSE) is defined as the percentage of total flour protein recovered in the PI 

and PII fractions, and measured as the subtraction of % total flour protein recovered in SII 

fraction from 100% (Tyler et al., 1981). For legume crops high in fat such as soybean and 

chickpea, particle agglomeration is detected which interferes with PSE (Sosulski and Youngs, 

1979; Gueguen, 1983; Gueguen and Cerleti, 1994). Dry processing has major advantage over 

wet extraction methods as the native functionality of proteins is retained and a lower amount of 

energy and water is required (Pelgrom et al., 2013). Moreover, in contrast to wet extraction 
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methods where both protein concentrates and isolates can be produced, dry processes are suitable 

only for preparing protein concentrates with protein content from 40 to 75% (Kiosseoglou and 

Paraskevopoulou, 2011) probably because of the presence of higher amount of other compounds 

such as oil and fibres, and protein loss in coarse fractions (Schutyser et al., 2015).  

 Tyler et al. (1981) studied the fractionation of eight legumes (cowpea, great northern 

bean, lima bean, mung bean, navy bean, lentil, faba bean and field pea) using flours produced by 

pin milling followed by air classification and found faba bean (63.8-75.1%) and lima bean (43.4-

49.6%) to have the highest and lowest protein concentrations in the protein-rich fractions. 

According to the authors, the suitability of pin milling followed by air classification is strongly 

correlated with the PSE of the legumes. Mung bean, lentil and great northern bean were found to 

have the highest mean PSE values of 88.9, 87.2 and 87.0%, respectively, whereas lima bean, 

cowpea and navy bean showed the lowest at 80.2, 78.2 and 80.3%, respectively. The other two 

legumes, faba bean and field pea, had PSE values of 84.1 and 82.8%, respectively. Overall, the 

authors indicated that except for lima bean and cowpea, the legumes were found to be suitable 

for separation of protein and starch fractions by the pin milling and air classification method.  

 

2.3.2 Wet processing 

In general, wet extraction methods can be exploited for preparing both protein 

concentrates and isolates at levels of 70% and 90% protein (or higher), respectively. However, it 

should be noted that currently there is no universal classification scheme which separates 

concentrate from an isolate for all the legumes. The various wet extraction processes include 

acid/alkaline extraction-isoelectric precipitation, ultrafiltration and salt extraction. Legume flours 

dispersed in aqueous solutions typically show high solubility when subjected to alkaline or acidic 

extraction conditions at pH 8-10 and below 4 respectively (Kiosseoglou and Paraskevopoulou, 

2011). 

 

a) Acid/alkaline extraction-isoelectric precipitation (IEP):  

Briefly, proteins are first dissolved under alkaline (alkaline extraction) or acidic (acid 

extraction) conditions, followed by a clarification step and then precipitation by adjusting the pH 

to the isoelectric point (pI) of the protein (Han and Hamaker, 2002). In solutions with the pH < 

pI, proteins assume a net positive charge, whereas at pHs > pI proteins assume a net negative 
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charge. Under solvent conditions where proteins carry a net positive or negative charge, 

repulsive forces between proteins repel neighbouring molecules, and also promote protein-water 

interactions for improved dispersion and solubility. Near the pI value, proteins tend to carry a 

neutral net charge, allowing neighbouring proteins to aggregate via attractive van der Waals 

forces and hydrophobic interactions. Under these conditions, protein-protein interactions are 

favoured over protein-water interactions, and thus protein is precipitated out of the solution.  

According to Han and Hamaker (2002), alkaline extraction followed by isoelectric 

precipitation is the most widely used method for obtaining extracts with protein purity greater 

than 70%. During alkaline extraction, legume proteins become solubilized at high pH values. 

The solution can then be clarified by centrifugation to remove insoluble material such as 

insoluble fibre, carbohydrates and insoluble proteins (e.g., prolamins). Protein concentrates or 

isolates can be formed by reducing the pH of the supernatant to near the pI of the protein using 

an acid such as HCl, (Boye et al., 2010b; Kiosseoglou and Paraskevopoulou, 2011). The study of 

Can Karaca et al. (2011) showed that isolates prepared from legumes (faba bean, chickpea, lentil, 

pea and soybean) by an alkaline extraction/IEP method had higher overall protein content 

(85.6%) as compared to those prepared by a salt extraction method (78.4%). Moreover, it was 

reported that both legume source and protein extraction method along with their interaction had 

significant effects on protein levels of isolates, and also on physicochemical and emulsifying 

properties. The overall surface charge, solubility, hydrophobicity and creaming stability for IEP 

produced isolates was higher as compared to isolates produced by salt extraction method (Can 

Karaca et al., 2011). The effect of processing or extraction conditions on the protein content of 

isolates can also be well observed from the studies of Flink and Christiansen (1973) and 

McCurdy and Knipfel (1990). In the former study, faba bean isolates with protein contents of 

80.0-90.0% were obtained when the bean:solvent ratio was 1:5 (w/v) with pH 8 to 10 at 23°C for 

10 min, and the precipitation of protein was carried out at pH 3-5. While in the latter study, the 

protein content of faba bean isolates was 76.4-94.0% using a bean:solvent ratio of 1:5 w/v with 

pH 7 to 10, 30 min, temperatures of 10°C and 20°C, and precipitation at pH 4-5.3.  

Acid extraction (in principle similar to alkaline extraction) involves the preliminary 

extraction of proteins under acidic conditions. This process could result in high solubilisation of 

proteins prior to protein recovery (IEP, Ultrafiltration (UF)), as proteins tend to be more soluble 

under acidic conditions (pH below 4) (Boye et al., 2010a). In a study by Vose (1980) for 
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preparation of faba bean (Vicia faba equina L. cv. Diana) and pea (Pisum sativum L. cv. 

Trapper) IEP isolates, the cyclone discharge obtained from pin milling of these two legumes was 

acidified directly using 2 N HCl to a isoelectric point of 4.4-4.6. This process resulted in pea and 

faba bean protein isolates with 91.9% and 91.2% protein levels, respectively (Boye et al., 2010a).  

 

b) Ultrafiltration/diafiltration 

In the literature, membrane separation methods were shown to produce protein isolates 

with higher functionality (Fredrikson et al., 2001; Fuhrmeister and Meuser, 2003) and were 

effective in reducing levels of anti-nutritional components which include protease and amylase 

inhibitors, lectins and polyphenols (Singh, 1988; Waggle et al, 1989; Mondor et al., 2009). 

Ultrafiltration (UF) and microfiltration are membrane-based fractionation methods using 

pressure as the driving force for separation. Microfiltration can be used to separate particles or 

macromolecules larger than 0.1 µm, whereas ultrafiltration removes similar particles in the range 

of 0.001 to 0.02 µm (Koros et al., 1996). For preparation of protein materials using 

ultrafiltration, the supernatant after alkaline or acidic extraction is processed using either UF or 

UF and diafiltration (DF) together to isolate the protein material. Ultrafiltration is often 

combined with DF to improve protein recovery, where water is added to the retentate for dilution 

purposes, followed by re-ultrafiltration.  

Vose (1980) used the UF procedure to produce faba bean and pea protein isolates which 

produced protein levels of 94.1% and 89.5%, respectively. Boye et al. (2010b) evaluated the 

protein content of isolates obtained from different pulses (pea, chickpea and lentil) using alkaline 

extraction-isoelectric precipitation (IEP) and UF/DF extraction methods. The protein content in 

concentrates obtained by the UF/DF method was found to be higher than in those obtained by 

IEP. For instance, for yellow pea, green lentil, red lentil, and desi and kabuli chickpea, UF/DF 

gave protein levels of 83.9%, 88.6%, 82.7%, 76.5% and 68.5%, respectively. In contrast, for IEP 

extraction, protein levels were 81.7%, 79.1%, 78.2%, 73.6% and 63.9% respectively for the same 

legume crops. Moreover, it was reported that UF was different from IEP in terms of protein 

composition as the isolates prepared by UF comprised both globulins and albumins, whereas the 

isolates prepared by IEP were observed to contain only globulins (Papalamprou et al., 2009; 

Papalamprou et al., 2010; Kiosseoglou and Paraskevopoulou, 2011).  
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c) Salt extraction 

Salt extraction is a process where globulin proteins are separated from albumins on the 

basis of solubility (Boye et al., 2010a), as described previously in the Osborne classification 

scheme (Osborne, 1924). Proteins contain both hydrophobic and hydrophilic amino acids. The 

majority of hydrophobic moieties are buried inside the quaternary or tertiary structure due to a 

hydrophobic effect, and the majority of hydrophilic moieties are on the surface, free to 

participate in protein-water interactions. „Salting-in‟ of proteins typically occurs at low salt 

levels, where the ions act to increase order of the protein‟s hydration layers and promote protein-

water interactions (Philip, 1907; Glasstone et al., 1926; Glasstone et al., 1927; Eucken and 

Hertzberg, 1950; Desnoyers and Jolicoeur, 1969; Grover and Ryall, 2005). However, at high 

levels of salt, hydration layers can be disrupted as ion-water interactions become favored over 

protein-water interactions in a „salting-out‟ process (Philip, 1907; Glasstone et al., 1926; 

Glasstone et al., 1927; Eucken and Hertzberg, 1950; Desnoyers and Jolicoeur, 1969; Grover and 

Ryall, 2005). As the ions attract water molecules away from the surface of the proteins, protein-

protein aggregation is favored due to hydrophobic interactions. Aggregates continue to grow in 

size and number until they fall out of solution as a precipitate. The ability of ions to „salt-in‟ or 

„salt-out‟ proteins depends on both the ionic strength and type of cations and/or anions present, 

as described according to the Hofmeister series (Hofmeister, 1888) (Figure 2.1). Figure 2.1 

below describes various anions and cations in decreasing order of their ability in precipitation 

and stabilization of proteins.  
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Figure 2.1. Relative protein precipitation ability of cationic and anionic salts (Hofmeister, 1888). 

 

Salts formed between cations and anions with higher precipitation ability in the series 

decrease the solubility of non-polar amino acids, favoring hydrophobic interactions to „salt-out‟ 
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proteins. On the contrary, salts formed between cations and anions with lower precipitation 

ability in the series weaken the hydrophobic interactions and result in increasing solubility of 

non-polar amino acids, thus favoring the „salting-in‟ process (Nostro and Ninham, 2012). 

Broadly speaking, ammonium sulfate (NH4)2SO4 and sodium chloride (NaCl) are the most 

commonly used salts for research purposes (Paredes-Lopez et al., 1991; Alsohaimy et al., 2007; 

Sun and Arntfield, 2010; Can Karaca et al., 2011). Typically in the salt extraction procedure, 

proteins are initially dissolved in an aqueous NaCl solution (0.3-0.5 M) (Paredes-Lopez et al., 

1991; Sun and Arntfield, 2010) at neutral pH, followed by a clarification procedure to remove 

insoluble material. Precipitation of the protein can be triggered by either diluting the supernatant 

with water to lower the ionic strength or by dialysis to remove the salts, resulting in the 

formation of protein micelles which grow in size and number until precipitation ensues. 

Alsohaimy et al. (2007) prepared protein isolates from chickpea, lupin and lentil using isoelectric 

precipitation (IEP) and ammonium sulfate precipitation. For all of these legumes, the latter 

method resulted in higher protein content (chickpea-90.6%, lupin-92.6% and lentil-93.0%) in 

comparison to the former method (chickpea-81.4%, lupin-87.3% and lentil-80.0%). On the 

contrary, Can Karaca et al. (2011) produced isolates from chickpea, faba bean, pea and lentil 

using IEP and salt extraction method and found that the protein levels obtained using the IEP 

method (chickpea-85.4%, faba-84.1%, pea-88.8%, and lentil-81.9%) were found to higher than 

the ones produced by the salt extraction method (chickpea-81.6%, faba-82.0%, pea-81.1%, and 

lentil-74.7%) (Can Karaca et al., 2011). 

 

2.4 Functional properties of legume proteins 

Protein flours, concentrates and isolates can be incorporated into various foods to 

increase their nutritional value and/or to provide specific and desirable functional attributes 

(Boye et al., 2010a). These functional attributes may include solubility, gelation, emulsifying 

ability, oil and water absorption capacity, and foaming. Moreover, functional properties of 

legume proteins contribute an important aspect in determining the competitiveness of the protein 

ingredient or the product in the market, as they can impact the sensory, physical and chemical 

properties of a food, which includes texture and organoleptic characteristics. In the literature, the 

functional attributes of legume proteins vary considerably due to differences in the raw material, 

processing, extraction methods and environmental conditions used during testing. 
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a) Solubility 

 Protein solubility plays a major role in various food applications as a number of 

functional properties such as foaming, gelation or thickening, and emulsification are closely 

related and often dependent on protein solubility. A high protein solubility may be helpful in 

producing food products such as beverages, infant milk powder, imitation milk and other 

products which require instant solubility with no residues left. For instance, imitation milk 

produced using lentil protein isolate reported to have same quality as compared to those prepared 

from soy protein isolate, however having a lower quality when formed using a pea protein isolate 

(Swanson, 1990). The solubility of protein depends on various attributes including 

hydrophobic/hydrophilic balance of the protein molecule (mainly the surface composition: 

polar/non polar amino acids), isoelectric point, pH, temperature, ionic strength and the type of 

ions present in the solution (Kiosseoglou and Paraskevopoulou, 2011). Proteins exhibit minimum 

solubility at their isoelectric point (pI) because of a zero net surface charge, resulting in 

aggregation of protein molecules into some larger structures, followed by precipitation. On the 

contrary, when the pH values are greater or less than the protein‟s pI, proteins exert a positive or 

negative net charge into solution, repelling one another to maximize solubility.  

The solubility profile of concentrates and isolates from various pulses obtained by IEP or 

UF were found to be lowest between pH 4 and 6, and significantly increases with pH shifting to 

either more acidic or alkaline conditions (Kiosseoglou and Paraskevopoulou, 2011). Boye et al. 

(2010b) reported that the solubility of pea, chickpea and lentil protein concentrates, which were 

processed using IEP and UF/DF (diafiltration) techniques, were highest at pHs 1-3 and pHs 7-10. 

Moreover, the solubility profile varied with different varieties where, UF-yellow pea and UF-red 

lentil concentrates had the highest solubility at neutral pH, while at pH 3 and 8-10 solubility was 

highest for only UF-red lentil. In both cases, the lowest solubility was found for UF-chickpea 

(desi). The study by Can Karaca et al. (2011) on five different legumes (pea, chickpea, faba 

bean, lentil and soybean) showed higher overall solubility (determined at neutral pH) of these 

legume isolates prepared by the IEP method (85.9%) as compared to ones prepared by a salt 

extraction method (61.5%). For the IEP method, the pea protein isolate had the lowest solubility 

(61.4%); soybean isolates had the highest solubility (96.5%); and pea, lentil and chickpea 

isolates exhibited intermediate solubility (>90.0%). However, highly variable results were 

obtained for the solubility of salt-extracted isolates with values of 30.1% and 96.6% for chickpea 
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and soybean respectively, while intermediate solubility was observed for lentil (89.8%), pea 

(38.1%), and faba bean (52.5%). Solubility profile of isolates produced from kabuli (PBG-1, 

PDG-4, PDG-3, GL769 and GPF-2) and desi chickpea cultivars (L550) were found to be non-

significant as a function of genotype (p>0.05) (Kaur and Singh, 2007). However, in the study of 

Barac et al. (2010), the solubility profile of six pea genotypes (Maja, Calvedon, Miracle, L1, L2 

and L3) were found to be significantly different from each other except L2 and Maja (p<0.05).      



b) Oil holding and water hydration capacities (OHC, WHC) 

Oil holding capacity (OHC) and water holding capacity (WHC) refer to the extent to 

which oil and water, respectively, can be bound per gram of the protein material or legume flour 

(Boye et al., 2010a; Kiosseoglou and Paraskevopoulou, 2011). These properties are essential 

with respect to maintaining the quality of a product, its shelf life and consumer acceptability 

(texture and mouth feel). The ability of a protein to bind oil and water is important in preventing 

cook loss or leakage from the product during processing or storage (Kiosseoglou and 

Paraskevopoulou, 2011). Failure of a protein to bind water could lead to brittle and dry 

characteristics of the product (Boye et al., 2010a). WHC values for pulse protein concentrates, 

such as pea, faba bean, lentil and chickpea, have been determined by various groups (Fernandez-

Quintela et al., 1997; Kaur and Singh, 2007; Boye et al., 2010b) to fall in the range of 0.6 to 4.9 

g/g, suggesting that both pulse genotype and type could impact values. For instance, Kaur and 

Singh (2007) found that protein isolates prepared by kabuli chickpea cultivars (PBG-1, PDG-4, 

PDG-3, GL769 and GPF-2) produced significantly lower WHC than desi chickpea (L550) 

(p<0.05) which clearly indicates the impact of different cultivars in assessing functionality. Boye 

et al. (2010b) reported that for all the legumes studied (red and green lentil, desi and kabuli 

chickpea, yellow pea) IEP protein concentrates had higher WHCs than did ones prepared by UF 

(with the exception of red lentil protein concentrates) although no substantial differences were 

observed between WHC values of pulse concentrates prepared by either IEP or UF. The yellow 

pea concentrate (IEP) had the highest WHC value which was much higher than those of the 

kabuli and desi chickpea concentrates (IEP and UF) indicating the more significant effect of 

pulse type compared to extraction method on WHC.   

Oil holding capacity (OHC) values reported by various authors (Parades-lopez et al., 

1991; Fernandez-Quintela et al., 1997; Kaur and Singh, 2007) for different pulses range from 
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1.0-3.96 g/g, and seem to depend again on the type and variety of pulse used, and the method of 

preparation of the protein product. Boye et al. (2010b) studied the UF and IEP concentrates 

produced from red and green lentil, yellow pea and kabuli and desi chickpea. They reported that 

pulse variety and processing conditions had a larger impact on the OHC of yellow pea, kabuli 

chickpea and red lentil concentrates as compared to those made from desi chickpea and green 

lentil. Moreover, UF concentrates made from yellow pea, red lentil and kabuli chickpea had 

significantly higher OHC than their corresponding IEP concentrates. Red lentil and yellow pea 

concentrates produced by UF had highest OHC of 2.26 g/g and 1.17 g/g respectively. However, 

no significant differences in OHC were observed between the IEP produced concentrates 

(p>0.05) (Boye et al., 2010b). In the study of Kaur and Singh (2007), chickpea protein isolates 

were reported to have higher OHC than the corresponding flour samples. Moreover, in contrast 

to WHC, the OHC of kabuli chickpea was reported to be significantly higher than desi cultivars 

(p<0.05).  

The water and oil holding properties of legume proteins may be essential in formulation 

of food products such as meat, pasta, cookies, etc. In producing low fat meat products, water is 

added to substitute the fat loss. And, water holding compounds are added to prevent cooking 

losses and meat shrinkage which includes proteins (whey, soy and collagen), lipids (soy lecithin) 

and carbohydrates (flours, starches and gums) (Brewer, 2012). For instance, soy proteins added 

to ground beef improves the tenderness, moisture retention, decreases cooking losses, and 

inhibits rancidity (Kotula and Berry, 1986). Deliza et al. (2002) replaced meat in ground beef 

mixture with hydrated textured soybean protein (15 or 30%) and found that beef patties were 

more tendered as compared to controls, although the overall flavour quality is reduced with 

having less beefy flavour. However, legumes (navy beans, chickpeas, mung beans and, red 

kidney beans) when substituted at a level of 15% in beef mince resulted in acceptable products, 

with chickpea preferred over other legumes (Muller and Redden, 1995). 

 

c) Emulsification 

An emulsion is a mixture of two or more immiscible liquids (usually oil and water), 

where one of the liquids (the dispersed phase) is mixed in to other (the continuous phase) in the 

form of small spherical droplets (McClements, 2005). Emulsions are generally classified into 

two types: oil-in-water (O/W), in which oil droplets are dispersed within an aqueous phase (e.g., 
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milk, mayonnaise, cream and soups); or water-in-oil (W/O), in which water droplets are 

dispersed within an oil phase (e.g., butter and margarine). Emulsions are thermodynamically 

unstable and with time separate into oil and liquid layers due to collision and coalescence of 

droplets (McClements, 2005). Stabilizers such as emulsifiers can be used to produce stable 

emulsions. For instance, protein as an emulsifier acts by adsorbing onto the oil-water interface to 

form a viscoelastic film surrounding the oil droplets. Stability is enhanced through electrostatic 

charge repulsion (depending on the pH), steric hindrance or increases to the continuous phase 

viscosity (McClements, 2005).  

Protein emulsifiers are used worldwide because of their ability to adsorb at the droplet 

surface in an O/W emulsion during the process of homogenization, thereby reducing interfacial 

tension. The adsorbed protein molecules present at the surface act as a separating membrane 

preventing coalescence with the neighbouring droplets (Kiosseoglou and Paraskevopoulou, 

2011). To be an effective emulsifier, protein must exhibit the following properties: fast 

adsorption at the oil-water interface, ability to form a protective and cohesive layer around the oil 

droplets, and ability to unfold at the interface (Damodaran, 2005). Various studies reported that 

the emulsifying ability of legume protein concentrates or isolates are dependent on the type of 

legume or the method (IEP/UF/salt extraction) used in their preparation. For instance, 

Fuhrmeister and Meuser (2003) reported that a pea protein isolate prepared by an IEP method 

was found to have lower emulsifying ability as compared to one prepared using UF.  

Emulsion activity index (EAI) refers to the area of emulsion stabilized per gram of 

emulsifier or protein material and expressed as m
2
/g whereas emulsion stability index (ESI) 

refers to the measure of stability of this emulsion as a function of time. Emulsion capacity (EC) 

is amount of oil homogenized per gram of protein material and expressed as g oil/g protein 

whereas creaming stability (CS) is the ability of emulsion to resist creaming and formation of 

serum layer as the time passes, and measured as %. The study conducted by Can Karaca et al. 

(2011) on different legumes (pea, chickpea, faba bean, soybean and lentil) showed that both 

legume source and extraction method (IEP or UF) had significant effects on emulsifying and 

physicochemical properties. Both EAI and ESI were significantly affected by legume source and 

extraction method, whereas EC was dependent on the legume source only. However, Boye et al. 

(2010b), studying the functional properties of chickpea, lentil and pea protein concentrates, 

concluded that IEP and UF preparation methods had little impact on emulsifying properties. 
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Barac et al. (2010) studying functional properties of six pea genotypes reported significant 

differences in emulsifying properties (EAI and ESI) as a function of genotypes and also as a 

function of pH for the six same genotypes. The EAI of pea genotypes tested in this study was 

significantly higher than the commercial pea protein isolates.  

Emulsifying and other functional properties of proteins can also be improved with protein 

modifications such as limited enzymatic hydrolysis using proteases (e.g. trypsin). The hydrolysis 

reaction results in partial unravelling of protein molecules thus, exposing more ionic and 

hydrophobic groups for interaction with oil droplets (Panyam and Kilara, 1996). For instance, 

trypsin treated oat bran protein with a ~4-8% degree of hydrolysis (DH) found to have improved 

solubility, water holding, foaming and emulsifying properties as compared to those of native 

proteins (Guan et al., 2007). On the contrary, Avramenko et al. (2013) reported detrimental 

effects of trypsin mediated hydrolysis (DH~4-20%) of lentil protein isolates. Here, except zeta 

potential, all the physicochemical properties (surface hydrophobicity and interfacial tension) and 

emulsifying properties (emulsion activity and stability indices) were found to have lower values 

as compared to the unhydrolysed lentil protein isolate. This suggests that processing conditions 

might have specific effects dependent on protein source.   

 Legume proteins play a vital role in formulation of a number of novel foods (such as 

sausages, bologna, meat analogues, cakes and soups) by formation and stabilisation of 

emulsions. Meat analogues are foods which are made from nonmeat ingredients, structurally 

similar to meat and may have same texture, flavour, appearance, and chemical characteristics 

(Malav et al., 2015). Some of the traditional foods such as wheat gluten, rice, mushrooms, tofu 

and legumes when added with flavours mimic the finished meat products such as chicken, beef, 

sausage etc. (Malav et al., 2015). Soybean protein is an important meat analogue since it has 

meat like texture and provides similar amino acid profile as with meat proteins (Malav et al., 

2015). Tofu is a widely consumed meat analogue made from soy, which provides a good source 

of protein, calcium and, iron. In general, the market for meat analogues is huge which includes 

vegetarians, vegans, and people who do not eat meat products because of religious or cultural 

practices.    

 

d) Foaming 

Similar to emulsions, foams also have two immiscible phases (aqueous and gas), and 
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require an energy input to facilitate their formation. Foams are comprised of a dispersed gas 

phase within a continuous aqueous phase (Damodaran, 2005). Proteins in solution adsorb to the 

gas-liquid interface in a similar manner as in emulsions to form a viscoelastic film surrounding 

the gas bubbles that helps resist rupturing and bubble fusion (Kiosseoglou and Paraskevopoulou, 

2011). In contrast to emulsions, the major driving mechanism associated with foam instability is 

associated with Oswald ripening, which involves the diffusion of small gas bubbles through the 

continuous phase in order to become absorbed into a larger gas bubble (Damodaran, 2005). 

Rupture of the viscoelastic film leads to drainage of the continuous liquid phase through the film 

matrix. Various food products are available which use protein as a stabilizer including 

meringues, whipped desserts, mousses and leavened bakery products (Townsend and Nakai, 

1983). Vose (1980) reported that the foaming properties of faba bean and yellow pea isolates, 

prepared using UF, were higher than that of skim milk powder, wheat flour and soy protein 

isolates. A faba bean isolate was observed to have better foaming properties than pea protein 

isolate.  

Foaming capacity (FC) refers to the volume of foam generated after homogenization of 

certain amount of protein solution whereas foam stability (FS) refers to the ability to retain foam 

structure and resistance in formation of serum layer as a function of time. In the study of Sathe 

and Salunkhe (1981) on great northern bean (Phaseolus vulgaris L.) protein materials, the FCs 

were in the following increasing order: albumins (180%) > protein concentrate (164%) > 

globulins (140%) ~ egg albumin (140%) > flour (132%) > isolate (106%), where egg albumin 

was the standard for measuring foaming capacity. These results indicated that, all great northern 

bean protein materials, except the isolate, had FCs that was comparable to or higher than that of 

egg albumin. However, the foaming stabilities were not up to the mark with egg albumin, and 

hence the overall foaming ability was given only a fair mark (Sathe and Salunkhe, 1981; Boye et 

al., 2010a). Boye et al. (2010b) studied and compared the functional properties of yellow pea, 

green and red lentil, and kabuli and desi chickpea protein concentrates prepared using IEP and 

UF techniques. In their studies, they found that foaming capacity (which ranged from 98% to 

106%) was similar for pea and lentil protein concentrates irrespective of extraction method used. 

However, the desi and kabuli chickpea concentrates prepared by the IEP method showed higher 

foaming capacity than for others. In general, it was observed that chickpea showed higher 

foaming capacity and expansion but lower foam stability as compared to other sources. 
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Furthermore, variability was observed in foaming stability with kabuli and desi chickpea and 

green lentil concentrates prepared by the IEP method, which showed higher foam stability values 

compared to concentrates prepared by the UF method. Barac et al. (2010) studying the functional 

properties of isolates produced from six pea genotypes using the IEP method, reported 

significant differences in their foaming properties as a function of genotype and regardless of 

changes in pH. Generally, a low foam stability was observed probably because of use of low 

concentration of protein in formation of protein solution. However, foaming capacity was highest 

for Maja cultivar, which was significantly higher than the commercial pea protein isolate. 

  

2.5 Faba bean (Vicia faba L.) 

Vicia faba L. is a key and inexpensive food crop in developing countries like Egypt, 

India, Pakistan and China and is used for human consumption, animal feed and for agronomic 

practices (Kopke and Nemecek, 2010; Vioque et al., 2012). Faba bean like other legumes fixes 

atmospheric nitrogen in symbiosis with bacteria (Rhizobium leguminozarum) allowing for less 

fertilizers to be used during production (El Fiel et al., 2002). Moreover, faba bean helps in 

reducing root rot and gangrene, and in improving the physical and chemical properties of soil 

(Micek et al., 2015). The yield of faba beans under favourable conditions may reach up to 4 

tonnes per hectare, and typically is used for feed purposes to provide nutrition of adult farm 

animals (Micek et al., 2015). For instance, Strzetelski et al. (1996) reported that faba bean meal 

can be used in place of soybean protein meal for young calves without having any negative 

impact on feed utilisation and weight gains. Faba bean contains high amounts of carbohydrate 

(57.3%) (Reddy et al., 1985; Oke et al., 1995; Frank-Peterside et al., 2002; Ofuya, 2002) and 

protein (24.0-36.0%) (Amartiefo et al., 2002; Frank-Peterside et al., 2002; Ofuya, 2002; Can 

Karaca et al., 2011; Coda et al., 2015), and is also a valuable source of minerals (Ca
2+

, Mg
2+

 and 

Fe
2+

) and vitamins (thiamine, riboflavin and pyridoxine) (Ofuya and Akhidue, 2005). Faba bean 

seeds have a very low level of fat (< 2%) (Cerning et al., 1975), and have crude fibre content of 

~2.4% (Gueguen, 1983).  

Similar to most of the legumes, the major proteins of faba bean seed can be divided into 

globulin and albumin fractions, where globulins account for the main storage proteins (60%) 

while the albumins account (20%) for most of the regulatory proteins (metabolic activities and 

enzymatic regulations) (Makri et al., 2005). The structure of 11S and 7S proteins in faba bean is 
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similar to that in other pulses, as described earlier. A large molecular heterogeneity was observed 

in legumin and vicilin proteins of faba bean flour samples (Tucci et al., 1991). Faba bean 11S 

proteins have large proportions of arginine, glutamic acid and aspartic acid, but are low in 

methionine and cysteine (Lampart-Szczapa, 2012). Faba bean vicilin contains a variety of 

polypeptide fragments (15 to 66 kDa) and are also glycosylated, unlike pea vicilin (Lampart-

Szczapa, 2012). 

 The protein profile of faba bean seeds calculated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) is similar to that of pea (Nikolic et al., 2012). 

The major bands of faba bean storage proteins under reducing conditions correspond to the 

following proteins: convicilin (~74 kDa), vicilin (~50 kDa), α-legumin (~36 kDa) and β-legumin 

(~24 kDa) (Nikolic et al., 2012). However, there could be slight variations in molecular weight 

of these bands subject to environmental or agronomical conditions. In the study of Vioque et al. 

(2012), the faba bean protein isolates produced by alkaline extraction/IEP (Na2SO3, pH-10.5, 

protein precipitation at pH 4.0) yielded a protein content of more than 90% (Table 2.1). 

However, lipids, sugar and polyphenol content were found to be negligible in the isolates (Table 

2.1). A very high dietary fibre content of 57% was also obtained in the alkaline solid residue 

formed after the alkaline extraction step in isolate formation (Vioque et al., 2012) (Table 2.1).  

 

Table 2.1. Approximate chemical composition of faba bean flour, protein isolate, and alkaline 

residue. All measurements are in % (w/w) (Vioque et al., 2012). 

Parameters Flour Protein isolate Alkaline solid residue 

Ash 4.1  3.2  1.7  

Fibre 31.3  n.d.
a 57.0  

Protein 26.6  92.4  6.9  

Lipids 1.8  Tr
b 1.0  

Soluble sugars 0.7  Tr
b 0.1 

Polyphenols 0.2  Tr
b Tr

b 

Carbohydrates  35.4 4.4
c 33.2 

a Not determined, b Traces (less than 0.1%), c Including fibre. 
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 Faba bean like other legumes contains anti-nutritive factors (ANFs) including pyrimidine 

glycosides called vicine and convicine, condensed tannins, protease inhibitors, alkaloids, lectins, 

and others (Liener, 1990). The content of these ANFs can be reduced using different methods 

such as dehulling, soaking, air classification, wet extraction, extrusion or heat treatment (Van der 

Poel, 1990; Jezierny et al., 2010). Faba beans containing vicine and convicine were found to be 

responsible for a number of anti-nutritive effects in both animals and humans. In animals, they 

result in a decrease in egg weight, hatchability and quality (Robblee et al., 1977; Campbell et al., 

1980; Davidson, 1980; Wang and Ueberschar, 1990), while in humans they are known for 

causing favism (a type of haemolytic anemia) (McMillan et al., 2001; Vioque et al., 2012). 

However, their content can be reduced to a negligible amount via isolate preparation as shown in 

the study of Vioque et al. (2012), where faba bean isolates produced by alkaline extraction 

(Na2SO3, pH-10.5, protein precipitation at pH 4.0) were analyzed for vicine and convicine 

content using Reverse Phase High Performance Liquid Chromatography (RP-HPLC). These 

were found to contain less than 1% of these glycosides in comparison to the original flour 

(Vioque et al., 2012).  

Modifications at genetic level have also showed to reduce the level of tannins and/or 

vicine and convicine content in faba beans (Crepon et al., 2010). Micek et al. (2015) found that 

low tannin varieties of faba bean had a higher crude protein and lower fibre content, and a 

significantly higher invitro digestibility (p<0.01). Some of the biological methods such as 

germination, enzymatic treatments, and fermentation have also been utilized to reduce the ANFs 

levels (Alonso et al., 2000; Granito et al., 2002; Luo et al., 2009). For instance, fermentation of 

faba bean flours by Lactobacillus plantarum VTT E-133328 resulted in a decrease in more than 

90% of vicine and convicine content, and a significant reduction in trypsin inhibitor activity and 

in the level of condensed tannins (Coda et al., 2015). Fermentation also resulted in an increase in 

level of free amino acids and improved protein digestibility (Coda et al., 2015). 

Faba bean have been studied and found to be comparable to those of other pulses 

(Andersson et al., 1985; Zheng et al., 1992; Fernandez-Quintela et al., 1997; Cepeda et al., 1998; 

Galazka et al., 1999; Vioque et al., 2012). Faba bean isolates produced using the IEP method 

were found to have higher functional properties (solubility, emulsion capacity, creaming stability 

and emulsion activity and stability indices) than pea protein isolates and comparable to those 

produced by chickpea and lentil protein isolates (Can Karaca et al., 2011). For instance, a 
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solubility of >90% and emulsion capacity of ~513 g oil/g protein was reported for faba bean 

protein isolate compared to solubility of just ~62% and emulsion capacity of ~477 g oil/g protein 

for pea protein isolate (Can Karaca et al., 2011). Attempts were also made to improve the 

functional properties of faba bean using various protein modification mechanisms such as 

acetylation and succinylation (Knopfe et al., 1998; Schwenke et al., 1998).  

Similar to other pulses, the chemical, functional or physicochemical properties of faba 

beans could be influenced by certain factors including processing, extraction or environmental. 

Variance in genotypes or environmental factors which accounts for soil conditions, precipitation, 

location, year of growth etc. may play a restrictive role in picking up stable faba bean lines and 

hence in producing products with uniform consistency. For instance, Hood-Niefer et al. (2011) 

reported the differences in protein and starch concentrations, and physicochemical properties of 

starch for 10 pea and 11 faba bean genotypes grown at various locations in Saskatchewan, 

Canada, for the year 2006 and 2007. Here, the effect of genotype for both pea and faba bean was 

found to be substantial while the effect of environment (location and year) was not. However, a 

significant interaction was found between location and genotype for protein concentration in pea, 

and starch concentration in faba bean. In a study by Bhatty (1974), 12 faba bean cultivars 

obtained from University of Saskatchewan experimental plots (Saskatoon, SK) were analyzed for 

chemical composition differences. Here, the protein content varies from 26 to 35% however, 

fibre, ash and lipid content were found to be uniform in nature (Bhatty, 1974). More research 

studies concentrating on these factors are required since improved functional properties of faba 

bean isolates or concentrates would help food industries in the formation of varied and distinct 

food products with desirable functional attributes at sustainable prices. Furthermore, this 

inexpensive  source of protein and other nutrients could be blended with other foods, especially 

in developing countries, such that the nutritional requirements could be met in a cost effective 

manner. 
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3. MATERIALS AND METHODS 

 

3.1 Materials  

Seed samples of seven faba bean (Vicia faba L.) genotypes (CDC Fatima, Taboar, SSNS-

1, FB9-4, FB18-20, Snowbird, CDC Snowdrop) grown in 2011 and 2012 at locations within 

Canada [Manitoba (Arborg and Melita), Alberta (Lacombe and Edmonton), and Saskatchewan 

(Saskatoon-Sutherland, Saskatoon-Preston, Outlook, Rosthern, and Meath Park)] were kindly 

donated by the Crop Development Centre at the University of Saskatchewan (Saskatoon, SK, 

Canada) (Table 3.1). Faba bean genotypes low in tannin has been reported to have a positive 

impact on nutritional value and protein digestibility (Crepon et al., 2010). In this study, Snowbird 

and CDC Snowdrop were the only zero tannin genotypes. All genotypes contained normal vicine 

levels. SSNS-1, CDC Snowdrop and Taboar were of small seed size, Fatima and Snowbird were 

of intermediate seed size, and FB18-20 and FB9-4 were of large seed size (Figure 3.1). The 

meteorological conditions and soil zones over locations where the faba bean seed was grown are 

shown in Table 3.2 and Figure 3.2 respectively. Considering the visual colour of seed samples, 

Snowbird and CDC Snowdrop seed was light in colour with no redness, FB9-4, FB18-20 and 

CDC Fatima seed had darker colour with slight redness, and SSNS-1 and Taboar seed were dark 

in colour with high redness.  

The following commercial isolates were used in this study: Propulse pea protein isolate 

(Nutri-Pea Limited, Portage La Prairie, MB, Canada), dried egg white (Ballas Egg Product 

Corporation, Zanesville, OH, USA), Prolisse soy protein isolate (Cargill, Wayzata, MN, USA), 

PROLITE 100 wheat protein isolate (Archer Daniels Midland Company, Decatur, IL, USA), and 

whey protein isolate (BiPro, Eden Prairie, MN, USA). All chemicals used in this study were of 

reagent grade except for sodium dodecyl sulfate, Tris and glycine which were of electrophoresis 

purity. The deionized water used in this research was from a Millipore Milli-Q
TM

 water 

purification system (Millipore Corp., Milford, MA, USA). 
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     (A) Faba bean genotypes with smallest seed size  

 

 

 

 

 

 

 

      (B) Faba bean genotypes with intermediate seed size  

 

 

 

      (C) Faba bean genotypes with largest seed size 

 

  

 

 

 

 

      (C) Faba bean genotypes with largest seed size  

  

 

 

 

 

 

 

 

     *Genotypes having zero tannin content   

    SSNS-1                     Taboar            CDC Snowdrop*                   

 Snowbird*                             CDC Fatima           

                    

 FB18-20             FB9-4          

                    

Figure 3.1 Images of faba bean genotypes with (A) small, (B) intermediate (C) and large 

seed sizes.  
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Table 3.1  Seven faba bean genotypes grown at several locations within Saskatchewan, Alberta 

and Manitoba in 2011 and 2012 (climate.weather.gc.ca). 

 

Figure 3.2 Major soil zones and locations in the prairie region (climate.weather.gc.ca). 

 

Genotype 

2011 2012 

Location Location  Location  Location  

CDC Fatima 

Taboar 

SSNS-1 

FB9-4 

FB18-20 

Snowbird 

CDC Snowdrop 

Arborg (MB) 

Arborg (MB) 

Arborg (MB) 

Arborg (MB) 

Arborg (MB) 

Melita (MB) 

Sask-S (SK) 

Lacombe (AB) 

Lacombe (AB) 

Edmonton (AB) 

Edmonton (AB) 

Edmonton (AB) 

Lacombe (AB) 

Edmonton (AB) 

Outlook (SK)  

Outlook (SK) 

Outlook (SK) 

Outlook (SK) 

Outlook (SK) 

Outlook (SK) 

Meath Park (SK) 

Sask-P (SK) 

Sask-P (SK)  

Rosthern (SK) 

Rosthern (SK) 

Rosthern (SK) 

Sask-S (SK) 

Rosthern (SK) 

Sask-S and Sask-P represent Saskatoon-Sutherland and Saskatoon-Preston respectively. 
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Table 3.2  Average monthly temperature and precipitation data for April to October over a two 

year duration (2011–2012) at locations where faba bean seed was grown within 

Saskatchewan, Alberta and Manitoba (climate.weather.gc.ca). 

 

 

3.2 Processing of faba bean seed 

Prior to protein isolate preparation, all seed was dehulled using a Satake mill (Satake, 

Penrith, NSW, Australia), ground into coarse flour using a disc mill (Glen Mills Inc., Clifton, NJ,  

USA) and then into finer flour using a UDY Cyclone Sample Mill (UDY Corporation, Fort 

Collins, CO, USA). All flours were defatted according to Can Karaca et al. (2011) with slight 

modifications. In brief, each flour sample (~400 g) was mixed with hexane, (1:3, w/v, ~1200 

mL) and stirred for 40 min using a mechanical stirrer (500 rpm) within a fume hood. Hexane was 

decanted, and the process was repeated two times. The subsequent mixture was then filtered 

using Whatman #1 filter paper (Whatman International Ltd., Maidstone, UK) followed by 

overnight air drying in a fume hood. Dried defatted flour was stored at 4°C until used.  

 

3.3 Preparation of faba bean protein isolates 

Faba bean protein isolates were prepared by alkaline extraction followed by isoelectric 

point precipitation according to Makri et al. (2006). In brief, 350-400 g of defatted flour was 

 

Locations 

 

 

Soil zone 

2011 / 2012 

Average monthly 

temperature (°C) 

Average monthly  

precipitation (mm) 

Saskatoon, SK  

Outlook, SK 

Rosthern, SK 

Meath Park, SK 

Lacombe, AB 

Edmonton, AB 

Arborg, MB  

Melita, MB 

   Dark Brown 

Dark Brown 

Black 

        Dark Grey 

Black 

Black 

Grey 

Black 

12.3 / 11.7 

12.7 / 12.2 

NA 

NA 

10.5 / 10.8 

12.4 / 12.5 

13.3 / 12.9 

13.4 / 13.2 

34.2 / 56.5 

39.6 / 56.6 

NA 

NA 

53.8 / 44.5 

46.3 / 44.6 

46.9 / 73.1 

57.7 / 32.3 
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dispersed in deionized water (1:10, w/v) and adjusted to pH 9.5 with 1 M NaOH, followed by 

continuous stirring (500 rpm) at room temperature (21-23°C) for 40 min and centrifugation 

(1600 x g, 20 min, 4°C) using a Sorvall RC-6 Plus centrifuge (Thermo Scientific, Asheville, NC, 

USA). The supernatant was collected and the pellet was re-suspended in water (1:5, w/v), stirred 

and then centrifuged (1600 x g, 20 min, 4°C). The supernatants were combined, the pH adjusted 

to 4.5 using 1M HCl, and then centrifuged (1600 x g, 20 min, 4°C). The recovered pellet was 

washed using deionized water gently poured on the surface using a transfer pipette, adjusted to 

pH 7.0 using 1M NaOH, stored at -30°C, and later freeze dried to obtain the protein isolate.   

 

3.4 Proximate analysis  

Proximate analysis of all flour materials was carried out according to Association of 

Official Analytical Chemists (AOAC) methods 925.10, 923.03, 920.85 and 997.09 for moisture, 

ash, crude fat and crude protein (%N x 6.25), respectively (AOAC, 2003). For isolates, only 

protein, ash and moisture contents were reported since the crude fat level in isolates was 

observed to be negligible due to the prior defatting step. Ash, fat and protein levels were reported 

on a percent dry weight basis (d.b.). All proximate analyses were reported as mean ± one 

standard deviation (n = 2). 

 

3.5 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing 

conditions was performed for all flour and isolate samples to identify the relative proportion of 

legumin and vicilin [(reported as the legumin:vicilin (L/V) ratio))]. Separation of legumin and 

vicilins fractions was carried out via SDS-PAGE according to Laemmli (1970) with some 

modifications. In brief, 75 μL of a 3 mg/mL flour-water (or 1 mg/mL isolate-water) suspension 

was diluted with 75 μL of water to give a final sample concentration of 0.5% (v/v). To all 

samples, 142.5 μL of Laemmli sample buffer (65.8 mM Tris-HCl, 2.1% SDS, 26.3% (w/v) 

glycerol, 0.01% bromophenol blue, pH 6.8) (BIO-RAD, Mississauga, ON, Canada), and 7.5 μL  

of β-mercaptoethanol was added. The samples then were vortexed for 10 s. All samples were 

heated at 95°C for 5 min using an Incu Block model 285 (Denville Scientific Inc., South 

Plainfield, NJ, USA) and then centrifuged using an Eppendorf Centrifuge 5424 (Hamburg, 

Germany) at 12,000 x g for 5 min. Pre-cast 4-20% Precise Tris-glycine gels (Thermo Scientific, 
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Rockford, IL, USA) were used to run the samples in a MGV-202 Vertical Mini-Gel System 

(CBS Scientific, San Diego, CA, USA) for a period of ~40 min at 200V using a Power Source 

300V Electrophoresis Power Supply (VWR, Mississauga, ON, Canada). Precision Plus Protein™ 

Prestained Standards (BIO-RAD) ranging from 10 KDa to 250 kDa were used as molecular 

markers. Gels were then stained using Phastgel Blue R tablets (GE Healthcare Life Sciences, 

Uppsala, Sweden) for 1 h, followed by de-staining with methanol: water: acetic acid (3:6:1) three 

times over a 24 h period. The de-stained gels were then scanned using an EPSON Perfection 

V750 Pro scanner (EPSON, Markham, ON, Canada). Quantification of bands from the SDS-

PAGE analysis was carried out by implying densitometry using Image J software (National 

Institutes of Health, Bethesda, MD, USA) (Rasband, 1997). All samples were run in triplicate. 

The L/V ratio was reported as the mean ± one standard deviation (n = 3). 

 

3.6 Colour 

 The colour of the flours and isolates was determined according to the method of Kaur and 

Singh (2007) based on the determination of L*, a* and b* values. L* is the brightness, 0 to 100, 

moving from dark to light; a* is red-green, with red associated with higher values of a*; b* is 

yellow-blue, with yellow associated with higher values of b*.   ,    and    are the standard 

reference values used for calibration of the instrument. All measurements are reported as the 

mean ± one standard deviation (n = 3). 

 

3.7 Physicochemical properties  

For physicochemical property testing, protein isolate solutions of various concentrations 

were prepared by dispersing the isolates (weight corrected on the basis of protein content) in 10 

mM sodium phosphate buffer (pH 7.0) (w/w). The pH of the resulting solution was then adjusted 

to 7.0 with either 0.1 M NaOH or 0.1 M HCl followed by overnight stirring (500 rpm, 4°C, ~16 

h). 

 

3.7.1 Surface charge (zeta potential) 

 Zeta potential was measured for 0.05% (w/w) protein solutions using a Zetasizer Nano- 

ZS90 (Malvern Instruments, Westborough, MA, USA). The electrophoretic mobility (UE) of 

protein solutions gives the zeta potential (δ, mV) when using Henry‟s equation:  
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                                                         (eq. 3.1) 

Here, ε is permittivity (F (Farad)/m), f (κα) is a function associated with the ratio of particle 

radius (α) to the Debye length (κ) and  is the viscosity (mPa
.
s) of the solution. The 

Smoluchowski approximation f (κα) for this study was set to 1.5. All measurements are reported 

as the mean ± one standard deviation (n = 2). 

 

3.7.2 Intrinsic fluorescence 

Intrinsic fluorescence of 0.05% (w/w) protein isolate solutions was measured to give an 

estimate of the surface hydrophobicity using a FluoroMax-4 spectrofluorometer (Horiba Jobin 

Yvon Inc., Edison, NJ, USA). The samples were excited at a fixed wavelength of 295 nm with a 

slit width of 2.5 nm, whereas the emission wavelength was set at a range from 285 to 450 nm 

with a slit width of 5 nm in 0.5 nm increments. Fluorescence intensity (FI) was measured as a 

function of the emission wavelength (nm), and had the spectrum of the buffer (10 mM sodium 

phosphate buffer, pH 7.0) removed. The maximum FI values of the resulting spectra were 

recorded. All measurements are reported as the mean ± one standard deviation (n = 2). 

 

3.7.3. Interfacial tension 

Interfacial tension between 0.25% (w/w) protein isolate solutions and canola oil and 

between protein solutions and the air interface were determined using the Du Noüy ring and a 

semi-automatic tensiometer (Lauda TD2, GmbH and Co., Lauda-Königshofen, Germany). 

Interfacial tension calculated between Milli-Q water (without protein) and canola oil, and 

between deionized water (without protein) and the air interface served as the controls. Interfacial 

tension   ) then was calculated from the equation below using the maximum force       ). 

    
    

    
                                                          (eq. 3.2) 

Here, γ is the interfacial tension (mN/m), R is the radius of the ring (20 mm) and β is a correction 

factor which is dependent on the dimensions of the ring and the density of the liquid. All 

measurements are reported as the mean ± one standard deviation (n = 2). 
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3.8 Functional properties  

 For functional property testing, protein isolate solutions of various concentrations were 

prepared by dispersing the protein isolates (weight corrected on the basis of protein content) in 

10 mM sodium phosphate buffer (pH 7.0) (w/w). The pH of the resulting solution was then 

adjusted to 7.0 with either 0.1 M NaOH or 0.1 M HCl followed by overnight stirring (500 rpm, 

4°C, ~16 h.). 

 

3.8.1 Oil holding capacity 

Oil ho1lding capacity (OHC) was determined according to Chakraborty (1986) with 

slight modifications. Ten millilitre of canola oil was combined with 1 g of protein isolate (weight 

adjusted based on protein content) in a weighed centrifuge tube. The mixture was vortexed for 10 

s every 5 min for a total duration of 30 min, followed by decanting of the supernatant. The OHC 

was calculating according to eq. 3.3:   

%100



Dry

DryWet

Wt

WtWt
OHC       (eq. 3.3) 

where WtWet and WtDry are the weights of the wet and dry samples, respectively. All 

measurements are reported as the mean ± one standard deviation (n = 2). 

 

3.8.2 Foaming capacity and stability  

Foaming capacity (FC) and stability (FS) for 1.0% (w/w) protein isolate solutions were 

determined according to Liu et al. (2010). Fifteen millilitre of each protein solution was 

transferred to a 400-mL beaker for homogenization using Macro Homogenizer (Omni 

International, Marietta, GA, USA) equipped with a 20-mm saw tooth probe at speed 4 (~7,200 

rpm) for 5 min. The homogenized sample was then transferred immediately to a 100-mL 

graduated cylinder and the foam volume was measured at time 0 and at 30 min, with FC and FS 

determined using eq. 3.4 and 3.5, respectively: 

%1000 
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F

V

V
FC         (eq. 3.4) 

%100
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30 
F
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V
FS         (eq. 3.5) 
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where VF0 is the volume of the foam at time 0 min, Vsample is the initial volume of sample used 

(15 mL), and VF30 is the foam volume after 30 min. All measurements are reported as the mean ± 

one standard deviation (n = 2). 

 

3.8.3 Emulsion capacity  

Emulsion capacity (EC) was determined according to Can Karaca et al. (2011) with slight 

modifications. Two gram of a 1.0% (w/w) protein isolate solution was homogenized using 

Macro Homogenizer (Omni International) at speed 4 (~7,200 rpm) for 5 min, with various 

quantities of canola oil (2-5 g). After the sample was homogenized, the conductivity of the 

emulsion was measured using an Orion 3-Star bench top conductivity meter (Thermo Scientific, 

Waltham, MA, USA) with a four electrode conductivity cell until the observance of an inversion 

point (a swift drop in conductivity indicating inversion of the oil-in-water emulsion to water-in-

oil). Emulsion capacity (g oil/g protein) was expressed as the average of the amount of oil 

homogenized (g) per g of protein before and after the inversion point. All measurements were 

reported as the mean ± one standard deviation (n = 2). 

 

3.8.4 Creaming stability  

Creaming stability (CS) of 1.0% (w/w) protein isolate solutions was measured by 

homogenizing 5 mL of protein solution with 5 mL of canola oil using Macro Homogenizer 

(Omni International) equipped with a 20-mm saw tooth probe at speed 4 (~7,200 rpm) for 5 min. 

The emulsion formed was immediately transferred to a 10-mL graduated cylinder and observed 

for separation of the aqueous phase from the turbid phase of emulsion after 30 min. The 

creaming stability was calculated using eq. 3.6:  

%100



A

AB

V

VV
CS          (eq. 3.6) 

where VB is the volume of the aqueous phase before homogenization (5 mL) and VA is the 

volume of the aqueous phase after homogenization. All measurements are reported as the mean ± 

one standard deviation (n = 2). 

  

3.8.5 Emulsion activity and stability indices 

Emulsion activity (EAI) and stability (ESI) indices for 0.5% (w/w) protein isolate



 

33 
 

solutions were determined according to the method of Pearce and Kinsella (1978). Fixed 

quantities of protein isolate solution (5 g) and canola oil (5 g) were homogenized using Macro 

Homogenizer (Omni International) equipped with a 20-mm saw tooth probe at speed 4 (~7,200 

rpm) for 5 min. Immediately after homogenization, a 50-µL aliquot of emulsion was taken from 

the bottom of the tube (t = 0 min) and diluted with 7.5 mL of 0.1% SDS in 10 mM sodium 

phosphate buffer (pH 7.0). The diluted emulsion was vortexed for 10 s and then measured for 

absorbance at 500 nm using a Genesys 10 UV-visible spectrophotometer (Thermo Scientific, 

Madison, WI, USA) using plastic cuvettes (1-cm path length). Similarly, another 50-µL aliquot 

of emulsion was taken after 10 min and the absorbance was measured using the procedure above. 

EAI and ESI were calculated using the following equations: 

      
            

         
                 (eq. 3.7) 

      
   

  
            (eq. 3.8) 

where EAI (m
2
/g) is expressed as the area of interface (m

2
) stabilized per unit weight of protein 

(g), whereas ESI is expressed in minutes. A0 represents the absorbance of the diluted emulsion 

immediately after homogenization, n is the dilution factor, c is the concentration of protein 

solution (g/ml) and φ is the oil volume fraction. ΔA (A0−A10) is the absorbance difference 

between samples taken at 0 min and 10 min, and t is the time interval (10 min). All 

measurements are reported as the mean ± one standard deviation (n = 2). 

 

3.8.6 Protein solubility  

Protein solubility for a 1.0% (w/w) solution was determined according to Can Karaca et 

al. (2011) with slight modifications. In brief, 20 g of protein isolate solution was transferred to a 

50-mL centrifuge tube followed by centrifugation (9100 x g, 10 min, 4°C) using a Sorvall RC-6 

Plus Superspeed Centrifuge (Thermo Scientific, Asheville, NC, USA). Then, 15 g of the 

supernatant obtained was taken for determination of the protein content using a K-355 digestion 

and nitrogen distillation unit (Buchi, Flawil, Switzerland). The protein contents of the original 

samples were calculated by using 0.2 g protein isolate samples. A nitrogen-to-protein conversion 

factor of 6.25 was employed. Percent protein solubility was calculated by dividing the protein 

content of the supernatant by the initial protein content of the original sample and multiplying by 

100%. All measurements were reported as the mean ± one standard deviation (n=2). 
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3.9 Statistics 

 SPSS software (IBM Corporation, Armonk, NY, USA) was used for all of the statistical 

analysis in this study. Due to limited seed availability for some locations, analyzing an 

interaction effect between genotype and environment for all faba bean genotypes was not 

possible. Hence, a one-way analysis of variance (ANOVA) along with a post-hoc Tukey test was 

performed to evaluate the overall effect of genotype for all physicochemical and functional 

properties analyzed in this study. To evaluate the environmental differences within each 

genotype, a second one-way ANOVA was performed for the same parameters. A two-way 

ANOVA studying the interaction effects of genotype x location and genotype x year was 

conducted for only three genotypes (SSNS-1, FB9-4 and FB18-20) since they were grown at the 

same locations in 2011 and 2012. STATISTICA software (StatSoft, 2014) was used to generate a 

scatter plot evaluating the overall distribution of genotypes, years and locations in a principal 

component analysis (PCA) model. This plot was useful in analysing the comparative effects of 

different genotypes, years and locations based on their influence on the PCA model. A simple 

Pearson correlation (r) analysis was performed to identify any significant correlations between 

the functional properties, physicochemical properties, extraction yield, proximate composition, 

colour characteristics and L/V ratio of the faba bean protein isolates. 
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                4. RESULTS 

 

4.1 Proximate analysis 

a) Faba bean flour  

 A one-way ANOVA revealed the effect of genotype on the percentage of protein, crude 

fat and ash in the flours to be non-significant (p>0.05). The average levels of moisture, protein, 

crude fat and ash in the faba bean flours were 6.7%, 31.8% (dry weight basis, d.b.), 1.3% (d.b.) 

and 3.4% (d.b.), respectively. However, some minor differences were evident within genotypes 

depending on the growing location and year. In the case of protein, CDC Fatima grown at 

Outlook in 2012 (31.3%) was found to have a significantly lower protein level than when grown 

at Saskatoon-Preston in 2012 (32.0%), Arborg in 2011 (33.3%) or Lacombe in 2011 (33.7%) 

(p<0.01) (Table 4.1). Flour from Taboar grown at Saskatoon-Preston in 2012 (30.0%) was found 

to be significantly lower in protein than when grown at Outlook in 2012 (31.9%), Arborg in 2011 

(32.5%) or Lacombe in 2011 (33.7%) (p<0.01). Flour from SSNS-1 grown at Rosthern in 2012 

(31.8%) was significantly lower in protein than when grown at Outlook in 2012 (32.2%), 

Edmonton in 2011 (32.8%) or Arborg in 2011 (33.2%) (p<0.01). For FB9-4, the protein level in 

flour when grown at Rosthern in 2012 (31.0%) was significantly lower than when grown at 

Outlook in 2012 (32.4%), Edmonton in 2011 (32.1%) or Arborg in 2011 (34.1%) (p<0.01). 

FB18-20 when grown at Edmonton in 2011 (30.4%) exhibited a significantly lower level of 

protein in flour than when grown at Rosthern in 2012 (30.6%), Outlook in 2012 (31.0%) or 

Arborg in 2011 (32.1%) (p<0.01). Flours from Snowbird grown at Melita in 2011 or Saskatoon-

Sutherland in 2012 had similar protein levels (30.1%) (p>0.05), which were significantly lower 

than when grown at Outlook in 2012 (32.8%) or Lacombe in 2011 (33.9%) (p<0.01). The level 

of protein in flour from CDC Snowdrop was similar when grown at Rosthern in 2012 (30.0%) or 

Meath Park in 2012 (30.2%) (p>0.05) and was significantly lower than when grown at 

Edmonton in 2011 (32.6%) and significantly higher than when grown at Saskatoon-Sutherland in 

2011 (27.3%) (p<0.01).  
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Table 4.1   Percent protein, crude fat and ash in faba bean flours produced from seven genotypes 

in two years at several locations in Western Canada. Data represent the mean ± one 

standard deviation (n = 2). 

 Protein 

(%, d.b.) 

Crude fat 

(%, d.b.) 

Ash 

(%, d.b.) 

a) CDC Fatima    

Arborg, MB (2011) 33.3 ± 0.1 0.9 ± 0.1 3.3 ± 0.2 

Lacombe, AB (2011) 33.7 ± 0.0 1.5 ± 0.1 2.7 ± 0.2 

Outlook, SK (2012) 31.3 ± 0.0 1.3 ± 0.0 4.1 ± 0.2 

Saskatoon-Preston, SK (2012) 32.0 ± 0.1 1.3 ± 0.0 3.5 ± 0.1 

b) Taboar    

Arborg, MB (2011) 32.5 ± 0.0 1.0 ± 0.1 2.9 ± 0.1 

Lacombe, AB (2011) 33.7 ± 0.0 1.4 ± 0.0 3.4 ± 0.0 

Outlook, SK (2012) 31.8 ± 0.0 1.2 ± 0.0 3.0 ± 0.0 

Saskatoon-Preston, SK (2012) 30.0 ± 0.1 1.1 ± 0.0 3.0 ± 0.0 

c) SSNS-1    

Arborg, MB (2011) 33.2 ± 0.0 0.9 ± 0.0 3.6 ± 0.3 

Edmonton, AB (2011) 32.9 ± 0.1 1.2 ± 0.0 3.2 ± 0.0 

Outlook, SK (2012) 32.2 ± 0.1 1.2 ± 0.0 2.8 ± 0.0 

Rosthern, SK (2012) 31.8 ± 0.0 1.3 ± 0.0 3.0 ± 0.2 

d) FB9-4    

Arborg, MB (2011) 34.1 ± 0.0 1.0 ± 0.0 3.2 ± 0.2 

Edmonton, AB (2011) 32.1 ± 0.0 1.3 ± 0.0 3.1 ± 0.1 

Outlook, SK (2012) 32.4 ± 0.1 1.3 ± 0.1 3.8 ± 0.3 

Rosthern, SK (2012) 31.0 ± 0.0 1.5 ± 0.0 3.7 ± 0.2 

e) FB18-20    

Arborg, MB (2011) 32.1 ± 0.0 1.2 ± 0,1 3.2 ± 0.2 

Edmonton, AB (2011) 30.4 ± 0.0 1.3 ± 0.1 3.2 ± 0.0 

Outlook, SK (2012) 31.0 ± 0.1 1.4 ± 0.0 3.8 ± 0.3 

Rosthern, SK (2012) 30.6 ± 0.1 1.5 ± 0.1 3.7 ± 0.1 

f) Snowbird    

Lacombe, AB (2011) 33.9 ± 0.1 1.4 ± 0.1 2.8 ± 0.0 

Melita, MB (2011) 30.1 ± 0.1 1.2 ± 0.1 3.7 ± 0.0 

Outlook, SK (2012) 32.8 ± 0.3 1.3 ± 0.0 4.3 ± 0.3 

Saskatoon-Sutherland, SK (2012) 30.1 ± 0.1 1.5 ± 0.3 3.0 ± 0.0 

g) CDC Snowdrop    

Edmonton, AB (2011) 32.6 ± 0.0 1.1 ± 0.0 3.1 ± 0.0 

Saskatoon-Sutherland, SK (2011) 27.3 ± 0.1 1.3 ± 0.0 3.7 ± 0.2 

Rosthern, SK (2012) 30.0 ± 0.0 1.3 ± 0.0 3.6 ± 0.0 

Meath Park, SK (2012) 30.2 ± 0.0 1.3 ± 0.3 3.9 ± 0.2 

Overall mean ± s.d. 31.8 ± 1.5 1.3 ± 0.2 3.4 ± 0.4 
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 In the case of crude fat, all genotypes were impacted by the growing location and year 

(p<0.01), with the exception of Snowbird and CDC Snowdrop (p>0.05) (Table 4.1). CDC Fatima 

grown at Arborg in 2011 (0.9%, moisture-free basis) was significantly lower in crude fat than 

when grown at Saskatoon-Preston in 2012 (1.3%), Outlook in 2012 (1.3%) or Lacombe in 2011 

(1.5%) (p<0.01). Taboar grown at Saskatoon-Preston in 2012 was significantly lower in crude fat 

(1.1%) than when grown at Lacombe in 2011 (1.4%) (p<0.01), yet similar in crude fat when 

grown at Arborg in 2011 (1.0%) or Outlook in 2012 (1.2%) (p>0.05). For SSNS-1, the level of 

crude fat in flour from seed grown at Outlook in 2012 (1.2%) or Edmonton in 2011 (1.2%) was 

significantly higher than when grown at Arborg in 2011 (0.9%), and significantly lower than 

when grown at Rosthern in 2012 (1.3%) (p<0.01). Flour from FB9-4 was similar in crude fat 

when grown at Outlook in 2012 or Edmonton in 2011 (1.3%) (p>0.05), but was significantly 

higher in crude fat than when grown at Arborg in 2011 (1.0%), and significantly lower in crude 

fat than when grown at Rosthern in 2012 (1.5%) (p<0.01). For FB18-20, the crude fat level in 

flour from seed grown at Arborg in 2011 (1.2%) was similar to that in seed grown at Edmonton 

in 2011 (1.3%) or Outlook in 2012 (1.4%) (p>0.05), and significantly lower than when grown at 

Rosthern in 2012 (1.5%) (p<0.01). 

Environmental effects were observed for ash content for each genotype, with the 

exceptions of FB9-4 and FB18-20 (Table 4.1). Flours from Taboar grown at Arborg in 2011 

(2.9%), Saskatoon-Preston in 2012 (3.0%) or Outlook in 2012 (3.0%) had similar ash levels 

(p>0.05), which were significantly lower than when grown at Lacombe in 2011 (3.4%) (p<0.05). 

For CDC Fatima, flours from seed grown at Arborg in 2011 (3.3%) or Saskatoon-Preston in 

2012 (3.5%) had similar ash levels (p>0.05), which were significantly higher than when grown at 

Lacombe in 2011 (2.7%) and significantly lower than when grown at Outlook in 2012 (4.1%) 

(p<0.01). Flour from SSNS-1 grown at Outlook in 2012 (2.8%) was similar in ash to those 

prepared from seed grown at Rosthern in 2012 (3.0%) or Edmonton in 2011 (3.2%) (p>0.05), but 

significantly lower than when grown at Arborg in 2011 (3.6%) (p<0.05). For CDC Snowdrop, 

flour prepared from seed grown at Edmonton in 2011 (3.0%) was similar in ash to flour from 

seed grown at Rosthern in 2012 (3.6%) or Saskatoon-Sutherland in 2011 (3.7%) (p>0.05), but 

significantly lower in ash than when grown at Meath Park in 2012 (3.8%) (p<0.05). Flours from 

Snowbird grown at Lacombe in 2011 (2.8%) or Saskatoon-Sutherland in 2012 (3.0%) were 
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similar in ash (p>0.05) and significantly lower in ash than when grown at Melita in 2011 (3.7%) 

or Outlook in 2012 (4.3%) (p<0.01).  

 

b) Faba bean protein isolates 

A one-way ANOVA revealed that the effects of genotype on the protein and ash contents 

of protein isolates were non-significant (p>0.05) (Table 4.2). The average moisture (fresh weight 

basis), protein and ash levels in the isolates were 4.7%, 93.9% (d.b.), and 5.8% (d.b.), 

respectively. However, most exhibited some environmental influences related to location and 

year within each genotype. Crude fat was measured for only a small number of isolates during 

preliminary experiments, where it was found to be at negligible levels due to the defatting 

process. In the case of protein content, isolates prepared from FB9-4 and FB18-20 were found to 

be similar regardless of their growing location and year of harvest (p>0.05). In contrast, isolates 

prepared from CDC Snowdrop and SSNS-1 were found to have different protein levels at all 

locations/years, ranging between ~90.5% and 95.0%, and ~93.0% and ~99.4%, respectively 

(p<0.01). Isolates prepared from Snowbird grown at Saskatoon-Sutherland in 2011 (93.5%) were 

significantly higher in protein than when grown at Melita in 2011 (92.0%), and significantly 

lower than when grown at Outlook in 2012 (94.7%) or Lacombe in 2011 (94.9%) (p<0.01). For 

CDC Fatima, the protein level in the isolate prepared from seed grown at Outlook in 2012 

(94.9%) was significantly lower than when grown at Arborg in 2011 (96.6%), and significantly 

higher than when grown at Saskatoon-Preston in 2012 (93.8%) or Lacombe in 2011 (93.9% 

(p<0.01). The level of protein in the isolate prepared from Taboar was similar when grown at 

Saskatoon-Preston in 2012 (94.4%), Outlook in 2012 (93.7%) or Arborg in 2011 (94.4%) 

(p>0.05), and was significantly lower than when grown at Lacombe in 2011 (95.3%) (p<0.01). 

 In the case of ash, environmental effects were observed for each genotype with the 

exceptions of FB18-20, Taboar and CDC Snowdrop (p>0.05) (Table 4.2). Isolates prepared from 

CDC Fatima grown at Arborg in 2011 (5.0%) or Outlook in 2012 (5.3%) had similar ash levels 

(p>0.05), which were significantly lower than when grown at Saskatoon-Preston in 2012 (5.9%) 

or Lacombe in 2011 (6.0%) (p<0.01). For FB9-4, isolates from seed grown at Arborg in 2011 or 

Edmonton in 2011 had similar ash levels (5.5%) (p>0.05), which were significantly higher than 

when grown at Rosthern in 2012 (5.1%), and significantly lower than when grown at Outlook in 

2012 (6.0%) (p<0.01). Similarly for SSNS-1, isolates from seed grown at Outlook in 2012 and
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Table 4.2.   Percent protein and ash in faba bean protein isolates produced from seven genotypes 

in two years at several locations in Western Canada. Data represent the mean ± one 

standard deviation (n = 2). 

 

 Protein  

(%, d.b.) 

Ash  

(%, d.b.) 

a) CDC Fatima   

Arborg, MB (2011) 96.6 ± 0.1 5.0 ± 0.1 

Lacombe, AB (2011) 93.9 ± 0.0 6.0 ± 0.2 

Outlook, SK (2012) 94.9 ± 0.2 5.3 ± 0.0 

Saskatoon-Preston, SK (2012) 93.8 ± 0.0 5.4 ± 0.0 

b) Taboar   

Arborg, MB (2011) 94.4 ± 0.2 6.0 ± 0.5 

Lacombe, AB (2011) 95.3 ± 0.2 5.3 ± 0.3 

Outlook, SK (2012) 93.7 ± 0.3 6.0 ± 0.3 

Saskatoon-Preston, SK (2012) 94.3 ± 0.0 5.9 ± 0.2 

c) SSNS-1   

Arborg, MB (2011) 94.5 ± 0.1 4.8 ± 0.3 

Edmonton, AB (2011) 93.5 ± 0.1 5.9 ± 0.1 

Outlook, SK (2012) 99.4 ± 0.1 5.9 ± 0.1 

Rosthern, SK (2012) 93.0 ± 0.2 5.3 ± 0.2 

d) FB9-4   

Arborg, MB (2011) 94.8 ± 0.2 5.5 ± 0.0 

Edmonton, AB (2011) 92.8 ± 0.3 5.5 ± 0.2 

Outlook, SK (2012) 93.2 ± 0.0 6.0 ± 0.1 

Rosthern, SK (2012) 94.1 ± 1.2 5.1 ± 0.0 

e) FB18-20   

Arborg, MB (2011) 93.1 ± 0.4 5.6 ± 0.0 

Edmonton, AB (2011) 93.0 ± 0.2 6.3 ± 0.6 

Outlook, SK (2012) 93.5 ± 0.4 6.2 ± 0.2 

Rosthern, SK (2012) 92.7 ± 0.0 5.9 ± 0.1 

f) Snowbird   

Lacombe, AB (2011)  94.9 ± 0.3 5.2 ± 0.1 

Melita, MB (2011) 92.0 ± 0.1 6.9 ± 0.3 

Outlook, SK(2012) 94.7 ± 0.2 6.2 ± 0.1 

Saskatoon-Sutherland, SK (2012) 93.5 ± 0.3 5.8 ± 0.1 

g) CDC Snowdrop   

Edmonton, AB (2011) 95.1 ± 0.1 5.8 ± 0.0 

Saskatoon-Sutherland, SK (2011) 90.5 ± 0.1 6.4 ± 0.3 

Rosthern, SK (2012) 93.3 ± 0.0 5.8 ± 0.1 

Meath Park, SK (2012) 91.3 ± 0.0 6.7 ± 0.5 

Overall mean ± s.d. 93.9 ± 1.6 5.8 ± 0.5  
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Edmonton in 2011 had similar ash levels (5.9%) (p>0.05), which were significantly higher than 

when grown at Arborg in 2011 (4.8%) or Rosthern in 2012 (5.3%) (p<0.05). Finally, isolates 

from Snowbird when grown at Lacombe in 2011 (5.2%) were found to have similar ash levels as 

when grown at Saskatoon-Sutherland in 2012 (5.8%) (p>0.05), and significantly lower in ash 

than when grown at Outlook in 2012 (6.2%) or Melita in 2011 (6.9%) (p<0.01). 

 

4.2 Extraction efficiency of isolate production 

Faba bean protein isolates were prepared from defatted flours by an alkaline extraction 

process followed by isoelectric precipitation to yield isolates containing 90% (moisture free 

basis) or more of protein (Table 4.2). Process efficiency was described by both the isolate yield 

and the protein yield. The former is a measure of the amount of isolate obtained relative to the 

original amount of flour used in the extraction process, whereas the latter is a measure of the 

amount of protein present in the isolate relative to the amount of protein present in the flour used 

to prepare the isolate. A one-way ANOVA found no significant differences in isolate or protein 

yield due to genotype (p>0.05). The isolate yield across genotypes ranged between 23.5 ± 3.4% 

for CDC Fatima and 26.8 ± 1.7% for SSNS-1, with an average isolate yield of 25.3 ± 2.1%. 

Similarly, protein yield was found to range between 70.4 ± 9.7% for CDC Fatima and 79.8 ± 

1.6% for Snowbird, with an average protein yield of 76.6 ± 5.4%.      

 

4.3 Protein composition of flours and isolates 

  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing 

conditions was used to examine the protein bands in both the flours and the protein isolates from 

each genotype, location and year. Using densitometry, the relative percentages of the legumin 

(L) [-legumin chain (37 kDa) + -legumin chain (20 kDa)] and vicilin (V) (50 kDa) proteins 

were determined and reported as the L/V ratio. Representative examples of SDS-PAGE gels for 

an isolate (Figure 4.1Ai) and a flour (Figure 4.1Aii) prepared from FB18-20 grown at Edmonton 

in 2011 are presented, along with the corresponding densitometry analysis for the isolate only 

(Figure 4.1B). Band identification was based on published values from Nikolic et al. (2012) and 

Tucci et al. (1991). For the protein isolate, four major bands were identified corresponding to  

molecular masses of ~73 kDa, ~51 kDa, ~34 kDa and ~21 kDa and were presumed to correspond 

to convicilin, vicilin, -legumin and -legumin chains, respectively. Similarly for the 
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(Ai)                                                                               (Aii)                                      

                                                                              

 

(B) 

 

 

Figure 4.1  Representative examples of: A) SDS-PAGE gel for isolate (Ai) and flour (Aii) 

prepared from FB18-20 grown at Edmonton in 2011; and (B) a corresponding 

denisotmetry analysis for the isolate protein profile.   



 

42 
 

corresponding flour sample, four major bands were identified corresponding to molecular masses 

of ~73 kDa, ~53 kDa, ~36 kDa and ~21 kDa, again representing convicilin, vicilin, -legumin 

and -legumin chains, respectively. The molecular weight profiles for all other isolates and flour 

samples were very similar to those of FB18-20 grown at Edmonton in 2011. Minor (faint) bands 

were not included in the analysis, and might represent albumin storage proteins and/or enzymes. 

The extraction process used in the preparation of protein isolates from flour eliminated some 

bands. 

 The legumin:vicilin (L/V) ratio was similar in magnitude across all genotypes for both 

faba bean flours (range of L/V ratio 3.4-4.6; average of 3.8) and isolates (range of L/V ratio 4.0-

4.9; average of 4.5) (p>0.05). However, growing location and year did create variability within 

each genotype (Figure 4.2A). In the case of isolates, only Snowbird was found to have a similar 

L/V ratio regardless of the location in which it was grown (Melita, Lacombe, Outlook and 

Saskatoon-Sutherland) (p>0.05). The L/V ratio determined for isolates prepared from CDC 

Fatima was similar in magnitude when grown at Lacombe in 2011 (L/V = 4.4), Arborg in 2011 

(4.5) or Saskatoon-Preston in 2012 (4.6) (p>0.05), yet significantly lower than when grown at 

Outlook in 2012 (5.1) (p<0.01). Isolates prepared from Taboar had similar L/V ratios when 

grown at Arborg in 2011 (L/V = 3.8), Saskatoon-Preston in 2012 (4.0) or Lacombe in 2011 (4.3) 

(p>0.05), which were significantly lower than when grown at Outlook in 2012 (5.0) (p<0.01). 

The L/V ratio for isolates prepared from SSNS-1 were similar when seed was grown at Arborg in 

2011 or Rosthern in 2012 (L/V = 5.1) (p>0.05), and significantly higher than when grown at 

Edmonton in 2011 (3.9) or Outlook in 2012 (4.6) (p<0.01). For isolates prepared from FB9-4, 

the L/V ratio was similar in magnitude when seed was grown at Outlook in 2012 (L/V = 5.6) or 

Edmonton in 2011 (5.7) (p>0.05), but was significantly higher than when grown at Arborg in 

2011 (3.5) or Rosthern in 2012 (4.8) (p<0.01). For isolates prepared from FB18-20, the L/V ratio 

was similar when seed was grown at Rosthern in 2012 (4.2), Arborg in 2011 (4.3) or Edmonton 

in 2011 (4.8) (p>0.05), and significantly lower than when grown at Outlook in 2012 (5.8) 

(p<0.01). Finally, the L/V ratios of isolates prepared from CDC Snowdrop were similar when 

seed was grown at Meath Park in 2012 (3.2) or Rosthern in 2012 (3.7) (p>0.05), and 

significantly lower than when grown at Saskatoon-Sutherland in 2011 (4.8) or Edmonton in 2011 

(4.5) (p<0.01). 
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Figure 4.2 L/V ratios of faba bean isolates (A) and faba bean flours (B) as a function of genotype, location and year at pH 7.0. Data 

represent means ± one standard deviations (n=2). 
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 In the case of flour samples, the mean L/V ratio for CDC Snowdrop was found to be 4.6 

while for all other genotypes the mean L/V ratio was found to range between 3.4 and 3.8 (Figure 

4.2B). Differences due to environment were observed for most of the genotypes, except for CDC 

Snowdrop whose L/V ratio was similar regardless of the year (2011, 2012) or location (Meath 

Park, Edmonton, Saskatoon-Sutherland, and Rosthern) (Figure 4.2B). The L/V ratios determined 

for flours produced from Taboar when grown at Saskatoon-Preston in 2012 (L/V = 3.1), Arborg 

in 2011 (3.2) or Lacombe in 2011 (3.8) were similar in magnitude (p>0.05), but significantly 

lower than when seed was grown at Outlook in 2012 (5.2) (p<0.01). For FB18-20, the L/V ratio 

of flours prepared from seed grown at Arborg in 2011 (L/V = 3.0), Edmonton in 2011 (3.2) or 

Rosthern in 2012 (3.3) were similar in magnitude (p>0.05), but significantly lower than when 

seed was grown at Outlook in 2012 (5.1) (p<0.01). CDC Fatima flour prepared from seed grown 

at Lacombe in 2011 had a similar L/V ratio (L/V = 3.1) as that produced from seed grown at 

Saskatoon-Preston in 2012 (3.5) (p>0.05), but lower than that for flour from seed grown at 

Outlook in 2012 (4.1) or Arborg in 2011 (4.2) (p<0.01). For SSNS-1, the L/V ratio of flour 

prepared from seed grown at Outlook in 2012 (L/V = 3.2) was similar to that of flour from seed 

grown at Arborg in 2011 (3.3) or Edmonton in 2011 (3.5) (p>0.05), but lower than that for flour 

from seed grown at Rosthern in 2012 (3.6) (p<0.01). For FB9-4, the L/V ratio of flour was 

similar when seed was grown at Rosthern in 2012 (L/V = 3.1), Edmonton in 2011 (3.3) or 

Outlook in 2012 (3.5) (p>0.05), but was significantly lower than for flour from seed grown at 

Arborg in 2011 (4.3) (p<0.01). For flours from Snowbird, the L/V ratio was similar for seed 

grown at Outlook in 2012 (L/V = 3.6), Lacombe in 2011 (3.8) or Melita in 2011 (4.3) (p>0.05), 

but higher than for flour from seed grown at Saskatoon-Sutherland in 2012 (2.6) (p<0.01). 

 

4.4 Colour of flours and isolates 

 Hunter lab colour parameters (L*, a* and b*) were evaluated for faba bean flours and 

isolate samples as shown in Tables 4.3A and 4.3B, respectively. In this study, only genotypic 

differences in colour were taken in account. The overall mean of flour L*, a* and b* values were 

found to be 89.0, 0.4 and 16.4 respectively. The L* value for flour samples was found to be 

significantly different across genotypes, but varying just between ~88.3 (CDC Snowdrop, SSNS-

1 and Snowbird) and ~89.5 (Taboar, CDC Fatima, FB9-4 and FB18-20) (p<0.01) (Table 4.3A). 

The b* values also varied significantly among the genotypes, where flour from CDC Snowdrop  



 

45 
 

Table 4.3A. L*, a* and b* values of faba bean flours prepared from seven genotypes grown in 

2011 and 2012 at several locations in Western Canada. Values represent the mean ± 

one standard deviation (n = 3). 

 L* a* b* 

a) CDC Fatima    

Arborg, MB (2011) 88.9 ± 0.0 0.4 ± 0.0 15.7 ± 0.0 

Lacombe, AB (2011) 88.6 ± 0.0 0.4 ± 0.0 15.8 ± 0.0 

Outlook, SK (2012) 89.8 ± 0.1 0.4 ± 0.0 15.3 ± 0.0 

Saskatoon-Preston, SK (2012) 89.7 ± 0.0 0.4 ± 0.0 15.9 ± 0.0 

b) Taboar    

Arborg, MB (2011) 89.3 ± 0.0 0.4 ± 0.0 15.2 ± 0.0 

Lacombe, AB (2011) 89.0 ± 0.0 0.4 ± 0.0 16.0 ± 0.0 

Outlook, SK (2012) 89.5 ± 0.0 0.4 ± 0.0 15.1 ± 0.1 

Saskatoon-Preston, SK (2012) 89.1 ± 0.0 0.4 ± 0.0 16.4 ± 0.0 

c) SSNS-1    

Arborg, MB (2011) 88.8 ± 0.0 0.6 ± 0.0 16.4 ± 0.0 

Edmonton, AB (2011) 88.0 ± 0.1        -0.0 ± 0.0 17.9 ± 0.0 

Outlook, SK (2012) 88.7 ± 0.1 0.5 ± 0.1 18.1 ± 0.1 

Rosthern, SK (2012) 89.1 ± 0.0 0.4 ± 0.0 17.2 ± 0.0 

d) FB9-4    

Arborg, MB (2011) 89.0 ± 0.1 0.6 ± 0.0 14.7 ± 0.0 

Edmonton, AB (2011) 89.5 ± 0.1 0.6 ± 0.0 14.8 ± 0.0 

Outlook, SK (2012) 89.6 ± 0.0 0.4 ± 0.0 15.5 ± 0.0 

Rosthern, SK (2012) 89.5 ± 0.0 0.6 ± 0.0 15.6 ± 0.0 

e) FB18-20    

Arborg, MB (2011) 89.2 ± 0.0 0.4 ± 0.0 15.4 ± 0.0 

Edmonton, AB (2011) 89.4 ± 0.2 0.5 ± 0.0 15.1 ± 0.0 

Outlook, SK (2012) 89.8 ± 0.1 0.5 ± 0.0 15.4 ± 0.0 

Rosthern, SK (2012) 89.3 ± 0.0 0.4 ± 0.0 16.1 ± 0.1 

f) Snowbird    

Lacombe, AB (2011)  88.5 ± 0.0 0.2 ± 0.0 15.9 ± 0.0 

Melita, MB (2011) 88.6 ± 0.0 0.1 ± 0.0 16.8 ± 0.1 

Outlook, SK(2012) 88.9 ± 0.0 0.3 ± 0.0 17.6 ± 0.0 

Saskatoon-Sutherland, SK (2012) 89.0 ± 0.1 0.3 ± 0.0 17.7 ± 0.0 

g) CDC Snowdrop    

Edmonton, AB (2011) 87.7 ± 0.1        -0.2 ± 0.0 18.4 ± 0.0 

Saskatoon-Sutherland, SK (2011) 88.6 ± 0.0 0.5 ± 0.0 18.4 ± 0.0 

Rosthern, SK (2012) 88.7 ± 0.0 0.3 ± 0.0 17.6 ± 0.0 

Meath Park, SK (2012) 88.1 ± 0.1 0.3 ± 0.0 19.3 ± 0.0 

Overall mean ± s.d 89.0 ± 0.5 0.4 ± 0.2 16.4 ± 1.3 
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was more yellowish in colour (b* = 18.4) as compared to other genotypes (b* = ~15 to ~17) 

(p<0.01). Finally, differences in a* values for flour samples were found to be not significant 

among genotypes, although Snowbird and CDC Snowdrop flours (a* = ~0.2) were observed to 

be slightly less reddish in colour as compared to the other genotypes (a* = ~0.3 to ~0.6). 

 The L*, a* and b* values for faba bean protein isolates were found to be similar among 

genotypes (p>0.05), with overall means of 72.0, 1.8 and 20.3, respectively (Table 4.3B). The 

isolate produced from Snowbird was darker in colour (L* = 68.6) compared to Taboar (L* = 

73.4), which was similar in brightness to all other genotypes (L* = ~71 to 73). Values for a* 

varied between 1.4 and 2.1, whereas b* values varied between 18.3 and 21.6. Again, similar to 

flour colours, the isolates prepared from Snowbird and CDC Snowdrop were less reddish in 

colour (a* = ~1.4 to 1.7) as compared to all other genotypes (a* = ~1.9 to ~2.1). Moreover, 

Snowbird was darker and more bluish in colour than the other genotypes. Taboar yielded the 

brightest faba bean protein isolate (L* = 73.4), and CDC Fatima and CDC Snowdrop the most 

reddish (a* = 2.1) and yellowish (b* = 21.6).    

 

4.5 Physicochemical properties of the protein isolates 

The physicochemical properties (i.e., surface charge, hydrophobicity, and interfacial and 

surface tension) of faba bean isolates were tested at pH 7.0 as a function of genotype, location 

and year of harvest. However, due to limited seed availability, the locations differed among 

genotypes and years. Therefore, statistical analysis could consider only the impact of genotype as 

a whole. However, environmental effects were discussed in relation to each genotype separately.  

 

4.5.1 Zeta potential 

Zeta potential (ZP) (surface charge) is a measure of the net electric charge surrounding a 

protein, the magnitude of which is related to the relative stability of the protein in solution. For 

instance, if the zeta potential is high (~ +/- 30 mV), particles tend to repel one another in solution 

due to electrostatic repulsive forces, whereas if the magnitude of ZP is less than approximately 

+/- 30 mV, instability occurs and proteins tend to aggregate more since repulsive charges are 

lower. In the present study, differences in zeta potential among protein isolates were non-

significant across all genotypes, with an average potential of + 22.1 mV at pH 7.0 (p>0.05) 

(Figure 4.3A). Moreover, no significant influence of environmental factors was observed as 
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a function of location or year of harvest within any of the genotypes (p>0.05) (Figure 4.3A).  

 

Table 4.3B. L*, a* and b* values of faba bean protein isolates prepared from seven genotypes 

grown in 2011 and 2012 at several locations in Western Canada. Values represent 

the mean ± one standard deviation (n = 3). 

. 

              L*                 a*             b* 

a) CDC Fatima    

Arborg, MB (2011) 71.4 ± 0.1 2.1 ± 0.0 19.6 ± 0.1 

Lacombe, AB (2011) 71.3 ± 0.1 1.8 ± 0.0 18.6 ± 0.1 

Outlook, SK (2012) 74.6 ± 0.1 2.6 ± 0.0 22.1 ± 0.1 

Saskatoon-Preston, SK (2012) 70.5 ± 0.1 2.0 ± 0.0 18.9 ± 0.1 

b) Taboar    

Arborg, MB (2011) 73.7 ± 0.1 2.2 ± 0.0 21.2 ± 0.1 

Lacombe, AB (2011) 71.9 ± 0.0 1.6 ± 0.0 17.9 ± 0.0 

Outlook, SK (2012) 75.0 ± 0.0 1.1 ± 0.0 19.4 ± 0.1 

Saskatoon-Preston, SK (2012) 73.0 ± 0.2 2.7 ± 0.0 23.2 ± 0.0 

c) SSNS-1    

Arborg, MB (2011) 73.8 ± 0.0 2.0 ± 0.0 21.4 ± 0.0 

Edmonton, AB (2011) 70.9 ± 0.2 2.3 ± 0.0 21.4 ± 0.1 

Outlook, SK (2012) 73.9 ± 0.1 1.9 ± 0.0     22.6 ± 0.1 

Rosthern, SK (2012) 72.2 ± 0.1 1.6 ± 0.0 19.9 ± 0.1 

d) FB9-4    

Arborg, MB (2011) 71.9 ± 0.2 1.7 ± 0.0 19.6 ± 0.0 

Edmonton, AB (2011) 73.5 ± 0.1 2.2 ± 0.0 21.1 ± 0.1 

Outlook, SK (2012) 75.5 ± 0.0 1.8 ± 0.0 21.7 ± 0.0 

Rosthern, SK (2012) 71.1 ± 0.1 1.9 ± 0.0 18.5 ± 0.0 

e) FB18-20    

Arborg, MB (2011) 71.3 ± 0.2 1.9 ± 0.0 19.8 ± 0.1 

Edmonton, AB (2011) 74.6 ± 0.2 1.9 ± 0.0 21.2 ± 0.1 

Outlook, SK (2012) 71.1 ± 0.1 1.8 ± 0.0 18.3 ± 0.1 

Rosthern, SK (2012) 73.0 ± 0.1 1.9 ± 0.0 21.2 ± 0.0 

f) Snowbird    

Lacombe, AB (2011)  66.5 ± 0.1 1.5 ± 0.0 16.0 ± 0.1 

Melita, MB (2011) 65.3 ± 0.2 0.8 ± 0.0 14.8 ± 0.0 

Outlook, SK(2012) 71.9 ± 0.1 1.7 ± 0.0 21.6 ± 0.0 

Saskatoon-Sutherland, SK (2012) 70.7 ± 0.2 1.6 ± 0.0 20.9 ± 0.1 

g) CDC Snowdrop    

Edmonton, AB (2011) 72.4 ± 0.1 1.8 ± 0.0 23.4 ± 0.0 

Saskatoon-Sutherland, SK (2011) 71.2 ± 0.1 1.9 ± 0.0 20.9 ± 0.1 

Rosthern, SK (2012) 73.4 ± 0.1 1.7 ± 0.0 21.6 ± 0.0 

Meath Park, SK (2012) 69.8 ± 0.1 1.6 ± 0.0 20.7 ± 0.1 

Overall mean ± s.d           72.0 ± 2.3        1.8 ± 0.4  20.3 ± 2.0 
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4.5.2 Surface hydrophobicity  

 The surface hydrophobicity (SH) of faba bean protein isolates was estimated by 

measuring intrinsic fluorescence values using a spectroflourometer. Fluorescent intensity arises 

from the exposure of aromatic amino acid residues (e.g., tryptophan, tyrosine and phenylalanine) 

in the solvent. Proteins with higher hydrophobicity have higher intrinsic fluorescence. Overall, 

intrinsic fluorescence values for faba bean protein isolates were found to be similar in magnitude 

across all genotypes (p>0.05). However, differences due to environment were observed for some 

genotypes because of the influence of location or year of harvest (Figure 4.3B). The maximum 

fluorescent intensity ranged between 45.4 arbitrary units (a.u.) and 51 a.u. across genotypes, with 

an overall mean of 47.2 a.u.. Moreover, the intrinsic fluorescence for Taboar was similar 

regardless of the year (2011, 2012) or location (Arborg, Edmonton, Outlook and Rosthern), and 

so too for FB9-4 (Arborg, Edmonton, Outlook and Rosthern) and CDC Snowdrop (Meath Park, 

Edmonton, Saskatoon-Sutherland and Rosthern) (p>0.05). Similar intrinsic fluorescence values 

were observed for SSNS-1 when grown at Outlook in 2012 (SH = 47.3 a.u.), Rosthern in 2012 

(48.5 a.u.) or Arborg in 2011 (50.0 a.u.) (p>0.05), and which were significantly higher than when 

grown at Edmonton in 2011 (43.3 a.u.) (p<0.05). For FB18-20 isolates, intrinsic fluorescence 

values were similar in magnitude when seed was grown at Outlook in 2012 (SH = 50.6 a.u.), 

Rosthern in 2012 (50.3 a.u.) or Arborg in 2011 (50.0 a.u.) (p>0.05), and which were significantly 

higher than when grown at Edmonton in 2011 (37.0 a.u.) (p<0.05). Faba bean isolates prepared 

from Snowbird when grown at Outlook in 2012 (SH = 50.0 a.u.) showed significantly higher 

intrinsic fluorescence values than when grown at Saskatoon-Sutherland in 2012 (44.4 a.u.), 

Melita in 2011 (45.5 a.u.) or Lacombe in 2011 (46.0 a.u.) (p<0.05). Intrinsic fluorescence values 

for isolates from CDC Fatima were similar in magnitude when seed was grown at Saskatoon-

Preston in 2012 (SH = 50.7 a.u.) or Arborg in 2011 (46.8 a.u.) (p>0.05), but significantly higher 

than when grown at Outlook in 2012 (44.5 a.u.) or Lacombe in 2011 in (45.2 a.u.) (p<0.05).   

 

4.5.3 Surface and interfacial tension  

 Proteins can be used as emulsifiers to form stable emulsions and foams. Proteins act by 

migrating to the oil-water or air-water interface, unravel and re-orient such that hydrophobic 

moieties are facing toward the lipid or air phase, and the hydrophilic moieties are oriented 

toward the polar aqueous phase (Walstra, 2003). The proteins then interact to form a viscoelastic 
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Figure 4.3 Surface charge (zeta potential) (A) and intrinsic florescence (B) of faba bean protein isolates as a function of genotype, 

location and year at pH 7.0. Data represent the mean  one standard deviation (n = 2). 
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film surrounding a lipid droplet or gas bubble (Tcholakova et al., 2006). The process acts to 

lower the surface tension (ST) between the two phases to produce smaller, more stable droplets 

of the dispersed phase. In this study, the surface tension at the air-water interface without protein 

was found to be 95.3 mN/m. The addition of protein would be expected to reduce this tension. 

The surface tension at the air-protein solution interface was found to be similar across all 

genotypes (~65 mN/m) (p>0.05). However, some differences were observed due to the effect of 

location or year of harvest with some genotypes (Figure 4.4A). A one-way ANOVA revealed 

that the effect of genotype on surface tension was not significant (p>0.05). With the exception of 

Taboar, all genotypes had similar surface tension values irrespective of the year or location of 

harvest (p>0.05). The surface tension for isolates prepared from Taboar grown at Arborg in 2011 

(ST = 63.6 mN/m) was similar in magnitude as when grown at Saskatoon-Preston in 2012 (65 

mN/m) or Lacombe in 2011 (66 mN/m) (p>0.05), but significantly lower than when grown at 

Outlook in 2012 (68 mN/m).  

Interfacial tension (IT) also was found to be similar irrespective of genotype (p>0.05); 

however, some influence due to of location or year was noticed among some genotypes (Figure 

4.4B). The interfacial tension ranged between 10.4 mN/m and 11.0 mN/m, with an overall mean 

value of 10.7 mN/m. Interfacial tension at the oil-water interface in the absence of protein was 

26.2 mN/M. Interfacial tension for FB18-20 was found to be similar irrespective of year (2011, 

2012) or location (Arborg, Edmonton, Outlook and Rosthern), and so too for CDC Fatima 

(Arborg, Lacombe, Outlook, and Saskatoon-Preston), Taboar (Arborg, Lacombe, Outlook, and 

Saskatoon-Preston) and Snowbird (Melita, Lacombe, Outlook, and Saskatoon-Sutherland) 

(p>0.05). Interfacial tension for isolates prepared from FB9-4 was found to be similar in 

magnitude when seed was grown at Arborg in 2011 (IT = 10.2 mN/m), Rosthern in 2012 (10.2 

mN/m) or Outlook in 2012 (10.5 mN/m) (p>0.05), and was significantly lower than when grown 

at Edmonton in 2011 (11.4 mN/m) (p<0.05). SSNS-1 grown at Arborg in 2011 (IT = 10.5 

mN/m) exhibited similar interfacial tension values for faba bean isolates when grown at Rosthern 

in 2012 (9.9 mN/m) or at Outlook in 2012 (10.7 mN/m) (p>0.05), but significantly lower than 

when grown at Edmonton in 2011 (11.2 mN/m) (p<0.05). The interfacial tension for isolates 

prepared from CDC Snowdrop was similar when seed was grown at Edmonton in 2011 (IT = 

11.4 mN/m) and Saskatoon-Sutherland in 2011 (11.0 mN/m) (p>0.05), but significantly higher 

than when grown at MeathPark in 2012 (10.7 mN/m) or Rosthern in 2012 (10.0 mN/m) (p<0.05). 
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Figure 4.4. Surface (A) and interfacial (B) tension of faba bean protein isolates at the air-water and oil-water interface, respectively, 

as a function of genotype, location and year at pH 7.0. Data represent the mean  one standard deviation (n = 2).
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4.6 Functional properties of the protein isolates 

4.6.1 Oil holding capacity 

 Oil holding capacity (OHC) is a measure of the amount of oil absorbed per gram of 

protein material. OHC of proteins in foods is dependent on factors such as the protein content, 

the distribution of hydrophobic amino acids, droplet size and the oil type (Pearce and Kinsella, 

1978). The OHC for isolates prepared from faba bean was similar in magnitude across genotypes 

(average = 5.7 g/g) (p>0.05) (Figure 4.5). However, some environmental effects were observed 

in response to location or year of harvest within a genotype. OHC values for FB9-4 were similar 

irrespective of year (2011, 2012) or location (Arborg, Edmonton, Outlook and Rosthern), and so 

too for Snowbird (Melita, Lacombe, Outlook and Saskatoon-Sutherland) (p>0.05). For CDC 

Fatima, OHC values were similar when seed was grown at Saskatoon-Preston in 2012 (OHC = 

5.0 g/g) or Lacombe in 2011 (5.3 g/g) (p>0.05), and significantly lower than when grown at 

Outlook in 2012 (6.3 g/g) and Arborg in 2011 (6.3 g/g) (p<0.01). Similar OHC values were 

observed for Taboar when grown at Arborg in 2011 (OHC = 4.9 g/g) or Outlook in 2012 (5.2 

g/g) (p>0.05), which were significantly lower than when grown at Saskatoon-Preston in 2012 

(6.4 g/g) or Lacombe in 2011 (7.0 g/g) (p<0.01). OHC values for FB18-20 were similar in 

magnitude when seed was grown at Arborg in 2011 (OHC = 6.2 g/g), Outlook in 2012 (6.3 g/g) 

or Edmonton in 2011 (6.4 g/g) (p>0.05), and significantly higher than when grown at Rosthern 

in 2012 (4.5 g/g) (p<0.01). The OHC of SSNS-1 was similar in magnitude when seed was grown 

at Rosthern in 2012 (OHC = 4.6 g/g) or Edmonton in 2011 (5.4 g/g) (p>0.05), and significantly 

lower than when grown at Arborg in 2012 (6.8 g/g) or Outlook in 2012 (6.6 g/g) (p<0.01). The 

OHC of CDC Snowdrop when grown at Edmonton in 2011 (OHC = 6.4 g/g) was significantly 

higher than when grown at Meath Park in 2012 (5.1 g/g), Saskatoon-Sutherland in 2011 (5.1 g/g) 

or Rosthern in 2011 (4.9 g/g) (p<0.05).      

 

4.6.2 Emulsion capacity and creaming stability 

Emulsion capacity (EC) refers to the amount of oil homogenized per gram of protein 

before reaching an inversion point where the oil-in-water emulsion turns into a water-in-oil 

emulsion (Pearce and Kinsella, 1978). Creaming stability (CS) refers to the ability of a protein-

stabilized emulsion to resist creaming, which occurs due to the density difference between oil 

and water phase where the oil molecules accumulate at the top of the emulsion due to their low
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Figure 4.5. Oil holding capacity (g/g) of faba bean protein isolates as a function of genotype, location and year. Data represent the                   

mean  one standard deviation (n=2).
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density compared to water molecules (McClements, 2007). Emulsion capacity values were 

similar in magnitude across genotypes (average = 184 g/g) (p>0.05), and only in a few cases 

differences due to environment were observed (Figure 4.6). The EC for isolates prepared from 

CDC Snowdrop was found to be similar irrespective of the year (2011, 2012) or location (Meath 

Park, Edmonton, Saskatoon-Sutherland and Rosthern), and so too for CDC Fatima (Arborg, 

Lacombe, Outlook and Saskatoon-Preston), Taboar (Arborg, Lacombe, Outlook and Saskatoon-

Preston), SSNS-1 (Arborg, Edmonton, Outlook and Rosthern) and FB9-4 (Arborg, Edmonton, 

Outlook and Rosthern) (p>0.05). Similar EC values were observed for isolates prepared from 

FB18-20 when grown at Arborg in 2011 (EC = 169 g oil/g protein) or Edmonton in 2011 (181 g 

oil/g protein) (p >0.05), but values were significantly lower than when seed was grown at 

Outlook in 2012 (200 g oil/g protein) or Rosthern in 2012 (194 g oil/g protein) (p<0.05). For 

isolates prepared from Snowbird, similar EC values were observed when seed was grown at 

Lacombe in 2011 (EC = 169 g oil/g protein) and Saskatoon-Sutherland in 2011 (181 g oil/g 

protein) (p>0.05), and values were significantly lower than when seed was grown at Melita in 

2011 (200 g oil/g protein) or Outlook in 2012 (194 g oil/g protein) (p<0.05). Similar to EC, CS 

values were similar overall (average = 94%) (p>0.05), and with the exception of CDC 

Snowdrop, no significant differences were observed due to location or year of harvest (Figure 

4.7). The CS values for isolates prepared from CDC Snowdrop when grown at Edmonton in 

2011 or Saskatoon-Sutherland in 2011 were similar (CS = 94%) (p>0.05), and significantly 

lower than when seed was grown at Meath Park in 2012 (95%) or Rosthern in 2012 (97%) 

(p<0.05). 

 

4.6.3 Emulsion activity and stability indices 

 The emulsification activity index (EAI) refers to the ability of a protein to form an 

emulsion and is a measure of the interfacial area stabilized per unit (gram) of protein, whereas 

the emulsification stability index (ESI) is a measure of the stability of the same emulsion to resist 

any changes over a defined period of time (Boye et al., 2010b). For all of the genotypes tested, 

values for both EAI (average = 13 m
2
/g) and ESI (average = 10.7 min) were similar irrespective 

of genotype, location or year of harvest (2011, 2012) (p>0.05) (Figure 4.8).  
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Figure 4.6. Emulsion capacity of faba bean protein isolates as a function of genotype, location and year at pH 7.0. Data represent the  

mean  one standard deviation (n = 2). 
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Figure 4.7. Creaming stability (%) of faba bean protein isolates as a function of genotype, location and year at pH 7.0. Data represent 

the mean ± one standard deviation (n=2).
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 Figure 4.8. Emulsion activity (A) and stability (B) indices for faba bean protein isolates as a function of genotype, location and year 

at pH 7.0. Data represent the mean  one standard deviation (n = 2).
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4.6.4 Foaming capacity and stability 

 Foaming capacity (FC) refers to the volume of foam generated under a given set of 

homogenization and solvent conditions, whereas foam stability (FS) is related to the ability of 

that same foam to resist foam degradation due to the drainage of solvent from the foam lamellae. 

Foaming capacity values for the faba bean protein isolates were similar in magnitude 

irrespective of genotype (average = 162%) (p>0.05); however, some environmental effects were 

observed in response to location or year of harvest within a genotype (Figure 4.9A). Values for 

CDC Fatima were similar irrespective of the year (2011, 2012) or location (Arborg, Lacombe, 

Outlook and Saskatoon-Preston), and so too for FB9-4 (Arborg, Edmonton, Outlook and 

Rosthern), Taboar (Arborg, Lacombe, Outlook and Saskatoon-Preston) and SSNS-1 (Arborg, 

Edmonton, Outlook and Rosthern) (p>0.05). In contrast, isolates prepared from FB18-20 were 

found to have similar FC values when seed was grown at Arborg in 2011, Edmonton in 2011 or 

Outlook in 2012 (FC = ~162%) (p>0.05), and lower values than when grown at Rosthern in 

2012 (183%) (p<0.01). Similar FC values were observed for isolates from Snowbird grown at 

Lacombe in 2011 or at Outlook in 2012 (FC = 150%) (p>0.05), which were significantly lower 

than when seed was grown at Melita in 2012 (175%) or Saskatoon-Sutherland in 2011 (163%) 

(p<0.05). FC values of isolates prepared from CDC Snowdrop when grown at Edmonton in 

2011 (FC = 153%) were found to be similar to values for isolates from seed grown at 

Saskatoon-Sutherland in 2011 (163%) or Rosthern in 2012 (168%) (p>0.05), but significantly 

lower than when seed was grown at Meath Park in 2012 (172%) (p<0.05). 

Similar to FC, foam stability (FS) was found to be similar in magnitude across the 

genotypes (average = 65%) (p>0.05); however, some environmental influence was observed due 

to location and year of harvest (Figure 4.9B). Values for FB9-4 were similar irrespective of year  

(2011, 2012) or location (Arborg, Edmonton, Outlook and Rosthern), and so too for Snowbird 

(Lacombe, Melita, Outlook and Saskatoon-Sutherland) and CDC Snowdrop (Edmonton, Meath 

Park, Rosthern and Saskatoon-Sutherland) (p>0.05). However, FS of the isolates prepared from 

CDC Fatima grown at Outlook in 2012 (FS = 58%) was similar to that of isolates from seed 

grown at Lacombe in 2011 or Arborg in 2011 (63%) (p>0.05), but significantly lower than when 

seed was grown at Saskatoon-Preston in 2012 (67%) (p<0.05). Similar FS values were observed 

for isolates prepared from SSNS-1 when seed was grown at Outlook in 2012 or Arborg in 2011 

(FS = 61%) (p>0.05), and values were observed to be significantly lower than when seed was 
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Figure 4.9. Foaming capacity (A) and stability (B) of faba bean protein isolates as a function of genotype, location and year at pH 

7.0. Data represent the mean  one standard deviation (n=2). 
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grown at Rosthern in 2012 (72%) (p<0.01). Foam stability (FS) of isolates prepared from seed 

of FB18-20 when grown at Rosthern in 2012 (FS = 68%) was similar to that of isolates from 

seed grown at Outlook in 2012 (67%) or Edmonton in 2011 (67%) (p>0.05), but significantly 

higher than when grown at Arborg in 2011 (61%) (Figure 4.9B) (p<0.05). Foam stability values 

for isolates prepared from Taboar when seed was grown at Saskatoon-Preston in 2012 (FS = 

56%) were similar to isolates prepared from seed grown at Arborg in 2011 (63%) or Edmonton 

in 2012 (67%) (p>0.05), and significantly lower than when seed was grown at Lacombe in 2011 

(69%) (p<0.05). 

 

4.6.5 Protein solubility  

 Protein solubility is the amount of protein solubilized in the supernatant obtained after 

centrifugation of a protein solution relative to the total amount of protein present in the original 

material (Boye et al., 2010b). It is an important determinant of the suitability of a protein 

material to be used as an emulsifier, foaming agent or thickener in food products. The solubility 

(Sol) of isolates prepared from faba bean was similar in magnitude across genotypes (p>0.05), 

and ranged between ~75% and ~88%, with a mean of 81% (Figure 4.10). However, 

environmental effects were observed in response to location and year of harvest within all 

genotypes. For example, all of the four locations where CDC Fatima was grown had significantly 

different Sol values, Saskatoon-Preston in 2012 (Sol = 99%), Arborg in 2011 (91%), Lacombe in 

2011 (85%) and Outlook in 2012 (65%) (p<0.01). The Sol of isolates prepared form Taboar 

grown at Arborg in 2011 (Sol = 79%) or Outlook in 2012 (82%) were similar in magnitude 

(p>0.05), but significantly higher than when grown at Lacombe in 2011 (66%) or Saskatoon-

Preston in 2012 (72%) (p<0.01). For FB18-20, Sol values were similar when seed was grown at 

Outlook in 2012 (Sol = 80%) or Edmonton in 2011 (81%) (p>0.05), and significantly lower than 

when grown at Rosthern in 2012 (88%) or Arborg in 2011 (92%) (p<0.01). Similar Sol values 

were obtained for SSNS-1 when grown at Outlook in 2012 (72%) or Edmonton in 2011 (72%) 

(p>0.05), which were significantly lower than when grown at Arborg in 2011 (88%) or Rosthern 

in 2012 (96%) (p<0.01). The Sol of FB9-4 was similar in magnitude when seed was grown at 

Arborg in 2011 (77%), Outlook in 2012 (79%) or Rosthern in 2012 (80%) (p>0.05), and 

significantly higher than when grown at Edmonton in 2011 (Sol = 69%) (p<0.01). The Sol of 

Snowbird was similar in magnitude when seed was grown at Saskatoon-Sutherland in 2012 
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Figure 4.10.  Protein solubility (%) of faba bean protein isolates as a function of genotype, location and year at pH 7.0. Data 

represent the mean ± one standard deviation (n=2). 
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(88%), Melita in 2011 (92%) or Outlook in 2012 (92%) (p>0.05), and significantly higher than 

when grown at Lacombe in 2011 (Sol = 77%) (p<0.01). The Sol of CDC Snowdrop when grown 

at Rosthern in 2012 (Sol = 94%) was significantly higher than when grown at Edmonton in 2011 

(71%), Meath Park in 2012 (74%) or Saskatoon-Sutherland in 2011 (82%) (p<0.01). 

 

4.7 G x E relationships  

A G x E (Genotype x Environment) assessment was conducted for only three faba bean 

genotypes, SSNS-1, FB9-4 and FB18-20, since these genotypes were grown at the same 

locations (Arborg, Edmonton, Outlook and Rosthern) in 2011 and 2012. For the G x E 

assessment, a G x L (Genotype x Location) analysis, and a G x Y (Genotype x Year) analysis 

were performed using a two-way ANOVA.  

 

a) Impact of genotype and location  

 The two-way ANOVA analysis revealed that with the exception of flour crude fat, a 

significant G x L interaction was present for all of the faba bean flour and isolate proximate 

components (p<0.01). Differences also were significant due to the main effects of genotype and 

location (p<0.01). A significant G x L interaction also were detected for OHC, FC, EC and Sol 

(p<0.01), whereas for all other functional properties (FS, CS, EAI and ESI) it was not present 

(p>0.05). For FS and EAI, significant differences for the main effects only were observed due to 

the effect of location (p<0.01), for CS due to the effect of genotype (p<0.01), and for ESI due to 

the effect of both genotype and location (p<0.05). In the case of physicochemical properties, a 

significant G x L interaction was observed only for SH (p<0.01) and not for ZP, ST or IT 

(p>0.05). Moreover, ZP and ST also did exhibit significant differences due to genotype or 

location (p>0.05), whereas IT was influenced by location (p<0.01). Interestingly, both L/V and 

colour characteristics of faba bean flour and isolates were found to have significant G x L 

interactions (p<0.01), where colour was also influenced by the main effects of location and 

genotype while L/V had only a significant effect of location (p<0.01).   

 

b) Impact of genotype and year 

 A two-way ANOVA analysis showed a significant G x Y interaction only for flour ash 

(p<0.01) whereas for all other faba bean flour and isolate proximate components it was not 
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present (p>0.05). The main effects of both genotype and year were found to be significant for all 

flour proximate components (p<0.01) but not for isolate proximate components (p>0.05). Except 

for EC, a significant G x Y interaction was not observed for any of the functional properties (CS, 

EAI, ESI, FC, FS, Sol) (p>0.05). Overall, the effect of genotype was more prominent for 

functional properties than the effect of year. For instance, the differences in functional properties 

due to year were significant for only FC and ESI, whereas the effect of genotype was significant 

for FC, EC, CS and ESI. The other properties (OHC, FS, EAI and Sol) did not exhibit any 

significant differences due to either year or genotype (p>0.05). For the physicochemical 

properties, a G x Y interaction along with the main effects of genotype and year were found to be 

non-significant (p>0.05). For colour characteristics, with the exception of faba bean flour and 

isolate a* values, a G x Y interaction was not found (p>0.05). A significant G x Y interaction 

was present for the L/V of faba bean flour but not for faba bean isolates (p<0.05), and the main 

effects of genotype and year on L/V properties also were non-significant (p>0.05).        

 

4.8 Structure-function relationships  

 A Pearson correlation analysis was performed to observe whether any relationships 

existed between the legumin: viclin (L/V) ratio (of the isolates), colour characteristics, seed size 

or physicochemical characteristics and each functional property (Table 4.4). Except for colour 

characteristics, there were very few significant correlations. For example, the L/V ratio of the 

isolate was found to be negatively correlated with zeta potential (r = -0.39, p<0.05) and 

positively correlated with surface hydrophobicity (r = 0.40, p<0.05) indicating that the higher the 

legumin content, the less highly charged the proteins, and the L/V ratio has a larger effect on 

surface charge than on functionality. The latter would be complicated by the conformation of the 

protein and its interactions with the solvent. Foam stability (r = 0.54, p<0.05), creaming stability 

(r = 0.46, p<0.05) and solubility (r = 0.44, p<0.05) were found to be positively correlated with 

zeta potential. Seed size was not found to be significantly correlated with any of the colour or 

proximate component of faba bean protein isolates. Some of the functional properties were found 

to be significantly correlated with isolate colour properties. For example, foam stability was 

found to be negatively correlated with isolate L* value (r = -0.40, p<0.05), isolate a* value (r = -

0.55, p<0.05) and isolate b* value (r = -0.54, p<0.05). EAI was not significantly correlated with 

any functional or physicochemical properties whereas ESI was only negatively correlated with
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Table 4.4 Pearson correlation coefficients (r) for physicochemical, colour, seed size, functional, proximate, and L/V propert ies of faba 

bean flour and protein isolates from all genotypes.  

 

 

* indicates significant correlations at P<0.05. 

IY, isolate yield; OHC, oil holding capacity; FC, foaming capacity; FS, foam stability; EC, emulsion capacity; CS, creaming stability; ESI, emulsion stability 

index; EAI, emulsion activity index; ZP, zeta potential; IF, Intrinsic fluorescence; ST, surface tension; IT, interfacial tension; Sol, solubility.   

Seed 

size

Isolate 

L*

Isolate 

b*

Isolate 

a*

IY Isolate 

ash

L/V 

isolate

OHC FC FS EC CS ESI EAI ZP IF ST IT

Isolate L* -0.02

Isolate b* -0.24 0.73*

Isolate a* 0.04 0.44* 0.60*

IY -0.18 -0.01 0.01 -0.27

Isolate protein -0.14 0.21 0.16 0.20 0.02

Isolate ash -0.05 -0.21 -0.03 -0.33 0.09

L/V isolate 0.30 0.43* 0.07 0.17 -0.15 -0.25

OHC 0.00 0.16 0.15 0.21 -0.30 -0.34 0.11

FC -0.13 0.08 0.07 -0.16 0.00 0.40* -0.27 -0.26

FS 0.07 -0.40* -0.54* -0.55* 0.40* 0.22 -0.06 -0.55* 0.00

EC 0.02 -0.11 -0.07 -0.11 -0.35 0.52* 0.04 -0.11 0.20 -0.06

CS -0.39* -0.46* -0.18 -0.29 0.19 0.07 -0.33 -0.39* 0.04 0.24 0.00

ESI 0.33 -0.47 -0.45* -0.31 0.26 0.03 0.01 -0.32 0.02 0.37 0.13 0.23

EAI -0.29 -0.22 0.13 -0.02 0.28 0.31 -0.02 -0.06 0.07 0.14 -0.13 0.10 0.05

ZP -0.11 -0.53* -0.36 -0.50* 0.30 0.29 -0.39* -0.37 -0.11 0.54* 0.20 0.46* 0.15 0.02

IF 0.30 0.11 -0.06 0.03 -0.05 -0.28 0.40* -0.28 -0.03 0.01 0.02 -0.13 0.16 -0.15 0.06

ST -0.13 0.28 0.10 0.28 0.18 -0.35 0.17 -0.25 -0.22 -0.11 -0.28 0.12 -0.04 -0.31 -0.17 0.14

IT -0.22 0.01 -0.07 0.06 -0.08 0.15 0.19 0.07 -0.10 -0.30 0.08 -0.02 -0.18 0.08 -0.20 -0.15 0.22

Sol 0.11 -0.23 -0.26 -0.36 -0.21 0.09 -0.07 -0.38* 0.21 0.34 0.18 0.31 0.17 -0.22 0.44* 0.29 -0.32 -0.38*



 

65 
 

isolate L* value (r = -0.47, p<0.05) and b* value (r = -0.45, p<0.05). Correlations for SSNS-1, 

FB9-4 and FB18-20 were quite different than those for all the genotypes with a number of 

significant correlations observed in the latter (Table 4.5). Surface tension was observed to be 

positively correlated with CS (r = 0.61; p<0.05) and ZP (r = 0.90; p<0.05), and negatively 

correlated with OHC (r = -0.64; p<0.05), whereas IT was negatively correlated with only 

solubility (r = -0.61; p<0.05). The L/V of isolates was not found to be significantly correlated 

with any of the functional or physicochemical properties.  

 

4.9 Principal component analysis (PCA): Scatter plot   

 PCA models transform a given set of variables into a few variable coordinate systems, 

while capturing most of the variability from the original data. These sets of new variables are 

known as principal components. To evaluate the comparative effects among genotypes, years 

and locations, scatter plots in principal component analysis (PCA) models were studied (Figure 

4.11). Variables close to each other affect the PCA model in a similar way and are positively 

correlated, whereas variables diagonally opposite are assumed to be negatively correlated. 

Moreover, the farther the variable from one origin, the more influential it is. Snowbird and 

Snowdrop (zero tannin genotypes) were found to be closely grouped and observed to be more 

influential as compared to other genotypes. In addition, these zero tannin genotypes were 

observed to have an opposite effect compared to the other genotypes placed diagonally opposite 

in the scatter plot. No effect of seed size was seen, since in most of the cases, genotypes having 

similar seed size are not grouped together. Genotypes grown at the same locations in 2011 and 

2012 were found to be grouped together, e.g. CDC Fatima and Taboar; and SSNS-1, FB9-4 and 

FB18-20. However, Snowbird and Snowdrop although not having similar locations, are grouped 

suggesting seed composition may play a larger role than environmental effects on faba bean 

functionality and other properties. The effects of the Edmonton and Lacombe locations from 

2011 were found to be similar, but negatively correlated to the similar effects of Rosthern and 

Outlook in 2012, showing the influence of location and year effects. Furthermore, five different 

faba bean genotypes grown at Arborg (MB) in 2011 were found to be closely distributed on the 

scatter plot. Overall, the effect of year was observed to be quite distinct, where 2011 was 

oppositely placed to 2012 (Figure 4.11).  
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Table 4.5 Pearson correlation coefficients (r) for physicochemical, colour, seed size, functional, proximate, and L/V properties of  

faba bean flour and protein isolates from SSNS-1, FB9-4 and FB18-20 genotypes.  

 

 

* indicates significant correlations at P<0.05. 

IY, isolate yield; OHC, oil holding capacity; FC, Foaming capacity; FS, foam stability; EC, emulsion capacity; CS, creaming stability; EAI, emulsion activity 

index; ESI, emulsion stability index; ZP, zeta potential; IF, Intrinsic fluorescence; ST, surface tension; IT, interfacial tension; Sol, solubility.   

Seed 

size

Isolate 

L*

Isolate 

a*

Isolate 

b*

IY Isolate 

protein

Isolate 

ash

L/V 

isolate

OHC FC FS EC CS EAI ESI ZP ST IF IT

Isolate L* 0.03

Isolate a* -0.15 -0.02

Isolate b* -0.43 0.71* 0.40

IY -0.42 0.09 0.11 0.39

Isolate protein -0.45 0.12 -0.09 0.35 0.11

Isolate ash 0.30 0.19 0.07 0.19 0.16 -0.07

L/V isolate 0.09 0.35 -0.05 -0.09 0.07 -0.18 0.04

OHC -0.11 0.17 -0.04 0.08 -0.65* 0.52 0.04 0.00

FC 0.16 0.23 -0.40 0.17 -0.04 0.18 0.16 -0.14 -0.02

FS 0.05 -0.19 -0.12 -0.32 0.51 -0.51 0.06 0.29 -0.76* -0.12

EC 0.28 -0.05 -0.09 -0.16 -0.02 -0.18 0.59* 0.00 -0.07 0.25 0.14

CS -0.74* -0.08 0.21 0.42 0.49 0.15 -0.41 -0.28 -0.38 0.06 0.13 -0.28

EAI -0.32 -0.07 0.19 0.06 0.42 0.51 0.19 0.41 0.08 -0.11 0.22 -0.06 0.03

ESI 0.42 -0.35 -0.18 -0.45 0.13 -0.42 0.19 0.03 -0.56 0.49 0.61* 0.46 -0.12 0.04

ZP -0.14 -0.56 0.10 -0.28 0.28 -0.41 -0.31 -0.32 -0.55 -0.50 0.25 -0.08 0.37 -0.37 -0.02

ST -0.30 -0.39 0.23 0.02 0.47 -0.30 -0.35 -0.32 -0.64* -0.41 0.25 -0.35 0.61* -0.24 -0.09 0.90*

IF 0.19 -0.18 -0.11 -0.31 0.05 -0.04 -0.48 0.31 -0.29 0.12 -0.03 -0.05 0.02 -0.03 0.23 0.26 0.21

IT -0.03 -0.03 0.70* 0.14 -0.13 0.06 0.27 0.29 0.34 -0.56 -0.28 -0.12 -0.16 0.40 -0.43 -0.08 -0.03 -0.15

Sol -0.07 -0.10 -0.57 -0.27 -0.21 -0.38 -0.31 -0.01 -0.14 0.44 0.19 -0.11 0.20 -0.46 0.31 0.09 0.07 0.08 -0.61*



 

67 
 

X loading scatter plot (p1 vs. p2)
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Figure 4.11. The Scatter plot of the first two principal components (p1 and p2), depicting the 

distribution of all faba bean genotypes, locations and years in the PCA model.  

 

4.10 Comparison to commerical isolates  

 The functional properties of the faba bean isolates were compared with those of 

commercial isolates, including those from soybean, pea, egg, whey and wheat. It should be noted 

that commercial production of isolates may result in varying protein functionality depending on 

the processing technique or conditions used. For example, the use of spray drying in commercial 

production of protein isolates in comparison to freeze drying was reported to result in a lower 

protein solubility (Otegui et al., 1997). The relatively large standard deviations in some cases 

reflect variability due to environment (year and/or location) as discussed previously. The mean 

foaming capacity (FC) of faba bean protein isolates (162%) was found to be significantly higher 

than that of the egg protein isolate (112%) (p<0.01), and similar to those of isolates from pea 
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(150%) and soybean (157%) (p>0.05), and lower than those of isolates from wheat (223%) and 

whey (228%) (p<0.01) (Table 4.6). On the contrary, the mean foam stability (FS) of faba bean 

isolates (65%) was found to be similar to the FS of all of the commercial isolates (pea = 56%, 

soy = 58%, whey = 69%, egg = 73% and wheat = 76%) (p>0.05). The mean oil holding capacity 

(OHC) of faba bean isolates (5.7 g/g) was found to be higher than those of all of the commercial 

isolates, pea = 1.1 g/g, egg = 1.5 g/g, soy = 1.6 g/g, whey = 1.8 g/g and wheat = 2.3 g/g (p<0.01). 

The mean protein solubility of the faba bean isolate (81%) was found to be higher than those of 

isolates from wheat (11%), pea (20%) and soybean (31%) (p<0.05), but lower than those of 

isolates from egg (88%) and whey (89%) (p<0.05). The mean emulsion capacity (EC) of faba 

bean isolates (184 g/g) was found to be similar in magnitude to those of isolates from soybean 

(175 g/g), pea (181 g/g) and egg (184 g/g) (p>0.05), lower than that of the isolate from whey 

(206 g/g) (p<0.01), and higher than that of the isolate from wheat (94 g/g) (p<0.01). In contrast, 

the mean creaming stability (CS) of faba bean isolates (94%) was found to be similar in 

magnitude to those of isolates from whey (89%) and egg (96%) (p>0.05), lower than that of the 

isolate from soybean (100%), and higher than those of isolates from pea (50%) and wheat (62%) 

(p<0.01).  

 The mean emulsion activity index (EAI) of faba bean isolates (13.0 m
2
/g) was found to 

be similar to those of isolates from egg (11.5 m
2
/g), whey (14.5 m

2
/g) and soy (14.6 m

2
/g) 

(p>0.05), and higher than those of isolates from wheat (1.2 m2/g) and pea (1.7 m2/g) (p<0.01). 

Similarly, the mean emulsion stability index (ESI) of faba bean isolates (10.7 min) was found to 

be similar to those of isolates from egg (11.6 min), pea (11.9 min) and soybean (12.0 min) 

(p>0.05), but lower than those of isolates from whey (13.0 min) and wheat (13.1 min) (p<0.05). 

These results indicate that protein isolates having better functionality may be prepared from faba 

bean and might be used effectively in a variety of food applications. For instance, a higher 

protein solubility profile for a faba bean isolate might be advantageous in protein drinks and milk 

replacers, whereas a higher OHC may play an important role in meat products by reducing fat 

loss and improving binding properties. Moreover, the better emulsifying properties of faba bean 

isolates indicate their potential significance in the production of bread, meat sausages, salad 

dressings and dairy products, whereas isolates with better foaming properties might be employed 

in the production of whipped toppings, and confectionery products (Hayat et al., 2014). 
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Table 4.6.  Foaming capacity (FC) and stability (FS), emulsion capacity (EC), creaming stability (CS), oil holding capacity (OHC), 

emulsion activity (EAI) and stability (ESI) indices, and protein solubility (Sol) for faba bean protein isolates as a function 

of genotype. Data for the faba bean protein isolates represents the mean value for each genotype (2 locations x 2 years x 

duplicate measurements)  one standard deviation (n = 8). Data for the commercial protein isolates represents the mean 

value of duplicate measurements  one standard deviation (n = 2). 

Genotype    FC 

   (%) 

  FS 

  (%) 

   EC  

  (g/g)  

   CS  

   (%) 

  OHC          

(g/g) 

  EAI 

 (m
2
/g) 

 

  ESI 

 (min) 

  Sol   

  (%) 

a) Faba bean protein isolates 

CDC Fatima 158 ± 3 63 ± 4 189 ± 3   95 ± 1 5.7 ± 0.7 12.1 ± 0.6 10.7 ± 0.6   84.9 ± 14.6 

Taboar 169 ± 10 64 ± 6 184 ± 4   93 ± 2 5.9 ± 1.0 12.5 ± 1.3 10.6 ± 0.1 74.8 ± 7.3 

SSNS-1 158 ± 11 65 ± 5 177 ± 3   95 ± 1 5.9 ± 1.0 13.6 ± 0.6 10.6 ± 0.1 81.8 ± 12.2 

FB9-4 155 ± 4 65 ± 3 178 ± 8   92 ± 2 5.6 ± 0.5 12.7 ± 1.5 10.7 ± 0.2 76.3 ± 4.9 

FB18-20 168 ± 11 65 ± 3 186 ± 14   92 ± 2 5.8 ± 0.9 12.8 ± 1.3 11.0 ± 0.3 85.0 ± 6.0 

Snowbird 160 ± 12 68 ± 2 186 ± 14   96 ± 1 5.7 ± 0.3 13.0 ± 0.5 11.0 ± 0.3 87.5 ± 7.3 

CDC Snowdrop 164 ± 8 66 ± 7 186 ± 11   95 ± 1 5.4 ± 0.7 14.3 ± 0.8 10.7 ± 0.1 80.3 ± 10.4 

b) Faba bean and commercial protein isolates 

Faba bean         162 ± 5
a
 65 ± 2

ab
 184 ± 5

a
   94 ± 2

ab
 5.7 ± 0.2

a
 13.0 ± 0.7

ab
 10.7 ± 0.2

a
 81.5 ± 4.7

a
 

Soybean 157 ± 5
a
 58 ± 5

a
 175 ± 9

a
 100 ± 0

c
 1.6 ± 0.3

bc
 14.6 ± 1.7

b
 12.0 ± 0.6

ab
 30.5 ± 0.1

b
 

Pea 150 ± 5
a
 56 ± 1

a
 181 ± 0

a
   50 ± 0

d
 1.1 ± 0.0

b
   1.7 ± 0.0

c
 11.9 ± 0.2

ab
 20.1 ± 0.2

c
 

Whey 228 ± 7
b
 69 ± 1

b
 206 ± 0

b
   89 ± 1

a
 1.8 ± 0.0

cd
 14.5 ± 0.4

b
 13.0 ± 0.7

b
 89.0 ± 1.4

d
 

Egg 112 ± 2
c
 73 ± 4

b
 188 ± 9

a
   96 ± 0

bc
 1.5 ± 0.0

bc
 11.5 ± 0.1

a
 11.6 ± 0.1

ab
 88.1 ± 0.2

d
 

Wheat 223 ± 5
b
 76 ± 1

b
   94 ± 0

c
   62 ± 3

e
 2.3 ± 0.0

d
   1.2 ± 0.2

c
 13.1 ± 0.2

b
 10.7 ± 0.7

e
 

No significant differences across genotypes were observed in part (a) (p>0.05), and means in each column followed by different letters are 

significantly different (p<0.05) as shown in part (b). 
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5. DISCUSSION 

  

Faba bean is one of the oldest crops used as a source of protein in the human diet, and for 

feed purposes for animals. It also represents a valuable source of dietary fibre, essential vitamins 

and minerals. Faba bean is consumed abundantly in Africa, Middle Eastern countries, and 

countries such as India and China in the form of boiled beans or curries prepared with other 

locally grown crops. However, allergen concerns may arise upon the consumption of faba bean 

in certain populations (Mur-Gimeno et al., 2007; Damiani et al., 2011). Kumar et al. (2014) 

reported faba bean hypersensitivity in mice led to increased levels of histamine and IgE 

(immunoglobulin E) and severe signs of anaphylaxis. Despite these allergic studies, there are still 

very few cases of fava bean allergy reported in humans. Faba bean also contains glycosides 

(vicine and convicine) which are considered to be the root cause of favism, a type of haemolytic 

anemia (McMillan et al., 2001). Individuals who are deficient in G6PD enzyme (glucose-6-

phosphate dehydrogenase) are particularly affected by the consumption of uncooked faba bean 

since NADPH (reduced nicotinamide adenine dinucleotide phosphate) is not produced in 

sufficient quantities to combat the oxidative stress produced by these glycosides (McMillan et 

al., 2001). Faba bean genotypes which are low in vicine and convicine may prove to be 

advantageous in providing high nutritional performance in humans (Vilarino et al., 2009; Duc et 

al., 2011). In this study, all of the faba bean genotypes examined were considered to have normal 

levels of vicine. However, Vioque et al. (2012) reported that the content of glycosides (measured 

using RP-HPLC), including vicine and convicine, is reduced significantly (to a level of <1% of 

the original flour) during the production of protein isolates using an isoelectric precipitation 

method. Apart from protein extraction, there are other methods reported in the literature which 

reduce the content of anti-nutritional factors, including soaking, dehulling, extrusion, heat 

treatment, enzymatic or genetic modification, and fermentation (van der Poel, 1990; Alonso et 

al., 2000; Granito et al., 2002; Luo et al., 2009; Crepon et al., 2010; Jezierny et al., 2010).  

Legumes such as faba bean are important sources of natural antioxidants with health 

promoting benefits. These antioxidant properties are mainly because of high total phenolic 

content from phenols, flavonoids, tannins, lignins, etc. (Shahidi and Naczk, 2004). Faba bean 
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contains more than twice the total polyphenol content present in commercial pulses such as 

pigeon pea and field pea, and also was reported to have nine and fifteen times, respectively, more 

antioxidant activity than these legumes (Vioque et al., 2012). However, these important 

properties may be removed during the defatting and wet extraction process, because of the high 

solubility of polyphenols in extraction solvents such as water, acetone, ethanol and methanol 

(Sun and Ho, 2005). This shows one of the disadvantages of using a wet extraction method to 

produce protein isolates or concentrates as compared to dry extraction methods, which does not 

require any solvents. Moreover, wet extraction methods are more complex, and cost more money 

because of higher energy and water input than dry extraction methods (Schutyser and van der 

Goot, 2011). Although wet extraction methods give a higher protein content, they may also result 

in a loss of protein functionality due to processing conditions such as change in pH and the 

drying method (Pelgrom et al., 2013). It has already been established that the genetic diversity of 

faba bean is closely related to its geographical origin, growth habit and ecological conditions 

(Robertson and El-sherbeeny, 1991; Polignano et al., 1993; Zong et al., 2009; Duc et al., 2010; 

Zong et al., 2010). For example, Wang et al. (2012) reported that the faba bean varieties grown 

in North China and Europe had the highest genetic variation, and those grown in Central China 

and Africa had the lowest genetic variations. It also was observed from a PCA scatter plot that 

faba bean germplasm grown in China in the winter was grouped separately from that grown in 

China in the spring (Wang et al., 2012). Similarly, the PCA scatter plot in the current study 

showed that the effect of location where seed was grown was more profound than the genotypic 

or year effect. For example, five different faba bean genotypes all grown at Arborg (MB) in 2011 

were found to be closely located on the scatter plot. These results are in accordance with one-

way ANOVA results where faba bean genotype was not found to have a significant influence on 

most of the parameters examined in this study, but considerable effects due to environment were 

observed. The effect of year from the PCA model was observed to be most distinct, in that 2011 

was placed far from and opposite to 2012. However, using a G x E assessment, the overall effect 

of location was observed to be much higher than the effect of year. Thus, due to limited seed 

availability, it is difficult to say whether the effect of year from PCA model is a true year effect 

or because of the location in which seed was grown for those years.   
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  5.1 Colour characteristics and proximate composition of faba bean flours and isolates 

 The colour of protein isolates is an important attribute which needs to be controlled and 

optimized for final product evaluation and consumer acceptance. Various methods has been 

studied which reduce colour content including dehulling of seed (Onigbinde and Onobun, 1993), 

protein extraction (Sosulski et al., 1988), extraction pH (Adebowale et al., 2007), defatting of 

flour (Toews and Wang, 2013), and final particle size (Han and Khan, 1990). Faba bean flour 

colour differed significantly for L* and b* values, but flour were similar with respect to the a* 

parameter. In contrast to the flours, all protein isolates were similar in colour, as evidenced by 

their similar L*, a* and b* values, suggesting the extraction process and defatting procedure 

removed most of the phenolic compounds and other pigments that remained after dehulling. This 

is also supported from the study of Toews and Wang (2013) in which defatted chickpea 

concentrates were observed to be brighter and having less red and yellow colour as compared to 

non-defatted ones. Colour characteristics of isolates were not found to be significant correlated 

with isolate proximate composition but found to be negatively correlated with the functional and 

physicochemical properties. For example, ZP and CS were negatively correlated with isolate L* 

value (r = -0.53, p<0.05) and isolate L* value (r = -0.46, p<0.05), respectively. And, foam 

stability was negatively correlated with isolate L* value (r = -0.40, p<0.05), isolate a* value (r = 

-0.55, p<0.05) and isolate b* value (r = -0.54, p<0.05). It is unclear how colour properties affect 

protein functionality, but a possible explanation could be the interaction of chemical structure of 

colour pigments with protein molecules which in turn could have influential effect on protein 

functionality.   

 The composition of the faba bean flours indicated that protein, ash and crude fat levels 

were similar irrespective of the genotype. Protein, ash and crude fat levels (on a moisture free 

basis) in the flour were found to be ~32%, ~3.4% and ~1.3%, respectively. Similar to the flour, 

the levels of protein and ash in the isolates were similar across genotypes at levels of ~94.0% and 

~5.8%, respectively. Protein levels were found to be higher than those of the commercial isolates 

used for comparative purposes, i.e., on a moisture free basis, pea (80.4%), soy (83.4%), wheat 

(91.1), egg (81.7), and whey (92.8). The higher ash contents of the isolates relative to the flours 

reflect the use of the pH adjustments during the extraction/precipitation process (from pH 7.0 to 

9.5/from pH 9.5 to 4.5). No desalting step was employed during this process. The negligible 

levels of crude fat in the isolates were caused by the defatting of the flour prior to isolate 
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preparation. Defatting increases the protein contents of isolates and aids in the extraction process 

by reducing protein-lipid interactions which could have the effect of lowering protein solubility 

(Levya-Lopez et al., 1995; Can Karaca et al., 2011). Defatting also results in improvement in the 

nutritional and functional properties of protein. For example, Toews and Wang (2013) showed 

that for three chickpea genotypes, concentrates made from defatted flours had higher trypsin 

inhibitor activity (TIA), higher levels of protein, ash and starch, and improved WHC, FC and FS 

as compared to those made from non-defatted flours, irrespective of genotype.  

 

5.2 Extraction efficiencies of isolate production    

 The protein contents and protein yields of the protein isolates were comparable to values 

in the literature for faba bean protein isolates. Qayyum et al. (2012), Fan and Sosulski (1974) and 

McCurdy and Knipfel (1990) produced faba bean protein isolates using alkaline extraction-

isoelectric precipitation, and reported protein contents of ~77.6%, ~93.1% and ~92.7%, 

respectively, and protein yields of ~67.6%, ~80.2% and ~62.6%, respectively. The isolate yields 

also were found to be comparable to values in the literature for isolates produced by alkaline 

extraction-isoelectric precipitation and reported to be ~19.7% (Qayyum et al., 2012) and ~28.2% 

(Fan and Sosulski, 1974), respectively. The slightly higher values in the present study may be 

attributed to the second alkaline extraction of the feedstock.  

 

5.3 Protein composition of flours and isolates 

 The gel electrophoresis profiles of both the faba bean flour and isolate samples were 

similar and the four major bands of -legumin, -legumin, vicilin and convicilin were evident. 

This protein profile was similar to that of pea as reported in the study by Nikolic et al. (2012). 

Other techniques used to separate the protein fractions for identification purposes include 

chromatographic techniques such as high and low pressure liquid chromatography. These 

techniques have the added benefit of being able to better purify the sample of lower molecular 

weight albumins (Mertens et al., 2011; Klassen and Nickerson, 2012; Vioque et al., 2012). 

Information in the literature on convicilin is limited, however it has been shown to be 

immunologically similar to vicilin based on the study by Croy et al. (1980). Legumin:vicilin 

(L/V) ratios for faba bean were found to be independent of genotype for both the flours and the 

isolates, and shifted from 3.8 to 4.5 during the alkaline extraction-isoelectric precipitation 
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process, indicating that the pH and ionic conditions selected preferentially for higher amounts of 

legumin in the isolates. These findings suggest that processing will influence the protein profile 

of the isolate, irrespective of the composition of the feedstock. It is suggested that an optimized 

wet extraction process could be identified by adjusting the pH, salt type and ionic strength to 

select for legumin or vicilin. This in turn would alter the functionality of the isolate.  

 Pradhan et al. (2014) found high genetic variation in the amount of albumin and globulin 

proteins from different faba bean genotypes grown in different climatic zones of Bihar, India. 

These genetic variations were probably due to polymorphism in protein bands which are specific 

to each genotype. These polymorphic bands may be one source of variation in the L/V ratio 

between genotypes of legume species, as observed in this study, although probably not 

significant in nature. The L/V ratios for the isolates were slightly higher than values obtained for 

another faba bean globulin fraction prepared using a salt extraction process (2.1-3.6), suggesting 

that many extrinsic (environmental) and intrinsic (pH, salt and others) factors may influence the 

ratio (Gatehouse et al., 1980). Interestingly, in the present study the L/V ratio varied significantly 

in response to the environment (location and year) within each genotype, with the exception of 

the zero-tannin genotype Snowbird for faba bean flours, and CDC Snowdrop for faba bean 

protein isolates. This suggests that at least in terms of protein composition, zero-tannin varieties 

may represent a more constant feedstock. It also was discovered from the PCA scatter plot that 

zero tannin genotypes (Snowbird and Snowdrop) were more influential and were affecting the 

PCA model in the opposite way as compared tannin-containing genotypes. Moreover, these 

genotypes were grouped together despite having different seed sizes, suggesting compositional 

properties may be of more importance than phenotypic characters in relating protein 

functionality and other parameters. It is presumed that the presence of tannins and/or distribution 

of tannins in the extraction solution could impact the solubility of the legumin or vicilin proteins, 

and hence may result in more variability within the data from different environments. However, 

no significant differences in solubility were observed between zero-tannin (Snowbird and CDC 

Snowdrop) and tannin-containing genotypes (CDC Fatima, FB9-4, FB18-20 and SSNS-1). Low 

tannin content in faba bean also is reported to be associated with higher protein content and had a 

positive effect on nutritional value and protein digestibility (Crepon et al., 2010; Micek et al., 

2015). However, it was found from this study that low tannin varieties had slightly lower protein 

contents in both flours and isolates, and slightly higher ash contents in flour and isolates 
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compared to tannin-containing genotypes, which indicates that agronomic or environmental 

factors also may be important in determining the nutritional quality of faba beans. Tannin levels 

in response to the environment for each genotype were not monitored in this study.  

 In contrast to the study of Mertens et al. (2011) and Martensson (1980), the L/V ratio of 

both faba bean flours and isolates were found to not be correlated with protein content. 

Moreover, the L/V ratio of faba bean isolates was found to not be correlated with any of the 

functional attributes, and was found only to be negatively correlated with zeta potential (ZP) (r = 

-0.39; p<0.05) and positively correlated with surface hydrophobicity (SH) (r = 0.40; p<0.05). 

This correlation indicates that a higher legumin content would lead to an isolate that is more 

hydrophobic and less charged. A number of studies have reported that vicilin-rich isolates had 

better protein extractability, solubility, and gelling and emulsifying properties than legumin-rich 

isolates (Bora et al., 1994; Cserhalmi et al., 1998; Kimura et al., 2008; Barac et al., 2010). In 

general, proteins with higher charge and less hydrophobicity tend to be more soluble (Jung et al., 

2005; McClements, 2005; Can Karaca et al., 2011). However, the extent to which hydrophobic 

moieties are exposed can have an impact on the interaction of proteins with the oil-water or air-

water interface in emulsions and foams, respectively, and in the level of aggregation and 

gelation. Depending on the functional attribute, protein isolates that have lower or higher L/V 

ratios may be of interest. Understanding the balance between charge and hydrophobicity in 

proteins plays a major role in predicting functionality. In the present study, differences in L/V 

ratios between genotypes could not be correlated to the functional attributes, suggesting that 

either the variability in data arising from environmental effects prevented clear delineation 

within the data set, or other factors such as the conformation, mobility or rigidity of proteins in 

solution are important within the structure-function relationship. 

 

5.4 Functional properties of isolates and comparison with commercial isolates  

Protein functionality signifies how individual protein molecules behave in solution. 

Protein ingredients, when added to food systems, can provide desirable functional attribute such 

as solubility, textural properties, water and oil binding, emulsification and foaming. Functional 

properties of faba bean isolates obtained in this study were compared to those of commercial 

isolates prepared from whey, soy, pea, egg or wheat. However, it should be noted that there may 

be wide variation in functionality of these individual commercial isolates due to the extraction 
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method (isoelectric precipitation, ultrafiltration, salt extraction) or processing conditions used in 

their preparation (spray or freeze-dried, pH, temperature, ionic conditions). For instance, in the 

study by Vose (1980), faba bean and pea protein isolates prepared by ultrafiltration were found 

to be 22% and 15% more soluble than those prepared by isoelectric precipitation.  

  

5.4.1 Oil holding capacity 

 Oil holding capacity (OHC) is a measure of the amount of oil bound per gram of protein 

(g/g). The OHC is of great importance from an industrial point of view since it may provide a 

useful index of the ability of protein to prevent fluid leakage from a product during processing, 

and it reflects useful attributes such as emulsion capacity (EC), a desirable property in products 

such as mayonnaise (Escamilla-Silva et al., 2003; Kiosseoglou and Paraskevopoulou, 2011). For 

a protein to have a higher OHC, a large number of non-polar amino acids available to bind oil 

molecules are required. However, no significant correlation was observed between OHC and 

surface hydrophobicity (SH) of faba bean protein isolates. The faba bean protein isolates were 

found to have significantly higher OHCs (5.7 g/g) in comparison to all of the commercial isolates 

tested (1.1-2.3 g/g) (p<0.01). Furthermore, the OHCs of faba bean isolates obtained in this study 

were higher than those reported in the literature for faba bean isolates produced using an 

isoelectric precipitation method, with values of 1.8 g/g (Fernandez-Quintela et al., 1997) and 2.3 

g/g (Vioque et al., 2012).  

 In contrast, the results showed that the water holding capacity (WHC) of faba bean 

protein isolates was relatively low, and in most cases the faba bean protein isolates were 

completely dispersed, even when centrifuged at a higher speed and tested at different protein 

concentrations. Thus, WHC was not assessed further and results are not shown in this study. 

Possibly another WHC method could be attempted in the future to better assess the protein 

ingredient. However, WHC of other faba bean isolates have been reported to have values 

comparable to those from other legume sources. For example, Fernandez-Quintela et al. (1997) 

and Vioque et al. (2012) reported WHC of 1.8 g/g and 2.5 g/g, respectively, for faba bean protein 

isolates, and these values were comparable to the WHC of pea (1.7 g/g) and soy (1.3 g/g) isolates 

(Fernandez-Quintela et al., 1997). There are a number of factors which influence the WHC of 

proteins, including the conformational characteristics, hydrophilic-hydrophobic balance of amino 

acids, carbohydrate content, temperature, thermodynamic properties, pH, ionic strength and 
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solubility of protein (Chavan et al., 2001). Differences in the WHC of faba bean isolates obtained 

in this study compared to values reported in the literature could be a function of one or more of 

these parameters. The low WHC of faba bean isolates obtained in this study suggests that faba 

bean isolates may not be suitable for making meat products where protein works as a water 

binder and aids in reducing cooking losses and product shrinkage.   

 

5.4.2 Emulsifying capacity, creaming stability, emulsifying activity and stability indices  

 Proteins can be used as emulsifiers owing to their amphiphilic nature (containing both 

hydrophobic and hydrophilic amino acid groups) and their ability to form viscoelastic films 

around oil droplets (Foegeding and Davis, 2011). Protein molecules migrate to oil-water 

interfaces in an emulsion and re-orient themselves with their hydrophobic groups toward the oil 

phase and their hydrophilic groups toward the aqueous phase (Walstra, 2003). As more protein 

molecules adsorb at the oil-water interface, a viscoelastic layer is formed around the oil droplet 

which provides creaming stability via electrostatic repulsion and steric stabilization (Tcholakova 

et al., 2006). In this study, emulsifying properties [emulsion capacity (EC), creaming stability 

(CS), and emulsion activity and stability indices (EAI and ESI)] were evaluated for faba bean 

isolates and for commercial protein isolates (whey, wheat, soy, pea and egg). With the exception 

of EAI and ESI, differences due to genotype and environment were observed in all of the 

emulsifying properties of faba bean protein isolates. 

 Emulsion capacity (EC) is the maximum amount of oil that can be emulsified before an 

oil-in-water emulsion is converted to a water-in-oil emulsion, whereas creaming stability (CS) is 

a measure of the resistance to emulsion separation due to flocculation and aggregation of oil 

droplets over time (Tcholakova et al., 2006). Legume proteins having higher emulsion capacities 

and creaming stabilities would be better candidates for protein emulsification applications. In 

this study, except for the whey protein isolate, the mean EC of faba bean isolates was 

comparable to those of commercial isolates, and the CS was ~90% or higher for faba bean, soy, 

egg and whey isolates; however, for pea protein isolate CS was just 50%.   

 The EAI and ESI values describe the ability of a protein to form an emulsion (Hill, 1996). 

The EAI is a measure of the interfacial area stabilized per gram of protein, calculated by 

analyzing the turbidity of diluted emulsions, whereas ESI is a measure of the stability of the 

same emulsion over a finite period of time (Pearce and Kinsella, 1978). A higher EAI would be 
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an important attribute in choosing an effective protein emulsifier, since the higher the EAI, the 

smaller the amount of protein that would be required to stabilize the same amount of emulsion. 

Similar to CS, the EAI of faba bean protein isolate (13.0 m
2
/g) was comparable to that of soy 

(14.6 m
2
/g) but was much higher than that of pea protein isolate (1.7 m

2
/g). Thus, faba bean 

protein isolates could be used in various food applications where emulsifying properties are 

essential especially in meat-based products. In contrast, the ESI of faba bean isolate (10.7 min) 

was lowest as compared to all of the commercial isolates (11.6-13.0 min). In general, except for 

ESI, the faba bean isolate had emulsifying properties similar to those of soy and whey protein 

isolates, and higher than that obtained for the pea protein isolate. Based on this study, the use of 

the pea protein isolate would not be recommended in emulsified food products due to its low CS 

and EAI.  

 With the exception of CS, values for all of the emulsifying properties (EC, EAI and ESI) 

for the faba bean protein isolates prepared in this study were much lower than those of another 

faba bean protein isolate prepared using an alkaline extraction/isoelectric precipitation process 

(513.3 g oil/ g protein, 44.3 m
2
/g and 69.4 min, respectively) (Can Karaca et al., 2011). The 

higher value of EC obtained in the study of Can Karaca et al. (2011) was due to differences in 

the method of measuring EC where a higher amount of initial protein solution and a lower 

protein concentration was used. Similarly, the ECs of faba bean isolates produced in this study 

were lower than those of other faba bean, pea and soybean protein isolates (EC analysed using a 

different method) prepared by isoelectric precipitation (~354 g oil/g protein, ~335 g oil/g protein 

and ~413 g oil/g protein, respectively) (Sosulski and McCurdy, 1987). This demonstrates that 

comparing EC values from the literature is problematic because of the different methods and 

conditions employed for EC measurement, which gives quite varied values. However, despite the 

use of the same methods for measuring EAI and ESI as did Can Karaca et al. (2011), lower 

values were attained for faba bean isolate in the current sturdy; these differences may be due to 

the influence of feedstock composition.  

 Physicochemical parameters, including ZP, SH, solubility and IT, were reported by Can 

Karaca et al. (2011) to influence emulsifying properties. In contrast, with the exception of ZP, in 

the current study no physicochemical parameter (SH, solubility, IT) was found to be correlated 

with any of the emulsifying parameters studied. The CSs of faba bean isolates were found to be 

positively correlated with ZP (r = 0.46; p<0.05), in accordance with the study of Can Karaca et 



 

79 
 

al. (2011) where a positive correlation was observed between ZP and CS of a faba bean protein 

isolate (r = 0.60; p<0.01). This correlation suggests that a higher ZP, which results in strong 

electrostatic repulsion between protein molecules, would be an important attribute in emulsion 

stabilization. Furthermore, isolates prepared by an isoelectric precipitation method were reported 

to have a higher ZP as compared to those prepared by a salt extraction method (Can Karaca et 

al., 2011), which suggests the influential role of extraction method on emulsifying properties. 

However, there are other factors other than physicochemical properties which influence the 

ability of the proteins to bind to gas bubbles or oil droplets, which include the size, shape and 

conformation of proteins, nature of amino acids, lipid or carbohydrates attached to the protein 

surface, and thermodynamic properties (Kinsella, 1981; Sathe and Salunkhe, 1981; Ragab et al., 

2004; Can Karaca et al., 2011; Joshi et al., 2012). Thus, future studies considering these factors 

would be essential in studying emulsifying properties at the structural/functional level. 

 

5.4.3 Foaming capacity and stability  

The mechanism of foam formation and stability is very similar to that of emulsion 

formation and stability. In a protein-based foam system, protein molecules adsorb at the air-

water interfaces of air bubbles and aid in reducing surface tension. With more and more protein 

molecules adsorbing at the surface of air bubbles, protein molecules unravel and form an 

interfacial film, thus preventing bubble fusion (via Oswald ripening) or their collapse in the 

suspension for a certain period of time (Boye et al., 2010a; Kiosseoglou and Paraskevopoulou, 

2011). The entrapment of air in the form of bubbles after homogenizing a protein solution is the 

key aspect in the formation of a number of food products such as meringues, whipped toppings, 

mousses and cake batters (Kiosseoglou and Paraskevopoulou, 2011). The foam properties of 

proteins are commonly evaluated as foaming capacity (FC) and foam stability (FS). Foaming 

capacity is a measure of the volume of foam generated after homogenization of a protein solution 

for a defined period of time, whereas FS is a measure of the decrease in foam volume of the 

same suspension after a certain period of time. In this study, the mean FC and FS values of the 

faba bean protein isolates (independent of genotype) were ~162% and ~65%, respectively. The 

FC of faba bean isolates was found to be similar in magnitude to those of soy (157%), pea 

(150%) and egg (112%) isolates (p>0.05), but lower than the FC of whey (228%) and wheat 

protein (223%) isolates (p<0.01). In contrast, the FS was similar among faba bean and all of the  
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commercial isolates (p>0.05). 

Foaming properties (FC and FS) were independent of genotype, although differences due 

to environment were observed. In the literature, various studies have suggested that proteins with 

high solubility produce more foam, as they easily unfold and refold at the interface, thus 

reducing the interfacial tension between air and the protein surface (Chavan et al., 2001; Kaur 

and Singh, 2007; Adebiyi and Aluko, 2011). In accordance with this, faba bean protein isolates 

with higher foaming capacities were obtained in this study, due probably to their high solubility 

in aqueous solution; however, no significant correlation was observed with solubility or any of 

the functional or physicochemical parameters. In literature foam stability is found to be 

influenced by the structure of proteins, and dependent on electric charge and electrostatic 

repulsion between protein molecules (Chavan et al., 2001; Kaur and Singh, 2007; Adebiyi and 

Aluko, 2011). In contrast to what expected, foaming stability (FS) was found to be positively 

correlated with zeta potential (ZP) (r = 0.54; p<0.01). The FC of faba bean protein isolates was 

similar, and the FS slightly lower, than values reported for another faba bean protein isolate 

prepared using isoelectric precipitation (FC = ~160% and FS = ~77%) (Fernandez-Quintela et 

al., 1997). It was reported that the addition of NaCl increased the foaming capacity of lupin, pea 

and faba bean protein isolates, and there was a difference in foaming properties at pH 5.5 and 7.0 

(Makri et al., 2005). This suggests that processing conditions (pH, temperature, salt 

concentration) play a significant role in determining the foaming properties of protein 

preparations. 

 

5.4.4 Protein solubility 

Solubility is an important attribute of proteins, and by manipulating solubility, protein 

isolates/concentrates with varying purities and functionalities can be obtained (Boye et al., 

2010a; Kiosseoglou and Paraskevopoulou, 2011). A number of parameters, including foaming 

and emulsification, are dependent on the solubility of protein materials. For instance, a well 

dispersed protein solution has better emulsion-forming properties since protein molecules can 

rapidly migrate to oil/water interfaces, which leads to higher creaming stability (Sikorski, 2001). 

The solubility profile was found to be positively correlated with zeta potential (ZP) (r = 0.44; 

p<0.05) and negatively correlated with interfacial tension (IT) (r = -0.38; p<0.05) and oil holding 

capacity (OHC) (r = -0.38; p<0.05). A protein with higher ZP will lead to higher solubility by 
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providing greater electrostatic repulsion between molecules, thereby inhibiting aggregation (Can 

Karaca et al., 2011). In order for a protein to lower interfacial tension at an oil-water interface, it 

needs to have intermediate hydrophobicity and charge to allow it to integrate and re-align at the 

interface. Too little hydrophobicity would prevent it from integrating at the interface, whereas 

too much would reduce its solubility. At the same time, a highly charged protein would induce 

repulsive forces at the interface, inhibiting the formation of a viscoelastic film at the interface. 

Based on this, proteins with low surface hydrophobicity and high solubility would have difficulty 

lowering IT. Further, proteins with higher solubility tend to me more hydrophilic, suggesting that 

their ability to hold or bind oil would be less, resulting in a negative correlative relationship 

between solubility and OHC.  

The average solubility, irrespective of genotype, of faba bean isolates (81%) was higher 

than those of the commercial isolates i.e., pea (~20%), wheat (~11%) and soy (31%) (p<0.05), 

but was comparable to those of commercial isolates from whey (89%) or egg (~81%) (p>0.05). 

However, the solubility of the faba bean isolate was lower than values obtained for another faba 

bean isolate (~90%) and other pea (~62%), soy (~97%), lentil (~91%), and chickpea (~91%) 

isolates prepared using isoelectric precipitation (Can Karaca et al., 2011). Differences in the 

solubility of various protein ingredients may be the result of different feed stocks, e.g., wheat 

proteins are dominated by alcohol soluble prolamins, or processing conditions. The latter plays a 

large role in terms of protein denaturation, which is associated with the breakage of hydrogen 

bonds and unravelling of the quaternary and tertiary structure of proteins and exposure of buried 

hydrophobic moieties. For instance, most commercial operations are presumed to use spray 

drying rather than freeze drying. Spray drying, although advantageous in terms of high 

throughput and low production cost, may adversely affect protein functionality since it utilizes a 

much higher temperature than does freeze drying. Otegui et al. (1997) reported that faba bean 

concentrates obtained by freeze drying had 38% higher solubility than those that were spray 

dried, where the inlet and outlet air temperatures of the spray dryer were 190°C and 122°C, 

respectively.  

 

5.5 G x E analysis   

 G x E assessment was performed by analysing interactions between genotype and 

location (G x Y), and genotype and year (G x Y) for the SSNS-1, FB9-4 and FB18-20 genotypes 
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only. In general, the effect of year on all parameters was found to be less significant than the 

effect of location. Very few G x Y interactions were observed as compared to the number of G x 

L interactions. Most of the flour and isolate proximate components analyzed exhibited 

significant differences due to the individual and interactive effects of genotype and location. 

However, except for flour ash, a G x Y interaction was absent for all proximate components, and 

the effect of year was limited to faba bean flour and not isolates. This suggests that the year 

effect was not as prominent as location, and the variation due to year could be minimized by 

using modified protein extraction methodologies. A significant G x L interaction for 

physicochemical and functional properties was limited to OHC, FC, EC, Sol and SH, and in the 

case of G x Y, to EC. Interestingly, except for FC and ESI, the effect of year on all other 

physicochemical and functional properties was not significant. Differences in the colour 

characteristics of faba bean flours and isolates were profound due to the effects of location and 

genotype, where a G x L interaction and all the main effects had significant effects on all colour 

parameters. However, as observed for other properties, the effect of year on colour parameters 

was limited. The L/V of isolates was influenced only by location and had a significant G x L 

interaction, which suggests that although genotype did not have a direct effect on L/V ratio, it is 

an important factor, which along with location, can significantly influence the L/V ratio.   

 

5.6 Applications   

 Pulse protein isolates and concentrates have potential for use as functional ingredients in 

the formulation of various food products (shakes, energy bars, beverages, snacks and meat 

analogues) or the fortification of existing ones. Food manufacturers rely on the desirable 

functional attributes of protein ingredients, such as their ability to emulsify, foam, solubilize etc. 

The protein ingredients market is growing rapidly, where protein ingredients such as those for 

pea, soy and whey are quite popular. Soy proteins already have been exploited commercially in 

formulating a wide variety of food products owing to their nutritional and functional properties. 

For instance, soy isolate and whey protein blends are used to make cakes, and may completely 

replaces non-fat dry milk (NFDM) without having adverse effects on quality (Turro and Sipos, 

1970). The superior emulsifying properties of soy proteins provide uniform, smoother, pliable 

and less sticky characteristics to dough which results in improved crust colour and texture of 

bakery products (Endres, 2001). Along with dairy-based products, the use of soy proteins is also 
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increasing in processed meat systems where it is used as partial meat substitute, emulsifier, 

flavour enhancer and meat analogue. One of the important applications of soy proteins is 

reducing cooking loss and tenderization of whole muscle meat, which is done by injection of soy 

protein brine solution (Endres, 2001). In general, meat products containing soy protein provide 

excellent organoleptic and textural properties, and provide more yield per pound of meat 

(Kinsella et al., 1985; Kolar et al., 1985). However, Soderberg (2013) reported that products 

made from soy and pea proteins had lower acceptability than those made from egg proteins, 

which may be because of the beany and hay-like flavour of legume proteins.   

Peazazz and CLARISOY, pea and soy protein isolates, respectively, produced by Burcon 

NutraScience (Vancouver, BC, Canada) and Archer Daniels Midland Company (Decatur, IL, 

USA) are reported to have 90% protein content, 100% solubility at acidic pH, neutral taste, heat 

stability and low viscosity. Their industrial uses are stated to be in the preparation of low pH 

beverages and fortified waters, and in a variety of food, beverage and nutritional applications. 

The faba bean protein isolates produced in this study had protein contents of more than 90%; 

however, their protein solubility was ~81%, which is less than that of CLARISOY and Peazazz 

products. The faba bean isolates were observed to have emulsification and foaming values 

comparable to those of soy, pea and egg isolates, which suggests promising applications in meat 

and dairy products such as sausages, frozen desserts and whipped creams (Hayat et al., 2014). 

Moreover, the high OHC values of the faba bean protein isolate in comparison to commercial 

isolates could provide it with a competitive advantage in food processing and product storage by 

helping in reducing cooking loss and fluid leakage, respectively. However, very few studies to 

date have examined faba bean proteins for their functionality and consumer acceptance. Cai et al. 

(2001) prepared a tofu-like product from protein extracts of soybean, faba bean and chickpea and 

found that faba bean and chickpea had comparable textural properties, but poorer than those of 

soybean. Sausage meat extenders fortified with 20% to 40% faba bean PMM (protein micellar 

mass) concentrates (prepared using salt extraction) were reported to be acceptable at all levels. In 

general, products made from faba bean PMM concentrates had more acceptability than faba bean 

flour fortified products (Abdel-Aal et al., 1987). However, despite of having suitable 

functionality and consumer acceptance, food products containing faba bean ingredients should be 

tested first for the presence of glycosides or other anti-nutritional factors before releasing into the 

market, or they otherwise could possess serious concerns with respect to food safety.  
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5.7 Factors affecting growth of faba bean and chemical composition 

Despite the nutritional advantages of faba beans, there has been limited growth in 

production due to its high susceptibility to various biotic and abiotic stresses (Link et al., 2010; 

Sillero et al., 2010). For instance, broomrape species [(Orobanche spp. and Phelipanche spp.)] 

are weedy root parasites and are a serious concern in North Africa and sub Saharan-African 

countries where ~30% of the faba bean is produced (Maalouf, 2011). Faba bean also is very 

susceptible to heat waves and recurring droughts due to climatic variations, more so than other 

legumes (Maalouf, 2011). The International Center for Agricultural Research in the Dry Areas 

(ICARDA) (Beirut, Lebanon) is working on the development of new faba bean varieties and has 

screened and identified faba bean germplasm with resistance to abiotic (heat, cold and drought) 

and biotic stresses [leaf, stem and pod spot (Ascochyta fabae), chocolate spot (Botrytis spp.), rust 

(Uromyces spp.) and broomrape (Orobanche spp. and Phelipanche spp.)] (Khalil et al., 2004; 

Maalouf et al., 2010). The new germplasm developed at ICARDA is reported to have high yield, 

wide adaptability to different ecosystems, disease resistance, and high drought and heat 

tolerance.  

 Variation in the chemical composition of pulses (protein, ash, fibre, starch, etc.) has been 

attributed to environmental factors such as temperature, rainfall, lighting conditions and growing 

season (Singh et al., 1990; Nikolopoulou et al., 2006; Nikolopoulou et al., 2007). For instance, 

~9% variability in the protein levels of winter-sown and spring-sown cultivars of faba bean was 

reported, which suggests the influence of climatic conditions (temperature and rainfall) during 

those seasons (Eden et al., 1968). Several cultivars of faba bean grown in Manitoba and 

Saskatchewan in 1970 and 1971 were reported to have protein content ranging from 23% to 

32%; however, only minor variations because of location and year were observed (Evans et al., 

1972). Similarly, Hood-Niefer et al. (2011) reported substantial differences in protein and starch 

concentrations of ten pea and eleven faba bean genotypes; however, differences due to 

environment (location and year) were reported to be minimal. In contrast, six pea cultivars grown 

in 2006 and 2007 at five locations in Saskatchewan showed significant differences in crude 

protein, starch, crude fibre, fat, ash and phytic acid due to the effect of bot cultivar and growing 

season and location (Wang et al., 2010). Differences in protein and starch levels were observed 

for faba bean cultivars grown in the summer of 1972 on University of Saskatchewan 

experimental plots; ranges were 26-35% and 28-41%, respectively. However, fibre and ash 
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contents were relatively uniform (Bhatty et al., 1974), suggesting that certain components are 

influenced more than others by environmental factors.  
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6. CONCLUSIONS AND FUTURE STUDIES 

 

The overall aim of this research was to investigate the effect of genotype and the growth 

environment on the physicochemical and functional properties of the faba bean prepared isolates. 

Overall, genotype did not have a substantial impact on the functionality of the faba bean protein 

isolates with respect to any of the functional properties. Similarly, no differences in 

physicochemical properties were observed among faba bean genotypes. Variability within each 

genotype was observed for almost all tests measured in response to the environmental conditions, 

highlighting the complex relationship between plant biology and protein profiles. A G x E 

assessment was conducted for SSNS-1, FB9-4 and FB18-20 only, since they were grown at the 

same locations in 2011 and 2012 whereas PCA analysis was performed considering all seven 

genotypes grown at several locations in 2011 and 2012. A G x E assessment and PCA scatter 

plot showed the effect of location was more prominent than the effect of year. And, in PCA 

analysis zero tannin genotypes were found to be grouped together and opposite to those of 

tannin-containing genotypes. A mean protein content of ~94% and an isolate yield of ~25% were 

achieved for faba bean protein isolates. Although it was originally hypothesized originally that 

the legumin:vicilin (L/V) ratio would significantly impact protein functionality, and would differ 

depending on the genotype, this was not found to be the case. Instead, results suggest that 

processing (i.e., the extraction method used to prepare the isolate) may play a greater role than 

biology, as it may select for one protein fraction over another depending on the processing 

conditions employed. Further investigation of optimizing the L/V ratio in response to extraction 

conditions is warranted.  

The functional properties of faba bean isolates were found to be comparable to those of 

some of the commercial isolates tested in this study. In general, with the exception of creaming 

stability (CS) for the pea and soy isolates and foaming capacity (FC) for the egg isolate, the 

foaming and emulsifying properties of pea, egg and soy were found to be similar to those of faba 

bean isolates. The whey protein isolate was found to have similar foam stability (FS), CS, 

emulsion activity index (EAI) values, and higher FC, emulsion capacity (EC) and emulsion 

stability index (ESI) values as compared to faba bean protein isolates, whereas the wheat protein 
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isolate had comparable foaming properties but lower emulsifying properties. The oil holding 

capacity (OHC) of faba bean isolates was observed to be significantly higher than that of any of 

the commercial isolates, and with the exception of whey and egg isolates, the solubility of 

commercial isolates was found to be similar in magnitude to that of faba bean protein isolates. 

These results suggest that faba bean isolates have good potential as alternative plant protein 

ingredients in the market. Furthermore, isolates obtained in this study, along with high protein 

content, contained negligible crude fat, and could be used in producing novel food products in 

the form of cookies, muffins, and protein bars. Similarly, isolates with better emulsifying 

properties would be beneficial in producing a wide variety of meat-based products such as 

sausages and bologna. However, despite all these advantages, the integration of faba bean protein 

isolates into the current market is still limited because of the supply-demand gap in the 

production of faba beans, and food safety concerns associated with the consumption of raw faba 

bean. Moreover, extensive research is still required in exploring and controlling extraneous 

factors which could be limiting factors in producing stable genotypes. 

Further research in this area could include: 

 a) Conducting a full genotype x environment study over several years with a larger 

number of genotypes. Locations could be broadened to different soil zones within the same 

geographic area (e.g., Canada), or taken from international locations. The information obtained 

would enable a stronger data set to be developed to better assess structure-function relationships 

within faba bean protein isolates. 

b) Studying structure-dynamic-function relationships by examining protein kinetics under 

different conditions within solution, protein conformation and flexibility, and diffusion within 

the aqueous phase and at the oil-water and/or air-water interfaces. 

c) Studying 2-D electrophoresis patterns of faba bean to identify the different 

polypeptides comprising legumin and vicilin, since all have different molecular weights and 

isoelectric points (Tucci et al., 1991). These polypeptides could be studied in relation to 

differences in the legumin:vicilin ratio, protein content and functional/physicochemical 

properties. The information obtained would aid in undertanding structure-function relationships 

at the molecular level, and with the involvement of extrinsic factors it could be assessed whether 

differences are due to intrinsic (genetic origin) or extrinsic (pH, ionic, extraction method, 

climatic conditions, etc.) factors. 
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d) Conducting product development studies where faba bean isolates were used as one of 

the major ingredients and compared with established commercial ingredients in the market. 

Important parameters which could be looked at evaluated would include texture, consistency, 

organoleptic attributes, shelf life and safety of the product. Most importantly, human 

consumption trials of faba bean based products are required to provide safety with respect to 

favism or other antinutrient based toxicity. 
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