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ABSTRACT 

  Gemini surfactants are versatile gene delivery agents because of their ability to bind and 

compact DNA and their low cellular toxicity. The aim of my dissertation work was to develop 

non-invasive mucosal formulations of novel amino acid-substituted gemini surfactants with the 

general chemical formula C12H25(CH3)2N
+
-(CH2)3-N(AA)-(CH2)3-N

+
(CH3)2-C12H25 (AA= 

glycine, lysine, glycyl-lysine, lysyl-lysine). These compounds were formulated with a model 

plasmid DNA, encoding for interferon-γ and green fluorescent protein, in the presence of helper 

lipid, 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine. Formulations were assessed in Sf 1 Ep 

epithelial cells. Among the novel compounds, plasmid/gemini/lipid (P/G/L) nanoparticles 

formulated using glycine- and glycyl-lysine substituted gemini surfactants achieved significantly 

higher gene expression than the parent unsubstituted compound. 

 The key physicochemical properties, e.g. size, surface charge, DNA binding, and toxicity 

of P/G/L complexes were correlated with transfection efficiency. The presence of amino-acid 

substitution did not interfere with DNA compaction and contributed to an overall low toxicity of 

all P/G/L complexes, comparable to the parent gemini surfactant.  

 A cellular uptake mechanistic study revealed that both clathrin- and caveolae-mediated 

uptake were major uptake routes for P/G/L nanoparticles. However, amino acid substitution in 

the gemini surfactant imparted high buffering capacity, pH-dependent increase in particle size, 

and balanced DNA binding properties. These properties may enhance endosomal escape of P/12-

7NGK-12/L resulting in higher gene expression. 

 Finally, the P/G/L complexes were incorporated into an in-situ gelling dispersion 

containing a thermosensitive polymer, poloxamer 407, and a permeation enhancer, diethylene 

glycol monoethyl ether (DEGEE). A 16% w/v poloxamer concentration produced a dispersion 

that gelled at body temperature and exhibited sufficient yield value to prevent formulation 

leakage from the vaginal cavity. The formulations were prepared with a model plasmid, 

encoding for red fluorescent protein, and administered topically to rabbit vagina. In agreement 

with our in vitro results, confocal microscopy revealed that glycyl-lysine substituted gemini 

surfactant exhibited higher gene expression compared to the parent unsubstituted gemini 

surfactant. This provided proof-of-concept for use of amino acid-substituted gemini surfactant in 

non-invasive mucosal (vaginal) gene delivery systems with potential therapeutic applications.  
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 These formulations will be developed with therapeutically relevant genes to assess their 

potential as genetic vaccines. In addition, new gemini surfactants will be developed by grafting 

other amino acids via glycine linkage to retain conformation flexibility and enhance endosomal 

escape of DNA complexes for higher transfection efficiency. 
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1. Introduction 

 With the advancement of diagnostic tools and the introduction of more sensitive 

instruments and new analytical techniques, we are unraveling the hidden secrets of livings cells. 

The discovery of DNA is one such achievement. The development of better molecular 

techniques (e.g. gel electrophoresis, polymerase chain reaction, DNA cloning and DNA 

sequencing) and highly sensitive instruments (flow cytometry, HPLC and mass spectrometry) 

have allowed us to learn more about the genetic information and how mutations or changes in it 

cause disorders. 

 The ability to create DNA structures in vitro and manipulate the DNA in living cells has 

provided yet another tool to enable humans to improve various disease conditions. This area of 

medical therapeutics is known as gene therapy [1]. It involves the delivery of genetic material to 

patients to prevent or treat a disease. Therapy is achieved by replacing a defective gene, by 

inserting a new gene, by silencing a gene, or by regulating gene expression. In theory, gene 

therapy provides a treatment option for a number of incurable diseases of today. Early studies 

conducted in 1990 led to the first gene therapy procedure in a patient carrying a defective gene 

that makes an essential enzyme adenosine deaminase (ADA), required for normal working of the 

immune system [2]. The study was considered to be a success leading to a rise in the number of 

clinical trials involving gene therapy (Figure 1.1.) [3].  

 Although significant research efforts were directed towards gene therapy for the last two 

decades, the field is still in its development phase. A total of 1786 gene therapy clinical trials 

have been conducted worldwide, with the majority (~95%) in Phase I/II stage [4]. All the 

promises of gene therapy have been challenged by one common hurdle: a safe and efficient 

method of gene delivery. Unfortunately, gene sequences cannot be administered as such. 

Therefore, different methods of gene delivery have been evaluated, broadly classified into two 

groups – viral and non-viral methods. A viral method utilizes a virus’ natural ability to infect 

cells to deliver a target gene where, the viral vectors are devoid of any virulence (disease causing 

ability) [5]. The non-viral approaches use physical methods (e.g. electroporation and 

iontophoresis) or chemical agents such as lipids, surfactants, polymers, dendrimers and other 

agents for delivery of genes to the target cells [6]. All delivery systems have their own set of 

advantages and limitations. The delivery vectors need to overcome various challenges posed by 

our body to successfully transfer the genes of interest to the target cells.  
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Figure 1.1: Number of gene therapy clinical trials conducted worldwide 1989-2012. 
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In the following chapters, I will be discussing different delivery vectors that are developed as 

gene delivery systems. These studies have begun to help us understand the complexity of the 

gene therapy and develop models to rationally design safe and efficient delivery systems. I will 

discuss the extra- and the intracellular barriers to gene delivery, current methods of gene delivery 

with focus on non-viral vectors, and physicochemical properties that influence their transfection 

efficiency. In the literature review, I identify the need for understanding the physiochemical 

properties of a delivery system in association with the cellular uptake mechanism and their 

influence on the ultimate fate of delivery particles. There is a need for systematic evaluation of 

each delivery system to build more predictable models that can help in rational design of that 

delivery system to attain better transfection efficiencies. Therefore, I focus my attention on 

gemini surfactants that are easy to modify and have shown promising potential as excellent gene 

delivery systems [7-10]. Although the gemini surfactants can be classified under the broad 

category of cationic lipids, I am presenting a more detailed literature review on this area as a 

separate chapter in order to build the rationale of my study with these molecules. The long term 

goal of this study is to develop non-invasive mucosal (vaginal) gene delivery systems using these 

substituted-gemini surfactants; thus, I am presenting literature on the challenges in vaginal drug 

delivery, methods to overcome it and a rationale for the choice of an animal model for this study. 
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2. Methods of gene delivery 

2.1. Barriers to gene delivery 

 Gene based systems encounter a series of challenges before they can reach their intended 

target cell. Composition of the formulation, its stability and shelf life are relevant concerns for all 

pharmaceutical delivery systems. The instability of the biotechnology products compared to 

small chemical drugs adds additional challenges for the pharmaceutical scientists. Moreover, 

drug absorption, first pass metabolism, plasma stability, distribution to target tissues, body 

clearance, and immune responses to biotechnology drugs and/or delivery systems, are also 

different from small molecules. While small molecules with molecular weight in the range of 

less than 1 kD are delivered to their target relatively, easily, for macromolecules such as plasmid 

DNA with molecular weight exceeding 1 MDa (Figure 2.1 & 2.2), the extracellular barriers 

represent a significant obstacle [11].  

 

 The high molecular weight greatly affects the permeability of macromolecules, resulting in 

poor absorption across biological membranes. The highly acidic and enzyme-rich conditions in 

the gastric lumen can degrade DNA very rapidly. This situation is generally avoided by 

administrating DNA through parenteral routes to allow absorption directly into the blood. 

However, blood plasma proteins bind the DNA and elicit non-specific immune response through 

opsonization. The binding of plasma proteins also increases the overall size of the DNA particle 

and impedes its circulation through the microvascular region. Additionally, the naked DNA is 

rapidly engulfed and extensively degraded by non-parenchymal cells in the liver [12]. The 

circulation half-life of DNA in mice was reported as 10-15 min [12]. A gene delivery vector 

needs to protect DNA while avoiding any interactions with plasma proteins or entrapment in 

tissue vasculature.  
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Figure 2.1: Small molecules versus macromolecules. Pioglitazone, a small molecule, that is 

used for treatment of diabetes has size of less than 1nm while macromolecules such as insulin 

has a globular diameter of 1-5 nm and, the insulin gene in a circular configuration will have a 

size of 100 nm. 

 

  

 

 

 

 

 

 

 

 

 

Pioglitazone
Mol. wt. : 356.44 g/mol

Insulin
Mol. wt. : 5808 g/mol

Insulin gene (~1400 bp)
Mol. wt.  :~900000 g/mol

Size : <1nm Size (globular) : ~1-5 nm Size (circular) : ~100 nm
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 Early experiments with cationic lipids did not improve the systemic circulation of 

lipoplexes. Significant amounts of LipofectACE/DNA and Lipofectin/DNA were cleared from 

systemic circulation by the Kupffer cells of the liver after intravenous injection. [13]. 

Conjugation of lipoplexes with polyethylene glycol (PEG) decreased their interaction with serum 

proteins and improved their systemic circulation. A successful application of stealth liposomes 

(PEGylated liposomes) was demonstrated in the delivery of doxorubicin; a drug used in the 

treatment of Kaposi's sarcoma [14]. PEGylation of the liposomes reduced adhesion to cells, 

blood vessel walls and other surfaces and resulted in increased vascular permeability of the 

stealth liposomes compared to conventional liposomes. The steric stability significantly 

increased circulation time of the encapsulated drug, leading to increased accumulation in tumor 

tissue due to its leaky vasculature [15]. To achieve similar results with gene delivery vectors, 

DOTAP/DOPC/DNA liposomes were prepared in the presence of PEG-lipids. At high PEG to 

lipid molar ratio, the high molecular weight PEG2000-lipids exhibited this steric stabilization, 

compared to low molecular weight PEG400-lipids, [16]. However, an increased steric 

stabilization led to poor cell surface interaction, resulting in low transfection efficiency of high 

molecular weight PEG2000-lipids. The engineering of long-circulating stealth lipoplexes show 

promising results but still further improvement is needed to increase plasma circulation to 

substantial levels. Gaining access to target cells in the tissue is the next challenge for delivery 

systems. The permeability of the vasculature and the particle size determine the availability of 

nanoparticles at the cellular level.  

 Cellular uptake, endosomal escape and nuclear localization are three major challenges at 

the cellular level (Figure 2.3). A large particle size and negative charge on the DNA (zeta 

potential of -30 to -70 mV) limits its interaction with the negatively charged cell surface [17]. 

Complexation of DNA with cationic delivery agents neutralizes the negative charge and 

condenses its size in the range of 100-200 nm [18]. The neutralization of negative charge and 

compaction enable the particle to interact with the cell surface and facilitate its uptake. 
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Figure 2.2: Extracellular barriers to gene delivery. 
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 Once inside the cell, enclosed in the endosomes, the DNA molecules can be transported to 

lysosomes for final degradation by lysosomal enzymes in an acidic environment. Therefore, 

endosomal escape becomes crucial for successful transport of the DNA to the nucleus [19]. 

Endosomotropic compounds such as chloroquine that disrupt endosomes have shown to increase 

gene expression significantly [20]. However, the high toxicity of chloroquine restricts its clinical 

applications [21]. The majority of research efforts in the last decade have focused on the 

synthesis of new delivery agents that can efficiently escape endosomes by destabilizing its 

membrane. The stability of DNA particles may also be compromised by interaction with 

intracellular proteins and degradation by cell nucleases [22]. Nuclear localization, the final step 

in realizing successful gene transfer occurs via passive diffusion through the nuclear pore 

complex, which restricts the entry of big molecules such as DNA [23]. For this reason, gene 

expression is higher in rapidly dividing cells as the DNA is transferred inside the nucleus during 

the disassembly of the nuclear envelop. Small amino acid sequences known as nuclear 

localization signals (NLS) bind to intracellular transport receptors and facilitate transfer of 

certain proteins, including viruses, through the nuclear membrane [24]. Covalent and non-

covalent conjugation of these signaling peptides to DNA has been explored. However, much 

work needs to be done to successfully utilize these peptides in clinical settings.  

 The following sections discuss the two types of vectors (viral and non-viral) that have been 

developed for gene delivery, their advantages and their limitations in overcoming extracellular 

and intracellular barriers. An ideal gene delivery system should be able to achieve adequate gene 

expression in target cells without eliciting any toxic or immune response. Ease of production and 

storage stability are other important components of an optimal gene delivery system.  
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Figure 2.3: Schematic representation of intracellular barriers in effective gene delivery. 
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2.2. Viral Vectors 

 Viruses are the ultimate gene delivery systems. They have evolved over millions of years to 

show efficient transduction of viral DNA to different cells to produce their own replicas and to 

evade the body’s innate immune system. Although the natural evolution of viral propagation was 

not aimed at therapeutic benefit to humans, about half a century of exploration has contributed to 

the gain of knowledge to reengineer these viruses as biotechnology drugs. Some of the viruses 

can be modified to deliver genes of interest while removing their ability to replicate and harm the 

target cells [25]. Viral vectors have several advantages such as efficient cellular entry [26], 

nuclear targeting [27] and regulated gene expression (transient or stable) [28]. Viruses constitute 

a majority (~68%) of the gene delivery vectors that have been used in gene therapy clinical trials 

(Figure 2.4) [29]. 

 Viruses (Table 2.1.) that have shown some promising results are adenoviruses (Ad), adeno-

associated viruses (AAV) and retroviruses/lentiviruses. Adenoviruses are non-enveloped viruses 

with a 36-kb double-stranded DNA (dsDNA) that can transduce both dividing and non-dividing 

cells. The replication-deficient Ad vectors have been used for gene transfer to respiratory, eye, 

liver and urinary tracts [30]. The lengthy production, non-specificity, preexisting immunity, or 

possible vector immunogenicity limits its wide application. The adeno-associated virus is also a 

non-enveloped virus with single-stranded DNA (ssDNA) of 4.7 kb [31]. This virus is not 

associated with any human disease and can transduce both dividing and non-dividing cells for 

long-term gene expression. A small genome packaging size, preexisting immunity and gene 

transfer to off-target cells are potential limitations of this vector [31]. Retroviruses and 

lentiviruses are enveloped viruses containing 7-12 kb ssRNA [32]. Low immunogenicity and 

large packaging capacity renders these vectors attractive for gene transfer. However, insertional 

mutagenesis is a major risk associated with these gene carriers. Low production yields and 

instability of the envelop protein are two other limitations of the retroviruses [32]. 

 

 

 

 

 

 



 

11 

 

 

 

 

 

 

 

 

Figure 2.4: Vectors used in gene therapy trials. Adapted from The Journal of Gene Medicine 

clinical trial website [29].  
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Table 2.1: Viral vectors as gene delivery systems. 

Viral System Overview Advantages Limitations 

Adenovirus 

(Ad) [30] 

 non-enveloped 

 36 kb dsDNA 

 transduce dividing 

and non-dividing 

cells 

 most studied type: 

Ad5 

 replication-deficient 

Ad vectors can be 

produced 

 gene transfer to 

respiratory, eye, liver 

and urinary tracts 

 lengthy production 

 preexisting immunity 

 non-specificity 

 possible vector 

immunogenicity 

Adeno-

associated 

Virus (AAV) 

[31] 

 non-pathogenic non-

enveloped virus 

 4.7 kb ssDNA 

 requires the presence 

of helper virus to 

complete its life 

cycle 

 most studied type: 

AAV2 

 not associated with 

any human disease 

 long term gene 

expression in dividing 

and non-dividing cells 

 a small genome 

packaging size 

 preexisting immunity 

 poor transduction of 

some cells 

 gene transfer to off-

target cells 

Retrovirus/ 

Lentivirus 

[32] 

 enveloped viruses 

 7-12 kb ssRNA 

 low immunogenicity 

 large packaging 

capacity 

 low production yields 

 instability of envelop 

protein 

 risk of insertional 

mutagenesis 
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 In 2003, Gencidine (developed by Shenzhen SiBiono GenTech) became the first viral 

based gene therapy that was approved in China. It consists of a recombinant human p53 tumor 

suppressor gene, delivered using adenovirus, for treatment of head and neck squamous cell 

carcinoma. The viral particles enter the tumor cells by binding to coxsackie adenovirus receptors 

and encode the exogenous p53 gene, causing cell cycle arrest and apoptosis. The medication 

showed significant improvement in patients with late stage head and neck squamous cell 

carcinoma when co-administered with chemo and radio therapies, with no patient relapses over a 

3 year follow-up [33]. Two years later, another recombinant adenovirus oncolytic virus 

engineered to express wild-type p53 (Oncorine; H101) developed by Shanghai Sunway Biotech 

was approved in China [34, 35]. In contrast to these, Epeius Biotechnologies developed a viral 

based gene delivery formulation that could be delivered intravenously to target tumor cells [36]. 

The medication uses a tumour targeted retroviral delivery vector that encodes a mutant form of 

cytocidal cyclin-G1 gene inside the cell. The formulation is already approved in the Philippines 

for chemotherapy-resistant tumor types and, has received US orphan drug status and is 

undergoing clinical trials [36, 37]. In spite of these successes, the scientific community is 

doubtful about the stringency of regulatory affairs in eastern countries. A total of 120 patients 

participated in clinical development of Gencidine in China which was significantly lower than 

the total number of patients that had participated in clinical trials in the U.S.A. Moreover, The 

State Food and Drug Administration (SFDA) of China accepts reduction in the tumor size as a 

clinical significance rather than the survival rate of patients post-treatment, which is not 

considered the best indicator of efficiency of oncology medication. The drug has not received 

approval from US FDA, yet.  

 In spite of the high transfection efficiency, the viral vectors run a risk of triggering immune 

response or can be neutralized by a pre-existing immunity [38, 39]. Development of immunity 

against viral antigens may hinder multiple successive administration of a viral vector. A major 

disadvantage of the viral delivery is the lack of comprehensive knowledge about the viral 

systems, namely their ability to convert into replication-competent virulent viruses and cause 

insertional mutagenesis [40, 41]. The death of a subject enrolled in a clinical trial, treated for 

ornithine transcarboxylase deficiency using adenovirus based gene delivery vectors, was a major 

setback in gene therapy clinical trials using viral vectors [42]. The adenovirus invaded organs 

other than the intended target (liver), triggering a severe immune response leading to multiple 
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organ failures. In another study, three children developed cancer after treatment for X-linked 

severe combined immunodeficiency disease using retroviral vectors [43]. These incidents raised 

serious concerns about the safety of the virus-based gene delivery systems. In addition, viral 

systems suffer from limited gene carrying capacity [44] and require lengthy and complicated 

production methods [45]. Attempts to improve the gene carrying capacity of these viral vectors 

further complicate the already complex and inefficient methods of viral production [46]. This has 

led scientists to focus their research on the development of alternative, non-viral gene delivery 

systems that are safer and equally efficacious (Table 2.2).  
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Table 2.2: Comparison of viral and non-viral carriers of gene delivery. 

Viral Vectors Non-viral Vectors 

High cost of production Low cost of production 

Difficult production Ease of production 

Limited gene carrying capacity No size constraints 

High risk of immune response Low risk of immune response 

High transfection efficiency Low transfection efficiency 
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2.3. Non-viral vectors 

 Plasmids are the simplest non-viral vectors which can be used for the delivery of target 

genes. These are single- or double-stranded circular or linear extra-chromosomal DNA structures 

that were first observed in bacteria. Later, the plasmids were modified to produce proteins of 

interest in eukaryotic cells and were evaluated for their use in gene therapy. Like other 

macromolecules, plasmids suffer from poor absorption, biodistribution to relevant cells, and are 

sensitive to environmental conditions such as pH, ionic strength, presence of proteins and 

nucleases [47]. Thus, there is need of additional agents that can carry the plasmid DNA to the 

target cells.  

 Physical methods such as electroporation [48], ultrasound [49] and microporation [50] 

facilitate cellular uptake of the plasmid DNA. However, these applications are limited to 

accessible tissues such as skin and mucosa. They are invasive in nature and may cause 

permanent cell damage. For example, electroporation creates numerous pores temporarily in the 

cell membranes, which carry a risk of permanent damage to cell DNA or its other organelles [7]. 

The ease of usage, scale-up of the technology and cost of devices are also major hurdles for the 

wider applicability of these technologies [51]. 

 Another approach involves use of chemical agents like lipids, polymers, dendrimers, etc. 

for delivery of plasmids containing target genes. Some of the examples of various chemical 

agents (Table 2.3) that have been evaluated for gene delivery are as follows: 

2.3.1. Cationic Lipids 

 The cationic lipid-based vectors are the most studied and promising non-viral vectors for 

gene delivery. The lipid vectors are characterized by three structural domains – a cationic head 

group which interacts, electrostatically, with the DNA molecules, a hydrophobic tail which 

imparts lipophilicity to the molecule and facilitates endosomal escape and a linker group joining 

the head group and the hydrophobic tail. 

 Examples of cationic lipid based vectors include N-[1-(2,3-dioleyloxy)propyl]-N,N,N-

trimethylammonium chloride (DOTMA) [52], dioctadecylamidoglycylspermine (DOGS) [53], 

2,3-dioleyloxy-N-[2(spermine-carboxamido)ethyl]-N,N-dimethyl-1-propanaminiumtrifluoro 

acetate (DOSPA) [54], 1,2-dioleoyloxy-3-(trimethylammonium)propane (DOTAP) [55] and 

others. Cationic liposomes and DNA form complexes referred to as lipoplexes. Electrostatic  
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Table 2.3: Examples of non-viral (chemical) vectors used for gene delivery 

Agent Examples 

Lipid based vectors  e.g. DOTMA, DOGS, DOSPA, DOTAP  

Polymeric vectors 

 

e.g. Poly(L-lysine), Polyethyleneimine (PEI), Polymethacrylate, 

β-cyclodextrin, Chitosan, Poly(glycoamidoamine), 

Schizophyllan,  Poly(amido-amine) 

Dendrimer based vectors 

 

Polyamidoamine Dendrimers (PAMAM), Poly(propyleneimine) 

Dendrimers, Poly(L-lysine) Dendrimers, Phosphorous-

containing Dendrimers  

Polypeptide vectors 

 

e.g. Tat-Based peptides, Antennapedia Homeodomain peptide, 

MPG Peptide, Transportan Peptide 
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interaction between the positively charged lipids and negatively charged DNA facilitate the self-

assembly of these particles. In addition, the lipoplexes are sufficiently small due to compaction 

of DNA to promote cellular uptake. In recent years, optimization of these lipids focused on 

improving stability, cell-specific targeting and facilitating endosomal escape.  

 Addition of neutral co-lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE) has been shown to increase transfection efficiency. These lipids may improve gene 

transfer by increasing the fluidity of lipoplexes and facilitate gene expression by improving 

endosomal escape of the particles. Inverted hexagonal supra-molecular structures, formed by 

DOPE, have negative spontaneous curvature that facilitates endosomal escape by spontaneous 

flip-flop reorganization of liposomes [56, 57].  

  Modifications of cationic head group, spacer length and hydrophobic tail affect 

transfection efficiency significantly. Replacement of nitrogen in the head group with arsonium 

and phosphonium resulted in reduced cytotoxicity and enhanced gene expression [58, 59]. The 

increase in efficiency was attributed to reduced charge densities due to the formation of larger 

cationic complexes. Incorporation of a hydroxylalkyl chain onto the ammonium group reduced 

the stability of lipoplexes [60]. However, this instability allowed the spontaneous fusion of the 

lipoplexes with the cell surface membrane, increasing overall gene transfer [60, 61]. The smaller 

distance between the cationic head groups in a multivalent lipid resulted in lower transfection 

efficiency [62-64], proposed to be a result of poor distribution of surface charge density. 

 The hydrophobic carbon tail of cationic lipids can influence their ability to form bilayer 

structures and fluidity that may be needed for endosomal escape of plasmid DNA [65, 66]. 

Felgner et. al. synthesized a series of homologous lipids that exhibited transfection efficiency in 

the order of C14 > C16 > C18 while Byk et.al. found C18 to be the most efficient among lipids 

containing double alkyl chain lengths of 12, 13, 14, or 18 carbon atoms [61, 67]. Trilysine-based 

gemini surfactants showed an increase in gene expression, associated with increasing tail length 

from C12 to C18 [68]. Heyes et. al. synthesized diether lipids with variable assymmetric two 

carbon tails from C12 to C18 and basicity of head group by grafting different amino acids [65]. 

Interestingly, the lipids with shorter carbon tail and asymmetric dialkyl tail showed better 

transfection efficiency compared to other analogs. The authors proposed this difference as due to 

their contribution to fluidity of tertiary complexes with DC-Chol and DOPE, used as co-lipids 
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for formulating lipoplexes. In conclusion, these studies suggest that the effect of hydrophobic tail 

length needs to be evaluated in relation with the type of cationic head group and co-lipids. 

   

2.3.2. Polymers  

 Complexes formed by interaction of polymers with DNA are known as polyplexes. 

Positively charged groups on the cationic polymers condense the negatively charged DNA. The 

electrostatic interactions, similar to cationic lipids, produce compact DNA complexes that 

promote cellular entry [69], protect the DNA from enzymatic degradation by nucleases and allow 

the release of DNA for localization in the nucleus for gene expression.  

Polyethyleneimine (PEI) is a notable example in this class [70]. PEI is a simple repetition of the 

ethyleneimine motif which can be controlled to produce linear or branched polymer structures 

[71, 72]. The high transfection efficiency of the PEI might be due to its high buffering capacity 

in acidic pH, also known as ‘proton sponge effect’. At physiological pH, some of the amine 

groups are positively charged that interact with DNA. Upon gaining entry into the cell, the 

protonation of remaining amine groups prevents the drop in pH inside endosomes [70]. This 

results in the entry of a large volume of fluid, causing membrane disruption and endosomal 

escape of DNA particle [73]. 

 Poly(L-lysine), PLL is another important polymer vector that has good plasmid DNA 

condensation capability [74]. The protonation of the majority of amine groups leads to a strong 

DNA binding and compaction. However, the poor buffering capacity of the PLL does not 

promote endosomal escape [75]. On one hand, the ability to condense the DNA increases with an 

increase in molecular weight of the PLL. On the other hand, a significant increase in cytotoxicity 

and tendency to aggregate has also been reported with the increased chain length [76]. 

Examples of other polymers evaluated for gene delivery include β-cyclodextrin [77], chitosan 

[78], poly(glycoamidoamine) [79] and schizophyllan [80].   

 A number of modifications were introduced in these polymers to improve their transfection 

efficiency and decrease cytotoxicity. Non-covalent PEGylation of PEI improved in vivo 

transfection efficiency by reducing interaction with biomolecules [81]. Conjugation of chitosan 

with cell-specific ligands such as galactose, lactose or trisaccharide improved its transfection 
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efficiency [82-84]. Introduction of acid-labile ester linkages in PEI structures reduced its 

cytotoxicity [85]. 

2.3.3. Dendrimer-based vectors 

 Dendrimers are highly branched 3-dimensional monodisperse, usually spherical, 

macromolecules. Examples of dendrimers used in gene delivery include polyamidoamine 

dendrimers (PAMAM) [86], poly(propyleneimine) dendrimers [87], PLL dendrimers [88], and 

phosphorous-containing dendrimers [89]. These vectors showed good transfection efficiency due 

to improved complexation, cell targeting and intracellular escape [90-92].  

 Dendrimers form stable and water dispersible complexes with DNA. It was proposed that 

these complexes were internalized via endocytosis [93]. The low pKa value of amines imparts 

high buffering capacity (proton sponge capability) to the DNA/dendrimer complexes leading to 

an efficient endosomal escape [94]. Dendrimer generation, i.e., the number of repeated branching 

cycles that are performed during its synthesis, affected the transfection efficiency of the 

dendrimers [95]. Usually, high generation number (>G5) led to a high transfection efficiency. 

However, an increased cytotoxicity was also observed with an increase in dendrimer generation, 

especially with >G7 [86].  

2.3.4. Polypeptides 

 Non-viral gene delivery vectors suffer from lack of nuclear targeting. Polypeptides improve 

both cellular uptake and nuclear targeting. These peptides are used alone or in conjunction with 

lipoplexes or polyplexes. Some examples of these types of targeting moieties include trans-

activating transcriptional activators (TAT) peptides [96], antennapedia homeodomain peptide 

[97], MPG peptide [98] and transportan peptide [99]. Amino acid residues of these peptides 

interact electrostatically with DNA to produce complexes and interact with the cell surface to 

increase cellular uptake [100, 101].  

 The TAT protein is an 86-102 amino acid sequence which promotes cellular uptake and 

nuclear localization. A smaller sequence of TAT protein (47-57) facilitates cellular entry. 

Incorporation of the TAT-peptide in liposomes enhanced gene expression [100]. Similar results 

were found on combining TAT peptides with PEI/DNA complexes [101]. The TAT-peptide 
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improved cellular entry and nuclear localization. However, it exhibits poor endosomal escape 

ability [102].  

 A 16-amino acid peptide sequence from antennapedia homeodomain was shown to 

promote cellular entry [97]. Destabilization of the cell membrane via electrostatic interaction 

with the amino acid residues of the peptides was proposed as the mechanism of cellular entry 

[102, 103]. Although the antennapedia peptide-conjugated DNA exhibited gene expression and 

low cytotoxicity, the gene expression was further improved after conjugation with another water 

soluble peptide (L4F) [97]. Antennapedia-L4F conjugated with Lipofectamine 2000/DNA has 

exhibited significantly higher gene expression than complexes without the peptides [97].  

 MPG is a synthetic fusion peptide which promotes cellular uptake and nuclear localization 

[98]. MPG forms transmembrane pore-like structures which facilitate cellular entry via an energy 

independent manner [98, 104]. Low toxicity and high gene expression were achieved by the 

MPG/DNA complexes [104]. Transportan, derived from wasp venom peptide toxin, is another 

peptide that promotes cellular uptake via energy independent pathway [99]. Transportan 10, an 

analogue of transportan, was used to enhance gene expression of the PEI-DNA complexes [99]. 
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3. Factors affecting transfection efficiency of non-viral vectors 

3.1. Physicochemical properties 

 Physicochemical factors that affect the transfection efficiency of a non-viral gene delivery 

systems are – surface charge, particle size, DNA topology, morphology and surface change 

density. 

3.1.1. Cationic Charge 

 DNA is a negatively charged molecule and, therefore, cationic chemical agents are able to 

interact electrostatically with plasmid DNA to form complexes [105]. These interactions 

(complex formation) influence the stability and transfection efficiency of the delivery systems. 

The cationic agents neutralize the negative charges on the plasmid DNA and facilitate cellular 

uptake by improving interaction with negatively charged cell surface molecules [106]. Moreover, 

an overall cationic charge on the DNA complexes provides necessary repulsion between particles 

to avoid aggregation. This net positive complex surface charge is measured as zeta potential 

[107, 108]. 

 Although a net cationic charge on the DNA/delivery vector complexes is essential, it is 

necessary to maintain an optimum charge ratio. On one hand, an excessively strong interaction 

between the delivery agent and DNA can hinder the release of the DNA inside the cell for gene 

expression. Transfection efficiency of (poly(2-dimethylamino)ethyl methacrylate) 

[p(DMAEMA)] was higher than  poly(2-(trimethylamino)ethyl methacrylate chloride) 

[p(TMAEMA)]) [109], although there was no difference between the two agents regarding their 

ability to protect the DNA against DNase I degradation. However, DNA dissociation studies 

suggested that a strong association between p(TMAEMA) and DNA may hinder DNA release 

for gene expression. Similar results were observed with DNA complexes formed with different 

lengths of PLL in the presence of chloroquine (as endosomotropic agent) [110]. On the other 

hand, weak complexes can cause premature release of DNA on interaction with the cell 

membrane, or provide insufficient protection against nucleases. These electrostatic interactions 

can be manipulated by controlling the cationic agent to DNA ratio [108, 111].  
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3.1.2. Particle Size 

 The size of the DNA complexes is another important factor that can influence transfection 

efficiency of delivery systems [112]. The increase in cellular uptake, higher number of 

intracellular DNA particles per cell, better DNA release and better nuclear targeting are 

associated with nanoscale particles, leading to high transfection efficiency [108, 112]. A particle 

size up to ~150 nm promotes transfection [112-115]. The physicochemical properties (surface 

charge, chemical structure etc.) of the delivery vectors greatly influence the DNA complex size 

[108, 116, 117].  

3.1.3. DNA topology  

 Plasmid DNA can occur in linear (l-DNA), open circular (c-DNA) or supercoiled (sc-

DNA) form. Among these, the complexes containing supercoiled form exhibit higher gene 

expression than open circular or linear forms [116-118]. Transfection studies using circular and 

linear forms of EGFP-DNA(encoding for green fluorescent protein) with PEI showed that PEI/c-

DNA has 90% EGFP positive cells while only 60% cell population was positive with cells 

incubated with PEI/l-DNA [116]. Similar results were obtained with cationic lipid agents, 

DOTAP/DOPE, that exhibited higher transfection efficiency with sc-DNA > c-DNA> l-DNA 

[119]. 

 DNA topology had a significant effect on the particle size of DNA complexes. PEI 

produced particles in the range of 150-300 nm with c-DNA while the size was 700-770 nm with 

l-DNA [116]. Similar differences in particle size with c-DNA and l-DNA were observed with 

palmitic acid-grafted PLL and lipofectamine-2000. This may be because c-DNA in circular form 

collapses easily into a supercoil when the negative charges on phosphate groups of DNA are 

neutralized by the cationic charges of the delivery vectors. However, l-DNA will not offer this 

conformational constraint and therefore, forms loose aggregates of large size. Although, the 

difference in DNA topology had a significant effect on the particle size, it did not affect the level 

of DNA uptake [116]. This suggests that the presence of cationic charge facilitates the 

internalization of plasmid DNA but confers poor intracellular stability and protection to the 

linear form of DNA resulting in poor gene expression.  

 Dissociation studies suggested that a strong association exists between l-DNA and cationic 

lipids compared to its circular form, while the topology had no effect on DNA binding with 
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cationic polymers. In another study using p(DMAEMA) with different topologies of DNA, 

transfection efficiency decreased in the order of sc-DNA> c-DNA> l-DNA [117] . However, the 

DNA topology had no effect on toxicity, particle size, and DNA binding (association or 

dissociation) properties of p(DMAEMA). Transfection efficiency of DOTAP/DOPE was higher 

with sc-DNA than c-DNA and l-DNA[119]. 

 The ionic headgroups on cationic lipids interact electrostatically with the negatively 

charged phosphate groups of DNA. These interactions are constrained by the distance between 

the adjacent phosphate groups of DNA, depending upon its topology. Clearly, the helical 

structure of DNA is highly constrained when present as supercoiled and circular DNA, compared 

to linear form. Neutralization of these charges should collapse DNA strands into small particles; 

however, interaction of cationic lipids is also influenced by the attractive and repulsive forces 

between ionic charges. In cationic lipids, in addition to the ionic interactions, the molecules are 

also ordered by the hydrophobic interactions among hydrocarbon tails which may be absent in a 

polymer based vector. The total surface area and total volume of molecules can also influence its 

interaction with DNA and formation of polymorphic structures. The presence of additional 

formulation components such as co-lipids, salt concentration etc. can influence the overall 

interaction. This is the reason for a need to optimize these factors, specific to each delivery 

system, in order to achieve high transfection efficiency. However, the studies with polymers and 

cationic lipids clearly indicate that supercoiled and circular form of DNA is advantageous for 

transfection as it facilities formation of stable small-sized particles. 

3.1.4. Supra-molecular structures 

 Another important parameter affecting the transfection efficiency of delivery systems is the 

supramolecular assembly of the DNA complexes. Multilamellar structures with DNA 

sandwiched between cationic lipids and inverted hexagonal structures with DNA encapsulated 

within lipid monolayer tubes were the two most frequently observed lipoplex structures [120-

122]. The presence of neutral lipids improves transfection efficiency. Liposomes containing 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as neutral lipid had higher transfection 

efficiency compared to other neutral lipids [61].  

 In one study, the transfection efficiency of DNA/DC-Chol/DOPE was reduced significantly 

when DOPE was replaced by DOPC as neutral lipid [123]. This was attributed to the inverted 
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hexagonal structures obtained by liposomes containing DOPE, even at low helper lipid to 

cationic lipid ratio. X-Ray diffraction (XRD) studies revealed an inverted hexagonal structure for 

DOPE vesicles while DOPC exhibited multilamellar structures [124]. At the same mole fraction 

of 0.67-0.69 of total lipid content, transfection efficiency of DNA/DOTAP/DOPE was 100 times 

higher than DNA/DOTAP/DOPC. The inverted hexagonal structures formed more stable 

lipoplexes due to close interaction of all cationic head groups around DNA molecules. The 

elastically-frustrated hexagonal lipid membranes interacted more easily with the cell surface and 

endosomal membranes improving cell entry and endosomal escape [124]. 

3.1.5. DNA complex charge density 

 While DOPE containing formulations showed better transfection than DOPC containing 

formulations, the transfection efficiency of DOPC formulations could be further improved by 

focusing on DNA complex surface charge density rather than net complex charge [124]. The 

study found a positive correlation between DNA complex surface charge density and transfection 

efficiency in DOPC formulations. In DOPE formulation, the driving force for DNA escape was 

the supra-molecular structure (hexagonal) of the complexes, while in the DOPC-containing 

formulations the cationic charge influenced the interaction of the DNA complexes with the 

anionic cell membrane. Therefore, a large number of cationic headgroups per unit surface area of 

DNA complex translated into higher interaction and greater fusion with the cell membranes. The 

surface charge density can be modified by use of neutral lipids, such as DOPE or DOPC in 

combination with cationic lipids or, by modifying the number or size of cationic head groups in 

delivery vectors. 

 In summary, favorable physicochemical characteristics are needed for efficient gene 

delivery. The optimization of these physicochemical factors can be achieved by chemical 

modification of the molecules, use of combination of chemical agents, optimizing the molar and 

charge ratios of the various agents and developing optimal methods of preparation. The chemical 

modification can be introduced to modulate DNA binding properties such as additional cationic 

groups into the vectors or to optimize the length of the spacer/tail groups. The use of helper 

lipids (such as DOPE, cholesterol) with cationic lipids can facilitate desirable morphological 

structures. This gives an opportunity to create a variety of complexes without chemical 

modification.  However, optimization of the ratio of plasmid to delivery agent, ratio between 
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delivery agents, and a method of preparation is needed as it can affect these important 

physicochemical properties. 

3.2. Mechanism of cellular uptake 

 At the cellular level, the plasma membrane is the first barrier to delivery of non-viral gene 

delivery. Due to their large size and hydrophilic nature, the non-viral particles cannot diffuse into 

the cell. Endocytosis is the process of cellular uptake of macromolecules or solutes that are 

impermeable to plasma membrane; the plasma membrane invaginates to engulf these molecules 

(Figure 3.1) [125]. Endocytosis has been established as the main route of internalization of the 

non-viral delivery particles into the cells [126, 127]. Special mammalian cells can engulf large 

solid particles (phagocytosis) such as cell debris, while the majority of other mammalian cells 

utilize a more common method to engulf fluid or solutes (pinocytosis). Pinocytosis is divided 

into clathrin-mediated uptake, caveolae-dependent uptake, macropinocytosis, and 

clathrin/caveolae-independent pathway [125].  

3.2.1. Clathrin-mediated uptake 

 In clathrin-mediated uptake, the particle binds to clathrin-coated pits on the cell surface and 

internalized as clathrin-coated vesicles with the help of adaptor proteins [128]. The particles in  

clathrin-coated vesicles experience a drop in pH as they travel towards the late endosomes, 

creating acidic conditions (pH 5-6) before merging with lysosomes [129]. Plasmid DNA has 

more success of survival if it is able to escape the endosome before reaching the lysosomes 

which have a high concentration of enzymes. To this effect, the use of pH-sensitive delivery 

vectors such as pH-sensitive liposomes which can destabilize endosomal membrane and release 

enclosed molecules, have been found to be more efficient than non-pH-sensitive vectors. 

Legendre et. al. prepared  pH-sensitive liposomes by combining cholestryl hemisuccinate and 

DOPE at 2:1 molar ratio, which exhibited higher transfection efficiency compared to non-pH-

sensitive liposomes. [130]. The difference in transfection efficiency was due to the ability of pH-

sensitive liposomes to prevent lysosomal degradation by escaping from the endosomes. It was 

interesting to note that the cationic liposomes formulated with DOPE exhibited even higher 

transfection efficiency than non-cationic pH-sensitive liposomes because of strong binding with 

the cell membrane and were able to deliver more plasmids than pH-sensitive lipids. However, 
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this work did not take into account that DOPE, when combined with cationic lipids, exhibits a 

pH-dependent structural transition which is crucial to its role in endosomal escape, therefore 

imparting pH-sensitive character to the cationic liposomes [131]. 

 Similarly, polyethyleneimine (PEI) exhibits high transfection efficiency due to its proton 

sponge effect in acidic conditions inside an endosome, provoking water influx, endosomal 

swelling, and disintegration [70]. In addition, lysosomotropic agents such as chloroquine can 

prolong the fusion of endosomes to lysosomes or cause the disruption of lysosomes, thus 

avoiding DNA degradation [19, 132]. However, these agents are associated with high toxicity 

which limits their use in clinical settings. Another strategy is to incorporate fusogenic pH 

sensitive peptides such as GALA (WEAALAEALAEALAEHLAEALAEALEALAA) into the 

DNA complexes which enhance endosomal escape in response to low pH in the endosomes 

[133]. 
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Figure 3.1: Schematic representation of four major uptake pathways in a mammalian cell. 

A) Clathrin-mediated uptake follows an acidic pathway, leading to release of cargo into 

lysosomes, B) Caveolae-mediated uptake follows a non-acidic, non-digestive pathway, C) 

Macropinocytosis involves non-specific intake of fluids (solutes) and follows a non-acidic 

pathway, D) Phagocytosis is the engulfing of large solid particles including pathogens, cell 

debris. Special mammalian cells such as macrophages exhibit this behaviour. 
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3.2.2. Caveolae-mediated uptake 

 The study of SV40 virus revealed a clathrin-independent uptake pathway which provided 

entry to the virus through caveolin-containing vesicles [134]. Due to the association with 

caveolin proteins, the endocytic vesicles were called caveosomes and the pathway is referred to 

as caveolae-mediated uptake pathway. Caveolae form smaller vesicles of size 50-60 nm and have 

a lower rate of uptake, compared to clathrin-coated pits [125]. Particles engulfed via caveolae-

mediated uptake avoid degradation in the lysosomes by following a non-acidic, non-digestive 

pathway to reach the Golgi complex or endoplasmic reticulum [135, 136]. Due to the absence of 

lysosomes, this pathway has been a target for the delivery of plasmid DNA.  

 Rejman et. al found that lipoplexes composed of DOTAP/FITC–poly-L-lysine-labeled 

DNA proceeded via clathrin-mediated endocytosis while polyplexes containing PEI/FITC–poly-

L-lysine-labeled DNA were internalized via both caveolae-mediated and clathrin-mediated 

pathways [137]. Interestingly, PEI/DNA polyplexes that were internalized by clathrin-mediated 

pathway reached lysosomes while polyplexes endocytosed via caveolae lead to gene expression. 

Even though the caveolae-mediated uptake seemed to be an attractive route of delivery for DNA 

complexes, this pathway is dependent on the distribution of caveolae on the cell surface, which is 

cell type dependent. Due to the absence of endogenous caveolins in HepG2 cells, the polyplexes 

could not use the caveolae-mediated pathway and, therefore, degraded in lysosomes [138, 139].  

 Gersdorff et. al. tested polyplexes using linear PEI and branched PEI in different cell lines 

and determined the influence of cellular uptake pathways on gene expression [140]. 

Interestingly, both cell line and polyethylenimine polyplex type affected gene expression. 

Branched PEI polyplexes were able to mediate transfection via both pathways in HUH-7 cells 

and HeLa cells whereas linear PEI polyplexes succeeded mainly via the clathrin-dependent 

route. In COS-7 cells, the clathrin-dependent pathway was the main contributor to the 

transfection process. In contrast, a study by Van der Aa et. al. with pDMAEMA/DNA and 

PEI/DNA revealed caveolae-mediated and clathrin-mediated uptake for these polymers; 

however, caveolae-mediated pathway was the major route that lead to gene expression in COS-7 

cells [141].  
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3.2.3. Macropinocytosis 

 Macropinocytosis is a non-selective engulfing of extracellular fluids by envagination of the 

plasma membrane, forming macropinosomes of variable shapes and sizes [142]. In special 

mammalian cells such as macrophages, macropinosomes can be as large as 5 μm and travel 

towards lysosomes while shrinking their size and gaining acidity [142, 143]. However, in other 

mammalian cells they may not fuse with lysosomes. The non-specific engulfing of large volumes 

of extracellular medium that does not end up in lysosomes render macropinocytosis an attractive 

target for macromolecules such as plasmid DNA.  TAT, derived from human immunodeficiency 

virus-type 1, containing six arginine and two lysine residues, has promoted macropinocytosis 

uptake [144]. Based on the high arginine content within the TAT sequence, scientists tested 

polypeptides containing solely arginine residues and found that macropinocytosis was the major 

route of entry [145, 146]. Khalil et. al. studied the effect of octaarginine density on lipoplex 

surfaces and found that liposomes modified with a high peptide density were internalized mainly 

through macropinocytosis and were less subject to lysosomal degradation [147]. However, 

lipoplexes containing low density of octaarginine followed clathrin-mediated pathway. Recently, 

a similar study with lipoplexes prepared with decaarginine-polyethylene glycol-lipid found that 

cellular uptake was through macropinocytosis at low N/P ratio, while complexes formed at high 

ratio also followed a pathway different from macropinocytosis [148]. For lipoplexes prepared at 

lower N/P ratio, the disruption of the macropinosomal membrane was a critical step for efficient 

gene delivery. 

 In addition to the composition and type of biomaterials, the size and shape of the particle 

influences the uptake behaviour. Rejman et. al demonstrated that particles with size less than 200 

nm were internalized via clathrin-mediated pathway while larger particles endocytosed via 

caveolae-mediated pathway [149]. Particle shape and surface charge in addition to particle size 

plays an equally important role in influencing the uptake bahaviour [150]. Rod-like particles 

(height to diameter ratio > 3) were internalized faster than the symmetrical particles. Positively 

charged particles of similar size and shape were internalized significantly more (~84% of cells) 

compared to negatively charged particles (<5% cells). The uptake of cylindrical particles of sizes 

150 nm and 200 nm was reduced by ~60-70% on inhibiting either clathrin-mediated or caveolae-

mediated uptake. This suggests both pathways are involved in the uptake of particles that were 

smaller than 200 nm. 
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 In an effort to improve transfection efficiency of gene carriers, significant efforts have been 

directed towards designing new carriers that can improve endosomal escape. Recently, the 

importance of the contribution of certain pathways in the uptake of non-viral vectors and their 

effect on transfection efficiency has become evident. A few studies have revealed that 

composition, size, shape, surface charge, and surface chemistry influence the uptake mechanism 

of particles. However, a holistic understanding of these physicochemical properties in 

association with each other and their influence on uptake mechanism can help in designing gene 

delivery systems that can improve the intracellular fate of the particles. 
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4. Gemini surfactants as efficient gene delivery systems 

 Surfactants are amphiphilic structures having unique interfacial properties. Conventionally, 

the surfactants consist of a single hydrophobic tail with an ionic or a polar head group. The wide 

variety of application of these molecules along with the ease of structural modification has 

attracted the attention of many scientists.  Menger et al [151] reported novel dimeric surfactant 

molecules which contained two ionic head groups and two hydrocarbon chains linked by a 

spacer (Figure 4.1). This new generation of surfactants was named as ‘gemini surfactants’. 

 In the absence of a third component, e.g. salt, conventional monovalent surfactants 

generally form spherical micelles at the critical micelle concentration, whereas gemini 

surfactants can form a variety of structures ranging from thread-like micelles for short spacers, 

(2-3 carbon atoms), to spherical, rod-like and lamellar shapes as the spacer length increases.  

These dimeric molecules have several advantages compared to the conventional surfactants such 

as lower critical micelle concentration, higher efficiency in reducing surface tension and greater 

tendency to self-assemble [152, 153].  

 The presence of a cationic head group enables a strong electrostatic interaction of the 

gemini surfactants with DNA to form nanoparticles and aid in gene delivery. The opportunity to 

modify their structure creates flexibility in designing suitable delivery systems for enhanced gene 

transfer into mammalian cells [154]. 
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Figure 4.1: General structure of gemini surfactants. 
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Table 4.1: Gemini surfactants used as gene delivery systems. 

Surfactant Type Results 

1. Amine based m-s-m type [155] 
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A six methylene group spacer (n=4) 

between quaternary ammonium groups 

exhibited the highest transfection 

efficiency. These compounds showed 

reduced transfection efficiency in presence 

of neutral lipid (DOPE) or serum proteins. 

 

2. Sugar based m-s-m type [156] 
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3.  Amine based m-s-m type [157] 
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4. Ester linked m-s-m type [158] 

O
N

+

N
+

O

O

O

s

C l
-

C l
-

C n H 2n+1

C n H 2n+1

s=2, n=10,12,14
 

 

Tail length influences the phospholipid 

bilayer interaction of these gemini 

surfactants. Need helper lipid for 

transfection efficiency. 

5. Tetra alkyl based m-s-m type [159] 
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Six methyl groups in the spacer induced 

non-bilayer structures that helped in gene 

delivery. Transfection efficiency increased 

in presence of DOPE. 

6. Amine based m-s-m type [160] 
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influence the transfection activity.  

(2R, 3S) isomer induced maximum DNA 

condensation which may have led to its 

high transfection efficiency. 

7. Peptide based gemini surfactant [68] 
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Longer the hydrocarbon tail, higher the 

transfection efficiency. In the head group, 

lysine residues linked through ε-carbon 

increased gene expression.  

  



 

36 

 

8. Tartaric acid based gemini lipids [161] 
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Lysine and lysine/ethylene diamine 

substituted derivatives showed transfection 

activity; however, the results were 

inconclusive due to high toxicity of these 

compounds.  

9. Spermine-based gemini surfactants [162] 

 

 

 

 

Lysine-substituted derivatives yielded the 

highest gene expression. 

Two lipophilic tails of 18-carbon length 

were optimum for high transfection 

efficiency. 
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 Rosenzweig et. al. demonstrated the potential of diquaternary ammonium compounds 

(Table 4.1.1) as gene delivery vectors by conducting transfection studies in BHK-21 hamster 

kidney cells [155]. Saturated derivatives favored lamellar-type structures and exhibited high 

transfection with six methylene groups in the spacer, compared to two or three methylene 

groups. Diquaternary ammonium compounds containing an unsaturated bond in the tail formed 

micelles and liposomes, depending on the ionic strength, and yielded high transfection capability 

with greater than two methylene groups in the spacer. Fielden et. al. experimented with sugar-

based gemini surfactants, bis-α,γ-(alkyl-1’-deoxyglucitylamino)-alkanes, (Table 4.1.2) again by 

varying the tail (C12 to C16) length and spacer ( C4 to C6) length [156]. Both the tail length and 

distance between the cationic amino groups had an impact on the transfection efficiency of the 

compounds. The derivatives with 16-carbon tail yielded the highest gene expression among the 

saturated derivatives; with slightly higher gene expression with six methyl groups in the spacer 

compared to four. The incorporation of unsaturation in the 18-carbon tail generated gene 

expression higher than saturated 16-carbon tails and about 2.7 fold higher than Lipofectamine. 

At physiological pH, the sugar-based gemini surfactants formed bilayer structures and attained a 

slight positive charge that helped in DNA compaction. The authors found that the derivatives 

with high transfection efficiency continued to protonate in endosomal pH range 6.0 – 4.0 and, 

proposed that it would induce a bilayer to micelle transition which must be facilitating the 

endosomal escape of DNA complexes. Later, in a comparative study between the saturated and 

unsaturated 18-carbon tail sugar based gemini surfactants, the authors observed that the 

unsaturation in the tail influenced lipoplex morphology in a pH-dependent manner [163]. 

Initially, at basic to neutral pH, the unsaturated 18-carbon tail derivative formed lamellar 

structures which experienced a further transition to inverted hexagonal morphology in the 

endosomal pH range. This variation in morphology upon a change in pH provided a critical 

opportunity for the lipoplex to escape degradation, which was absent in the saturated derivative.  

 Further, Ryhänen et. al. explored the role of surface charge density on transfection 

efficiency of a binary lipid system [157]. Liposomes prepared using gemini surfactant (2S,3R)-

2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide (Table 4.1.3) 

and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) exhibited high transfection when 

gemini to helper lipid ratio was > 0.5. The study revealed that the surface charge density that 

influenced the DNA condensation by liposomes might be the primary reason for this behaviour. 
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 Fisicaro et. al. investigated the transfection efficiency of ester linked diquaternary 

ammonium gemini surfactants (Table 4.1.4) with C10, C12, C14 tail lengths [158]. All the 

derivatives showed high transfection efficiency when formulated with helper lipid (DOPE), 

except the C14-tail derivative which had transfection activity even without DOPE; though, it was 

lower than the positive control. The helper lipid improved the stability of DNA/gemini surfactant 

complexes; however, their interaction with the phospholipid bilayers was dependent on the tail 

length. The derivatives with C10 and C12-tail showed a slight fluidizing effect causing 

destabilization of phospholipid bilayers while C14-tail derivative increased the stability of DPPC 

liposomes (mimicking cellular membranes). This was due to the ability of the gemini surfactant 

to form hydrocarbon tail associations below the critical micellar concentration (CMC) levels. 

 Gaucheron et. al. were able to show transfection potential of tetraalkyl cationic lipids 

(Table 4.1.5) - alkyl gemini derivatives with two oleyl tails attached to each positively charged 

nitrogen joined by a hydrocarbon tether three or six carbons in length [159]. At +/- charge ratio < 

2, the derivatives with six methyl groups in the spacer gave gene expression levels higher than 

the C3-spacer derivative and its monomeric equivalent N,N-dioleyl-N,N-dimethylammonium 

chloride (DODAC). The C6-spacer derivative exhibited an improved ability to induce non-

bilayer structure (ion-pairing) in mixtures with anionic lipid (mimicking cellular membranes) 

which had been proposed to correlate with improved transfection activity of delivery vectors. 

The gene expression levels of tetraalkyl derivatives were increased on co-formulating with 

helper lipid (DOPE). 

 Bombelli et. al. introduced the role of stereochemistry in the transfection ability of gemini 

surfactants [160]. Stereoisomers of C16-tail gemini surfactants with four methylene groups 

between the quaternary ammonium cations were synthesized by introducing two methoxy groups 

in the spacer region (Table 4.1.6). On formulation with helper lipid (DMPC), all gemini 

surfactants exhibited transfection activity, whereas no gene expression was observed with its 

monovalent counterpart; thus re-confirming the superiority of gemini surfactants over single 

chain single headgroup surfactants. Methyoxy substituted-gemini derivatives with (2R, 3S) 

configuration showed the highest transfection among all the derivatives, even higher than 

commercial positive control. Circular dichroism experiments revealed that the gemini surfactants 

were able to induce structural transition from a B-form of the plasmid to a ψ-phase, indicating 

http://pubs.acs.org/action/doSearch?action=search&author=Gaucheron%2C+J%C3%A9r%C3%B4me&qsSearchArea=author
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DNA condensation. This conformation change was more prominent for the (2R, 3S) isomer and 

unsubstituted derivative, while it was missing for the monovalent derivative. 

McGregor et. al. synthesized peptide based gemini surfactants (Table 4.1.7) by varying the 

nature of tail groups, and peptide (lysine) substitution in the head [68]. In agreement with 

previous studies with gemini surfactants, the results showed that the transfection efficiency 

improved with increase in tail length and presence of unsaturation in the tail. The nature of the 

head group, particularly, trilysine linkage, also affected the transfection efficiency. The 

compounds with lysine residues attached together via the ε-amino group, rather than the α-

nitrogen, yielded highest transfection. 

 Buijnsters et. al. synthesized gemini surfactants starting from tartaric acid with 

ethylenediamine, lysine and lysine/ethylenediamine substitution in the head group (Table 4.1.8) 

[161]. Ethylenediamine and lysine substituted Gemini surfactants formed bilayer structures but 

had poor aqueous solubility whereas no structures were observed with lysine/ethylenediamine 

derivative. Transfection studies in CHO-K1 cells showed activity for lysine and 

lysine/ethylenediamine derivatives, however, the results were inconclusive due to high toxicity 

of compounds. 

 Castro et. al. introduced an interesting twist to the tale by synthesizing gemini surfactants 

with different diamino acid headgroups (Table 4.1.9), containing symmetrical (identical) and 

unsymmetrical (different) tail groups [162]. Interestingly, the study also found that two lipophilic 

tails of 18-carbon length was optimum for mediating high transfection activity and the presence 

of diamino acid residues in the polar head groups were well tolerated in cells depending on the 

compound concentration. Though lysine-substituted compounds exhibited the highest 

transfection efficiency at low concentration, less potent L-diaminopropyl (L-Dap) generated 

comparable gene expression at high concentration. Increasing the concentration of lysine-

substituted gemini correlated with higher cytotoxicity while L-Dap derivatives were well 

tolerated at higher concentrations. In addition to this, co-formulation of gemini surfactants with 

helper lipid (DOPE) yielded a transfection efficiency higher than what was achieved with 

commercial reagent (Lipofectamine 2000). 

 In general, a gene delivery vector should be able to interact with DNA, condense it into 

nanostructures, interact with cell membranes, protect the plasmid DNA inside the cell, and 

ultimately deliver it to the nucleus for gene expression. The studies so far have shown that the 
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cationic gemini surfactants possess all the qualities of a successful gene delivery carrier. In 

addition, the possibility to modify their properties by tweaking the nature and the length of both 

tail and head groups provides a continued opportunity to design better and efficient delivery 

vectors. 

 The long term goal of the study is to develop non-invasive mucosal (vaginal) gene delivery 

systems. Therefore, in the next chapter, I describe the vaginal route for drug delivery and the 

challenges it presents to our gene delivery systems. In addition, I will discuss the rationale for the 

animal model for vaginal delivery. 
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5. Vaginal gene delivery 

 Vaginal mucosa, like other mucosal surfaces, provides a potential route for drug 

administration. It offers a relatively large surface area for drug permeation, high vascularization, 

a low enzymatic activity and ease of access with potential for self-administration.  

Predominately, vaginal drug delivery has been explored for local administration of anti-infective, 

anti-hemorrhagic, spermicidal agents and hormones [164]. The vaginal route has also been 

explored for delivery of therapeutic genes, examples include intratumoral administration of the 

soluble CD40 ligand gene [165], DNA encoding for cytokines such as IL-2, IL-12, GM-CSF or 

IFN-γ [166], small interfering RNA targeting HPV E6/E7 oncogene [167], and 

immunomodulation with CpG oligonucleotides [168]. Mucosal surfaces, including the vagina, 

represent a primary route of entry of pathogens into the body. Immunization through intravaginal 

route has also been explored [169]. This is even more important as there is evidence that 

systemic immunization does not elicit a strong mucosal immunity while topical vaccines trigger 

both local and systemic immunity [170]. 

5.1. Challenges to vaginal drug delivery 

 Effective mucosal delivery faces the challenges to chemical (proteases, nucleases) and 

physical (dilution, entrapment or exclusion) barriers presented by mucous secretions in addition 

to the cellular barriers of gene delivery [171]. Pharmaceutical agents that adhere to mucosal 

tissue increase the efficiency of drug permeation into the tissue [172]. Examples of 

mucoadhesive delivery systems include poloxamer (Pol)/polyethylene oxide (PEO) [173], 

Pol/polyacrylic acid (PC) [172], Pol/HPMC [174], among others.  The incorporation of DNA 

into the mucoadhesive agents can overcome the challeneges of gene delivery by increasing the 

residence time of the formulation in the vaginal cavity. The development of vaginal gene 

delivery systems has the potential to improve cancer treatment (such as cervical cancer), 

vaccines and conditions such as dyskeratosis congenital [175] and lichen planus [176] which 

affect both the oral and vaginal mucosa. 

5.2. Animal models for vaginal delivery 

 Although in vitro and ex vivo testing facilitate the screening of a considerable number of 

nanoparticles and topical formulations, these systems are void of the complex makeup of the 
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vaginal tissue, immune system, underlying blood flow and active secretion. Ultimately, animal 

models are needed to evaluate the efficiency of the topical mucosal delivery and gene expression 

of the DNA nanoparticles. Rabbits are frequently used in efficacy studies of vaginally delivered 

anti-infective agents [177] and vaccines [178], and represent the standard for toxicity evaluation 

of vaginal dosage forms [179]. By using a rabbit model, the efficacy and toxicity of the mucosal 

nanoparticles delivery systems can be assessed simultaneously. Moreover, the similarities 

between human and rabbit mucosal tissue warrant the use of this model [180]. In addition, the 

rabbit vagina is suitable to be installed in the diffusion cells for the ex vivo experiments, keeping 

the model consistent. Intravaginal uptake of macromolecules in animal models, such as rodents 

and primates, depends on the stage of the menstrual cycle, thus administration of the vaginal 

treatment must be appropriately staged [181]. A major advantage of using rabbits is that they are 

induced ovulators and do not have an estrous cycle, reducing the need for chemically 

synchronizing the animals within the group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 

 

6. Research Focus 

6.1. Rationale for the study 

 Non-viral vectors offer a non-immunogenic and safe method of gene delivery. However, 

they have poor transfection efficiency compared to their viral counterparts. Due to this reason, 

current research efforts are directed towards understanding the various physiochemical 

parameters that affect the transfection efficiency and using this knowledge to rationally design 

improved and safer delivery vectors. 

 Our research group has focused their research efforts in the development of cationic N,N-

bis(dimethylalkyl)-α,ω-alkanediammonium gemini surfactants (Table 6.1.1) as gene delivery 

vectors. These are m-s-m type of bisquaternary ammonium gemini surfactants where m and s 

refer to the number of carbon atoms in the alkyl tails and in the polymethylene spacer groups, 

respectively. As an example, a compound with two 16 carbon polymethylene tails and two 

cationic centres (quaternary ammonium) linked through a 3-carbon long polymethylene linker is 

designated as 16-3-16. 

 In previous studies, a series of cationic gemini surfactants, with different length of alkyl 

groups in the tail and spacer region, were synthesized and their gene transfer capability was 

evaluated (Table 6.1.1). The length of both tail and spacer groups had considerable effect on 

transfection efficiency [9]. A plasmid to gemini charge ratio of 1:10 was optimum for 

transfection due to high toxicity of lipoplexes at higher gemini concentrations.  Transfection 

efficiency was inversely related to the length of spacer in 12-s-12 series, with the highest 

transfection efficiency obtained with the 12-3-12 surfactant. An increase in the tail length from 

12-carbon to 16-carbon (16-3-16) further increased the transfection efficiency of the cationic 

diquaternary ammonium gemini surfactants. 
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Table 6.1: Gemini surfactants designed by our research group. 

 

Gemini surfactants Rationale & Results 

1.  First generation [9, 182] 

 

m =12, 16        s= 2, 3, 4, 5, 6, 8, 10, 12, 16 

 

 Structure-activity relationship study. 

  An increase in the length of the spacer 

groups had considerable effect on 

transfection efficiency.  

 Plasmid to gemini charge ratio of 1:10 was 

optimum for transfection efficiency. 

2.  Second generation [10] 

          

            12-8N-12                   12-5N-12 

 

         

           12-7N-12                    12-7NH-12 

 

 Improve the interaction between DNA and 

gemini surfactants. 

 The distance between the nitrogen centres 

was important for interaction. 12-7NH-12 

gave the highest transfection efficiency 

among the second generation gemini 

surfactants. 

 Particle size of P/12-7NH-12/DOPE 

complexes showed pH dependence which 

may be aiding endosomal escape. 
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 The ability of the DNA/gemini complexes to form polymorphic structures was also an 

important factor in gene transfection [182]. Second generation gemini derivatives were 

synthesized including amino groups in the spacer region (Table 6.1.2) [10]. The presence of 

additional amino groups in the spacer improved the transfection efficiency compared to 12-3-12. 

Among the second generation derivatives, 12-7NH-12 (Table 6.1.2) showed the highest 

transfection [10]. The absence of steric hindrance by the methyl substitution on the nitrogen in 

the spacer and the optimum spacing between the nitrogen centers lead to favorable binding 

between the gemini surfactant and adjacent phosphate groups of DNA. Additionally, the particle 

size of P/12-7NH-12/DOPE complexes showed a pH dependent increase in size which may have 

contributed to the endosomal escape of the lipoplexes. 

 Based on the information gathered from these previous experiments, a series of third 

generation gemini surfactants were developed by introducing different amino acid groups at the 

N position of the spacer of the previously optimized compound, 12-7NH-12. The rationale for 

amino-acid substitution was rooted in the understanding that these are bio-compatible and non-

toxic moieties and would not increase the cytotoxicity of gemini surfactants. We hypothesized 

that glycine, the simplest of all the amino acid, is needed for conformational flexibility for DNA 

binding and lysine, employed as polymers known to exhibit excellent DNA binding and 

condensing properties could modulate gene transfection efficiency of the gemini surfactants [74, 

183]. Additionally, the amino acid substitution could increase interaction with DNA via 

hydrogen bonding and presence of ionizable amino groups. The general chemical formula for 

this new generation of amino acid/peptide-substituted gemini surfactants is represented by 

Figure 6.1 where R represents glycine (G), lysine (K), glycyl-lysine (GK), lysyl-lysine (KK).  

 The purpose of my dissertation research was to develop these new amino acid-substituted 

gemini surfactants as gene delivery vectors and correlate their physiochemical properties with 

their transfection efficiency. Finally, vaginal administration was evaluated as a non-invasive 

route of delivery for these delivery systems. The key challenges were to generate high levels of 

gene expression in vitro and in vivo. Rabbit epithelial cells (ATCC CCL-68) and pGT.IFN.GFP 

(encoding green fluorescent protein and interferon-γ), a model reporter plasmid, were used as the 

in vitro model and New Zealand White rabbit and pGT.tdTomato (encoding red fluorescent 

protein), a reporter plasmid, were used as the in vivo model. 
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Figure 6.1: General structure of a new family of gemini surfactants. R represents glycine 

(G), lysine (K), glycyl-lysine (GK), or lysyl-lysine (KK) for amino acid/peptide substitution 

or hydrogen (H) for unsubstituted parent compound.   
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6.2. Hypothesis 

a) The amino acid (glycine, lysine, glycyl-lysine, lysyl-lysine) substitution in the gemini 

surfactants will improve its DNA binding properties without increasing toxicity and will 

generate a high level of gene expression in epithelial cell culture. 

b) Non-invasive vaginal application of amino acid-substituted gemini surfactant-based DNA 

delivery systems will generate a high level of gene expression in an in vivo animal model. 

6.3. Objective 

Overall Objectives 

a) To formulate novel amino acid-substituted gemini surfactant based gene delivery systems 

and evaluate their efficiency in vitro and in vivo. 

b) To characterize these novel formulations and correlate the physicochemical characteristics 

with gene transfection efficiency. 

Specific Objectives 

In vitro evaluation 

a) To formulate novel gene delivery systems with amino acid/peptide-substituted cationic 

gemini surfactants. 

b) To transfect in vitro cottontail rabbit epithelial cells and evaluate the extent and duration of 

gene expression. 

c) To establish correlation between physiochemical characteristics and transfection efficiency 

of these formulations. 

d) To evaluate the cellular uptake mechanism of plasmid/gemini/lipid particles and its effect on 

gene expression. 

Ex vivo evaluation 

a) To assess the extent of penetration of the DNA into the vaginal tissue using the amino acid-

substituted gemini surfactant that showed the best performance in vitro.  

In vivo evaluation 

a) To develop new mucosal delivery systems using the amino acid-substituted gemini surfactant 

with the best performance from in vitro evaluation. 

b) To evaluate gene expression in vaginal tissue after non-invasive vaginal application in rabbit 

animal model. 
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This published manuscript describes in detail the synthesis, characterization and formulation 

development of amino acid-substituted gemini surfactants. I was responsible for formulation 

development of amino acid-substituted gemini surfactants as gene delivery systems and the 

evaluation of their transfection efficiency in cell culture. I also determined key phyisochemical 

properties and correlated with their transfection efficiency. The contents that relate to my 

contribution in this study are presented here. 

 

This manuscript adresses the first three specific objectives of my research 

- To formulate novel gene delivery systems with amino acid/peptide-substituted cationic 

gemini surfactants 

- To transfect in vitro cottontail rabbit epithelial cells and evaluate the extent and duration of 

gene expression. 

- To establish correlation between physiochemical characteristics and transfection efficiency 

of these formulations 
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7.1. Abstract 

 Gemini surfactants are versatile gene delivery agents because of their ability to bind and 

compact DNA and their low cellular toxicity. Through modification of the alkyl tail length and 

the chemical nature of the spacer, new compounds can be generated with the potential to 

improve the efficiency of gene delivery. Amino acid (glycine and lysine) and dipeptide (glycyl-

lysine and lysyl-lysine) substituted spacers of gemini surfactants were synthesized and their 

efficiency of gene delivery was assessed in epithelial cells for topical cutaneous and mucosal 

applications. 

 Epithelial cell line Sf 1 Ep cells were transfected with plasmid DNA encoding for 

interferon gamma and green fluorescent protein complexed with the amino acid-substituted 

gemini compounds in the presence of 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine as a 

helper lipid. Gene expression was quantified by ELISA. Size, zeta potential and circular 

dichroism measurements were used to characterize the plasmid–gemini (PG) and plasmid–

gemini surfactant–helper lipid (PGL) complexes. 

 Gene expression was found to increase up to 72 h and then declined by the 7th day. In 

general, the glycine-substituted surfactant showed consistently high gene expression in all three 

cell lines. Results of physicochemical and spectroscopic studies of the complexes indicate that 

substitution of the gemini spacer does not interfere with compaction of the DNA. 

The superior performance of these spacer-substituted gemini surfactants might be attributed to 

their better biocompatibility compared to the surfactants possessing unsubstituted spacers. 
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7.2. Introduction 

 Topical gene delivery is an important approach in the quest to find treatment or cure for a 

multitude of genetic and acquired disorders, such as scleroderma, epidermolysis bullosa, cystic 

fibrosis, wound healing and others. To correct the imbalances created by a missing or incorrect 

gene, efficient non-invasive gene delivery systems should be employed. Interferon gamma (IFN-

γ) is a secreted cytokine with immunomodulatory, antiviral, antifibrotic and antitumour activity. 

Based on these properties its therapeutic potential in conditions such as scleroderma [184], atopic 

dermatitis [185], and post-operatory fibrosis [186] have been discussed and delivery of IFN-γ 

gene into epidermal skin and mucosal epithelial tissue can be considered as a treatment for these 

diseases. Gemini surfactants, N,N-bis(dimethylalkyl)-,-alkanediammonium dibromide 

derivatives (Figure 7.1)  have been shown to be versatile vectors for non-viral gene delivery 

[187][9, 10, 155, 156]. This stems from the fact that there are many possibilities, through 

chemical modification of the alkyl tails and the spacer group of these compounds, to modulate 

their physicochemical behaviour in a way that can enhance the efficiency of gene transfer. For 

example, modification of the length, degree of unsaturation, and substitution of different 

functional groups in the spacer and alkyl tails can provide opportunities to tailor their chemical 

structure for specific needs [158, 188].  

 Cationic gemini surfactants, are capable of binding DNA [189] and have several 

advantages compared to classic monovalent surfactants: lower cellular toxicity [155], lower 

critical micelle concentration (cmc), generally one or two orders of magnitude higher efficiency 

in reducing surface tension, and greater tendency to self-assemble [190]. The higher-order 

assembly of the gemini surfactants depends on the shape of the molecule (i.e., nature of the tail 

and spacer) and ranges from micellar to inverted micellar or bilayer structures. In the presence of 

the DNA, these supramolecular particles become more complex, resulting in polymorphic phase 

behaviour with the appearance of inverted micellar and cubic structures [182]. To be efficient 

transfection agents they have to fulfill several criteria: ability to bind DNA and create complexes 

of a certain size and morphology, the vector-plasmid complexes must retain an overall positive 

surface charge so as to facilitate interaction with the negative cell surface and enhance cellular 

uptake (in the absence of specific targeting), induce changes in the DNA structure favorable for 

efficient delivery, protect the genetic material against intracellular degradation, have the ability 



 

52 

 

to undergo polymorphic phase changes, and undergo facile release of  the plasmid once inside 

the cell to effect protein expression. 

 Gemini surfactants with C3-C12 alkyl spacers are able to compact the DNA into 100-200 

nm particles with positive surface charge [9], which enables interaction with the cell surface and 

endocytosis. The transfection efficiency of these agents depends on the spacer length, the 3- 

carbon spacer (12-3-12) being the most efficient. CD spectra of the plasmid-gemini surfactant 

complexes have previously been discussed in terms of the formation of highly compact Ψ- DNA 

[9]. Addition of a helper lipid, 1,2 dioleyl-sn-glycero-phosphatidylethanolamine (DOPE), 

induces polymorphic phase behaviour [182] which correlates with increased transfection 

efficiency [9]. Cellular toxicity of the transfection complexes was significantly lower compared 

to the commercial Lipofectamine Plus [9]. Substitution of the alkyl spacer with pH sensitive 

amino groups increases the transfection efficiency of the gemini surfactants [10].  The 1,9-

bis(dodecyl)-1,1,9,9-tetramethyl-5-amino-1,9-nonanediammonium dibromide surfactant (12-

7NH-12) transfected cells at a 9-fold higher level compared to the alkyl spacer derivatives. This 

improvement was attributed to its pH sensitivity and ability to form multiple phases, which 

enable membrane fusion and release of the DNA in the cells [10]. 

 We report here the results of a study focusing on the modification of this derivative by 

chemically coupling amino acid moieties to the amino-spacer so as to further increase and 

prolong gene expression. It has been shown that small molecular weight peptides, such as 

arginine-rich protamine fragments are able to bind and condense DNA into 100 nm particles. 

Transfection of cells resulted in prolonged gene expression for up to 12 days [191].  We 

hypothesized that an additive effect could be achieved by coupling the highly efficient amino-

substituted spacer of a gemini surfactant with amino acid/dipeptide residues.  
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R =  Glycine               (G)
         Lysine                (K)
        Glycine-lysine    (GK)
         Lysine-lysine     (KK)

 Counter ion: Cl

 

 

Figure 7.1: General structure of gemini surfactants. The two hydrophobic alkyl chains 

(tail) with charged head groups (ion) are connected with a carbon spacer [187]. 
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7.3. Materials and methods 

7.3.1. Preparation of the gene delivery systems 

 The pGT.IFN-GFP plasmid was used for the transfection experiments. The murine 

interferon-gamma (IFN-γ) and green fluorescent protein (GFP) genes were inserted into the pGT 

backbone as a bicistronic system[9]. Transfection agents of plasmid/gemini surfactant (PG) 

complexes and plasmid/gemini surfactant/helper lipid (PGL) particles were prepared as 

previously described [9]. The plasmid:gemini surfactant charge ratio was 1:10. DOPE was used 

as a helper lipid.  

7.3.2. Transfection of Sf 1 Ep cells using amino acid/dipepetide-substituted 

gemini surfactants and DOPE 

 Sf 1 Ep cottontail rabbit epithelial cells (ATCC, CCL-68) were seeded on Falcon 96-well 

tissue culture plates (BD, Mississauga, ON) at a density of 2 x 10
5
 cells/well. Three plates were 

seeded with each cell line at the same passage number after initiation of the cultures. 

Transfection experiments were carried out using 100ng plasmid DNA/well. Supernatants were 

collected every 24 h and replaced with fresh cell culture medium. The results are the average of 

three plates of triplicate wells. 

7.3.3. ELISA 

 ELISA was used to detect IFN-γ secreted into the supernatant and was performed 

according to the BD Pharmingen protocol (Cat # 558861). Protein concentration was calculated 

from a standard curve using recombinant IFN-γ. 

7.3.4. Fluorescence microscopy 

 Fluorescent images of transfected cells were registered by using an Olympus IX71 inverted 

microscope (Olympus Corporation, Japan). The excitation and emission wavelengths for GFP 

were 488 and 507 nm (built-in FITC filter), respectively. Light and fluorescent micrographs were 

merged to create composite images by using Image-Pro 5.1 software. 
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7.3.5. Size and zeta potential measurements 

 Size and zeta potential measurements of PG and PGL complexes, prepared at 1:10 

plasmid:gemini surfactant charge ratio, the same as for  the transfection experiments, were 

carried out by using a  Zetasizer Nano ZS instrument (Malvern Instruments, Worcestershire, 

UK). The results reported are the average of triplicate measurements on a % volume basis. Size 

measurements of gemini compounds at two concentrations above the cmc were also carried out 

on % volume basis. 

7.3.6. Circular dichroism 

 PG and PGL complexes were prepared at the same charge and molar ratio as for 

transfection experiments, using 20μg/mL plasmid DNA. Spectra were recorded using a Π*180 

instrument (Applied Photo Physics, UK), with 2-nm slit under a N2 atmosphere. 

7.3.7. Statistics 

 Results are expressed as the mean of n≥3±standard deviation. One way analysis of variance 

(ANOVA) and Bonferroni post hoc tests were used for statistical analyses (SPSS version 16.0). 

Significant differences were considered at p<0.05 level.  
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7.4.  Results 

7.4.1. Transfection of cells with amino acid/peptide-substituted gemini 

surfactants 

 The study revealed a time-dependent increase in the gene expression for all the amino 

acid/peptide-substituted cationic gemini surfactants (Figure 7.2 & 7.3). At 72 hours, the amino 

acid/peptide-substituted gemini compounds showed higher gene expression than the unmodified 

derivative and commercial Lipofectamine. There was little or no protein detected after 1 week 

(results not shown). Glycine (12-7NG-12) and glycyl-lysine (12-7NGK-12) substituted gemini 

surfactants exhibited highest transfection efficiency with IFN-γ levels (per 2x10
5
cells) of 

495±283 pg and 555±266 pg, respectively. This was significantly higher than lysine and lysyl-

lysine substituted, and unsubstituted parent compounds (p<0.001).    

7.4.2. Size and zeta potential measurements 

 P/G/L complexes were prepared in a similar manner to those used for the transfection 

experiments. Particle sizes for all complexes were in the 100-150 nm range (Table 7.1). The 

plasmid/DOPE complexes showed smaller particle size, slightly less than 100 nm. The zeta 

potential of -32.7±0.6 mV of the plasmid/DOPE complexes shifted to +20-40 mV.  

7.4.3. Circular Dichroism 

 Circular dichroism was used to evaluate compaction of the DNA by the substituted gemini 

surfactants. P/G and P/G/L complexes were prepared in a similar manner to those for the 

transfection experiments.  The plasmid DNA alone showed two positive peaks at 295 and 255 

nm, while all P/G complexes had a blue shift of the 295nm peak and depression of the 255-nm 

peak (Figure 7.4A). The P/12-7NG-12/L particles show a flattening of the 295-nm peak and the 

other compounds, including the parent 12-7NH-12 surfactant, show a slight depression (Figure 

7.4B). The pattern of the plasmid-DOPE mixture had a positive peak at 275 nm.  
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Figure 7.2: Gene expression of plasmid/gemini/lipid complexes in Sf 1 Ep cells. Amino acid-

substituted gemini surfactants were formulated with a model plasmid and were evaluated in 

rabbit epithelial cells in the presence of a helper lipid (DOPE). The secreted IFNγ was measured 

using ELISA at 24h, 48h and 72h. At 72h, glycine and glycyl-lysine substituted gemini 

surfactants showed significantly higher gene expression than the unmodified compound. *n=9, 

p<0.05, one-way ANOVA 
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Figure 7.3: Fluorescence microscopic evaluation of GFP expression in cotton tail rabbit 

epithelial cell lines transfected with 0.2 μg pGT.IFN-GFP plasmid using glycine substituted (A, 

B), lysine substituted (C, D), glycyl-lysine substituted (E, F), and lysyl-lysine substituted (G, H) 

and unmodified (I, J) 12 carbon tail gemini surfactants. 
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Table 7.1: Size and zeta potential measurements. Values are average of four measurements ± 

STD. Polydispersity (PDI) index is indicated for the size measurements as average of four 

measurements ± STD in brackets.  

PGL Size [nm] (PDI) Zeta potential [mV] 

P/12-7NG-12/DOPE 116.3 ± 1.3 (0.252±0.008) 32.6 ± 1.8 

P/12-7NK-12/DOPE 112.7 ± 1.7 (0.265±0.006) 28.6 ± 3.6 

P/12-7NGK-12/DOPE 117.3 ± 0.6 (0.232±0.012) 34.5 ± 5.6 

P/12-7NKK-12/DOPE 105.3 ± 0.4 (0.245±0.008) 31.3 ± 4.0 

P/12-7NH-12/DOPE 133 ± 2.8 (0.279±0.006) 24.9 ± 3.4 

P/DOPE  98.2 ± 0.3 (0.224±0.008) -32.7 ± 0.6 

 

 

 

 

 

Figure 7.4: CD spectra of the plasmid/gemini surfactants (P/G) complexes (A) and the 

plasmid/gemini surfactants/co-lipid (P/G/L) particles (B). Values are average of three 

measurements.  
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7.5. Discussion 

7.5.1. In vitro transfection efficiency of the amino acid/peptide-substituted 

gemini compounds 

 The in vitro transfection efficiency of novel amino acid/peptide-substituted gemini 

surfactants was evaluated in rabbit epithelial cells. These epithelial cell lines were used primarily 

to evaluate the performance of these compounds with potential application in development of 

vaginal gene delivery systems. Gemini surfactants self-assemble into higher order structures and 

their aggregation depends on the length and chemical nature of the spacer [192] that also 

determines the fit between the positively charged nitrogens of the head group and the negatively 

charged phosphate backbone of the DNA [193].  Previously, the transfection efficiency of the 

alkyl-spacer gemini surfactants was found to vary inversely with their head group area 

determined from Gibbs interfacial energy [9]. Nitrogen substitution in the spacer introduced a 

better fit with the DNA and conferred pH sensitivity to the gemini surfactants [10], which could 

reduce cytotoxicity and facilitate endosomal escape of the DNA. The amino acid/peptide-

substitution in the spacer region of 12-7NH-12 gemini surfactant showed higher gene expression 

compared to the unsubstituted parent compound (12-7NH-12). Cationic agents non-specifically 

bind the cell surface through ionic interactions with membrane-associated proteoglycans [106]. 

Transgene expression depends not only on compaction by the cationic agent and delivery of the 

genetic material into the cells but also on endosomal escape and release of the DNA from the 

complexes.  

 Grafting of amino acids or peptides on the gemini surfactant molecule could improve the 

delivery and release of the DNA in the cytoplasm. It should be noted that a weak binding in the 

P/G complex could not protect and compact sufficiently, whereas strong binding would not 

facilitate the release of the DNA. While gemini surfactants bind the DNA via electrostatic 

interactions, the nature of binding by the amino acid/peptide-substituted gemini surfactants might 

be ‘softened’ by van der Waals and hydrogen bonding forces[194], thus increasing the flexibility 

and plasticity of the supramolecular structures [195]. Increased hydrophilicity of the amino 

acid/peptide-substituted gemini surfactants compared to the parent compound might translate 

into better biocompatibility.  
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 The increased biocompatibility of these peptidomimetic particles could lead to lower 

cytotoxicity. The gene expression pattern showed similarities with higher gene expression in the 

cells transfected with glycine- and glycyl-lysine substituted gemini surfactants. Complex sizes of 

100-150 nm are optimal for endocytotic internalization by the cells [115]. Zeta potential of the 

particles was approximately +30mV for all compounds, which indicated that the system was 

colloidally stable [196]. There was no significant difference between the zeta potential of the 

unsubstituted 12-7NH-12 and amino acid/peptide-substituted gemini surfactants, indicating that 

substitution did not shield the surface charge on the particles. The CD spectra obtained were 

consistent with those previously reported for gemini surfactants [8, 10, 182].  Such changes in 

the native DNA structure were interpreted in terms of the surfactants inducing formation of Ψ
-
 

DNA [197], which usually required high salt concentrations.  The changes observed for the 

gemini surfactants are more consistent with a B-DNA conformation in which both the helicity 

and base stacking are perturbed as a result of compaction of the DNA molecule by the surfactant 

[198]. The similarity between the profiles obtained for the amino acid/peptide-substituted versus 

unsubstituted gemini surfactants indicates that the substitution on the spacer does not interfere 

with the ability of the gemini surfactant to compact DNA. 

7.6. Conclusion 

 Amino acid- and peptide- substituted amino spacer of gemini surfactants transfect epithelial 

cells at higher efficiency compared to unsubstituted spacers. The substitution does not increase 

the size of the particles or reduce zeta potential, nor weaken DNA compaction. The higher 

transfection efficiency is attributed to the higher biocompatibility and flexibility of the amino 

acid/peptide-substituted gemini surfactants and demonstrates the feasibility of using amino acid 

substituted gemini surfactants as gene carriers for the treatment of diseases affecting epithelial 

tissue. 
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This published manuscript provides information on the key physicochemical properties and 

cytotoxicity of amino acid-substituted gemini surfactants as gene delivery systems. A detailed 

analysis of these properties and their correlation to the toxicity and transfection efficiency of 

these molecules is discussed.  

 

Based on the conclusions in this study, the glycyl-lysine-substituted gemini surfactant was 

selected as optimal vector for in vivo formulation development. I conducted all experiments and 

prepared the manuscript. The article is presented here in its entirety with minor modifications. 

 

This manuscript relates, more specifically, to the third specific objective of my research: 

- To establish correlation between physiochemical characteristics and transfection efficiency 

of these formulations. 
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8.1. Abstract 

 Gene based therapy represents an important advance in the treatment of diseases that 

heretofore have had either no treatment or cure. To capitalize on the true potential of gene 

therapy, there is a need to develop better delivery systems that can protect these therapeutic 

biomolecules and deliver them safely to the target sites. 

 Recently, we have designed and developed a series of novel amino acid-substituted gemini 

surfactants with the general chemical formula C12H25(CH3)2N
+
-(CH2)3-N(AA)- (CH2)3-

N
+
(CH3)2C12H25 (AA= glycine, lysine, glycyl-lysine and, lysyl-lysine). These compounds were 

synthesized and tested in rabbit epithelial cells using a model plasmid and a helper lipid. 

Plasmid/gemini/lipid (P/G/L) nanoparticles formulated using these novel compounds achieved 

higher gene expression than the nanoparticles containing the parent unsubstituted compound.  

 In this study, we evaluated the cytotoxicity of P/G/L nanoparticles and explored the 

relationship between transfection efficiency/toxicity and their physicochemical characteristics 

(such as size, binding properties, etc.). An overall low toxicity is observed for all complexes with 

no significant difference among substituted and unsubstituted compounds. An interesting result 

revealed by the dye exclusion assay suggests a more balanced protection of the DNA by the 

glycine and glycyl-lysine substituted compounds. Thus, the higher transfection efficiency is 

attributed to the greater biocompatibility and flexibility of the amino acid/peptide-substituted 

gemini surfactants and demonstrates the feasibility of using amino acid-substituted gemini 

surfactants as gene carriers for the treatment of diseases affecting epithelial tissue. 

 

KEYWORDS 

Amino acid-substituted, cytotoxicity, gemini surfactants, gene delivery, non-viral, 

physicochemical properties 
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8.2. Introduction 

 Gene based therapy holds a promising future with the possibility of improving current 

levels of medical treatment of incurable diseases. To capitalize on the true potential of gene 

therapy, there is a need to develop better delivery systems that can protect these therapeutic 

biomolecules and deliver them safely to the target sites. Currently, there are two methods of gene 

delivery: viral and non-viral. The viral method capitalizes on the viruses’ natural ability to infect 

cells to efficiently introduce the target gene into the cells; these viruses are engineered to 

minimize virulence (disease causing ability) [5]. While viral vectors are currently the most 

effective means of gene delivery, they run the risk of triggering severe immune responses [38, 

39], of reverting into replication competent virulent viruses and of potential insertional 

mutagenesis [40, 41]. Severe adverse effects causing death in clinical trials using viral gene 

delivery vectors has raised many doubts about its future applications [42, 43]. Viral systems also 

suffer from the limitation of gene carrying capacity [44] and require lengthy and difficult 

production methods [45].  On the other hand, non-viral vectors provide an easy to produce, non-

immunogenic and safe method of gene delivery. However, the major disadvantage of non-viral 

vectors is their low transfection efficiency. These factors have led scientists to focus on the 

development of novel non-viral vectors with better transfection efficiency.  

 Cationic gemini surfactants are one such class of non-viral delivery vectors that can self-

assemble in the presence of DNA into cationic DNA nanoparticles and aid in gene delivery. The 

gemini compounds have several advantages compared to the classic monovalent surfactants: 

lower cellular toxicity, lower critical micelle concentration, higher efficiency in reducing surface 

tension and greater tendency to self-assemble. The opportunity to modify their structure creates 

flexibility in designing suitable delivery systems for enhanced gene transfer into mammalian 

cells [154]. 

 Our research group has focused on the optimization of cationic N.N-bis(dimethylalkyl)-

α,ω-alkanediammonium gemini surfactants or m-s-m, where m and s refer to the number of 

carbon atoms in the alkyl tails and in the polymethylene spacer groups, respectively. Initially, we 

designed a series of cationic gemini surfactants with different length of alkyl groups in the tail 

and spacer region and evaluated their effect on gene transfer capability. The length of both tail 

and spacer groups were found to have considerable effect on transfection efficiency [9]. The 

ability of the DNA/gemini complexes to form polymorphic structures was also found to be an 
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important factor in gene transfection [182]. Based on this information, a second generation of 

gemini derivatives was synthesized having 12-carbon tails and 5 to 8 carbon spacers. The latter 

was modified to include amino groups in an effort to improve the DNA condensation properties 

of these agents [10]. Among the second generation derivatives, 12-7NH-12 (Figure 8.1) showed 

the highest transfection with improved DNA binding properties [10]. More recently, a series of 

third generation gemini surfactants has been developed by introducing different amino acid 

groups at the N position of the spacer of this previously optimized compound (12-7NH-12) 

[199]. The general chemical formula for this new generation of amino acid-substituted gemini 

surfactants is represented by (Figure 8.1) where, R represents glycine (G), lysine (K), glycyl-

lysine (GK), lysyl-lysine (KK). In a previous study, these new derivatives achieved higher gene 

expression than the parent unsubstituted compound [199].  

 In this study, we evaluated the cytotoxicity of the gemini-DNA nanoparticles and assessed 

which physicochemical parameters of these novel delivery systems most affect transfection 

efficiency. The objective is to develop an understanding of the effect of amino acid-substitution 

on critical properties [106-108, 111, 112] of these novel delivery systems which will aid in the 

rational design of new derivatives (using new amino acid/peptide substitution) with improved 

transfection efficiency and safety profile. 
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Figure 8.1: General Structure of a new family of gemini surfactants where R represents 

glycine (G), lysine (K), glycyl-lysine (GK) and lysyl-lysine (KK) for amino acid substitution 

or hydrogen (H) for unsubstituted parent compound.   
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8.3. Materials and Methods 

8.3.1.  Cell culture and propagation 

 Cotton tail rabbit epithelial cells, Sf 1 Ep (CCL-68, ATCC, VA, U.S.A.,) were grown in 

Minimum Essential Medium (MEM, GIBCO, N.Y., U.S.A.) supplemented with 10% FBS and 

antibiotic/antimycotic agents, respectively. All cells were grown to 70-80% confluence and 

trypsinized to prepare a cell suspension. The cells were plated at a cell concentration of 1.5x10
4
 

cells per well in 96-well and 3x10
5
 cells per well in 6-well tissue culture plates (Falcon BD, ON, 

Canada), respectively. The cells were incubated for 24 hours at 37 
0
C/5% CO2 prior to 

transfection. 

8.3.2.  Formulations 

 Amino acid-substituted gemini surfactants were formulated with a model plasmid, 

pGTmCMV.IFN-GFP in the presence of a helper lipid 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE ; Avanti Polar Lipids, AL, U.S.A.) creating plasmid/gemini 

surfactant/lipid (P/G/L) nanoparticles. DNA/Gemini surfactant complexes were prepared at a 

charge ratio of 1:10 and incorporated in DOPE at a final concentration of 1mM (as used for 

transfection [199]). Transfection was performed using 100 ng DNA per well for the 96-well 

plates and 1µg DNA per well for the 6-well plates. Lipofectamine Plus
TM

 (Invitrogen, CA, 

U.S.A.) was used as a control and formulations were prepared as per manufacturer’s 

recommendation. 

8.3.3.  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay 

 This assay was used to evaluate cell toxicity of gemini derivatives in Sf 1 Ep cells. P/G/L 

nanoparticles prepared as described in Formulations section for 96-well plates. A sterile 5 

mg/mL solution of MTT (Invitrogen, OR, U.S.A.) in phosphate buffered saline (PBS) was 

prepared. Gemini surfactants were incubated (in triplicate) with the epithelial cells for 5 hours 

before replacing with a fresh media. A 10 μL aliquot of 5 mg/mL MTT solution was added in 

each well and incubated at 37 
0
C/5% CO2 for 4 hours. Supernatants were removed and the cells 

were washed with PBS. The purple formazan formed was dissolved in dimethyl sulfoxide 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%221%2c2%2dDioleoyl%2dsn%2dglycero%2d3%2dphosphoethanolamine%22%5bSynonym%5d%209546757%5bcid%5d
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%221%2c2%2dDioleoyl%2dsn%2dglycero%2d3%2dphosphoethanolamine%22%5bSynonym%5d%209546757%5bcid%5d
http://en.wikipedia.org/wiki/Purple
http://en.wikipedia.org/wiki/Formazan
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(Sigma, MO, U.S.A.) on a plate shaker for 10 minutes. The plates were incubated for 10 minutes 

at 37 
0
C to eliminate any air bubbles. Absorbance was measured at 550 nm using a plate reader 

(Biotek Microplate Synergy HT, VT, U.S.A.). 

8.3.4. Fluorescence activated cell sorting (FACS)  

 FACS (BD Biosciences, CA, U.S.A.) was used to evaluate cell toxicity of P/G/L 

nanoparticles in Sf 1 Ep cells. P/G/L nanoparticles were prepared as described in Formulations 

section for 6-well plates. Nanoparticles were incubated for 5 hours at 37 
0
C/5% CO2 with 

epithelial cells plated in 6-well plate (two sets of plates in triplicate). After 5 hours, for one set of 

plates the media was removed and cells were washed twice with 0.02% EDTA in PBS. The cells 

were detached with 0.02% trypsin and suspended in 2% FBS in PBS for analysis. The cell sorter 

was calibrated with non-transfected cells and 1x10
4
 cells of each sample were counted. For the 

second set of plates, the media was removed at 5 hours and replaced with fresh media. This set 

was incubated for 72 hours before carrying out FACS at 37 
0
C/5% CO2 with media replacement 

every 24 hours. A similar method was used to detach cells incubated for 72 hours before the 

FACS study. Again, the cell sorter was calibrated with non-transfected cells and 1x10
4
 cells of 

each sample were counted. 

8.3.5. Dye binding assay 

 A 200 μg/mL concentration of plasmid (pGTmCMV.IFN-GFP) was complexed with the 

gemini surfactants at a +/- charge ratio of 10 in the presence or absence of DOPE as described 

earlier on 96-well plates, with samples prepared in triplicate. Ethidium bromide (Sigma) was 

added to the samples at 1 μg/mL final concentration. The samples were incubated for 10 minutes 

at room temperature. Fluorescence excitation was carried out at 530 nm and emission measured 

at 590 nm using a plate reader (Biotek Microplate Synergy HT, VT, U.S.A.). The relative 

fluorescence of the P/G/L and P/G complexes was expressed as a percentage of fluorescence of a 

200 μg/mL plasmid solution. The fluorescence of the P/G/L and P/G complexes were compared 

to its parent compound. 

http://www.bdbiosciences.com/home.jsp
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8.3.6. Statistical analyses 

 Results are expressed as the mean of n≥3 ±standard deviation. One way analysis of 

variance (ANOVA), Pearson’s correlation coefficient and Scheffé/Dunnett’s post hoc tests, were 

used for statistical analyses (SPSS version 17.0). Significant differences were considered at 

p<0.05 level.  
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8.4. Results  

8.4.1. Cytotoxicity study 

 An MTT assay was carried out after incubating the cells for 5 hours with gemini 

derivatives alone while a FACS study was designed to assess cell toxicity of P/G/L nanoparticles 

at 5 hours (length of incubation of the cells with the transfection agents) and 72 hours (highest 

expression of the green fluorescent protein was observed among gemini derivatives at this time 

[199]). Lipofectamine, a commercial transfection agent, was evaluated for comparison. The 

results indicated, in the absence of plasmid or helper lipid that all derivatives, including the 

parent unsubstituted gemini surfactant, exhibited high cytotoxicity with cell viability of 10-20% 

(Figure 8.2.A). When the gemini surfactants were incorporated into nanoparticles, cell viability 

increased significantly. 

 After 5 hours of incubation, the P/G/L nanoparticles containing glycine and lysyl-lysine 

substituted gemini surfactants had cell viability of 93.9%±1.9 and 93.1%±2.4, respectively, 

whereas it was greater than 99% for all other derivatives including parent 12-7NH-12 compound 

(Figure 8.2.B). There was no significant difference in cytotoxicity among these novel delivery 

systems (one-way ANOVA, p<0.05). Conversely, cell viability of the complexes formulated 

using the commercial agent was 82%±1.7 and it was significantly lower than all the formulations 

containing gemini derivatives (p<0.05, one-way ANOVA). 

 At 72 hours, cell viability of P/G/L nanoparticles containing the parent gemini surfactant 

was 87.9%±6.5 while it was greater than 90% for all amino acid-substituted derivatives (Figure 

8.3). Cell viability of the formulation containing commercial agent was drastically reduced to 

about 55.8%±4.4 which was significantly lower than all the P/G/L formulations (one-way 

ANOVA, p<0.05). A similar trend was observed for both transfected (GFP positive) and non-

transfected (GFP negative) cells. 
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Figure 8.2: Evaluation of cell viability of (A) amino acid-substituted gemini surfactants using 

MTT assay and (B) P/G/L complexes using FACS, after incubation with the cells for 5 hours 

(equal to the length of incubation of the cells with transfection agents). While the gemini 

surfactants exhibited high cytotoxicity with cell viability as low as 10-20%, these values were 

significantly improved to greater than 93 % after formulation as P/G/L nanoparticles. Cell 

viability of P/G/L nanoparticles was significantly higher than the commercial Lipofectamine. 

(p<0.05, one-way ANOVA) 
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Figure 8.3: Cell toxicity of the plasmid/gemini/lipid (P/G/L) complexes after 72 hours was 

evaluated using FACS. Cell toxicity of P/G/L nanoparticles in transfected and non-transfected 

cells was significantly lower than the commercial Lipofectamine. (n=6, p<0.05, one-way 

ANOVA) 
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8.4.2. Dye binding assay 

 P/G and P/G/L nanoparticles were prepared and incubated with ethidium bromide dye to 

evaluate the protection conferred to the DNA by the amino acid-substituted gemini derivatives.  

A strong electrostatic interaction between the gemini surfactants and the DNA prevented the 

penetration of the dye into the complexes, reducing the fluorescence.  

 The fluorescence emission values presented in Figure 8.4 were standardized as percentage 

of total fluorescence achieved using naked (uncomplexed) plasmid. In the absence of the helper 

lipid, the glycyl-lysine substituted gemini derivative exhibited the highest (9.5%±0.5) 

fluorescence emission whereas the parent gemini had the lowest (4.5%±0.4). The fluorescence 

increased in the presence of helper lipid to 16.9%±1.4 (highest) for the glycine-substituted, and 

7.3%±0.4 (lowest) for the lysyl-lysine gemini derivative. Overall, the fluorescence was lower in 

P/G complexes in comparison to P/G/L complexes. The presence of helper lipid may have 

increased the fluidity of lipid vesicles resulting in increased dye penetration and thus, higher 

fluorescence values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

 

 

 

 

 

 

 

Figure 8.4: Ethidium bromide dye exclusion assay to evaluate the ability of the gemini 

derivatives to protect the DNA. A low fluorescence value indicates stronger binding affinity. 

Lysine and lysyl-lysine substituted gemini derivatives showed stronger binding to DNA than 

glycine and glycyl-lysine substituted gemini derivatives. Gene expression levels at 72 hours 

(from [199]) are shown for comparison (diamonds). 
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8.5. Discussion 

8.5.1. Amino acid-substitution improved transfection efficiency without 

increasing cytotoxicity of P/G/L nanoparticles 

 Cytotoxicity plays a critical role in the overall transfection efficiency of the delivery 

vectors.  In order to deliver the DNA into the cells, the cationic nanoparticles bind to the cell 

surface by electrostatic interaction, promote endocytosis and release the genetic material inside 

the cell. The greater the number of DNA molecules that are able to reach the cell nucleus, the 

higher the protein expression [112, 200]. Unfortunately, while high concentrations of the 

delivery agents imply increased chance of the DNA to penetrate the cell nucleus, it can also 

interfere with physiological processes within the cell inducing cell death. Thus the focus is to 

design gene delivery agents that are able to deliver DNA into the cells with minimal toxicity. 

 The Sf 1 Ep cells were selected for the cytotoxicity evaluation to establish groundwork for 

in vivo assessment of gemini-nanoparticle based gene delivery in rabbits. All gemini derivatives 

were found to be highly toxic when incubated without plasmid and helper lipid (Figure 8.2.A). 

This could be caused by the large cationic charge of the molecules which was not neutralized by 

the negatively charged plasmid DNA. Thus, in the absence of DNA, these positively charged 

gemini derivatives may aggregate on cell surfaces or bind strongly to negatively charged cell 

surface proteins impairing important membrane and other cellular functions [201]. An alternative 

hypothesis is that the free lipids may bind to the cell surface stronger than the nanoparticles, 

contributing to increased toxicity. It has been demonstrated that in gene delivery systems 

prepared at high positive to negative charge ratios, the free cationic lipids present in the system 

may compete with the nanoparticles for binding/uptake and can also be associated with increased 

toxicity [202]. It was shown that increasing the charge ratio between DNA and gemini 

surfactants beyond 1:10 increased cellular toxicity and reduced protein expression [9]. 

 P/G/L nanoparticles exhibited significantly higher cell viability in comparison to the 

commercial agent at 5 hours (Figure 8.2.B) and 72 hours (Figure 8.3). Overall cell viability of 

P/G/L after 72 hours was above 87% with greater than 90% levels for nanoparticles formulated 

using amino acid-substituted gemini compounds. This was true for both transfected (GFP 

positive) cells and non-transfected (GFP negative) cells. The inclusion of amino acid substitution 

at the N position of the spacer was found to improve transfection efficiency of the gemini 



 

77 

 

surfactants without increasing the cytotoxicity of the P/G/L nanoparticles. This may arise 

because the biomolecules (amino acids) grafted onto the gemini surfactants are inherently 

biocompatible and biodegradable. This indicates that the addition of these amino acid moieties 

may have improved the interaction between the gemini surfactants and DNA. We further 

conducted dye binding assays and examined the correlations between the ability of the 

nanoparticles to protect the genetic material and the transfection efficiency/cellular toxicity.  

These results in conjunction with the results of physicochemical parameters reported in our 

earlier publication [199], serve to facilitate the identification of the crucial parameters that play 

an important role in improving the gene transfer profile of these delivery systems. 

8.5.2. Glycine substitution contributed to conformation flexibility and leads to 

balanced (protection and release) DNA binding properties 

 Cationic lipids compact DNA and reduce its flexibility, thus preventing intercalation of the 

ethidium bromide between the base-pairs [203]. The gemini surfactants electrostatically bind the 

plasmid DNA causing a collapse of the helical structure into a compact particle. Upon addition 

of ethidium bromide, fluorescence is quenched due to the inability of the dye to penetrate 

between the nucleotides. The better the shielding of the DNA by the cationic gemini surfactant, 

the more pronounced the fluorescence quenching. The highest fluorescence emission was 

observed for glycine and glycyl-lysine substituted gemini derivatives in the absence of helper 

lipid, 7.7%±4 and 9.5%±0.5 of the non-complexed DNA, respectively, indicating the lowest 

protection of DNA among all derivatives (Figure 8.4). In the presence of helper lipid, the 

fluorescence values increased to 16.9%±1.4 and 12.1%±0.9 for glycine and glycyl-lysine 

derivatives, respectively, indicating a further decrease in binding efficiency. Poly (Lysine) is 

known for good DNA binding and DNA condensation properties [74]. We have observed a 

similar trend in lysine (9.2%±0.2 fluorescence) and lysyl-lysine (7.3%±0.4 fluorescence) 

substituted gemini derivatives which have exhibited stronger protection, in the presence of helper 

lipid, against dye penetration than other amino acid derivatives. A dye binding assay of the 

gemini surfactants with alkyl spacer indicated that stronger dye exclusion correlated with higher 

gene transfection efficiency [204]. However, the amino acid-substituted derivatives did not show 

similar behaviour: the strong fluorescence quenching of the 12-7NK-12 and 12-7NKK-12 was 

associated with lower transfection efficiency (Figure 8.4) [199].  
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 We believe that the glycine and the glycyl-lysine substitution has provided a 

conformational flexibility to the molecule to affect a balanced binding, sufficient to provide 

protection against enzymatic degradation without hampering the intracellular release of DNA for 

gene expression. This may be due to the difference in interplay among the nature of bonding 

forces such as van der Waals, hydrogen bonding, in addition to electrostatic interactions for 

different amino acid-substituted derivatives [195]. 

 Amino acid substitution in the spacer group of gemini surfactants has also increased the 

number of amino groups, especially terminal amino groups, which can affect the transfection 

efficiency of the delivery system [205]. This may be because of increased hydration of these 

molecules (as reported previously [199]) resulting in improved DNA interactions and cell 

membrane [206]. Furthermore, the derivatization of the carboxylic group of amino acids for 

substitution at the N of the spacer position of gemini surfactants leave terminal amino group(s) 

with theoretical pKa values greater than 9.5. These terminal amino groups are highly protonated 

at physiological pH contributing to efficient DNA-gemini electrostatic interactions and DNA 

compaction. This is exhibited by a strong inverse correlation (Pearson’s correlation coefficient = 

-0.933, p<0.05) between the number of terminal amine groups and P/G/L particle size [199].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 

 

 

Table 8.1: The number of terminal amino groups present in corresponding amino acid 

substituted gemini derivatives used for calculating correlation. 

Delivery System No. of terminal amino groups 

P/12-7NG-12/L 1 

P/12-7NK-12/L 2 

P/12-7NGK-12/L 2 

P/12-7NKK-12/L 3 

P/12-7NH-12/L 0 

P/L – 

 

 

 

 

Figure 8.5: Schematic design of biphasic structure of plasmid/gemini derivatives exposing 

amino acid substitution outwardly. 
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 The lysyl-lysine gemini nanoparticles having three terminal amine groups have the smallest 

mean diameter (105 nm) among all derivatives (Table 8.1), but also the lowest transfection 

efficiency, indicating once again the need of a balanced interaction between the DNA and gemini 

surfactant [199].  

 Cationic gemini surfactants are found to assemble into bilayer vesicles in presence of DNA 

in aqueous medium as depicted in Figure 8.5 [154]. This conformational orientation of amino 

acid molecules (amine rich molecules) would improve cell surface interaction through hydrogen 

bonding in addition to electrostatic interactions. The terminal primary amine groups can also act 

as strong polycations at physiological or acidic pH and drive liposomal fusion in a ‘flip-flop’ 

manner by exposing hydrophobic regions after strong association with the negatively charged 

surface molecules [207-209]. This may have important significance for cellular uptake as well as 

endosomal escape, and may be an additional factor in higher transfection efficiency of glycine 

and glycyl-lysine substituted derivatives. 

 Moreover, the terminal lysine substitution has introduced extra secondary amine groups, in 

addition to tertiary amine in the spacer, which may also aid in endosomal escape by improving 

the buffering capacity of these derivatives. This ‘proton sponge’ effect helps in the disruption of 

the endosomal membrane enhancing the availability of more DNA nanoparticles for nuclear 

transport and gene expression [210].  

8.6. Conclusion 

 The insertion of amino acid moieties in the spacer of the gemini surfactants has improved 

the transfection efficiency without increasing the cytotoxicity of the compounds. The amino acid 

substituted-derivatives have shown increased DNA condensation relative to the parent 12-7NH-

12 gemini. By striking a balance among various interaction forces (hydrogen bonding, van der 

Waals forces), the glycine substitution has provided conformation flexibility to the derivatives. 

In addition, the terminal lysine of the glycyl-lysine derivative might act as a proton sponge, 

leading to overall balanced (protection and release) binding properties.  The amino acid-

substituted gemini surfactants, in general, exhibit low cytotoxicity and further structural 

modifications will be designed to enhance gene expression. One of the options will be to graft 
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amino acid residues to provide both flexibility to the binding moiety and release of the DNA 

inside the transfected cells. 
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In this manuscript, I evaluated the cellular uptake mechanism of DNA complexes of the glycyl-

lysine-substituted gemini surfactant. A comparison to the parent compound helped in 

determining the effect of amino acid substitution, specifically glycyl-lysine, on cellular uptake 

mechanism and its effect on transfection efficiency. I built a model to illustrate factors that 

contribute to the increase in gene expression of amino acid-substituted gemini surfactant 

compared to the parent compound. The in vitro studies were concluded with this work and laid 

the foundation for the development of in vivo formulation for mucosal application. This 

manuscript is based on my original idea. I designed and conducted all experiments and prepared 

the manuscript. The article is presented here in its entirety. 

 

This manuscript relates to the fourth and final objective of my in vitro studies: 

- To evaluate the cellular uptake mechanism of plasmid/gemini/lipid particles and its effect 

on gene expression. 
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9.1. Abstract 

Background 

 Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene 

delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact the 

transfection efficiency of these vectors. Therefore, understanding the physicochemical properties 

that may influence the cellular uptake and the intracellular trafficking can aid the design of more 

efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted 

gemini surfactants that showed higher transfection efficiency than their parent compound. In this 

study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper 

lipid nanoparticles and their effect on the transfection efficiency. 

Results 

 Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic 

inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and 

caveolae-mediated uptake were found to be equally contributing to cellular internalization of 

both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted 

gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to 

track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission 

electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while 

the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour 

of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high 

buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties 

may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the 

P/12-7NH-12/L nanoparticles, leading to higher gene expression. 

Conclusion 

 Amino-acid substitution in the spacer of the gemini surfactant did not alter the cellular 

uptake pathway, showing a similar pattern to the unsubstituted parent gemini surfactant. Glycyl-

lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-

dependent increase of particle size. This property conferred to the P/12-7NGK-12/L 

nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced 

binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions 

could contribute to the facile release of the nanoparticles internalized via caveolae-mediated 
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uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles leads to higher 

gene expression compared to the parent gemini surfactant. 

 

Keywords: cellular uptake, endosomal escape, non-viral gene delivery, clathrin-mediated 

endocytosis, caveolae-mediated endocytosis  
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9.2. Background 

 Gene therapy is based on the delivery of therapeutic genes to prevent or treat a disease. The 

method includes replacing a nonfunctional gene, introducing a new or missing gene, silencing a 

gene, or regulating gene expression. Gene-based therapy could offer an improved therapeutic 

solution and a cost-effective option to the treatment of many diseases, including cancer and 

infectious diseases [211, 212].  Among the available gene transfer technologies, non-viral 

vectors offer a non-immunogenic and safe method of gene delivery. However, they have 

generally lower transfection efficiency compared to their viral counterparts.  

 For successful gene expression, a delivery vector needs to overcome three major challenges 

(Figure 9.1): cellular uptake, endosomal/lysosomal escape and nuclear localization [213]. 

Cellular uptake is an important process as it determines the number of particles that are 

internalized and available for gene expression. Moreover, the mechanism of uptake may 

determine the intracellular pathway and the final fate of the vectors [125].  

 Clathrin-mediated, caveolae-mediated uptake and macropinocytosis are the most common 

uptake pathways utilized by mammalian cells to engulf macromolecules or solutes impermeable 

to the plasma membrane [125]. We assessed the effect of these three cellular uptake pathways on 

the gene transfer efficiency of the gemini surfactant-based nanoparticles. The clathrin-mediated 

uptake involves special membrane structures called clathrin-coated pits [128]. When ligands bind 

to these receptors, the coated pits form a polygonal clathrin lattice with the help of adaptor 

proteins. These clathrin-coated pits are pinched off from the plasma membrane and internalized 

to form intracellular clathrin-coated vesicles ranging in size from 100 to 150 nm in diameter 

[128]. Inside the cell, the clathrin coat depolymerizes to form early endosomes which then fuse 

with late endosomes and proceed to finally fuse with lysosomes. Particles internalized via this 

pathway experience a drop in pH, towards acidic conditions (pH 5-6), as they travel towards late 

endosomes, before merging with lysosomes [129]. Chlorpromazine and potassium depletion can 

dissociate clathrin from the surface membrane and inhibit clathrin-mediated endocytosis [214, 

215]. 

 

 

 

 



 

87 

 

 

 

 

 

 

Figure 9.1: Intracellular trafficking of DNA-delivery vector complexes. This schematic 

representation indicates the critical barriers in successful gene delivery: cellular uptake, 

endosomal escape and nuclear localization. A delivery vector interacts with the cell membrane 

for internalization. Once inside the cell, the delivery vector should facilitate endosomal escape 

and avoid DNA degradation in lysosomes. Cytoplasmic stability of plasmid DNA and 

localization in the nucleus are final steps to successful gene transfer  
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 Caveolae-mediated uptake is another important pathway that involves small hydrophobic 

domains that are rich in cholesterol and glycosphingolipids [216]. Contrary to clathrin-mediated 

uptake, the caveolae-dependent pathway follows a non-acidic and non-digestive intracellular 

route. Filipin III inhibits caveolae-mediated uptake by binding to 3β-hydroxysterol, a major 

component of glycolipid microdomains and caveolae [217]. Genistein also inhibits caveolae-

mediated uptake by local disruption of the actin network and by preventing the recruitment of 

dynamin II, both necessary for this type of cellular uptake [218]. Water-soluble methyl-β-

cyclodextrin forms inclusion complexes with cholesterol and is known to inhibit both clathrin-

mediated and caveolae-dependent uptake by depleting cholesterol from the plasma membrane 

[219-221]. Macropinocytosis is a non-selective internalization of large volumes of extracellular 

medium through cell membrane protrusions that collapse onto and fuse with the cell membrane 

[142]. The large endocytic vesicles are neither coated nor concentrated before internalization.  

Phosphatidylinositol 3 kinase and rho family GTPase activities influence macropinocytosis by 

regulating actin rearrangements. Wortmannin, a phosphatidylinositol 3 kinase inhibitor, can be 

employed to inhibit macropinocytosis [222]. 

 Understanding the physicochemical properties of the gene delivery vectors in association 

with these uptake pathways can lead to rational design of nanoparticles that target those 

pathways and improve the intracellular fate of the particles. For example, the design of delivery 

agents that respond to the change in pH can escape from the endosomes and evade degradation in 

lysosomes, thus improving the transfection efficiency of these non-viral vectors [10]. To 

capitalize on the pH sensitivity of these nanoparticles, clathrin-mediated uptake should be 

targeted to utilize this phenomenon.  

 Our research group has focused on the optimization of cationic N,N-bis(dimethylalkyl)-

α,ω-alkanediammonium gemini surfactants, m-s-m as transfection vectors, where m and s refer 

to the number of carbon atoms in the alkyl tails and in the polymethylene spacer groups, 

respectively [9, 182]. More recently, a series of third generation gemini surfactants has 

developed by introducing an amino acid/dipeptide group at the N position of the spacer of a 

previously studied compound (12-7NH-12) (Figure 9.2.A). The glycyl-lysine substituted 

derivative (12-7NGK-12, Figure 9.2.B) achieved the highest gene expression among the series, 

performing significantly better than the unsubstituted parent compound [199, 223].  
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 In this study, we evaluated the cellular uptake behaviour of plasmid/gemini/lipid (P/G/L) 

nanoparticles and investigated their impact on the transfection efficiency of these nanoparticles. 

We also explored the physicochemical properties that may have led to the difference in cellular 

uptake and intracellular trafficking of these nanoparticles resulting in the difference in 

transfection efficiency between these vectors. 
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Figure 9.2: Chemical structure of gemini surfactants. (A) Parent unsubstituted gemini 

surfactant (12-7NH-12) and (B) glycyl-lysine substituted gemini surfactant (12-7NGK-12).  
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9.3. Materials and Methods 

9.3.1.  Reagents for uptake studies 

 Genistein, filipin III, methyl-β-cyclodextrin, chlorpromazine hydrochloride and 

wortmannin were purchased from Sigma-Aldrich, Oakville, Canada. 

9.3.2.  Formulations 

 A model plasmid pGT.IFN-GFP that encodes for interferon (IFN)-γ and green fluorescent 

protein was used for all formulations. Gemini surfactants were formulated with pGT.IFN-GFP in 

the presence of a helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE ; Avanti 

Polar Lipids, AL, U.S.A.) creating P/G/L nanoparticles. A plasmid to gemini surfactant charge 

ratio of 1:10 was used for all formulations (as described earlier [199]). A quantity of 100 ng of 

plasmid DNA per well was used in the 96-well plates for transfection.  

9.3.3.  Cell culture and propagation 

 Cotton tail rabbit epithelial cells, Sf 1 Ep (CCL-68, ATCC, VA, USA) were grown in 

Minimum Essential Medium (MEM, GIBCO, NY, USA) supplemented with 10% v/v fetal 

bovine serum and antibiotic/antimycotic agents, respectively. All cells were grown to 70-80% 

confluency. The cells were seeded at a concentration of 20,000 cells per well in 96-well tissue 

culture plates (Falcon BD, Mississauga, Canada) and were incubated for 24 hours at 37 
0
C/5% 

CO2 prior to transfection. 

9.3.4.  Cell toxicity assay 

 Genistein (200 µM), filipin III (5 µg/mL and 1 µg/mL), methyl-β-cyclodextrin (10 mM and 

5 mM), chlorpromazine hydrochloride (10 µg/mL and 5 µg/mL), wortmannin 50 nM were 

incubated with the cells for 1, 2, 3 and 4 hours [137, 219, 224, 225]. For potassium depletion, the 

cells were washed three times with potassium free buffer containing 140 mM NaCl, 20 mM 

Hepes pH 7.4, 1 mM CaCl2, 1mM MgCl2 and 1 mg/mL D-glucose, followed by 2 minutes 

incubation with hypotonic buffer (potassium free buffer diluted with water 1:1) [137, 215] for 1, 

2, 3 and 4 hours. At the end of the incubation, cells were washed three times with PBS and 

incubated with fresh supplemented media at 37 
0
C/5% CO2 for 24 hours.  A 10 μL aliquot of 5 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%221%2c2%2dDioleoyl%2dsn%2dglycero%2d3%2dphosphoethanolamine%22%5bSynonym%5d%209546757%5bcid%5d
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mg/mL (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Invitrogen, 

Burlington, Canada) aqueous solution was added in each well and the plates were incubated at 37 

0
C/5% CO2 for 3 hours. Supernatants were removed and the cells were washed with PBS. The 

formed purple formazan solid was dmLissolved in 200 μL dimethyl sulfoxide (DMSO, Sigma) 

on a plate shaker for 10 minutes. The plates were incubated for 10 minutes at 37 
0
C to eliminate 

air bubbles. Absorbance was measured at 550 nm using a plate reader (Biotek Microplate 

Synergy HT, VT, USA). Cell toxicity of the chemically treated/potassium depleted cells were 

expressed as a percentage of dead cells compared to the untreated normal cells. 

 

             
                     

          
       

9.3.5.  Transfection 

 In a 96-well plate, cells were incubated (in triplicate) for 30 minutes with genistein 200 

µM, methyl-β-cyclodextrin 5 mM, wortmannin 50 nM, filipin III 5 µg/mL and for 60 minutes 

with filipin III 1 µg/mL, chlorpromazine hydrochloride 5 µg/mL and potassium free buffer prior 

to addition of P/G/L nanoparticles. The nanoparticle formulations were prepared as described 

above and incubated with the cells for 2 hours. After 2 hours the media was removed and cells 

were washed three times with PBS and replenished with fresh media. Supernatants were 

collected at 24, 48 and 72-hour intervals. At 72 hours, an MTT assay was performed to 

determine the combined toxicity of P/G/L nanoparticles and chemical treatment/potassium 

depletion on cell viability.  ELISA was used to detect the IFN-γ secreted into the supernatant and 

was performed according to the BD Pharmingen protocol. Protein concentration was calculated 

from a standard curve using recombinant IFN-γ. 

9.3.6.  Confocal laser scanning microscopy (CLSM) 

 The model plasmid pGT.IFN-GFP was labeled with tetramethyl-rhodamine (ex/em 

wavelengths: 546 nm/ 576 nm) using Label IT® Tracker™ Kit (Mirus, WI, U.S.A.) according to 

the manufacturer’s protocol. N-(7-nitro-2-1,3-benzoxadiazol-4-yl) labeled DOPE (ex/em 

wavelengths: 460 nm/535 nm) was purchased from Avanti Polar Lipids, AL, U.S.A. 

http://en.wikipedia.org/wiki/Purple
http://en.wikipedia.org/wiki/Formazan
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P/G/L nanoparticles were prepared as described in the Transfection section using tetramethyl-

rhodamine labeled plasmid with 10% w/w of DOPE in the formulation being substituted with 

fluorescent tagged DOPE.  

 Sf 1 Ep cells were treated with chemical inhibitors – genistein, chlorpromazine, 

wortmannin and methyl-β-cyclodextrin as described under the section ‘Transfection’, prior to 

incubation with fluorescent P/G/L nanoparticles. Additionally, an aliquot of 30 μM DAPI was 

added to the cells for staining the nucleus. After 2 hours, the cells were washed with PBS three 

times and images were taken using a Leica TCS SP5 laser scanning confocal microscope (Leica 

Microsystems Inc., Benshein, Germany).  LAS AF Lite 2.4.1 (Leica Microsystems CMS GmbH) 

and ImageJ 1.44p (National Institute of Health, U.S.A.) were used for image processing. 

9.3.7.  pH titration and particle size measurement 

 P/12-7NH-12/L and P/12-7NGK-12/L nanoparticles were prepared as described previously. 

An MPT-2 autotitrator connected to a ZetaSizer Nano ZS (Malvern Instruments, Worcestershire, 

UK) was used to determine changes in particle size as a function of pH. Briefly, P/G/L 

nanoparticles (9 mL) were placed in the titration cell of the auto-titrator and titrated over basic 

(0.05 M NaOH) to acidic (0.1 M HCl) pH range at 0.2-0.5 pH unit intervals.  

9.3.8.  DNA/gemini surfactant interactions 

 Nanoparticles were prepared using plasmid and gemini surfactants at a +/- charge ratio of 

10 in the presence of DOPE as described earlier, with samples prepared in quadruplicate. P/G/L 

nanoparticles were incubated with ethidium bromide (1μg/mL) and heparin buffer (20mM 

HEPES, 5.2% glucose, 0 U/mL, 5 U/mL, 10 U/mL or 20 U/mL heparin, pH 7.0) for 10 minutes 

at room temperature. Fluorescence excitation was carried out at 528/20 nm and emission 

measured at 590/35 nm using a multiplate reader (Biotek Microplate Synergy HT, VT, U.S.A.). 

The relative fluorescence of the P/G/L complexes was expressed as a percentage of the 

fluorescence of a plasmid solution in the presence of corresponding (0 U/mL, 5 U/mL, 10 U/mL, 

20 U/mL) heparin buffer. 

              
(                                                )
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9.3.9.  Transmission electron microscopy (TEM) 

 Formulations were prepared as described earlier and loaded onto formvar-coated 300-mesh 

copper grids using a 5 μL aliquot of each sample. The samples were incubated for 2 minutes and 

the liquid was blotted with absorbent tissue. The specimens were stained with 1% 

phosphotungstic acid for 15 seconds and blotted with tissue. The dried samples were examined 

with a Philips CM 10 electron microscope at an accelerating voltage of 100 kV, and pictures 

taken on 3 ¼″ x 4″ Kodak Electron Microscope Film 4489. 

9.3.10. Statistical analyses 

 Results are expressed as the mean of n ≥ 3 ± standard deviation. One way analysis of 

variance (ANOVA) and Bonferroni/Dunnett’s-T3 post hoc tests were used for statistical analyses 

(PASW Statistics 18.0). Significant differences were considered at p < 0.05 level.  
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9.4. Results 

9.4.1.  Toxicity of chemical inhibitors or potassium depletion in Sf 1 Ep cells 

 In order to optimize the concentration and the exposure time of the endocytosis inhibitors, 

we evaluated their intrinsic toxicity on Sf 1 Ep cells after 1, 2, 3 and 4 hours of incubation period 

(Figure 9.3). With the exception of 10 mM methyl-β-cyclodextrin and 10 µg/mL 

chlorpromazine concentrations, toxicity was under 20% at the 3-hour time point. Therefore, we 

selected a lower concentration of these inhibitors, 5 mM for methyl-β-cyclodextrin and 5 μg/mL 

for chlorpromazine which retained more than 80% cell viability up to 3 hours.  

9.4.2.  Combined toxicity of P/G/L nanoparticles and chemical 

inhibitors/potassium depletion in Sf 1 Ep cells  

 The inhibition of endocytosis by chemical treatments is a reversible process. Therefore, it is 

important to maintain these inhibitors in cell media while transfecting the cells with the DNA 

nanoparticles [214, 215, 217, 219]. Caveolae-mediated inhibitors (filipin and genistein) with 

P/12-7NH-12/L (parent gemini surfactant) exhibited an increase in cytotoxicity with 20-40% 

dead cells (Figure 9.4).  

 In the presence of P/12-7NGK-12/L (amino acid-substituted gemini surfactant), filipin 

caused a 89.1±0.8% cytotoxicity. A decrease of the filipin concentration to 1 μg/mL did not 

improve cell viability significantly (82.4±5.2% dead cells). Thus filipin could not be used as an 

endocytosis inhibitor due to the significant combined toxicity with the P/G/L nanoparticle. 

However, genistein, another inhibitor of the caveolae-mediated uptake had a cell toxicity of 

41.2±1.1% in the presence of P/12-7NGK-12/L, in the range of other agents. Methyl-β-

cyclodextrin which inhibits both clathrin- and caveolae- dependent endocytosis also increased 

cytotoxicity with 26.3±8.9% and 40.6±5.4% cell death in the presence of P/12-7NH-12/L and 

P/12-7NGK-12/L nanoparticles, respectively. 
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Figure 9.3: Cellular toxicity of the endocytic inhibitors in Sf 1 Ep cells. Cellular toxicity of 

chemical inhibitors/potassium depletion in Sf 1 Ep cells was measured at 1, 2, 3 and 4 hours. 

Conditions regarding concentration of the inhibitor and incubation time that retained cell 

viability greater than 80% were selected for the cellular uptake study. 
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Figure 9.4: Cellular toxicity of the endocytic inhibitors in the presence of P/G/L 

nanoparticles in Sf 1 Ep cells. Combined cellular toxicity of P/12-7NH-12/L or P/12-7NGK-

12/L in the presence of chemical inhibitors/potassium free buffer in Sf 1 Ep cells was measured 

at 72 hours. Filipin had a significantly high combined toxicity; therefore, it was not selected for 

gene expression study of the P/12-7NGK-12/L nanoparticles.  
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 Clathrin-mediated uptake inhibition (potassium depletion, chlorpromazine) along with 

P/G/L nanoparticles showed an increase in toxicity to 20-45% cell death. In potassium depleted 

cells, the cytotoxicity values were 44.6±4.8% of dead cells in the presence of P/12-7NH-12/L 

and 43.8±4.7% dead cells after treatment with P/12-7NGK-12/L. Cytotoxicity was 26.6±8.9% in 

cells incubated with chlorpromazine and P/12-7NH-12/L, while it was 37.9±4.6% in the 

presence of P/12-7NGK-12/L. Wortmannin marginally increased cytotoxicity to 16.1±7.6% and 

27.2±6.5% in the presence of P/12-7NH-12/L and P/12-7NGK-12/L, respectively. With the 

exception of filipin in the presence of P/12-7NGK-12/L, the cell toxicity among endocytosis 

inhibitors was not significantly different, thus their intrinsic toxicity was not considered as a 

modifying factor in gene expression. Due to the higher toxicity of filipin, genistein was selected 

to correlate gene expression, through the caveolae-dependent pathway, of the P/12-7NGK-12/L 

nanoparticles. 

 

9.4.3.  Cellular uptake of P/G/L nanoparticles in cells treated with chemical 

inhibition/potassium depletion 

 P/G/L nanoparticles were prepared using TM-rhodamine (red) labeled plasmid in the 

presence of fluorescent (green) labeled helper lipid. DAPI (blue) was used as fluorescent stain 

for the cell nuclei. The objective was to determine, qualitatively, whether materials were 

transferred into the cells and whether the presence of inhibitors induced a difference in the 

cellular uptake of P/12-7NH-12/L and P/12-7NGK-12/L nanoparticles. Interestingly, we 

observed that the inhibition of caveolae-mediated (genistein) or clathrin-mediated 

(chlorpromazine) uptake pathways did not have any effect on cellular uptake of P/12-7NGK-

12/L or P/12-7NH-12/L nanoparticles (Figure 9.5: B & G, C & H). However, almost no 

particles were internalized by the cells treated with either P/12-7NGK-12/L or P/12-7NH-12/L 

nanoparticles when both clathrin-mediated and caveolae-mediated uptake pathways were 

inhibited by treatment with methyl-β-cyclodextrin (Figure 9.5: D & I). This suggests that both 

clathrin-mediated and caveolae-mediated pathways are playing an important role in uptake of 

these particles. Wortmannin (Figure 9.5: E & J) showed no difference in the cellular uptake of 

P/12-7NGK-12/L or P/12-7NH-12/L nanoparticles. 
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Figure 9.5: Laser scanning confocal microscopy (LSCM) images of Sf 1 Ep cells. Cells were 

pretreated with genistein (B & G), chlorpromazine (C & H), methyl-β-cyclodextrin (D & I) and 

wortmannin (E & J). Cells (A to E) were incubated with P/12-7NGK-12/L and Cells (F to J) 

were incubated with P/12-7NH-12/L for 2 hours. DAPI was used for staining the cell nuclei. At 

the end of the study, cells were washed with PBS and images were recorded. DNA (red), DOPE 

(green) and cell nuclei (blue). 
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9.4.4.  Gene expression of P/G/L nanoparticles in cells treated with chemical 

inhibition/ potassium depletion 

 In our previous studies, we found that the amino acid-substitution in the spacer of the 

parent gemini surfactant increased its transfection efficiency [223]. Here, we evaluated, 

quantitatively,  the effect of each uptake pathway on gene expression of P/12-7NH-12/L and 

P/12-7NGK-12/L. Nanoparticles internalized via caveolae-mediated, clathrin-mediated and 

macropinocytosis encounter different intracellular conditions; however, in each case the particles 

should escape degrading conditions such as lysosomes for successful gene expression. The gene 

expression levels achieved after inhibiting each cellular uptake pathway, separately, provides 

information on efficiency of nanoparticles in escaping these detrimental conditions. 

 

Caveolae-mediated uptake 

 In the absence of any inhibitor treatment to the cells, the gene expression in the P/12-7NH-

12/L transfected cells was 183±17.5 pg IFNγ/20000 cells (Figure 9.6). Gene expression after 

P/12-7NH-12/L nanoparticle transfection was 84±9.4 pg IFNγ/20000 cells and 31±14.9 pg 

IFNγ/20000 cells in the presence of genistein and filipin, respectively, significantly lower 

(p<0.05) compared to the cells treated with P/G/L nanoparticles in the absence of the inhibitors. 

 The cells treated with the glycyl-lysine substituted nanoparticles, P/12-7NGK-12/L, 

exhibited gene expression of 749±15.2 pg IFNγ/20000 cells in the absence of inhibitors. This 

gene expression was not significantly affected by inhibition of caveolae-mediated uptake 

(genistein), exhibiting protein levels of 601±200 pg IFNγ/20000 cells. Unfortunately, due to high 

toxicity of filipin in the presence of P/12-7NGK-12/L (Figure 9.4), the gene expression data was 

not used for analysis. Methyl-β-cyclodextrin, that inhibits both clathrin- and caveolae-mediated 

uptake, reduced significantly (p<0.05) gene expression in cells transfected with P/12-7NH-12/L 

and P/12-7NGK-12/L nanoparticles to 6±2.2 pg IFNγ/20000 cells and 50±21.1 pg IFNγ/20000 

cells (Figure 9.6), respectively.  

 In conclusion, this suggests that caveolae-mediated uptake was crucial for successful gene 

expression of P/12-7NH-12/L nanoparticles. However, inhibition of caveolae-mediated uptake 

alone lowered slightly, but not significantly, the gene expression in the cells transfected with the 

P/12-7NGK-12/L nanoparticles. 
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 Figure 9.6: Effect of endocytic inhibitors on gene expression of P/G/L nanoparticles. 

Interferon (IFN)-γ expression was measured at 72 hours in cells incubated with P/G/L 

nanoparticles in the presence of endocytic inhibitors. In the P/12-7NH-12/L-treated cells, gene 

expression in cells pre-treated with caveolae-mediated uptake inhibitors (genistein, filipin) was 

significantly lower than the untreated (no inhibitors) cells, whereas gene expression was 

significantly higher on inhibiting clathrin-mediated uptake (chlorpromazine). For the P/12-

7NGK-12/L nanoparticles, gene expression was significantly lower in the presence of methyl-β-

cyclodextrin (clathrin- and caveolae-mediated uptake inhibitor). * represents significant 

difference, p<0.05, compared to ‘No inhibitors’ control cells treated with P/12-7NH-12/L 

nanoparticles (No inhibitors black bar). $ represents significant difference, p<0.05, compared to 

‘No inhibitors’ control cells treated with P/12-7NGK-12/L nanoparticles (No inhibitors dashed-

line bar) 
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Clathrin- mediated uptake 

 It was interesting to note that gene expression of P/12-7NH-12/L nanoparticles was 

significantly higher (p<0.05) after clathrin-mediated uptake inhibition, compared to cells without 

inhibitors (Figure 9.6). The gene expression increased to 483±30.6 pg IFNγ/20000 cells in the 

cells pre-treated with chlorpromazine. Potassium depletion, which also inhibits clathrin-mediated 

uptake, increased gene expression of P/12-7NH-12/L to 415±70 pg IFNγ/20000 cells.  

Inhibition of clathrin-mediated uptake by chlorpromazine slightly reduced gene expression of 

P/12-7NGK-12/L to 613±159 pg IFNγ/20000 cells while gene expression was moderately 

increased to 1104 ±235 pg IFNγ/20000 cells after potassium depletion. However, the effect of 

inhibition of clathrin-mediated uptake on gene expression of P/12-7NGK-12/L was not 

significant compared to cells without inhibitors. As stated above, inhibition of both clathrin-

mediated and caveolae-mediated uptake with methyl-β-cyclodextrin reduced the gene expression 

of P/12-7NGK-12/L significantly (p<0.05) compared to the control transfected cells. 

In conclusion, P/12-7NH-12/L nanoparticles internalized via clathrin-mediated uptake were not a 

major contributor to overall gene expression. On the contrary, P/12-7NGK-12/L nanoparticles 

following either clathrin- or caveolae- mediated pathway resulted in successful gene expression. 

 

Macropinocytosis 

 Macropinocytosis inhibitor, wortmannin, did not significantly modify gene expression of 

either P/12-7NH-12/L or P/12-7NGK-12/L (Figure 9.6). Protein levels of 121±49 pg 

IFNγ/20000 cells and 606±104 pg IFNγ/20000 cells were measured for P/12-7NH-12/L and 

P/12-7NGK-12/L, respectively. 
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9.4.5.  Particle size measurement of P/G/L nanoparticles as a function of pH 

  The pathway of cellular uptake determines the intracellular fate of the engulfed particle 

[125]. Cellular internalization of the particles via clathrin-coated endosomes proceeds with an 

early influx of H
+
 before fusion with the late endosome, finally merging with the lysosomes. In 

order to simulate these conditions, we evaluated the behaviour of the P/G/L complexes over the 

pH range of 8.0-3.0. Particle size increased in the pH range 8.0-5.5 followed by a decreasing 

trend (Figure 9.7), fitting a second order polynomial (quadratic) relationship (R
2
 > 0.9) between 

pH and particle size of P/12-NH-12/L nanoparticles. The P/12-7NGK-12/L nanoparticles 

followed a third order polynomial (cubic) curve exhibiting an exponential increase in particle 

size from neutral (~7.4) to acidic (~4) pH. The increase in size of P/12-7NGK-12/L nanoparticles 

could be attributed to the accumulation of H
+
 ions due to the higher buffering capacity of the 

amino acid-substituted gemini surfactant.  

 The volume of acid (0.1 M HCl) used per unit pH value provided a relative comparison of 

the buffering ability of 12-7NGK-12 and 12-7NH-12. The pH titration curve revealed that P/12-

7NGK-12/L nanoparticles had considerably higher buffering capacity than P/12-7NH-12/L at 

neutral (~7.4), slightly acidic (6-5) and strongly acidic (~4) pH values (Figure 9.8).  
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Figure 9.7: Particle size measurement of P/12-7NH-12/L and P/12-7NGK-12/L at different 

pH. A second order polynomial curve (solid line) was found to be a best fit (R
2
 > 0.9) for P/12-

7NH-12/L while a third order polynomial (dashed line) curve (R
2
 > 0.9) described the effect of 

pH on P/12-7NGK-12/L particle size. Stronger acidic conditions resulted in a significant increase 

in P/12-7NGK-12/L particle size. 
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Figure 9.8: Comparison of buffering capacity of P/G/L nanoparticles. A pH titration curve of 

P/G/L nanoparticles exhibited considerably higher buffering capability of P/12-7NGK-12/L 

compared to P/12-7NH-12/L in neutral, slightly acidic and strongly acidic pH.  
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9.4.6.  Interactions between the DNA and gemini surfactants  

 Ethidium bromide exclusion assay is a useful technique to study DNA/delivery vector 

interaction. The assay was performed in the presence of the polyanionic heparin, which competes 

with DNA to bind with the cationic gemini surfactants. The interaction between the gemini 

surfactants and heparin could cause a dissociation of the P/G/L complexes, allowing the ethidium 

bromide to intercalate in the DNA strand and emit fluorescence. Lower fluorescence values 

indicate stronger binding between DNA and gemini surfactants and a higher protection of the 

genetic material. Also, stronger binding properties ensure that DNA is not released prematurely, 

from the lipoplexes, upon interaction with negatively charged cell surface proteins.  

 At the 1:10 charge ratio of DNA to gemini surfactant in the presence of DOPE, a small 

increase in fluorescence (8.9±0.8%) was observed in P/12-7NGK-12/L nanoparticles upon 

addition of polyanions (5 U/mL heparin), exhibiting a stronger protection of DNA compared to 

the parent gemini surfactant which had an increase of 52.3±2.3% fluorescence (Figure 9.9). A 

similar trend occurred at higher concentrations of 10 U/mL and 20 U/mL of heparin. 

Interestingly, a steady increase in fluorescence was observed in P/12-7NGK-12/L nanoparticles 

with a significant spike in fluorescence (32.9±5.7%) occurring in the presence of 20 U/mL 

heparin. This indicates that 12-7NGK-12 has balanced DNA binding properties which ensures 

protection of DNA as well as an ability to interact with a highly negative charged membrane, 

such as the inside of caveolae endosomes. These balanced binding properties (protection and 

release) may be instrumental in efficient endosomal escape leading to higher transfection 

efficiency of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles (Figure 9.6). 

9.4.7. Transmission electron microscopy (TEM) imaging 

 Particle shape and particle aggregation behaviour can also influence the gene expression of 

nanoparticles. Micrographs of the P/12-7NH-12/L and P/12-7NGK-12/L nanoparticles showed 

consistency with the previous light scattering measurement, with particles of 100-150 nm in 

diameter being observed. The TEM images showed no aggregation behaviour of the particles 

(Figure 9.10). However, the P/12-7NGK-12/L nanoparticles were found to be more cylindrical 

shaped, while the P/12-7NH-12/L particles showed spherical morphology.  
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Figure 9.9: DNA-gemini surfactant binding properties. An ethidium bromide dye exclusion 

assay was performed to determine the binding efficiency of 12-7NH-12 and 12-7NGK-12 with 

plasmid DNA in the presence of DOPE and heparin (5 U/mL, 10 U/mL and 20 U/mL). At lower 

concentration of heparin (polyanions), amino-acid substituted gemini exhibited stronger DNA 

binding compared to unsubstituted gemini surfactant. At higher concentration (20 U/mL 

heparin), a significant increase in fluorescence was observed, indicating dissociation of DNA and 

12-7NGK-12. 

   

Figure 9.10: Transmission electron microscopy (TEM) images of P/G/L complexes. (A) 

P/12-7NH-12/L nanoparticles (B) P/12-7NGK-12/L nanoparticles. P/12-7NGK-12/L 

nanoparticles are cylindrical while P/12-7NH-12/L are spherical in shape. Scale bar corresponds 

to 200 nm. 
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9.5. Discussion 

 In non-viral gene delivery, cellular uptake of the DNA nanoparticles can influence the 

overall gene expression due to the number of particles that are internalized and the intracellular 

trafficking of the engulfed particle. In our previous work we found that glycyl-lysine substitution 

in the spacer region of the gemini surfactants improved gene expression, and the transfection 

efficiency correlated with DNA binding properties of gemini surfactants [223]. In this study, we 

evaluated whether the pathway of the cellular uptake of the P/12-7NH-12/L and P/12-7NGK-

12/L nanoparticles in Sf 1 Ep cells is a major factor affecting the transfection efficiency of these 

novel delivery systems. Clathrin-mediated uptake, caveolae-mediated uptake and 

macropinocytosis are known to be three of the most important uptake pathways in mammalian 

cells [125]. Treatment with chemical inhibitors such as genistein, filipin, methyl-β-cyclodextrin, 

chlorpromazine, wortmannin, and potassium free buffer are routinely used to determine the 

effect of each pathway on cellular uptake of nanoparticles [137, 215, 219, 224, 225]. Upon 

treatment of the Sf 1 Ep cells with these chemicals at different concentrations, we selected those 

agents that showed high cell viability with no significant difference among the inhibitors, thus 

minimizing the impact of the agents on the overall gene expression. Conditions regarding 

concentration of the inhibitor and incubation time that retained cell viability greater than 80% 

were selected for further experiments (Figure 9.3). In previous studies, we found that the P/G/L 

nanoparticles were safe, inducing minimal toxicity (9-12%) to the cells [223]; however, the 

combined toxicity of P/G/L nanoparticles and chemical inhibitors/potassium depletion was 

unknown. The cell toxicity induced by the chemical treatment in the presence of P/G/L 

nanoparticles increased to 30-40% (Figure 9.4). Without a significant difference in the toxicity 

among various agents, the cellular uptake study in Sf 1 Ep cells was found to provide meaningful 

insight of the mechanism of uptake and shed light on the crucial relationship between the 

physicochemical parameters and the difference in the transfection efficiency of the parent and 

glycyl-lysine substituted gemini nanoparticles. 

 In the cellular uptake study using CLSM, it was observed that the inhibition of caveolae-

mediated (genistein) or clathrin-mediated (chlorpromazine) uptake did not influence significantly 

the uptake of P/12-7NGK-12/L or P/12-7NH-12/L nanoparticles. However, no particles were 

internalized upon inhibition of both clathrin-mediated and caveolae-mediated pathways, 

simultaneously, by methyl-β-cyclodextrin (Figure 9.5: D & I). This suggests that P/G/L 
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nanoparticles were able to recruit both clathrin-mediated and caveolae-mediated uptake. In 

previous studies, cationic lipid-DNA complexes (using DOTAP and SAINT-2/DOPE) have been 

suggested to preferentially internalize via clathrin-mediated endocytosis [137, 226]. However, 

more recent studies emphasized that the physiochemical parameters of the DNA complexes 

(such as particle size, shape and surface chemistry) as well as cell type can influence the uptake 

behaviour [140, 149, 150]. Polyethylenimine (PEI)/DNA complexes were found to internalize 

via clathrin- or caveolae-mediated mechanisms depending on both PEI type (linear or branched) 

and cell line [140]. Interestingly, another study using cationic lipid, Amphiphile 1 and DNA 

complexes found macropinocytosis to be the major pathway leading to gene transfection in CHO 

cells [227]. Caveolae-mediated uptake was also found to be important for transfection of human 

serum albumin coated DOTAP/DOPE complexes [228]. In the present study, the role of 

caveolae-mediated uptake in cationic gemini surfactant based DNA nanoparticles was confirmed 

by a drop in gene expression in cells transfected with P/12-7NH-12/L in the presence of 

genistein and filipin, 54% (genistein) and 83% (filipin), compared to the control. Inhibition of 

clathrin-mediated uptake (chlorpromazine, potassium depletion) did not reduce the gene 

expression of P/12-7NH-12/L; on the contrary, it led to an increase (more than double) in gene 

expression. There may be two reasons for this: (a) inhibition of the clathrin-mediated uptake 

results in an up-regulation of other uptake pathways as observed in certain mammalian cell types 

[229] or (b) inhibition of the clathrin-mediated pathway leads to the availability of more 

nanoparticles to follow the caveolae-mediated uptake, or a combination of both. P/12-7NH-12/L 

nanoparticles following the intracellular route via clathrin-mediated uptake may not be 

contributing substantially in overall gene expression. No gene expression was observed upon 

inhibition of both clathrin-mediated and caveolae-mediated pathway by methyl-β-cyclodextrin. 

Macropinocytosis (wortmannin) had no significant effect on the gene expression in cells 

transfected with the P/12-7NH-12/L nanoparticles. While there was only a modest decrease in 

the gene expression in the P/12-7NGK-12/L transfected cells after inhibition of clathrin- or 

caveolae-mediated uptake, gene expression decreased by 93% when both pathways were blocked 

simultaneously by methyl-β-cyclodextrin. This suggests that P/12-7NGK-12/L nanoparticles can 

be internalized via either clathrin-mediated or caveolae-mediated routes and avoid degradation, 

in turn releasing DNA at appropriate time for successful gene expression. 
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 Analysis of gene expressions also pointed to an interesting fact: glycyl-lysine substitution 

not only improved the overall transfection efficiency of P/12-7NGK-12/L but also the gene 

expression level via each route (clathrin-mediated or caveolae-mediated) was higher than P/12-

7NH-12/L. This difference in gene expression may be due to the number of particles that are 

internalized or improved endosomal escape of P/12-7NGK-12/L particles. Particle size and shape 

may affect cellular uptake, significantly [150]. As reported previously, the particle size of the 

P/12-NGK-12/L and P/12-NH-12/L nanoparticles was 117.3 ± 0.6 nm and 133.0 ± 2.8 nm, 

respectively [199]. The smaller particle size of P/12-7NGK-12/L might be advantageous in 

improving the rate of cellular uptake. Rod-like or cylinder shaped particles were found to be 

internalized faster than the spherical particles [150]. The effect of cylindrical morphology is 

more significant on the cellular uptake when the aspect ratio (diameter to width) is high, 

especially in particles with diameter >150 nm [150]. TEM images showed that P/12-7NH-12/L 

particles were cylindrical while P/12-7NGK-12/L particles were spherical (Figure 9.10). A large 

number of particles ensure availability of more DNA particles inside the cell. However, this does 

not guarantee higher gene expression since the DNA can be degraded in the cytosol. Therefore, 

we further analyzed the important physicochemical properties that may be contributing to more 

efficient intracellular trafficking of these nanoparticles. 

9.5.1.  Glycyl-lysine substitution improves endosomal escape in clathrin-

mediated pathway 

 Intracellular trafficking of an engulfed particle is influenced by the type of uptake. In 

clathrin-mediated endocytosis, the nanoparticles are entrapped in endosomes, transported to late 

endosomes, and finally merged with lysosomes for complete degradation. This latter step, 

degradation of the genetic material in the lysosomes, can significantly decrease the overall 

availability of plasmid DNA for translocation to the nucleus for gene expression [230]. However, 

several scenarios can be envisioned to overcome this challenge by utilization of an interesting 

phenomenon that happens during the transfer of cargo from early endosomes to late endosomes. 

In mammalian cells, there is an early drop in pH in the clathrin-coated endosomes as they travel 

towards the late endosomes, creating strong acid conditions before merging with the 

lysosomes[129]. These conditions can be used in an advantageous manner by designing pH-

sensitive delivery vectors that can either absorb H
+
-ions or unfold (relax) in an acidic 
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environment. In the former case, a significant increase in H
+
-ions will trigger an increased inflow 

of aqueous medium leading to swelling and then bursting of endosomes, releasing the DNA 

nanoparticles into the cytoplasm [231]. In the latter case, the nanoparticles can unfold and 

increase their size, significantly, leading to a mechanical disruption of the endosomal membrane 

and rescuing the DNA from lysosomal degradation [94]. 

 In the clathrin-mediated uptake, we found that buffering capacity (Figure 9.8) and particle 

size increment (Figure 9.7) over neutral to acidic pH may be two important properties that could 

be causing P/12-7NGK-12/L nanoparticles to escape more efficiently than the P/12-7NH-12/L, 

and lead to timely release of plasmid for nuclear localization and gene expression. In the slow 

but steady decrease of pH, the P/12-7NGK-12/L nanoparticles could absorb more protons 

triggering an inflow of Cl
–
. The flow of ions also brings more fluid inside the endosomal vesicle, 

ultimately leading to its breakdown and release of the DNA into the cytoplasm. This scenario is 

supported by the fact that, at physiological pH, the size of the P/12-7NGK-12/L nanoparticles 

was 119.5±4.8 nm which then increased significantly with a drop in pH (Figure 9.7). Maximum 

particle size of 144.8±5.9 nm was found at strongly acidic conditions (~pH 4), a net increase of 

21.2% compared to the original particle size. On the other hand, the parent compound had a 

particle size of 128.6±0.6 nm at physiological pH with a maximum size of 136.7±0.3 nm around 

5-5.5 pH (Figure 9.8). This is an overall increase of only 6.3% compared to the original particle 

size which may not have been instrumental in endosomal escape. The decrease in pH in the 

endosomes could allow for additional interaction with the endosomal membrane and promote 

DNA escape/release (Figure 9.11). This increase in particle size could be an indication of the 

relaxation of the nanoparticles, facilitating the availability of more 12-7NGK-12 molecules for 

absorption of H
+
, thus, increasing overall buffering capacity of the system. The increase in 

particle size may also be an indication of reduced interaction between the DNA and 12-7NGK-

12, facilitating DNA release from the complexes after endosomal escape, as suggested by 

increased ethidiun bromide intercalation in the presence of high concentrations of polyanion 

(Figure 9.9).  
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Figure 9.11: Intracellular trafficking of P/G/L complexes via clathrin-mediated pathway. A 

schematic comparison of crucial steps in endosomal escape of P/12-7NGK-12/L (on the left side 

of the image) and P/12-7NH-12/L (on the right side of the image) nanoparticles in clathrin-

mediated cellular uptake. 
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9.5.2.  Glycyl-lysine substitution improves DNA/gemini surfactant binding 

properties 

 Previously, we found that DNA/gemini surfactant interactions play a crucial role in the 

gene delivery ability of these molecules[223]. Conformational flexibility achieved by insertion of 

a glycine moiety as a linking molecule between the spacer region and terminal lysine leads to a 

balance between DNA binding and release behaviour of the P/12-7NGK-12/L nanoparticles. In 

this study, we further explored this idea in the context of intracellular trafficking following 

caveolae-mediated uptake of the P/G/L nanoparticles. 

 In caveolae-mediated uptake, there is no gradual pH transition that could influence the 

interaction between the gemini surfactants and DNA. Therefore, we mimicked this pathway by 

evaluating the behaviour of the nanoparticles in the presence of a polyanion (heparin) which 

could potentially compete with the DNA for the electrostatic interaction with the cationic 

charges on the gemini surfactants and determined its effect on DNA binding properties of the 

gemini surfactants (Figure 9.12). We found that low concentrations of heparin with P/12-7NGK-

12/L did not affect binding of the gemini surfactant to DNA, significantly, compared to 

nanoparticles formulated with the parent gemini surfactant. The shielding is crucial for the initial 

interaction of P/G/L nanoparticles with the cell surface membrane and uptake, thus avoiding 

premature release of the DNA at the cell surface. However, at higher concentration of heparin, 

the accessibility of the DNA in P/12-7NGK-12/L lipoplexes increased significantly (Figure 9.9). 

This suggests that the 12-7NGK-12/L lipid system provides balanced DNA binding properties 

that enable the 12-7NGK-12/L system to protect the DNA as well as interact readily with the 

anionic proteins coating the inner surface of the caveolae-mediated vesicle (endosome). This 

balance may be instrumental in the efficient disruption of the vesicle membrane leading to DNA 

escape. 
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Figure 9.12: Intracellular trafficking of P/G/L complexes via caveolae-mediated pathway. 

A schematic comparison of crucial steps in endosomal escape of P/12-7NGK-12/L (on the left 

side of the image) and P/12-7NH-12/L (on the right side of the image) nanoparticles in caveolae-

mediated cellular uptake. 
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9.6. Conclusion 

 Amino-acid substitution in the spacer of the gemini surfactant did not alter the cellular 

uptake pathway, showing a similar pattern to the unsubstituted parent gemini surfactant. Both 

clathrin-mediated and caveolae-mediated pathways were equally important routes of uptake for 

P/G/L nanoparticles. Glycyl-lysine substitution in the gemini spacer improved buffering capacity 

and imparted a pH-dependent increase of particle size. This property confers to the P/12-7NGK-

12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes and leads 

to higher transfection efficiency compared to the parent gemini surfactant. More balanced 

binding properties (protection and release) of P/12-7NGK-12/L in the presence of polyanions 

play an important role in the release of nanoparticles internalized via caveolae-mediated uptake. 

These factors (balanced binding properties and improved intracellular endosomal escape) will be 

taken into consideration in the design of further structural modifications, such as attachment of 

other basic amino acids via glycyl linkage to the gemini surfactants of the P/G/L nanoparticles. 
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This manuscript presents the ex vivo evaluation of optimal amino acid-substituted gemini 

surfactant based gene delivery systems and formulation of these delivery systems for mucosal 

application. The optimized formulations were tested in rabbits by non-invasive administration 

into the vagina and the gene expression was evaluated. The results of this study were compared 

to in vitro results and overall conclusions were drawn. This manuscript concludes the overall 

objectives of my dissertation work. I conducted all experiments and prepared the manuscript. 

 

This manuscript addresses my last two research objectives: 

- To assess the extent of penetration of the DNA into the vaginal tissue using the amino acid-

substituted gemini surfactant that showed the best performance in vitro.  

- To develop novel mucosal delivery systems using the amino acid-substituted gemini 

surfactant with the best performance from in vitro evaluation. 

- To evaluate gene expression in vaginal tissue after non-invasive vaginal application in a 

rabbit animal model. 
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10.1. Abstract 

 Diquaternary ammonium-based gemini surfactants have been utilized as gene delivery 

vectors. Recently, we developed amino acid- and peptide-substituted spacers of gemini 

surfactants, ‘biolipids’ that exhibited high transfection efficiency in rabbit epithelial cells. In this 

study, we developed non-invasive vaginal mucoadhesive gene delivery systems containing these 

gemini surfactants using poloxamer 407 and diethylene glycol monoethyl ether (DEGEE). 

Poloxamer at 16% w/v concentration in DEGEE aqueous solution produced dispersions that 

gelled near body temperature and had a high yield value, preventing leakage of the formulation 

from the vaginal cavity. Intravaginal administration in rabbits showed that the glycyl-lysine 

substituted gemini surfactant formulated in 16% poloxamer 407 led to a higher gene expression 

compared to the parent unsubstituted gemini surfactant. This provides a proof-of-concept that 

amino acid-substituted gemini surfactants can be used as non-invasive mucosal (vaginal) gene 

delivery systems with potential applications in  diseases associated with mucosal epithelia. 

 

Keywords: Gemini surfactant, non-viral gene delivery, mucosal, intravaginal administration, 

gelling temperature, gene expression. 
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10.2. Introduction 

 The female reproductive tract is vulnerable to a wide range of sexually transmitted 

pathogens such as human immunodeficiency virus, human papillomavirus and herpes simplex 

virus. For protection, an effective local immune response at the first point of contact i.e., cervical 

epithelium, should detect and deter any pathogenic entry through this route. The traditional 

vaccine approaches, such as denatured viral protein, fail to retain proper conformation of 

antigenic epitopes required for a stronger humoral and cellular immune response [232]. Recently, 

plasmid DNA based vaccines used to generate antigenic proteins in situ, were evaluated as a 

novel approach for inducing strong immune protection against these pathogens. Plasmid DNA 

vaccine can present these antigens in a similar conformation and repetitive ordered arrangement 

as that of native viral epitopes [233]. This would help to induce cytotoxic T cell lymphocyte 

protection against virus particles that may escape from recognition by IgG or IgA antibodies. In 

addition, vaginal gene delivery systems have the potential to improve cancer treatment (such as 

cervical cancer) and can be utilized in conditions such as congenital dyskeratosis and lichen 

planus which affect both the oral and vaginal mucosa [175, 176]. 

 Some of the advantages of vaginal gene delivery are that the vaginal mucosa offers a 

relatively large surface area for drug permeation, high vascularization, a low enzymatic activity 

and ease of access with potential for self-administration [171, 234]. Nevertheless, intravaginal 

delivery of plasmid DNA suffers from poor permeability into tissues, degradation by enzymes, 

dilution or entrapment in the mucous, and leakage from the vagina [171]. To address some of the 

deficiencies of gene delivery using non-viral vectors, we have designed and developed a series of 

gemini surfactant-based nanoparticles.  

 Cationic gemini surfactants have shown promising results as non-viral gene delivery agents 

due to their structural versatility and polymorphism [7-9, 182, 235]. A number of modifications 

have been introduced in the cationic gemini surfactants to improve their transfection efficiency 

and to reduce toxicity. Recently, we designed amino acid-functionalized gemini surfactants, 

‘biolipids’ and evaluated their ability to form nanostructures in the presence of DNA, their 

efficiency to deliver the genetic material into the cells and compared their relative safety to 

previous generations of gemini compounds in vitro [10, 199, 223]. Among these derivatives, the 

glycyl-lysine substituted spacer of a gemini surfactant (12-7NGK-12, Figure 10.1A) exhibited 

the highest gene expression among the series, performing significantly better than its parent 
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compound (12-7NH-12, Figure 10.1B). Cellular uptake studies revealed that the glycyl-lysine 

substitution in the spacer of a gemini surfactant did not alter the cellular uptake pathway; 

however, it imparted a high buffering capacity, a pH-dependent particle size increase and 

balanced binding properties, leading to high gene expression [236].  

 The in vitro studies were carried out in rabbit epithelial cells as a cellular model to develop 

non-invasive vaginal (mucosal) formulations [199, 223]. To further overcome barriers to 

intravaginal delivery, permeation enhancers in combination with in situ gelling polymers, such as 

poloxamers, were used to increase the residence time of the formulation and penetration of 

plasmid DNA in the vaginal cavity, thereby, increasing delivery efficiency [172, 174].  

 In this study, we reported the development of vaginal formulations that incorporate the 

DNA/biolipid nanoparticles using a gelling agent, poloxamer 407, and permeation enhancer 

diethylene glycol monoethyl ether (DEGEE). The composition was optimized to achieve 

temperature-dependent in-situ gelling. Finally, the formulations containing the model plasmid 

were tested in rabbits and their gene expression was determined using confocal microscopy. 
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Figure 10.1: Chemical structure of 12-carbon tail gemini surfactants. (A) glycyl-lysine 

substituted gemini surfactant (12-7NGK-12) and (B) Parent unsubstituted gemini surfactant (12-

7NH-12).  
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10.3. Materials and methods 

10.3.1. Plasmid construction 

 A model plasmid was constructed by inserting tdTomato gene, cloned from commercially 

available pCMV-tdTomato (Clontech Laboratories, Inc., Mountain View, U.S.A.), into 

previously optimized pGT backbone [9]. Forward primer 5`-

AGAATTCCGCCACCATGGTGAGCAAGGGC-3’ and reverse primer 5’- 

AGTAGATCTCTACTTGTACAGCTCGTCCATGC-3’ were used to amplify the tdTomato 

gene sequence. Purified tdTomato segment and pGT were digested, separately, in presence of 

restriction endonucleases – EcoR1 and Bgl II; both purchased from New England Biolabs, 

Canada. The tdTomato fragment was ligated into the pGT vector and amplified in a bacterial 

system. The gene expression (red fluorescent protein) of plasmid pGT.tdTomato was tested in 

rabbit epithelial cells using fluorescence microscopy (Olympus IX71 inverted microscope, 

Olympus Corporation, Japan).  

10.3.2. Formulation development 

  The synthesis and characterization of these gemini surfactants were reported previously 

[199, 237, 238]. For the ex vivo study, gemini surfactants were formulated with a model plasmid, 

pGTmCMV.IFN-GFP, expressing interferon gamma (IFN) and green fluorescent protein (GFP) 

in a bicistronic system in the presence of a helper lipid, 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE; Avanti Polar Lipids, AL, U.S.A.), creating plasmid/gemini 

surfactant/lipid (P/G/L) nanoparticles [9]. DNA/gemini surfactant complexes were prepared at a 

charge ratio (-/+) of 1:10, incorporated in 2mM DOPE and dispersed by sonication (as used for 

in vitro transfection [14]). 

 Poloxamer 407 (Pluronic® F127) was purchased from Spectrum Chemicals, Toronto, 

Canada. A series of poloxamer 407 dispersions (15% w/v, 16% w/v, 16.5% w/v, 17% w/v, and 

18% w/v) were prepared by mixing the polymer with water and diethylene glycol monoethyl 

ether (Transcutol® P, Gattefossé, Toronto, Canada) at 10% v/v of total formulation. The polymer 

dispersions were incubated at 4 °C for 24 hours to ensure complete hydration [239].  

 For animal studies, gemini surfactants were formulated with plasmid, pGT.tdTomato, in the 

presence of a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE; Avanti Polar 
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Lipids, AL, U.S.A.), creating plasmid/gemini surfactant/lipid (P/G/L) complexes. Plasmid 

DNA/gemini surfactant complexes were prepared at a charge ratio (-/+) of 1:10 and incorporated 

with DOPE at DOPE/gemini surfactant molar ratio of 8.3; as used in previous in vitro studies 

[14]. DOPE was dispersed by sonication in poloxamer/DEGEE/water and incorporated into 

plasmid DNA/gemini surfactant complexes. The formulation was incubated at 4 °C for 24 hours 

to ensure complete hydration of poloxamer in the formulation. 

10.3.3. Rheology 

 The rheological properties of poloxamer dispersions were determined using a digital 

rheometer (DV-III Programmable Rheometer, Brookfield, Middleboro, U.S.A.). The 

measurements were performed in a cone-and-plate jacketed system (cone diameter of 24 mm, 

cone angle 1.565°) at shear rates of 1-50 sec
-1

. The measurements were performed at 37±0.2 °C 

to simulate the effect of normal body temperature on the rheological behaviour of the poloxamer 

dispersion. The sample was incubated for 5 minutes at 37 °C before measurements. The 

rheological behaviour of the formulation was evaluated by plotting shear stress versus shear rate. 

A yield value, minimum force required to induce flow, of the polymer dispersions was calculated 

by extrapolating the curve at low shear rates (in the linear range). 

 The reversible sol-gel transition temperature of the poloxamer dispersions was determined 

by increasing temperature from 15 °C to 44 °C and measuring viscosity at a shear rate of 5 sec
-1

.  

10.3.4. Ex vivo permeation 

 This work was approved by the University of Saskatchewan’s Animal Research Ethics 

Board and adhered to the Canadian Council on Animal Care guidelines for humane animal use. 

 Glycyl-lysine substituted gemini surfactant, exhibiting the highest gene expression in vitro, 

was selected for further formulation development for studies in the rabbit model. 

 Vaginal tissues were collected from fresh carcasses of seven New Zealand White rabbits 

available at Lab Animal Services Unit (University of Saskatchewan, Saskatoon, Canada) and 

mounted in an in-line diffusion cell apparatus (PermeGear Inc., Hellertown, U.S.A.) with the 

mucous surface facing the donor compartment. The diffusion cells were maintained at 37 °C. 

The tissue samples were allowed to equilibrate for 10 minutes by circulating fresh PBS buffer in 

the receptor compartment, maintained at 37 °C, through the diffusion cells. The buffer solution 
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was circulated with a peristaltic pump (Model IPC, Ismatec, Germany) at a flow rate 30 μL/min 

and collected in a tube. Formulations were prepared, as described, using pGT.tdTomato plasmid 

and were placed in the receptor compartment on the mucous surface of the tissue. A total of 2 μg 

DNA per well (exposed tissue surface area of 0.63 cm
2
) was used. After 24 hours, the tissue 

samples were removed from the in-line diffusion cell and washed 5-6 times with PBS buffer. The 

tissue sample surface that was not exposed to the formulation was trimmed and the samples were 

stored at -80 °C. 

 For sample analysis, the tissue samples were incubated in 22 Kunitz/mL DNase I solution 

(Bio-Rad Laboratories, Mississauga, Canada) for 10 minutes at 37 °C to remove any traces of 

DNA from the sample surface. The enzyme was inactivated by heating at 95°C for 5 minutes, 

and then cooled on ice. A 25 mg of tissue was weighed from each sample and total DNA was 

extracted using QIAamp DNA Mini Kit (Kit (Qiagen Inc., Toronto, Canada). A 2 μg quantity of 

total DNA was used for estimation by amplifying kanamycin-resistance gene using nested PCR. 

External primers, 5’–ACT CAC CGA GGC AGT TCC AT-3’ and 5’–GGT AGC GTT GCC 

AAT GAT GT–3’ amplified a 540 bp fragment. DNA bands were separated on 1% agarose gel 

and images were taken using AlphaImager (ProteinSimple, Toronto, Canada). The 540 bp 

fragments were purified from the gel using PureLink™ Quick Gel Extraction Kit (Invitrogen, 

Burlington, Canada). The second set of primers, 5’–ATG GCA AGA TCC TGG TAT CG–3’ 

and 5’–TTA TGC CTC TTC CGA CCA TC–3’, amplified a 459-bp fragment within the 

previous fragment. The presence of 459 bp fragments confirmed the amplification of the correct 

gene sequence. 

 

10.3.5. Animal Study 

 This work was approved by the University of Saskatchewan’s Animal Research Ethics 

Board and adhered to the Canadian Council on Animal Care guidelines for humane animal use. 

 Twenty female New Zealand White rabbits (Charles River Laboratories, Canada) weighing 

around 2.4-2.7 kg were randomly divided into four groups (n=5 per group). Group 1 (control) 

was treated with poloxamer/DEGEE, group 2 with plasmid DNA/poloxamer/DEGEE, group 3 

with formulation containing parent gemini surfactant, and group 4 was treated with formulation 

containing glycyl-lysine substituted gemini surfactant. Thermosensitive formulations (100 µL 



 

126 

 

containing 100 µg pGT.tdTomato plasmid for each animal) were administered intravaginally 

using plastic feeding tube (18ga X 30mm, Instech Laboratories, PA, U.S.A.) connected to a 1 

mL syringe. Control animals were treated with 100 µL of 16% w/v poloxamer/DEGEE in water. 

The animals were manually restrained during the application and for additional 2 minutes to 

allow the formulation to gel. Treatments were repeated for four consecutive days with a 24-hour 

interval. Each animal received a total dose of 400 µg pGT.tdTomato plasmid. On the fifth day, 

the animals were anesthesized with isoflurane and 30 mL of blood was collected by cardiac 

puncture. The animals were euthanized under anesthesia and tissue samples (vagina, lymph 

nodes, spleen) were collected. Tissue samples were stored at -80 °C before analysis. The gene 

expression was determined using confocal microscopy. 

10.3.6. Confocal laser scanning microscopy (CLSM) 

 Tissue-TEK O.C.T. and Tissue-Tek cryomold were purchased from Sakura Finetek USA, 

Inc., Torrance, U.S.A. Rabbit vaginal tissue samples were frozen in Tissue-Tek O.C.T. using 

Tissue-Tek cryomold. Sections (30 μm) of the tissue were placed on lysine treated slides and 

coverslips were mounted with Prolong Gold antifade reagent containing DAPI (Life technologies 

Inc., Burlington, Canada). DAPI was used for cell nucleus staining. Images were acquired using 

a Leica TCS SP5 laser scanning confocal microscope (Leica Microsystems Inc., Benshein, 

Germany) and LAS AF Lite 2.4.1 (Leica Microsystems CMS GmbH) was used for image 

processing. Excitation/Emission wavelengths for tdTomato (red fluorescence) were 554/581 nm. 
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10.4. Results 

 Nanoparticles prepared by glycyl-lysine substituted gemini surfactant have shown 

significantly higher gene expression than unsubstituted parent gemini surfactant in rabbit 

epithelial cells, Sf 1 Ep Cells [223]. In the long term, the plan is to develop these nanoparticles 

into non-invasive mucosal DNA-based vaccines for human sexually transmitted infectious 

diseases. Therefore, we formulated the nanoparticles for vaginal administration in rabbit as an 

animal model. We optimized the polymer concentrations and included a permeation enhancer for 

easy administration and improved in vivo delivery of the P/G/L particles.  

10.4.1. Plasmid construction 

 As a model, a plasmid DNA was built by inserting the tdTomato gene into a plasmid 

backbone, pGT, previously used in our lab [9]. The pGT.tdTomato structure was confirmed by 

plasmid digestion (Supplementary information S1). Fluorescence microscopic evaluation of gene 

expression of pGT.tdTomato in rabbit epithelial cells showed red fluorescent cells, confirming 

the correct construction of plasmid (Figure 10.2). 

10.4.2.Evaluation of rheological properties and gelation temperature 

 To prevent the loss of the nanoparticles by leakage from the vaginal cavity, poloxamer 407 

was incorporated as a vehicle to induce in-situ temperature-dependent gelling. Poloxamer 

dispersions containing 16-20% w/v poloxamer 407 have been reported to gel between room 

temperature and body temperature [240]. We evaluated the rheological properties of poloxamer 

407 gels in the 15-18% w/v concentrations in the presence of 10% v/v DEGEE aqueous solution. 

 An increase in polymer concentration resulted in a decrease in gelling temperature of 

poloxamer dispersions (Figure 10.3). High concentrations of polymer, 18% and 17% in 

DEGEE/water, gelled near room temperature at 22 °C and 25 °C, respectively. A lower 

concentration of polymer containing 15% poloxamer produced dispersions that exhibited sol-gel 

transition at 35 °C, near normal body temperature. A polymer concentration range between 16-

16.5% imparted a sol-gel transition temperature around 28 °C providing an optimal temperature 

gap between ambient temperature of administration and in situ gelling temperatures. Based on 

these results, we excluded the 18% poloxamer dispersion, which gelled at 22 °C, from further 

rheological evaluation. 
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Figure 10.2: Gene expression of pGT.tdTomato in Sf 1 Ep cells. Fluorescent (A), white light 

(B) and overlay (C) images of rabbit epithelial cells electroporated with pGT.tdTomato 

(encoding red fluorescent protein). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C 



 

129 

 

 

 

 

 

Figure 10.3: Sol-gel transition temperature. Effect of poloxamer 407 concentration on gelling 

temperature of polymer dispersion in 10% v/v DEGEE aqueous solution. 

 

 

 

 

 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 15 20 25 30 35 40 45 50

V
is

c
o

si
ty

 (
ce

n
ti

p
o

is
e)

 

Sol-gel transiion temperature (°C) 

15% Poloxamer

16% Poloxamer

16.5% Poloxamer

17% Poloxamer

18% Poloxamer



 

130 

 

 

 

    

Figure 10.4: Rheogram of poloxamer dispersions in DEGEE aqueous solution at 37 °C.  

Poloxamer dispersions exhibited a pseudo plastic behaviour, showing an increase in shear stress 

with an increase in shear rate.  indicates increasing shear rate and    indicates decreasing 

shear rate. 
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Figure 10.5: Rheogram of poloxamer dispersions at low shear rate (1-10 sec
-1

) at 37 °C. 

Shear stress- shear rate rheograms of 16%, 16.5% and 17% polaxamer dispersions in DEGEE 

aqueous solutions exhibited a yield value > 900 dynes/cm
2
 while it was low (~73 dynes/cm

2
) for 

15% poloxamer dispersion. 
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 At body temperature, above the gelling temperature, poloxamer dispersions exhibited a 

non-newtonian pseudoplastic behaviour (Figure 11.4). The dispersions behaved as a fluid on 

applying shear stress and regained consistency rapidly upon lowering the shear rate, indicating 

thixotropic behaviour. Flow curve analysis also showed that a yield value greater than 900 

dynes/cm
2
 is required to induce flow in polymer dispersions with poloxamer 407 concentrations 

greater than 16% (Figure 11.5). The 15% poloxamer dispersion in DEGEE aqueous solution had 

a yield value ~73 dynes/cm2. Since the 16% poloxamer dispersions achieved sufficient viscosity 

and considerable high yield stress of 1018 dynes/cm
2
, this concentration was selected to 

incorporate the P/G/L nanoparticles for further development as a mucosal gene delivery system. 

 Lipoplexes built with the unsubstituted gemini surfactant in 16% polymer dispersion in 

DEGEE aqueous solution exhibited sol-gel transition temperature around 27 °C which was 2 °C 

lower than the polymer in DEGEE/water alone (Figure 10.6). However, the incorporation of 

lipoplexes containing glycyl-lysine substituted gemini surfactant significantly raised this 

transition temperature to 34 °C. We further explored the effect of the presence of lipoplexes on 

the flow properties of these formulations at ambient temperature and body temperature. Similar 

to the polymer vehicle, at room temperature, both formulations exhibited low viscosity and good 

flow. On increasing the temperature to body temperature, the formulation exhibited a high 

viscosity above the gelling point. Both formulations showed a non-Newtonian pseudoplastic 

behaviour. Flow curve analysis of gemini surfactant formulations was conducted in a range of 

shear rates of 0.2 to 6 sec
-1

. We observed a decrease of yield value to ~773 dynes/cm
2
 for the 

unsubstituted gemini surfactant formulation in comparison to 1018 dynes/cm
2
 for the 16% 

polymer dispersion without lipoplexes (Figure 10.7A).  The glycyl-lysine substituted gemini 

surfactant formulation retained high yield value of ~1051 dynes/cm
2
, comparable to 16% 

polymer dispersion without lipoplexes (Figure 10.7B).  
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Figure 10.6: Sol-gel transition temperature. Formulation containing the parent gemini 

surfactant gelled at 27 °C while formulation containing glycyl-lysine substituted gemini 

surfactant gelled near 34 °C. 
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Figure 10.7: Rheogram of formulations (A) P/12-7NH-12/DEGEE/Pol407 (B) P/12-7NGK-

12/DEGEE/Pol407. At 37 °C, the formulation containing parent gemini required a yield value 

of about 773 dynes/cm
2 

while for formulation containing glycyl-lysine substituted gemini 

required a yield value of 1051 dynes/cm
2
 to induce flow. 
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10.5.  Evaluation of gene delivery systems in ex vivo model 

 Penetration study of P/G/L nanoparticles was conducted ex vivo in fresh rabbit vaginal 

tissue.  The delivery of plasmid DNA into the tissue was determined qualitatively by amplifying 

kanamycin resistance gene sequence present in our plasmid. The 540 bp long fragments (Figure 

10.8A) were purified from the gel and a nested PCR was performed using another set of primers. 

The presence of 436 bp fragments in the gel confirmed the correct DNA sequence, unique to our 

plasmid (Figure 10.8B). The ex vivo penetration study suggested that both glcyl-lysine-

substituted and unsubstituted parent gemini surfactants were able to deliver plasmid DNA into 

the rabbit vaginal tissue. 

10.5.1. In vivo gene delivery 

 Confocal microscopy revealed no fluorescent cells in vaginal tissue samples collected from 

untreated animals and animals treated with naked DNA, only (Figure 10.9). A limited number of 

fluorescent cells were observed in the tissue of the animals treated with formulations containing 

the unsubstituted (parent) gemini surfactant (12-7NH-12). In comparison to the parent 

compound, the vaginal tissue of the animals treated with formulations containing glycyl-lysine 

substituted gemini surfactant (12-7NGK-12) showed more red fluorescent cells 
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Figure 10.8: Ex vivo penetration study of plasmid/gemini/lipid nanoparticles. DNA was 

extracted from the tissue and nested PCR was performed to confirm the penetration of 

pGT.tdTomato into the tissue. Gel A: (P/12-7NGK-12/L in lane 1, 2, 3); (P/12-7NH-12/L in lane 

4, 5, 6); No treatment control in lane 7.  Gel B: (P/12-7NGK-12/L in lane 1, 2, 3); (P/12-7NH-

12/L in lane 4, 5, 6) 
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Figure 10.9: Confocal microscopic evaluation of tdTomato gene expression in rabbit 

vaginal tissue sections. No fluorescent cells were observed in the untreated and DNA only 

vaginal tissues. Compared to the unsubstituted parent compound formulation, more red 

fluorescent cells, indicating tdTomato expression, were observed in animals treated with glcyl-

lysine substituted gemini surfactant formulation. A1-5: Pol407/DEGEE; B1-5: 

pDNA/Pol407/DEGEE; C1-5: pDNA/12-7NH-12/L/Pol407/DEGEE; D1-5: pDNA/12-7NGK-

12/L/Pol407/DEGEE. DAPI (blue) was used as nuclear stain. The area of interest, with red 

fluorescent cells, is marked with a green box and its enlarged view is presented beside the image. 

The red fluorescent cells are marked with white arrows. (Scale bar: 100 μm for tissue overlay 

image; 20 μm for the high magnification region).  
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10.6. Discussion 

 The need for non-viral gene delivery system arises out of the high risk of viral carriers to 

trigger immune reactions that may prove to be fatal [42, 241]. For successful gene expression of 

plasmid DNA, the non-viral delivery system should be able to overcome the cellular barriers 

leading to cellular uptake, endosomal escape and nuclear translocation [230]. One way to address 

these challenges is by engineering non-viral delivery systems that can condense a plasmid DNA 

into stable particles with well-defined properties (e.g. size, surface charge, etc.), protect it from 

degradation and release the transgene for expression in the cellular nucleus. In addition, 

extracellular barriers in the vaginal cavity such as penetration through epithelial layer, 

degradation in mucosal secretions or leakage from the cavity necessitate the use of additional 

formulation components, e.g. penetration enhancers or mucoadhesive polymers, to improve drug 

delivery [242].  

 Previous to this work, we demonstrated that the glycyl-lysine substituted gemini surfactant 

(12-7NGK-12) showed the highest gene expression among several amino acid-substituted gemini 

surfactants and, significantly higher than the unsubstituted (parent) gemini surfactant (12-7NH-

12) in rabbit epithelial cells [199, 223]. We also showed that grafting a glycyl-lysine moiety 

showed excellent safety profile with >90% cell viability after 72 hours [223].  

 Having high transfection efficiency and low toxicity, we selected the glycyl-lysine-

substituted gemini surfactant lipoplexes for the assessment of gene delivery efficiency in vivo. A 

vaginal route of delivery was explored in rabbits, an animal model selected for our long-term 

goals to develop non-invasive vaccines against sexually transmitted pathogens. 

 For the in vivo experiments a new plasmid was constructed using tdTomato gene sequence 

and previously optimized pGT vector [9]. tdTomato encodes a non-aggregating tandem dimer 

protein which is an exceptionally bright red fluorescent protein; 6-times brighter than EGFP 

[243-245]. The emission wavelength (581 nm), its brightness and minimal interference with the 

autofluorescence of tissue collagen make it ideal for imaging studies [243-245].  

 The ex vivo penetration studies in rabbit vaginal tissue showed that both the amino acid 

substituted and unsubstituted gemini surfactants were able to deliver the plasmid DNA into the 

tissue. However, the poor ex vivo viability of tissue and the absence of innate defense 

mechanisms limited the evaluation of gene expression, thus an in vivo model was needed for 
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assessment of gene expression. In an effort to improve residence time and permeation of our 

formulation in the vaginal cavity, we incorporated poloxamer 407 and diethylene glycol 

monoethyl ether (DEGEE).  

 Poloxamer 407, a triblock co-polymer made of poly(oxy ethylene) and poly(oxy 

propylene), exhibits inverse thermo-gelling properties in a concentration dependent manner 

[240]. Poloxamers have been used as drug delivery vehicles for a variety of routes of 

administration. Their thermo-gelling property imparts a unique ability of easy handling and 

administration of formulations in body cavities such as the vagina [174, 246]. The poloxamer 

exhibits newtonian flow below its gelling temperature and non-newtonian behaviour above it 

[246, 247]. The viscosity of poloxamer dispersions is not only affected by polymer concentration 

but also by the presence of other components and co-solvents [247, 248]. Therefore, for this 

study we conducted flow studies (shear stress vs. shear rate) to evaluate the effect of other 

components such as DEGEE and lipoplexes on the viscosity and gelling ability of poloxamer 

407. We selected diethylene glycol monoethyl ether (DEGEE) as a penetration enhancer because 

it is an excellent skin penetration enhancer and it is non-toxic, non-irritating, biocompatible with 

the skin and miscible with polar solvents [249]. It is approved for use in human pharmaceutical 

products for topical application [250]. Contrary to other penetration enhancers that disrupt the 

skin layer, DEGEE gently seeps into the intercellular lipid bilayers and causes swelling to 

increase penetration and thereby, causing less damaging effects [251]. DEGEE forms clear gels 

with poloxamers and does not hinder the release rate of lipophilic drugs [252]. Interestingly, 

DEGEE (24.8% v/v) was shown to reduce the gelling temperature and gelling strength of 27% 

poloxamer gel; however, this effect was dramatically reversed in the presence of other 

formulation components such as drug and co-penetration enhancer [253]. Therefore, we studied 

the effect of DEGEE at lower concentration (10% v/v) and at different concentrations of 

poloxamer gel with the aim to achieve in situ gelling at body temperature. Generally, the 

aqueous solutions of poloxamer 407 at 18% concentration exhibit sol-gel transition near 30 °C 

[247]. This thermo-gelation behaviour of poloxamer 407 aqueous solutions is due to the 

dehydration of the hydrophobic propylene oxide blocks at higher temperature causing 

aggregation of copolymer molecules into micelles [254]. Poloxamer concentration of 18% w/v in 

DEGEE aqueous solution gelled below room temperature (Figure 10.3). This may be due to the 

presence of DEGEE and a decreased fraction of aqueous environment causing early sol-gel 
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transition at comparatively lower temperature. Solutions with lower concentrations of poloxamer 

(15%, 16%, 16.5% and 17%) exhibited sol-gel transition temperatures above room temperature 

and therefore were selected for further evaluation. The rheological studies showed that the 

poloxamer dispersions in DEGEE aqueous solution exhibit non-newtonian pseudoplastic 

behaviour at 37 °C (Figure 10.4). All systems showed thixotropic behaviour. With the exception 

of 15% concentrations, all poloxamer dispersions exhibited a yield value greater than 900 

dynes/cm
2
, the minimum force required to induce flow in polymer dispersions above their sol-gel 

transition temperature (Figure 10.5). A minimum concentration of 16% poloxamer lead to in situ 

thickening near body temperature and exhibited a high yield value. Therefore, the 16% 

poloxamer formulation was combined with P/G/L nanoparticles for the development of mucosal 

gene delivery system. 

 The incorporation of lipoplexes into the polymer dispersion did not increase the viscosity 

of the formulation at room temperature and retained useful characteristics such as ease of 

extrusion from a syringe into the vaginal cavity (Figure 10.6).  The presence of lipoplexes 

containing unsubstituted gemini surfactant did not affect the sol-gel transition temperature 

significantly, decreasing the gelling temperature by only 2 °C compared to the 16% 

polymer/DEGEE aqueous dispersion. On the contrary, the sol-gel transition temperature rose to 

34 °C for formulations containing glycyl-lysine substituted gemini surfactant. It is hypothesized 

that this difference between the behaviour of the formulation in the presence of unsubstituted 

gemini nanoparticles and the glycyl-lysine substituted nanoparticles is due to the nature of their 

interaction with the polymer.  

 The sol-gel transition of the poloxamer proceeds by formation of micelles with the 

hydrophobic core containing polyoxyproplyene surrounded by a polyoxyethylene shell [255, 

256]. As the temperature increases, it promotes micellar entanglement leading to gel formation 

and increased viscosity. Environmental changes can trigger modifications in the size, shape or 

arrangement of the micelles that can impact the gelling properties of poloxamer. In general, the 

addition of solutes to poloxamer 407 dispersion produces a decrease in its gelation temperature 

in a concentration-dependent manner. However, the nature of the solutes determines the overall 

impact on the gelling temperature and gelling strength (viscosity) [248]. Glycyl-lysine 

substitution on gemini surfactant may have been able to interact with poloxamer chains through 

hydrogen bonding or by increasing hydration of the hydrophobic core forming mixed micelles. 
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This may delay the growth of micelles and hinder association among poloxamer micelles, 

leading to an increase in gelation temperature compared to the parent gemini compound with less 

ability for hydrogen bonding.  

 Rheology measurements at 37 °C of the P/G/L formulations revealed an increase in 

viscosity compared to polymer dispersions at a similar temperature (Figure 10.7). However, the 

presence of unsubstituted gemini surfactant lowered the yield value to 773 dynes/cm
2
 while it 

stayed around 1051 dynes/cm
2
 for the glycyl-lysine substituted gemini surfactant formulation. 

By comparison the yield was 1018 dynes/cm
2 

for the 16% poloxamer/DEGEE dispersion. A low 

yield value indicated more fluidity under high shear stress. However, it did not result in leakage 

as other factors such as mucoadhesion could retard the flow [257]. We did not observe any post-

administration leakage of unsubstituted gemini surfactant formulation from the vaginal cavity. 

Interestingly, both gemini surfactant formulations exhibit a small hysteresis loop above its 

gelling temperature indicating fast recovery after administration. The hysteresis loop was smaller 

for the glycyl-lysine substituted gemini surfactant compared to the parent compound. This 

indicates that these formulations regain gel strength faster than the formulations with the 

unsubstituted gemini surfactant, preventing leakage from the vaginal cavity. 

 Evaluations of interactions of plasmid DNA with poloxamers 407 showed no effect on the 

gelling temperature [258]. This suggests that in our studies the presence of gemini surfactants 

and co-lipid may be responsible for the overall changes in sol-gel transition temperature of the 

formulations. 

 To assess the in vivo efficiency of the thermosensitive DNA nanoparticles containing 

glycyl-lysine substituted gemini surfactant or unsubstituted gemini surfactant, the formulations 

were administered into the vaginal cavity of the animals. On visible inspection, no toxicity was 

apparent in vaginal tissues in either the treated or control animals. No signs of erythema, 

discoloration or ulceration were apparent (Supplementary information S2). For gene expression 

analysis, western blotting, RT-PCR/PCR and confocal microscopy were originally proposed. 

Unfortunately, due to the high background noise (non-specific bands) in western blot, no 

conclusive results could be drawn (Supplementary Information S3). Quantitative RT-PCR could 

not be performed due to the dimer nature of the gene; long fragments (~800-1200 bp) were 

amplified in addition to the fragments of interest (Supplementary Information S3). Therefore, 

evaluation of gene expression of red fluorescent protein was performed using confocal 
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microscopy. DNA in the poloxamer dispersion in the presence of permeation enhancer but 

absence of gemini surfactants/co-lipid was not able to generate gene expression (Figure 10.9). 

Fluorescence was observed in the vaginal tissue of all animals treated with DNA formulations 

containing 12-7NH-12 or 12-7GK-12. This is in agreement to the previous studies where gemini 

surfactants were able to deliver plasmid DNA in vivo [9]. A larger number of cells, expressing 

red fluorescent protein, were observed in the case of the glycyl-lysine substituted gemini 

surfactant, compared to the unsubstituted gemini surfactant formulation (Figure 10.9). 

 These findings are in agreement with studies conducted in vitro. Evaluation of the P/G/L 

complexes in rabbit epithelial cells demonstrated that the glycyl-lysine gemini surfactants 

exhibited the highest gene expression compared to parent gemini surfactant and other amino 

acid-substituted analogs [199, 223]. These results suggest that there might be an in vitro/in vivo 

correlation between the delivery efficiency of these gemini formulations. In the future, we will 

evaluate other substituted gemini surfactants to assess whether this in vitro model can be used as 

a reliable indicator for in vivo gene expression models for topical delivery. 

  

10.7. Conclusion  

 DNA formulations, prepared using poloxamer 407 and permeation enhancer, diethylene 

glycol monoethyl ether, gelled at a temperature near to body temperature and exhibited 

pseudoplastic behaviour. This contributed to the ease of handling of the formulation, especially 

administration of formulation at room temperature. The in situ gelling and a high shear-stress 

yield value retarded the leakage of the formulation from the vaginal cavity. Confocal 

microscopic evaluation showed that both glycyl-lysine substituted and unsubstituted gemini 

surfactants were able to transfect cells in vivo. However, the glycyl-lysine substituted gemini 

surfactant exhibited higher efficiency compared to the parent compound. The results suggest that 

this in vitro model can be used for optimizing and predicting in vivo transfection efficiency of 

novel non-viral vectors for topical delivery. In the future, these formulations will be used to 

deliver therapeutically relevant plasmid DNA to evaluate their potential in the treatment of 

diseases affecting mucosal epithelial cells.  
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10.8. Future perspective 

Our research group has focused on the development of cationic N,N-bis(dimethylalkyl)-α,ω-

alkanediammonium gemini surfactants as gene delivery vectors. The systematic evaluation of 

these vectors had led to rational development of a new generation of molecules, biolipids, with 

superior transfection efficiencies. We believe that gemini surfactant-based gene delivery systems 

have the potential to generate adequate gene expression for therapeutically relevant applications. 

Going forward, we need to develop models to better understand how physicochemical properties 

of these molecules in association with cellular uptake and intracellular trafficking can target a 

specific pathway for efficient protection and release of the genetic material nearby the nucleus, 

leading to a higher gene expression. The intent is to select therapeutically relevant genes in order 

to measure the direct benefit of gene therapy and genetic vaccination. 

10.9. Executive summary 

 Nanoparticles prepared by glycyl-lysine substituted gemini surfactant have shown 

significantly higher gene expression than unsubstituted parent gemini surfactant in rabbit 

epithelial cells, Sf 1 Ep Cells. 

 A plasmid DNA was constructed by cloning tdTomato gene, amplified from commercially 

available pCMV.tdTomato vector, into a pGT backbone, specifically designed for gene 

therapy. The tdTomato gene encodes a red fluorescent protein which has brighter (6 times) 

fluorescence than GFP and minimal interference with the autofluorescence of tissue 

collegen, making it ideal for imaging studies. 

 Ex vivo penetration studies of P/G/L showed that the delivery system was able to deliver the 

plasmid into the tissue. 

 P/G/L nanoparticles were formulated with a gelling agent, poloxamer 407, and permeation 

enhancer, diethylene glycol monoethyl ether (DEGEE), and the composition optimized to 

achieve temperature-dependent in-situ gelling. 

 16% poloxamer dispersions achieved sufficient viscosity and considerable high yield stress 

to retard leakage of the formulation from the vaginal cavity. Therefore, this concentration 

was selected to incorporate the P/G/L nanoparticles for further development as mucosal 

gene delivery system. 
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 Finally, the formulations were tested in rabbits by non-invasive administration to the vaginal 

cavity. The studies revealed that the glycyl-lysine substituted gemini surfactant (12-7NGK-

12) continue to exhibit high transfection efficiency compared to formulations containing 

parent gemini surfactant (12-7NH-12). 
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11.  General Discussions and Final Conclusions 

 Gene therapy is a novel technique that promises to provide a treatment option for both 

inherited and acquired diseases by manipulation of cell’s genetic machinery. Most commonly, 

these genetic manipulations require a delivery of exogenous genes to generate a therapeutic 

response [259]. A successful gene therapy requires the delivery of these therapeutic genes in a 

safe and efficient manner to target cells. At cellular level, a gene delivery system needs to aid 

cellular uptake, protect the DNA from degradation and facilitate its translocation to nucleus for 

gene expression [260].  Virus-based gene delivery systems use the innate ability of the viruses to 

overcome these challenges; however, the risk of immune response and insertional mutagenesis 

makes this a challenging drug delivery method [40, 41]. Alternatives to viral delivery systems, 

physical and chemical methods of gene delivery have been explored. The physical methods, thus 

far, depend on the disruption of cellular membranes through mechanical penetration 

(microinjection, gene gun etc.) or electric field (electroporation) [261, 262]. The transfection 

efficiency of physical methods is comparable to viral vectors; however, the disruption force 

impact significantly upon the cell viability and provides less control on the amount of genetic 

material that can enter the cell [7, 51].   

 Chemical methods e.g. cationic lipids, polymers, etc., offer a non-immunogenic and, 

relatively, a safe method to form DNA complexes that can facilitate gene delivery into the cell 

[263-266] . Both polymers and cationic lipids have their unique features that make them 

attractive as gene delivery systems. Polymers are hydrophilic in nature, offer strong DNA 

binding and produce DNA complexes of narrow size range [267, 268]. Although, a strong DNA 

binding and small particle size helps in gene transfer, it does not necessarily translate into gene 

expression. In addition, low biodegradability and a high density of the cationic charges on 

polymers result in stronger association with cell membranes and therefore, result in high toxicity 

[269] . In comparison to polymers, cationic lipids offer flexible physicochemical properties due 

to the presence of hydrophilic and hydrophobic moieties in a single molecule. More 

interestingly, cationic lipids containing two hydrocarbon tails self-assemble at low 

concentrations and form bilayer structures that help in efficienct gene transfer into the cells 

[121]. 

 Among the available arsenal of cationic lipids, gemini surfactants offer adequate flexibility 

for the design of novel delivery vectors through modification of the alkyl tail length and the 
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chemical nature of the spacer. The gemini surfactants, a term coined by Menger et. al., are 

surfactant molecules containing two ionic head groups covalently linked at or near the headgroup 

through a spacer [151]. The gemini compounds have several advantages compared to the classic 

monovalent surfactants: lower cellular toxicity, lower critical micelle concentration, higher 

efficiency in reducing surface tension and greater tendency to self-assemble [152, 153]. Several 

research groups have experimented with these molecules by modifying hydrocarbon tail length, 

size of head group, spacer length, and degree of unsaturation. With regards to the length and 

nature of the tail, a longer hydrocarbon chain, generally greater than C12, is required for 

transfection efficiency and it improves as the length increases [156]. For gemini surfactants, 

transfection efficiency increases with an increase in tail length; however, the nature in the head 

group has more profound effect on the overall transfection efficiency of the molecules [235]. The 

incorporation of unsaturation in the tail improves transfection efficiency of cationic lipids 

significantly, especially for unsaturated C18 [155][155][155, 155][155, 155][155, 155]. The length 

and unsaturation of the tail modifies the fluidity and organization of the cationic lipids. For 

example, unsaturation in phospholipids modifies its molecular shape and aggregate structure, 

favoring the formation of hexagonal phase [270]. In case of gemini surfactants, the unsaturation 

in the tail reduces the resistance of pH-dependant vesicle transitions, lamellar to non-lamellar 

structures, which increases the fluidity of the complexes and therefore, facilitate their efficient 

escape from the endosomes [271, 272]. Di-unsaturated lipophosphoramide has shown moderate 

increase in transfection efficiency compared to mono- unsaturated; however, a further increase in 

the unsaturation results in reduced gene expression [273, 274]. Currently, no studies for poly-

unsaturated gemini surfactants are available. Asymmetrical tails in diether lipids increased 

transfection efficiency when prepared in presence of co-lipids DOPE and DcChol [65]. The 

hydrophobic interaction among the asymmetrical tails of the gemini surfactants is disrupted in 

the presence of DNA which results in weaker interaction of gemini surfactants with DNA; 

needed for DNA condensation [275]. The nature of the asymmetry, i.e., phantyl or pyrene 

substitution in one tail vs. difference in chain length of two tails, have more high impact on the 

transfection efficiency of these molecules. In m-3-n type diquaternary ammonium based gemini 

surfactant, the molecules showed high transfection efficiency when m= phytanyl and n=12, 16, 

18, compared to symmetric 16-3-16 gemini surfactants [276]. The presence of phytantyl 
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substitution is believed to favor a higher order bilayer structure which is known to be 

advantageous for DNA transfection.  

 The modifications in the head group are conducted to study the effect of distance between 

the two cationic centres and the presence of additional substitutions such as amines, sugar, on 

DNA binding, condensation and transfection efficiency of these molecules. For unsubstituted 

diquaternary ammonium based gemini surfactants, a short spacer groups (n=2-4) between 

cationic centres yield high transfection efficiency [182]. In addition, the presence of hydrophilic 

groups favors the location of head groups in the aqueous phase in micelles, improving interaction 

with DNA and facilitating formation of DNA/lipid complexes [154]. In all, a balance of DNA 

binding, DNA condensation, morphological structures and presence of pH-sensitive groups in 

the head group have shown to exhibit high transfection efficiency. 

 Early experiments with cationic N,N-bis(dimethylalkyl)-α,ω-alkanediammonium gemini 

surfactants in our research group demonstrated that these molecules were able to bind to DNA 

and compact it for gene transfer [9, 182]. Interestingly, the gemini surfactants with short spacer 

group (s=2-4) resulted in excellent transfection. Computational modeling studies revealed that 

the presence of three methylene groups created a distance of 4.9 Å between the quaternary 

nitrogen centres equivalent to the spacing between two adjacent phosphate groups of DNA [10]. 

This could help the dimeric surfactants to interact with DNA molecules more easily, creating 

lipolexes with optimal characteristics for transfection. In agreement with observations by other 

groups, an increase in hydrocarbon tail from C12 to C16 improved transfection efficiency of these 

molecules [9].  

 A low critical micellar concentration (CMC) value could increase the stability of the 

DNA/gemini surfactant complex due to micellar aggregation that could keep the complex 

together during the delivery process. Similar findings were found for ornithine-based gemini 

surfactants with tail length between C12-C16, where low CMC was associated with high 

transfection efficiency [277].  The 12-s-12 series of diquaternary ammonium based gemini 

surfactants followed a parabolic relation between CMC and the transfection efficiency [9]. First, 

the transfection efficiency decreased with an increase in CMC values for a polymethylene spacer 

length of 3-8, followed by a slight increase in gene expression from for spacer length of 10-16. It 

may be because high CMC values of gemini surfactants would allow more molecules to interact 

with DNA before forming self-aggregating micelles [9]. It is important to note that for 
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transfection the gemini surfactants generally need the presence of another co-lipid such as DOPE 

that can facilitate formation of non-lamellar phases. Building on the understanding developed in 

first generation molecules, a second generation of gemini surfactants were synthesized with 

amino groups in the spacer [10]. This extra N-atom was placed three methylene groups apart 

from other amino groups in order to maintain a distance equivalent to the spacing between 

adjacent phosphate groups of DNA. Among this novel series of gemini surfactants, 1,9-

bis(alkyl)-1,1,9,9-tetramethyl-5-amino-1,9-nonanediammonium gemini surfactant (12-7NH-12) 

showed the highest transfection efficiency compared to first-generation compounds. The 

presence of a methyl substitution at N-atom in the spacer significantly reduced transfection. The 

reduction in efficiency could be due to increased steric hindrance to N-atom for interaction with 

phosphate group. Additionally, SAXS and pH-titration experiments revealed that the secondary 

amine-containing gemini surfactants exhibited a pH-sensitive character and a polymorphic 

organization, including lamellar and cubic phases. These might be key physicochemical 

properties imparting higher transfection efficiency of these molecules compared to the first 

generation alkyl-spacer gemini surfactants [182, 238].  

 Findings from the previous work led to a hypothesis that the presence of additional amino 

groups – from bio-compatible amino acids – in the spacer could improve DNA condensing 

ability of these molecules and impart pH-sensitivity that would help in cellular uptake and 

endosomal escape for efficient gene delivery. In addition, the incorporation of the bio-compatible 

and non-toxic amino acid/dipeptide substitution could maintain the low cytotoxicity.  My work 

focused on this novel family of non-viral gene delivery agents.  We hypothesized that glycine, 

the simplest of all the amino acid, is needed for conformational flexibility for DNA binding and 

lysine, employed as polymers known to exhibit excellent DNA binding and condensing 

properties could modulate gene transfection efficiency of the gemini surfactants [74, 183]. A 

novel generation of amino acid-substituted gemini surfactants were synthesized by incorporation 

of glycine, lysine, glycyl-lysine and lysyl-lysine in the spacer region of 1,9-bis(alkyl)-1,1,9,9-

tetramethyl-5-amino-1,9-nonanediammonium gemini surfactant (12-7NH-12). 

 The amino acid-substituted gemini surfactants were formulated with a model plasmid 

(expressing green fluorescent protein (GFP) and interferon-γ) in the presence of a helper lipid 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). In agreement to the previous work 

with diquaternary ammoinum based gemini surfactants, a DNA to gemini surfactant charge ratio 
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of 10 was found to be optimum with molar ratio of 8.3 between gemini surfactants and helper 

lipid [9]. Selection of the in vitro and in vivo models was based on our long term goal of the 

study, namely to develop non-invasive mucosal (vaginal) formulations to treat sexually 

transmitted diseases. The animal model for our long term studies was rabbit; therefore, the DNA 

formulations were tested in Sf 1 Ep rabbit epithelial cells. The presence of amino acids in the 

spacer of gemini surfactant improved their DNA condensing ability without increasing toxicity. 

Glycine and glycyl-lysine -substituted gemini surfactants showed higher transfection efficiency, 

compared to lysine-, lysyl-lsine- and un-substituted gemini surfactant. While gemini surfactants 

bind the DNA via electrostatic interactions, the nature of binding by the amino acid/peptide-

substituted gemini surfactants might be ‘softened’ by van der Waals and hydrogen bonding 

forces [194], thus increasing the flexibility and plasticity of the supramolecular structures [195]. 

The increased hydrophilicity of the amino acid/peptide-substituted gemini surfactants, compared 

to the parent compound, translated into better biocompatibility. All amino acid-substituted 

gemini surfactants maintained high cell viability, greater than 90%.  

 Amino-acid/dipeptide substitution did not interfere with interaction of cationic N in the 

gemini surfactants with DNA as evidenced by the similarities of the DNA condensation in 

circular dichroism spectra. Instead, amino acid substitution in the gemini surfactants increased 

the number of terminal amino groups that were highly protonated at physiological pH, 

contributing to efficient DNA-gemini electrostatic interactions and DNA compaction [205]. The 

presence of this cationic charge on plasmid/gemini/co-lipid complexes facilitated their 

interaction with cell surface and also conferred colloidal stability to the formulation [196]. 

Complex sizes of 100-150 nm were obtained, considered as optimal size range for endocytosis 

by the cells [115]. The smallest particle size of 105 nm was obtained by lysyl-lysine substitution, 

with the maximum number of amino groups. Though a strong DNA interaction and smaller 

particle are helpful in gene transfer ability, this does not necessarily translate into high gene 

expression. A stronger DNA interaction can protect the DNA; however, it may also hinder its 

timely release for translocation into nucleus leading to poor transfection efficiency. The DNA 

binding properties of the amino acid-substituted gemini surfactants revealed that the presence of 

glycine provided conformational flexibility leading to overall balanced binding properties. These 

balanced binding properties were able to protect the DNA and release it at an appropriate time 

for gene expression.  
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 Clathrin-mediated, caveolae-mediated uptake and macropinocytosis are the most common 

uptake pathways utilized by mammalian cells to engulf macromolecules or solutes impermeable 

to plasma membrane [125]. Clathrin-mediated pathway experience a drop in pH in early 

endosomes finally merging with acidic enzyme-rich lysomes, while caveolae-mediated pathway 

proceeds via a non-acidic, non-digestive route [129] [135, 136].  In previous studies, cationic 

lipid-DNA complexes (using DOTAP and SAINT-2/DOPE) have been suggested to 

preferentially internalize via clathrin-mediated endocytosis [137, 226]. However, more recent 

studies emphasized that the physiochemical parameters of the DNA complexes (such as particle 

size, shape and surface chemistry) as well as cell type can influence the uptake behaviour [140, 

149, 150]. Polyethylenimine (PEI)/DNA complexes were found to internalize via clathrin- or 

caveolae-mediated mechanisms depending on both PEI type (linear or branched) and cell line 

[140]. While another study using cationic lipid, Amphiphile 1 and DNA complexes found 

macropinocytosis to be the major pathway leading to gene transfection in CHO cells [227]. 

Caveolae-mediated uptake was also found to be important for transfection of human serum 

albumin coated DOTAP/DOPE complexes [228]. Understanding the physicochemical properties 

of the gene delivery particles in association with mammalian uptake pathways can lead to 

rational design of nanoparticles to target those pathways that improve their intracellular fate. 

Incorporation of pH-sensitive groups can help in destabilization of endosomes following a 

clathrin-mediated pathway, leading to efficient escape of DNA complexes. Similarly, an 

optimum fluidity of DNA complexes can maintain the integrity and stability of particle to avoid 

premature release while uptake and escape caveosomes by repeated interaction with its anionic 

membranes. We demonstrated that our amino acid substituted gemini surfactants possess 

characteristics to facilitate cellular uptake and endosomal escape in a more efficient manner 

compared to the previous generations of gemini surfactants. The key challenge in the design of 

this experiment was the optimization of endocytic inhibitors that had significant toxicity when 

incubated with cells for longer hours. In addition, an optimization of experimental conditions 

was required to compensate for the combined toxicity of endocytic inhibitors and P/G/L 

complexes. Based on the toxicity studies, a time-period of 3 hours for total incubation of these 

chemicals was chosen, at concentrations that retained more than 80% cell viability. Recently, 

alternative approaches such as siRNA targeting of proteins involved in the uptake pathways is 

being utilized to avoid the direct effect of presence of endocytic inhibitors on the transfection 
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efficiency of DNA complexes [278, 279]. However, these approaches also require successful 

targeting of these proteins without inflicting high toxicity that would indirectly affect the results 

on these experiments. 

 The amino-acid subsituted gemini surfactant (12-7NGK-12) was able to trigger both 

clathrin- and caveolae-mediated cellular uptake, similar to the unsubstituted parent gemini 

surfactant (12-7NH-12). Interestingly, the 12-7NGK-12 particles, following either clathrin-

mediated or caveolae-mediated pathways, contributed to the overall gene expression while 12-

7NH-12 particles internalized via clathrin-mediate uptake were not a major contributor to the 

overall gene expression. This suggests that the 12-7NGK-12 particles were superior in escaping 

endosomal degradation compared to the parent compound. In addition, the 12-7NGK-12 

particles exhibited high buffering capacity, pH-dependent particle size increase and balanced 

binding properties that helped in its endosomal escape, resulting in high transfection efficiency. 

Active targeting of these pathways can be achieved by incorporating receptor specific ligands 

such as transferrin that internalize via clathrin-mediated uptake [133, 280, 280]. This might be a 

further direction of research in this field. 

 Based on the in vitro studies, we selected the best performing formulations for the 

development of non-invasive mucosal gene delivery system for in vivo vaginal administration. 

The availability of non-invasive mucosal (vaginal) formulations, such as DNA vaccine against 

human papilloma virus, could have better therapeutic outcome and higher patient compliance. 

The development of mucosal DNA vaccines, that can be applied locally, could confer stronger 

local and systemic immunity against sexually transmitted pathogens [232, 233]. In addition, the 

vaginal mucosa offers a large surface area, high vascularization, a low enzymatic activity and 

ease of access [171, 234]. The painless, non-invasive administration could lead to higher patient 

compliance and the possibility of self-administration could be conducive to implementation of 

large-scale self-immunization programs.  

 Initially, we conducted studies to assess whether gemini surfactants can delivery plasmid 

DNA into the vaginal tissue non-invasively. The ex vivo penetration studies in rabbit vaginal 

tissue showed that both substituted and unsubstituted gemini surfactants were able to deliver the 

plasmid DNA into the tissue. For non-invasive administration, a low-viscosity formulation was 

required that could be administered using a syringe but would not leak out of vaginal cavity. In 

order to address the issue of low residence time, an in situ thermogelling polymer, poloxamer 
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407, was incorporated. Poloxamers that maintain low viscosity at room temperature and form 

highly viscous gels at body temperature [255, 256]. We also incorporated a topical permeation 

enhancer diethylene glycol monoethyl ether (DEGEE), to improve permeability of 

macromolecular complexes [249]. 

 For in vivo experiments, a new plasmid was constructed by cloning tdTomato gene 

sequence in an already optimized pGT vector. The need for creating a new plasmid DNA for in 

vivo experiments stemmed from low brightness of green fluorescent protein and interference 

from autofluorescence of tissue collagen, compared to tdTomato (red fluorescent protein) [243-

245]. The pGT backbone was also optimized, previously, for in vivo application by removing 

CpG motifs that will reduce any immune responses against plasmid DNA formulations [9, 281]. 

The polymer concentrations were optimized so that the topical vaginal formulations exhibited 

low viscosity at room temperature, contributing to the ease of intravaginal administration, and 

gelled near body temperature preventing their leakage from the vaginal (mucosal) cavity. Based 

on sol-gel transition temperature and flow cruve analysis, 16% polymer concentration was 

selected for incorporation into the P/G/L complexes in presence of DEGEE. 

 The formulations were tested in rabbits via non-invasive vaginal administration. More 

importantly, the animals did not require anesthesia avoiding exposure to additional chemicals 

and thus, reduced any discomfort. The presence of gemini surfactants lead to gene expression, 

while no gene expression was observed in the absence of the cationic complexing agent. 

Formulations containing amino acid-substituted gemini surfactant exhibited higher transfection 

efficiency compared to parent compound. This provides a proof of concept that the amino acid-

substituted gemini surfactants can be used as non-invasive mucosal (vaginal) gene delivery 

systems with potential applications in diseases associated with mucosal epithelia. 

 My research presents a systematic development of a novel series of novel amino acid-

substituted gemini surfactants. The key challenges were to formulate these new molecules as 

gene delivery systems that can generate high gene expression. I demonstrated for the first time, 

that these gemini surfactants performed better, compared to previous generations of gemini 

surfactants. Based on the results of transfection study, key physicochemical parameters 

contributing to high transfection such as size, surface charge, DNA compaction and DNA 

binding properties were pinpointed. This presented an opportunity for a rational understanding 

for the difference in their efficiency as gene delivery vectors. I conducted experiments to 
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evaluate the cellular uptake mechanism of DNA/gemini surfactant complexes and their impact 

on their overall gene expression. To my knowledge, no such studies have been conducted before 

to understand the effect of physicochemical properties on transfection ability of gemini 

surfactants. Further, models were built, for each uptake pathway, to explain how difference in 

physicochemical properties of these amino acid-substituted gemini surfactants were contributing 

to their high transfection ability. Going forward, single cell experiments could be conducted to 

determine the intracellular kinetics of DNA complexes as further proof of our findings.  

 In the existing literature, the majority of the studies with gemini surfactants are concluded 

at in vitro level and scientists have been spending more time in understanding the biophysical 

properties of these molecules. Although, these findings are crucial for continuous improvement 

of these molecules, there is a need to build in vitro/in vivo correlation to translate our findings to 

clinical settings. I believe that my work fills this niche in the quest of finding non-viral gene 

therapies and genetic vaccines. This study clearly demonstrates the feasibility of using gemini 

surfactants as gene delivery systems, especially for topical applications. In addition, my study 

suggests that the current in vitro model might be useful for optimization and predicting in vivo 

transfection efficiency of novel non-viral vectors for topical delivery.  
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12.  Future directions 

 My work demonstrates that glycyl-lysine substituted gemini surfactants can be used to 

deliver plasmid DNA to generate protein of interest in vitro and in vivo. Rabbit epithelial cell 

cultures were used to optimize formulations and the final formulations were tested through 

mucosal (vaginal) administration in the rabbit. In my in vitro studies, I found that the transfection 

efficiency of glycyl-lysine Gemini surfactants was higher than the parent compounds and a 

similar trend was observed in in vivo studies. Such outcomes  suggest that the current in vitro 

model could be used for optimization of similar molecules for gene delivery in epithelial cells 

but this has to be confirmed in the future with other series of gemini surfactants. 

12.1. Development of non-invasive mucosal DNA based vaccine 

 Human Papillomavirus is a sexually transmitted virus infecting the cervix of the female 

reproductive system [282]. It is important to develop an effective local immune response at the 

first point of contact, that is, cervical epithelium. The vagina is lined by mucous secretions which 

carry a locally produced immunoglobulin A (IgA). IgA is a dimeric or multimeric secretory 

immunoglobulin and is resistant to a protease-rich environment. IgA provides protection against 

invading pathogens through entrapment and exclusion [283]. An intravaginal application of HPV 

L1 virus-like particles in mouse has shown to increase the production of IgA in vagina [173]. 

The vaginal delivery of DNA vaccine may improve IgA induction locally, as opposed to its 

systemic administration [170]. Further, the use of DNA vaccine will ensure induction of 

cytotoxic T cell lymphocyte protection against virus particles that may escape from IgG or IgA 

antibodies. Thus, it may be advantageous to consider intravaginal mucosal (non-invasive) 

delivery of DNA vaccine to elicit cellular as well as local and systemic humoral immunity [233]. 

 Therefore, I propose that the model plasmid be replaced with a therapeutically relevant 

plasmid that expresses an antigenic viral protein. The papillomavirus viral components that can 

be targeted for invoking antigen specific immune response include: L1 and L2 – viral capsid 

proteins [286, 287] and E6 and E7 – viral oncogenic proteins [288] (Figure 12.1). In addition, 

our in vitro and in vivo models can be used for the design and development of HPV DNA 

vaccine as cottontail rabbit is a natural host to a cottontail rabbit papillomavirus and, therefore, is 

able to mimic the pathogenesis of papillomavirus infection [289, 290]. 
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Figure 12.1: Schematic Representation of structure of HPV [284]; HPV genome [285] 
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  Based on my studies, I believe that glycyl-lysine subsitituted gemini surfactant is a good 

candidate for development of genetic vaccine for sexually transmitted diseases. However, futher 

studies will be needed to assess if this delivery system can generate sufficient gene expression of 

the antigenic protein to elicit protective immunity.  

12.2. Development of gemini surfactants 

 My studies have clearly indicated the role of balanced binding properties and pH-

sensitivity of molecules in eliciting higher gene expression [223, 236][223][223]. I believe that 

the presence of glycine is contributing to the conformational flexibility that is required for 

balanced binding. Also, the presence of additional tertiary and secondary amino groups is 

providing the necessary pH-sensitivity. Therefore, future molecules can be designed by grafting 

other basic amino acids such as histidine, arginine via glycyl linkage to gemini surfactants 

(Figure 12.2). 

 The ariginine residue has a pKa value > 9.0 which will impart strong cationic charges, at 

neutral pH, needed for electrostatic interaction with plasmid DNA. A lower amount of these 

molecules may be required for DNA condensation in a suitable particle range, thus, lowering 

cytotoxicity. The presence of secondary and tertiary nitrogen can still impart pH-sensitivity to the 

complexes. Histidine is another interesting choice because of its pKa value near 6.5. The 

permanent cationic charges on gemini surfactant will help in electrostatic interaction with plasmid 

DNA while a low pKa will exhibit a high pH-sensitivity in acidic endosomes. However, the 

presence of ring structure (imidazole group) in the histidine may impart rigidity to the DNA 

complexes. The presence of rigid complexes may reduce the cellular uptake but its overall effect 

on the transfection efficiency needs to be evaluated. The rigidity of DNA complexes can be 

addressed (reduced) by exploring different concentrations of co-lipids to gemini surfactants. 

Finally, structure-activity relationships and in vitro/in vivo correlations could be established by 

comparing these molecules to the previously generated amino acid-substituted gemini surfactants. 
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Figure 12.2: (A) Glycyl-arginine substituted gemini surfactant and (B) Glycyl-histidine 

substituted gemini surfactant  
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13.  Appendix 

13.1. Supplementary Information S1 

Plasmid construction 

 Plasmid DNA, pGT.tdTomato was amplified in E. Coli (One Shot® TOP10 Electrocomp™ 

E. coli, Invitrogen, Burlington, Canada)  and purified using Qiagen Plasmid Giga Kit (Qiagen 

Inc., Toronto, Canada).  

 The plasmid digestion in the presence of BssSI (New England Biolabs Ltd., Whitby, 

Canada) at 37 °C for 1 hour gave three fragments; 3273 bp, 1421 bp and 726 bp, which 

confirmed the correct assembly of the model plasmid (Figure 13.1). 
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Figure 13.1: Digestion of pGT.tdTomato using BssSI restriction endonuclease. 

pGT.tdTomato had two restriction sites for BssSI that gave rise to three fragments. This 

confirmed the correct orientation of tdtomato fragment within the pGT vector. 
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13.2. Supplementary Information S2 

Control 1 Control 2 Control 3 Control 4 Control 5 

 

Picture not taken 

 

Picture not taken 

 

Picture not taken 

  

DNA 1  DNA 2  DNA 3  DNA 4  DNA 5 

  
   

12-7NH-12  (1) 12-7NH-12  (2) 12-7NH-12  (3) 12-7NH-12  (4) 12-7NH-12  (5) 

   
 

 

12-7NGK-12 (1) 12-7NGK-12 (2) 12-7NGK-12 (3) 12-7NGK-12 (4) 12-7NGK-12 (5) 

    
 

Figure 13.2: Vaginal tissue showing no visible signs of erythema, discoloration or ulceration 

post-treatment with gemini surfactant formulations 
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13.3. Supplementary Information S3 

13.3.1. Method and Materials 

Real time-PCR 

 The RNA was isolated and purified from the tissue sample using RNeasy Lipid tissue kit 

(Qiagen Inc., Toronto, Canada). The integrity of RNA was determined using Agilent 2100 

Bioanalyzer (Agilent Technologies, Mississauga, Canada) and cDNA was synthesized from 

RNA using High Capacity RNA-to-cDNA Master Mix (Applied Biosystems, Burlington, 

Canada). The cDNA was used to perform real-time PCR using 7300 RT-PCR (Applied 

Biosystems, Burlington, Canada) and a variety of primer sets for tdTomato gene. The bands were 

separated on 2% agaorose gel. For nested PCR, fragments were isolated from the gel using 

PureLink™ Gel Extraction Kit (Invitrogen, Burlington, Canada) and a nested PCR was run using 

a set of internal primers. Rabbit β-Actin (NCBI RefSeq Accession # AF404278), was used as a 

housekeeping gene and primer sets 5’-GGACCTGACCGACTACCTCA-3’ and 5’-

GGCAGCTCGTAGCTCTTCTC-3’ were used to amplify an 180bp long fragment. 

 

Western blotting 

 Tissue samples were homogenized and lysed in RIPA buffer containing protease inhibitors. 

The lysate were kept under constant agitation for 2 hours at 4 °C and then centrifuged at 12000 

rpm for 20 min. The supernatant was used for protein determination by the Bradford procedure 

(Bio-Rad) and Western blotting. The proteins were resolved on 12% SDS-polyacrylamide gels, 

transferred onto nitrocellulose membranes, and incubated with the appropriate antibodies. Anti-

tdTomato antibodies (DsRed mAB and DsRed polyclonal) was purchased from Clontech 

Laboratories, Inc., Mountain View, U.S.A. and used at 1:500 dilution.  Secondary goat anti 

mouse-AKP conjugate (Sigma-Aldrich, Oakville, Canada) was used at 1:5000 dilution. 

BCIP/NBT Blue Liquid Substrate detection system (Sigma-Aldrich, Oakville, Canada) was used 

to develop the bands according to the manufacturer’s instructions. tdTomato protein gives a band 

near 50 kDa with western blot.   
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13.3.2. Results 

Real-time PCR 

 The evaluation of the integrity of RNA is important in order to compare gene expression of 

different delivery systems in a meaningful manner. Conventional UV/VIS spectrophotometry 

methods using the optical density provides a good estimate of quantity and quality of RNA 

integrity [291] . However, the presence of genomic DNA, proteins and use of buffers may 

compromise the accuracy of these results resulting in under or over estimation of RNA [292].  

Modern, more sensitive instrumental methods such as fluorescence detection are used to 

determine the quality and quantity of RNA separated using microcapillary electrophoresis. Based 

on this method, Agilent has developed a 2100 Bioanalyzer that provides a RNA intergrity 

number (RIN) to compare the quality of RNA among different samples. The RIN algorithm 

calculates a value between 1 (most degraded) to 10 (most intact) using electropherograms of 

RNA samples [293].  

 Gel-like densitometer plots of RNA samples isolated from rabbit vaginal samples are 

shown in Figure 13.3. Based on electropherograms, RNA intergrity numbers ranged between 8 

and 10 indicating excellent integrity of isolated RNA. A similar RIN number indicate that the 

RT-PCR results used to estimate gene expression profiles can be compared in a meaningful way.
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Figure 13.3: Gel-like densitometer plot of RNA isolated from rabbit vaginal samples.  RNA isolated from rabbit vaginal 

tissue show RNA integrity numbers (8-10) for all samples, indicating good quality of RNA. 

 

 No meaningful results could be obtained using real time-PCR as s single set of primers designed for tdTomato gave two 

products because of two tandem repeated sequences in tdTomato cDNA [294]. The different pairs of primers that were tested 

for fragment amplificaion within the tdTomato region are listed in Table 13.1. 
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       Table 13.1: Primers used in RT-PCR for fragment amplification within tdTomato region. 

Primer set Fragment Gel picture 

External Primers 

pTomEF 

5’-GTTCATGTACGGCTCCAA-3’ 

pTomER 

5’-GGTGTAGTCCTCGTTGTG-3’ 

 

 

 

Internal Primers (Nested PCR using 

436 bp fragment from above) 

pTomIF 

5’-GGCACGCTGATCTACAAG-3’ 

pTomIR 

5’-TCTTGAACTCCACCAGGTA-3’ 

 

1162 bp & 

436 bp 

 

 

 

 

 

 

 

190 bp 

 

 

 

 

 

 

 

 
 

 

 

 

––1650 
 

–– 850 
 

–– 500 
 

–– 300 
 

–– 100 

 
 

 

 

 
 

––1650 
 

–– 850 
 

–– 500 
 

–– 300 
 

–– 100 

 
 

––1650 
 

–– 850 
 

–– 500 

–– 300 
 

–– 100 

 

 
 

 

 

 

––1650 
 

 
 

–– 850 

–– 500 

–– 300 

–– 100 

 
 

 

 

Control 

1     2      3      4     5 

 

DNA-only 

1     2      3      4     5 

 

NTC 

 

12-7NH-12 

 1   2     3    4    5 

 

    12-7NGK-12 

 1   2     3    4    5 

 

Control 

1     2      3      4     5 

 

DNA-only 

1     2      3      4     5 

 

12-7NH-12 

 1   2     3    4    5 

 

    12-7NGK-12 

 1   2     3    4    5 

 

NTC 
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pTOM-Forward2 

5’-GCTGAAGGGCGAGATCCA-3’ 

pTOM-Reverse2 

5’-GTGGGAGGTGATGTCCAGCTT-3’ 

 

871 bp & 

 

145 bp 

Gradient PCR between 50 °C and 60 °C using tdTomato 

plasmid 

 

 

 

pTOM-Forward3 

5’-CCCGGCTACTACTACGTGGA-3’ 

pTOM-Reverse3 

5’-GCGCATGAACTCTTTGATGA-3’ 

 

 

 

A gradient PCR between 50 

°C and 60 °C as annealing 

temperatures was run using 

tdTomato plasmid. Due to 

high gel streaking in the final 

PCR products, these primers 

were not selected further. 

 

Control 

1     2      3    4    5 

 

DNA-only 

1     2     3     4   5 

 

12-7NH-12 

 1   2     3    4    5 

 

    12-7NGK-12 

 1   2     3     4      5 

 

NTC 

 

 60     59.2    58    56.1  53.7   51.9   50.7   50     ladder 

 50     50.7   51.9    53.7    56.1   58.0   59.2    60     ladder 
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Western blotting 

 Since tdTomato is a two tandem dimer of Dsred protein, antibodies against DsRed can be 

used to detect tdTomato levels. Both polyclonal and monoclonal antibodies were used for 

detection of tdTomato in the total protein isolated from the sample tissues. The antibodies 

showed poor specificity and exhibited high backgroup noise, i.e., detecting a number of other 

bands. The presence of a stronger band from control samples in the same region as tdTomato 

protein leads to inconclusive results (Figure 13.4 & Figure 13.5). 
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Figure 13.4: Western blot detection of tdTomato protein using polyclonal anti-DsRed 

antibodies on nitrocellulose membranes. Control: untreated animals; DNA: animals treated 

with plasmid only; 12-7NH-12: animals treated with DNA formulation containing unsubstituted 

gemini surfactant; 12-7NGK-12: animals treated with DNA formulation containing glycyl-lysine 

substituted gemini surfactant; DsRed: commercially available purified DsRed protein; tdTomato: 

cell lysate from Sf 1 Ep cells (rabbit epithelial cells), electroporated with pGTtdTomato, 

expressing tdTomato protein. 
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Figure 13.5: Western blot detection of tdTomato protein using monoclonal anti-DsRed 

antibodies on nitrocellulose membranes. Control: untreated animals; DNA: animals treated 

with plasmid only; 12-7NH-12: animals treated with DNA formulation containing unsubstituted 

gemini surfactant; 12-7NGK-12: animals treated with DNA formulation containing glycyl-lysine 

substituted gemini surfactant; tdTomato: cell lysate from Sf 1 Ep cells (rabbit epithelial cells), 

electroporated with pGTtdTomato, expressing tdTomato protein; DsRed: commercially available 

purified DsRed protein. 
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