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ABSTRACT 

 
_______________________________________________________________________ 
 
 Breast cancer is the most commonly diagnosed cancer among Canadian women; 

x-ray mammography is the leading screening technique for early detection.  This work 

introduces a semi-automated technique for analyzing mammographic x-ray images to 

measure their degree of suspiciousness for containing abnormalities.  The designed 

system applies the discrete wavelet transform to parse the images and extracts statistical 

features that characterize an image’s content, such as the mean intensity and the 

skewness of the intensity.  A naïve Bayesian classifier uses these features to classify the 

images, achieving sensitivities as high as 99.5% for a data set containing 1714 images.  

To generate confidence levels, multiple classifiers are combined in three possible ways:  

a sequential series of classifiers, a vote-taking scheme of classifiers, and a network of 

classifiers tuned to detect particular types of abnormalities.  The third method offers 

sensitivities of 99.85% or higher with specificities above 60%, making it an ideal 

candidate for pre-screening images.  Two confidence level measures are developed: 

first, a real confidence level measures the true probability that an image was suspicious; 

and second, a normalized confidence level assumes that normal and suspicious images 

were equally likely to occur.  The second confidence measure allows for more flexibility 

and could be combined with other factors, such as patient age and family history, to give 

a better true confidence level than assuming a uniform incidence rate.  The system 

achieves sensitivities exceeding those in other current approaches while maintaining 

reasonable specificity, especially for the sequential series of classifiers and for the 

network of tuned classifiers. 
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CHAPTER 1 - INTRODUCTION 

_______________________________________________________________________ 

 

1.1 Thesis outline 

 This thesis describes the development of an automated detection algorithm for 

determining the likelihood that an x-ray mammogram image features cancer or other 

abnormalities.  The algorithm will use wavelet analysis in conjunction with a novel 

concerted-effort set of Bayesian classifiers to classify the images as being either normal 

(free of abnormalities) or suspicious (showing signs of abnormalities, including cancer).  

This technique gives a measure of confidence in the classification of an image, 

providing a quantitative measure for determining which images merit further 

downstream analysis. 

 Chapter one introduces the motivations for this work and the objectives that this 

work should achieve.  The issue of breast cancer screening is discussed with emphasis 

on the limitations of current techniques and the alternatives currently being developed.  

The physical process of x-ray absorption imaging is discussed along with its challenges 

and the mechanisms that lead to the observed appearances of various tissues and 

abnormalities in the images.  Finally, the algorithm developed in this research is 

outlined, along with the aspects that make it distinct from other approaches in current 

literature. 
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   Chapter two discusses the wavelet transform, used to parse each screening image 

into a form suitable for analysis; the distinctions between previous uses of wavelet 

analysis in other works and its use in this work are discussed.  The use of the two-

dimensional discrete wavelet transform as an image decomposition tool is introduced. 

 Chapter three discusses pattern recognition techniques in current literature, 

including the naïve Bayesian classifier implemented in this work.  A review of current 

techniques in computer-aided breast cancer detection is given, including a more detailed 

look at three approaches sharing similarities to the current work.  Finally, the concerted-

effort set of Bayesian classifiers, a novel extension to current methods, is introduced. 

 Chapter four discusses the full methodology for classifying an image: each 

image undergoes pre-processing to reduce artifacts, is decomposed using a two-

dimensional discrete wavelet transform, has a set of scalar features extracted from the 

output of the transform, and is classified as normal or suspicious based on the values of 

these features.  The concerted effort of several classifiers gives a statistical measure of 

the likelihood that the image is normal or suspicious, and, along with such data as a 

patient’s age and family history,  can contribute to the decision of whether to further 

examine a particular image or patient. 

 Chapter five shows the results of the developed system, tested on the MIAS 

database of digitized mammography images [51].  The full system is also retested on the 

larger DDSM database of images [23] to assess the system’s flexibility and its 

performance on a large data set. 

 Chapter six discusses the significance of the results, and chapter seven contains 

the conclusions that may be drawn from this work. 
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1.2 Motivation: breast cancer and current screening methods 

 Breast cancer is the most commonly diagnosed form of cancer in women and the 

second-leading cause of cancer-related death behind lung cancer [39].  In Canada in 

2004, there were 21200 newly diagnosed cases of breast cancer and 5200 deaths from 

breast cancer.  In the same year, among women, there were 9800 new cases of lung 

cancer and 8200 deaths from lung cancer, the second most commonly diagnosed cancer 

among Canadian women.   

Breast cancer is much more prevalent among older women: among newly 

diagnosed patients, 21% are younger than 50, 49% are between 50 and 69, and 30% are 

70 or older [39].  Because of the increased risk of developing breast cancer with age, 

Health Canada has recommended that women over 50 receive a screening mammogram 

every two years; other western countries have similar screening policies in place.  X-ray 

mammography is the primary method for early detection of breast cancer and is capable 

of detecting signs of cancer too subtle or small to be detected by either self-examination 

or routine physical examination by a physician.   

 

1.2.1 Types of breast cancer 

 The term breast cancer refers to a variety of cancers of the breast, some more 

common or dangerous than others.  The individual cancer types are named for the tissue 

in which they occur and for whether they extend into neighbouring tissues [37].  

Invasive cancers have progressed into neighbouring tissues beyond the tumour’s site of 

origin and are more dangerous than in situ cancers, which remain contained within their 

original tissue.  Invasive cancers are more likely to metastasize, or have cells break off 
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and initiate cancers in other parts of the body.  The most common locations for breast 

cancer are in the ducts and lobules of the mammary glands; the four cancers occurring 

here are invasive ductile carcinoma, ductile carcinoma in situ, invasive lobular 

carcinoma, and lobular carcinoma in situ.  Less common cancers of the breast include:  

tumours in the connective tissue of the breast called sarcomas; cancer affecting the 

nipple and aureole called Paget’s disease of the breast; and large, bulky tumours called 

Phylloides tumours.  A common benign abnormality is an adenoma, an abnormal growth 

of cells in the interior wall of a duct or internal passage of the body.  Adenomas have a 

low risk of developing into malignant cancer. 

 

1.3 Physics of x-ray mammography  

 X-ray mammography images show the inverse of the attenuation or absorption 

rates of x-ray photons passing through breast tissue.  Since different atomic species have 

different rates of interaction with x-ray photons of different energies, imaging can be 

done by choosing photon energies where the difference in absorption rates between two 

materials of interest is maximized.  In the case of mammography, low energy x-rays 

with energies around 20 to 30 keV are used to distinguish between different types and 

densities of soft tissue. 

 An x-ray image is formed by passing a collimated beam of photons through a 

target onto an imaging device, either a film plate or a digital detector [15].  The beam is 

generated by a Bremsstrahlung process: a beam of electrons emitted from a heated 

cathode are accelerated towards an anode, typically made of molybdenum or rhodium.  

When the electrons strike the anode and rapidly decelerate, photons are produced with a 
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continuous spectrum of energies corresponding to a Bremsstrahlung spectrum.  The 

emitted photons are restricted by shielding to exit the beam source only along a single, 

narrow path, forming a beam that passes into the target. 

 Regions of the target which absorb photons strongly will result in reduced 

photon counts at the corresponding location on the imaging plane; in the case of film 

imaging, this will mean that the location on the film plate will be less exposed and will 

thus appear brighter once the film is developed.  The photons interact almost exclusively 

with electrons in the target at x-ray energies; hence, the resulting image is a function of 

the electron density within the sample, projected into a two-dimensional plane.  This 

makes x-ray imaging sensitive both to changes in density between different tissues and 

to the presence of different elements with different numbers of electrons, such as the 

calcium in bone. 

 

1.3.1 Absorption processes at clinical beam energies 

 X-ray mammography images are typically taken with photon beam energies 

between 20 and 30 keV.  At these energies, photons interact with a sample by three 

possible mechanisms: coherent scattering, also called diffraction; incoherent scattering, 

also called Compton scattering; and the photoelectric effect.  Coherent scatter occurs 

from structures with a regular long-range structure, such as crystal; however, because 

atoms in breast tissue do not show long-range order, diffraction is only a minor process 

in the generation of clinical mammography images.  Compton scattering and the 

photoelectric effect do contribute significantly to the beam attenuation; each is discussed 

in turn below.  
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 In Compton scattering, a photon interacts with a target electron, scattering the 

electron at an angle of up to 90° with respect to the incident photon’s trajectory, and a 

lower energy photon is emitted at a different angle.  Because a photon may be emitted 

from the interaction site at any angle, strikes may occur on the imaging surface at any 

point, artificially raising the measured photon flux at that point.  The distribution of 

scattered photons is forward-peaked, so many of the photons are deflected only slightly 

from their original path, creating a blurring effect in the imaging plane.  These scattered 

photons make Compton scattering a major contributor to noise in an x-ray image. 

 At low energies where the photon energy is significantly smaller than the 

electron rest mass energy of 511 keV, the cross section for Compton scattering is well-

approximated by the Thomson scattering formula.  The soft x-ray regime where 

mammographic x-ray images are taken falls into this low energy region, so the total 

cross section for Compton scattering from a single electron, σCompton, is approximately 

independent of beam energy and atomic number, and has the simple form [26]: 

 2
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where e is the electron charge, m is the electron mass, c is the speed of light and re = 

2.82 x 10-15 m is the classical electron radius.  At higher energies, the Klein-Nishina 

formula describes the dependence of the cross section on beam energy: the cross section 

scales with the inverse of the beam energy for photon energies comparable to or larger 

than the electron rest mass energy.  Since Compton scattering depends most strongly on 

the density of scattering centers (electrons) while the photoelectric effect depends on the 
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cube of the atomic number, Compton scattering is not as sensitive as the photoelectric 

effect for differentiating between different materials in a target. 

 The photoelectric effect is the absorption of a photon by a bound electron; the 

photon energy not used in liberating the electron from its bound state is converted into 

kinetic energy for the electron.  The hole left by the liberated electron in its atomic 

orbital will be filled, either by a free electron or by another electron in the same atom 

transitioning down from a higher orbital.  As the photon energy becomes greater than 

the binding energy for a lower orbital, it is possible for the photon to interact with and 

liberate electrons from that orbital, increasing the number of potential interaction centres 

and thus the total cross section for the photoelectric effect.  The full cross section for the 

photoelectric effect is highly complex and lacks an analytical form for anything but the 

simplest atoms, though its general trends have a simple form: the cross section scales 

with the cube of the target’s atomic number and with the inverse of the photon’s energy. 

 Since the photoelectric effect is suppressed at high beam energies while 

Compton scattering is not, Compton scattering becomes the dominant interaction 

process at beam energies significantly above 30 – 100 keV, with the exact crossover 

energy increasing as the target’s atomic number increases. Figure 1.1 shows the 

crossover point between the two processes as a function of the incident beam energy and 

the target atom’s atomic number [34].  A low beam energy where the photoelectric 

effect is dominant is used in x-ray mammography to exploit the photoelectric effect’s 

strong dependence on atomic number, which allows it to differentiate between different 

materials in a sample.  Higher beam energies are used to image thicker targets, since the 

absorption rates are lower at higher energies: lower absorption rates allow enough 
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photons to reach the imaging plane and form an image while minimizing the amount of 

radiation energy deposited into a patient or sample.  In either case, image contrast may 

also be generated by density variations between materials of similar atomic 

compositions, since denser materials have a larger number of potential interaction 

centres per unit volume. 

 

Figure 1.1 - Dominant regimes for the photoelectric effect and Compton  
scattering as a function of photon energy and atomic number [34] 
 

1.3.2 Appearance of structures in mammographic images 

 The major tissues of the breast are shown in Figure 1.2 a), and a typical x-ray 

mammography image for a healthy patient is shown in Figure 1.2 b).  These images 

show the structures typical to all mammographic images: the chest wall, glandular 

tissue, and stromal tissue.  The chest wall, which includes the chest muscles, is relatively 

thick and dense and appears as a uniformly bright region at the top of Figure 1.2 b).  
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Glandular tissue consists of the milk-producing lobules and the milk-transporting ducts 

of the mammary glands; it appears as a relatively bright region which radiates back from 

the nipple in the x-ray image.  Stromal tissue is composed of connective tissue and fatty 

adipose tissue and forms the relatively dark remainder of the tissue region in the x-ray 

image.  

  

 

           (a)      (b) 

Figure 1.2 – Structural features of healthy breast and corresponding appearance 
in x-ray mammography image (Image (a) taken from [42]) 
 

 Two types of abnormalities may appear in mammographic images to indicate the 

presence of cancer:  clusters of small calcium deposits called microcalcifications, and 

regions of unusual tissue growth called masses. 

 Microcalcifications are small deposits composed primarily of calcium 

compounds such as tricalcium phosphate and calcium hydroxyapatite [43].  Calcium has 

a relatively large atomic number (Z = 20) compared with more abundant biological 

elements such as carbon (Z = 6), hydrogen (Z = 1), oxygen (Z = 8) and nitrogen (Z = 7).  
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At mammographic imaging energies, the photoelectric effect is the dominant process 

and scales with the cube of the atomic number; hence, microcalcifications, like bones in 

other x-ray images, have absorption coefficients more than ten times higher than the 

more common materials in the breast tissue and create the brightest spots on the final x-

ray image.  The small, sharp appearance of microcalcifications in an image, combined 

with their relative brightness, makes them easier than masses to discern, although 

calcifications can still be obscured by dense, bright regions of glandular tissue. 

 Masses are regions of unusual tissue and may be benign (not at risk of 

metastasizing to other tissues) or malignant (actively worsening and at an increased risk 

of metastasis).  Masses appear on a mammography image if their density is significantly 

higher than the density of the surrounding tissue.  An increase in material density 

directly corresponds to an increase in electron density and thus an increase in photon 

absorption.  This difference in density causes masses to appear slightly brighter than 

surrounding tissue on an x-ray image.  Masses which are similar in density to the 

surrounding tissue may not be directly visible, but their existence may be inferred from 

the distortions they create in the structure of the surrounding tissue; this is known as 

architectural distortion, and is far more difficult to detect than directly visible masses. 

 

1.3.3 Digital x-ray image resolution limitations 

 Mammographic x-ray images are most readily quantitatively analysed when they 

are in digital form, either by converting film images or by taking the original images 

with a digital detector.  Several processes limit the resolution of the resulting pixel 
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images and occur during the image formation process, the image recording process and 

the digitization process. 

 Resolution during the image formation process is limited by the beam shape and 

by scattering processes.  If the x-ray beam is not emitted from a single point, but rather 

from a source of finite width, then the rays of the beam photons will not radiate from a 

single point and the resulting image will be blurred.  For a source of width Wsource a 

distance Ltarget from a point in the target and a distance Limage from the imaging plane, 

the point in the target spreads out to have a finite width Wpoint in the image: 
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ettimage
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int

−
= .          (1.2) 

 This blurring can be minimized by placing the imaging plane as close to the 

target as possible, though this limits the magnification of the image.  For x-ray 

mammography, magnification is considered less important than resolution, and so the 

imaging plane is placed just beneath the target.   

 A second process limiting resolution during image formation is scattering within 

the tissue.  Photons which pass through the tissue without being absorbed may still be 

deflected from their initial trajectory by coherent and incoherent scattering.  These 

processes spread out the region where a photon is likely to strike the imaging plane, 

lowering the image resolution.  This effect is intrinsic to the process being studied and 

cannot be removed; further, scatter is the largest source of resolution loss in x-ray 

imaging, acting to reduce the sharpness of edges and smear out the appearance of fine 

structures [15]. 

 The image recording process is performed either on a conventional film plate or 

on a digital detector.  The resolution of a film plate is limited by the size of the film 
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grains that the photons interact with; typical film grains are approximately 0.1 to 1 

microns in diameter [15].  The resolution of a digital detector is set by the element size 

of the detector.  Detector elements are typically similar in size to the elements in a 

scanner that converts film images into digital form, or approximately 40 to 50 microns. 

 The digitization process for film images requires selecting a resolution scale 

corresponding to the size of each pixel.  For mammography images, pixels are typically 

40 to 50 microns in width; a down-sampled image suitable for computational analysis 

may have pixels 150 to 200 microns in width, depending on the type of digital scanner 

used and the desired compromise between image resolution and computational 

efficiency.  The pixel size sets the size scale for the smallest structures that may be 

resolved on the resulting images; since microcalcifications are the smallest structures of 

interest in mammographic x-ray images and are typically several hundred microns 

across or larger, a pixel size of 200 microns or less is sufficiently small to resolve them.  

Detectable masses range in size from a few millimetres to a few centimetres in diameter 

and so are also easily detectable with this level of resolution. 

 

1.4 Challenges in x-ray mammography 

X-ray mammography consists of an x-ray of the breast tissue under transverse 

compression.  Signs indicative of possible cancer include the presence of clusters of 

microcalcifications or the presence of a mass, which can be either directly observed or 

inferred from the distortions it causes in the structure of the surrounding soft tissues.  

Microcalcifications are clusters of calcium compound deposits left by several biological 

processes; most notably for cancer screening, they are sometimes, though not always, 
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secreted by rapidly dividing cells such as cancer cells [43].  Cells in the glandular tissue 

of the breast are specialized to store milk containing calcium; when these cells become 

cancerous and rapidly divide, such as in lobular or ductile carcinoma, deposits of 

calcium may be released during cell division.  Microcalcifications alone show a high 

correlation with breast cancer, but their appearance alone does not guarantee the 

presence of cancer, nor does their absence negate the possibility of cancer.  Because of 

this uncertainty, any current automated methods which use only the presence of 

microcalcifications to mark suspicious images are necessarily limited in their capacity to 

correctly identify all images showing abnormalities.  

Interpretation of mammograms is a difficult process for several reasons.  

Because the images are formed from x-rays passing through the tissue, contrast in the 

image depends on differences in the absorption rates and densities of different materials 

within the tissue; however, these differences are much more subtle between the types of 

soft tissues in the breast than they are between bone and soft tissue in a chest x-ray, for 

example.  The indications of cancer in an image are often also very subtle, such as small 

distortions in the structure of the ductile tissue of the breast or the presence of small 

clusters of microcalcifications.   
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Figure 1.3 – Typical mammograms showing healthy tissue (left) and 
showing a cancerous mass (right, marked with white arrow) 

 

Figure 1.3 shows two typical mammography images: the left image shows a 

healthy patient, while the right image shows a cancerous mass.1  These images are 

medial-lateral images, as signified by the ML marker on the x-ray film, and are taken 

with the x-rays passing horizontally through the tissue while the breast is compressed 

between two vertical plates.  The other common image view is cranial-caudal, typically 

denoted as CC, which is taken with x-rays passing vertically through the tissue while the 

breast is compressed between two horizontal plates.  Breast tissue can vary greatly in 

appearance between patients depending on the relative amounts of glandular and fatty 

tissue present, which appear as relatively bright and dim regions, respectively, further 

adding to the challenge of detecting abnormalities within a particular patient’s image. 

                                                 
1 The text within the images is reversed because the images were reversed during the scanning process 
that converted the original film plate images into digital form.  This reversal does not affect the 
information content of the images, and so no correction was made.  Images are taken from the MIAS 
database [31]. 
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An additional challenge in the interpretation of mammograms is the small 

percentage of images that show abnormalities.  One typical clinic diagnosed 6.4 cancers 

per 1000 patients; at two medial-lateral images per patient, this means only one in 300 

images showed signs of cancer [4].  This low rate of incidence means that a large 

fraction of images marked as suspicious are actually normal.  Positive findings then 

require a patient to undergo further procedures to verify or refute the diagnosis.  For 

example, 5-7% of women in the above study were recalled for further tests, though only 

one in ten of those recalled were actually positive for cancer. 

Typical CAD systems deal with the subtlety of cancer signs on images by 

marking all suspicious regions in images for radiologists to re-examine.  This approach 

may increase the number of cancer cases which are correctly diagnosed, but it also 

increases the number of images that a radiologist must study in greater detail and may 

increase the number of healthy patients recalled as being suspect for cancer.   

Another approach for CAD design is to pre-screen the images and remove those 

which are least likely to show abnormal pathology.  This will cause a greater fraction of 

the remaining images to show pathology, potentially reducing the number of false 

positives generated by any subsequent analysis of the remaining images. 

 

1.5 Terminology of diagnosis rates and consequences of misdiagnosis 

 The performance of a screening or classification system, such as the use of 

mammography for detecting breast cancers, can be measured by two parameters: 

sensitivity and specificity.   
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 Sensitivity is also known as the true positive fraction; it is the fraction of 

pathologies being screened for which are actually detected.  For example, if a large set 

of patients were screened and 100 of them had breast cancer, a screening procedure 

which detected 90 of these women’s cancers would have a sensitivity of 90%.  Because 

of the serious health consequences of missing a diagnosis of cancer until a later 

screening, sensitivity is deemed more important than specificity in cancer screening 

protocols. 

 Specificity is also known as the true negative fraction; it is the fraction of cases 

which do not correspond to cancer which are correctly classified as normal.  For 

example, if a set of 1000 patients with 100 cases of cancer were screened, a screening 

procedure which found 810 of the 900 normal patients to be normal and the other 90 to 

possibly have cancer would have a specificity of 810/900 or 90%.  Although the 

consequences of a false positive, that is, diagnosing a normal patient as having breast 

cancer, are less severe than missing a positive diagnosis for cancer, specificity should 

also be as high as possible.  False positives can lead to painful, invasive procedures, 

such as tissue biopsy, to confirm or refute the diagnosis and can lead to significant 

anxiety and concern for the patient. 

 

1.6 Current innovations in screening procedures 

A new challenge facing physicians as the population ages is to handle the rising 

volume of mammographic images produced by current screening policies while 

maintaining a high rate of correct diagnoses.  To this end, two major innovations to x-

ray mammography have been introduced: computer aided detection (CAD) and double 
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readings.  Other imaging modalities are also being explored for breast cancer screening 

in addition to x-ray mammography, including magnetic resonance imaging [31,53], 

diffraction-enhanced imaging [11,28] and phase contrast imaging [1,41].  These 

modalities attempt to provide better contrast between normal and abnormal tissues, 

making abnormalities easier to discern in images. 

The method of double reading is primarily designed to reduce the number of 

missed cancer cases by having two radiologists independently interpret each image, 

conferring when there is a discrepancy between their diagnoses.  This method has been 

shown to boost sensitivity from 74% to 89%, according to one study [27].  The 

drawback of this method is that throughput is halved for a given number of physicians at 

a clinic, since each image is read in full detail twice; this limits the number of patients 

that may be screened and how frequently each patient can be screened over her lifetime.   

The second method, CAD systems, uses automated software to mark suspicious 

regions on each mammogram image.  Once a radiologist has studied an original image, a 

marked up CAD image is consulted to see if there are any additional regions of concern 

that could change the interpretation of the image.  This method is similar to double 

reading but maintains nearly the same level of throughput as a single reading procedure.  

The primary drawback of this approach is that CAD systems are conservative and mark 

far more images as suspicious than actual cancer rates warrant, drawing unnecessary 

attention to healthy tissue regions and increasing the risk of false positive diagnoses. 

 An alternative method for automated systems is to identify and remove normal 

images, leaving the more suspect images for further analysis.  This approach relies on a 

whole-image analysis rather than marking suspicious regions: an image showing no 
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signs of pathology is marked as normal and is assigned a lower priority for further 

analysis.  For this method to be acceptable in a clinical setting, it must offer an 

extremely high rate of sensitivity to detect as many of the abnormal images as possible.  

The method’s utility depends on a relatively high specificity, since its goal is to 

minimize the number of images requiring further analysis. 

 Either type of automated system faces the challenge of parsing large amounts of 

data, in the form of a high resolution image, into a single conclusion or set of marked 

suspicious regions.  Typically, a small number of parameters are measured from an 

image, and the image is characterized based on their values, rather than on the values of 

every pixel.  The process of extracting a small number of parameters, or features, from a 

large image is known as feature extraction; feature extraction typically involves 

applying a mathematical transform to reduce the data volume, such as filtering or 

statistical measurements.  Once a small set of features has been measured for an image 

or region, a classification is made using a pattern recognition tool called a classifier; 

classifiers use information from images with known classifications to characterize new 

images.  This work will apply the wavelet transform to parse the data into multiple 

scales and extract scalar features from each view to characterize the image.  The wavelet 

transform has similarities to the Fourier transform and is discussed in detail in Section 4. 

 

1.7 Objectives and novelty of this work 

 The primary goal of this thesis is to develop a method for detecting a range of 

breast tissue abnormalities from mammographic x-ray images.  The algorithm must 

classify a given image as being either normal or suspicious and give a confidence level 
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for this classification; this confidence level will allow a physician to judge the strength 

of the given image’s classification and determine which images merit further study. 

 To develop the full algorithm, several intermediate objectives must be met: 

 

Objectives: 

 1. Develop a set of pre-processing steps to isolate the tissue in the images and 

regularize the appearance of the images to make direct comparisons possible. 

 2. Apply the discrete wavelet transform to parse an image and generate a set of 

scalar features based on the output of the transform to characterize each image. 

 3. Develop an automated tool that can use the generated features to classify the 

images as normal or suspicious and give a confidence level for this classification. 

 

 Although other computer aided detection algorithms currently exist for the 

detection of breast cancer in mammographic images, this work offers several original 

innovations.  First, the wavelet transform is being used to generate scalar features 

directly, whereas other works have only applied wavelets as a noise reduction tool or to 

emphasize certain structures in an image.  This technique was applied to small angle x-

ray scattering images of breast biopsy tissue by Carissa Erickson [19] and extended to 

mammographic x-ray images by Krista Chytyk [13], though this is the first rigorous 

application of this technique to x-ray mammographic images for detecting suspicious 

images.  The second innovation is in the implementation of the pattern recognition tool 

being applied, a naïve Bayesian classifier, which does not normally provide a 

confidence level for its classification of a given image; the concerted-effort set of 
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classifiers being developed in this work offers a mechanism for extracting confidence 

levels from several Bayesian classifiers working in tandem.  Although other ensemble 

methods for combining multiple classifiers have been proposed in literature [40], those 

methods typically combine classifiers to improve accuracy alone, not to produce 

confidence levels from classifiers lacking this information.  Thirdly, this work carries 

out whole-image classification, identifying whether each image merits further study or is 

likely to be free of abnormalities.  Many other approaches identify regions of concern 

within individual images rather than identifying and removing healthy images and hence 

potentially boosting throughput.  Improved screening efficiency may, among other 

benefits, allow women to be screened more frequently, increasing the probability of 

detecting cancers earlier in their development when they are more treatable.  While 

screening frequency is ultimately limited by radiation dose, the current screening rate of 

once every two years is well within safe standards and is less frequent than the annual 

screening rate recommended in Canada for patients with a family history of breast 

cancer [20]. 

 

 1.8 Approach to be taken in this work 

 The object of this work is to develop a method for analyzing mammographic 

images, identifying healthy and suspicious images, and determining a confidence level 

for this classification.  Each image is to be classified as a whole, rather than marking 

suspicious regions within each image, as a method for removing the images least likely 

to correspond to cancer from the set of images requiring further analysis.  The approach 

of pre-screening images is uncommon in current literature: it offers a method for 
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directly increasing the number of patients that may be screened, but it requires 

extremely high sensitivity, since any missed cancers at the pre-screening stage will not 

be found later.  This removal of images sets an automatic upper limit on the sensitivity 

of the entire procedure, regardless of the efficacy of later steps. 

 The images will first be pre-processed to reduce artifacts and noise that would 

obscure relevant physical differences between the tissue regions of each image.  Once 

the images are as uniform as possible, a multi-level wavelet decomposition will be used 

to examine the image at multiple scales.  Scalar features, such as mean intensity and 

standard deviation of intensity, will be measured for each image in the decomposition, 

forming a large set of possible features for a classifier.  The use of whole-image 

parameters from the wavelet decomposition is a novel approach for feature generation. 

 A naïve Bayesian classifier will classify the images as either normal or 

abnormal, with the abnormal class containing benign and cancerous masses and 

calcifications that merit further examination.  A feature reduction step will select a small 

subset of the total set of generated features which are most effective at performing this 

classification. 

 To provide confidence levels for the classification, a novel extension to the naïve 

Bayesian classifier, a concerted-effort set of Bayes classifiers, will be developed.  

Multiple small sets of features will each form an independent classifier; this may be 

done by employing different wavelet bases or scalar features before the feature 

reduction step.  The set of classifiers will each individually classify the image as either 

normal or suspicious.  From this point, several methods will be explored for combining 
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their results and providing confidence levels: a sequential rejection process, a vote-

taking process, and a network of tuned classifiers. 

 The sequential rejection process passes the feature vectors through one classifier 

at a time, with all classifiers tuned to have maximal sensitivity.  If the feature vector is 

normal after the first classifier, it is binned as normal, with the probability of error equal 

to the false negative fraction for the classifier.  If the feature vector is abnormal, then it 

is passed onto the second classifier in the sequence.  If the second classifier finds the 

feature vector to be normal, then it is binned as normal, but with a slightly lower 

probability than if it had been found normal after the first pass.  Thus, after each 

classifier in the sequence, fewer and fewer images will remain, and a larger and larger 

fraction of the remaining images will be abnormal.  The images removed after each step 

will have a confidence level for their classification, providing a measure for the need to 

further analyze each image. 

 The vote-taking process runs each feature vector through all of the classifiers 

immediately.  The confidence level for the resulting classification is computed from the 

number of classifiers which agreed in their classification and from the sensitivities and 

specificities of the classifiers.  A discrimination threshold may then be selected to 

remove all images that, for example, have a less than 10% chance of showing 

abnormalities. 

 The network of tuned classifiers approach uses individual classifiers that are 

each tuned to detect different types of abnormalities, such as just masses or just 

calcifications.  Images are first screened for the presence of one type of abnormality: 

any images found unsuspicious for this abnormality are passed on to other classifiers 
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that search for other types of abnormalities.  By searching for particular types of 

abnormalities at each step, this approach may offer higher sensitivity than any other 

process, though its usefulness will depend on the level of specificity it can provide. 

 For any of the processes to work, the individual classifiers must have low 

correlations among their misclassified images; that is, they must correctly classify more 

images together total than each classifier can individually.  For example, using the same 

classifier twice in sequence would have no beneficial effect: since all abnormal images 

that reached the second classifier would be classified as abnormal again, the second 

classifier would be redundant.  Selecting classifiers with low correlation among their 

classifications of a set of images will be necessary for any of the proposed methods to be 

effective. 

 The full algorithms will be tested on the Mammographic Image Analysis Society 

(MIAS) database [51].  The database contains over three hundred images, including over 

200 normal images and approximately 100 images containing benign and cancerous 

masses and calcifications.  The algorithm is designed to be flexible enough to operate on 

other image databases and on clinical images without substantial modification, as the 

feature reduction step will select the most effective features for classification based on 

the selected imaging view and resolution standard.  To test this flexibility as well as the 

system’s performance on a larger scale, the algorithm will be retested on a substantial 

subset of the Digital Database for Screening Mammography (DDSM) data set consisting 

of approximately 1000 normal images and 650 suspicious images [23]. 
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CHAPTER 2 – THE WAVELET TRANSFORM 

_______________________________________________________________________ 

 

 The wavelet transform has similarities to the Fourier transform, but offers 

several unique advantages.  In this work, the wavelet transform operates on x-ray 

images; hence, it transforms the spatial position information of the original image into 

the wavenumber domain that encodes the image in terms of spatial frequency 

components.  Whereas the Fourier transform maps a signal completely from the spatial 

position domain into the wavenumber domain, a wavelet transform maps a signal into a 

two dimensional position-wavenumber domain.  This more complex mapping provides 

information about a signal’s spatial frequency content as a function of position, in 

contrast to the position-independent output of the Fourier transform.  It should be noted, 

though, that although the Fourier-transformed signal does not explicitly show any spatial 

dependence, both a Fourier-transformed signal and a wavelet-transformed signal may be 

mapped back into the spatial position domain by an inverse transformation; this property 

means that both transforms are conservative and retain all of the information present in 

the original signal, but differ only in how they represent that information content. 

 Section 2.1 introduces the continuous wavelet transform as a development out of 

the Fourier transform.  Section 2.2 introduces the discrete wavelet transform in one 

dimension and some unique properties of wavelet transforms that are relevant to this 
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work, especially multiresolution.  Section 2.3 describes the two-dimensional discrete 

wavelet transform used in this work to parse the mammographic x-ray images, and 

Section 2.4 shows a simple example of employing the 2D discrete wavelet transform. 

 

2.1 Comparison of wavelet transform to windowed Fourier transform 

 The wavelet transform may be understood by examining its development out of 

the Fourier transform and its extension, the windowed Fourier transform [24,25].   The 

Fourier series represents an arbitrary periodic function f(x) by an infinite series of sine 

waves of various frequencies, amplitudes and phases.  For a function of position f(x) 

with a period L=x1–x0, the Fourier series f(x) can be written as: 

           (2.1) [ ,)sin()cos()(
1

0 ∑
∞

=

++=
n

nnnn xkbxkaaxf ]

where an and bn are the Fourier coefficients for each wavenumber kn = 2nπ/L.  The 

Fourier coefficients are found from the original function f(x) as follows: 

       dxxkxf
L

a
x

x nn ∫= 1

0

)cos()(2  .)sin()(2 1

0

dxxkxf
L

b
x

x nn ∫=   (2.2) 

Note that these coefficients can be interpreted as the correlation coefficients between the 

input function f(x) and the trigonometric functions sin(knx) and cos(knx) over the period 

L of f(x); this interpretation will be useful in discussing the wavelet transform later. 

 The Fourier transform for non-periodic functions is similar to the Fourier series, 

but allows the wavenumber k to be continuously valued, replacing the summation with 

an integral and exploiting Euler’s identity e-ikx = cos(kx) - isin(kx): 
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 Thus,  shows the amplitude of a signal as a function of wavenumber or 

spatial frequency, whereas f(x) shows the amplitude of a signal as a function of time.  

For some applications, however, it is desirable to measure how the frequency content of 

a signal varies over space and what its frequency content is at a particular location.  To 

this end, the windowed Fourier transform was developed, which limits the bounds of 

integration in (2.3) to a finite window size L.  The transform is then calculated as a 

function of the window location, so that the output 

)(~ kf

),(~ χkf  depends on both the 

wavenumber k and the center point of the observation window χ:   
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 The choice of the window size L presents a limitation to the windowed Fourier 

transform.  To find the spatial frequency content of a signal at a single point in space, 

the window size would have to be arbitrarily narrow to exclude contributions from the 

signal at nearby locations.  Low spatial frequency components, however, cannot be 

accurately distinguished over short spatial intervals, due to the uncertainty relation  

ΔkΔx > 1/2; although the uncertainty in wavenumber Δk is the same for all 

wavenumbers, the relative uncertainty Δk/k is greater at low wavenumbers or low spatial 

frequencies.  To achieve a large relative frequency resolution for low frequencies, a 

larger window is needed, though this reduces the spatial resolution of the transformed 

signal.  The choice of window size is thus application-dependent and must be selected to 

give the desired compromise between spatial and frequency resolution in the 

transformed signal. 
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 The wavelet transform works around the problem of window size by varying it 

dynamically as a function of the frequency range being probed.  Rather than using an 

infinite set of basis functions, like the sine functions of varying wavenumber used in the 

Fourier transform, the wavelet transform uses a single basis function, then scales and 

translates it to probe all possible spatial positions and frequencies.  A wavelet basis 

function has a finite extent, effectively defining a window size over which it is 

convolved with the spatial domain signal to be transformed.  The extent of the basis 

function can be enlarged or reduced by scaling the length of the function in space in a 

process called dilation.  For example, the simplest wavelet basis is the Haar wavelet:  it 

has a value of 1 for x = 0 to 0.5, -1 for x = 0.5 to 1.0, and zero elsewhere, and is 

commonly used as an edge detector to mark sharp changes in a signal.  To measure 

changes at a lower frequency, the wavelet can be stretched to be nonzero from x = 0 to 

10, which both lowers the frequency to which the basis function is most sensitive by a 

factor of ten and increases the absolute frequency resolution of the transform by the 

same amount.  Similarly, high frequencies can be probed by shortening the wavelet 

duration to, for example, x = 0 to x = 0.10, which makes it more sensitive to higher 

frequencies and provides a higher spatial resolution; the loss of absolute frequency 

resolution at higher frequencies is less noticeable since the relative wavenumber 

resolution, Δk/k, remains constant across all frequencies.  This automatic scaling of the 

basis function’s window size with frequency provides a constant relative frequency 

resolution while maximizing the spatial resolution across all frequencies of the signal. 

 Figures 2.1-2.3 show the output of convolving the same input signal with a 

wavelet scaled to three different sizes.  The wavelet used is the Daubechies 2 wavelet, 

 27



and is scaled to have a duration of 768 units (Figure 2.1), 192 units (Figure 2.2), and 32 

units (Figure 2.3) for the three different convolutions.  The input signal is a piecewise 

continuous sine wave that changes frequency at 256, 512 and 768 units.  The results of 

each convolution with the input signal are discussed in turn below. 

 

Figure 2.1 – Signal convolved with Daubechies 2 wavelet at a large scale 

 The first convolution, shown in Figure 2.1, dilates the basis function to have a 

relatively long duration of 768 units, making it most sensitive to lower frequency 
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components in the signal.  Hence, the first and last quarters of the output signal have the 

largest coefficients, since these were the corresponding locations in the input signal that 

were dominated by low frequency components.  There is little response to the relatively 

high frequency central part of the input signal. 

 

Figure 2.2 – Signal convolved with Daubechies 2 wavelet at a medium scale 

 The second convolution, shown in Figure 2.2, uses a basis function scaled to a 

medium duration of 192 units.  The output coefficients are greatest for the second 
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quarter of the signal where the input signal’s frequency was moderately high, while the 

output coefficients are very low in the other regions where the input signal’s frequency 

was significantly higher or lower.  Edge effects create the sharp response at around 768 

units along the signal where the spatial frequency of the input signal changes abruptly. 

 

Figure 2.3 – Signal convolved with Daubechies 2 wavelet at a small scale 

 The third and final convolution, shown in Figure 2.3, uses a basis with a short 

duration of 32 units to probe the high frequency content of the signal.  Although the 
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output coefficients respond to the second quarter of the signal, they respond most 

strongly to the high frequency third quarter of the input signal.  The output includes 

almost no contribution from the low frequency first and last quarters of the signal, since 

the wavelet basis is insensitive to such low frequencies when it has such short duration. 

 

2.2 The discrete wavelet transform and multiresolution analysis 

 The continuous wavelet transform maps a one-dimensional signal that depends 

only on position into a two-dimensional space of position and wavelet scale; hence, the 

transformed signal is highly redundant.  The discrete wavelet transform samples only a 

subset of scales and discretizes the spatial domain, eliminating signal redundancy while 

maintaining full information content about the original signal.  The most common 

technique for carrying out this discretization is known as dyadic sampling [25]. 

 Dyadic sampling is a recursive procedure for breaking a signal down into its 

content at varying scales or frequencies.  The first pass of the discrete wavelet transform 

samples the signal at a rate sufficient to resolve the highest frequency component 

present in the original signal; according to the Nyquist criterion, this sampling rate is 

twice the maximum frequency present in the original signal.  The wavelet basis function 

is a finite sequence of numbers in the discrete case and is convolved with the original 

sampled signal to produce an output corresponding to the smallest scale and the highest 

frequency measured by the transform.  Two output signals are maintained: the high 

frequency or detail signal, which is the output of the convolution between the basis 

function and the sampled signal; and the low frequency or approximation signal, which 

is the difference between the original signal and the detail component.  Dyadic sampling 
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keeps only every second point in the two output signals; this eliminates redundancy 

without information loss, since the original signal can still be recovered from the two 

low-resolution output signals, so long as the wavelet basis is orthogonal [24].  The 

approximation signal is then used in the next pass of the wavelet transform to measure 

the signal content at a lower frequency or larger scale.   

 To change the wavelet scale, the discrete wavelet transform uses the 

approximation signal as the input to another pass of the same wavelet basis function.  

Because the approximation signal contains only half as many points as the input signal, 

the next pass of the same wavelet function naturally covers twice as large of an extent in 

space.  This process of halving the resolution at each decomposition level is known as 

down-sampling [25].  The approximation signal at the new level is convolved with the 

basis function to produce another detail and another approximation signal at a new scale 

that each contain one-fourth the number of data points that the original signal did.  This 

process can be recursively repeated on the approximation signal until down-sampling 

has reduced the number of points in the signal to the point that convolution with the 

wavelet basis function is no longer possible. 

Another interpretation for the detail and approximation signals uses the concept 

of high pass and low pass filters [49].  The detail signal can be regarded as the output 

from passing the signal through a high pass filter whose response is described by the 

wavelet basis function.  The approximation signal can be regarded as the output from 

passing the signal through a low pass filter whose response is described by the scaling 

function.  The scaling function is a function complementary to the wavelet basis 

function that generates the approximation signal when it is convolved with the input 
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signal.  In the discrete case, defining both a scaling function for the low pass filter and a 

wavelet basis function for the high pass filter greatly simplifies the calculation of the 

wavelet transform of a signal:  at each scale, the input signal is convolved with each of 

the two functions to produce the outputs, just as is the case for any set of digital filters. 

 The term multiresolution refers to the structure of the output signals from the 

discrete wavelet transform.  The output consists of detail and approximation signals at 

each of a set of resolution scales that each differ in resolution by a factor of two.  

Pictorially, the set of signals produced by the discrete wavelet transform can be 

represented by a binary tree: each level of the tree consists of a detail signal and an 

approximation signal; the approximation signal then has two children in the next level of 

the tree corresponding to the detail and approximation signals at the next, coarser level 

of resolution.  The highest levels of the tree have the finest resolution and correspond to 

the smallest scales and the highest frequency components of the original signal, while 

the lowest levels of the tree have the coarsest resolution and correspond to the largest 

scales and lowest frequency components of the original signal.  Figure 2.4 shows a tree 

structure for a wavelet transform with three levels of decomposition; the topmost node 

in the tree is the original signal, while each lower level in the tree corresponds to 

successively coarser resolutions of the signal’s detail and approximation components.   
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Figure 2.4 - Wavelet transform tree showing three levels of decomposition 

 

Note that once the signal has been sampled, it is no longer a function of the 

continuous variable x, but is instead a sequence of sample points at x = 2πn/ωs, where n 

is an integer and ωs is the sampling frequency; hence, the output signals should strictly 

be written as, for example, d1n instead of d1(x), but such notation would be more 

cumbersome.   

To reconstruct the original signal f0(x), only the three detail signals d1(x), d2(x), 

and d3(x), and the coarsest approximation signal a3(x) are needed: a2(x) can be found 

from d3(x) and a3(x), then a1(x) can be found from d2(x) and a2(x), and finally f0(x) can 

be found from d1(x) and a1(x).  This decomposition also clearly shows that the 

information in the original signal is transformed without redundancy.  The signals at 

 34



each successively lower level consist of half the number of sample points as signals in 

the level above, so the total number of points needed to represent the three detail signals 

and the one approximation signal are 1/2 + 1/4 + 1/8 + 1/8 of the number of points in the 

original signal, which sums to exactly the number of data points in the original sampled 

signal. 

 

2.3 The two-dimensional discrete wavelet transform 

 The wavelet transform may be extended into two or more dimensions, making it 

a viable tool for analyzing images.  The wavelet transform in two dimensions uses 

combinations of the scaling function and the wavelet function applied in one dimension 

at a time.  The scaling function acts as a one-dimensional low pass filter while the 

wavelet function acts as a one-dimensional high pass filter.  In two dimensions, four 

combinations of the two filter types are possible, leading to four transformed images 

from a single original:   

 1. horizontal detail – high pass filter vertically, low pass filter horizontally 

 2. vertical detail     – low pass filter vertically, high pass filter horizontally 

 3. diagonal detail   – high pass filters applied both horizontally and vertically 

 4. approximation   – low pass filters applied both horizontally and vertically 

 

 The three detail images contain the fine information at the current level of the 

wavelet decomposition, while the approximation image contains the larger, coarse 

information that is passed down to the remaining levels of the decomposition.  
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 Dyadic sampling, discussed above for the one-dimensional wavelet transform, 

can also be applied to the two-dimensional transform.  When a filter is applied along a 

dimension, it is exactly analogous to the one-dimensional discrete wavelet transform, 

and the number of output data points is half the number of data points in the original 

signal.  Thus, once filters are applied along both dimensions of a discrete two-

dimensional signal, such as a pixel map, the output image contains one-quarter the 

number of data points as the original image.  It is notable that since four images are 

produced at a given decomposition level, the total number of data points produced by 

the transform is equal to the number of data points in the original image: this agrees with 

the discrete wavelet transform’s property of preserving the information content of a 

signal without redundancy.  

 

2.4 Example decomposition using two-dimensional discrete wavelet transform 

 The application of the two-dimensional discrete wavelet transform using dyadic 

sampling can be illustrated by a sample decomposition of a small 4x4 pixel image using 

the Haar wavelet.  The Haar wavelet is the simplest wavelet basis, consisting of a step 

function.  The discrete form of the wavelet is )1,1)(2/1( − , which is proportional to the 

difference between two successive data points.  The corresponding scaling function for 

the discrete transform is )1,1)(2/1( , which is proportional to the average of two 

successive data points.   

 Consider the following 4 x 4 array of pixel values: 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

01060
0660
0220
0220

. 

 We can apply two levels of wavelet decomposition to this image: the first will 

produce four 2x2 images, and the second will take the 2x2 approximation image and 

produce four 1x1 images. 

 

Vertical detail: 

Applying the high pass filter ( )1,1)(2/1( −  ) in the horizontal direction to each 

row and down-sampling by a factor of two produces a two column, four row image: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

106
66
22
22

2
1 . 

The low pass filter ( )1,1)(2/1(  ) is then applied vertically to each column and 

the output is down-sampled by a factor of two to produce the final 2x2 image: 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

86
22

. 

 The combined action of the two filters can be combined into a single 2x2 filter 

that can be applied to the image.  Consider the general 2x2 region of pixels: 

⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

aa
aa

. 

The high pass filter leaves the following one column, two row region: 
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⎥
⎦

⎤
⎢
⎣

⎡

−
−

))(2/1(
))(2/1(

2221

1211

aa
aa . 

The low pass filter then combines these two values into a single result for the 

2x2 region:  

[ ]))(2/1( 22211211 aaaa −+− . 

 This can be represented in shorthand by the matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

11
11

2
1 . 

 The sum of the four values produced by multiplying this matrix on an element-

by-element basis with a region of the image is then the output pixel in the horizontal 

detail image.  By a similar analysis, 2x2 matrices can be constructed to represent all four 

filtering operations for the two-dimensional discrete Haar wavelet transformation: 

        Horizontal Detail      Vertical Detail 

  ⎥
⎦

⎤
⎢
⎣

⎡
−− 11
11

2
1          ⎥

⎦

⎤
⎢
⎣

⎡
−
−

11
11

2
1  

          Diagonal Detail           Approximation Image 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

2
1           ⎥

⎦

⎤
⎢
⎣

⎡
11
11

2
1  

Similar sets of matrices can be constructed for other wavelet bases besides the 

Haar basis, simplifying the computation of the transformation.  Other wavelet bases 

typically consist of longer basis function number sequences, making the computations 

more involved, but the application is exactly the same.  For example, the Daubechies 

family of wavelets are described by 2N points for the dbN basis, and N can range from 

one (equivalent to the Haar basis) to eight or more. 
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The four output images from the original image are then: 

        Horizontal Detail     Vertical Detail 

              ⎥
⎦

⎤
⎢
⎣

⎡
− 20
00

⎥
⎦

⎤
⎢
⎣

⎡
−
−

86
22

         Diagonal Detail           Approximation Image 

               ⎥
⎦

⎤
⎢
⎣

⎡
− 20
00

⎥
⎦

⎤
⎢
⎣

⎡
43
11

 The wavelet transform is then applied to the approximation image to produce a 

second level of detail images.  In this case, the four resulting images are 1x1 scalar 

values and no further decomposition is possible: the approximation image is a scalar 

value representing the mean intensity of the entire original image and cannot be broken 

down into further levels of detail. 

The four output images from the second level of the decomposition are: 

        Horizontal Detail     Vertical Detail 

     [           ]50.2− [ ]50.0−  

 

         Diagonal Detail           Approximation Image 

      [ ]             50.0 [ ]25.2  

 Note that the second level of detail captures coarser features in the image: for 

example, the horizontal detail in the first level misses the change from low to high 

values between the top and bottom halves of the image, but the second level horizontal 

detail captures this feature clearly. 
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CHAPTER 3 – PATTERN RECOGNITION TECHNIQUES 

_______________________________________________________________________ 

 

 Automated pattern recognition is the process of assigning a new pattern to a 

class according to an algorithm or classifier [48].  The challenge of pattern recognition 

is to classify patterns that have not been observed before, based only on the knowledge 

of the class membership of a known set of patterns.  For example, one may wish to 

classify a piece of produce as either a fruit or a vegetable; based on past experience, one 

notes that all fruits that they have seen contain seeds and classifies the new piece of 

produce as a fruit if it contains seeds or a vegetable if it does not.  More complex 

classification schemes are needed when there is more variation within a class, such as 

the set of all mammographic images showing abnormalities.   

 Template matching is the simplest form of pattern recognition in imaging.  The 

image to be classified is convolved with an image representative of a class; if the 

correlation between the images is sufficiently high, then the image is assigned to that 

class.  This method is best in low noise situations with little variation within a class, 

such as classifying silhouette images of machined parts as either acceptable or defective.  

This method works poorly when there is large variation in size, shape and orientation of 

image structures within a class, such as in the variety of ways that different 

abnormalities appear in mammographic images, making it unsuitable for this work. 

 40



 The most widely implemented approaches to pattern recognition are statistical 

and rely on measuring a set of attributes, or features, of a pattern and determining class 

membership based on their values.  The set of all N features measured for a single 

pattern is called a feature vector, and maps the pattern into an N-dimensional feature 

space where the classifier can then differentiate between the feature vectors 

corresponding to particular classes.  Features may be continuously valued, such as mean 

image intensity, or discretely valued, such as the number of foreground objects present 

in an image.   

Classifiers are designated as hard or soft depending on their assumptions 

regarding the uniqueness of feature vectors.  A hard classifier assumes that all patterns 

that produce nearly identical feature vectors belong to the same class.  In this case, when 

a particular feature vector is measured, it is assigned to a particular class with absolute 

certainty.  Soft classifiers relax this restriction, but instead assume that a certain fraction 

of feature vectors in a small neighbourhood belong to a particular class and the rest 

belong to one or more other classes.  In this case, a feature vector is assigned a 

probability p of belonging to the class of interest.  A hard classifier can be seen as a 

limiting case of a soft classifier, where all feature vectors producing a probability greater 

than some chosen threshold are assigned to the class with certainty.  Soft classification 

provides more useful diagnostic information in medical pattern recognition, since it 

provides a measure of the confidence in a particular classification and can be used to 

rate the importance of re-examining a particular patient or image.  The main 

disadvantage of soft classifiers is the difficulty in quantifying the probability of class 

membership. 
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3.1 Training and testing methodologies for classifiers 

 To develop a classifier in practice, some technique is needed to use an input data 

set to train and test the classifier.  Two learning methods are possible, based on whether 

the class memberships of the patterns in the input data set are known [48]: supervised 

learning, where the class memberships are known and used; and unsupervised learning, 

where the classifier is trained without using knowledge of the true class memberships of 

the input patterns, and in some cases even without knowledge of the number of classes.  

In supervised learning, some fraction of the input images are used to train the classifier, 

and the remaining images are used for testing to see how effectively the trained 

classifier assigns the test patterns to their actual classes.  In unsupervised learning, the 

class memberships are chosen for all of the patterns in such a way as to best separate the 

data set into some number of classes; various measures exist to determine when the 

optimal set of class designations have been given.  One common measure is to minimize 

the mean squared distance from the feature vectors in a class to the mean feature vector 

for that class; this measure makes each class as tightly clustered as possible, rejecting 

samples whose feature vectors are too distinct from the norm for  a given class. 

In supervised learning, some fraction of the data set must be set aside for testing, 

while the remaining samples are used to train the classifier.  There are three typical ways 

to segment a data set for this purpose: the leave-one-out method, cross validation, and 

the half-and-half method [48]. 

The half-and-half method uses half the data set for training the classifier, then 

tests it on the other half of the samples.  This method works well for large data sets 

where half the data set is sufficient to accurately represent the sample population during 
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training.  Because of its inefficient use of a data set for training, though, it is less useful 

in more complex applications where high in-class variability requires as many samples 

as possible to accurately model the population; mammographic images display this high 

in-class variability, and so this method was not used. 

The cross validation technique partitions the data set into M equally-sized 

subsets; one subset is used for testing, and the other M-1 subsets are used to train the 

classifier.  The classifier is trained and tested M times, using each of the subsets as a test 

set once and as part of the training set the other M-1 times.  This method uses a larger 

fraction of the data set for training while still maintaining a significant number of test 

samples, making it more suitable for slightly smaller data sets where a limited number 

of samples are available from each class. 

The leave-one-out technique can be seen as a limiting case of the cross 

validation technique, where the equal subsets each consist of only one sample.  In this 

case, all but one of the samples are used to train the classifier, and the classifier is tested 

on the lone remaining sample.  The overall performance of the classifier is measured by 

averaging the classification results from when each sample in the data set was used as 

the test sample.  This method maximizes the size of the training set, making it a viable 

choice for testing the mammographic x-ray image classifier designed in this work.  

Since there is so much variability in the appearance of normal and of abnormal 

mammographic x-ray images, the training set size should be maximized to best 

represent the distribution of samples within these two classes. 
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3.2 Common types of classifiers 

There are several widely used classifiers in image recognition research today; 

among them are c-means classifiers, k-nearest neighbour classifiers, neural networks, 

and Bayesian classifiers [48].  All four classifiers are naturally hard classifiers, although 

confidence measures may be extracted from each by extending their basic algorithms.  

The classifiers all work in two phases: the training phase takes a set of feature vectors 

with a known class designation to give the classifier reference values to measure against 

new vectors, and the operating phase takes new feature vectors as input and assigns 

class labels based on the information gained during the training phase. 

 

3.2.1 C-means classifier 

A c-means classifier defines a prototype feature vector for each class as the 

average of all training vectors for that class.  The feature vector of a new sample is 

assigned to the class with the nearest prototype vector.  This algorithm trains quickly 

and performs the classification quickly as well, making it useful as a first pass classifier 

for testing the effectiveness of new features.  This type of classifier can be used for an 

unsupervised learning experiment by iteratively choosing potential class memberships 

and calculating the corresponding prototype feature vectors until some desired 

segmentation rate is achieved among the different classes.  Because class distinctions 

are determined by a simple distance measurement, however, this approach fails when 

the boundaries between classes in feature space are non-linear. 
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3.2.2 K-nearest neighbour classifier 

A k-nearest neighbour classifier assigns a new feature vector to the class to 

which the largest fraction of the k nearest training vectors belong.  Nearness is measured 

by the geometric distance between two feature vectors in a space defined by the 

component features used to construct the vector.  This algorithm does not require a 

distinct training phase, other than inputting the training vectors and their classes, but has 

a relatively slow operating phase, since the distance to every training vector must be 

measured for each new sample, though optimizations are possible to reduce the number 

of measurements needed for each new vector.  The classifier can handle classes with 

complex boundaries in feature space: since it is only concerned with the k training 

vectors in the local neighbourhood, it can handle complex cases, such as classes with 

two disjoint regions in feature space, quite well.  The robustness, ease of 

implementation, and relatively high efficiency, when optimized, of this algorithm make 

it highly popular, especially in research where the emphasis is on generating new types 

of feature vectors and measuring their performance directly against older types of 

feature vectors using a common classifier. 

 

3.2.3 Neural networks 

A neural network uses a complex set of decision nodes to create non-linear 

relationships between the input feature vector and the output class designation.  The N 

features of a feature vector are input to N nodes of a directed graph; each node takes in a 

set of input values and produces a single output value based on a weighted sum of its 

inputs.  The output may be binary, where the output is 1 if the inputs are above a 
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particular threshold and 0 otherwise, or it may be continuous, such as 1/(1+e-x) where x 

is the weighted sum of the inputs.  Several layers of nodes can be arranged and 

connected to determine a unique output for a given input vector; for example, in a 

classification scheme with four classes, the output may consist of four nodes defining a 

class vector with a 1 for the component representing the class chosen for the input and 

zeroes for the other components of the output.  A neural network is trained by repeatedly 

updating the values of the weights at each node until the vectors in the training set are 

classified at a sufficiently high rate.  In particular, the back-propagation technique 

measures the error at the output and feeds this back through the network, adjusting the 

weight at each node by an amount related to the magnitude of the misclassification at 

the output [48].  The iterative training process can be very time consuming, but the 

classification of new feature vectors afterwards is quite rapid. 

 

3.2.4 Naïve Bayesian classifier 

A Bayesian classifier uses probabilistic measures to assign a feature vector to the 

class most likely to produce it.  Specifically, the classifier uses Bayes’ rule to  measure 

the conditional probability P(f|c), the probability that class c could produce feature 

vector f, for all classes c and assigns f to the class with the highest probability of 

producing it:   

      
∑

=

i
ii cPcfP

cPcfPfcP
)()|(

)()|()|( .    (3.1) 

Equation 3.1 is the basic equation used to calculate probabilities for a Bayesian 

classifier.  Here, P(c|f) is called the posterior probability and describes the likelihood of 
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feature vector f belonging to class c.  P(f|c) is called the likelihood, since it describes the 

likelihood that a class c would produce feature vector f.  P(c) is called the prior 

probability for class c, and describes the a priori probability of class c occurring, 

compared to all other classes; since only about 1 in 400 mammographic x-ray images 

are abnormal, P(c) would be 0.0025 for the abnormal class and 0.9975 for the normal 

class.  Finally, the denominator is called the evidence and normalizes the posterior 

probability so that the probability of feature vector f belonging to any class sums to one. 

A naïve Bayesian classifier, the most common implementation, makes the strong 

assumption that the components of the feature vector are independent, so that P(f|c) is 

equal to the product of the probabilities P(fi|c) that class c could produce each 

component fi of the feature vector.  This independence assumption is often demonstrably 

wrong, since many components of a feature vector may share some relationship, but the 

naïve Bayesian classifier can still produce very high classification rates with this 

assumption [52].  It is believed that the independence assumption does not destroy the 

validity of the classifier because, although it changes the probabilities P(fi|c), the 

Bayesian classifier makes decisions based on which probability is largest, and the 

independence assumption does not typically change the relative ordering of the 

probability magnitudes [21].  Because the magnitudes of the probabilities are not valid, 

however, the naïve Bayesian classifier cannot use them to determine a confidence 

measure for its classifications.  The classifier is trained by measuring the conditional 

probabilities P(fi|c) from the training vectors; typically binning is used to discretize 

continuously-valued features to form a useable probability distribution.  The Bayesian 

classifier takes longer to train than the other classifiers, except for neural networks, but 
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classifies new patterns quickly and often very accurately; the challenges with this 

classifier are binning the feature values effectively and incorporating soft classification. 

 This research used a novel extension of a naïve Bayesian classifier to classify 

mammographic x-ray images into one of two possible classes – normal or suspicious – 

and provide a confidence level for the classification. 

 

3.3 Survey of current approaches in computer aided detection 

 In recent years, a large number of Computer Aided Detection (CAD) methods 

have been proposed to assist radiologists in the detection of breast cancer from x-ray 

mammography images.  These approaches use a variety of image processing techniques 

and pattern recognition tools to extract information from raw mammograms; the 

differing approaches often reflect the different physical and biological phenomena that 

indicate abnormalities. 

 A number of comprehensive review articles cover the variety and effectiveness 

of current CAD methods; the following sections give only a sample of current 

approaches and techniques.  S. Ciatto et al. [12] examined the CAD readers currently 

used in clinical settings as second readers to measure their effect on diagnostic accuracy.  

Susan Astley provided two discussions of the potential of CAD systems and the 

improvements that must occur for them to become effective [3,4].   Kunio Doi discussed 

the history of CAD and the limitations that make it an aid but not a replacement for 

human radiologists [16].  Maryellen Giger examined the state of CAD and its use in 

other modalities, such as ultrasound and MRI, where similar challenges face physicians 

attempting to process a large number of images to find a small number of abnormal 
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cases [20].  Finally, H. D. Cheng et al. provided a particularly comprehensive overview 

of techniques common to most CAD systems, especially image processing techniques 

[9,10].   

Three representative CAD methods are discussed in some detail below to 

provide a context for the advantages of the method developed in this work.  Other CAD 

methods exist; the methods discussed here are those with some common features to the 

current work, such as the use of wavelets or of statistical pattern recognition techniques. 

 

3.3.1 Spatial grey level dependence (SGLD) matrices 

 The team led by Heang-Ping Chan [7,8] developed a classification tool that 

differentiated between benign and malignant calcifications in mammographic images 

using a textural analysis and a fuzzy-neural network.  This approach was only designed 

to differentiate between benign and malignant calcifications and not to analyze an 

arbitrary image, so the algorithm acted only on a region of interest (ROI) defined by a 

radiologist:  the ROI contained a cluster of calcifications that the classifier analyzed for 

malignancy. 

 The analysis of the ROI began by removing the relatively low spatial frequency 

background to isolate the small, high spatial frequency calcifications.  The resulting 

region was cropped to 512 x 512 pixels, and 40 SGLD matrices pθ,d(i.j) were developed 

for each region.  Each matrix p(i,j) for a given θ, d pair measures the number of times 

that the grey levels i and j are found a distance d apart and at an angle θ from each other; 

because the region is discrete due to digitization, the angle θ was limited to four values – 

0, 45, 90 and 135 degrees – and the distance d was limited to have the values from 4 to 
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40 pixels in four pixel increments.  The grey levels were binned to have only four 

possible values; thus, each of the 40 matrices measured 4 x 4 elements in size.  From 

these matrices, 13 textural features were measured, such as energy, entropy, and inertia, 

which are statistical characterizations of the nature of grey level changes within the 

region [22].  

 The smallest subset of features which provided the maximal discrimination 

between the benign and malignant classes were chosen iteratively by adding or 

removing one feature at a time from the complete feature set.  The Wilks lambda 

function was used to measure the separation between the two classes and is equal to the 

ratio of the within-class sum of squared errors to the sum of squared errors for the total 

data set.  A feature was added if its effect on the Wilks lambda was above a chosen 

threshold Fin, while a feature was removed if its effect on the Wilks lambda was below a 

chosen threshold Fout; raising either threshold lowered the total number of features 

chosen for the final classifier, an artificial neural network.  The classifier was trained 

with the leave-one-out methodology, and typically selected six to seven features to 

classify the 86 images.  The classifier was able to detect 100% of malignant cases while 

correctly identifying 11 of 28 (39%) of the benign calcification cases. 

 

3.3.2 Multiresolution detection of spiculated lesions using binary tree classifier 

 Sheng Liu, Charles F. Babbs and Edward J. Delp proposed a detection system 

for identifying spiculated lesions on mammograms [33].  Spiculated lesions are masses 

that lack a smooth boundary and have an irregular shape; these masses are far more 

likely to be cancerous than smooth lesions, so their detection is of great diagnostic 
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importance.  Wavelet decomposition was used on the image to generate coarser, low 

resolution versions of the image, which allowed the same algorithms to be applied to 

different size scales.  For example, a region of interest 20 pixels in diameter would 

correspond to regions 1, 2, 4 and 8 mm in diameter as the resolution was successively 

halved, making the algorithm sensitive to lesions of various sizes.  The wavelet used in 

the decomposition was a linear phase non-separable 2D wavelet:  this means that the 

phases were transformed linearly and that the wavelet could not be decomposed into 

separate horizontal and vertical transformations.  This wavelet was used to avoid bias 

towards the horizontal and vertical orientations in the image, since the masses could 

have arbitrary orientation. 

 The distinguishing feature of spiculated lesions used in the analysis is the 

random orientation of their edges and spicules compared to the relatively parallel 

orientation of the ductile tissue within the healthy region of a breast.  To measure this 

lack of directionality, four parameters were measured for each pixel at each of four 

levels of image resolution, using a neighbourhood 30 pixels in diameter to measure 

statistical values.  The four parameters were mean intensity, standard deviation of pixel 

intensity, standard deviation of the edge orientation histogram and the standard 

deviation of the intensity gradient.  The edge orientation histogram measures the number 

of pixels in the neighbourhood with each possible edge orientation; for healthy tissue, 

edges should be relatively parallel and the histogram should have a narrow peak and a 

small standard deviation, while for a spiculated lesion the edges should be more 

randomly oriented, resulting in a broad or non-existent peak and a larger standard 

deviation. 
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 The images were then classified, starting with the coarsest: once an image had a 

positive result, finer resolutions were not analyzed to reduce computational complexity; 

images with negative results at all resolutions were combined with a weighted average 

to make a final search for any missed lesions.  Each pixel within an image was run 

through a binary tree classifier, which gave a measure of suspiciousness, and the results 

for the image were run through a median filter, a low pass filter and then thresholded to 

mark any regions above a certain level of suspiciousness that were most likely to 

correspond to a spiculated mass.  A binary tree classifier makes a decision at each node 

based on the value of a particular feature so that the path continues to the child selected 

by that decision, and the leaf nodes correspond to a particular class designation and a 

confidence level; in this case there were two class designations: suspicious and not 

suspicious.   

 This scheme was tested on 19 images of spiculated lesions and 19 normal images 

taken from the MIAS database also used in the current work [51].  The algorithm 

achieved 84.2% sensitivity with 1 false positive per image or 100% sensitivity with 2.2 

false positives per image, depending on the choice of the threshold when selecting 

suspicious pixels from the output of the classifier. 

 One drawback of this approach is the decision to stop searching finer resolutions 

once a positive result is found.  Firstly, because of the large number of false positives 

per image, the majority of suspicious regions marked are false positives, and finding a 

positive result at a coarse resolution does not mean that a true positive does not exist at a 

finer resolution.  Secondly, the finer resolution images are most sensitive to the small 

lesions that mammography can find better than physical examination; stopping at coarse 
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resolutions limits the size of lesions that will be found and may reduce the effectiveness 

of mammography when used with this approach. 

 

3.3.3 Multiresolution segmentation of calcifications using fuzzy c-means analysis 

 The primary focus of the work by S. Sentelle, C. Sentelle and M. A. Sutton was 

to use wavelet analysis to rapidly process images to detect calcifications, as processing 

time is a problem for a number of current algorithms [47].   

 The algorithm first down-sampled an image, taking one pixel from each 64 x 64 

region in order to more rapidly process the high resolution mammography images.  The 

down-sampled image pixels were segmented into seven classes according to their 

intensity: bright structures, background, adipose tissue, glandular tissue, and three 

classes for the air-skin interface region.  The segmentation was performed using fuzzy c-

means analysis, which iteratively updates the location of class prototypes in a feature 

space and assigns samples to the class with the nearest prototype.  After each iteration, 

the centroid of all points assigned to a particular class is used as that class’s prototype 

for the next iteration; the algorithm stops iterating when the adjustments made to the 

prototypes after an iteration are all below a chosen threshold, at which point the class 

memberships are finalized.  Because this method is statistical, its accuracy is not 

significantly reduced by using a smaller set of samples, so long as they are 

representative of the entire population; this means that the prototypes determined from 

the down-sampled image are also applicable to higher resolution images. 

 The class prototypes found from the first down-sampled image were then 

directly applied to classify the pixels of an image down-sampled by a factor of 4 in each 
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direction from the original image.  This mid-resolution image was coarse enough to 

make class assignment rapid but fine enough to accurately segment the image into the 

seven classes.  Windows of the image containing enough pixels classified as bright 

structures that could potentially be calcifications were then located and examined at full 

resolution   Wavelet decomposition was performed on the windowed region using the 

biorthogonal 4.4 wavelet base, and the resulting wavelet maps were tuned to enhance 

the appearance of small, bright regions that could correspond to calcifications.  A 

potential calcification was marked if the image contrast and intensity at a point were 

together above a chosen threshold. 

 The algorithm was tested using 20 images containing malignant calcifications 

and 5 images of normal breast tissue.  The algorithm achieved 75% sensitivity with 3.0 

false positives per image and 94% sensitivity with 17.0 false positives per image.  The 

relatively low specificity was a compromise with the fast processing speed of the 

algorithm, which was relatively high due to the selection of windows of interest from 

the low resolution image before performing the wavelet analysis and calcification 

detection.   
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CHAPTER 4 - METHODOLOGY 

_______________________________________________________________________ 

 

4.1 Introduction 

 The primary objective of this research was to design a tool that could accurately 

determine whether a given mammography image contained abnormalities that could 

signify breast cancer.  This chapter discusses the components of the tool’s design.  

Section 4.2 discusses the full system and breaks it down into its component stages, each 

of which are discussed in subsequent sections of this chapter. 

The digitized images were first pre-processed to remove artifacts and reduce 

noise, making the images as uniform as possible to highlight meaningful differences 

between images; this step is discussed in Section 4.3.  Section 4.4 describes the 

decomposition of the images using wavelet analysis a set of wavelet maps and discusses 

the generation of scalar features from these maps.  Section 4.5 introduces the modified 

naïve Bayesian classifier used in this work.  Section 4.6 outlines the problem of feature 

selection, or choosing the smallest subset of the generated features that optimizes 

classification efficiency.  Finally, in Section 4.7, the novel concerted-effort set of 

classifiers and the process of constructing a network of classifiers working in tandem are 

discussed. 
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4.2 Complete image analysis system 

 The entire image analysis system, from the reading of the original image to the 

final classification as either normal or suspicious, is represented by the block diagram of 

Figure 4.1.  The system consists of two distinct stages: the image processing system, 

which reads in the original image and produces a set of wavelet map images for the 

classifier to use; and the classification system, which measures features from the 

wavelet images and classifies the image as either normal or suspicious based on the 

results from the ensemble of classifiers. 

 

Figure 4.1 – Block diagram of complete image classification system 

 

 The image processing system consists of two discrete stages: the image pre-

processor and the wavelet decomposition system.  The image pre-processor takes the 

original digitized mammography image as an input and outputs a normalized image.  

The normalized images are flipped, if necessary, to all point in the same direction, have 

had their intensities scaled to a common maximum value, have had background artifacts 

removed and have had the background thresholded to zero to remove noise.  The pre-
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processing system is discussed in detail in Section 4.3.  The wavelet decomposition 

system takes the normalized images and carries out a wavelet analysis on them using 

one of a number of possible wavelet bases.  Multiple levels of decomposition are used, 

and four images are produced at each level of the decomposition, so that the output of 

the wavelet decomposition system is a set of images forming the wavelet maps of the 

normalized version of the original input image.  The wavelet decomposition scheme 

used is discussed in Section 4.4. 

 The classification system consisted of three stages: the feature generator, the 

classifier ensemble, and the feature reduction system.  The feature generator read in the 

set of wavelet maps produced by the image processing system and reduced them to a set 

of scalar features.  Section 4.4 discusses the generation of features from the wavelet 

maps.   

 The classifier ensemble consisted of a set of naïve Bayesian classifiers working 

in tandem to produce a single classification output of normal or suspicious using the 

features from the feature generator as input.  Section 4.5 discusses the design and tuning 

of a single classifier in the ensemble, while Section 4.7 discusses the process of linking 

several classifiers together to form the ensemble. 

 Feature reduction was used to minimize the number of features used to make the 

classification.  The problem of feature selection is discussed in Section 4.6.  Feature 

selection is also closely related to the problem of training and testing the classification 

system; it is discussed in that context in Chapter 5. 
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4.3 Image pre-processing 

 The images to be analyzed in this work were taken from the Mammographic 

Images Analysis Society’s digital mammogram database [51] that consisted of 303 

images: 205 images of normal breasts and 98 images showing one of four pathologies: 

benign masses, cancerous masses, benign calcifications or cancerous calcifications.  

There were an approximately equal number of images of right and left breast images, all 

of which were medial-lateral images.  A larger second data set taken from the Digital 

Database for Screening Mammography [23] was also used to test the system; this data 

set consisted of 1714 medial-lateral images, including 1065 normal images and 649 

images showing some form of pathology.  Images from both databases contained 

artefacts and noise unrelated to the presence or absence of abnormalities in the breast 

that needed to be addressed. 

 In order to reduce the influence of information content not related to pathology, 

several pre-processing steps were implemented to regularize the appearance of the 

images and remove any unnecessary artefacts.  The steps taken were: orientation 

matching, background thresholding, artefact removal and intensity matching. 

 

4.3.1 Orientation matching 

 Because the images of right and left breasts point to the left and right sides of the 

image, respectively, the images of right breasts were flipped horizontally to have the 

same orientation.  This step ensured that all images pointed in the same direction, 

preventing changes in the wavelet transform coefficients due only to the directionality 

change between right and left images.  A major feature in all images that this affects is 
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the sharp vertical line between the tissue and the dark background where the original 

film ends: on left breast images the intensity rises left to right across this edge, while on 

right breast images it falls, changing the sign of the calculated wavelet coefficient; 

matching the orientations of all images prevents this type of artefact from appearing in 

later analysis. 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.2 – Right (a) and left (b) breast images, no abnormalities.  Right breast 
image before (c) and after (d) orientation matching. 
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 Figure 4.2 shows the process of orientation matching.  Figures 4.2 a) and b) 

respectively show the left and right breast images of a patient with no abnormalities in 

her breast tissue.  Figures 4.2 c) and d) show the right breast before and after being 

reflected.  Note that after flipping the right breast images, the two images from the 

patient are qualitatively much more similar, reducing errors in subsequent analysis. 

 

4.3.2 Background thresholding 

 Since the pathology information is contained entirely within the tissue region of 

the image, no signal should be present in the dark background.  Semi-thresholding [48] 

is a technique which sets all pixels below a set intensity level to zero; if the threshold is 

chosen well, this procedure can zero out the majority of background pixels, which do 

not contain useful signal, and leave foreground objects unaltered.  To accomplish this, a 

conservative threshold value was chosen to be half of the threshold predicted by Otsu’s 

Method [48].  This method assumes that the distribution of grey levels within the image 

is bimodal, consisting of a largely bright object of interest against a largely dark 

background.  The brightness of the breast tissue region relative to the dark background 

in the images makes them appropriate for Otsu’s method. 

In Otsu’s method, a threshold level is chosen such that all background pixels 

have an intensity below the threshold value and all foreground object pixels have 

intensity above the threshold value.  In practice, the intensities of foreground and 

background pixels will both have broad, overlapping distributions, and it will not be 

possible to choose a threshold value which does not misclassify any pixels.  Otsu’s 

method assumes that the foreground and background intensities are normally distributed 
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and chooses the threshold level which minimizes the number of misclassified pixels 

between the background and foreground regions.   

In this work, the actual threshold level used is half of that predicted by Otsu’s 

method; this is done to reduce the number of pixels from the tissue which are 

misclassified as background pixels and thus removed from the image.  Since the 

intensity in the images is directly related to the attenuation of x-rays passing through the 

tissue, and since this attenuation depends largely on the thickness and density of the 

tissue, tissue pixels which fall below the conservative threshold are predominantly from 

the edges of the tissue region where the breast tissue is thin and uncompressed.  Any 

pathology which exists this close to the surface of a patient’s skin should be readily 

detectable by conventional examination without the aid of mammography. 

The thresholding process was implemented in conjunction with the next step, 

artefact removal; because of this, it was convenient to perform a binary thresholding, 

where all pixels below the threshold were set to an intensity of zero and all pixels above 

the threshold were set to an intensity of one.  The resulting image was used as a mask 

for the original image: the output image of the process was the pixel-by-pixel product of 

the binary image with the original, so that all background pixels were set to an intensity 

of zero and all foreground pixels were unaffected. 
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(a) 

 

 

(b) 

 
(c)  

 

 
(d) 

Figure 4.3 – Mammogram image before(a) and after(d) background  thresholding.  
The intensity histogram is shown in (b) with the threshold indicated by a vertical 
line; (c) shows the thresholded binary image used to mask the original image. 
 

Figure 4.3 shows the process of thresholding the image.  Figure 4.3 a) is the 

original image after orientation matching.  Figure 4.3 b) shows the intensity histogram 

of the image: note that the distribution has a narrow peak at low intensity corresponding 

to the large number of very dark background pixels and a broad peak at higher 
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intensities corresponding to the brighter foreground tissue region.  The vertical line in 

the histogram corresponds to the conservative threshold value; all pixels with intensities 

below the threshold appear black in the binary image in Figure 4.3 c) while all pixels 

with higher intensities appear white.  Figure 4.3 d) shows the masking of the original 

image in a) with the binary image in c): note that the background has had any low 

intensity noise removed; the effect is subtle in the printed figure but is apparent near the 

ML” view tag2 in the upper-right corner that now appears much more sharply. 

re 4.4 shows an image before and after the artefact removal step has 

een applied.  

                                                

“

 

4.3.3 Artefact removal 

 Once the binary image has been created through thresholding, it is possible to 

remove artefacts in the image.  The image is labelled as a set of contiguous regions, 

typically 100 – 125, consisting of 4-connected groups of white pixels in the binary 

image.  Two pixels are part of a 4-connected region if it is possible to travel between 

them by moving only vertically or horizontally (not diagonally) from pixel to pixel, 

travelling only on pixels that are part of the 4-connected region.  To preserve the tissue, 

all labelled regions are removed from the image except for the one containing the centre 

pixel in the image:  since the breast tissue is centred in all images, this approach isolated 

the breast tissue in all 303 images used.  The most noticeable artefact removed is the 

“ML” view tag, although a large number of small regions in the background which were 

brighter than the threshold level in the previous step are caught and removed by this 

procedure.  Figu

b

 
2 This tag appears on the original mammography x-ray film, specifying that this is a medial-lateral, or side 
view.  The tags are metal plates which strongly absorb x-rays and thus appear extremely bright on the 
developed films. 
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(a) 

 

Figure 4.4 – Mammography image before (a) and after (b) artefact removal 
rocedure 

4.3.4 In

d 

linearly scales all other image pixels accordingly.  The transforma on is d scribe

(b) 

p

 

tensity normalization 

The final pre-processing step applied to the images before they are ready for 

wavelet decomposition is the intensity normalization step.  This step scales all images so 

that the intensity of the brightest pixel in the image has a relative intensity of 1.0 an

ti e d by: 

)_max(
_

inimg
outimg ,        (4.1)   

where img_in is the input image following the artefact removal step and img_out is the 

intensity matched image whose pixel intensities range from zero to one.  This step 

ensures uniformity across different images, which may be taken at different times under 

slightly different machine settings or by different personnel.  Figure 4.5 shows the subtle 

_ inimg
=
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difference created by the intensity matching procedure.  The broader spread in 

intensities (the maximum relative intensity prior to normalization was 0.92) creates 

stronger differentiation between variations in tissue types and densities in Figure 4.5 b). 

 
 

 

(a) 
 

 

igure 4.5 – Mammography image before (a) and after (b) intensity matching 
procedure 

decomposition were then sensitive to structures in the tissue of different sizes, making 

(b) 

F

 

4.4 Wavelet decomposition of processed images 

 Once the images were pre-processed to minimize the differences between images 

that are not related to differences in the physical composition of the breast tissue, 

wavelet analysis was performed on the images.  The two-dimensional discrete wavelet 

transform was discussed in detail in Section 2.3 and was applied directly to these 

images.  The images were all sampled to 1024x1024 pixels, which would allow 10 

levels of decomposition, since dyadic sampling reduces the dimensions by a factor of 

two in each direction after each pass.  The images produced at each level of the 
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this approach effective for detecting the large variety of abnormalities in the tissue that 

could indicate breast cancer. 

In practice, only eight levels of decomposition were used, for several reasons.  

Since the final two levels would consist of four pixel and one pixel images and would be 

sensitive only to structures comparable in size to the entire breast, these levels were 

omitted from the wavelet analysis to speed calculation.  This limitation of the number of 

levels in the decomposition reduced the computation time for the complete system by a 

factor of 2.44.  More importantly, the lowest level of the decomposition had only one 

data point, and so images from this level would have all had a standard deviation of zero 

and undefined skewness and kurtosis, the statistical measures used to compare among 

different images.  Maps in the first eight levels of the decomposition each have at least 

16 pixels, making statistical calculations more meaningful than for the four or one pixel 

images at the lowest two levels of the decomposition. 

 

4.4.1 Choice of wavelet basis 

 A large number of wavelet bases have been developed in the literature, and new 

wavelet bases may be constructed easily, making the selection of an optimal basis for a 

particular task a complex project on its own.  For this research, a representative sample 

of widely used wavelets were tested.  Though this approach was unlikely to find the 

optimal wavelet basis for this type of signal processing, it is believed that the use of any 

sufficiently carefully chosen wavelet base can produce strong results, and the difference 

between optimal and sub-optimal wavelet bases is typically small [25].  Eleven wavelet 

bases were tested in this work:  the Haar wavelet; the Daubechies 2, 4 and 8 wavelets; 
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and the biorthogonal 1.5, 2.2, 2.8, 3.7, 4.4, 5.5 and 6.8 wavelets.  The Haar wavelet was 

chosen for its simplicity and for its effectiveness at detecting sharp contrasts, such as the 

presence of microcalcifications against a relatively dark background.  The Daubechies 

wavelets were chosen for their sensitivity to various types of intensity gradients.  The 

biorthogonal wavelets were chosen for their ability to provide exact reconstruction.  

Figure 4.6 shows the Haar wavelet and the 3 Daubechies wavelets used in this work, and 

Figure 4.7 shows the 7 Biorthogonal wavelets used in this work.  The wavelets and their 

associated scaling functions are shown in their discrete form, since this was the form 

used to decompose the mammographic images.  Note that the wavelet functions 

correspond to the high pass filters and the scaling functions correspond to the low pass 

filters applied along either the horizontal or the vertical directions in an image. 
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Figure 4.6 - Wavelet functions (high pass filters) and scaling functions 
(low pass filters) for Haar and Daubechies wavelet bases used in this work 
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Figure 4.7 - Wavelet functions (high pass filters) and scaling functions 
(low pass filters) for Biorthogonal wavelet bases used in this work 
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 Figure 4.8 shows the four views obtained at the third decomposition level when 

the Haar wavelet basis is used.  Note that the wavelet maps have a lower resolution than 

the original image, and that each view is sensitive to different features in the image:  the 

horizontal detail detects vertical changes in intensity, the vertical detail detects 

horizontal changes in intensity, the diagonal detail responds when the intensity is 

varying in both directions, and the approximation image is a low resolution version of 

the original image used as an input to the next coarser level of the decomposition. 
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Figure 4.8 - Original mammography image (top) and 4 output views at the third 
level of decomposition using the Haar wavelet basis.  Resolution is 128x128 
pixels at this scale. 
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 The use of the wavelet transform offers several advantages over other 

transforms, such as the Fourier transform, that could have been used to analyze the 

mammography images.  The primary advantage is the property of multiresolution: the 

wavelet maps at different levels emphasize features of different sizes.  Though masses 

may range in diameter from a few millimetres to a few centimetres, the same algorithm 

may be sensitive to them by analyzing wavelet maps at different scales.  

Microcalcifications tend to be quite small and are fairly similar in size, so 

multiresolution is less useful for detecting these abnormalities. 

 The second advantage of the wavelet transform is its retention of spatial location 

information.  The produced maps show the spatial distribution of information at 

particular size scales; in contrast, the Fourier transform would lose the spatial 

information and simply produce a map of the relative contributions of different 

frequencies over the entire image.  This spatial dependence is useful for finding 

localized structures, such as microcalcifications and small masses, which remain 

localized after the wavelet transform has been applied and can then be distinguished 

from a more homogeneous background. 

 

4.5 Generation of scalar features 

 Once the wavelet maps had been generated from the pre-processed images, 

scalar features were extracted to be used in the classification process.  All features 

extracted were whole-image statistical features, and the resulting classification scheme 

classified whole images as being normal or suspicious, rather than locating suspicious 
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regions within an image.  Four features were extracted from each wavelet map: the 

mean intensity, the standard deviation of the pixel intensities, the skewness of the pixel 

intensities and the kurtosis of the pixel intensities, each of which are discussed below.  

Several corrections were applied to the wavelet maps before calculating these features to 

emphasize the effects of abnormalities on their values; these corrections are discussed in 

Section 4.5.1.  Following that, Sections 4.5.2 to 4.5.5 discuss how each statistic is 

calculated and their physical interpretation, which governs their utility in distinguishing 

between normal and suspicious images. 

 

4.5.1 Corrections for breast size and directionality of wavelets 

 To make the scalar features extracted from the wavelet maps as physically 

meaningful as possible, several corrections were applied to the raw statistical measures 

taken from the images.  Specifically, the absolute values of the pixels in the wavelet 

maps were used rather than their signed values to focus only on the strength of the 

correlation between the wavelet basis function and the underlying image at the current 

scale.  Secondly, a correction was made for the size of the breast tissue region within the 

image to keep it from skewing the feature values, which should ideally only vary 

between images because of differences in pathology and structure in the tissue. 

 A wavelet map contains both positive and negative values, corresponding to 

positive and negative correlations between the wavelet and the image.  For example, the 

Haar wavelet transform produces positive values for a rising edge and negative values 

for a falling edge as it moves left to right across an image.  However, the directionality 

of the structures in the images, such as microcalcifications, was not as important as their 
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presence or absence, and so only the magnitudes of the wavelet maps were used.  As 

well, the mixture of positive and negative values can partly compensate for each other in 

the calculation of mean intensity and other features; this reduces the difference between 

the values measured from different images, making it more difficult to classify images 

based on this feature  Figure 4.9 shows the difference between a raw wavelet map and 

the absolute value of a wavelet map for the level 3 horizontal detail view of the Haar 

wavelet basis.   

 

 

Figure 4.9 - Wavelet map (left) and absolute value of wavelet map (right) 
for level 3 horizontal detail view of Haar wavelet decomposition 

 To reduce the effect of breast size alone on the resulting scalar features, all 

statistical values were measured only for pixels within the region corresponding to the 

actual breast tissue.  This was done by using the approximation image at each level as a 

mask: a given pixel in an image was only used in a calculation if the corresponding pixel 

in the approximation image at the same level was non-zero, meaning that it 

corresponded to tissue.  Without this correction, the statistical features would have been 

skewed to higher values for larger breasts, obscuring the  more meaningful differences 

in values caused by the presence or absence of abnormalities.  For example, the 
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measured mean intensity of an entire image would be twice as large if the tissue covered 

twice as much of the image even if the mean intensities within the tissue regions 

themselves were the same. 

 

4.5.2 Mean intensity 

 The first scalar feature used in this research was the mean intensity of the 

wavelet map.  The mean intensity μ was calculated only for pixels within the tissue area 

and was calculated as follows: 

∑=
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jiI
N ,

),(1μ ,          (4.2) 

where N is the number of pixels in the tissue region of the image, I(i,j) is the pixel 

intensity of the pixel in row i, column j of the image and the summation runs over all 

pixels in the region defined by the image mask.   

The mean intensity feature value gives a measure of the fraction of the total 

information in the original image present at the current scale. The horizontal, vertical 

and diagonal detail images’ mean intensities show the high frequency information at the 

current scale, while the approximation image shows the information left in all larger 

scales.  Lower levels of the decomposition corresponding to larger scales will then parse 

the approximation image and show how its information is in turn distributed among all 

larger scales.   

 The presence of microcalcifications should skew the total energy of an image 

towards the higher resolution, lower spatial scale maps, since the deposits are small in 

size and bright in appearance.  In tissue containing calcifications, then, the high 

resolution maps should have a slightly higher intensity and the low resolution maps 
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should have a slightly lower intensity than the corresponding maps produced from a 

normal sample.  In reality, the effect of the small microcalcifications on the total image 

intensity is small and easily obscured by other, normal variations between different 

samples; this drawback does not make this statistic invalid, but it motivates the use of 

multiple measures from several images in tandem to fully differentiate between normal 

and suspicious tissue. 

 The other sign of pathology is the presence of a mass in the image.  A mass may 

have almost any size, from a few millimetres to several centimetres in width.  As well, a 

mass may have a sharp boundary, or it may have a speculated appearance with tendrils 

extending into surrounding tissue, especially for the case of malignant, cancerous 

masses.  This large variety in the appearance of masses in an image means that no single 

scale or wavelet basis will naturally extract all masses from the background tissue.  All 

masses do share the property of being localized in one region of the tissue, though, and 

they typically appear as slightly brighter regions due to their slightly higher density as 

compared to healthy tissue.  Hence, a particular wavelet basis may measure a slightly 

larger than normal mean intensity at a particular scale and view when a mass is present, 

and this may make it possible to identify images showing the presence of masses 

automatically, especially when the feature values from several different scales are used 

in conjunction to detect masses of differing sizes. 
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4.5.3 Standard deviation of pixel intensities 

 The second scalar feature generated from the wavelet maps was the standard 

deviation of the pixel intensities in the wavelet maps.  The standard deviation σ is 

calculated over all N pixels within the tissue region as follows: 
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 The standard deviation measures the variability in the brightness of the image 

over the tissue region.  Microcalcifications much brighter than the mean image intensity 

will raise the standard deviation measure of the high spatial resolution levels of the 

wavelet map images as compared with the corresponding images from a sample with no 

visible microcalcifications.  Masses may affect the standard deviation of the image in a 

similar fashion, but at lower spatial resolution scales corresponding to the approximate 

size of the mass. 

 The major drawback of using the standard deviation as a measure for detecting 

abnormal pathologies is the variation in tissue appearance among healthy patients.  One 

contributor to this variation is the amount of stromal and glandular tissue present in 

different patients.   

Breasts can be generally classified by the fraction of glandular tissue to stromal 

tissue into several categories.  Glandular tissue is composed of the ductile tissue and 

milk-producing lobules of the mammary glands and appears in a mammography image 

as a set of relatively bright lines that radiate back from the nipple.  Stromal tissue does 

not absorb x-rays as efficiently at the energies used for breast imaging and hence 

appears relatively dark; it is composed of connective tissue and fatty adipose tissue.  

Since the amount of glandular tissue is relatively constant between individuals, the 
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difference between patients’ breast sizes is controlled mainly by the amount of stromal 

tissue present.  The MIAS divides its images into three categories according to the 

relative amounts of stromal and glandular tissue present: dense breasts contain primarily 

glandular tissue, fatty breasts contain a relatively large amount of stromal tissue, and 

glandular breasts are somewhere in between.  The boundaries of the classifications are 

arbitrary, as the fractions of tissue types present falls along a continuum, but this 

classification highlights the large inherent variability in breast images that makes 

accurate interpretation so challenging.  Figure 4.10 shows a sample image from each of 

the three categories: note how the bright glandular tissue is progressively more diffuse 

from the dense to the glandular to the fatty images. 

 

 
(a)                                            (b)                                           (c) 

 
Figure 4.10 - Comparison of dense (a), glandular (b) and fatty (c) breast images, 
all showing normal tissue 

 The variation in tissue composition between the three images in Figure 4.9 

shows how strongly the standard deviation is affected by normal biological variation.  

The relatively uniform appearance of the fatty sample in (c) means that the standard 

deviation of the image intensity is low, while the split between bright and dark tissue 

regions in (a) and (b) means that they will have a much larger standard deviation.  The 
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standard deviation can still act to differentiate between normal and abnormal images, 

but only with careful choices of scale and wavelet bases that minimize the effects of 

normal biological variation on the feature values.  Section 4.7 discusses the problem of 

feature selection, where the optimal scales and views are determined for a given wavelet 

basis. 

 

4.5.4 Skewness of pixel intensities 

 The third statistic measured from each wavelet map image is the skewness of the 

pixel intensities.  The skewness of a distribution of values is defined as the third central 

moment of the distribution, normalized by the cube of the standard deviation.  Formally, 

the skewness S  is calculated according to: 
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 The skewness of a distribution measures the degree of asymmetry.  Consider, for 

example, a distribution which is approximately Gaussian.  If the left tail is slightly larger 

than the right tail, the distribution has a negative skewness; if the right tail is slightly 

larger, the distribution has a positive skewness.  This statistic is sensitive to the addition 

of a small number of unusually small or large values to a distribution, which may alter 

the skewness even if the mean value or standard deviation is not significantly altered. 

 Because of its sensitivity to a small number of additional large-valued points, 

skewness is a good candidate for detecting the presence of microcalcifications in an 

image.  The calcifications, which are only a few pixels in size at even the highest 

resolutions but are unusually bright, can skew the distribution of pixel intensities in the 

wavelet map of an image in a measurable way.   
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 The skewness measurement is also sensitive to the presence of masses in an 

image.  Dense masses appear as slightly brighter than normal regions within the tissue, 

raising the number of pixels with intensities larger than the mean value of the 

distribution.  Since skewness measures the imbalance between the parts of the 

distribution above and below the mean, the presence of a dense mass will raise the 

skewness relative to a healthy image.  Wavelet bases and levels that correlate 

particularly well with the shape of a mass will show a larger effect in their skewness 

measure, making this approach most useful when used in conjunction with an 

appropriate basis. 

 

4.5.5 Kurtosis of pixel intensities 

 The fourth and final statistic measured from the wavelet maps is the kurtosis of 

the pixel intensities.  The kurtosis of a distribution of values is defined as the fourth 

central moment of the distribution, normalized by the fourth power of the standard 

deviation of the distribution.  Formally, the kurtosis K  is calculated according to: 
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 Qualitatively, kurtosis measures the narrowness of the central peak of a 

distribution compared with the size of the distribution’s tails.  A distribution with a 

narrow peak and tails that drop off slowly has a large kurtosis compared with a 

distribution with a relatively wide peak but suppressed tails.  Kurtosis is positive definite 

for a real-valued distribution of values.  The kurtosis and standard deviation of a 

distribution may be similar, though kurtosis is more sensitive to points distant from the 

mean than the standard deviation is. 
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 Because kurtosis depends on the fourth power of the distance between an 

outlying point and the mean, it is highly sensitive to the addition or loss of points far 

from the mean of the distribution.  Microcalcifications may raise the kurtosis by 

increasing the number of unusually bright pixels in a wavelet map, especially at the 

higher resolution scales where the calcifications can be differentiated. 

 The kurtosis measure appeared to be sensitive to the presence of masses as well.  

One possible mechanism for this is that masses appear slightly brighter than normal 

stromal tissue and introduce additional structure into the wavelet maps at several scales.  

This may reduce the number of unusually low intensity points in a wavelet map by 

adding intensity into normally dark regions; this shift would lower the kurtosis and may 

explain its effectiveness at detecting the presence of masses in an image.  Because of 

normal biological variation, however, the kurtosis of a single scale and view is not 

sufficient to classify all images, and a combination of features will be necessary to 

achieve an acceptable detection rate. 

  

4.5.6 Sample distributions of each feature type 

 From each wavelet map in the decomposition, four statistical features were 

measured: mean intensity, standard deviation of intensity, skewness of intensity and 

kurtosis of intensity.  Figure 4.11 shows the distributions of these four features for one 

particular wavelet map, the level 7 horizontal detail map using the Haar wavelet basis.  

The feature values are grouped into 8 bins in the histograms: each bin represents the 

fraction of the input image set that produced feature values in that range.  Note that the 

normal and suspicious distributions are very similar for the mean intensity and standard 
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deviation features, making it difficult to differentiate between them in a classifier, while 

the skewness and kurtosis features show better differentiation: the peaks of the 

distributions are offset slightly and the probabilities in many of the bins are significantly 

different between the normal and suspicious distributions.  Because there is such great 

overlap between the normal and suspicious distributions for a given feature, multiple 

features are needed in the classifier to effectively distinguish between the two classes.   

 

Figure 4.11 – Probability distributions for the four features measured from level 7  
horizontal detail map using Haar wavelet basis for normal (solid black) and 
suspicious (dotted red) images 
 
 For reference, the bin sizes and ranges of possible values for the four types of 

features shown in Figure 4.11 are listed in Table 4.1.  The kurtosis values had the largest 

range due to the fourth power of the pixel intensity appearing in the numerator of 
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equation 4.5.  The skewness values were all positive, meaning that the pixel intensities 

in every images’ level 7 horizontal detail wavelet map was skewed towards higher 

intensities than a Gaussian distribution of intensities would have been. 

Table 4.1 – Feature value ranges and bin sizes for level 7 horizontal detail map 
using Haar wavelet basis 

Feature type Minimum Value Maximum Value Bin size 
Mean intensity 1.88 7.66 0.72 

Standard deviation 2.92 10.51 0.96 
Skewness 0.32 6.58 0.78 
Kurtosis 1.59 20.23 2.33 

 
 

4.6 Single naïve Bayesian classifier 

 Naïve Bayesian classifiers were used in concert to form the full classification 

system; each individual classifier was constructed and trained as an individual classifier 

before being combined into the complete system.   

 The construction of a single Bayesian classifier was relatively straightforward.  

The input feature values from the wavelet analysis were discretized into a small number 

of bins to create probability distributions for each feature’s value.  The binned 

probabilities were then employed to determine the probabilities that a new sample was 

either normal or suspicious and classification was made based on which class carried the 

larger probability of producing the sample.  Several techniques used to streamline the 

algorithm are discussed at the point where they occur in the algorithm, since high 

efficiency was beneficial for the feature selection step to be able to rapidly explore a 

sufficient number of feature subsets. 
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4.6.1 Discretization of scalar feature values to form probability distributions 

 Each scalar feature measured from the wavelet maps of the normalized 

mammographic images varied over a continuous range of possible values.  Since the 

leave-one-out training methodology was applied, there were approximately 95 

suspicious and 200 normal sample values available for each feature to construct a 

probability distribution when the MIAS image set was used [51].   

 Many approaches to binning continuous data exist [54], though the differences 

between their accuracies are relatively small.  Because of this, the simplest approach 

was used in this work: the data was binned into a pre-selected number of bins of equal 

width.  To be able to compare the probability that a new sample’s feature value came 

from the normal or the suspicious class, the normal and suspicious probability 

distributions for a feature needed to have the same bin widths and locations.  The 

number of bins was estimated using Sturges’ rule [50], which estimates the optimal 

number of bins for representing a distribution given a set of sample points.  Sturges’ rule 

estimates that the number of bins should be 1 + log2 N, where N is the number of points 

available for binning; this gives 7 bins for the suspicious distribution and 8 bins for the 

normal distribution.  To make the two distributions comparable, a common number of 

bins was chosen for both.  The value of 7 bins given by Sturges’ rule was used as a 

starting point, though choices from 3 to 28 bins were tested to determine their effect on 

the final classification rate; ultimately, 8 bins were used to discretize both distributions.  

Section 5.2.1 shows the effect of varying the number of bins on the classification rate 

for a fixed set of features. 

 84



 Once the number of bins was selected, the locations of the binning boundaries 

was determined based on the available samples.  The lowest bin’s lower bound was set 

equal to the smallest sample feature value, and the highest bin’s upper bound was set 

equal to the largest sample feature value; the remaining bin boundaries were equally 

spaced between these two extremes.  Note that the upper and lower bounds were set by 

the largest and smallest points in the combined normal and suspicious training samples, 

since both distributions need to use a common set of bin locations. 

 For each sample whose feature value fell between the bounds of a particular bin, 

a count was added to that bin.  Figure 4.12 shows the binning results for the normal and 

suspicious samples for the kurtosis feature of the level 3 horizontal detail wavelet map 

using the Haar wavelet. 

 

 

Figure 4.12 - Normal (left) and suspicious (right) bin counts for skewness feature of 
the level 3 horizontal detail map using the Haar wavelet 
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4.6.2 Correction for empty bins 

 Since the relative probabilities of the two distributions are used to classify each 

sample, the presence of an empty bin, corresponding to a probability of zero, biases a 

classifier:  if an image has a feature value falling in the range of an empty normal bin, 

for example, the probability of the image being from the normal class is automatically 

zero, regardless of the relative probabilities of the other features used in the classifier.  

To mitigate this bias, a small correction factor was applied to all bins, including the 

empty ones, to account for the uncertainty inherent in estimating a probability 

distribution from a finite sample of data points.   

 The uncertainty in a given bin’s count was taken to be the inverse of the square 

root of the number of data points used to estimate that distribution; the correction factor 

was 0.113 counts for the suspicious distribution and 0.070 counts for the normal 

distribution.  This factor was chosen in analogy to the uncertainty in counting 

experiments for random processes like radioactive decay, where the relative uncertainty 

scales with the inverse square root of the number of observed counts.  The factor was 

added to all bins, whether or not they were empty, to avoid introducing additional bias; 

if the corrective factor is taken as the uncertainty in the number of counts, then the 

corrected bin values correspond to the maximum possible number of counts in each bin, 

rather than the most probable number of counts in each bin.  This correction reduced the 

effect of empty bins, but still kept their counts small, especially when a large number of 

samples were available; this agrees with the notion that an empty bin does have the 

significance of carrying a low probability, and that an empty bin’s significance increases 

as the number of samples used to build the distribution increases. 
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 Once the bins were filled and the correction factor was applied, the bin counts 

were normalized to convert the count rates into a probability density.  Each bin was 

normalized according to the following equation: 

∑
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i
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c
c iN

jN
Wk

jP
)(

)(1)(               (4.6) 

where Pc(j) is the probability of class c producing a feature value within bin j, W is the 

width of a single bin, k is the number of bins used, Nc(j) is the number of training 

samples from class c falling into bin j, after the correction factor is applied, and the 

summation runs over all bins in the distribution.  In this way, the integral of the 

probability density over the range of possible values for a particular feature becomes 

equal to one.  Figure 4.13 shows the probability distribution obtained by normalizing the 

bin counts shown in Figure 4.12 and correcting for empty bins. 

 

Figure 4.13 – Normal (solid black) and suspicious (dashed red) binned probabilities 
for skewness feature of the level 7 horizontal detail map using the Haar wavelet 
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4.6.3 Classification of whole image based on feature probabilities 

 The discrete probability densities for each feature, once generated, were used to 

classify an input image as either normal or suspicious.  Equation 3.1 was used to 

calculate the probabilities of class membership; the prior probabilities P(c) were set 

equal for both classes, though other values were tested in Section 5.2.3  The probability 

that an image was normal or suspicious was the product of the probabilities that each 

feature used from the image was normal or suspicious; three to five features were used 

at a time from an image for classification and were selected according to the process in 

Section 4.7.  The ratio of the suspicious to the normal probability was taken and used to 

classify the image: if the ratio was greater than one, the image was classified as 

suspicious; if the ratio was less than one, the image was classified as normal.   

 To improve efficiency, the implementation of the probability comparison was 

performed slightly differently.  The ratio of the suspicious to the normal probabilities for 

each individual feature was calculated first before the product over all features used was 

performed, rather than multiplying the different feature probabilities together first and 

then calculating the suspicious to normal probability ratio.  Further, the logarithm of the 

probabilities was used in practice, so that a product of probabilities became a sum of the 

logarithm of the probabilities, and the logarithm of the ratio of the probabilities was 

used for classification instead: an image was suspicious if the logarithm of the 

suspicious to normal probability ratio was greater than zero or normal if it was less than 

zero.  The use of logarithms and pre-calculated ratios eliminated the repetitive 

multiplication and division operations from the classification step, speeding the 

 88



algorithm by an order of magnitude and allowing a larger family of possible feature 

subsets to be explored, as discussed in Section 4.7. 

 

4.7 Feature selection and reduction 

 Since a large number of potential classification features were generated from 

each image, and since a classifier should use only approximately one feature for every 

ten training samples available, a selection process was needed to choose those features 

that are most effective at differentiating between normal and suspicious images.  

Specifically, their were four parameters measured from each wavelet map; as there were 

four wavelet maps per level and eight levels of decomposition, 132 potential features 

were created for each of the 11 wavelet bases tried in this work.  Since multiple 

classifiers would be used in tandem to perform the final classification, each individual 

classifier was limited to use no more than three features, though one or two features 

could be used if it produced better results.  Selecting such a small subset of the 

candidate features added flexibility to the design of each individual classifier: for 

example, one classifier could use a feature subset sensitive to microcalcifications while 

another could use a feature subset sensitive to masses. 

 Feature selection was carried out through a semi-exhaustive process, since there 

were too many potential features to test the performance of every possible triplet of 

features.  Each classifier was limited to use only one wavelet basis and two of the four 

types of parameters generated for the maps.  The 64 features this left were then searched 

exhaustively: every possible triplet, doublet and singlet of features was tried on the 
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available data, and a performance metric was developed to select the most effective 

combination.   

 The performance metric used to select the most effective feature subset was a 

weighted sum of the number of true positive classifications, NTP, and the number of 

true negative classifications, NTN.  A true positive was an image with abnormalities that 

was correctly classified as suspicious, and a true negative was an image with no 

abnormalities that was correctly classified as normal.  The score S produced from this 

was calculated according to: 

))(1()( NTNwNTPwS −+= ,     (4.7) 

where w is the weighting factor and varies between zero and one.  A high weighting 

factor places more importance on correctly classifying suspicious images, a low 

weighting factor places more importance on correctly classifying normal images, and a 

weighting factor of 0.5 makes the score depend only on the number of images classified 

correctly, regardless of type.  Another interpretation of the weighting factor is that it 

measures the importance of sensitivity relative to specificity; a large weighting factor 

favours a more sensitive classifier while a small weighting factor favours a more 

specific classifier. 

 The nature of the classification done in this work, that is, that images classified 

as normal are not subject to further analysis, means that any false negatives cannot be 

corrected for later and will correspond to a missed abnormality; therefore, the true 

positive fraction must be maximized.  To that end, the weighting factor was chosen to be 

0.995; this made the true positive fraction paramount, but in the event that two feature 
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subsets produced the same number of true positives, the tie would be broken by 

selecting the feature subset which had the higher true negative fraction.   

 Since the individual classifiers were combined after they were tested, individual 

classifiers could also be designed to maximize the number of masses detected, or the 

number of microcalcifications detected, or any other specific type of abnormality.  By 

looking for a specific type of abnormality, the appearance of images within that group 

should be more uniform than across all types of abnormalities, and a classifier may be 

better able to distinguish those images from all others.  To search for a particular type of 

abnormality, NTP in equation (4.7) was replaced with the number of correctly classified 

images with the specified abnormality, and NTN was replaced with the number of 

correctly classified images of all other types, including normals.  Again, this selected the 

most sensitive feature combination for the specific type of abnormality, breaking ties by 

selecting the most specific classifier with that sensitivity.  Note that by searching for 

only one type of abnormality, the performance metric had little penalty for 

misclassifying other types of abnormalities as normal; to ensure that these other 

abnormalities were not missed by the complete system, the outputs of the individual 

classifiers had to be combined carefully. 

 

4.8 Formation of concerted-effort set of classifiers 

 By combining the output from several classifiers, two advantages occur: firstly, 

the overall accuracy of the classifier system may increase significantly; and secondly, it 

becomes possible to provide confidence levels for the classifications made by the 

complete system.  Section 4.8.1 discusses the individual classifier and how confidence 
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levels may be extracted from its outputs.  Section 4.8.2 develops the general method for 

calculating the confidence levels for a concerted-effort set of classifiers based on testing 

with small data sets.  Section 4.8.3 discusses the sequential classifier design and the 

determination of confidence levels from it.  Section 4.8.4 discusses the vote-taking 

classifier scheme and its confidence measure as a possible alternative to the sequential 

method.  Section 4.8.5 discusses the method used in the final system: it used a more 

complex set of connections between the individual classifiers and customized classifiers 

to search for different types of abnormalities at different stages of the process. 

 

4.8.1 Confidence levels from a single classifier in a concerted-effort set 

 The chance that an image classified as normal by a given classifier is actually 

normal depends on the sensitivity and specificity of the classifier, as well as on the 

relative number of normal and abnormal images presented to the classifier.  Specifically, 

the probability that a sample in a bin is normal is equal to the number of normal images 

in that bin divided by the total number of normal and suspicious images in the bin.  

Figure 4.14 shows the probabilities of the four possible types of outputs from a single 

classifier; Pi(N) is the fraction of input images to the ith classifier which are actually 

normal, Pi(S) is the fraction of input images to the ith classifier which are actually 

suspicious, TNi is the true negative fraction for the classifier, TPi is the true positive 

fraction for the classifier, FNi is the false negative fraction for the classifier, and FPi is 

the false positive fraction for the classifier. Pi+1(a,B) are the probabilities that a sample 

of class B is classified as belonging to class a, where a and B can be s (or S) for 
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suspicious or n (or N) for normal.  The outputs from one classifier can then be used as 

inputs to another classifier, making the equations in Figure 4.14 recursive. 

 Figure 4.14 – Probabilities for 4 possible outputs from a single classifier 

 The four output probabilities from a single classifier together sum to one, so the 

probabilities among all samples classified as normal or as suspicious must be 

normalized to give a confidence level.  The confidence that a sample in the normal bin is 

actually normal, Ci+1(N) is the probability Pi+1(n,N) divided by the total number of 

images classified as normal, Pi+1(n,N) + Pi+1(n,S).  
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 The confidence that a sample in the suspicious bin is actually suspicious, Ci+1(S) 

is similarly: 
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4.8.2 Classification confidence when classifiers share non-zero correlation 

 In practice, classifiers should share some correlation, since they are trained on 

the same data sets and are making the same class distinctions.  The classification 
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confidence for a set of classifiers must then be determined experimentally, since it is not 

possible to develop a generalized expression for the correlation among more than two 

classifiers.  The experimental confidence levels may be measured by testing the set of 

classifiers on a large number of images and counting the number of images of each class 

that are placed into each of the bins of the classifier network. 

 The predicted confidence levels for a realistic distribution of normal and 

suspicious images may be inferred from the results from a small data set.  In the MIAS 

data set, for example, 98 of the 303 images are suspicious; this frequency of suspicious 

images is much higher than for the approximately 1 in 20 images that are suspicious in a 

typical clinic [14].  To correct for this discrepancy, the relative probabilities Pi(N) and  

Pi(S) in Figure 4.14 must be rescaled, or, equivalently in the experimentally measured 

case, the counts of images in each bin must be rescaled. 

 If the number of normal images counted in a normal bin experimentally is 

ηexp(n,N), then the expected fraction of all images from a realistic distribution that are 

normal and are in the same bin, Freal(n,N) can be calculated as: 
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where Preal(N) is the probability of an image from the realistic distribution being normal 

and Texp(N) is the total number of normal images used in the experimental data set. 

 Similarly, the realistic fraction of suspicious images in a normal bin, Freal(n,S), 

can be found from the experimentally counted number of suspicious images in the bin, 

ηexp(n,S), according to: 
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where Preal(S) is the probability of an image from the realistic distribution being 

suspicious and Texp(S) is the total number of suspicious images used in the experimental 

data set. 

 The predicted confidence level for an image from a realistic distribution to be 

correctly placed into a certain normal bin, Creal(N), can then be calculated for each bin 

using the results measured from a small data set: 
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where α is a constant defined by: 
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 α characterises the frequency of normal and suspicious images in the 

experimental data set and in a realistic data set.  For the MIAS data set with 98 

suspicious and 205 normal images and for a clinic where 1 in 20 images are suspicious, 

α = 9.54.  For the full DDSM data set [23] with 649 suspicious and 1065 normal images 

and for a clinic where 1 in 20 images are suspicious, α = 12.16. 

 By the same argument, the confidence level for an image from a realistic 

distribution to be correctly placed into a certain suspicious bin, Creal(S), is calculated 

according to: 
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 Using equations 4.13 and 4.16, the confidence levels for any scheme of 

classifiers can be calculated directly by counting the number of normal and suspicious 

images assigned to each bin of the classifier network and using the value of α 

appropriate for the data set in question. 

 In practice, confidence levels from the case where an equal number of input 

images are normal and suspicious may be more useful than the realistic confidence 

levels.  The difference between the two types of confidence levels is the relatively low 

number of suspicious images that occur in practice that dominates the realistic 

confidence levels and makes all bins have a large confidence for containing normal 

images.  By applying equation 4.13 to both cases and comparing, the realistic 

confidence levels, Creal(N) can be found from the case with an even number of normal 

and suspicious images, Ceven(N), by the following transformation: 
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 The inverse transformation is given by: 
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 The transformations for confidence levels in suspicious bins for a realistic 

distribution, Creal(S), and an even distribution, Ceven(S), are given by: 
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and 
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 The mapping is monotonic, so the bins with the highest confidence levels are the 

same using either method.  The choice of which confidence level measure to use 

depends on the situation: Creal(N) gives a more exact measure of the realistic likelihood 

that an image in a bin is normal, while Ceven(N) may be more useful for comparing the 

relative confidence levels of different bins when deciding which images merit further 

analysis and which images are least likely to be suspicious. 

 

4.8.3 Sequential series of individual classifiers 

 The first scheme devised for combining multiple classifiers was a sequential 

series, as shown in Figure 4.15.  An image is presented to the first classifier:  if it is 

classified as normal, it is removed from the system and placed in the first normal bin.  If 

it is classified as suspicious, though, it is passed to the second classifier.  If the second 

classifier finds the image to be normal, the image is removed from the system and 

placed in the second bin.  The process is repeated until the images being binned as 

normal are no longer classified as normal with a sufficiently high confidence rate, and 

the final classifier’s suspicious bin contains images which merit further study.  The 

images removed as normal by each classifier carry a confidence level based on how 

many classifiers they were passed through before being found normal. 
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Figure 4.15 - Sequential series of classifiers and binned outputs 

 The confidence levels for each normal bin are calculated from the statistical 

behaviour of each individual classifier.  A problem arises if two sequential classifiers 

have some correlation between their classifications.  Images presented to the second 

classifier will be more likely to be reclassified in the same way that they were by the 

first classifier, altering the classification confidence levels for the second classifier and 

any others that follow.  In the extreme case, applying the same classifier twice, the 

second classifier would find no images to be normal, since the suspicious images from 

the previous classifier would again be found suspicious.  The next two subsections 

discuss two cases.  The first case is the ideal, when there is no correlation between two 

sequential classifiers:  the images presented to the second classifier will be classified at 

exactly the statistical rates predicted from running the second classifier on the whole 

data set.  The second case generalizes to classifiers sharing some non-zero correlation in 

their classifications, and discusses how to determine the classification confidence for 

systems using such classifiers. 

 

 

 98



4.8.3.1 Confidence levels for sequence of uncorrelated classifiers 

 By applying the relations from Figure 4.14 recursively, the confidence levels for 

images classified as normal by the first, second, third classifiers and so on may be 

determined.  Table 4.2 collects the confidence levels, Creal(N) and Creal(S), for the first 8 

stages of a sequential set of fictitious, uncorrelated classifiers, each with a sensitivity of 

90% and a specificity of 40% with 1 in 400 input images being abnormal.  The table 

also shows the confidence levels, Ceven(N) and Ceven(S), for the case where the input 

images are equally likely to be normal or suspicious, to give a better sense of how the 

confidence levels decrease over successive stages of the sequential classifier design. 

 

Table 4.2 – Confidence levels for uncorrelated sequential classifiers 

Normal bin outputs Suspicious bin outputs Classifier 
Creal(N) 

(%) 
Ceven(N) 

(%) 
Creal(S) 

(%) 
Ceven(S) 

(%) 
1 98.8 80.0 0.375 60.0 
2 98.2 72.7 0.561 69.2 
3 97.3 64.0 0.839 77.1 
4 95.9 54.2 1.253 83.5 
5 94.0 44.1 1.868 88.4 
6 91.3 34.5 2.78 91.9 
7 87.5 26.0 4.11 94.5 
8 82.4 19.0 6.04 96.2 

 

 Note that the confidence levels of the normal bins decrease as more classifiers 

are used to classify an image as normal.  This is reasonable, since an image placed in a 

later normal bin is actually classified as suspicious by all previous classifiers and as 

normal only by the last.  Similarly, the suspiciousness of an image increases as more and 

more classifiers all classify the image as suspicious. 
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4.8.3.2 Confidence levels for sequence of classifiers with non-zero correlation 

 The sequential classifier design with M classifiers has M+1 bins: M normal bins 

and 1 suspicious bin.  Thus, this concerted-effort set of classifiers is best suited to 

finding and removing normal images by removing all images assigned to the M normal 

bins, if their confidence levels are acceptably high.  Images reaching the final classifier 

and being assigned to its suspicious bin are then subject to further analysis.  Section 

5.5.1 and Section 5.6.2 show the confidence levels predicted by training on testing on 

the MIAS and the DDSM image databases, respectively. 

 

4.8.4 Vote-taking scheme for combining individual classifiers 

 An alternative to a sequence of classifiers is a vote-taking scheme.  In the 

sequential case, an image is only classified as suspicious if every classifier classifies it 

as suspicious, limiting the sensitivity of the complete system.  The vote-taking scheme 

considers the classification given by each of several individual classifiers and develops a 

confidence level based on the number of classifiers that agree in their classification.  

The output bins for the vote-taking scheme are the case where all M classifiers classify 

an image as normal, where M-1 classifiers classify the image as normal, where M-2 

classifiers classify the image as normal, and so on.   

 In the ideal case, the expected number of images in a particular bin is calculated 

as the product of the probabilities that each classifier classified the image as it did.  For 

example, if all classifiers except classifiers j and k classified an image as normal, the 

probability of this classification is P~jk(n,N) if the image is actually normal and P~jk(n,S) 

if the image is actually suspicious, where P~jk(n,N) and P~jk(n,S) are given by: 
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where TNi and TPi are the true negative and true positive fractions of the ith classifier, 

and FNi and FPi are the false negative and false positive fractions of the ith classifier.  

The confidence level for this image being normal, C~k(N), is then: 
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where Preal(N) and Preal(S) are the probabilities of a given input image being normal or 

suspicious, respectively. 

 This equation can be used for any result from a set of classifiers: all classifiers 

that classified an image as suspicious are used in the TPm/FPm product, and all 

classifiers that classified an image as normal are used in the FNi/TNi product.  Table 4.3 

shows the confidence levels, Creal(N), for 3 ideal classifiers: the classifiers have 

sensitivities of 85, 90 and 95 % and specificities of 45, 40 and 35 % respectively.  The 

images are assumed to be realistically distributed, with 1 in 20 images being suspicious.  

A second set of confidence levels, Ceven(N), are also given for the case where half the 

input images are normal and half are suspicious; though this is not realistic, the 

confidence levels given in this case are distributed over a broader range and give a better 

sense of which bins are most likely to contain a large number of suspicious images.  
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Table 4.3 Performance of uncorrelated, three classifier vote-taking scheme 

Classifier’s classification (N or S) 
 

1 2 3 

Creal(N) 
 

(%) 

Ceven(N) 
 

(%) 
N N N 99.97 99.4 
S N N 99.85 97.1 
N S N 99.81 96.3 
N N S 99.39 89.1 
S S N 99.12 84.9 
S N S 97.25 63.9 
N S S 96.48 57.8 
S S S 85.52 22.8 

 

 Note that the confidence levels for each bin depend both on the number of 

classifiers that agree in their classification and on the relative sensitivities and 

specificities of those classifiers.  These data also show the importance of sensitivity over 

specificity for this application: the third classifier is the most sensitive but the least 

specific, yet the overall confidence level depends most strongly on this classifier’s 

output.  For example, when the third classifier finds an image to be normal, the 

confidence level is always at least 84.9 %, even when the other two classifiers find the 

image suspicious 

 

4.8.5 Network of classifiers customized to detect particular abnormalities 

 The most flexible, and potentially the most powerful approach is to link the 

outputs of different classifiers together in a more complex way than the linear sequential 

method of Section 4.8.3.  Several classifiers can be used to remove images suspicious 

for the presence of calcifications; the images classified as normal by these classifiers 

should then contain mostly masses and normal images.  Several classifiers can then be 

used to remove images suspicious for masses; images classified as normal by both 

 102



sections can then be removed as normal images.  Figure 4.16 shows one potential 

scheme for organizing 5 individual classifiers into a network.  The confidence levels for 

every output bin can be calculated using equations 4.13 and 4.16 as necessary.  Section 

5.5.3 and Section 5.6.4 discuss this approach in greater detail, since the exact structure 

of the network depends on the classifiers chosen and their relative correlations. 
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Figure 4.16 - Potential network design for concerted-effort set of classifiers 
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CHAPTER 5 – TESTING AND RESULTS 

_______________________________________________________________________ 

 

 The complete image analysis and classification system discussed in Chapter 4 

was built and tested in several stages.  The image pre-processing was tested to ensure 

that the output images were free from artefacts and were regularized in appearance.  The 

single Bayesian classifier was tested in great detail, due to the large number of tuneable 

parameters in the classifier and in the procedure for building the feature probability 

distributions.  Once the individual classifier was operating as desired, testing was 

performed on the methods for combining the output from several classifiers.  Finally, 

the complete system was tested on the MIAS database.  To confirm that the classifier 

was not over-specified to the data set used in the testing process, the final classifier 

system was tested again on a set of images from the DDSM database. 

 

5.1 Image Pre-processing testing 

 The images produced by the image pre-processing step were examined visually 

as they were produced to ensure the correct operation of this part of the system.  The 

output image from the pre-processing step was displayed onscreen for every image 

processed.  The displayed images were inspected to ensure no artefacts remained, to 

ensure that the image intensities were properly normalized and to ensure that the tissue 
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region was not altered by the artefact removal process.  Two images had to be removed 

from the MIAS data set because of their poor quality and are shown in Figure 5.1: the 

images contained artefacts which overlapped the tissue regions and could not be 

removed without altering the information content therein; the images also showed 

significant artefacts due to poor scanning of the film plate into the digital image.  The 

image on the left was a fatty normal image, while the image on the right was a fatty 

cancerous mass image.  As the system being developed in this research is designed to be 

automated, it is expected that images provided to it will be more uniform in appearance, 

as the remaining 303 images in the MIAS database are, and so the omission of the two 

poor quality images was not considered a fault of the algorithm. 

 

  

Figure 5.1 – Two poor images removed from the MIAS database before analysis 

 The remaining images were kept for analysis and are tabulated in Table 5.1.  The 

images are listed by their tissue type – dense, glandular or fatty – and by their 

abnormality, if any – benign mass, cancerous mass, benign calcification, cancerous 

calcification or normal.  Further, 19 of the images of masses showed architectural 
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distortions but were not given a designated tissue type within the database; they are 

included in their own column but are not differentiated by tissue type.  Since the 

classification system does not use the provided information about the tissue type, this 

lack of information does not affect the performance of the system and the architectural 

distortion images could be used in the testing process.  

 

Table 5.1 - MIAS database images by type 

Abnormality (if 
any) 

Dense Glandular Fatty Architectural 
Distortion 

Totals 

Normal 75 62 68 --- 205 
Cancerous mass 3 7 8 10 28 

Benign mass 11 13 14 9 47 
Cancerous 

calcification 
4 4 4 --- 12 

Benign 
calcification 

4 5 2 --- 11 

Totals 97 91 96 19 303 
 

5.2 Testing parameters for single Bayesian classifier 

 The naïve Bayesian classifier used to analyze the wavelet maps of the images 

had several tuneable parameters.  Each parameter is discussed in turn below, along with 

test results used to validate the final parameter value used in the complete system. 

 The probability distributions used to select the most likely class to have 

generated a particular image had to be developed from the training data.  Two 

approaches were used to build the distributions: the first approach was to bin the 

probability distribution and populate it by counting the number of training samples that 

mapped into each bin; the second approach was to approximate the distribution as a 

normal distribution and estimate its mean and standard deviation from the training data.  
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The results obtained while investigating the optimal number of bins to use for the data 

are given in Section 5.2.1.  The selection between the binning approach and the normal 

distribution approximation approach is reported in Section 5.2.2. 

 The performance metric, used to select the optimal subset of features for the 

classifier, was tested for its effect on the final sensitivity and specificity of the complete 

system, as presented in Section 5.2.3.  Finally, the a priori probabilities P(cj) of each 

class’ relative frequency was adjusted, and evidence validating the choice to make this 

probability equal for both classes is shown in Section 5.2.4. 

 To simplify the listing of those features selected for a given classifier, a 

shorthand method is used.  A feature is given the code A-bN, where A is the feature type 

(such as skewness), b is the wavelet view (such as horizontal detail or approximation), 

and N is the level of the decomposition (from 1 to 8).  Table 5.2 lists the single letter 

codes for the feature types and wavelet views. 

 

Table 5.2 – Shorthand for representing feature types 

Feature type code Corresponding 
Feature Type 

Wavelet view code Corresponding 
Wavelet view 

M Mean Intensity h Horizontal Detail 
σ Standard Deviation v Vertical Detail 
S Skewness d Diagonal Detail 
K Kurtosis a Approximation 

 

 Thus, for example, the code S-h4 means that the feature is the skewness of the 

fourth level horizontal detail map of a given wavelet decomposition. 
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5.2.1 Number of bins for probability distributions 

 The final approach used to generate the probability distribution for each scalar 

feature was a binning process.  The accuracy of approximating the probability 

distribution by a set of discrete bins depended on the size of the bins and the number of 

training samples:  if there were too few bins, the approximation may not effectively 

represent the underlying distribution, while if there were too many bins, quantization 

effects would reduce the approximation’s accuracy because of the small number of 

discrete counts in each bin.   

 Table 5.3 shows the sensitivity, specificity and overall correct classification rate 

for classifiers built using various numbers of bins.  The overall classification rate is 

defined as the fraction of all input images that are correctly classified, regardless of 

whether they are suspicious or normal.  The biorthogonal 3.7 wavelet basis was used, 

and the weight factor in the scoring metric (equation 4.7) was set to 0.5, making it 

selective for the highest possible overall correct classification rate, regardless of the 

classes of the misclassified images.  This weight factor was used to measure the overall 

accuracy of a particular number of bins, since a weight factor that favoured sensitivity 

alone could emphasize statistically poor features where almost every sample is classified 

as suspicious.  The most effective triplet of features was selected in each case from the 

pool of skewness and kurtosis features only. 
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Table 5.3 – Classification rate for different numbers of bins, biorthogonal 3.7 basis 

Number 
of Bins 

Best Feature Triplet Sensitivity Specificity Overall  
Classification

Rate 
3 K-v6 K-d6 K-d7 15.2 % 98.1 % 75.0 % 
5 S-v5 S-v7 K-v1 58.2 % 80.0 % 73.9 % 
7 S-v2 K-v1 K-d7 67.1 % 78.1 % 75.0 % 
8 S-v1 S-d1 K-d2 50.6 % 86.8 % 76.8 % 
10 S-h1 S-d1 K-v5 39.2 % 92.7 % 77.8 % 
12 S-h3 S-h7 K-v1 57.0 % 80.0 % 73.6 % 
15 S-d1 S-d7 K-v1 69.6 % 76.1 % 74.3 % 
20 S-h3 S-a8 K-d7 39.2 % 86.3 % 73.2 % 

 

 Several trends are visible from these data.  The overall classification rate, the 

parameter being maximized by this choice of weight factor, is highest for 8 or 10 bins, 

though it does not vary greatly among all of the choices.  This shows that there is some 

flexibility in the choice of the number of bins without greatly altering the effectiveness 

of the final classifier design.  The choice of 8 bins was made for its agreement with 

Sturges’ rule’s prediction of 8 bins for the population size of the MIAS database of 

images.  The choice of 8 bins also minimized the number of empty bins: although a 

correction was made for this as outlined in Section 4.6.2, populated bins are more 

representative of the training samples and should offer more predictive power for 

classification. 

 Another trend in this data is the large number of high resolution wavelet map 

views used in the selected classifiers.  Except for those using the largest and smallest 

numbers of bins, each classifier used a feature taken from one of the level 1 views of the 

wavelet maps.  Almost all of the classifiers also use a low-resolution view, with level 7 
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views being most common.  This use of features from different resolution levels 

supports the usefulness of using wavelet analysis to parse the original images into 

multiple scale sizes for better classification. 

 Figure 5.2 shows the shape of the normal and suspicious probability distributions 

for the choices of bin numbers in Table 5.3 for the S-h7 feature.  Although the normal 

and suspicious distributions are very similar, the peaks of their distributions are slightly 

offset, allowing a Bayesian classifier to select between them.  The difference between 

the two distributions becomes more apparent for larger numbers of bins, as the finer 

structure of the two distributions becomes more visible.  The use of larger numbers of 

bins, however, creates more bins with no counts; these bins are ineffective for 

classifying new images.  Larger numbers of bins also accentuates statistical variation: 

since there are more bins to populate using the same number of training samples, each 

bin will have a lower count of images and, as such, will have a larger uncertainty 

associated with it.  The distribution using 20 bins shows this clearly, as the suspicious 

distribution has several bins with far higher or lower values than their immediate 

neighbours:  this variation is more likely due to poor statistics in each bin than to an 

underlying distribution with such a complex shape. 
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Figure 5.2 – Normal (solid black) and suspicious (dotted red) distributions for 
S-h7 feature, Haar wavelet basis for different numbers of bins 
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5.2.2 Weight factor in performance metric 

 The feature reduction step used a scoring metric to select the subset of features 

that produced the highest score according to equation 4.7.  The weight factor w made it 

possible to select feature subsets that were more sensitive or more specific, depending 

on the goals of the classifier.  Table 5.4 shows the sensitivity and specificity of the 

classifiers selected for a range of possible choices of w.  Three features were used in the 

feature subset and were taken from the skewness and kurtosis features measured from a 

biorthogonal 3.7 decomposition.  Figure 5.3 shows the trends of Table 5.4 graphically. 

 The most noticeable trend as the weight factor varies is the compromise between 

sensitivity and specificity in the classifier using the selected feature subset.  The 

sensitivity increases as w increases, while the specificity decreases as w increases.  The 

overall classification rate, which depends on the total number of suspicious and normal 

images classified correctly, reaches a maximum for a weight of approximately 0.3 – 0.6.  

A crossover occurs for w = 0.78, where the sensitivity becomes greater than the 

specificity; at the crossover point, the sensitivity, specificity and overall classification 

rate all have the same value of approximately 70 %.  Since sensitivity is paramount for 

breast cancer screening, a weight factor of 0.995 was used in the remainder of the 

analysis, unless specifically stated otherwise.  This weight factor selects the most 

sensitive feature subset first, and breaks ties between different subsets with the same 

sensitivity by selecting the one also showing the highest specificity. 
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Table 5.4 - Sensitivity and specificity of feature subsets selected by different  
values of weight factor in scoring metric, biorthogonal 3.7 basis 

Weight 
Factor 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
0.00 K-v2 K-v7 K-d5 26.6 87.8  70.8  
0.05 K-v2 K-v7 K-d5 26.6 87.8  70.8  
0.10 S-h1 K-d7 K-a5 40.5  87.3  74.3  
0.20 S-v1 S-d1 K-d2 50.6  86.8  76.7  
0.30 S-v1 S-d1 K-d2 50.6  86.8  76.7  
0.50 S-v1 S-d1 K-d2 50.6  86.8  76.7  
0.70 S-v1 S-a5 K-d7 63.3  76.6  72.9  
0.80 S-a3 K-v1 K-d7 86.1  46.8  57.8  
0.90 S-a5 K-v8 K-a7 92.4  25.6  44.4  
0.95 S-a5 K-v8 K-a5 93.7  20.5  40.9  
1.00 S-a5 K-v8 K-a5 93.7  20.5  40.9  

 

 

Figure 5.3 - Performance of best feature subset selected by scoring metric vs. 
choice of weight factor 
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5.2.3 A priori probability of relative frequency of each class 

 As stated in Section 4.6.3, the prior probability P(c) of each class appearing in 

Bayes’ rule (equation 3.1) was chosen to be the same for all classes.  This assumption 

was made because of the relatively greater consequences of misclassifying a suspicious 

sample compared with misclassifying a normal sample.  The actual relative rate of 

incidence of the two classes, based on large-scale statistics, are that approximately 1 in 

10 patients, or 1 in 20 images, show abnormalities [14]; .  By this ratio, the prior 

probability for the normal class should be 0.95, and the prior probability for the 

suspicious class should be 0.05. 

 The problem with one class being far more likely than another is that, when the 

classifier is working correctly, it should then classify the vast majority of new samples 

into the more probable class.  In the case of this research, the likelihood factor P(fi|c) in 

Bayes rule, calculated from the images’ scalar features, would have to be 20 times larger 

for the suspicious than the normal class for a particular image in order for the whole 

probability to be larger for the suspicious class.  Making the prior probabilities equal for 

both classes makes it more likely that an image will be classified as suspicious; this is 

desirable for this system, since false negatives are of more severe consequence for 

patients than false positives.   

 Table 5.5 shows the maximum sensitivity possible, given a particular choice of 

the prior probability of the suspicious class, using the skewness and kurtosis features 

from the biorthogonal 3.7 wavelet decomposition.  For the final system, the probabilities 

were equal, so the prior probability was set to 0.50.  For the prior probability to be 

representative of the actual incidence rate of cancer, it would have to equal 0.05.  
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Several intermediate values are also shown to demonstrate the continuous increase in 

sensitivity possible as the prior probability of the suspicious class is increased.   

 The drawback of increasing the prior probability of the suspicious class is that 

the specificity of the classifiers decrease, forcing a compromise to be chosen:  the choice 

of setting the prior probabilities to be equal simplifies and speeds calculation while 

balancing sensitivity with specificity, making it a reasonable choice for this work. 

 
Table 5.5 - Sensitivity of classifiers vs. prior probability of suspicious class,  
biorthogonal 3.7 basis 

Prior 
Probability 

of 
Suspicious 

Class 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate 
(%) 

0.05 S-h1 S-a1 S-a5 3.1 99.0 68.0 
0.10 S-h1 S-v2 K-d7 7.1 98.0 68.6 
0.20 S-h1 K-v7 K-d7 19.4 92.7 69.0 
0.30 S-d6 S-d7 K-d7 36.7 84.9 69.3 
0.40 S-h3 S-a8 K-a7 70.4 40.5 50.2 
0.50 S-d6 K-d8 K-a7 93.9 23.9 46.5 
0.60 S-d7 K-h6 K-v8 100.0 9.3 38.6 
0.70 S-v1 S-d7 K-d7 100.0 20.0 45.9 
0.80 S-h3 S-d7 K-v1 100.0 12.7 40.9 
0.90 K-v8 K-a4 K-a8 100.0 7.8 37.6 

 

 The sensitivity increased and the specificity decreased as the prior probability of 

the suspicious class was increased.  The possible choices for the remainder of the work 

were the true prior probability, 0.05, and the balanced prior probability, 0.5; the other 

choices are shown to illustrate the trends in the sensitivity and specificity as the prior 

probability is varied.  Because of the importance of sensitivity in screening procedures, 

the prior probability of 0.5 was selected and used in the remainder of this work. 
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5.3 Relative performance of different feature sets 

 Once the general structure of the single classifier had been finalized, the effect of 

different sets of features as inputs to the classifier was tested.  The parameters from 

Section 5.2 were finalized as follows: the probability distributions were constructed with 

8 bins each; the weight factor for the performance metric was set to 0.9950; and the 

prior probabilities were set to 0.50 for both the normal and the suspicious class.  The 

feature sets were constructed by using a single wavelet basis’ set of features, and using 

any two of the four possible types of statistical features in a given classifier.  Section 

5.3.1 compares the performance of different pairings of types of features, while Section 

5.3.2 compares the performance of feature sets taken from different wavelet bases. 

 

5.3.1 Comparing different statistical parameters 

 Four statistical parameters were measured from each wavelet map as described 

in Section 4.5: the mean intensity, standard deviation, skewness and kurtosis of pixel 

intensities in the tissue region.  Choosing features from only two of these four types of 

features limited the number of potential features to 64, making the search process an 

order of magnitude faster for selecting the optimal feature subset for a classifier.   

 Table 5.6 shows the sensitivities and specificities of classifiers constructed from 

different potential statistical feature types.  The tables use shorthand for the feature 

types: M for mean intensity, σ for standard deviation of intensity, S for skewness of 

pixel intensity, and K for kurtosis of pixel intensity.  The most sensitive subset of three 

features was chosen from the one or two types of features listed in the first column.  To 

ensure that the optimal types of statistical features were selected for the full system, 
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regardless of wavelet basis, all wavelets were tested for all possible feature type 

combinations.  Appendix A collects the results of this analysis for the MIAS database, 

and Appendix B collects the results of the same analysis for the DDSM database.  Only 

the mean performance results for the 11 wavelet bases’ decompositions are shown in 

Table 5.6, though they are representative of the results for each individual basis.   

 

Table 5.6 - Mean performances of different statistical feature types across  
all 11 wavelet bases tested 

Features Mean 
Sensitivity 

(%) 

Mean 
Specificity 

(%) 

Mean 
Classification 

Rate (%) 
M 86.8 24.1 44.4 
σ 87.0 27.7 46.9 
S 91.9 20.6 43.6 
K 93.5 16.8 41.6 

M + σ 89.7 23.7 45.0 
M + S 91.9 25.1 46.8 
M + K 94.0 19.6 43.6 
σ + S 93.2 23.1 45.8 
σ + K 94.3 18.0 42.6 
S + K 93.9 19.5 43.6 

 

 Several trends are apparent in the results of Table 5.6.  Using a pool of two 

different types of features proved more sensitive than using either feature type alone.  

For example, using mean intensity and standard deviation together gave a sensitivity of 

89.7%, though, by themselves, the sensitivities for mean intensity and standard 

deviation were only 86.8% and 87.0%, respectively.  This improvement may be due to 

the different aspects of the original image that each type of feature is sensitive to, so that 

a classifier using two different types of statistical features can detect a larger fraction of 

the suspicious images in the data set. 
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 The second trend is that the higher order features, skewness and kurtosis, were 

more sensitive than the lower order features, especially mean intensity.  Section 4.5 

discussed the mechanisms that may have made skewness and kurtosis especially 

sensitive to abnormalities, and these results support those hypotheses. 

 As a result of testing the different combinations of feature types to probe for 

selecting the optimal feature subset for a classifier, the combination of skewness and 

kurtosis features was used exclusively for constructing the final individual classifiers. 

 

5.3.2 Comparing different wavelet bases 

 Table 5.7 shows the performance of the 11 wavelet bases tested using skewness 

and kurtosis features.  Note that in Table 5.7, for the first time in this work, a two feature 

subset was selected over any three feature subset.  As all one, two and three feature 

subsets were tested, this is an allowable occurrence and ensures that the most effective 

feature subset is selected, even when it is smaller than the nominal subset size. 

 There was only a small difference in sensitivity between the different bases; 

thus, the final classifiers were constructed using any one of the 11 possible wavelet 

bases.  As the different wavelet basis functions are sensitive to different patterns in the 

signal, as shown by their structure in Figure 4.6 and Figure 4.7, they should be sensitive 

to different aspects of the original images and produce relatively different classification 

patterns for a data set.  By allowing each individual classifier to use a different wavelet 

basis, there was a greater possibility of reducing the correlation between different 

classifiers.  This would increase the effectiveness of a concerted-effort set of classifiers, 

that is, a set of classifiers operating co-operatively to classify a single image. 
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Table 5.7 - Relative performance of different wavelet bases 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar S-h1 K-a2 K-a8 90.8 32.7 51.5 
Db 2 K-a3 --- --- 93.9 14.1 39.9 
Db 4 K-h5 --- --- 94.9 9.3 37.0 
Db 8 S-h3 S-a4 K-d4 91.8 27.3 48.2 

Bior 1.5 K-h3 K-a1 K-a8 94.9 13.7 39.9 
Bior 2.2 K-a2 --- --- 94.9 14.1 40.3 
Bior 2.8 S-d5 K-a4 --- 94.9 27.3 49.2 
Bior 3.7 S-d6 K-d8 K-a7 93.9 23.9 46.5 
Bior 4.4 K-h6 K-a2 K-a5 93.9 16.1 41.3 
Bior 5.5 K-a1 --- --- 93.9 14.1 39.9 
Bior 6.8 S-h3 K-h7 K-a3 94.9 22.0 45.5 

 

5.4 Performance of classifiers tuned for particular abnormalities 

 Once the feature types used in the feature reduction step had been selected and 

the parameters of a single Bayesian classifier had been finalized, classifiers were 

designed to detect particular types of abnormalities.  Specifically, classifiers were 

designed to detect only calcifications or to detect only masses.  By combining these 

more specialized classifiers, the final concerted-effort set of classifiers was capable of 

classifying at a significantly higher rate than generalized classifiers that treat all types of 

abnormalities as equal. 

 

5.4.1 Classifiers tuned to detect calcifications 

 To construct a classifier that was sensitive to calcifications, the scoring metric 

(equation 4.7) was modified: the true positive fraction was replaced by the fraction of 

correctly classified images showing calcifications, and the true negative fraction was 

replaced by the fraction of correctly classified images of all other types.  In this case, the 
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correct classification for a mass is unsuspicious, since it is not suspicious for 

calcifications:  other classifiers can then sort the unsuspicious images from this classifier 

to separate the masses from the normal images after this classifier has removed images 

containing calcifications that could interfere with classification.  The consequences of 

misclassifying a mass with this classifier are not as severe as for a general classifier, 

however: if the image is misclassified as suspicious, it will still be subject to further 

study and will not necessarily lead to a false negative decision. 

 Table 5.8 shows the performance of classifiers constructed to be sensitive for 

calcifications using each of the 11 wavelet bases tested.  The MIAS database contained 

23 images with calcifications, so the table lists the number of missed calcifications for 

each classifier, to a maximum of 23.  The specificity for masses column lists the 

percentage of masses that were classified as normal; as stated above, this classification 

for masses was desirable but not vital.  The specificity for normals column lists the 

percentage of normal images classified as normal.  A good classifier of this type should 

classify almost all calcifications correctly while maximizing its true negative fraction. 

Table 5.8 - Performance of classifiers tuned to detect calcifications only 

Wavelet 
Basis 

Best Feature Triplet Misclassified 
Calcifications 

(out of 23) 

Specificity 
for masses 

(%) 

Specificity 
for normals 

(%) 
Haar K-h5 K-v2 K-d8 0 65.2 58.5 
Db 2 S-v5 K-v3 K-v4 0 93.3 65.9 
Db 4 K-h6 --- --- 0 82.7 67.8 
Db 8 S-v6 --- --- 0 52.0 53.2 

Bior 1.5 S-v2 S-d7 K-d7 1 93.3 79.5 
Bior 2.2 S-h8 K-h6 --- 1 70.7 83.9 
Bior 2.8 S-v2 S-v5 K-v3 1 53.3 73.2 
Bior 3.7 S-v7 S-d7 K-v8 0 62.7 65.9 
Bior 4.4 S-v7 K-v6 K-v7 1 73.3 67.3 
Bior 5.5 K-v7 --- --- 1 49.3 50.2 
Bior 6.8 S-h6 S-a3 K-v3 0 74.7 72.7 
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 The results in Table 5.8 show the merits of searching for calcifications 

specifically: no classifier missed more than a single calcification image, and 4 classifiers 

also maintained a specificity for normal images above 72%.   

 

5.4.2 Classifiers tuned to detect masses 

 In analogy to the classification scheme for detecting calcifications only, 

classifiers can be designed to detect images showing masses only.  Table 5.9 shows the 

performance of classifiers tuned to detect masses using the 11 wavelet bases tested.  The 

table lists the number of masses misclassified as normal, to a maximum of the 75 total 

masses in the MIAS database, and lists the fraction of calcification and normal images 

that were correctly classified as unsuspicious for masses. 

 

Table 5.9 - Performance of classifiers tuned to detect masses only 

Wavelet 
Basis 

Best Feature Triplet Misclassified 
Masses 

(out of 75) 

Specificity 
for 

calcifications 
(%) 

Specificity 
for  

normals 
(%) 

Haar S-d5 K-a6 K-a7 0 91.3 23.9 
Db 2 K-h5 K-h8 K-a3 0 95.7 43.4 
Db 4 K-d5 K-d6 K-a3 0 87.0 40.0 
Db 8 S-h1 K-h7 K-h8 0 100.0 42.4 

Bior 1.5 S-d2 K-d8 K-a7 0 78.3 42.0 
Bior 2.2 S-h7 K-d6 K-a1 0 100.0 29.3 
Bior 2.8 K-v5 K-a2 K-a4 0 100.0 40.0 
Bior 3.7 K-d5 K-a2 K-a6 0 91.3 36.1 
Bior 4.4 S-v1 S-d6 K-a6 0 91.3 46.8 
Bior 5.5 K-d1 K-d3 K-a6 0 82.6 40.0 
Bior 6.8 S-d5 S-d7 K-a5 0 87.0 41.0 

 

 The results in Table 5.9 are highly promising.  All 11 classifiers detected every 

mass, though the specificities for normal images were somewhat low; further, over 78% 
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of the calcification images were correctly removed from the pool of images suspicious 

for masses.  The specificity for normal images is lower than for the calcification case in 

Table 5.8; this is likely due to the more subtle appearance of masses in images as 

compared to the sharp contrast of the small, bright calcification images. 

 The extremely high sensitivity for masses should not be considered evidence that 

these classifiers are perfectly sensitive to masses; rather, this points to a limitation in the 

original data set.  The data set may contain too few images to be representative of all 

possible images showing masses, motivating the need to retest the system on a more 

extensive set of images.  The DDSM data set of images will be tested in Section 5.6 to 

provide an alternate measure of the classifiers’ sensitivities to masses.  Also, this strong 

segmentation of the mass and calcification images into separate pools makes it effective 

to use classifiers tuned to particular abnormalities on each output pool of images 

afterwards. 

 

5.5 Testing full system on MIAS database 

 Once individual classifiers had been trained, they could be combined to form one 

of the concerted-effort classifier designs described in Section 4.8: a sequential series of 

classifiers, a vote-taking combination of classifiers, and a network of classifiers tuned to 

detect specific types of abnormalities. 

 Because several classifiers are trained and tested together, care must be taken to 

ensure that no image is ever used as a training and as a testing image simultaneously.  

Each classifier is trained with the leave-one-out methodology, and the lone testing 

image is then passed into each classifier and its classification is recorded.  This training 
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method ensures that multiple classifiers do not violate the requirement that a test image 

cannot be used as part of the training set. 

 

5.5.1 Sequential series of classifiers 

 Several classifiers tuned for maximal sensitivity to any type of abnormality were 

combined to form a sequential series of classifiers, according to the method of Section 

4.8.3.2.  To increase the independence between individual classifiers, no wavelet basis 

was used more than once for the individual classifiers:  this left 11 possible classifiers to 

choose from for the sequential design, one for each wavelet basis tested.  Table 5.10 lists 

the five classifiers used and the sequence that they were used in.  Each individual 

classifier was the most sensitive classifier possible for that wavelet basis, chosen from 

the classifiers in Table 5.7.  The confidence levels for each classifier’s outputs are also 

given in the normalized forms Ceven(N) and Ceven(S). 

 

Table 5.10 – Performance of sequential series of classifiers 

Number of images 
classified as normal 

Number of images  
classified as suspicious 

Confidence levels Basis of 
individual 
classifier Actually 

normal 
Actually 

suspicious
Actually 
normal 

Actually 
suspicious 

Ceven(N) 
(%) 

Ceven(S) 
(%) 

1 Bior 2.8 56 5 149 93 84.3 56.6 
2 Bior 6.8 23 0 126 93 100.0 60.7 
3 Bior 3.7 9 1 117 92 81.1 62.2 
4 Haar 50 5 67 87 82.7 73.1 
5 Db 8 5 3 62 84 44.3 73.9 

 

 The sequential classifier reached its best performance with four stages; the fifth 

stage added little specificity while lowering the sensitivity significantly, and additional 

stages were not able to detect any more normal images.  This limitation suggests that the 
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62 normal images remaining after the fifth classifier were found to be suspicious by 

every classifier available to construct the ensemble.  Despite this limitation to the 

specificity, the sequential design worked well, removing significant numbers of normal 

images from the queue after each classifier while removing a minimal number of 

suspicious images.  A cut-off could be implemented to classify all images reaching the 

nth classifier as suspicious and all images removed before then as normal, if a hard 

classification was desired. 

 

5.5.2 Vote-taking combination of classifiers 

 The second approach for combining classifiers into a concerted-effort set was to 

use a vote-taking scheme as outlined in Section 4.8.4.  Three and five vote combinations 

of classifiers were tested: the three vote classifier had 8 output bins based on the outputs 

of each of the three classifiers while the five vote classifier had 6 output bins based on 

the number of classifiers that found an image to be suspicious.   

 Table 5.11 shows the results and confidence levels for the three vote 

combination of classifiers.  The confidence level that an image in a bin is normal is 

given; the confidence that an image in that bin is suspicious is then one minus this level.  

The three classifiers used to build the concerted-effort set were those that together found 

the highest sensitivity when two or more of the three classifiers found an image to be 

suspicious.  This meant that as few suspicious images as possible were missed by more 

than one of the three classifiers.  In the case where two sets of classifiers had the same 

sensitivity, the classifier set featuring the highest specificity was selected.  The 

classifiers used were chosen from the 11 classifiers listed in Table 5.7. 
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Table 5.11 – Confidence levels for three vote combination of classifiers 

Classification by each classifier 
(N = normal,  S = suspicious) 

Db 8 Bior 2.8 Bior 3.7 

Normal 
images in 

bin 

Suspicious 
images in 

bin 

Confidence
Ceven(N) 

(%) 
N N N 32 4 83.0 
S N N 0 1 0.0 
N S N 17 0 100.0 
N N S 2 0 100.0 
S S N 0 1 0.0 
S N S 22 0 100.0 
N S S 5 4 43.2 
S S S 127 88 46.8 

 

 The results for the three vote combination of classifiers are not as promising as 

the results for the sequential series of classifiers.  Four of the suspicious images were 

missed by all three individual classifiers, while 127 of the normal images were found to 

be suspicious by all three classifiers.  Further, the bins were erratically populated, 

though this is most likely due to the relatively small sample size; testing with the larger 

DDSM data set in Section 5.6.3 will reduce this effect.   

 The five vote classifier required a different binning procedure, since 32 different 

combinations of votes were possible, leading to 32 potential bins.  Since there were only 

98 suspicious samples in the MIAS data set, dividing them among 32 bins would not 

give an accurate representation of each bin’s confidence levels as each bin would have a 

very small number of images.  To compensate for this, only six bins were used, based on 

the number of classifiers in the set that classified an image as suspicious, regardless of 

the classification given by any particular classifier.  Table 5.12 collects the results and 

the confidence levels for this design.  The five classifiers used were chosen from those 

in Table 5.7 so that as few suspicious images as possible were missed by more than two 

classifiers.  The five classifiers used were: Haar, Db2, Db8, Bior2.8 and Bior3.7.  
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Table 5.12 – Confidence levels for five vote combination of classifiers 

Number of classifiers 
that found image  
to be suspicious 

Normal 
images 
in bin 

Suspicious 
images 
in bin 

Confidence
Ceven(N) 

(%) 
0 5 4 43.2 
1 18 0 100.0 
2 23 1 93.3 
3 5 2 60.4 
4 81 7 87.6 
5 73 84 34.6 

 

 The results for the five vote combination of classifiers were still not promising.  

At least four out of five classifiers found 154 of the 205 normal images to be suspicious, 

making it difficult to use this approach to remove these images from the population.  As 

well, four suspicious images were missed by all five classifiers, eliminating the increase 

in sensitivity that a concerted-effort set of classifiers should provide. 

 A challenge with implementing the vote-taking set of classifiers is finding an 

effective selection tool for deciding which individual classifiers to use.  Different 

combinations will distribute the normal and suspicious images among the bins 

differently; the choice of classifiers then depends on the goal of the particular 

application.  For example, a system that is to remove as many normal images as possible 

would select a triplet with the majority of the suspicious images in one of very few bins 

to increase the confidence level that the other bins are normal.  Because of this 

flexibility, the results shown in Table 5.11 and Table 5.12 should be viewed as two 

potential solutions and not as the optimal solutions to selecting individual classifiers to 

form vote-taking sets of classifiers. 

 

 

 127



5.5.3 Network of classifiers working in tandem 

 As described in Section 4.8.5, a network of individual classifiers tuned to detect 

particular types of abnormalities can be constructed.  Because of the high sensitivities of 

these tuned classifiers, listed in Table 5.8 and Table 5.9, networks constructed from 

them can offer extremely high classification rates. 

 The performance of such networks can be shown pictorially.  Figure 5.4 shows 

the performance of one network design: calcification images are filtered out first, then 

the other images are sorted in several passes to isolate images with masses.  The 

individual classifiers are shown as boxes containing the type of wavelet basis and the 

type of abnormality the classifier is sensitive to.  The two outputs from each classifier, 

normal or suspicious, are shown along with the number of each type of image that were 

classified in that way: for example, 103n, 23m, 10c means that 103 normal images, 23 

mass images and 10 calcification images were given a particular classification by an 

individual classifier.  The output bins are listed in the same way.  The complete network 

offers 100% sensitivity and 46.4% specificity, with the high sensitivity caused by the 

precision of the tuned classifiers described above. 
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Figure 5.4 – Network for detecting abnormalities, detects calcifications first 

 Figure 5.5 shows an alternate design that first filters out the mass images, then 

sorts the remaining images to find the calcifications.  Because the first classifier 

perfectly segments the calcification and mass images into two groups, two classifiers 

could be used on each output pool of images to achieve a high specificity.  The 

additional classifier that is sensitive to masses is used to overcome the reduced 

 129



specificity that this type of classifier has compared with classifiers that are sensitive to 

calcifications.  The whole network had a sensitivity of 100% and a specificity of 65.4%.  

While more classifiers could be added to such a network, minimizing the total number 

of features used to classify an image makes the system more flexible and less likely to 

become over-specified towards the data set used for training and testing. 

 

 

Figure 5.5 – Network for detecting abnormalities, detects masses first 
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5.6 Retesting full system on DDSM database 

 After testing and tuning the classification system using the MIAS data set, a 

fresh set of images were employed to retest the algorithm to ensure that it was not over-

specified towards the MIAS data set.  The DDSM data set [23] was used for this 

purpose: 1704 images were used including 1065 normal and 649 suspicious images.  

Table 5.13 lists the number of each type of image found in the data set.  This larger data 

set also provided larger bin counts, improving the estimates for the confidence levels of 

the concerted-effort sets of classifiers developed in this work 

 

Table 5.13 - Number and types of images in DDSM data set 

Type of image Number of images 
 

Normal 1065 
Total suspicious 649 

Total benign 332 
Total cancerous 317 

All masses 410 
Benign masses 213 

Cancerous masses 197 
All calcifications 239 

Benign calcifications 119 
Cancerous calcifications 120 

 

 The raw DDSM images were pre-processed in a fashion similar to the MIAS 

images as described in Section 4.3, with only a few changes.  Specifically, the images 

were digitized using four different types of digitizers, leading to images of varying sizes 

and resolutions.  All images were rescaled to have a resolution of 200 microns per pixel, 

matching the resolution of the MIAS database.  As well, the images were cropped or 

padded as necessary to have a size of 1024 x 1024 pixels for uniformity and to ease the 
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computation of the 2D discrete wavelet transform of the images.  Finally, one of the four 

digitizers converted the images into a percent transmission scale, rather than the optical 

density scale common in digital imaging.  The optical density images were recovered 

from this digitizer’s images by taking the natural logarithm of each pixel’s value plus 

one in the percent transmission image.  Adding one to the pixel intensity ensured that 

the output image pixels all had a value greater than or equal to zero, since an input 

intensity of zero would map to the natural logarithm of one, which is zero.  The pixel 

values ranged from 0 to 65535 for the percent transmission image; thus, the pixel values 

in the optical density image ranged from 0 to 11.09.  The intensities were then linearly 

rescaled to have pixel intensities in the range of 0 to 1 to match the intensity range of the 

images from the other three classifiers in the database. 

 Once the images were pre-processed, their wavelet transform was applied as in 

Section 4.4 and sets of scalar features were measured as in Section 4.5.  The features 

were used to classify the images using the same algorithm as was used for the MIAS 

images.  Section 5.6.1 gives the classification results for a single classifier, Section 5.6.2 

gives the results for a sequential series of classifiers, Section 5.6.3 gives the results for a 

vote-taking scheme of classifiers, and Section 5.6.4 gives the results for a network of 

classifiers tuned to detect particular types of abnormalities. 

 

5.6.1 Performance of individual classifiers 

 The DDSM images were classified by a single classifier at approximately the 

same sensitivity as the MIAS images.  Table 5.14 gives the mean classification rates 

achieved using the different scalar feature type combinations, averaged over the 11 
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types of wavelet bases tested.  Table 5.15 gives the classification rates and the best 

feature triplets for each wavelet base when the mean intensity and skewness features 

were used, as they provided among the highest sensitivities while maintaining relatively 

high specificities.  Appendix B lists the performance of all 11 types of wavelets for each 

type of scalar feature used. 

 

Table 5.14 - Mean performances of different statistical feature types across  
all 11 wavelet bases tested using DDSM data set 

Type of 
Statistical 
Feature(s) 

Mean 
Sensitivity 

(%) 

Mean 
Specificity 

(%) 

Mean 
Classification 

Rate (%) 
M 89.2 26.6 50.3 
σ 94.0 27.6 52.8 
S 90.8 29.4 52.7 
K 92.8 23.7 49.8 

M + σ 97.4 33.9 57.9 
M + S 97.2 38.1 60.5 
M + K 96.1 35.6 58.5 
σ + S 95.6 29.1 54.3 
σ + K 96.3 28.5 54.1 
S + K 94.2 32.2 55.7 
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Table 5.15 - Relative performance of different wavelet bases on DDSM data set 
using mean intensity and skewness features 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-h1 M-d1 S-h3 99.2 36.6 60.3 
Db 2 M-h3 M-d8 S-h5 97.4 42.7 63.4 
Db 4 M-h8 M-d1 S-h5 95.2 20.8 49.0 
Db 8 M-h6 S-v8 S-d3 97.5 40.4 62.0 

Bior 1.5 M-d4 S-h6 --- 96.9 38.8 60.8 
Bior 2.2 M-h5 M-v2 S-d2 98.8 44.8 65.2 
Bior 2.8 M-d4 S-d2 S-a5 92.9 46.9 64.4 
Bior 3.7 M-d4 S-h4 S-d4 98.9 28.1 54.9 
Bior 4.4 M-h1 M-d4 S-d2 96.1 43.0 63.1 
Bior 5.5 M-h6 M-d5 S-d2 98.5 38.1 61.0 
Bior 6.8 M-v3 M-d4 S-d2 98.0 39.0 61.3 

  

 The performance of the system when tested and trained on the larger DDSM data 

set alone was significantly better than the performance using MIAS data set alone.  This 

is likely due to the larger training set available to each classifier:  a larger training set is 

likely to be more representative of all possible images from the normal and suspicious 

classes, improving the ability of the classifier to recognize and classify a new image 

correctly.  The trends of the data are similar to the MIAS results: using two types of 

features together always outperformed using only one type of feature, though the 

standard deviation worked much better in this data set than in the MIAS data set.   

 Classifiers were also designed using the DDSM data set that were sensitive to 

masses or to calcifications in analogy with the classifiers using the MIAS data set in 

Section 5.4.1 and Section 5.4.2.  Table 5.16 shows the results for a classifier tuned to 

detect calcifications only, and Table 5.17 shows the results for a classifier tuned to 

detect masses only.  The classifiers used only the mean and skewness features in the 
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feature reduction step because of their high performance on the data set as described 

above. 

 

Table 5.16 - Performance of classifiers tuned to detect calcifications only, using 
DDSM data set 

Wavelet 
Basis 

Best Feature Triplet Misclassified 
Calcifications 
(out of 239) 

Specificity 
for masses 

(%) 

Specificity 
for normals 

(%) 
Haar M-h1 M-d2 S-v4 0 93.4 80.8 
Db 2 M-h1 M-d4 S-d8 0 92.7 76.0 
Db 4 M-h1 M-v1 S-d8 0 97.1 73.9 
Db 8 M-d3 S-v5 S-a3 0 99.0 76.2 

Bior 1.5 M-h4 M-h8 S-a6 0 99.5 65.3 
Bior 2.2 M-h2 M-d6 S-v4 0 91.5 75.9 
Bior 2.8 M-h1 M-d5 S-a5 0 99.3 67.4 
Bior 3.7 M-h4 M-v2 S-v7 0 87.1 73.9 
Bior 4.4 M-h1 --- --- 0 97.3 65.6 
Bior 5.5 M-d1 M-d3 S-v3 0 87.1 71.5 
Bior 6.8 M-h6 M-d3 S-h6 0 96.3 75.7 

 

Table 5.17 - Performance of classifiers tuned to detect masses only, using DDSM 
data set 

Wavelet 
Basis 

Best Feature Triplet Misclassified 
Masses 

(out of 410) 

Specificity 
for 

calcifications 
(%) 

Specificity 
for  

normals 
(%) 

Haar M-d3 S-h3 S-d4 1 79.1 70.5 
Db 2 M-d3 S-h6 S-d4 1 92.9 72.3 
Db 4 M-d6 S-h4 S-d5 1 86.2 66.9 
Db 8 M-v7 M-d5 S-d3 1 74.1 64.8 

Bior 1.5 M-d5 S-d1 S-d3 1 85.8 61.2 
Bior 2.2 M-d4 S-d2 S-d6 1 73.6 67.1 
Bior 2.8 M-d5 S-d3 S-d5 1 63.6 62.5 
Bior 3.7 S-h6 S-v7 S-d5 1 90.0 56.8 
Bior 4.4 S-d4 S-d5 S-a8 1 75.7 72.5 
Bior 5.5 M-d4 S-h4 S-d4 1 89.1 71.9 
Bior 6.8 M-v8 S-v1 S-d5 1 95.4 65.2 
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 The classifiers tuned to detect calcifications showed a higher specificity than 

those tuned to detect masses, as was the case when using the MIAS data set in Section 

5.4.  The classifiers tuned to detect masses all missed one mass; further, the same mass 

was missed by all 11 classifiers. The image that was universally misclassified is shown 

in Figure 5.6.  The mass’ location is shown with a white arrow; the mass is classified as 

subtle with obscured borders according to the DDSM, and appears to be circular and 

slightly darker than the surrounding tissue.  Excluding this image, all tuned classifiers 

had sensitivities of 100% for the type of abnormality they were designed to detect.  

Though the mass is not easily visible in the image, it appears to be present, and the 

image was retained in the data set, limiting the sensitivity of all of the classifiers that 

were tuned to detect masses only. 

 

Figure 5.6 – Image showing benign mass missed by all 11 classifiers 
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5.6.2 Sequential series of classifiers 

 Using the individual classifiers listed in Table 5.15, a sequential set of classifiers 

was designed as in Section 5.5.1 to provide confidence levels for classifying images 

from the DDSM data set.  Table 5.18 lists the classifiers in the order they were used in 

the ensemble and the confidence levels of each of their outputs.  The number of images 

of each type classified as normal or suspicious by each classifier are also provided. 

 

Table 5.18 – Performance of sequential series of classifiers 

Number of images 
classified as normal 

Number of images  
classified as suspicious 

Confidence levels Basis of 
individual 
classifier Actually 

normal 
Actually 

suspicious
Actually 
normal 

Actually 
suspicious 

Ceven(N) 
(%) 

Ceven(S) 
(%) 

1 Haar 390 5 675 644 97.9 61.0 
2 Bior 3.7 268 2 407 642 98.8 72.1 
3 Bior 2.2 103 4 304 638 94.0 77.5 
4 Bior 6.8 131 7 173 631 91.9 85.7 
5 Db 2 87 10 86 621 84.1 92.2 
6 Bior 5.5 20 6 67 615 67.0 93.8 
7 Bior 1.5 21 8 45 607 61.5 95.7 
8 Db 8 15 11 30 596 45.4 97.0 

 

 Several trends are apparent in these data.  The confidence levels for the images 

in the normal bins is high until the sixth classifier, when the numbers of suspicious and 

normal images classified as normal become comparable.  The confidence that images 

classified as suspicious and passed on to more classifiers increases after every stage as 

relatively fewer and fewer normal images remain in the suspicious bins.  A 

recommended cut-off for this sequence of classifiers would be to stop after the fifth 

classifier, since the final three classifiers provide much lower confidence levels for the 

images that they classify as normal. 
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5.6.3 Vote-taking combination of classifiers 

 Table 5.19 shows the results and confidence levels for the three vote 

combination of classifiers.  The confidence level that an image in a bin is normal is 

given; the confidence that an image in that bin is suspicious is then one minus this level.  

The three classifiers used to build the concerted-effort set were those that together found 

the highest sensitivity when two or more of the three classifiers found an image to be 

suspicious.  This meant that as few suspicious images as possible were missed by more 

than one of the three classifiers.  In the case where two sets of classifiers had the same 

sensitivity, the classifier set featuring the highest specificity was selected.  The 

classifiers used were chosen from the 11 classifiers listed in Table 5.15. 

 

Table 5.19 – Confidence levels for three vote combination of classifiers 

Classification by each classifier 
(N = normal,  S = suspicious) 

Haar Bior 2.2 Bior 5.5 

Normal 
images  
in bin 

Suspicious 
images  
in bin 

Confidence
Ceven(N) 

(%) 
N N N 64 3 92.9 
S N N 299 0 100.0 
N S N 1 0 100.0 
N N S 65 0 100.0 
S S N 42 7 78.5 
S N S 49 5 85.7 
N S S 260 2 98.8 
S S S 285 632 21.6 

 

 The performance of the vote-taking combination of classifiers is stronger for the 

DDSM data set than for the MIAS data set.  By keeping only images with confidence 

levels below 90% for being normal, the system provides 64.7% specificity and 99.2% 

sensitivity; by keeping images with confidence levels below 80% only, the system 

provides 69.3% specificity and 98.5% sensitivity. 
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 The five vote classifier used a different binning procedure, since 32 different 

combinations of votes were possible, leading to 32 potential bins.  To gain better 

statistical information in each individual bin, only six bins were used, based on the 

number of classifiers in the set that classified an image as suspicious, regardless of the 

classification given by any particular classifier.  Table 5.20 collects the results and the 

confidence levels for this design.  The five classifiers used were chosen from those in 

Table 5.15 so that as few suspicious images as possible were missed by more than two 

classifiers.  The five classifiers used were: Haar, Db2, Db8, Bior2.8 and Bior3.7. 

 

Table 5.20 – Confidence levels for five vote combination of classifiers 

Number of classifiers 
that found image  
to be suspicious 

Normal 
images 
in bin 

Suspicious 
images 
in bin 

Confidence
Ceven(N) 

(%) 
0 3 2 47.8 
1 1 0 100.0 
2 427 1 99.6 
3 158 5 95.1 
4 290 64 73.4 
5 186 577 16.4 

 

 Again, the results for the DDSM data set are better than for the MIAS data set 

due to the better representation of relative binning probabilities that the larger data set 

provides.  By setting a confidence threshold at 95%, this system achieves a sensitivity of 

99.1% and a specificity of 55.0%. 
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5.6.4 Network of classifiers working in tandem 

 As in Section 5.5.3, two networks were designed using individual classifiers 

tuned to detect particular types of abnormalities.  Figure 5.6 uses the same structure as 

the network in Figure 5.4, but uses different individual classifiers that are trained using 

the DDSM data set.  The classifiers are chosen from the tuned classifiers in Table 5.16 

and Table 5.17.  The whole network achieved a sensitivity of 99.85% with a specificity 

of 76.4%.  The only suspicious image misclassified was the same mass image shown in 

Figure 5.5 above.  The network also achieved a strong segmentation between images 

with calcifications and images with masses, potentially providing even more 

information about an image processed with this system than just its level of 

suspiciousness.  The four output bins from this network consist of: two bins containing 

mainly normal images with a very small fraction of mass images; one bin containing 

mainly calcifications with a small fraction of masses and normal images; and one bin 

containing mainly masses with a small fraction of normal images. 

 

 

 140



 

Figure 5.6 – Network for detecting abnormalities, detects calcifications first 

 

 The other network design tested was analogous to the design in Figure 5.4 but 

using classifiers trained on the DDSM data set.  The first classifier was the one which 

best segmented masses and calcifications into two separate pools, then two classifiers 

were sequentially run on each pool to remove as many normal images as possible.  The 
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network achieved a sensitivity of 99.85% and a specificity of 78.8%.  The only 

misclassified suspicious image was the mass image shown in Figure 5.5.  The network 

design has six output bins for images: three bins contain only normal images; one bin 

contains mainly normal images with a very small fraction of masses; one bin contains 

mainly masses with a fraction of normal images; and one bin contains calcifications 

with a fraction of normal images and a small fraction of mass images. 

 

Figure 5.7 – Network for detecting abnormalities, detects masses first 
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CHAPTER 6 – DISCUSSION 

_______________________________________________________________________ 

 The system developed in this work was designed to classify x-ray 

mammography images as either normal or suspicious and provide a confidence level for 

this classification.  The system was built from individual classifiers; the performance of 

these classifiers is discussed in Section 6.1.  Several variations were tested for 

combining the individual classifiers; their relative performances are described in Section 

6.2.  The system was developed and tested on the MIAS data set containing 303 images 

with verified diagnoses.  A larger independent second image set, the DDSM data set, 

consisted of 1714 images and was used to confirm that the system’s performance was 

not dependent on the data set used and to examine the effect of a larger training set on 

system performance, as discussed below.  The two data sets were kept separate 

throughout the analysis, ensuring that the DDSM data set could always be used as an 

independent check of the system’s behaviour once it had been developed using the 

MIAS data set. 

 

6.1 Performance of single naïve Bayesian classifiers 

 Each individual classifier was constructed by selecting 3 features from a 

particular wavelet basis’ decomposition.  For the MIAS data set, the most effective 

features were skewness and kurtosis features, likely due to their sensitivity to pixels with 
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intensities much different from the norm, such as those showing bright calcifications.  

For the larger DDSM data set, mean intensity and skewness features performed best.  

For every choice of feature type, the DDSM data set showed higher sensitivities to 

abnormal images; this was most likely due to the larger training set size that better 

represented the distributions of normal and suspicious images that each classifier used 

classify a new, unknown image. 

 For the MIAS data set, the strongest classifier used the Biorthogonal 2.8 basis to 

achieve a sensitivity of 94.9% and a specificity of 27.3%.  The different wavelet bases 

tested all performed similarly, with sensitivities ranging from 90.8% to 94.9%, 

suggesting that the classifiers’ performances were not strongly dependent on the type of 

wavelet used in the decomposition.  The specificities for the MIAS data set were 

relatively low, ranging from 9.3% to 32.7%.  The low specificity of the individual 

classifiers was compensated for in the final system by combining the outputs of multiple 

classifiers. 

 For the DDSM data set, the strongest classifier used the Haar wavelet basis to 

achieve a sensitivity of 99.2% and a specificity of 36.6%.  The different wavelet bases 

tested all performed well, with sensitivities ranging from 92.9% to 99.2%, again 

suggesting that the classifiers’ performances were not strongly dependent of the choice 

of wavelet basis.  The specificities of the classifiers were higher than for the MIAS data 

set, ranging from 20.8% to 46.9%, likely due to the larger training set size. 

 Classifiers were also designed that detected just one type of abnormality, either 

masses or calcifications.  These classifiers showed extremely high sensitivities as well 
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as strong specificities, allowing for extremely sensitive concerted-effort sets of 

classifiers to be designed.   

 For the MIAS data set, 6 of the 11 wavelet bases generated classifiers that 

detected 100% of the 23 calcification images and the other 5 bases missed only one 

calcification; further, each classifier maintained a specificity of 50.2% to 82.9%.  As 

well, all 11 wavelet bases generated classifiers that detected 100% of the 75 mass 

images while maintaining specificities between 23.9% and 43.4%.   

 For the DDSM data set, all 11 wavelet bases generated classifiers that detected 

100% of the 239 calcification images; further, each maintained a specificity of 65.3% to 

80.8%.  As well, all 11 wavelet bases generated classifiers that detected all but one of 

the 410 mass images while maintaining specificities between 56.8% and 72.5%.  The 

one mass image missed was the same in all cases, and may be an erroneous image, 

though it showed no obvious artefacts or defects. 

 The generally lower specificities for classifiers tuned to detect masses is likely 

due to the more subtle appearance of masses as compared to calcifications in images.  

This discrepancy in specificities was especially pronounced in the MAIS data set, which 

contains 19 masses that are only visible through architectural distortions and are 

notoriously difficult to detect using CAD techniques [4].  Achieving 100% sensitivity 

when architectural distortion images were present is very encouraging, as most CAD 

systems in literature are not sensitive to these abnormalities. 
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6.2 Performance of concerted-effort sets of classifiers 

 Three techniques were developed and tested for combining individual classifiers 

into a system capable of providing confidence levels for image classification: a 

sequential series of classifiers, a vote-taking scheme of classifiers, and a network of 

classifiers tuned to detect particular types of abnormalities. 

 The sequential series of classifiers passed images on to the next stage of the 

classifier if they were found to be suspicious by the previous stage.  Using this method, 

the normal bin from each stage had a slightly lower confidence level than the previous 

stage’s bin, providing a natural progression for applying a thresholding procedure.  After 

four stages for the MIAS data set, the series retained 88.8% of the suspicious images 

while removing 69.8% of the normal images as being unsuspicious, meaning that the 

system was 88.8% sensitive and 69.8% specific after four stages.  After five stages for 

the DDSM data set, the system was 95.7% sensitive and 91.9% specific.   

 These results are highly encouraging, especially for the DDSM data set, and 

exceed the performance of many current approaches.  For example, the CAD systems in 

current clinical use generate approximately 0.5 false negative regions per image [4]; 

though their sensitivities are close to that of the system in this work, their low 

specificities limit their effectiveness as a pre-screening tool.  This system’s performance 

values also compare well with the performance of human readers: though there is a large 

range in the reported classification rates of human readers, their performance values 

tend to be between 75% and 90% for both sensitivity and specificity [27]. 

 The vote-taking scheme of classifiers gave confidence levels based on which 

classifiers found an image to be suspicious.  This method did not work well in practice, 
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especially for the relatively smaller MIAS data set, since it was difficult to develop 

sufficient counts in each output bin to calculate useful confidence levels.  Using the 

MIAS data set with a confidence level cut-off of 80%, that is, marking every image with 

a likelihood of normalcy below 80% as suspicious, a three vote classifier scheme 

achieved a sensitivity of 93.9% and a specificity of 35.4%.  For a five vote classifier 

scheme, a confidence level cut-off of 80% gave a sensitivity of 91.8% and a specificity 

of 59.5%. 

 Using the DDSM data set for training offered slightly better results.  A three vote 

classifier scheme with a confidence level cut-off of 80% gave a sensitivity of 98.5% and 

a specificity of 69.3%.  A five vote classifier scheme with a confidence level cut-off of 

80% gave a sensitivity of 99.1% and a specificity of 55.0%. 

 For both three and five vote classifier schemes using either the MIAS or the 

DDSM data sets, the complete systems perform little better than individual classifiers 

trained on the same data sets and are not as powerful as the sequential classifiers or the 

networks of tuned classifiers.  Using more than five classifiers would have required too 

many output bins, many of which were under-populated even for the three and five vote 

classifier schemes, while using less than three classifiers would have produced too few 

output bins to sort images into an effective number of possible confidence levels. 

 The network of classifiers tuned to detect particular types of abnormalities 

offered extremely high sensitivity, making it a useful candidate for isolating normal 

images and removing them from a population without losing suspicious images.  Several 

representative networks were designed that isolated one type of abnormality and then 

the other. 
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 For the MIAS data set, a network that first removed images with calcifications 

(Figure 5.3) offered a sensitivity of 100% and a specificity of 46.4%.  A network that 

first segmented images with calcifications and images with masses into two pools 

(Figure 5.4) offered a sensitivity of 100% and a specificity of 65.4%. Because the 

networks were perfectly sensitive, confidence levels did not add to the information 

produced by the classifier network: effectively, an image classified into a normal bin 

had a 100% confidence of being normal.   

 For the DDSM data set, a network that first removed images with calcifications 

(Figure 5.6) offered a sensitivity of 99.85% and a specificity of 76.4%.  A network that 

first segmented images with calcifications and images with masses into two pools 

(Figure 5.7) offered a sensitivity of 99.85% and a specificity of 78.8%.  In both cases, 

the only misclassified suspicious image was the mass image that every individual 

classifier missed, as mentioned above.   

 The results for both data sets were promising using the networks of tuned 

classifiers.  The systems all had sensitivities above 99.8%; thus, any images identified as 

normal were unlikely to be false negatives.  Further, the networks, particularly those 

trained using the DDSM data set, had acceptably high specificities of above 75%, 

making these networks capable of identifying a significant fraction of normal images 

without missing many images that merit further analysis. 

 The concerted-effort sets of classifiers performed as well as or better than other 

classifier ensembles in literature, though direct comparisons between the current work 

and other works are difficult to make.  This work was novel in classifying whole 

images, making it fundamentally different from the variety of methods that locate 
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suspicious regions and do not classify images as a whole.  One example that can be 

compared to and that also uses multiple classifiers is the Adaboosting method [40]:  it 

achieved 95% sensitivity with 0.591 false positives per image for a single classifier or 

0.327 false positives per image for an ensemble of classifiers.  The sequential series of 

classifiers in this work offered a higher specificity than this at a comparable sensitivity, 

while the network of tuned classifiers achieved a higher sensitivity with a comparable 

specificity.  Again, the Adaboosting method identified suspicious regions in images and 

did not identify and isolate normal images from the input image pool in the way that the 

method in this work did. 

 The primary advantage of the use of whole image features extracted from 

wavelet maps of mammography images was in the classification of whole images rather 

than of image regions.  Each wavelet map examined a different scale and type of detail, 

making it possible to search for abnormalities of different sizes and shapes; in contrast, 

examining a raw image alone limits the range of abnormalities that can be detected, 

since structures of different sizes and shapes would require different detection 

procedures.  The skewness and kurtosis features were especially sensitive to 

abnormalities, likely due to their strong dependence on pixels with intensities much 

different from the norm, such as those generated by the sharp boundaries of 

calcifications or the brightened regions of masses. 

 The individual classifiers were limited to have no more than three features, 

though this requirement could be relaxed in future applications.  The limitation was 

imposed to prevent over-learning:  if too many features were used in a concerted-effort 

set of classifiers, the system would be more likely to become biased towards the training 
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data and lose the flexibility necessary to apply the system to new images acquired in a 

clinical setting. 
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CHAPTER 7 – CONCLUSIONS 

_______________________________________________________________________ 

 Breast cancer is the most commonly diagnosed cancer among Canadian women 

and the second-leading cause of cancer-related death behind lung cancer.  X-ray 

mammography uses low energy x-ray absorption imaging of the soft tissues of the breast 

to screen for cancer and is the leading method for breast cancer screening.  As the 

population ages and as policies call for increased screening frequencies, the volume of 

mammography images taken will continue to increase.  Automated techniques are being 

introduced to increase screening sensitivity and manage the increasing data volume.  

This work introduced a method for pre-screening images to rate their degree of 

suspiciousness and help determine the need to further analyze particular images. 

 The first objective of this work was to develop pre-processing procedures for 

regularizing the appearance of images to isolate only salient differences between normal 

and suspicious images.  This was successfully done through a series of masking and 

intensity normalization steps.  The pre-processing of images needed to be done slightly 

differently for each data set used; for this system to be viable in broad use, some set of 

standards would need to be developed for the appearance of images presented to the 

algorithm. 

 The second objective of this work was to apply the discrete wavelet transform to 

parse the images and extract statistical features that characterize an image’s content.  
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This was successfully done using 11 different wavelet bases, all of which generated 

useful features.  The features extracted from the wavelet map decomposition were 

whole-image scalar values: the mean intensity, the standard deviation of the intensity, 

and the skewness and kurtosis of the intensity.  The use of wavelets was effective, as it 

decomposed the information content of each image into different scales, isolating 

features of different sizes, such as large masses and small calcifications.  The extraction 

of scalar features from the wavelet maps also gave encouraging results: the distinction 

between the normal and suspicious images was most pronounced with the higher order 

skewness and kurtosis features, though all four types showed reasonable sensitivity.  It 

is possible that higher order features or other scalar parameters could be even more 

effective, given further study. 

 The third objective of this work was to use the measured features to classify 

images as either normal or suspicious with a corresponding confidence level.  A naïve 

Bayesian classifier was employed to classify the images, and did so with sensitivities as 

high as 94.9% for images in the MIAS data set and 99.5% for images in the DDSM data 

set.  The higher sensitivity for the DDSM data set was likely due to its larger size, as this 

offered a larger training set using the leave-one-out training methodology.  A larger 

training set should better model the realistic distribution of features from the normal and 

suspicious classes; applying this system in a large-scale clinic should offer high 

sensitivity as well, if a large set of images with confirmed diagnoses are used as a 

training set for the classifier system.   

 To generate confidence levels, multiple classifiers were combined into 

concerted-effort sets of classifiers in three different ways.  A sequential series of 
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classifiers removed all images classified as normal after each classifier, paring down the 

pool of suspicious images and increasing specificity significantly.  The sequential series 

of classifiers appeared promising and would be a good candidate for further use.  A 

vote-taking scheme of classifiers based the confidence that an image was normal on 

which classifiers found the image to be either normal or suspicious; this method did not 

offer significant gains from the individual classifiers, and would be a poor candidate for 

further use.  Finally, a network of classifiers, each tuned to detect a particular type of 

abnormality, was designed; this method offered sensitivity greater than 99.8% while 

maintaining a specificity above 60%, making it the strongest candidate method for pre-

screening images.  Because of its high sensitivity, however, it was not possible to apply 

meaningful confidence levels to its outputs, as the confidence levels for the normal bins 

were all 100 % that the image was normal. 

 The confidence levels were measured using two methods, the second of which 

was uniquely designed for this work: first, a real confidence level was given that 

measured the true probability that an image in a particular bin was suspicious; and 

second, a normalized confidence level was given that assumed that normal and 

suspicious images were equally likely to occur.  Since suspicious images are much less 

common than normal images in a screening protocol such as x-ray mammography, the 

true probabilities strongly favour any given image as being normal; the adjusted 

probabilities remove this dependence on population incidence rates and measure an 

image’s raw degree of suspiciousness.  This technique allows for more flexibility in 

providing confidence levels, since other factors could be incorporated into its result: for 

example, the rate of suspicious results varies with age and family history for a patient; 
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these factors could be applied to the raw confidence level to give a better true 

confidence level than one that assumes the rate of suspicious images to be the same for 

all patients of varying backgrounds. 

 The system designed in this work was successful.  It achieved sensitivities 

exceeding current approaches in literature and practice while maintaining reasonable 

specificity, especially for the sequential series of classifiers and for the network of tuned 

classifiers.  This method was novel in that it classified whole images as normal or 

suspicious, rather than the common approach of identifying suspicious regions in most 

images; this approach was possible only because the wavelet decomposition provided 

features with such high sensitivity to suspicious images.  This whole-image approach 

made it difficult to directly compare the developed system’s performance against others 

in literature, though typical rates of at least one false positive region per image 

corresponds to a specificity significantly lower than the current system’s, since few 

images would be analyzed and found to contain no suspicious regions. 

 Potentially, using this system to pre-screen images could significantly increase 

the rate at which x-ray mammography images could be screened for signs of cancer.  By 

identifying and removing images with a low degree of suspiciousness, more analysis 

could be applied to images that merit it.  Increasing throughput in this way allows for 

two gains in screening procedures: screening could be done more frequently for each 

patient, and screening could begin at an earlier age.  For example, the screening 

recommendation could be changed to an annual cycle beginning at age 40 from the 

current recommendation in Canada of a mammogram every two years from age 50.  

Both changes to screening protocols would increase the chance of detecting a cancer at 
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an earlier stage when it is more treatable while limiting the increased risk to the patient 

from the radiation dose received from the additional imaging procedures.  The challenge 

to using this approach in practice is to ensure a sensitivity high enough to allow a 

medical professional to make an informed decision based on the classification and 

confidence level provided by the system. 

 An extension of this work could be to attempt to differentiate between benign 

abnormalities and malignant ones; since only 5% of the images showing abnormalities 

are positive for cancer, the system developed here still leaves a large volume of images 

negative for cancer, even when its specificity is maximized.  Given the high sensitivities 

achieved using scalar features measured from wavelet maps, it is possible that this 

technique could be applied to the pool of suspicious images to segment it into cancerous 

and non-cancerous classes and again provide confidence levels for this secondary 

classification. 
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APPENDIX A – PEFORMANCE OF DIFFERENT FEATURE TYPES 

_______________________________________________________________________ 

 Individual classifiers tested in Section 5.3 were developed using different 

combinations of scalar feature types.  This appendix lists the performance of the most 

sensitive classifiers possible for each wavelet basis using any one or any two of the four 

available types of scalar features: mean intensity, standard deviation of intensity, 

skewness of intensity, and kurtosis of intensity. 

 The training data used in this appendix are taken from the MIAS data base.  

There are 303 images, including 205 normal images and 98 images showing some type 

of abnormality. 
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Table A.1 - Relative performance of different wavelet bases using only mean 
intensity feature type 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-v6 M-d8 --- 84.7 29.8 47.5 
Db 2 M-a4 --- --- 81.6 24.9 43.2 
Db 4 M-h2 M-h3 M-a7 82.7 22.9 42.2 
Db 8 M-a6 M-a7 --- 90.8 16.1 40.3 

Bior 1.5 M-v1 M-d6 M-a8 86.7 34.6 51.5 
Bior 2.2 M-a4 --- --- 83.7 25.4 44.2 
Bior 2.8 M-h3 M-h5 M-a6 86.7 30.2 48.5 
Bior 3.7 M-v7 --- --- 89.8 11.2 36.6 
Bior 4.4 M-v2 --- --- 92.9 12.2 38.3 
Bior 5.5 M-d3 M-a6 M-a7 85.7 29.3 47.5 
Bior 6.8 M-h3 M-h5 M-a6 89.8 28.3 48.2 

 
Table A.2 - Relative performance of different wavelet bases using only standard 
deviation feature type 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar σ-d3 σ-d7 σ-a4 82.7 42.4 55.4 
Db 2 σ-h3 --- --- 93.9 9.8 37.0 
Db 4 σ-h4 --- --- 94.9 10.7 38.0 
Db 8 σ-h7 σ-v7 σ-d7 82.7 40.0 53.8 

Bior 1.5 σ-a8 --- --- 80.6 29.8 46.2 
Bior 2.2 σ-v7 σ-a8 --- 84.7 37.1 52.5 
Bior 2.8 σ-h5 σ-h8 σ-v8 82.7 37.6 52.1 
Bior 3.7 σ-h7 --- --- 87.8 29.3 48.2 
Bior 4.4 σ-h5 σ-v1 σ-a7 88.8 25.9 46.2 
Bior 5.5 σ-a8 --- --- 89.8 22.0 43.9 
Bior 6.8 σ-a8 --- --- 88.8 20.0 42.2 
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Table A.3 - Relative performance of different wavelet bases using only skewness 
feature type 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar S-d5 S-d6 S-d7 87.8 40.0 55.4 
Db 2 S-v5 S-a5 S-a6 90.8 26.8 47.5 
Db 4 S-v5 --- --- 92.9 13.2 38.9 
Db 8 S-a4 --- --- 91.8 18.0 41.9 

Bior 1.5 S-a3 --- --- 93.9 14.6 40.3 
Bior 2.2 S-h4 S-v3 --- 91.8 14.1 39.3 
Bior 2.8 S-d5 S-a2 S-a7 92.9 23.9 46.2 
Bior 3.7 S-d6 S-a2 S-a6 92.9 22.9 45.5 
Bior 4.4 S-a7 --- --- 92.9 19.0 42.9 
Bior 5.5 S-h7 --- --- 89.8 19.0 41.9 
Bior 6.8 S-a3 --- --- 92.9 15.1 40.3 

 
Table A.4 - Relative performance of different wavelet bases using only kurtosis 
feature type 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar K-a6 --- --- 90.8 7.3 34.3 
Db 2 K-a3 --- --- 93.9 14.1 39.9 
Db 4 K-h5 K-h6 K-a3 93.9 19.0 43.2 
Db 8 K-a1 K-a8 --- 90.8 28.8 48.8 

Bior 1.5 K-h3 K-a1 K-a8 94.9 13.7 39.9 
Bior 2.2 K-a2 --- --- 94.9 14.1 40.3 
Bior 2.8 K-a7 --- --- 93.9 17.6 42.2 
Bior 3.7 K-a5 K-a7 --- 93.9 19.0 43.2 
Bior 4.4 K-h6 K-a2 K-a5 93.9 16.1 41.3 
Bior 5.5 K-a1 --- --- 93.9 14.1 39.9 
Bior 6.8 K-h7 K-a5 --- 93.9 21.5 44.9 
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Table A.5 - Relative performance of different wavelet bases using mean and 
standard deviation feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-d8 σ-h2 σ-d7 85.7 34.1 50.8 
Db 2 σ-h3 --- --- 93.9 9.8 37.0 
Db 4 σ-h4 --- --- 94.9 10.7 38.0 
Db 8 M-a6 M-a7 --- 90.8 16.1 40.3 

Bior 1.5 M-h3 M-a8 σ-h2 88.8 25.9 46.2 
Bior 2.2 M-d6 σ-d8 σ-a8 84.7 47.3 59.4 
Bior 2.8 M-h5 M-a6 σ-v8 86.7 42.9 57.1 
Bior 3.7 M-v7 --- --- 89.8 11.2 36.6 
Bior 4.4 M-v2 --- --- 92.9 12.2 38.3 
Bior 5.5 σ-a8 --- --- 89.8 22.0 43.9 
Bior 6.8 M-h3 M-h5 M-a6 88.8 28.3 47.9 

 
Table A.6 - Relative performance of different wavelet bases using mean and 
skewness feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-h7 M-d8 S-h6 88.8 35.6 52.8 
Db 2 S-v5 S-a5 S-a6 90.8 27.3 47.9 
Db 4 S-v5 --- --- 92.9 13.2 38.9 
Db 8 M-a7 S-h5 S-a4 91.8 38.0 55.4 

Bior 1.5 S-a3 --- --- 93.9 14.6 40.3 
Bior 2.2 S-h4 S-v3 --- 91.8 14.1 39.3 
Bior 2.8 S-d5 S-a2 S-a7 92.9 23.9 46.2 
Bior 3.7 M-h6 M-v3 S-h3 92.9 29.8 50.2 
Bior 4.4 M-v4 S-a1 S-a3 92.9 45.9 61.1 
Bior 5.5 S-h7 --- --- 89.8 19.0 41.9 
Bior 6.8 S-a3 --- --- 92.9 15.1 40.3 
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Table A.7 - Relative performance of different wavelet bases using mean and 
kurtosis feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar K-a6 --- --- 90.8 7.3 34.3 
Db 2 K-a3 --- --- 93.9 14.1 39.9 
Db 4 K-h5 --- --- 94.9 9.3 37.0 
Db 8 M-a7 K-d4 K-a5 91.8 45.4 60.4 

Bior 1.5 K-h3 K-a1 K-a8 94.9 13.7 39.9 
Bior 2.2 M-h3 K-a1 K-a2 94.9 22.9 46.2 
Bior 2.8 M-h4 K-v8 K-d5 94.9 27.3 49.2 
Bior 3.7 M-a8 K-h6 K-a7 95.9 19.0 43.9 
Bior 4.4 M-v8 K-a1 K-a2 93.9 16.6 41.6 
Bior 5.5 K-a1 --- --- 93.9 14.1 39.9 
Bior 6.8 M-d3 K-a1 K-a7 93.9 25.4 47.5 

 
Table A.8 - Relative performance of different wavelet bases using standard  
deviation and skewness feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar σ-h3 S-d5 S-d6 92.9 18.0 42.2 
Db 2 σ-h3 --- --- 93.9 9.8 37.0 
Db 4 σ-h4 --- --- 94.9 10.7 38.0 
Db 8 σ-d2 S-a5 S-a7 93.9 51.2 65.0 

Bior 1.5 S-a3 --- --- 93.9 14.6 40.3 
Bior 2.2 S-h4 S-v3 --- 91.8 14.1 39.3 
Bior 2.8 S-d5 S-a2 S-a7 92.9 23.9 46.2 
Bior 3.7 σ-h5 σ-h6 S-a7 92.9 45.9 61.1 
Bior 4.4 S-a7 --- --- 92.9 19.0 42.9 
Bior 5.5 σ-a1 σ-a8 S-a1 91.8 32.2 51.5 
Bior 6.8 S-a3 --- --- 92.9 15.1 40.3 
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Table A.9 - Relative performance of different wavelet bases using standard 
deviation and kurtosis feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar K-a6 --- --- 90.8 7.3 34.3 
Db 2 K-a3 --- --- 93.9 14.1 39.9 
Db 4 σ-h4 --- --- 94.9 10.7 38.0 
Db 8 σ-d2 K-h7 K-a6 95.9 51.7 66.0 

Bior 1.5 K-h3 K-a1 K-a8 94.9 13.7 39.9 
Bior 2.2 K-a2 --- --- 94.9 14.1 40.3 
Bior 2.8 K-a7 --- --- 93.9 17.6 42.2 
Bior 3.7 σ-h6 K-d6 K-a7 93.9 22.0 45.2 
Bior 4.4 K-h6 K-a2 K-a5 93.9 16.1 41.3 
Bior 5.5 K-a1 --- --- 93.9 14.1 39.9 
Bior 6.8 σ-d5 K-a7 K-a8 95.9 16.1 41.9 

 
Table A.10 - Relative performance of different wavelet bases using skewness and  
kurtosis feature types 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar S-h1 K-a2 K-a8 90.8 32.7 51.5 
Db 2 K-a3 --- --- 93.9 14.1 39.9 
Db 4 K-h5 --- --- 94.9 9.3 37.0 
Db 8 S-h3 S-a4 K-d4 91.8 27.3 48.2 

Bior 1.5 K-h3 K-a1 K-a8 94.9 13.7 39.9 
Bior 2.2 K-a2 --- --- 94.9 14.1 40.3 
Bior 2.8 S-d5 K-a4 --- 94.9 27.3 49.2 
Bior 3.7 S-d6 K-d8 K-a7 93.9 23.9 46.5 
Bior 4.4 K-h6 K-a2 K-a5 93.9 16.1 41.3 
Bior 5.5 K-a1 --- --- 93.9 14.1 39.9 
Bior 6.8 S-h3 K-h7 K-a3 94.9 22.0 45.5 
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APPENDIX B – PEFORMANCE OF DIFFERENT FEATURE TYPES 

FOR DDSM DATA SET 

_______________________________________________________________________ 

 

 Individual classifiers tested in Section 5.3 were developed using different 

combinations of scalar feature types.  This appendix lists the performance of the most 

sensitive classifiers possible for each wavelet basis using any one or any two of the four 

available types of scalar features: mean intensity, standard deviation of intensity, 

skewness of intensity, and kurtosis of intensity. 

 The training data used in this appendix are taken from the DDSM data base.  

There are 1714 images, including 1065 normal images and 649 images showing some 

type of abnormality. 
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Table B.1 - Relative performance of different wavelet bases using only mean 
intensity feature type, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-v4 --- --- 85.7 16.9 42.9 
Db 2 M-h2 M-h3 M-a8 87.5 47.2 62.5 
Db 4 M-h7 M-v3 M-v7 93.5 34.1 56.6 
Db 8 M-h5 M-h7 M-a8 91.7 24.3 49.8 

Bior 1.5 M-h7 M-v5 M-v6 87.7 22.3 47.0 
Bior 2.2 M-h7 M-d5 M-a3 89.1 27.2 50.6 
Bior 2.8 M-h8 M-a8 --- 87.7 19.3 45.2 
Bior 3.7 M-v5 M-d5 M-a8 88.3 43.2 60.3 
Bior 4.4 M-v3 --- --- 91.4 11.8 41.9 
Bior 5.5 M-d4 M-d8 M-a5 85.5 37.4 55.6 
Bior 6.8 M-a8 --- --- 93.2 9.3 41.1 

 
Table B.2 - Relative performance of different wavelet bases using only standard 
deviation feature type, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar σ-h5 σ-d2 σ-d6 93.5 25.1 51.0 
Db 2 σ-d5 σ-d6 σ-a8 90.1 38.7 58.2 
Db 4 σ-h5 σ-d5 σ-a1 95.1 23.2 50.4 
Db 8 σ-h2 σ-h8 σ-d3 96.6 30.9 55.8 

Bior 1.5 σ-h4 σ-h7 σ-d2 94.9 20.0 48.4 
Bior 2.2 σ-d1 σ-d6 --- 94.8 19.0 47.7 
Bior 2.8 σ-h1 σ-h6 σ-d4 91.7 41.8 60.7 
Bior 3.7 σ-d1 σ-d6 --- 94.5 24.8 51.2 
Bior 4.4 σ-d4 σ-a4 --- 95.2 31.9 55.9 
Bior 5.5 σ-h4 σ-d2 σ-d6 91.1 15.1 43.9 
Bior 6.8 σ-h1 σ-h6 σ-d4 96.5 33.2 57.2 
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Table B.3 - Relative performance of different wavelet bases using only skewness 
feature type, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar S-v2 S-v8 S-d6 85.8 21.7 46.0 
Db 2 S-h8 S-v1 S-d5 93.4 33.7 56.3 
Db 4 S-d8 --- --- 92.3 12.7 42.8 
Db 8 S-v8 S-d3 S-a7 94.0 39.2 59.9 

Bior 1.5 S-v5 S-v8 --- 92.0 11.9 42.2 
Bior 2.2 S-v5 S-v7 S-d4 86.9 28.9 50.9 
Bior 2.8 S-v1 S-d5 --- 87.8 44.5 60.9 
Bior 3.7 S-v7 S-v8 S-d5 91.2 43.1 61.3 
Bior 4.4 S-h6 S-v1 S-d7 91.2 14.4 43.5 
Bior 5.5 S-h4 S-v2 S-a8 92.3 39.1 59.2 
Bior 6.8 S-v1 S-v5 S-d2 92.3 34.4 56.3 

 
Table B.4 - Relative performance of different wavelet bases using only kurtosis 
feature type, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar K-h4 K-a2 K-a3 95.1 22.1 49.7 
Db 2 K-v1 K-v4 K-d7 90.9 15.6 44.1 
Db 4 K-h7 K-v3 K-v7 89.8 29.0 52.0 
Db 8 K-h4 K-h5 K-a8 95.2 27.9 53.4 

Bior 1.5 K-v7 K-d6 K-a8 95.1 29.5 54.3 
Bior 2.2 K-v1 K-d6 K-a8 92.3 28.2 52.5 
Bior 2.8 K-d1 K-a7 K-a8 91.4 36.5 57.3 
Bior 3.7 K-v5 K-d7 --- 96.3 14.5 45.4 
Bior 4.4 K-v6 K-d4 K-d8 89.8 27.6 51.2 
Bior 5.5 K-v2 K-v5 K-d3 91.8 19.4 46.8 
Bior 6.8 K-v2 K-d7 --- 93.1 9.9 41.4 
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Table B.5 - Relative performance of different wavelet bases using mean and 
standard deviation feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-d1 σ-h4 σ-a7 98.3 35.0 59.0 
Db 2 M-h3 M-d8 σ-a6 96.8 39.4 61.1 
Db 4 M-d3 σ-h3 --- 99.5 32.1 57.6 
Db 8 σ-h2 σ-h8 σ-d3 96.6 31.2 56.0 

Bior 1.5 M-d1 M-d5 σ-h2 97.1 39.3 61.2 
Bior 2.2 M-h3 σ-h2 σ-h5 98.6 36.2 59.8 
Bior 2.8 M-h7 M-v1 σ-d1 98.3 26.2 53.5 
Bior 3.7 M-d4 σ-h3 σ-v2 96.8 35.9 58.9 
Bior 4.4 σ-d4 σ-a4 --- 95.2 31.9 55.9 
Bior 5.5 M-h7 M-v2 σ-d2 95.8 22.3 50.1 
Bior 6.8 M-d4 σ-h3 σ-d4 98.0 43.6 64.2 

 
Table B.6 - Relative performance of different wavelet bases using mean and 
skewness feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-h1 M-d1 S-h3 99.2 36.6 60.3 
Db 2 M-h3 M-d8 S-h5 97.4 42.7 63.4 
Db 4 M-h8 M-d1 S-h5 95.2 20.8 49.0 
Db 8 M-h6 S-v8 S-d3 97.5 40.4 62.0 

Bior 1.5 M-d4 S-h6 --- 96.9 38.8 60.8 
Bior 2.2 M-h5 M-v2 S-d2 98.8 44.8 65.2 
Bior 2.8 M-d4 S-d2 S-a5 92.9 46.9 64.4 
Bior 3.7 M-d4 S-h4 S-d4 98.9 28.1 54.9 
Bior 4.4 M-h1 M-d4 S-d2 96.1 43.0 63.1 
Bior 5.5 M-h6 M-d5 S-d2 98.5 38.1 61.0 
Bior 6.8 M-v3 M-d4 S-d2 98.0 39.0 61.3 
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Table B.7 - Relative performance of different wavelet bases using mean and 
kurtosis feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar M-d5 K-d2 --- 98.0 40.5 62.3 
Db 2 M-h3 M-d8 K-d3 95.7 41.0 61.7 
Db 4 M-v7 M-d7 K-v8 96.3 18.8 48.1 
Db 8 M-h4 M-a7 K-a8 95.7 30.0 54.8 

Bior 1.5 M-d3 K-h1 K-h4 97.1 39.0 61.0 
Bior 2.2 M-d6 K-v4 K-d1 97.4 38.2 60.6 
Bior 2.8 M-d3 K-h7 K-d7 94.9 34.6 57.5 
Bior 3.7 M-h1 M-d3 K-d5 97.2 44.4 64.4 
Bior 4.4 M-d3 K-h5 --- 94.5 27.2 52.7 
Bior 5.5 M-h5 M-d4 K-d2 95.4 35.3 58.1 
Bior 6.8 M-d4 K-d5 K-a6 95.4 42.7 62.7 

 
Table B.8 - Relative performance of different wavelet bases using standard  
deviation and skewness feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar σ-h6 σ-d4 S-h5 93.7 27.9 52.8 
Db 2 σ-d3 S-h8 S-d5 94.0 33.0 56.1 
Db 4 σ-h5 σ-d5 σ-a1 95.1 23.2 50.4 
Db 8 σ-h2 σ-h8 S-a7 97.5 36.0 59.3 

Bior 1.5 σ-h4 σ-h7 σ-d2 94.9 20.0 48.4 
Bior 2.2 σ-h1 σ-h8 S-v1 96.3 25.4 52.2 
Bior 2.8 σ-h1 σ-h8 S-v1 95.8 27.7 53.5 
Bior 3.7 σ-d4 S-h1 --- 98.2 21.2 50.4 
Bior 4.4 σ-d4 σ-a4 --- 95.2 31.9 55.9 
Bior 5.5 σ-h3 S-h2 S-h3 94.8 40.4 61.0 
Bior 6.8 σ-h1 σ-h6 σ-d4 96.5 33.2 57.2 
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Table B.9 - Relative performance of different wavelet bases using standard 
deviation and kurtosis feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar σ-v8 K-h5 K-v7 96.1 25.4 52.2 
Db 2 σ-d4 K-h5 K-a8 95.5 36.7 59.0 
Db 4 σ-h5 σ-d5 σ-a1 95.1 23.2 50.4 
Db 8 σ-h2 σ-h8 σ-d3 96.6 31.2 56.0 

Bior 1.5 σ-v2 σ-d2 K-v7 98.6 18.3 48.7 
Bior 2.2 σ-h1 σ-d5 K-a7 94.8 35.3 57.8 
Bior 2.8 σ-h6 σ-d1 K-a2 95.4 30.5 55.1 
Bior 3.7 σ-h1 K-h2 K-v5 97.5 17.5 47.8 
Bior 4.4 σ-h1 σ-h5 K-a8 97.5 40.0 61.8 
Bior 5.5 σ-d2 K-h3 K-v7 95.5 21.7 49.6 
Bior 6.8 σ-h1 σ-h6 σ-d4 96.5 33.2 57.2 

 
Table B.10 - Relative performance of different wavelet bases using skewness and  
kurtosis feature types, DDSM data set 
 

Wavelet 
Basis 

Best Feature Triplet Sensitivity 
(%) 

Specificity 
(%) 

Overall 
Classification 

Rate (%) 
Haar K-h4 K-a2 K-a3 95.1 22.1 49.7 
Db 2 S-h8 S-v1 S-d5 93.4 33.7 56.3 
Db 4 S-h7 S-v7 K-v7 92.6 21.8 48.6 
Db 8 S-d5 K-a2 K-a8 97.2 36.2 59.3 

Bior 1.5 K-v7 K-d6 K-a8 95.1 29.5 54.3 
Bior 2.2 K-v1 K-d6 K-a8 92.3 28.2 52.5 
Bior 2.8 S-a8 K-d5 --- 92.9 37.1 58.2 
Bior 3.7 K-v5 K-d7 --- 96.3 14.5 45.4 
Bior 4.4 S-d5 S-a8 K-h2 92.9 50.7 66.7 
Bior 5.5 S-h4 K-a8 --- 95.7 38.5 60.2 
Bior 6.8 S-v1 S-d5 K-a7 93.2 42.0 61.4 
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