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Abstract 

 

Tandem mass spectrometry (MS/MS) is a powerful tool for identifying peptide sequences. 

In a typical experiment, incorrect peptide identifications may result due to noise 

contained in the MS/MS spectra and to the low quality of the spectra. Filtering methods 

are widely used to remove the noise and improve the quality of the spectra before the 

subsequent spectra identification process. However, existing filtering methods often use 

features and empirically assigned weights. These weights may not reflect the reality that 

the contribution (reflected by weight) of each feature may vary from dataset to dataset. 

Therefore, filtering methods that can adapt to different datasets have the potential to 

improve peptide identification results. 

 

This thesis proposes two adaptive filtering methods; denoising and quality assessment, 

both of which improve efficiency and effectiveness of peptide identification. First, the 

denoising approach employs an adaptive method for picking signal peaks that is more 

suitable for the datasets of interest. By applying the approach to two tandem mass spectra 

datasets, about 66% of peaks (likely noise peaks) can be removed. The number of 

peptides identified later by peptide identification on those datasets increased by 14% and 

23%, respectively, compared to previous work (Ding et al., 2009a). Second, the quality 

assessment method estimates the probabilities of spectra being high quality based on 

quality assessments of the individual features. The probabilities are estimated by solving 
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a constraint optimization problem. Experimental results on two datasets illustrate that 

searching only the high-quality tandem spectra determined using this method saves about 

56% and 62% of database searching time and loses 9% of high-quality spectra.  

 

Finally, the thesis suggests future research directions including feature selection and 

clustering of peptides. 

 

Key words: Tandem mass spectrometry, peptide identification, denoise, quality 

assessment. 
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Chapter 1. Introduction  

1.1 Background 

1.1.1 Definition of peptides 

Proteins are the main components of living cells and organisms. They are made of amino 

acids that are arranged in linear chains and usually folded into a three-dimensional form 

(Maton, 1993). Within the protein, a peptide is a short sequence of amino acids that does 

not have a three-dimensional structure. Since the structure and behaviour of peptides are 

highly related to those of proteins, understanding peptides is an important part of research 

in proteomics (Anderson & Anderson, 1999).  

 
Figure 1.1 Structure of amino acids.  

 

Amino acids, the basic elements of peptides and proteins, are molecules containing an 

amino group, a carboxyl group, and a side chain (Maton, 1993), as shown in Figure 1.1. 
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One nitrogen atom and two hydrogen atoms form the amino group (-NH2), and one 

carbon atom, one oxygen atom and one hydroxyl (-OH) group form the carboxyl group 

(-COOH). The composition of the side-chain varies between different amino acids. There 

are 20 standard amino acids in nature: each one has been assigned a letter code for 

simplicity in use; e.g., A, R, N, D (Maton, 1993). 

 

1.1.2 The process of tandem mass spectrometry of peptides 

 

Peptide sequencing, which aims to determine the order of amino acids in a peptide, is a 

very important task in the process of identifying proteins and their primary structures. 

Currently, tandem mass spectrometry (MS/MS) is one of the most popular experimental 

methods for peptide sequencing. The process of an MS/MS experiment happens in three 

steps, as shown in Figure 1.2: 1) sample preparation and peptide separation, 2) tandem 

mass spectrometer analysis, and 3) peptide identification (Nesvizhskii, 2010). A typical 

tandem mass spectrometer has two mass analyzers. The first analyzer measures the m/z 

(mass over charge) values of peptide ions and selects the desired ions called precursor 

ions. The precursor ions are fragmented into smaller ions called fragment ions. The 

second mass analyzer measures the m/z values and intensities of fragment ions, which 

yields an MS/MS spectrum. 
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Figure 1.2 Overview of shotgun proteomics (Nesvizhskii, 2010). ① Sample proteins 
are digested into peptides using enzymes such as trypsin. Resulting peptide mixtures are 
optionally processed to capture a particular class of peptides, and then separated using a 
liquid chromatography (LC) system coupled online to a mass spectrometer. ② Peptides 
are subjected to MS/MS analysis that results in the acquisition of MS/MS spectra. ③ 
MS/MS spectra are assigned to peptide sequences through database search. 

 

In the MS/MS experiment, peptide’s m/z value is related to its mass. During ionization 

typically a proton(s) is added for each charge. Therefore, the m/z value of a peptide, 

denoted as m/z(p), is calculated as: 

/                       (1.1) 

where z is the charge number of the peptide, m(p) is the mass of the peptide, and m(H) is 

the mass of hydrogen. Assuming that a peptide p = a1 . . . an consists of n amino acids, 

where ai, i = 1, . . . , n is one of the 20 amino acids,  is the mass of , and the 
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mass m(p) can be calculated as: 

∑                (1.2) 

where m(ai) is the mass of the amino acids; and m(OH) is the mass of hydroxide.  

 

In an MS/MS experiment, precursor ions are typically fragmented into six kinds of 

fragment ions (a-ion, b-ion, c-ion, x-ion, y-ion, and z-ion) along the peptide backbone. 

Their letter-names indicate peptide fragments that are fractured in different positions in 

the MS/MS spectrum. Figure 1.3 shows the different cleavage sites and ion types in detail. 

The N-terminal of a peptide refers to a peptide fragment that is terminated by an amino 

acid with a free amine group. The C-terminal refers to a peptide that is terminated by an 

amino acid with a free carboxyl group (Aebersold & Mann, 2003). 

 

Figure 1.3 Fragmentation of a peptide (Mujezinovic et al., 2006). For example, the 
peptide GPFR may be broken into the N-terminal ions G, GP, GPF (donate as b1, b2, and 
b3 for b- type ions), and C-terminal ions PFR, FR, R (donate as y3, y2, and y1 for y- type 

ions) 
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Different fragmentation techniques used in MS/MS yield different dominating types of 

fragment ions. Collision-induced dissociation (CID) is the most commonly used 

fragmentation technique, and yields b-ions and y-ions as dominating ions. Given an ion 

generated by a partial peptide containing k amino acids (note: the peptide contains n 

amino acids in total), its m/z value can be calculated by: 

/ ∑ /                   (1.3) 

/ ∑ /             (1.4) 

where  is the b-ion with charge z and  is the y-ion with charge z. In an MS/MS 

experiment, fragment ions can lose some small molecules such as  and 	 . 

 

Peptide sequences need to be inferred from the MS/MS spectra—a process called peptide 

identification. In the literature, two methods are used for peptide identification with 

MS/MS: database searching (Yates, 1998) and de novo sequencing (Ma et al., 2003).  

 

The database searching approach compares an experimental spectrum with a theoretical 

spectrum constructed from the database to find a peptide whose theoretical spectrum best 

matches the experimental data. The successful matching thus identifies the peptide in the 

spectrum. Construction of the theoretical spectra requires two types of information: m/z 

values and intensities. The m/z values are determined by the types of fragment ions that 

may appear in the experimental spectra. The simplest way of finding them is to construct 

m/z values for all types of fragment ions; an alternative approach is only to consider those 
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types of ions with a high probability of appearing. Peak intensity can be determined by 

the type or position of the fragment ion, and the length, sequence, mass, etc. of the 

peptide. The similarity between the experimental spectrum and the theoretical one is 

evaluated and scored. The highest-scoring theoretical spectrum is thus selected, and its 

corresponding peptide is taken as the best candidate to represent the peptide in the given 

experimental spectrum.  

 

De novo sequencing, on the other hand, estimates peptide sequences without the help of a 

database; it infers the sequences using the spectrum and the masses of amino acids. In de 

novo peptide sequencing, spectrum graph modeling has proven to be quite successful and 

hence is widely used. When using this model, a set of nodes and edges must be defined. 

Each peak of the spectrum is defined as a node. When two nodes have an m/z difference 

that corresponds to the mass of an amino acid residue, this is defined as a directed edge 

(the edge always goes from a lower mass to a higher one). The main idea of this approach 

is to find paths in the graph for which corresponding peptides provide a good explanation 

of the experimental spectrum. Since the de novo sequencing approach does not rely on a 

sequence database, it is useful in identifying new proteins, such as proteins resulting from 

mutations, proteins with unexpected modifications, etc. (Eidhammer et al., 2007). 

 

1.2 Occurrences of noise and low-quality spectra 
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The accuracy of peptide identification using both approaches is a concern (Aebersold & 

Mann, 2003). Inaccuracy or error may result from incomplete information of fragment 

ions and/or noise in the MS/MS spectra. The manual verification of peptide assignments 

to spectra from peptide identification programs can achieve a high-confidence result if 

the process is performed by experienced researchers. However, this approach only works 

on small datasets (for example, dozens of spectra). In the case of high-throughput 

analysis of large datasets (for example, thousands of spectra), this approach is extremely 

time-consuming. Further, the way ions are fragmented in the mass spectrometer is poorly 

understood, making it difficult to improve quality by developing algorithmic solutions 

from the perspective of the ion fragmentation principle (Salmi et al., 2009). 

 

1.3 Related work 

 

Research on removing noise from MS/MS spectra and on screening out low-quality 

MS/MS spectra has been very active (Salmi et al., 2009). Many filtering methods have 

been developed to complement the operation of peptide identification. Two strategies are 

discussed in this thesis. The first strategy is to filter out noisy information from MS/MS 

spectra prior to identification. The second strategy is to reject low-quality spectra from 

MS/MS datasets.  

 

The first strategy is MS/MS spectrum denoising (Rejtar et al., 2004; Resing et al., 2004; 
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Baginsky et al., 2005; Grossmann et al., 2005; Ning & Leong, 2007; Zhang, et al., 2008; 

Ding et al., 2009a), which keeps signal peaks (reflecting peptide fragment ions) and 

removes noisy peaks (not reflecting peptides or their fragment ions). Baginsky et al. 

(2005) calculated a series of spectra features that included peak intensity, the presence of 

complement peaks, isotope peaks, and ammonia loss and water loss from amino acids. 

Based on those feature values and on relevant weights specified by the user, their method 

removes noisy peaks from MS/MS spectra. However, the features alone cannot properly 

identify signal peaks, and it takes an experienced user to specify the weights. In addition, 

Zhang et al. (2008) built a denoising model that focused on isotope features that could be 

observed only from signal peaks, not from noise peaks. Their work decreased the 

computational time of the subsequent process and increased the reliability of peptide 

identification. Ding et al. (2009a) developed a feature-based method for denoising 

MS/MS spectra. Their method first introduced five features to describe the quality of 

peaks and then calculated a score for each peak by a linear combination of those five 

features. The intensities of the peaks in a spectrum were adjusted by their corresponding 

scores, after which, the intensities of signal peaks presumably became local maxima. The 

spectra were then processed using a morphological reconstruction filter to remove those 

peaks whose intensities were not local maxima. Experimental results on several datasets 

showed that this method was both efficient and effective. However, in calculating the 

scores, the coefficients (weights) of the linear combination were fixed and determined 

empirically, making this method potentially unsuitable for use with other datasets. 
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The second strategy is quality assessment (Koenig et al., 2008; Na & Paek., 2006; Frank 

et al., 2008; Tabb et al., 2005; Bern et al., 2004; Ding et al., 2009b; Ding et al., 2011), 

which screens out low quality MS/MS spectra (containing insufficient fragment ions) 

from the dataset. Based on defined features, these methods assess the quality of MS/MS 

spectra through the use of supervised machine learning methods that require labelled 

training datasets to train a classifier. The trained classifier is then used to classify the 

spectra as high quality or poor quality. Ideally, the training data should be validated by 

peptide identification algorithms or manual verification (that is, the data should be 

correctly labelled with no, or with very few, falsely labelled spectra). However, this 

information is hard to obtain prior to the peptide identification of new datasets. 

Furthermore, tandem mass spectrometers may produce different spectra for the same 

peptide under different experimental conditions. A classifier trained by one dataset may 

not be effective on another. Therefore, unsupervised machine learning methods may be 

more effective for assessing the quality of MS/MS spectra.  

 

1.4 Research objectives 

 

The goal of this study is to develop adaptive filtering methods to improve the 

effectiveness and efficiency of peptide identification. To achieve this goal, two specific 

research objectives were proposed as follows: 
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Objective (I): To develop an adaptive denoising method for MS/MS spectra that removes 

noise while retaining as many signal ions as possible. 

 

Objective (II): To develop an adaptive quality assessment method for MS/MS spectra 

that rejects low-quality spectra while retaining high-quality ones. 

 

1.5 Overview of the main contribution of and organization of this thesis 

 

In this thesis, adaptive filtering methods have been developed for the two objectives, as 

mentioned above. The novelty of the thesis is such that the feature weights (or parameters) 

associated with noise or spectra quality are adjusted to tailor to different data. 

Additionally, in the denoising method, although a supervised learning method [linear 

discriminant analysis (LDA)] is used, training data are generated from MS/MS spectra 

rather than from the peptide identification result. This makes it a viable preprocessing 

method. The novelty of the equality assessment method is its unsupervised learning 

nature which makes it practical for incorporation into new or unknown datasets. 

 

In Chapter 2, an adaptive approach is proposed for estimating weights of selected features 

used in the spectrum denoising. This new approach first adjusts the intensities of spectra 

using scores calculated with given weights, and then selects signal peaks according to 
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their adjusted intensity. Unlike the work of others (Ding et al., 2009a) wherein the 

weights are fixed and empirically assigned, this new approach employs an adaptive 

method for estimating weights by iteration. The results show that about 66% of peaks 

(likely noise peaks) can be removed and that the number of identified peptides is 

increased by 14% and 23% for ISB and TOV-Q datasets, respectively, compared to the 

Ding et al.’s work (2009a). 

 

In Chapter 3, an unsupervised machine learning method is proposed for quality 

assessment of MS/MS spectra without training data. This method estimates the 

probabilities of spectra being high quality using quality assessments based on a constraint 

optimization problem. Experimental results on two datasets illustrate that searching only 

the high-quality tandem spectra determined saves about 56% and 62%, respectively, of 

database searching time and loses about 9% of high-quality spectra.  

 

Finally, a general discussion in Chapter 4 summarizes the thesis. Concluding remarks and 

a summary of the overall contributions are also provided. The full list of publications 

arising from the thesis is included in Appendix A, and the copyright permissions of 

included manuscripts are in Appendix B. 
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Chapter 2. MS/MS spectrum denoising 

2.1 Introduction  

 

In this chapter, an adaptive approach is proposed to determine the weights in Ding et al.’s 

method (2009a). Section 2.2 provides an overview of the spectrum denoising method and 

then discusses how to adjust weights adaptively. In section 2.3, the performance of this 

new method is evaluated using both high- and low-resolution MS/MS datasets. 

Concluding remarks are expressed in Section 2.4.  

 

2.2 Method 

2.2.1 Overview of the spectrum denoising method 

 

The spectrum denoising method was initially proposed by Ding et al. (2009a). This 

method consists of two steps: peak intensity adjustment and local maximum extraction. 

The peak intensity adjustment is based on the following five design features:  

1. Number of peaks whose mass differences from a given peak approximately 

equal the mass of one of the 20 amino acids. 

2. Number of peaks whose mass added to a given peak approximately equal the 

mass of the precursor ion. 

3. Number of peaks that could have been produced by losing a water molecule or 

an ammonia molecule from a given peak. 
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4. Number of peaks that have an m/z difference equal to a CO group or an NH 

group compared to a given peak. 

5. Number of isotope peaks associated with a given peak.  

 

These five features are generated from the observation of theoretical MS/MS spectra. 

Peaks with larger feature values are likely to be signal peaks. Based on the five features 

and their corresponding weights, a linear combination of their values is used to score 

each peak as follows: 

    5544332211 fffffscore                  (2.1) 

where fi (i = 1,..., 5) is the normalized value of each feature (mean=1 and variance=1) and 

ωi (i = 1,...,5) are the weights. The means of the features are set to 1 to ensure that only a 

few peaks have negative scores. In Ding et al.’s work (2009a), ω1 and ω2 are set to 1.0; 

both ω3 and ω4 are set to 0.2; and ω5 is set to 0.5. These values are selected according to 

the normalization method of the SEQUEST algorithm (Eng et al., 1994). However, in 

Ding et al.’s work, weights are determined for all data (details of the method are 

described in the following section). In applying Equation (2.1) to each spectrum, peaks 

with high scores tend to be signals, whereas peaks with lower scores are more likely to be 

noise.  

 

In addition, intensity is an important attribute of a peak in a spectrum. Empirical 

approaches usually assume that peaks with high intensities are more likely to be signal 
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peaks than those with low intensities. Thus, the intensity of a peak is adjusted by its 

corresponding score. The intensities of peaks with high scores are increased while the 

intensities of peaks with low scores are decreased after the peak intensity adjustment. 

After the adjustment, intensities of signal peaks are expected to be a local maximum of 

the spectrum.  

 

The second step in Ding et al.’s method employed a so-called morphological 

reconstruction filter (Vincent, 1993) to select signal peaks. The filter selects the peaks 

that have a local maximum of intensities by comparing a peak to its two adjacent peaks 

once other peaks have been temporarily removed.  

 

Ding et al.’s method (2009a) removes about 69% of the noise peaks. After denoising, the 

number of spectra that can be identified by the peptide identification algorithm (Perkins 

et al., 1999) increases by 31% and 14% on two MS/MS datasets. The difference in 

improvements may be due to differences in the quality of peaks in these datasets. The 

denoising method is less efficient for spectra with fewer peaks.  

 

Furthermore, both ISB and TOV are low-resolution datasets. It is unclear whether Ding et 

al.’s method is effective for high-resolution datasets. In Ding et al.’s method, weights in 

the algorithm were empirically assigned. Patterns of signal peaks in a low-resolution 

dataset may differ significantly from those in a high-resolution dataset. In short, the 
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success of Ding et al.’s method for the spectra in low-resolution datasets cannot be 

generalized to spectra with high resolution. 

 

2.2.2 Adaptive weighting with LDA  

 

The general idea of the adaptive weighting approach is as follows: given a high or low 

resolution spectra dataset, the first step is to find the highest and lowest scores from 

Equation (2.1). The second step is to adjust the weights with LDA.   

 

The morphological reconstruction filter (Vincent, 1993) is used to extract signal peaks 

based on intensities. The intensities are then adjusted by the corresponding score from 

Equation (2.1). Here, LDA is used to estimate weights such that the scores can separate 

the two groups of peaks (signal and noise) as far apart as possible. LDA was originally 

used to separate two classes by finding a linear combination of features (Fisher, 1936). 

By taking signal peaks and noise peaks as two classes, LDA calculates the weights from 

the linear combination. The entire framework of this proposed approach is shown in 

Figure 2.1. 
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Figure 2.1 Procedure of proposed approach 

From Figure 2.1, the proposed approach conducts spectra denoising in datasets with a set 

Calculate score for every peak in spectra 

using Equation (2.1) with given weight 

Choose peaks with the highest 10% and 

lowest 10% scores as two training sets  

Apply LDA on the two training 

sets and revise solution as weights 
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Adjust peak intensities of all spectra in 
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Apply morphological reconstruction 

on intensity-adjusted spectra  
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End

Start

No, weights converged 

Yes 

Update weights 
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of adaptive weights as determined by Equation (2.1). Details of the key steps are 

described as follows: 

1. For each spectrum, the score for each peak is calculated by Equation (2.1) with 

the given weights. Initially, the weights are set as the ones used in Ding et al.’s 

work (2009a). 

2. Sort all the peaks by their scores, then choose best and worst 10% scored peaks 

as training sets. The best 10% peaks have a higher chance of being kept as signal 

peaks after denoising while the worst 10% peaks are more likely to be removed. 

Although the spectrum actually contains more than 10% signal peaks or noisy 

peaks, choosing the most significant ones allows the best potential for finding a 

good set of weights for Equation (2.1). 

3. Using the two training sets, the weights in Equation (2.1) are updated by LDA in 

which the maximum separation (Fisher, 1936), denoted as S, is achieved by: 

wSw

wSw
S

W

B

within

between

'

'
2

2





                   (2.2) 

where w is the parameter vector or in other words, the weights in Equation (2.1), 

and 'w is the transposition of w. SB is the between-class scatter matrix and SW is 

the within-class scatter matrix. Maximum separation means that in the given 

5-dimensional feature observations, the difference between the two sets is as 

significant as possible while the difference within each set is as trivial as 

possible. The solution for the problem is calculated by the following equation: 
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)( 21

1   
WSw                     (2.3)  

where μ1 and μ2 are the means of the signal and noisy sets, respectively. 

 

Since all the features chosen for scoring should be observed from the signal 

peaks, all the weights should be positive. However, the weights as calculated by 

LDA sometimes contain negative values. To make sure every signal peak attains 

a high score, the optimized weights are revised based on two rules: (1) If most of 

the weights (greater than or equaling three weights) are negative, all the weights 

should be revised; and (2) if a portion of the weights (less than three) are 

negative, they should be replaced by the weights in the previous round of the 

loop. Additionally, since the morphological reconstruction filter is affected only 

by the ratio between the weights, the optimized weights are normalized to make 

the maximum weight equal one.  

4. Repeat steps 1 to 3 until there is no significant change in weights. In step 1, 

peaks are scored with the optimized weights from the previous round. 

5. Apply the converged weights to Equation (2.1) and denoise the spectra in the 

experimental dataset (this stage is previously described in 2.2.1). 

 

2.3 Experimental results and discussion 

Experiments were conducted on two MS/MS spectrum datasets: ISB with low resolution 

and TOV-Q with high resolution. To illustrate the performance of the proposed method, 
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the Mascot search results from the raw datasets, the same datasets denoised by the Ding 

et al.’s method (2009a) and the same dataset denoised by the proposed method in this 

study were compared. 

 

2.3.1 Datasets 

 

The following is a brief description of the two datasets used in the proposed method. 

These two datasets were chosen for comparing with Ding et al’s work (2009a). 

(1) ISB dataset: The spectra with low resolution in this dataset were acquired from 

18 control mixture protein complexes that were analyzed by mLC-MS on an 

ESI-ITMS (ThermoFinnigan, San Jose, CA) using a standard top-down 

data-dependent ion selection approach (Keller et al., 2002).  

(2) TOV-Q dataset: This dataset consisted of high-resolution MS/MS spectra that 

were acquired on a QSTAR Plusar (MDS Sciex Corp.) in the Eastern Quebec 

Proteomic Center in Laval University Medical Research Center in Laval, Quebec, 

Canada (Zou et al., 2010). The samples analyzed were generated by the tryptic 

digestion of a whole-cell lysate from 36 fractions of TOV-112 samples (Gagné et 

al., 2005).  

 

2.3.2 Search engine 

 

Experiments were conducted by using an on-line version of the Mascot search engine 
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(http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS). 

The on-line version has a limitation on the size (20 MB) and the number of spectra (1200 

groups) of input files. The raw (before denoising method applied) spectra, the spectra 

denoised by Ding et al.’s approach in (2009a) and the spectra denoised by the proposed 

approach in this study were used for search with the same parameters. The parameters 

used for the ISB (TOV-Q) dataset are given in Table 2.1. 

Table 2.1 Parameters of the Mascot search engine for ISB (TOV-Q) dataset. 

Database NCBInr 

Enzyme trypsin 

Fixed modifications carbamidomethyl (C) 

Variable modifications 
oxidation (M) 
[oxidation (M), deamidated (NQ)] 

Peptide charges +2, +3 

Mass values monoisotopic 

Protein unrestricted 

Peptide mass tolerance ± 2Da (± 0.2Da) 

Fragment mass tolerance ± 0.8Da (± 0.2Da) 

Max. missed cleavages 1 

Isotope error mode 1 (0) 

Quantitation none 

Taxonomy all entries 
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2.3.3 Denoising program 

The proposed approach was implemented in Matlab R2008b. The denoising program was 

run on a PC with 1.6 GHz Dual CPU (Windows XP operating system). 

 

2.3.4 Results and discussion 

 

Due to the limitations of the on-line Mascot, the input file was separated by 1200 spectra 

per file. The results of denoising with Ding et al.’s method, proposed method and original 

data are listed in Table 2.2. 

 

Table 2.2 Results of the denoising algorithm. 

Datasets Mean peaks Identified 

ISB 

Raw 152 586 

Ding 49 944 

Denoised* 52 1021 

TOV-Q 

Raw 67 1773 

Ding 23 1626 

Denoised* 24 2040 

* Denoised: the proposed method 
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In Table 2.2, the "Raw" spectra are the original spectra before denoising method applied 

and the "Ding" spectra are the denosied spectra with Ding et al.’s method (2009a) while 

the "Denoised" spectra are the denoised spectra with the proposed approach. "Mean 

peaks" indicates the mean of the number of peaks of spectra in the dataset; "Identified" is 

the number of peptides whose ion scores are greater than or equal to the Mascot identity 

threshold (given the same false discovery rate of 5%).  

 

As shown in the second column of Table 2.2, the proposed denoising algorithm removed 

66% [=(152−52)/152] of peaks from spectra from the ISB dataset, and 64% [=(67−24)/67] 

of peaks from spectra from the TOV-Q dataset. By comparison with the Ding et al.’s 

approach (2009a), which removed about 68% and 66% of peaks, this new approach 

retained about 2% more peaks in the spectra.  

 

As shown in the third column of Table 2.2, the number of identified peptides increased by 

74% [=(1021−586)/586] for the spectra of the ISB dataset after applying the proposed 

approach, while with the Ding et al.’s approach, the increase was only about 61% 

[=(944−586)/586]. This implies that the proposed approach can achieved roughly 14% 

improvement on the low-resolution dataset over Ding et al.’s approach. For the 

high-resolution dataset TOV-Q, the Ding et al.’s approach did not work well. It identified 

8% [=(1626−1773)/1773] fewer peptides than the raw spectra. Applying the proposed 

approach, the number of identified peptides increased by 15% [=(2040−1773)/1773]. The 
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increases in both the number of peaks and the identified peptides imply that not all the 

peaks removed by the Ding et al.’s approach were noise. In addition, the proposed 

approach gives more reliable denoised spectra than Ding et al.’s for both high- and 

low-resolution datasets. 

 
(a)  

  
(b) 

* Comparisons are made against results from raw spectra without denoising 
Figure 2.2 Comparison of the numbers of identified spectra by Ding et al.’s method 

(“Previous”) and the proposed method (“Denoised”) over various peptide identification 
score thresholds for the ISB dataset (a) and TOV-Q dataset (b).  

 

Figure 2.2 shows the increased numbers of identified peptides with the Ding et al.’s 
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approach and the proposed approach over various peptide identification (Mascot) scores 

thresholds, compared with the results from the raw spectra. In Figure 2.2(a), there is no 

significant difference between the numbers of peptide spectra (whose Mascot ion scores 

are greater than 50) with and without application of the two denoising approaches to the 

ISB dataset. However, the numbers of spectra whose Mascot ion scores are greater than 

30 by application of the two denoising methods are significantly larger than that without 

denoising methods (using raw spectra). Furthermore, under the same Mascot ion scores 

(greater than 30), dataset denoised by proposed method could be identified more peptides 

than that by Ding et al.’s method.  

 

Generally, the less noise a spectrum has, the higher its quality. Therefore, the proposed 

method can significantly improve the quality of low-resolution spectra, especially when 

its original quality is poor. From Figure 2.2(b), the number of increased spectra under 

different cut-off value (from 30 to 70) after applying the proposed method is always 

significantly greater than that after applying Ding et al.’s method. This indicates that the 

proposed method significantly outperforms Ding et al.’s method on high-resolution 

dataset. 

 

Combining Table 2.2 and Figure 2.2, one can find that the improvement achieved by this 

new approach is larger than that of Ding et al.’s method for both datasets. However, one 

can also see that the improvements of both methods on the TOV-Q dataset are not as 
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significant as those on the ISB dataset. One explanation is that TOV-Q dataset is 

high-resolution spectra, which means that there are more signal peaks in a spectrum 

(higher percentage of signal peaks) while noise peaks are fewer. Another reason could be 

the nature of the morphological reconstruction filter. This filter, which can remove at 

least 50% of peaks in spectra by choosing the local maxima, may not fit as well for the 

high-resolution data as it does for the low-resolution data.  

 

Table 2.3 Adapted weights for different datasets. 

 Ding ISB TOV-Q 

w1 1 1 1 

w2 1 0.2283 0.33016 

w3 0.2 0.0222 0.51198 

w4 0.2 0.3019 0.00036 

w5 0.5 0.9573 0.36609 

 

Table 2.3 shows weights estimated with the new approach for the two datasets compared 

to the fixed weights in Ding et al.’s method. In Table 2.3, “Ding” represents the fixed 

weights, “ISB” represents the weights estimated for the ISB dataset and “TOV-Q” 

represents the weights estimated for the TOV-Q dataset. Due to the nature of peak 

selection, relationships among the weights within one set are more important than their 

absolute values. For example, from Table 2.3, the converged weights in columns 2 and 3 
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are quite different from the initial weights in column 1. This implies that what was used 

in the previous work (Ding et al., 2009a) did not reflect reality. In addition, weights for 

low-resolution datasets (column 2) and those for high-resolution datasets also are very 

different, except for w1. For both datasets, w1 is quite high. This implies that mass 

difference of ions is an important feature for both low-resolution datasets and 

high-resolution datasets.  

 

2.4 Conclusions 

 

In this chapter, an adaptive denoising approach was proposed. This new approach first 

adjusts the intensities of spectra by scores calculated with given weights and then selects 

the peaks of signals based on their adjusted intensities. Unlike others’ work, for example, 

Ding et al. (2009a) where the weights are fixed and empirically assigned, this new 

approach updated the weights for different datasets. In this way, the scores can better 

separate signals from noise. By applying this new approach, about 66% of the noise 

peaks among a spectrum can be detected. By applying the peptide identification program 

(Mascot), the number of peptides identified increased by 74% and 15% for the spectra in 

the ISB dataset and the TOV-Q dataset, respectively. The experimental results imply that 

the adaptive weights could achieve better performance on both high-resolution and 

low-resolution MSMS spectra comparing to Ding et al. (2009a). 
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Chapter 3. Quality assessment of MS/MS spectrum 

3.1 Introduction 

 

In this chapter, an unsupervised machine learning method is presented with a set of 10 

most relevant features from Ding’s work (2009) to assess the quality of MS/MS spectra. 

Section 3.2 gives the description of the 10 features and explains the new method that 

makes use of them. Section 3.3 discusses the experimental results using two MS/MS 

datasets. Conclusions are given in Section 3.4. 

 

3.2 Method 

 

In this section, first the 10 features for the quality assessment of MS/MS spectra are 

introduced. Then a graph-based consensus optimization method (Ge et al., 2011) is 

described that is used to integrate individual assessments into a consensus assessment. An 

algorithm to solve this optimization problem is proposed. The convergence of the 

algorithm is also proved.  

 

3.2.1 Spectral features 

 

A MS/MS spectrum usually contains tens to hundreds of m/z values with their 

corresponding intensities. In the literature, hundreds of features have been proposed to 

describe the quality of MS/MS spectra (Wu et al., 2006; Flikka et al., 2006; Wong et al., 
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2007). In one project, after removing the noise peaks (Vincent, 1993; Ding et al., 2009a), 

the 10 most relevant spectral features were selected based on support vector machine 

methods (Ding et al., 2011; Ding, 2009). The details of these features are described 

below. 

 

Feature 1 was proposed by Bern et al. (2004), and was defined as the total normalized 

intensity of pairs of peaks with their m/z values added up to the m/z of the precursor ion 

(such pairs of peaks are called complementary peaks). This feature is based on the 

assumption that the peaks with lower intensities are noise and that the complementary 

peaks are more likely to be signal. 

 

Feature 2 was proposed by Flikka et al. (2006), and was defined as the mass of the 

uncharged precursor ions. This feature is based on the observation that most of the 

low-quality spectra have small masses of precursor ions because they may come from 

short peptides that cannot generate enough fragment ions for identification or come from 

irrelevant chemical molecules like trypsin. 

 

Feature 3 was proposed by Wu et al. (2008), and was defined as the number of peaks 

whose mass difference is equal to the mass of one of the 20 amino acids. Note that all 

peaks were considered as single-charged in this method. The feature is measured with the 

error tolerance (in m/z) of 0.5 Da. This reflects the fact that a peptide is a chain of amino 
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acid.  

 

Feature 4 was proposed by Flikka et al. (2006), and was defined as the average delta mass 

(i.e., the average of all mass differences between any two neighbor peaks) in a spectrum. 

This feature reflects that the too-dense spectra are typically of low quality (Bern et al., 

2004; Flikka et al., 2006; Xu et al., 2005). 

 

Feature 5 was proposed by Bern et al. (2004) and called the Good-Diff Fraction, and was 

defined as 

GoodDiffs = ∑{NormI (x) + NormI (y)|M (x) – M (y) ≈ Mi   

for some i = 1, 2, …, 20}                  (3.1) 

where M(x) is the m/z value of peak x and M1, M2, . . . , M20 represent the masses of 20 

amino acids (not all of which are unique). The feature is measured with the error 

tolerance (in m/z) of 0.5 Da. Similar to Feature 3, this feature reflects how likely two 

peaks differ by the mass of an amino acid. 

 

Feature 6 was proposed by Wu et al. (2008), and was defined as the number of pairs of 

complementary peaks (note: all peaks are considered as single-charged). This feature 

reflects how likely an N-terminus ion and a C-terminus ion in a spectrum are produced as 

peptide fragments from the same peptide bond. 
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Feature 7 was proposed by Wu et al. (2008), and was defined as the number of pairs of 

peaks whose m/z value differences are equal to the mass of either a water molecule or an 

ammonia molecule (note: all peaks are considered as single-charged). This feature 

reflects how likely one fragment ion in a spectrum is produced by losing either a 

molecule of water or ammonia from the b or y ion. 

 

Feature 8 was proposed by Wong et al. (2007), and was defined as the ratio of the number 

of peaks that have a relative intensity greater than 1% of the total intensity to the total 

number of peaks. The rationale for this feature is similar to that for Feature 1. 

 

Feature 9 was proposed by Flikka et al. (2006), and was defined as the standard deviation 

of delta mass (i.e., all mass differences between any two neighbor peaks) values in a 

spectrum. The rationale for this feature is similar to that for Feature 4. 

 

Feature 10 was proposed by Wu et al. (2008), and was defined as the number of pairs of 

peaks whose m/z value difference is equal to the mass of a CO group or an NH group 

(note: all peaks are considered as single-charged). This feature reflects how likely one 

fragment ion is a-ion or z-ion. 

 

From the definitions and physical meanings of the above 10 features, the larger the values 

of these features, the more likely the spectra are of high quality. However, these features 
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can never become unique markers of peptides. One cannot determine spectrum quality be 

using one of these feature alone. Therefore, it might improve the accuracy of quality 

assessment by integrating or combining these features (Ding et al., 2011; Ding, 2009). 

 

3.2.2 Quality assessments by integration of the features 

 

This thesis only considers two classes of MS/MS spectrum quality: low (Class 1) and 

high (Class 2). Suppose there are m features. Each feature generates two quality classes 

(high and low) according to the feature values and thresholds. For the convenience of 

discussion, features are ordered and the groups of all the features are labeled in sequence 

such as t1, t2, . . . , tv (v=2m). Each spectrum corresponds to m groups. As such, a 

bipartite graph forms; see Figure 3.1, where si: i-th spectrum; ti: i-th feature group. The 

mapping of Class 1 or Class 2 of the i-th feature (Fi) is as follows: 2i-1=j (tj) for Class 1 

and 2i=j (tj) for Class 2. For example, for the 3rd feature with Class 1, j=2(3)-1=5 (i.e., 

t5).   

Figure 3.1 Example of a bipartite graph 



32 
 

The following is an example to further illustrate the notations. Suppose there are spectra 

{s1, s2, s3, s4, s5} and six features are used to classify the spectra into two classes (1&2). 

Suppose the data are as shown in Table 3.1, where Fi: i-th feature; sj: j-th spectrum; the 

number 1, 2: Class 1 and Class 2. Take s3 as an example. It corresponds to {t2, t3, t5, t8, 

t10, t11} or {(F1, Class 2), (F2, Class 1), (F3, Class 1), (F4, Class 2), (F5, Class 2), (F6, 

Class 1)}. 

Table 3.1 An object pool classified into several groups. 

    Spectrum  

Feature 

s1 s2 s3 s4 s5 

F1 1 1 2 2 2 

F2 1 1 1 2 2 

F3 2 1 1 1 2 

F4 1 2 2 2 2 

F5 1 2 2 1 2 

F6 2 1 1 2 2 

 

The proposed method considers the probabilities of si (i=1, . . . , n) to be Class 1 and 

Class 2. For spectra si (i=1, . . . , n), the probability can be represented by a matrix Un×2. 

Further, a matrix Qv×2 is defined for the probabilities of tj (j=1, . . . , v) to be Class 1 and 

Class 2. For example, Q(1,2) is the probability of feature group t1 belongs to Class 2. 

Note that sum of the probability of tj to be Class 1 and Class 2 (Q(j,1)+Q(j,2)) is always 1. 
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Then, uiz = Prob(si is in class z) and qjz = Prob(tj is class z), where z=1 (Class 1) or z=2 

(Class 2).  

 

Generally, a feature group tj corresponds to class z if the majority of spectra in the group 

belong to class z; meanwhile, a spectrum belongs to class z if the majority of the groups it 

belongs to correspond to class z. Furthermore, the initial class labels for the groups can be 

denoted by matrix Yv×2, in which yjz = 1 if the group tj corresponds to class z and 0 

otherwise. To estimate the probabilities in matrix U, the following cost function with 

constraints needs to be optimized (Ge et al., 2011): 
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        (3.2) 

where aij is the (i, j) element of affinity matrix An×v of the bipartite graph. aij = 1 if 

spectrum si is assigned to the group tj, and 0 otherwise. α is a positive parameter that 

expresses the confidence of the initial labels of the group nodes. This helps to avoid 

over-fitting. k=2 is the number of consensus groups (with either high quality or low 

quality spectra). As each spectrum belongs to one of the k groups by each of m features, 

then 

ma
v

j
ij 

1

                            (3.3) 

It is obvious that the value of the cost function is zero if all assessments based m 
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individual features agree perfectly. However, in practice this does not happen. Therefore, 

the desired resultant matrix  is obtained when the cost function in the constraint 

optimization problem (3.2) reaches its minimal value. Finally, every spectrum will be 

assigned with a probability to class z directly according to the values in matrix . 

 

From the constraint optimization problem (3.2), for the given matrix U, the objective 

function is quadratic in elements of matrix Q. For the given matrix Q, the objective 

function is quadratic in elements of matrix U. Therefore, the following iterative algorithm 

is used to solve this optimization problem.  

 

Step 1: Initialize Q by Y, that is, Qt=Y, and t=0. 

Step 2: t=t+1 

Estimate Ut by solving 
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Estimate Qt by solving 



35 
 









 

   

k

z

n

j
jzjzjz

t
iz

k

z

n

i

v

j
ij

Q

t

Q
yqquaQUJ

1 1

22

1 1 1

)()(min),(min   

to obtain 












 n

i
ij

jz

n

i

t
izij

t
jz

a

yua
q

1

1





                      

(3.5) 

Step 3:  Stop if  1tt UU  and output U, where ε is a user-specified small positive 

number. 

 

In the above algorithm, the constraints in optimization problem (3.2) are not included. 

However, if the initial class labels for the groups  satisfy that 

  ]1,0[1 
1




jz

k

z
jz yy ，                     (3.6) 

Then the solutions of the above algorithm at every iteration t will satisfy all constraints in 

optimization problem (3.2). This was conjecture proven in a previous paper (Lin et al., 

2012).  

 

The algorithm reflects that at each iteration the probability estimation of group node Q 

receives information from its neighboring spectral nodes while not deviating too wildly 

from its initial value Y. In return, the updated probability estimates of group nodes 

propagate information back to their neighboring spectral nodes. The propagation stops 

when the process converges. The process converges to a stationary point. 
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3.3 Experimental results and discussion 

To evaluate the proposed method, experiments were conducted on two MS/MS spectrum 

datasets, namely TOV and ISB. The ISB dataset was introduced in the previous chapter. 

The following is a brief description of the TOV datasets. 

 

TOV dataset: The MS/MS spectra were acquired from a LCQ DECA XP ion trap 

spectrometer (ThermoElectron Corp.) (Wu et al., 2006). The samples analyzed were 

generated by the tryptic digestion of a whole-cell lysate from the TOV-112 sample 

(Gagné et al., 2005). The number of spectra in this dataset is 22576, and these spectra 

are sequenced using SEQUEST against human protein database 

(ipi.HUMAN.v3.42.fasta) containing 72340 protein sequences and 5 contaminant 

sequences. 

 

The distribution of tandem spectra is shown in Table 3.2. H represents the number of 

high-quality spectra and L represents the number of low-quality spectra. The assignments 

of spectra were determined by SEQUEST score, with the cut-off score at 2.8. Spectra 

with scores of less than threshold were labeled as low-quality spectra; otherwise, they 

were labeled as high-quality spectra. 
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Table 3.2 Distribution of multiply-charged spectra in the ISB and TOV datasets 

 H L Total 

TOV 1136 21440 22576 

ISB 1047 35997 37044 

 

In the experiment, the proposed method is applied to both datasets in order to obtain 

assessments based on individual features. For each feature, spectra with the top 50% 

feature values are assigned to the high-quality class. In the method, the parameter α in the 

model was empirically taken as 90. 

 

Figure 3.2 shows the ROC curves for the consensus classifiers for the TOV and ISB 

datasets, respectively. For the TOV dataset, the proposed method eliminates about 74% of 

the low-quality spectra while in the best case losing less than 9% of the high-quality 

spectra. For the ISB dataset, the proposed method filters out about 63% of the low-quality 

spectra while losing only 10% of the high-quality spectra. By removing the same amount 

of low-quality spectra, Ding et al.’s methods (2009b) lose 19% and 17% of high-quality 

spectra respectively on both of the datasets. If searching just the TOV and ISB spectra in 

the high-quality group with SEQUEST, about 56% (=1−10042/22576) and 62% 

(=1−14087/37044) of searching time can be saved while about 10% of the interpretable 

spectra is lost. These results indicate that the proposed method outperforms the method in 

Ding et al. (2009b).  
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(a) 

 
(b) 

Figure 3.2 ROC curve for the proposed classifier for TOV dataset (a) and ISB dataset (b). 
Sensitivity (also called the true positive rate) measures the proportion of actual positives 

that are correctly identified as such; specificity (also called the true negative rate) 
measures the proportion of negatives that are correctly identified as such. 
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Furthermore, this method achieved a better result from the TOV dataset than from the 

ISB dataset. This may be because there were more low-quality spectra in the ISB dataset 

(35997/37044=97%) than in the TOV dataset (21440/22576=95%). A high percentage of 

low-quality spectra make quality assessment challenging (Ding, 2009). Another reason 

for the better result might be that there are more triply-charged spectra in the ISB dataset 

(18044) than in the TOV (9732). MS/MS spectra of triply-charged ions contain more 

doubly-charged peaks than both doubly- and singly-charged spectra. The quality of 

triply-charged spectra are not well described by the 10 features used in this method, 

especially because features 3, 6, 7, and 10 are designed only for singly-charged peaks 

while triply-charged spectra produce a high number of doubly-charged peaks (Zou et al., 

2010; Shi et al., 2011). 

  

3.4 Conclusions 

 

In this chapter, an unsupervised machine learning method was presented that integrates 

assessments based on individual features (which is easy to do with a low precision) into a 

consensus assessment with high precision. This unsupervised machine learning method 

estimates the probability of a spectrum being high-quality from the assessments based on 

individual features. The estimation of the probabilities is solved through a constraint 

optimization problem. Experimental results illustrated that if searching a database using 

only spectra assessed as high quality in TOV and ISB, about 56% and 62% of SEQUEST 
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searching time can be saved with only 9% and 10% of high-quality spectra lost, 

respectively. This result indicates that the proposed method is useful in saving database 

searching time. Further, at a sensitivity of 90%, this method reaches specificities of 74% 

and 63%, respectively, which surpasses the existing method (Ding et al., 2009b). This 

indicates that this unsupervised machine learning method could adaptively integrate all 

assessments from 10 individual features into a consensus quality assessment with higher 

precision on MS/MS spectra. Also, this result shows the way in which the conditional 

probability being estimated is effective.   
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Chapter 4. Conclusions and future work 

4.1 Overview and Conclusions 

 

Peptide sequencing from MS/MS is important in proteomics. A challenge in peptide 

sequencing is noise in MS/MS spectra. It leads to incorrect peptide identification. To 

meet this challenge, filtering methods are proposed to remove noise and screen out low 

quality MS/MS spectra. Most existing methods are based on the supervised machine 

learning techniques. These techniques require so-called training data which are 

essentially a set of pairs of attributes (i.e., features) and labels (i.e., ‘signal & noise’, or 

‘high quality & low quality’) from peptide identification result. Such data may not be 

available because the filtering methods are applied before peptide identification. 

Therefore, unsupervised learning methods have been used in this work for peptide 

identification. Generally, these methods do not require label information but attributes 

only.  

 

Following up on the approach developed by Ding et al. (2009a), an unsupervised learning 

approach was used in the present study to remove noise peaks in MS/MS spectra. The 

general idea in Ding et al.’s approach was to score each peak with a set of features that 

describe the peak. The score was thus an aggregate of the features with weights. These 

weights were determined empirically in Ding et al.’s approach. The present study 

developed a method to adjust the weights.  
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Details of the method proposed by this study were documented in Chapter 2. By applying 

the proposed approach on two MS/MS spectra datasets, its superior performance was 

illustrated. About 66% of noise peaks can be removed and that the number of peptides 

identified by peptide identification was increased by 14% and 23% for the ISB and the 

TOV-Q datasets, respectively, compared to the number identified by Ding et al.’s method 

(2009a). 

 

A similar idea with the noise removal (denoising) approach was proposed for screening 

out low quality MS/MS spectra (quality assessment). This was documented in Chapter 3. 

In particular, the proposed method estimates the probabilities of spectra being of high 

quality based on a set of pre-defined features. The probabilities were estimated through a 

constraint optimization technique. Experimental results on the ISB and TOV datasets 

demonstrate that by searching the high-quality tandem spectra determined by the 

proposed method, the majority of database searching time (56% and 62%) can be saved 

while only 10% of high-quality spectra are lost.  

 

4.2 Contribution 

 

The main contribution of the above two methods developed by this study is a new 

technology for removal of noise in MS/MS spectra and screening out of low quality 
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MS/MS spectra. The effectiveness of the new technology is very high for both tasks in 

peptide identification. In the field of information fusion, the new technology has a high 

potential to be effective.  

 

4.3 Future work 

 

In this thesis, an adaptive denoising approach and an adaptive quality assessment method, 

based on unsupervised learning techniques are presented, and they have been shown to 

improve the peptide identification process. However, there remain some further possible 

improvements that are considered as future work. 

 

First, in the proposed denoising method, the weights estimated by LDA might be negative, 

which does not make sense. In the future, a constraint LDA may be used to ensure that 

the estimated weights are positive. In addition, by its nature, the morphological 

reconstruction filter removes at least roughly 50% of peaks in the spectra, so for spectra 

with less than 50% noise peaks, the proposed method may remove some signal peaks. 

Therefore, a more sophisticated filter should be designed for optimal peak selection. 

 

Second, in the proposed quality assessment method, more complicated and 

comprehensive features may be considered. For example, in the 10 features considered in 

this study, 4 features are calculated for singly-charged peaks. This could make the 
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classification method less effective on the triply- or higher-charged spectra. In the future, 

different features may be considered for different charges of spectra. Further, at present, 

the α and cut-off values for individual features were chosen based on several trial and 

error repeats. In the future, a more objective method may be developed for choosing these 

values. Finally, the proposed constraint optimization model may be applied to other 

unsupervised classification problems in bioinformatics and proteomics. 

 

Apart from the two proposed methods, other closely related topics may also be 

considered as a future work. For example, spectra clustering, which synthesizes all 

redundant spectra from the same peptide, is an effective strategy for acquiring useful 

information as well as removing noise from MS/MS spectra. Spectra clustering can 

significantly reduce the analysis time since the clustering algorithm is usually much faster 

than peptide sequencing methods (Beer et al., 2004; Frank et al., 2007; Flikka et al., 2007; 

Falkner et al., 2008). Indeed, a good clustering algorithm has the potential to improve the 

peptide identification process since it synthesizes all useful information from every single 

spectrum in the cluster.  
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