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ABSTRACT 

 
 It is well known that photosynthetic health impacts the overall fitness of the mature plant. 

This study aims to determine photosynthetic vigour of spring wheat cultivars during field 

development as well as their biomass composition at maturity to determine which 

cultivars/varieties would be optimum for cellulosic ethanol production. Additionally, specimens 

were grown at non-acclimating (20˚C), cold acclimating (5˚C), non-acclimating high CO2 

(20˚C/750 µmol mol-1 CO2) and cold-acclimating high CO2 (5˚C/750 µmol mol-1 CO2) to resolve 

photosynthetic responses to different environments. Plants were photoinhibited under high 

irradiance (5 fold growth irradiance) and low temperature (5˚C) while photochemical efficiency 

of PSII was monitored throughout using chlorophyll fluorescence imaging. Vegetative 

production was monitored using normalised difference vegetation index. De-epoxidation of 

xanthophyll photoprotective pigments were also recorded using HPLC and photochemical 

reflectance index. Additionally, carbon assimilation rate was recorded with infra-red gas analysis 

methods. It was discovered that no one wheat cultivar demonstrated any photosynthetic 

advantage in the field or under photoinhibitory conditions. However, photosynthetic differences 

were observed between wheat grown in different environments. Plants that were cold-acclimated 

or grown under high CO2 were more resilient to photoinhibitory stress. This was also reflected 

by most cold-acclimated cultivars having increased triose phosphate utilization, electron 

transport and zeaxanthin induction. Plants acclimated to high CO2 at room temperature also 

displayed increased electron transport and triose phosphate utilization but had decreased 

zeaxanthin induction. It is hypothesized increased excitation pressure in cold acclimated and 

high CO2 cultivars allowed for their increase in the development of photoinhibitory tolerance. 
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1.0 INTRODUCTION 

 

 This study aims to investigate the photosynthetic properties of commonly-grown western-

Canadian wheat varieties on the basis of their acclimatory and photoinhibitory responses to 

abiotic stress. Wheat plants were sown in field conditions, low-temperature, high light and high 

concentrations of CO2. Photosynthetic responses are among the most dynamic in nature and by 

observing photoinhibitory stress one can make deductions about photosynthetic fitness. The 

findings of these studies are mainly intended to elucidate the effects that high CO2 (current 

climate change estimates) will have on C3 photosynthetic plants (Zeng et al., 2004). Additionally, 

photosynthesis of field grown wheat will also be characterised and compared to that of controlled 

environment chambers. Photosynthesis has been shown to be flexible, adjustable and a primary 

sensor to plant stress responses (Ensminger et al., 2006). Since photosynthesis is the elementary 

process of life, the author believes it a topic worthy of further study. 

 Past research on photoinhibitory stress in field wheat has mainly focused on drought/high 

temperature stress (Yang et al., 2006) and diurnal changes (Lu et al., 2001). Few studies have 

particularly focused on comparing field-grown wheat to that grown in the chamber. Clearly, 

field-grown wheat undergoes continuous photosynthetic stress due to fluctuating temperature, 

humidity, water availability, nutrition and irradiance. Wheat grown under these conditions could 

have increased tolerance to photoinhibition and in essence, could be “field-acclimated”. 

 Previous studies on C3 plants grown under high CO2 concentrations (500-750 µmol mol-

1) have shown increased tolerance to photoinhibition. Electron transport rates and overall 

photosynthesis has been shown to increase when developed at high CO2 (Hymus et al., 2001a, 

2001b).  Activities of Calvin cycle enzymes has also been shown to increase when grown under 

high CO2 (Ainsworth and Long, 2005; Alosnso et al., 2009) as well as an increase in light 

harvesting complex absorptive cross section. (Gutiérrez et al., 2009). Water use efficiency has 

also been shown to increase (Ainsworth and Long, 2005). These factors have allowed plants 

when grown at high CO2 to have more efficient photosynthesis and accumulate more biomass 

(Harley et al., 1992). 

 The objectives of this thesis are: 

1) To study photosynthesis (carbon assimilation rate, NDVI) of spring wheat grown in a 

field environment as well as responses to photoinhibition (PRI, xanthophyll induction, 
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FV/FM). 

2) To determine biomass characteristics (root:shoot, DW, composition) of field-grown 

wheat. 

3) To study photosynthetic and photoinhibitory responses of spring and winter wheat grown 

in controlled environmental chambers at non-acclimating, cold-acclimating and high (750 

µmol mol-1) CO2. 

4) To determine what growth regime results in increased photoinhibitory tolerance, 

photosynthetic rates and hypothesize an explanation. 
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2.0 LITERATURE REVIEW 

 
2.1 Photosynthesis 

 All life forms on earth consist of carbon that was once assimilated from atmospheric CO2 

by photosynthesis. Photosynthesis is an elaborate process by which plants convert sunlight into 

usable chemical energy. This process takes place in the thylakoid membrane in the chloroplast of 

higher plant cells (Ensminger et al., 2006).   

The reactions of photosynthesis are initiated when the antenna complexes of photosystem 

I (PSI) and photosystem II (PSII) captures sunlight (Krause and Weis, 1991). Here, two types of 

chlorophyll (Chl) molecules, Chl a and Chl b absorb the excitation energy of the sunlight. The 

Chl molecules are held in proper orientation by a large number of proteins in the light harvesting 

complex (Malkin and Niyogi, 2000). The excitation energy absorbed by the antennae is then 

transferred to the reaction centers of both photosystems where it enters the photosynthetic 

electron transport chain in the thylakoid membrane. 

The PSII reaction center multi-subunit complex is integral in the thylakoid membrane. 

The PSII complex has a specific set of Chl molecules referred to as P680 (Krause and Weis, 

1991). The excitation energy from the sunlight is enough to cause charge separation in the PSII 

reaction center and water donates an electron to pheophytin a via the oxygen evolving complex 

and chlorophyll P680 (Fig 2.1). The electron is then transferred to the first stable quinone 

acceptor (QA). QA can then reduce the second quinone acceptor, QB. The quinones can accept 

another electron which causes two protons to associate with QB and become a QBH2 molecule 

(Malkin and Niyogi, 2000). This molecule then leaves PSII to the thylakoid membrane. Here, it 

associates with cytochrome b6/f protein complex. Cytochrome b6/f aids in the transfer of 

electrons to plastocyanin which releases the protons. Cytochrome b6/f ensures the protons from 

QBH2 are released into the lumen. An ATP synthase complex then pumps the protons back into 

the stroma in a process which produces ATP (Malkin and Niyogi, 2000). 

 The PSI reaction center resembles PSII but has different reaction center chlorophylls 

known as P700 (Malkin and Niyogi, 2000). The reduced plastocyanin is able to bind the PSI and 

the absorbed excitation energy by the PSI antenna transfers electrons from plastocyanin to 

ferredoxin. Upon reduction, ferredoxin is released from PSI and interacts with ferredoxin-NADP 

oxidoreductase (FNR). FNR contains a flavonoid adenine dinucleotide molecule (FAD). FAD is  
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Figure 2.1 Light reactions of photosynthesis. Incoming irradiance energy is represented by 
“hʋ”. 
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then able to reduce NADP to NADPH. 

 The ATP and NADPH produced in the chloroplast are the energy used by the enzymes of 

the Calvin cycle to produce carbohydrates (Nelson and Cox, 2005, Fig 2.2). In C3 plants, ribulose 

1,5-bisphosphate carboxylase/oxygenase (Rubisco) fixes a CO2 molecule and combines it with 

one ribulose 1,5-bisphosphate molecule to produce two molecules of 3-phosphoglycerate. The 3-

phosphoglycerate is then converted to 1,3-bisphosphoglycerate by 3-phosphoglycerate kinase, 

using ATP as the phosphoryl donor. NADPH reduces 1,3-bisphosphoglycerate into 

glyceraldehyde 3-phosphate and is catalyzed by glyceraldehyde 3-phosphate dehydrogenase. 

Triose phosphate isomerase then converts glyceraldehyde 3-phosphate into dihydroxyacetone 

phosphate. Most of the triose phosphate produced is put back into the Calvin cycle as ribulose 

1,5 bisphosphate or exported to the cytosol for sucrose biosynthesis. The rest is retained in the 

chloroplast for starch synthesis. Under optimal conditions, ATP and NADPH formed during the 

light reactions are efficiently and completely used by the dark reactions of photosynthesis. This 

scenario is referred to as photostasis and is necessary for plant fitness. 

 

2.2 Photoinhibition and photoprotection 

 Photoinhibition is the reversible decrease of photosynthesis during stressful 

photosynthetic conditions.  More commonly, photoinhibition occurs when low temperature or 

high irradiance decrease the rates of photosynthetic activity and photosynthetic efficiency of PSII 

(Gray et al., 2003).  The rates of the metabolic reactions of the Calvin cycle are severely 

decreased at low temperature whereas the light reactions are less affected by temperature (Huner 

et al., 1998). Because the light reactions can take place at a faster rate than the dark reactions, 

more excitation energy is harnessed than can be used for carbon uptake. An intricate balance 

must be maintained between these processes to ensure that the ATP and NADPH produced by the 

photochemical reactions are not in excess or oxidative damage could result. If NADP+ is not 

available in high enough concentrations, O2 will be reduced instead and reactive oxygen species 

will form.  To avoid this potential energy crisis, the plant modulates photosynthetic control in an 

attempt to achieve photostasis (Holt, 2005; Ensminger, 2006). Upon placement into low 

temperature or high light, sucrose biosynthesis is decreased (Savitch et al., 1997). After hours of 

decreased sucrose synthesis, accumulation of phosphorylated carbon intermediates ensues due to 

their decreased transport (Strand et al., 1997; Stitt and Hurry, 2002). This leads to either  
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Fig 2.2. Dark reactions (Calvin cycle) of photosynthesis. Shown are the major stages: 
carboxylation (CO2 is assimilation), reduction (NADPH and ATP from electron transport chain 
are used to reduce carbon) and regeneration of ribulose 1,5-bisphosphate. 
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feedback inhibition of electron transport and increased capacity for carbon metabolism 

(Somersalo and Krause, 1990). This is one strategy plants to use to adjust to energy imbalance in 

order to re-establish photosynthesis. 

 Early research indicated photoinhibition results in reduction of the D1 protein integral for 

PSII (Long and Humphries, 1994). Upon photoinhibition, immediate oxidative damage is caused 

to the D1 protein. This decreases the amount of excitation energy taken in and can somewhat 

relieve the photoinhibitory stress. Reduction in PSII antenna size is also known to directly 

decrease photosynthetic efficiency in this manner (Huner et al., 1998).  More recently, Takahashi 

and Murata (2008) have proposed a model that views photoinhibition as a balance between 

damage and repair of the D1 protein. Under high light, photodamage to PSII is proportional to 

intensity of the incident light. The reaction center is inactivated and D1 is degraded by 

proteolysis. Because of the oxidative environment formed by photoinhibition, hydrogen peroxide 

is formed. This reactive oxygen species reduces the synthesis of D1 precursors by directly 

inhibiting its translation (Takahashi and Murata, 2008). 

 Photoinhibition is related to the oxidative state of the primary quinone acceptor, (Gray et 

al., 1996; Sane et al., 2003). Upon photoinhibition, the quinone pool now has a higher reduced 

state than when under photostasis due to the imbalance of metabolic reactions. This is referred to 

as excitation pressure. This increase in PQ reduction activates a thylakoid protein kinase which 

phosphorylates LHCII (Ensminger et al., 2006). Because of charge repulsion, LHCII prefers to 

associate with PSI instead of PSII. Because of this, excess excitation energy is effectively 

diverted from PSII. Cold acclimated winter cereals adjust their photosynthesis by having an 

increased oxidized QA pool which allows dissipation of excess light energy during 

photoinhibitory stress (Sane et al., 2003).  This, in turn, increases their photoinhibitory resistance 

over non acclimated plants as monitored by photochemical efficiency. Cold acclimated plants 

have also shown an increase in intracellular inorganic phosphate concentration over non 

acclimated plants (Hurry et al., 1993). This allows for higher rates of triose phosphate utilization. 

Higher concentrations of inorganic phosphate in cold acclimated and phosphate-fed plants are 

shown to increase carbohydrate synthesis rates leading to a resistance to photoinhibition. 

 Photoinhibition has also been known to increase induction of the xanthophyll cycle 

(Demmig-Adams and Adams 1992, 1996). In this process, photoprotective pigments associate 

with the PSII reaction center and dissipate excess light energy as heat (Buch et al., 1994). 
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violaxanthin, is enzymatically de-epoxidized twice by violaxanthin de-epoxidase into 

antheraxanthin then zeaxanthin. This can only happen during photosynthetic stress as it is 

triggered by an acidic chloroplast lumen pH. Zeaxanthin is a photoprotectant that physically 

prevents excitation energy from entering the PSII reaction center. Zeaxanthin is unable to pass 

excitation energy to chlorophyll, effectively quenching it by releasing it as heat (Demmig-Adams 

and Adams, 1996). This is known as non-photochemical quenching (NPQ) and is ubiquitous in 

higher plant species (Demmig-Adams and Adams, 1992; Holt et al., 2005). NPQ protection is 

readily reversible by epoxidation of zeaxanthin. Zeaxanthin has also been shown to have a role 

as an anti-oxidant during photoinhibitory stress (Johnson et al., 2007). In mutants that express 

three times more zeaxanthin than wild-type, photoinhibitory effects were significantly reduced 

without any change in NPQ. Zeaxanthin was found to bind thylakoid membranes and decrease 

thylakoid lipid peroxidation; a symptom of photoinhibitory stress. This evidence suggests 

zeaxanthin has a dual role as a photoprotectant and anti-oxidant. 

 Laboratory-induced high-light and low temperature photoinhibition closely resembles 

that which naturally-occurring plants deal with on a daily basis. It is therefore helpful to study 

photosynthetic responses to photoinhibition in a laboratory setting and apply it to an ecological 

or agricultural setting. As shown previously in this section, the most effective way to resist 

photoinhibition is by growth and development under high excitation pressure.  

 

2.3 Cold and CO2 acclimation 

 Acclimation refers to a phenotypic response to environmental change without any change 

in genetics (Huner et al., 1998). Cold acclimation is a process plants use to reprogram their 

carbon metabolism to attain photostasis and develop freezing tolerance. It usually begins with a 

stress response (low temperature) but eventually leads to stable, long-term adjustment in 

metabolism. A cold acclimated plant has grown and developed at low temperature and has 

metabolism different than a non acclimated plant. 

 As mentioned previously (section 2.2), plants have a variety of immediate responses to 

photoinhibition such as inactivating D1 translation, increasing quinone oxidation and induction 

of zeaxanthin. However, these are just temporary strategies in adjustment to low temperature and 

preparation for freezing temperatures. The quinone pool oxidation state is believed to be a 

primary sensor of photoinhibitory stress (Ensminger et al., 2006). Upon high excitation pressure, 
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a redox signal from the PQ pool regulates chloroplast and nuclear photosynthetic and cold-

acclimation gene transcription (Strand et al., 1997; Huner et al., 1998; Hurry et al., 2000; 

Pfannschmidt, 2003). This leads to an increase in Calvin cycle enzymes leading to higher 

photosynthetic capacity. Additionally, cold acclimated plants have been found to have higher 

activities for Calvin cycle and carbon metabolism enzymes (Hurry et al., 1995; Strand et al., 

1999). Rubisco, phosphoglycerate kinase, Suc-6-P synthase and phosphoribulokinase have been 

demonstrated to have nearly 2-fold increase in activity over non acclimated plants. This, in turn, 

would allow for an increase in Calvin-cycle activity (phosphorylated sugar transport/utilization 

and ATP synthesis) under low temperatures and restoration of photostasis. 

 During cold-acclimation and photostasis, the plant must also restore the PSII reaction 

center by increasing synthesis of the D1 protein to achieve optimal photochemical yield 

(Ensminger et al., 2006; Takahashi and Murata, 2008). Because acclimation restores favourable 

photosynthetic conditions, D1 is no longer damaged by reactive oxygen species and can be 

translated and function without hindrance. 

 Plants can also acclimate to grow at higher than ambient CO2 concentrations. With 

current CO2 concentrations (~380 µmol mol-1) expected to double within the next century, 

research has been undertaken to study how plants will respond to this atmospheric change (Zeng 

et al. 2004). Some immediate benefits of growth under high CO2 is decreased stomatal 

conductance leading to lower transpiration and better water use efficiency (Ainsworth and Long, 

2005). In C3 and C4 plants, high CO2 concentrations (600-800 µmol mol-1) have been shown to 

increase carbohydrates and biomass (Harley et al., 1992). Also, carboxylation, electron transport 

and photosynthetic rates increase (Alonso et al., 2009). Levels of Rubisco decrease in plants 

grown in high CO2. Therefore the increase in carbon assimilation is caused by an increase in 

substrate (CO2) concentration for Rubisco, leading to overall higher activity and carbon fixation.  

 Other studies have found an inherent relation between growth at high CO2 and 

photosynthetic fitness. Photochemical efficiency has been demonstrated to increase while 

photochemical quenching decreases in plants grown under high CO2 (Gutierrez et al., 2009). 

Other connections have also been made between increased electron and carboxylation rates with 

photoinhibitory resistance (Hymus et al., 2001a, 2001b). Plants grown in increased CO2 have 

increased resistance to photoinhibitory conditions leading to increased photosynthetic fitness.  
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2.4 Measurements of photosynthesis 

 2.4.1 Chlorophyll fluorescence  

 Chlorophyll a (Chl a) is the major pigment molecule in the PSII antenna complex. The 

light absorbed by this molecule is used to drive photosynthesis. However, not all light energy is 

absorbed is used for this process (Figure 2.3).  A portion is dissipated as heat and some is re-

emitted at a longer wavelength (Maxwell and Johnson, 2000). The re-emitted light is known as 

chlorophyll fluorescence.  Since these are competing processes, chlorophyll fluorescence can be 

used as a reliable and non-invasive probe of photosynthetic performance (Baker, 2008). 

There are four main competing forces when light quanta are absorbed by the Chl a 

(Krause and Weis,1991; Rohacek, 2002).  It takes a certain amount of time for the Chl a 

molecule to return to its ground state after being excited by the incident light quanta. As a result, 

each of these four processes can be given a constant depending on the rate Chl a returns to its 

ground state. Rates of photochemical reaction (kP), thermal deactivation (kD), excitation energy 

transfer (kT) and fluorescence (kF) can be related to fluorescence emission (F). The quotient of 

the sum of the constants (Σ kI) by kF is directly proportional to F and can be related 

mathematically in equation 2.1. Absorbed light flux (Ia) is the perceived intensity of the incident 

light. It is directly proportional to F and therefore can also be incorporated into equation 2.1. The 

fluorescence yield (ΦF) is described as ratio of the fluorescence emission (F) compared to the 

intensity of the incident light (Ia) and can incorporated into equation 2.2. 

 

2.1 )                        F=Ia (kF/ Σ ki)= Ia  X   kF/( kP+ kD+ kT+ kF) 

 

2.2)                                  ΦF=F/ Ia= kF/ (kP+ kD+ kT+ kF) 

Equation 3 shows the relationship between photochemical yield (ΦP) and the rate constants. 

It is formed similarly to equation 2.2. 

      2.3)                                     ΦP= kP/ (kP+ kD+ kT+ kF) 

 

 Fluorescence yield (ΦF) is very low when reaction centers are “open” (quinone pool is 

fully oxidized and able to accept electrons) and kP is much greater than kD, kT and kF. It is known 

that under low light and optimal temperatures (25οC) in excess of 90% of absorbed light is used 

for photochemistry (Rohacek 2002). As a result, this situation is referred to as minimal 
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Fig. 2.3. Overview of reactants and products in photosynthesis. Also shown are the rate 
constants of the reactions kD , kP  and kF  that compete for excitation energy from the sun’s 
irradiance. 
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fluorescence yield (ΦFO). Conversely, when the reaction center is “closed” (quinone pool is fully 

reduced), kP is nearly equal to zero and the maximal fluorescence (ΦFM) can be determined. ΦFM 

refers to a situation where the reaction center is closed and all the rate constants are summed 

together. The value of kP can be resolved when the difference between the fluorescent yields of 

both “open” and “closed” states is known. Therefore one can turn equation 2.3 into one that 

relates photochemical yield to fluorescent yield (equation 2.4). 

 

2.4)                                   ΦP= (ΦFM -ΦFO)/ ΦFM= FV/FM 

 

Variable fluorescence yield (FV) is the difference between maximal and minimal fluorescent 

yields (FM-FO). From equation 4 it is evident FV/FM is directly related to photochemical yield and 

can effectively gauge the photochemical efficiency of PSII. This ratio can be measured easily in 

a laboratory setting and imaging technology has facilitated the use of chlorophyll fluorescence as 

a method of determining the extent of photosynthetic stress caused by photoinhibition (Gray et 

al., 2003; Baker and Rosenqvist, 2008). 

2.4.2 Infra-red gas analysis 

 An infra-red gas analysis (IRGA) system is an invaluable tool in determining 

photosynthetic rate (Parsons et al., 1997). The instrument provides in vivo photosynthetic rates 

by monitoring gas exchange in a sealed chamber. In this method, a sealed chamber (of a fixed 

volume) is placed over a photosynthetically active leaf (of a fixed area). The analyser can then 

determine the concentration of CO2 in the chamber and monitor the evolution or disappearance 

of CO2 over a time course. From the concentration values carbon assimilation rate can be 

expressed as amount of CO2 assimilated per area and time (Farquhar et al., 1980). This 

parameter (A) is a widely accepted and common measure of photosynthetic rate (Harbinson et 

al., 1990; Seaton and Walker, 1990; Parsons et al., 1997). 

  IRGAs also monitor humidity levels of the air in the chamber so water transpiration rate, 

stomatal conductance and water-use efficiency can also be calculated (Ireland et al., 1989). 

Different experiments can also be created using varying levels of irradiance and intracellular CO2 

concentration which gives insight into maximal photosynthetic rates and 

photosynthetic/photorespiratory compensation points.  
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2.4.3 Light-response curves 

 Using photosynthetic modelling software, one can estimate other photosynthetic 

properties quickly and efficiently. The software uses the equations of Prioul and Chartier (1977) 

to estimate Amax (light saturated assimilation rate), Фa (apparent quantum efficiency), light 

compensation point, light saturation point and R1 (dark respiration rate) from the shape of a 

modelled A/Q (irradiance) curve (Fig. 2.4). To construct an A/Q curve, the user records carbon 

assimilation rate over varying, and eventually, saturating irradiance levels.  Amax is defined as 

the carbon assimilation rate (µmol CO2 m
-2 

s
-1) at saturating irradiance at the light saturation 

point (µmol photons m
-2 

s
-1

). Фa (µmol CO2/µmol photons) is the slope of the initial section of 

the A/Q curve and is used to describe photosynthesis during a dark to light transition. The light 

compensation point (µmol photons m
-2 s-1

) is the irradiance where the rate of carbon assimilation 

equals cellular respiration and R1 (µmol CO2 m
-2 

s
-1) is the rate of cellular respiration in the dark. 

2.4.4 CO2-repsonse curves 

The equations of Olsson and Leverenz (1994) are used to estimate Amax (CO2 saturated 

assimilation rate), CE (carboxylation efficiency), Resp (respiration in the light) and Γ (CO2 

compensation point), from the A/Ci curve (Fig 2.5). This curve is performed similarly to the A/Q 

curve except Ci is varied and irradiance is constant and saturating. Carboxylation efficiency (mol 

CO2 m
-2 s

-1) is defined as the slope of the initial curve while Resp (µmol CO2 m-2 s-1) is the Y-

intercept of the line. Additionally, Γ (µmol CO2 mol-1) is found at the X-intercept of the modelled 

curve and is the internal leaf concentration needed to balance cellular respirations at saturating 

irradiance. 

Harley and Sharkey (1991) have described equations to estimate Vc, max (maximum 

carboxylation rate), Jmax (electron transport rate) and TPU (triose phosphate utilization rate) also 

from the A/Ci curve. Vc, max (μmol m-2 s-1) can be estimated by equation 2.5. Jmax (μmol m-2 s-1) 

and TPU can be calculated by equations 2.6 and 2.7, respectively. These values combined with 

chlorophyll fluorescence provide the researcher with insight into photosynthetic of processes. 

2.5) Rubisco Activity=Vc.max x Ci/[Ci+rubisco KCO2(1+O2 conc./rubisco KO2)] 

2.6) Apparent electron transport=eff. light conv. x Ia /√[1+(eff. light conv. x Ia /Jmax)2] 

2.7) Regeneration rate of Pi= 3(TPU)+0.5 x Vo x O2 conc./Ci x spec. factor for rubisco 
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Fig. 2.4. Representation of A/Q(irradiance) curve. Also shown are the photosynthetic 
parameters : Amax (light saturated assimilation rate), Ф a (apparent quantum efficiency), Light 
compensation point, Light Saturation point and R1 (dark respiration rate) all calculated from the 
modeled curve. In this test, external CO2 is constant and irradiance is increased stepwise from 
the dark until it reaches a saturating point (Amax). 
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Fig. 2.5. Representation of A/Ci curve. Also shown are the photosynthetic parameters:  Amax 
(CO2 saturated assimilation rate), Γ (CO2  compensation point), CE (carboxylation efficiency) 
and Resp (cellular respiration in the light), all calculated from the modelled curve. In this test, 
internal leaf CO2 concentration is varied until saturating (Amax) while irradiance is constant and 
saturating.  
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2.4.5 Spectral Reflectance 

 Pigment composition is one of the most defining features of a plant. Chlorophyll is the 

initial acceptor of radiant energy and is integral to photosynthetic processes. It is therefore 

necessary to quantify chlorophyll content. Since chlorophyll absorbs and reflects light at defined 

wavelength it can be approximated by reflectance measurement parameters. The most popular 

chlorophyll index is Normalised Difference Vegetation Index (NDVI). It is based on the reflected 

amounts of a near infrared (740 nm) wavelength and very close visual (660 nm) wavelength of 

light (Gamon et al., 1999). Relative amounts not absorbed by the chlorophyll are reflected back 

and are measured. These figures can be placed in equation 2.8 and a unit less index number 

results. Numbers are usually close to but not over one. 

                 2.8 )                           NDVI=(R740-R660)/(R740+R660) 

 Photochemical reflective index (PRI) is another reflectance parameter based on light 

absorbance/reflectance of leaf pigments (Gamon et al., 1999). PRI is considered a good measure 

of xanthophyll induction. Xanthophylls, primarily zeaxanthin and antheraxanthin, are carotenoid 

leaf pigments that absorb excess light energy during photoinhibition to protect the plant and 

purposely lower photochemical efficiency (Demmig-Adams and Adams, 1996; Stylinski et al., 

2002). Like NDVI, PRI is an index based on reflected amounts of light at defined wavelength. 

PRI uses two different wavelengths, 530 nm and 570 nm, to quantify the amount of light 

absorbed based on how much is reflected. The light absorbed corresponds to the amount of 

zeaxanthin and antheraxanthin pigments currently present. PRI index calculation is shown in 

equation 2.9. PRI numbers are usually negative and become more positive as zeaxanthin and 

antheraxanthin are introduced. 

 2.9)                                 PRI=(R530-R570)/(R530+R570) 

  

2.5 Lignocellulosic biomass as fuel 

 Lignocellulosic biomass makes up the bulk of a plant’s dry weight (Sun and Cheng, 

2002). Cellulose and hemicellulose are glucose polymers and are major structural components of 

the plant cell wall overall plant biomass. They are polymerized by a variety of cellulose synthase 

enzymes. Among other biomass constituents are lignins. Lignins are long polymers of 

cinnamoyl-alcohols derived from phenylpropanoids (Vincent et al., 1997; Baucher et al., 1999). 

Enzymes that modify, store and polymerize phenylpropanoids are considered integral to the 
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lignin biosynthetic pathway.  

Recent global energy concerns have spawned consideration of alternate fuels for energy 

purposes. Among alternative fuels is cellulosic ethanol which is made by anaerobically 

fermenting plant sugars into ethanol, an octane substitute (Sun and Cheng, 2002).  Neither lignin 

nor hemicellulose can be fermented into ethanol and are antagonistic to the fermentation process. 

It has been demonstrated that cellulose and lignin contents are inversely proportional (Baucher et 

al., 1999). The ideal wheat straw for fermentation would have high cellulose content and 

therefore low lignin content. 

 

2.6 Market varieties of wheat and their uses 

 Wheat (Triticum spp.) is not only one of the most cultivated cereal crops in the world 

agriculturally, but also experimentally. It is popular as a C3 photosynthesis model plant in cold 

stress studies mainly because it has both spring and winter-hardy varieties (Huner et al., 1993). 

Previous studies have characterised cold-acclimated photosynthesis of wheat but few have 

focused on CO2 growth or cultivar variation (Hurry et al., 1995; Gray et al., 1996). There are a 

wide choice of market varieties grown in western Canada, each with its own specific use and 

species (McCallum and DePauw, 2008). Within each market variety, cultivars are bred as an 

improvement over its predecessors but still conform to the standard of the final product. Table 1 

displays the seven major market varieties grown in western Canada and distinguishing features. 

Canada Western Red Spring (AC Barrie, McKenzie, Superb) is the most common of all 

wheat grown on the Prairies and is mostly used for all-purpose flour milling (McCallum and 

Depauw, 2008). Canada Western Amber Durum (Kyle and AC Avonlea) are ground into 

semolina which is used for pasta.  Canada Prairie Spring Red (5700 PR and AC Crystal) is used 

for ethanol and animal feed while Canada Western Extra Strong (Glenlea) are used for specialty 

breads. The flour from Canada Western Soft White Spring Wheat (AC Andrew) is used for 

ethanol production and pastry flour. Canada Western Hard White Spring (Snowbird) and Canada 

Prairie Spring White (AC Vista) are both tailored for the Asian market and are used to make 

noodles (McCallum and Depauw, 2008). 
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Table 2.1: Wheat cultivars utilized in this study (Canadian Wheat Board, 2006). Values for 
“% seeded acres” are based on survey results specific to Saskatchewan 2006. DH, doubled 
haploid 
Market 
Variety 

Cultivar % Seeded 
Acres of 
Market  

Year 
Registered 

Species Ploidy Parents Uses Growth 
Traits 

Reference 

Canada 
Western 
Red Spring 

Superb 17.7 2001 Triticum 
aestivum 
L. 

Hexa Grandin*2/
AC 
Domain 

All 
purpose 
flour/ 
white 
bread 

High Yield McCallum 
and 
DePauw  
2008 

AC Barrie 16.5 1994 Neepawa/
Columbus/
/BW90 

Yield/Rust 
Resistance 

McCaig et 
al. 1996 

McKenzie 15.5 1997 DH 
Columbus/
Amidon 

Yield/Rust 
Resistance 

Graf et al. 
2003 

Canada 
Western 
Hard 
White 
Spring 

Snowbird 96.8 2004 Triticum 
aestivum 
L. 

Hexa Poso48/RL
4137//AC 
Domain 

Noodles Yield/Dise
ase 
Resistance 

Humphries 
et al. 2007 

Canada 
Prairie 
Spring 
White 

AC Vista 87.9 1996 Triticum 
aestivum 
L. 

Hexa HY344/Lo
sprout'S'//
HY358*3/
BW553 

Noodles Yield/Spro
ut 
Resistance/
Disease 
Resistance 

DePauw et 
al. 1998 

Canada 
Western 
Amber 
Durum 

AC 
Avonlea 

39.0 1997 Triticum 
turgidium 
L 

Tetra 8267-
AD2A/dt6
12 

Pasta Yield/Prote
in 

Clarke et 
al. 1998 

Kyle 24.3 1984 Wakooma/
DT322??
Wakooma/
DT320 

Yield/Dise
ase 
Resistance 

Townley-
Smith et 
al. 1987 

Canada 
Western 
Extra 
Strong 

Glenlea 58.2 1972 Triticum 
aestivum 
L. 

Hexa Pembina/B
age//CB10
0 

Blended  
to add 
gluten 
strength 

Yield/Rust 
Resistance 

Evans et 
al. 1972 

Canada 
Prairie 
Spring Red 

AC Crystal 42.2 1996 Triticum 
aestivum 
L. 

Hexa HY377/L8
474-D1 

Feed/ethan
ol 

Yield/Bunt 
Resistance 

Fernandez 
et al. 1998 

5700 PR  
36.1 

2000 Pioneer 
2369/ 
 
Probrand 
711// AC 
Foremost 
 

Yield/Rust 
Resistance 

McCallum 
and 
DePauw  
2008 

Canada 
Western 
Soft White 
Spring 

AC 
Andrew 

100 2001 Triticum 
aestivum 
L. 

Hexa Dirkwin/S
C8021V2// 
Treasure/B
lanca 
 

Pastry 
flour/ethan
ol 

Yield/Dise
ase 
Resistance 

Sadasivaia
h et al. 
2004 

Canada 
Western 
Red 
Winter 

CDC 
Buteo 

26.2 2001 Triticum 
aestivum 
L. 

Hexa S86-
808/Abilen
e 

Flat 
breads/ 
French 
Breads 

Yield/Rust 
Resistance 

McCallum 
and 
DePauw 
2008 

CDC Clair 18.4 1995 Archer/No
rstar 

Fowler 
1997 

CDC 
Raptor 

17.7 2000 S86-
808/Abilen
e 

Fowler 
2002 

CDC 
Falcon 

6.8 1998 Norstar/Vo
na//Abilen
e 

Fowler 
1999 
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3.0 PHOTOSYNTHESIS IN THE FIELD 

 

3.1 Introduction 

 Recent global energy concerns have prompted studies examining alternate fuels for 

energy purposes.  One such fuel which has received much attention is cellulosic ethanol.  This 

compound can be made by anaerobically by the fermentation of wheat straw, available as a by-

product of grain production, into ethanol which can then serve as an octane substitute (Sun and 

Cheng, 2002).  The main constituents of wheat straw are cellulose, hemicellulose and lignin.  

Together, these components are referred to as lignocellulosic biomass and comprise the bulk of a 

plants dry weight. 

 Through the reactions of photosynthesis, plants are able to convert sunlight into usable 

chemical energy by a direct reduction of CO2 into triose phosphates by the enzyme Rubisco in 

the Calvin cycle. The assimilated CO2 is then utilized for sucrose biosynthesis which in turn is 

used for growth and development.  Thus, it is clear that photosynthetic performance and biomass 

accumulation are closely related (Ensminger et al., 2006)  

 However, the excess absorption of sunlight can lead to a phenomenon known as 

photoinhibition (Long et al., 1994; Osmond and Grace, 1995; Takahashi and Murata, 2008).  

This occurs when high or even moderate amounts of light decrease the rates of photosynthetic 

activity often causing damage of the photosynthetic apparatus. Photoinhibition occurs on a daily 

basis for many photosynthetic organisms and limits yields of many crop species.  The effects are 

exacerbated when their growth is limited by environmental factors such as extremes of 

temperature, light, drought and salinity (Takahashi and Murata, 2008).  Susceptibility to 

photoinhibition varies among species and cultivars but is dependent on the ability of the plant to 

modulate photosynthetic reactions (Ensminger et al., 2006). An intricate balance must be 

maintained between photochemical processes and the utilization of their by-products (ATP and 

NADPH), primarily by the Calvin cycle for CO2 assimilation (Huner et al., 1993; Ensminger et 

al., 2006). 

 Our goal in this study was to determine if there was any advantage to growing certain 

cultivars of wheat for their alternative uses, such as that of biofuel.  This was accomplished by 

determining biomass accumulation, straw composition as well as characterizing photosynthesis 

and susceptibility to photoinhibition in several common cultivars of spring wheat grown in the 
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field over the 2007 and 2008 growing seasons in Saskatchewan. 

 

3.2 Materials and methods 

 3.2.1 Plant material 

 Eleven spring wheat (Triticum spp.) cultivars comprising seven market varieties were 

selected for study based on percentage of seeded acres in Saskatchewan for the calendar year 

2006 (Canadian Wheat Board, 2006; Table 2.1). These 11 cultivars were examined in the 2007 

field experiments and based upon preliminary results four of these cultivars were chosen for 

further analyses in the 2008 field studies. Seeds were obtained from the Crop Development 

Centre at the University of Saskatchewan (Saskatoon SK). 

            

            3.2.2 Preliminary 2007 experiments. 

As mentioned previously, all eleven spring varieties were planted during the growing 

season of 2007 at the Crop Science Field Laboratory. Starting at the fourth floret stage, FV/FM, 

PRI and NDVI measurements were made in triplicate using portable field equipment (refer to 

3.2.6 and 3.2.7). Measurements were made weekly until the cultivars were finished flowering 

(Table A1). Leaves were then harvested and subjected and 8 h photoinhibitory treatment as 

described in 3.2.8. Two weeks later, NDVI, PRI, FV/FM, and measurements were performed on 

field wheat that was mature. 

 

3.2.3 Field site 

Two sets of field experiments were conducted from 2007 to 2008.  Spring wheat lines 

were grown on fallowed land at the Seed Farm, University of Saskatchewan (Saskatoon SK) on a 

Dark Brown Chernozem clay loam soil type.  Each plot consisted of a single row that was 1.3 m 

long spaced 0.3 m apart. Plots were sown on May 1 and 3, in 2007 and 2008, respectively. The 

seeding rate was approximately 100 seeds per row at a seeding depth of 2 cm.  Fertilizer (11-51-

0) was drilled in with the seed at a rate of 7 kg ha-1 of N and 29 kg ha-1 of P.  Weed control was 

achieved using recommended rates of the herbicides Buctril-M (Aventis CropScience Canada 

Co., Regina, SK; active ingredients bromoxynil and MCPA) tank-mixed with Horizon (Syngenta 

Crop Protection Canada, Inc., Guelph, ON; active ingredient clodinafop-propargyl). A 

randomized complete block design with four replications was used in both years. Data was 
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collected from random positions in each of the four replications over the growing season and 

averaged.  For biomass determinations whole plants were removed from the field in August 

2007, hand picked to ensure root injury was minimal.  Samples of wheat straw were collected in 

September 2007 at the end of the growing season after harvest. 

 

3.2.4 Meteorological data 

Temperature, rainfall and solar radiation data from April through October in 2007 and 

2008 were collected within 6 km of the trial site at the Kernen Crop Research Farm weather 

station, University of Saskatchewan (Saskatoon SK). 

 

3.2.5 Measurements of CO2 exchange 

In situ CO2 exchange rates were measured under field conditions on wheat leaves using a 

portable open circuit steady-state gas-exchange system incorporating an infrared gas analyzer 

(model LI-6400, Li-Cor, Lincoln, NB).  Measurements were made on the mid-portion of flag--

leaves and corrected for leaf area in the sample chamber.  The cuvette measuring temperature 

was set to 20°C. Simultaneous measurements of CO2 to H2O vapour flux, air (Tair) and leaf (Tleaf) 

temperature allowed for the calculation of leaf carbon assimilation (A), stomatal conductance to 

water (gs), transpiration rate (E), intercellular CO2 partial pressure (Ci) and leaf to air vapour 

pressure difference calculated from Tleaf (vpdL).   

 Light-response curves (A/Q) were obtained using the range of 0-1500 µmol m-2 s-1 PPFD. 

Irradiance was provided from a red-blue LED light source (LI-6400-02B, Li-Cor) attached to the 

sensor head.   The PPFD was increased in 12 steps and the sample was allowed to acclimate to 

the PPFD until stable values had been attained prior to acquiring data and moving to the next 

irradiance value.  Ambient CO2 partial pressure (Ca) was maintained at a concentration of 400 

µmol mol-1 using a CO2 mixer/injector (LI-6400-01, Li-Cor).  This resulted in intracellular CO2 

concentrations (Ci) ranging from 206-440 µmol mol-1 over the course of the experiment. 

Humidity of incoming air was controlled at 0.90-2.5 kPa vpdL based on Tleaf which did not 

exceed 29°C at any time during the experiment, resulting in humidity values of 57-82%. 

 A/Ci curves were constructed at a saturating PPFD of 1300 µmol m-2 s-1.  Leaves were 

exposed to 400 µmol mol-1 Ca until stable.  Ca was decreased stepwise to a lower concentration 

of 50 µmol mol-1 and then increased stepwise to an upper concentration of 1200 µmol mol-1.  
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This resulted in Ci values ranging from to 48 to 872 µmol mol-1.  Humidity of incoming air was 

controlled at 1.9-4.4 kPa vpdL based on Tleaf which did not exceed 33°C at any time during the 

experiment, resulting in humidity values of 58-89%.    

 A/Q and A/Ci curves were repeated in triplicate and each curve was modeled using 

analysis software (Photosyn Assistant, Ver. 1.2; Dundee Scientific, UK) for the determination of 

several photosynthetic parameters (Parsons et al., 1997). Parameters calculated are described in 

2.4.4. Intrinsic water use efficiency (WUE) was calculated as A/E, and was determined at a 

PPFD of 1500 µmol m-2 s-1 and ambient CO2, as were values of gs and E. 

 

 3.2.6 Spectral Reflectance 

Reflectance measurements were obtained in the field on flag leaves using a hand-held 

device designed to measure reflectance at fixed wavelength.  The Normalized Difference 

Vegetative Index (NDVI) was determined using a PlantPen NDVI 300 while photochemical 

reflective index (PRI) was determined by a PlantPen PRI 200 (Photon Systems Instruments, 

Czech Republic).  NDVI values were calculated according to NDVI = (R740-R660)/(R740+R660). 

The NDVI is a unit-less index and was used as an estimate of Chl content and leaf biomass 

(primary productivity). Usually, a healthy, growing plant will have an NDVI number around 0.8 

and will decrease with less chlorophyll content. PRI values were calculated by PRI = (R530-R570)/ 

(R530+R570). PRI numbers are usually negative and become more positive as zeaxanthin and 

antheraxanthin accumulate and violaxanthin decreases. An unstressed plant will have PRI around 

-0.5 while a stressed plant will increase to nearly 0.5. 

 

 3.2.7 Chlorophyll fluorescence  

Chlorophyll a fluorescence measurements in the field were performed on flag leaves with 

a hand-held pocket fluorometer (FluorPen FP100; Photon Systems Instruments, Czech 

Republic).The leaves were dark-adapted for 15 min before measurement. The maximum 

quantum photochemical) efficiency of PSII was calculated as FV/FM = (FM-FO)/FM, where FO and 

FM represent the minimal and maximal fluorescence yield in the dark-adapted states, 

respectively.  For photoinhibition experiments (see section 3.2.8 below), FV/FM was determined 

using a Chl fluorescence imaging apparatus as described previously (Gray et al., 2003; Baerr et 

al., 2005). 
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 3.2.8 Low-temperature photoinhibition 

Photoinhibition of photosynthesis was induced at leaf temperatures between 5 and 7°C 

for a total of 8 h under ambient air conditions. Flag leaves were harvested from each cultivar and 

brought into a laboratory cold room.  Leaves were placed adaxial side up on moist paper towels 

and exposed to an irradiance of 1450 µmol m-2 s-1 PPFD essentially as described by Gray et al. 

(1996).  Susceptibility to photoinhibition was quantified by monitoring changes in FV/FM as a 

function of exposure time. Dark controls and long-term photoinhibition experiments were 

performed for validation purposes (data not shown). 

 

 3.2.9 Pigment extraction and determination 

Leaves used for pigment analyses were harvested and their fresh weight (FW) determined 

followed by flash freezing in liquid nitrogen.  Leaf material was stored at -80°C until pigment 

extraction. 

 Pigments were extracted in a microfuge tube by homogenization in 0.5 mg FW mL-1 

100% (v/v) HPLC-grade acetone (OmniSolv; BDH Inc., Toronto, Ontario, Canada), with 0.3 mg 

mL-1 CaCO3, at 4°C in dim light using 1 mm glass beads and an agitation apparatus (Mini-Bead 

Beater-1; BioSpec Inc., Bartlesville, OK). The tube was shaken for 5 min at the maximum speed, 

followed by centrifugation at 6,000 xg for 8 min at 4°C. The supernatant was passed through a 

13 mm, 0.2 µm PVDF -syringe filter (Pall Life Sciences, East Hills, NY) into sample vials prior 

to storage under nitrogen at -80°C in the dark until HPLC analysis. 

 Analysis of leaf acetone extracts was performed using a HPLC system (System Gold; 

Beckman-Coulter Inc., Fullerton, CA) described earlier (Baerr et al., 2005). Pigments were 

separated by reverse-phase HPLC analysis with a C18 column (Thermo ODS Hypersil; 4.6 mm x 

60 mm, 3 µ pore size; Thermo Scientific, Waltham, MA) protected by a C18 TSK guard column 

(6.0 mm x 40 mm, 7 µ pore size; Beckman-Coulter).  The protocol of Buch et al. (1994) was 

used with minor modifications.  The mobile solvent phase consisted of 60% (v/v) acetone in 

aqueous buffer (1 mM HEPES, pH 7.0).  Elution was performed using a gradient program which 

consisted of a 15 min linear gradient to 72.5% (v/v) acetone; followed by a 5 min linear gradient 

to 75% (v/v) acetone; followed by a 5 min linear gradient to 80% (v/v) acetone; followed by 30 

min linear gradient to 98% (v/v) acetone which continued isocratically for 10 min.  The total run 
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time was 55 min at room temperature with a flow rate of 0.4 mL min-1.   

 Pigment peaks were identified by comparing retention times and spectra relative to those 

of known standards. Pigments were detected at 445 nm and peak areas were integrated using 

System Gold software (32 Karat, version 5.0) to allow for the calculation of concentrations, 

expressed on a total Chl basis. Purified standards of Chl a, Chl b, β-carotene and lutein were 

purchased from Sigma-Aldrich (Oakville, ON). Standards of neoxanthin, violaxanthin, 

antheraxanthin and zeaxanthin were purified from photoinhibited spinach leaves using a TLC 

method (Diaz et al., 1990). Concentration and identification of standards were performed using a 

Bio-Rad SmartSpec Plus spectrophotometer (Bio-Rad, Philadelphia, PA). The equations of Holm 

(1954) were used to quantify standards of Chl a and Chl b while the equations of Bernhard and 

Grosjean (1995) were used to quantify standards of neoxanthin, violaxanthin, antheraxanthin, 

zeaxanthin, lutein and β-carotene. 

The epoxidation state (EPS) of the samples were estimated according to Thayer and 

Bjorkman (1992) as EPS = (V+0.5A)/ (V+A+Z), where V, A, and Z correspond to the 

concentrations of the xanthophyll carotenoids violaxanthin, antheraxanthin, and zeaxanthin, 

respectively. Xanthophyll pool size was calculated as the sum of violaxanthin, antheraxanthin, 

and zeaxanthin (V+A+Z). 

 

 3.2.10 Biomass accumulation and composition 

 Field grown plants were harvested, separated into roots and shoots and fresh weight (FW) 

was determined.  They were then placed into a drying oven (Labco, Lucknow, India) for a 

minimum of 48 h at 90°C or until constant weight was obtained for the determination of dry 

weight (DW).   Wheat straw composition was determined using an Ankom Model 200 Fiber 

Analyzer (Ankom Technology, Macedon, NY). Standard fiber detergent analysis methods (Van 

Soest and Wine, 1967; Poore et al., 1991) were used as described by the manufacturer. 

 

3.3 Results 

3.3.1 Preliminary results of 2007 growing year 

Upon inspection of the data, there was very little difference in the measured parameters 

between cultivars and many were indistinguishable from one another (Table A1). This could be 

due to the high variance of developing in a field environment. Photochemical efficiency varied 
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throughout the assortment of spring wheat cultivars. Additionally, xanthophyll pigment induction 

(PRI) was not altered by varying solar irradiance or photochemical efficiency. 

When field leaves were placed under photoinhibitory conditions, differences were seen 

between cultivars (Fig A1). Most cultivars had decreased photochemical efficiencies of 5-10% 

over the first two h of treatment. Many of the cultivars also displayed a quick decrease in 

photochemical efficiency over the first four h then a gradual decrease over the remainder. There 

were some exceptions, however. The amber durum cultivar, Kyle, had an immediate decrease in 

photochemical efficiency of 30% over the first four h only, then a slight recovery for the 

remainder of the treatment. Glenlea, an extra strong cultivar, had the best photoinhibitory 

tolerance after 4 h only to severely decrease its tolerance for the remainder of photoinhibition 

(Figure A1). 

 

3.3.2 Cultivar selection 

For the first field experiment in 2007, 11 spring wheat cultivars comprising 7 market 

varieties were selected for study based on percentage of seeded acres in Saskatchewan for the 

calendar year 2006 (Table 2.1) as reported in the Canadian Wheat Board Variety Survey (2006).  

 Based upon the data obtained during the 2007 field experiments, 4 of the 11 cultivars 

examined were chosen for further analyses in the 2008 field studies.  These included a Western 

Red Spring (McKenzie), a Western Amber Durum (Kyle), a Western Soft White Spring (AC 

Andrew) and a Western Hard White Spring (Snowbird). These particular cultivars were chosen 

primarily based on their tolerances to photoinhibition, cellulose contents and popularity among 

wheat growers. McKenzie was chosen due to its strong photoinhibitory resistance, high cellulose 

content and its popularity among wheat growers. Kyle is also popular among durum wheat 

growers and has low cellulose content and aberrant photoinhibitory characteristics in the field. 

AC Andrew also has great photoinhibitory tolerance and high biomass. Snowbird was chosen for 

further study because of its high cellulose content but poor photoinhibitory resistance in the field.  

 

 3.3.3 Meteorological data 

During the 2007 and 2008 growing seasons seed was sown on May 1 and 3, respectively. 

The leaves were sampled for photosynthetic studies on July 4 and 10 in 2007 and 2008 

respectively. Plants were harvested on August 20 in 2007 for compositional and biomass 
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analyses. No differences were observed in the daily average incoming solar irradiation between 

2007 and 2008 (Fig A2).  However, the mean rainfall decreased in 2008 (193 mm) in comparison 

to 2007 (297 mm; Fig A2). During both growing seasons the coldest month was May with 

average minimum temperatures of 4.2°C in 2007 and 2.3°C in 2008. In 2007, the maximum 

average temperature in the warmest month (July) was 27.5°C, while in 2008; the warmest month 

(August) presented a maximum average temperature of 25.3°C. 

 

 3.3.4 Photosynthesis and productivity 

Non-destructive approaches for monitoring photosynthetic function, which include 

spectral reflectance indices (SRI) and chlorophyll fluorescence, are particularly attractive as they 

can be used at the level of the single leaf as well as on larger scales. Chlorophyll a fluorescence 

parameters provide an efficient and non-invasive tool by which to investigate photosynthetic 

processes as well as to detect environmental stress in the photosynthetic apparatus (Krause and 

Weis 1991). A useful measurement to quantify the latter is the maximal quantum yield of PSII 

photochemistry or the FV/FM ratio (Lu et al., 2001; Baker and Rosenqvist, 2004). This ratio was 

used as an estimate of the photochemical efficiency of photosynthesis in these experiments.  

During plant stress, FV/FM will drop indicating a decrease in photochemical efficiency. This ratio 

can be measured easily in a field setting and is generally accepted as an index of plant health. In 

general, values exhibited minimal fluctuation among cultivars during the 2007 growing season 

(Table 3.1).  The cultivars AC Barrie (0.73 ± 0.02) and Kyle (0.72 ± 0.06) showed the lowest 

values while AC Vista (0.78 ± 0.01) and 5700 PR (0.78 ± 0.03) demonstrated the highest values 

(Table 3.1).   

 One of the most widely used SRI is the Normalized Difference Vegetation Index (NDVI), 

an index that was developed to assess productivity of plants. NDVI is calculated as a normalized 

difference between the reflectances of two biologically meaningful bands of the electromagnetic 

spectrum. It relates the difference between near infrared (NIR) reflectance and red wavelength 

(VIS) reflectance with the reflectance of both wavelength.  NDVI separates green vegetation 

from other vegetation by the absorption of red light by chlorophyll.  These same leaves reflect 

the near-infrared wavelength due to scattering caused by internal leaf structure (Tucker, 1979; 

Wiegand et al., 1991).  The NDVI was determined in 2007 field samples and values ranged from 

0.69 ± 0.02 in Kyle to 0.74 ± 0.01 in the cultivar 5700 PR (Table 3.1). 
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Table 3.1. Fluorescence (FV/FM) and reflectance (NDVI) parameters of wheat cultivars 
utilized in field experiments conducted in 2007 and 2008. Values were determined on flag leaf 
in the field using a portable fluorometer and reflectometer. Values represent means ± SD, (n = 3). 
 
 

Market Variety Cultivar FV/FM NDVI 
 
2007 Growing Season 
Canada Western Red Spring  AC Barrie 

McKenzie Superb 
0.73 ± 0.02 
0.76 ± 0.01 
0.77 ± 0.01 

0.73 ± 0.01 
0.73 ± 0.01 
0.73 ± 0.01 

Canada Western Amber Durum  AC Avonlea  
Kyle 

0.76 ± 0.02 
0.72 ± 0.06 

0.72 ± 0.01 
0.69 ± 0.02 

Canada Prairie Spring Red  AC Crystal 
5700 PR 

0.75 ± 0.02 
0.78 ± 0.03 

0.73 ± 0.01 
0.74 ± 0.01 

Canada Western Soft White Spring  AC Andrew 0.75 ± 0.04 0.72 ± 0.01 
Canada Western Extra Strong Glenlea 0.76 ± 0.02 0.73 ± 0.02 
Canada Western Hard White Spring  Snowbird 0.77 ± 0.02 0.70 ± 0.01 
Canada Prairie Spring White  AC Vista 0.78 ± 0.01 0.72 ± 0.02 
    
2008 Growing Season 
Canada Western Red Spring  McKenzie 0.80 ± 0.01 0.68 ± 0.01 
Canada Western Amber Durum  Kyle 0.78 ± 0.01 0.64 ± 0.03 
Canada Western Soft White Spring  AC Andrew 0.79 ± 0.01 0.68 ± 0.03 
Canada Western Hard White Spring  Snowbird 0.80 ± 0.01 0.67 ± 0.03 
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During the 2008 growing season the 4 cultivars examined presented FV/FM values of 0.78 

± 0.01 to 0.80 ± 0.01 (Table 3.1).  Values of NVDI were also relatively consistent among 

cultivars ranging from 0.64 ± 0.03 to 0.68 ± 0.01 (Table 3.1).  The wheat cultivar Kyle presented 

the lowest values for each of these parameters (Table 3.1). NDVI responds to changes in biomass 

and chlorophyll content, and hence serves as a useful measure or primary productivity. High 

NDVI values therefore indicate high leaf biomass (Prasad et al., 2009).  In fact, NDVI has been 

proposed as a means of estimating biomass and photosynthesis (or yield) in wheat and other 

cereals (Aparicio et al., 2000; Prasad et al., 2009).  

 Rates of photosynthesis were also determined in the field during 2008 using CO2 gas 

exchange.  Light- (A/Q) and CO2-response curves (A/Ci) were constructed for each of the 

cultivars (Figure A3) and these data were modeled and the photosynthetic parameters obtained 

are indicated in Table 3.2.  A/Q curves were determined at ambient CO2 concentrations of 400 

µmol mol-1, while A/Ci curves were measured at a saturating irradiance of 1300 µmol m-2 s-1. All 

measurements were expressed on a leaf area basis. When examined for response to irradiance, 

the McKenzie cultivar demonstrated the highest values of Amax and Фa  (Table 3.2).  Snowbird 

exhibited the lowest Фa which was also reflected in its elevated light-compensation and 

saturation points. When the cultivars were examined in response to fluctuations of internal leaf 

CO2 concentrations (Ci) Snowbird demonstrated a 19-22% lower Amax and elevated Γ (CO2 

compensation point) (Table 3.4).  Carboxylation efficiency was 2.1- to 2.5-fold greater in 

McKenzie which also had the highest respiration and WUE values, as a result of lower E (Table 

3.4).  These data suggest that McKenzie is photosynthetically a superior cultivar while Snowbird 

may be less responsive to changing irradiance and CO2 conditions.  

     

 3.3.5 Plant biomass 

At the end of the 2007 growing season plants were harvested and biomass approximated 

by plant DW.  These data are presented in Fig. 3.1A.  The cultivars AC Avonlea, Kyle and 

Glenlea exhibited the greatest dry matter accumulation, followed by Superb and AC Vista (Fig. 

3.1A).  Overall, minimal differences were observed among the cultivars (Fig. 3.1A).  Root to 

shoot ratios are presented in Fig. 3.1B and approximate carbon partitioning.  Values were 

relatively consistent among the cultivars with Kyle, 5700 PR and Glenlea demonstrating greater 

partition to the root system (Fig. 3.1B).  
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Table 3.2.  Photosynthetic parameters derived from modeled light- (A/Q) and CO2-response 
(A/Ci) curves for wheat cultivars utilized in field experiments conducted in 2008. Values 
were determined on flag leaf in the field using a portable IRGA. Values represent means ± SD, 
(n=3). 

 
 
 

  

 

  

  

 

 

 

 

 

 

 

Photosynthetic Parameter McKenzie Kyle AC Andrew Snowbird 
     
Amax (µmol CO2 m-2 s-1)a 40.30 ± 0.92 32.27 ± 1.10 34.60 ± 1.08 31.27 ± 1.23 
Фa CO2 (µmol CO2/µmol photons) 

a 0.424 ± 0.019 0.346 ± 0.097 0.371 ± 0.022 0.245 ± 0.040 

Light compensation point (µmol m-

2 s-1) a 7.96 ± 0.80 7.71 ± 1.87 8.80 ± 2.61 9.03 ± 0.09 

Light saturation point (µmol m-2 s-

1) a 103.00 ± 2.65 105.77 ± 
27.29 102.33 ± 6.03 138.67 ± 15.50 

R1 (µmol CO2 m-2 s-1) a -3.38 ± 0.48 -2.56 ± 0.31 -3.29 ± 1.15 -2.21 ± 0.37 
     
Amax (µmol CO2 m-2 s-1)b 99.20 ± 5.83 98.13 ± 8.24 94.50 ± 8.01 76.53 ± 2.01 
CE (µmol CO2 m-2 s-1) b 1.12 ± 0.50 0.51 ± 0.14 0.44 ± 0.09 0.54 ± 0.01 
Resp (µmol CO2 m-2 s-1) b -32.90 ± 8.71 -24.93 ± 8.85 -19.63 ± 0.91 -24.62 ± 0.81 
Γ ( µmol CO2 mol-1) b 45.5 ± 4.84 63.9 ± 8.98 57.3 ± 12.0 66.3 ± 3.75 
     
Vc,max (μmol m-2 s-1)b 123.1 ± 1.0 70.0 ± 8.1 83.1 ± 7.0 62.2 ± 0.32 
Jmax (μmol m-2 s-1)b 457.2 ± 98.8 330.3 ± 65.9 343.3 ± 2.1 235.7 ± 6.5 
TPU (μmol m-2 s-1)b 19.5 ± 2.05 17.37 ± 0.64 20.5 ± 0.6 14.5 ± 0.45 
     
Transpiration rate (mmol H2O m-2 
s-1)c 5.16 ± 0.10 7.34 ± 1.16 7.59 ± 2.10 7.55 ± 0.71 

Stomatal conductance (mol m-2 s-1)c 0.313 ± 0.003 0.304 ± 0.005 0.323 ± 0.016 0.305 ± 0.061 
Intrinsic water use efficiency (µmol 
CO2 mmol H2O-1)c 6.69 ± 0.18 3.98 ± 0.41 4.19 ± 1.44 3.65 ± 0.24 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Whole plant biomass accumulation as estimated by dry weight (A) and root:shoot 
ratios (B) in various cultivars of wheat grown in the field experiments conducted in the 
calendar year 2007. Values represent the means of individual whole plants ± SD, n = 6. 
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The composition of the wheat straw after combining in late August was also determined 

and is presented in Table 3.3.  This procedure separates material into ash, lignin, cellulose and 

hemicellulose fractions.  Cellulose and hemicellulose are sugar polymers and major structural 

components of the plant cell wall. Lignins are long polymers of cinnamoyl-alcohols derived from 

phenylpropanoids and usually associate with plant secondary cell walls (Baucher et al., 1999).  

Lignin content was 7.4 ± 0.1% in the cultivars AC Avonlea and 5700 PR, reaching up to 12.5 

±.0.1% in Kyle (Table 3.3).  Cellulose content was 33.1 ± 0.6% in Kyle to 40.7 ± 0.1% in 

McKenzie while hemicellulose values ranged from 17.6 ± 0.3% in Glenlea to 23.6 ± 0.8% in AC 

Andrew (Table 3.3). 

3.3.6 Susceptibility to photoinhibition  

 Exposure of leaves grown during 2008 to photoinhibition at low temperature resulted in a 

49 to 53% decrease in normalized FV/FM values over 8 h compared to starting values (Fig. 3.2; 

Table 3.1).  Minimal differences were present at 1 h but separation between cultivars became 

evident after 2 h which was maintained at the 4 h point. McKenzie was 11 and 12% more 

tolerant than Kyle at these points respectively (Fig. 3.2), with AC Andrew and Snowbird 

demonstrating intermediary values (Fig. 3.2).  No difference between the cultivars was visible 

after 8 h (Fig. 3.2).  

 Plants utilize several mechanisms to alleviate the damage caused by absorbing more light 

than can be used for CO2 fixation.  A universal photoprotective process is the non-photochemical 

quenching (NPQ) of excess excitation energy in the light-harvesting antenna pigment bed of PSII 

(Malkin and Niyogi, 1999). While NPQ generation is a complicated process, the operation of the 

xanthophyll plays a major role. This cycle involves the de-epoxidation of a carotenoid pigment, 

violaxanthin into antheraxanthin and zeaxanthin (Demmig-Adams, 1992; Holt et al., 2005). 

The carotenoid levels were investigated both pre- and post-photoinhibition. Xanthophyll 

concentrations were normalized to chlorophyll as chlorophyll abundance varied little between 

samples (data not shown).  In general, minimal differences were observed in β-carotene, lutein 

and neoxanthin between cultivars or as a result of photoinhibitory treatment (Table 3.4).  Prior to 

photoinhibition, AC Andrew had the lowest amount of β-carotene (40 to 53% over the other 

cultivars) while Snowbird contained greater amounts of lutein compared to the other cultivars 

(1.6 to 1.8-fold; Table 3.4).  Post-photoinhibition AC Andrew contained lower amounts of β-

carotene (41 to 50%) and neoxanthin (39 to 56%; Table 3.4).  While the pool size of xanthophyll  
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Table 3.3. Composition of wheat straw from cultivars utilized in field experiments 
conducted in 2007. A fiber detergent analyser was used on flag leaves. Values represent means ± 
SD, (n = 2). *NPE, non-polar extract. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Market 
Variety 

Cultivar % of FW 

  Ash Lignin Cellulose Hemicellulo
se 

NPE* 

Western 
Red 
Spring  

AC Barrie 
 
McKenzie  
 
Superb 

4.6 ± 0.1 
 
4.6 ± 0.0 
 
3.8 ± 0.2 
 

10.4 ± 0.1 
 
7.8 ± 0.0 
 
8.4 ± 0.2 

38.8 ± 0.6 
 
40.7 ± 0.1 
 
39.3 ± 0.9 

19.7 ± 0.1 
 
21.4 ± 0.5 
 
22.0 ± 0.0 

26.4 ± 0.8 
 
25.5 ± 0.6 
 
26.6 ± 0.2 

Western 
Amber 
Durum  

AC Avonlea 
 
Kyle 

2.8 ± 0.0 
 
2.8 ± 0.1 
 

7.4 ± 0.0 
 
12.5 ± 0.1 

38.7 ± 0.1 
 
33.1 ± 0.6 

23.4 ± 0.3 
 
19.1 ± 0.0 

27.7 ± 0.4 
 
32.6 ± 1.2 

Prairie 
Spring 
Red  

AC Crystal 
 
5700 PR 

4.0 ± 0.2 
 
3.9 ± 0.0 
 

12.2 ± 0.2 
 
7.4 ± 0.0 

34.7 ± 0.1 
 
39.0 ± 0.1 

23.5 ± 0.7 
 
22.5 ± 0.3 

25.6 ± 1.1 
 
27.2 ± 0.1 

Western 
Soft 
White 
Spring  

AC Andrew 3.3 ± 0.2 7.8 ± 0.1 39.2 ± 0.6 23.6 ± 0.8 26.0 ± 0.7 

Western 
Extra 
Strong 

Glenlea 3.5 ± 0.0 8.1 ± 0.0 36.3 ± 0.5 17.6 ± 0.3 34.4 ± 0.9 

Western 
Hard 
White 
Spring  

Snowbird 5.0 ± 0.0 9.7 ± 0.0 39.3 ± 0.2 20.8 ± 0.2 25.2 ± 0.5 

Prairie 
Spring 
White  

AC Vista 3.3 ± 0.1 13.1 ± 0.1 35.6 ± 0.2 22.7 ± 0.7 25.2 ± 1.7 



33 

Table 3.4. Photosynthetic pigment content of wheat cultivars grown in the field during 2008 
and utilized for photoinhibition studies. HPLC analysis was performed on flag leaf. Values 
represent the means ± SD, n = 3 *nd, not-detected. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cultivar β-C L N V A Z V+A+Z EPS 
 (mmol mol-1 Chl a+b)  
Pre-Photoinhibition 
McKenzie  84.6 ± 

6.0 
82.0 ± 
11.4 

21.0 ± 
1.6 

68.1 ± 
6.3 

3.1 ± 0.3 nd* 71.2 ± 
7.3 

0.98 ± 
0.04 

Kyle 66.8 ± 
6.1 

92.0 ± 
4.7 

24.6 ± 
1.9 

72.7 ± 
5.6 

3.1 ± 0.3 0.8 ± 0.8 76.7 ± 
10.8 

0.97 ± 
0.06 

AC 
Andrew 

39.7 ± 
2.1 

93.3 ± 
5.7 

22.2 ± 
1.8 

53.6 ± 
3.8 

3.6 ± 0.4 0.9 ± 0.6 58.1 ± 
11.2 

0.95 ± 
0.02 

Snowbird 68.1 ± 
7.1 

146.4 ± 
16.7 

25.4 ± 
1.5 

72.1 ± 
5.3 

2.7 ± 0.2 nd 74.8 ± 
13.8 

0.98 ± 
0.05 

Post-Photoinhibition (8h) 
McKenzie 64.8 ± 

6.0 
99.0 ± 
10.2 

18.2 ± 
1.7 

nd 11.7 ± 
0.9 

63.5 ± 
4.5 

75.2 ± 
6.0 

0.08 ± 
0.05 

Kyle 59.2 ± 
3.8 

103.8 ± 
12.9 

25.0 ± 
3.3 

nd 12.3 ± 
1.4 

68.8 ± 
4.7 

81.2 ± 
6.7 

0.08 ± 
0.03 

AC 
Andrew 

35.2 ± 
2.5 

105.0 ± 
12.8 

11.2 ± 
1.0 

nd 15.9 ± 
1.6 

50.6 ± 
2.6 

66.5 ± 
4.7 

0.12 ± 
0.03 

Snowbird 70.0 ± 
5.1 

102.5 ± 
5.4 

24.2 ± 
2.2 

nd 13.0 ± 
0.7 

63.5 ± 
2.9 

76.5 ± 
4.0 

0.08 ± 
0.04 
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Fig. 3.2. Photoinhibitory responses estimated by the Chl fluorescence parameter FV/FM in 
various cultivars of wheat grown in field experiments for the calendar year 2008. Values 
represent the means ± SD, n = 3. When not present error bars are smaller than symbol size.  
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cycle carotenoids remained similar among the cultivars in response to photoinhibition, the 

xanthophyll cycle was clearly active as demonstrated by the 87 to 92% decrease in the EPS for 

all cultivars (Table 3.4).  Of note was a lower xanthophyll pool size (11 to 25%) and engagement 

state for the AC Andrew cultivar in comparison to the others (Table 3.4). 
 
3.4 Discussion 

Field-grown plants from the 2007 growing year were apparently more resistant to 

photoinhibition than plants from 2008. This may be attributable to lower amounts of 

precipitation in the 2008 growing season. Interestingly, NDVI values were somewhat lower 

during 2008 which may also reflect the environmental conditions (Table 3.1). Another 

photoinhibition study in field-grown wheat found a 40-50% drop in FV/FM in only 3 h under 

similar photoinhibitory conditions (Yang et al., 2006). Studies on chamber-grown winter rye and 

wheat have found a decrease in FV/FM of up to 50% over an 8 h photoinhibitory treatment 

(Hurry, et al. 1992). 

Estimates of crop biomass and yield (photosynthesis) are frequently required in breeding 

programs as well as for crop management applications.  This study investigated these parameters 

in the field for a range of spring wheat cultivars commonly grown in Saskatchewan. Two non-

destructive techniques, Chl fluorescence and leaf spectral reflectance, as well as CO2 gas 

exchange was used for this purpose.  In addition, wheat straw composition was also determined 

using a fiber detergent analysis method. While cellulose can be hydrolyzed into readily-

fermentable glucose, hemicellulose and lignin cannot and are antagonistic to the fermentation 

process.  High lignin content makes the fermentation process of lignocellulosic biomass into 

ethanol difficult (Sun and Cheng, 2002). In fact, it has also been shown that lignin and cellulose 

contents are inversely proportional (Sun and Cheng, 2002; Baucher et al., 1999). This means that 

high lignin content would also mean low cellulose content. Therefore, the ideal plant for 

fermentation would have minimal amounts of lignin. From studying the composition analysis 

data, it is clear that some varieties (Kyle, AC Vista, AC Crystal) have higher lignin and lower 

cellulose content than other varieties (McKenzie, 5700PR, AC Avonlea). It can be concluded that 

some varieties show a slight advantage over others in composition for energy purposes. 

However, these slight differences are unlikely to prove significant during ethanol production. 

Overall, under field conditions there were very few differences between cultivars currently 
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produced in Saskatchewan and the Prairies in terms of their photosynthetic performance.  While 

some cultivars exhibited photosynthetic traits which were improved over others, these 

differences are small and not likely to contribute to large change in biomass. This was verified 

based on DW accumulation and biomass composition. Other field studies have found that an 

increase in NPQ by the induction of Z and A have directly increased photoinhibitory resistance 

and it is likely a similar process is occurring in the cultivars examined in this study (Martinez-

Ferri, 2004 et al.; Lu, 2001 et al.; Lu et al., 2003). Compared to the other cultivars, AC Andrew 

had significantly lower zeaxanthin concentration after photoinhibition. However this did not 

appear to diminish its photoinhibitory resistance. Thus, none of the cultivars examined present 

any advantage to a producer interested in using their crop for alternative energy purposes. 
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4.0 PHOTOSYNTHESIS UNDER CONTROLLED ENVIRONMENTAL CONDITIONS 

 

4.1 Introduction 

Current data indicates the earth's climate is rapidly changing. Among the most prevalent 

is the rise in atmospheric carbon dioxide due to fossil fuel emissions. Current atmospheric 

concentration is in the range of 375-400 µmol mol-1 but is expected to rise to 600 µmol mol-1 as 

early as 2050 (Zeng et al. 2004). An effect of this change will be an increase in global 

temperature as well as severe day/night fluctuations. An increase in CO2 could also alter plant 

metabolism by perturbing Rubisco carboxylation and photosynthetic balance. 

Studies performed by forced-air CO2 enrichment (FACE) indicate that plants grown 

above ambient CO2 will accumulate more carbon biomass (Ainsworth and Long, 2005). C3 

plants have been shown to be especially responsive to increased CO2 as Rubisco’s carboxylation 

reaction is heavily favoured to the oxygenation reaction, decreasing photorespiration. This is also 

due to increased substrate for Rubisco which leads to elevated photosynthetic rates. Other direct 

benefits are increased water use efficiency due to decreased stomatal conductance/frequency and 

increased carboxylation and electron transport rates (Ainsworth and Long, 2005; Alonso et al., 

2009). Correlations have been shown between photoinhibitory tolerance and CO2 growth regime. 

Plants grown in high CO2 tend to be more photosynthetically resilient compared to those grown 

in ambient air (Hymus et al. 2001a, Gutiérrez et al. 2009). 

Cold acclimation is growth and development at low, non-freezing temperatures to acquire 

eventual freezing tolerance. In this process, plants must undergo photosynthetic adjustment to 

low/freezing temperature (Huner et al., 1998; Ensminger et al., 2006). Acclimation usually 

begins with low temperature stress and results with a plant more metabolically fit for future cold 

and photoinhibitory stress. The plant usually does this by increasing the abundance and activity 

of Calvin cycle enzymes (Strand et al., 1999; Hurry et al., 2000). Cold acclimated plants have 

been shown to be more resistant to photoinhibition than non acclimated plants (Hurry et al., 

1995). 

The purpose of this study is to characterise the photosynthesis of wheat cultivars grown 

in non-acclimating, cold-acclimating, high CO2/non-acclimating and high CO2/cold-acclimating 

conditions. Light and CO2 curves will be performed to determine carbon assimilation rate as well 

as other modelled values. Photochemical efficiency (FV/FM) and xanthophyll conversion 
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(zeaxanthin induction) will be monitored during photoinhibitory stress. HPLC methods will be 

used to calculate epoxidation state (EPS) which is a relative index of xanthophylls converted to 

zeaxanthin.  Data obtained should give insight into photosynthetic performance of these wheat 

cultivars under a variety of growth regimes. 

 

4.2 Materials and methods 

4.2.1 Plant material 

Five wheat (Triticum spp.) cultivars from five market varieties were selected for study 

based on results from preliminary field trials. These cultivars were chosen for further analyses 

based on differing photoinhibitory responses and biomass characteristics (chapter 3.0). CDC 

Raptor was also chosen for further study as it is a winter wheat and has different responses 

during cold acclimation (Hurry and Huner, 1992). Seeds were sown in coarse vermiculate in 10 

cm pots at a density of five seeds/pot and were irrigated with Hoagland nutrient solution as 

needed (Gray et al., 1996). Plants were grown at ambient CO2 in Conviron E8H and PGR15 

controlled environment chambers (Conviron, Winnipeg MB) at 20°C and 5°C, respectively. 

Irradiance was provided by fluorescent lights at 250 µmol m-2 s-1 PPFD and a 16/8 h light/dark 

cycle. Plants were also grown at 750 µmol mol-1 CO2 under similar conditions in a GCW15 

Conviron environmental growth chamber (Chargin Falls, OH, USA) using a CO2 injector 

monitored by a WMA-4 infrared CO2 analyzer (PP Systems International, Inc. Amesbury, MA, 

USA. Plants were grown from seed and sampled at second fully-expanded leaf stage which took 

9,11, 60 and 80 days in non acclimated/high CO2, non acclimated/ambient CO2, cold 

acclimated/high CO2 and cold acclimated/ambient CO2 growth regimes, respectively. Seeds were 

obtained from the Crop Development Centre at the University of Saskatchewan (Saskatoon SK). 

 

4.2.2 Measurements of CO2 exchange 

CO2 gas exchange was determined as described previously in section 3.2.5 with some 

exceptions. A/Q curve measurements had CO2 concentrations (Ci) ranging from 190-550 µmol 

mol-1 over the course of the experiment. Humidity of incoming air was controlled at 1.6-2.5 kPa 

vpdL based on Tleaf which ranged from 19.7-21.3 °C, resulting in humidity values of 20-57%. 

A/Ci curves were constructed with Ci values ranging from to 48 to 845 µmol mol-1.  Humidity of 

incoming air was controlled at 1.5-3.4 kPa vpdL based on Tleaf which ranged from 19.8-21.4°C 
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during the experiment, resulting in humidity values of 15-47%. 

 

4.2.3 Spectral Reflectance 

Reflectance measurements of NDVI and PRI were performed as described in section 

3.2.6. 

 

4.2.4 Chlorophyll fluorescence 

Measurements of Chl fluorescence occurred as described in section 3.2.7. 

 

4.2.5 Low-temperature photoinhibition 

Photoinhibition was performed as described in section 3.2.8. 

 

4.2.6 Pigment extraction and determination 

Photosynthetic pigments wee extracted and determined as described previously in section 

3.2.9. 

4.3 Results 

4.3.1 Software-modelled values from light and CO2 response curves.  

To estimate certain photosynthetic values, modelling software was used (Tables 4.1-4.5, Fig B1). 

In light saturated curves, Amax averages ranged between 20 and 26 µmol CO2 m-2 s-1 for all non 

acclimated and non acclimated/high CO2 cultivars. In most cases, Amax values were almost 40-

50% lower when grown in cold acclimated and cold acclimated/high CO2 growth regimes. An 

exception is AC Andrew where Amax dropped 70% in cold acclimated/high CO2 grown leaves. 

Light compensation averages ranged between 12 and 23 µmol m-2 s-1 in all non acclimated plants 

and all saw a 2-8 fold increase when grown in cold-acclimating conditions. Light saturation 

points did not seem to vary much throughout cultivars or growth regimes but there were some 

exceptions. In McKenzie light saturation points increased almost 30% when cold acclimated. In 

Kyle and Snowbird, cold-acclimation at ambient CO2 caused 30 and 50% decreases in light 

saturation points. Фa seemed to be highest in cold acclimated/ambient CO2 but no other clear 

trend was observed between cultivars.  Dark respiration levels varied throughout all cultivars and 

environmental treatments between -0.63 ± 0.38 and -3.35 ± 0.62 µmol CO2 m-2 s-1. In most cases 

R1 was highest in plants that were cold acclimated. 
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Table 4.1. Photosynthetic parameters of Mckenzie wheat derived from modeled light- (A/Q) 
and CO2-response (A/Ci) curves in controlled chamber experiments. Values represent means 
± SD, (n = 3). 

Photosynthetic Parameter Non-Acc. Cold-Acc. Non-Acc./High 
CO2 

Cold-Acc./High 
CO2 

     
Amax (µmol CO2 m-2 s-1) 20.73 ± 2.69 16.27 ± 3.49 25.93 ± 0.31 18.13 ± 3.44 
ɸa CO2 (µmol CO2/µmol 
photons)  0.26 ± 0.11 0.47 ± 0.03 0.16 ± 0.01 0.28 ± 0.03 
Light compensation point (µmol 
m-2 s-1)  15.73 ± 2.08 39.13 ± 5.38 20.5 ± 2.79 73.32 ± 2.17 
Light saturation point (µmol m-2 

s-1)  
290.67 ± 
42.03 444 ± 32.51 381 ± 12.29 465.5 ± 47.6 

R1 (µmol CO2 m-2 s-1)  -1.19 ± 0.18 -1.35 ± 0.23 -1.48 ± 0.21 -3.35 ± 0.62 
     
Amax (µmol CO2 m-2 s-1) 38.57 ± 3.41 72.5 ± 12.22 45.63 ± 5.26 51.33 ± 4.93 
CE (mol CO2 m-2 s-1)  0.32 ± 0.03 0.20 ± 0.02 0.35 ± 0.09 0.15 ± 0.01 
Resp (µmol CO2 m-2 s-1)  -9.95 ± 0.69 -10.62 ± 2.77 -10.76 ± 2.41 -12.08 ± 2.01 

Γ ( µmol CO2 mol-1)  

42.24 ± 0.39 70.66 ± 2.96 40.86 ± 2.57 
100.38 ± 
14.41 

     
Vc,max (μmol m-2 s-1) 42.6 ± 2.31 52.7 ± 12.33 48.1 ± 2.26 43.4 ± 2.69 

Jmax (μmol m-2 s-1) 113.67 ± 
15.04 208 ± 27.5 132.33 ± 9.61 156.73 ± 3.33 

TPU (μmol m-2 s-1) 7.32 ± 0.76 13.3 ± 1.61 10.09 ± 1.97 10.35 ± 0.73 
     
Transpiration rate (mmol H2O 
m-2 s-1) 3.49 ± 0.52 2.84 ± 0.71 2.6 ± 0.07 2.66 ± 0.53 
Stomatal conductance (mol m-2 
s-1) 0.19 ± 0.03 0.10 ± 0.03 0.40 ± 0.06 0.12 ± 0.04 
Intrinsic water use efficiency 
(µmol CO2 mmol H2O-1) 4.83 ± 0.5 3.98 ± 0.72 7.61 ± 0.04 3.67 ± 0.54 
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Table 4.2.  Photosynthetic parameters of Kyle wheat derived from modeled light- (A/Q) and 
CO2-response (A/Ci) curves in controlled chamber experiments. Values represent means ± 
SD, (n = 3).   
 

Photosynthetic Parameter Non-Acc. Cold-Acc. Non-Acc./High 
CO2 

Cold-Acc./High 
CO2 

     
Amax (µmol CO2 m-2 s-1) 24.27 ± 4.27 14.8 ± 1.71 20.8 ± 2.13 14.08 ± 2 
ɸa CO2 (µmol CO2/µmol 
photons)  0.48 ± 0.07 0.88 ± 0.10 0.51 ± 0.06 0.26 ± 0.06 
Light compensation point (µmol 
m-2 s-1)  13.3 ± 1.75 26.67 ± 7.37 12.39 ± 2.11 62.2 ± 6.27 
Light saturation point (µmol m-2 

s-1)  366 ± 39.04 
222.33 ± 
22.72 312 ± 14.11 

408.53 ± 
20.34 

R1 (µmol CO2 m-2 s-1)  -0.91 ± 0.11 -1.73 ± 0.18 -0.82 ± 0.2 -2.52 ± 0.38 
     
Amax (µmol CO2 m-2 s-1) 44.00 ± 3 34.7 ± 2.01 37.87 ± 1.81 32.01 ± 5.07 
CE (mol CO2 m-2 s-1)  0.31 ± 0.06 0.09 ± 0.02 0.38 ± 0.04 0.17 ± 0.05 
Resp (µmol CO2 m-2 s-1)  -9.22 ± 1.98 -7.81 ± 1.75 -10.1 ± 1.08 -7.83 ± 0.8 
Γ ( µmol CO2 mol-1)  37.21 ± 2.86 67.81 ± 1.18 40.17 ± 0.38 72.25 ± 9.18 
     
Vc,max (μmol m-2 s-1) 51.86 ± 9.37 31.33 ± 2.2 39.8 ± 4.36 33.66 ± 4.45 
Jmax (μmol m-2 s-1) 134.33 ± 7.57 107 ± 7 108 ± 6 90.52 ± 9.85 
TPU (μmol m-2 s-1) 10.14 ± 0.83 6.26 ± 0.79 8.74 ± 0.45 5.8 ± 0.6 
     
Transpiration rate (mmol H2O 
m-2 s-1) 4.14 ± 0.73 3.47 ± 0.14 3.98 ± 0.43 2.14 ± 0.45 
Stomatal conductance (mol m-2 
s-1) 0.24 ± 0.06 0.12 ± 0.00 0.24 ± 0.04 0.09 ± 0.02 
Intrinsic water use efficiency 
(µmol CO2 mmol H2O-1) 4.72 ± 0.4 3.35 ± 0.22 4.35 ± 0.14 4.26 ± 0.52 
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Table 4.3.  Photosynthetic parameters of AC Andrew wheat derived from modeled light- 
(A/Q) and CO2-response (A/Ci) curves in controlled chamber experiments. Values represent 
means ± SD, (n = 3).   
 

Photosynthetic Parameter Non-Acc. Cold-Acc. Non-Acc./High 
CO2 

Cold-Acc./High 
CO2 

     
Amax (µmol CO2 m-2 s-1) 22.93 ± 1.86 13.93 ± 1.01 22.63 ± 1.01 6.8 ± 1.93 
ɸa CO2 (µmol CO2/µmol photons)  0.27 ± 0.06 0.74 ± 0.10 0.38 ± 0.07 0.27 ± 0.04 
Light compensation point (µmol 
m-2 s-1)  17.5 ± 0.72 39.63 ± 10.49 12.77 ± 0.75 103.1 ± 16.95 
Light saturation point (µmol m-2 s-

1)  326.33 ± 18.5 365 ± 27.84 326 ± 27.62 331 ± 37.32 
R1 (µmol CO2 m-2 s-1)  -1.3 ± 0.05 -1.81 ± 0.38 -0.84 ± 0.09 -2.06 ± 0.29 
     
Amax (µmol CO2 m-2 s-1) 37.9 ± 1.39 41.1 ± 3.73 39.37 ± 3.98 85.53 ± 9.35 
CE (mol CO2 m-2 s-1)  0.27 ± 0.01 0.14 ± 0.02 0.24 ± 0.05 0.08 ± 0.02 
Resp (µmol CO2 m-2 s-1)  -7.96 ± 0.77 -5.99 ± 0.69 -6.77 ± 2.34 -9.5 ± 1.77 
Γ ( µmol CO2 mol-1)  38.79 ± 3.26 50.04 ± 10.17 40.07 ± 0.99 143.12 ± 9.67 
     
Vc,max (μmol m-2 s-1) 42.67 ± 11.33 36.1 ± 5.12 68.9 ± 3.8 35.37 ± 6.85 

Jmax (μmol m-2 s-1) 
114 ± 4.36 

122.33 ± 
25.93 84.7 ± 11.59 114.2 ± 28.88 

TPU (μmol m-2 s-1) 7.3 ± 0.18 8.06 ± 1.69 10.73 ± 0.5 9.65 ± 2.09 
     
Transpiration rate (mmol H2O m-2 
s-1) 3.87 ± 0.15 2.41 ± 0.98 3.25 ± 0.81 1.04 ± 0.3 
Stomatal conductance (mol m-2 s-

1) 0.21 ± 0.01 0.11 ± 0.01 0.21 ± 0.07 0.05 ± 0.02 
Intrinsic water use efficiency 
(µmol CO2 mmol H2O-1) 4.53 ± 0.32 5.33 ± 1.53 4.96 ± 0.33 3.61 ± 0.3 
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Table 4.4. Photosynthetic parameters of Snowbird wheat derived from modeled light- (A/Q) 
and CO2-response (A/Ci) curves in controlled chamber experiments. Values represent means 
± SD, (n = 3).   
 

Photosynthetic Parameter Non-Acc. Cold-Acc. Non-Acc./High 
CO2 

Cold-Acc./High 
CO2 

     
Amax (µmol CO2 m-2 s-1) 24.37 ± 0.64 14.7 ± 1.41 20.63 ± 0.67 11.83 ± 0.25 
ɸa CO2 (µmol CO2/µmol photons)  0.16 ± 0.03 0.89 ± 0.02 0.27 ± 0.01 0.28 ± 0.06 
Light compensation point (µmol 
m-2 s-1)  15.73 ± 0.85 10.62 ± 3.18 14.53 ± 1.63 73.6 ± 9.34 
Light saturation point (µmol m-2 s-

1)  317 ± 26.06 
148.67 ± 
27.02 294 ± 11.79 

495.67 ± 
10.97 

R1 (µmol CO2 m-2 s-1)  -1.27 ± 0 -1.2 ± 0.53 -1.05 ± 0.07 -1.84 ± 0.08 
     
Amax (µmol CO2 m-2 s-1) 45.93 ± 0.46 51.3 ± 5.38 40.27 ± 0.93 32.21 ± 0.58 
CE (mol CO2 m-2 s-1)  0.30 ± 0.02 0.15 ± 0.04 0.26 ± 0.03 0.18 ± 0.02 
Resp (µmol CO2 m-2 s-1)  -9.38 ± 0.47 -8.56 ± 1.76 -8.6 ± 0.83 -10.19 ± 0.19 
Γ ( µmol CO2 mol-1)  38.89 ± 0.79 68.00 ± 2.47 42.14 ± 0.99 85.57 ± 6.12 
     
Vc,max (μmol m-2 s-1) 45.83 ± 0.72 43.97 ± 6.23 39.5 ± 0.53 29.57 ± 0.15 

Jmax (μmol m-2 s-1) 
142.67 ± 0.58 

158.33 ± 
22.03 119 ± 1.73 92.01 ± 1.67 

TPU (μmol m-2 s-1) 9.09 ± 0.12 12.6 ± 1.54 9.39 ± 0.73 6.95 ± 0.47 
     
Transpiration rate (mmol H2O m-2 
s-1) 4.14 ± 0.28 3.16 ± 0.72 3.88 ± 0.1 2.16 ± 0.13 
Stomatal conductance (mol m-2 s-1 0.23 ± 0.02 0.12 ± 0.05 0.25 ± 0.01 0.12 ± 0.01 
Intrinsic water use efficiency 
(µmol CO2 mmol H2O-1) 4.51 ± 0.19 4.11 ± 0.49 4.34 ± 0.06 3.62 ± 0.15 
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Table 4.5. Photosynthetic parameters of CDC Raptor wheat derived from modeled light- 
(A/Q) and CO2-response (A/Ci) curves in controlled chamber experiments. Values represent 
means ± SD, (n = 3).   
 

Photosynthetic Parameter Non-Acc. Cold-Acc. Non-Acc./High 
CO2 

Cold-Acc./High 
CO2 

     
Amax (µmol CO2 m-2 s-1) 20.83 ± 1.87 11.86 ± 2.75 26.57 ± 3.73 10.76 ± 0.43 
ɸa CO2 (µmol CO2/µmol photons)  0.25 ± 0.03 0.35 ± 0.06 0.22 ± 0.03 0.26 ± 0.02 
Light compensation point (µmol 
m-2 s-1)  16.1 ± 1.65 66.97 ± 11.13 22.8 ± 3.58 88.9 ± 7.51 
Light saturation point (µmol m-2 s-

1)  
319.33 ± 
18.82 454 ± 82.93 

341.33 ± 
14.29 

383.93 ± 
40.03 

R1 (µmol CO2 m-2 s-1)  -1.04 ± 0.21 -0.63 ± 0.38 -2.04 ± 0.22 -3.25 ± 0.19 
     
Amax (µmol CO2 m-2 s-1) 35.37 ± 2.92 47.83 ± 5.05 49.03 ± 0.15 62.03 ± 12.03 
CE (mol CO2 m-2 s-1) 0.30 ± 0.09 0.11 ± 0.05 0.33 ± 0.01 0.11 ± 0.02 
Resp (µmol CO2 m-2 s-1)  -9.14 ± 2.38 -9.45 ± 2.21 -9.35 ± 1.43 -9.65 ± 2.13 
Γ ( µmol CO2 mol-1)  40.07 ± 1.48 68.79 ± 4.44 35.04 ± 6.12 112.81 ± 2.07 
     
Vc,max (μmol m-2 s-1) 35.73 ± 3.52 40.4 ± 6.09 48.03 ± 0.32 40.06 ± 5.58 
Jmax (μmol m-2 s-1) 104 ± 3.61 145.33 ± 23.5 156 ± 2.65 115.2 ± 35.03 
TPU (μmol m-2 s-1) 7.06 ± 0.15 15.6 ± 1.54 10.35 ± 1.52 6.84 ± 1.93 
     
Transpiration rate (mmol H2O m-2 
s-1) 3.77 ± 0.28 1.89 ± 0.60 2.89 ± 0.06 1.27 ± 0.14 
Stomatal conductance (mol m-2 s-1 0.26 ± 0.02 0.08 ± 0.05 0.41 ± 0.03 0.06 ± 0.01 
Intrinsic water use efficiency 
(µmol CO2 mmol H2O-1) 4.35 ± 0.62 3.72 ± 1.38 7.67 ± 0.26 4.58 ± 0.15 
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Stomatal conductance was 2-fold higher in non acclimated plants compared to cold 

acclimated plants when grown at ambient CO2. However when grown at high CO2, stomatal 

conductance was 3-4 fold higher in non acclimated plants. In both cases increases in stomatal 

conductance lead to increased water transpiration rates. However when transpiration rate is 

corrected for carbon assimilation rate, water use efficiency is similar (Kyle, AC Andrew) or 

higher (McKenzie, CDC Raptor, Snowbird). 

Curves for saturating CO2 were also modelled using similar software (Tables 4.1-4.5). 

Amax in this case, was found to be similar throughout cultivars and growth regimes and most were 

between 32.01 ± 5.1 and 51.3 ± 5.4 µmol CO2 m-2s-1. McKenzie however, had a two-fold 

increase when cold acclimated at ambient CO2, while AC Andrew had the same increase when 

cold acclimated at high CO2. CE averaged between 0.24 ± 0.05 and 0.38 ± 0.04 mol CO2 m-2 s-1 

in non acclimated and non acclimated high CO2 plants. These values dropped 30-60% when cold 

acclimated and varied between ambient and high CO2 grown-plants. Resp was usually the same 

throughout all growth regimes in CDC Raptor, Snowbird, Kyle and McKenzie with averaged 

values between -7.81 ± 1.75 and -12.08 ± 2.01. AC Andrew grown at non-acclimating/ambient 

CO2 was found to have a 20% drop in Resp when cold acclimated and when grown at high CO2. 

CO2 compensation points were usually double when comparing cold acclimated to non 

acclimated plants at ambient CO2. However, at high CO2, AC Andrew and CDC Raptor had CO2 

compensation values that were 3-fold higher in cold acclimated plants. 

Carboxylation rates were not significantly affected by growth regime in CDC Raptor and 

McKenzie. In the other cultivars, cold acclimation decreased carboxylation rates by as much as 

20%. Growth in high CO2 also increased carboxylation by 50% in AC Andrew when non 

acclimated. Conversely, Snowbird had decreased carboxylation rates at high CO2 when cold 

acclimated. Jmax did not significantly change in Kyle, AC Andrew, Snowbird and CDC Raptor 

and averaged between 84.7 ± 11.59 and 158.33 ± 22.03 µmol m-2s-1. McKenzie however had an 

electron transport rate of 208 ± 27.5 µmol m-2s-2 when cold acclimated at ambient CO2. Triose 

phosphate utilization was highest under cold-acclimating/ambient CO2 conditions except for 

Kyle.  Conversely, TPU was the lowest when cold acclimated and at high CO2. 

 

4.3.2 Photochemical efficiency before and after photoinhibition. 

Prior to photoinhibitory stress on wheat leaves, initial measurements were taken (Table 
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4.6). Initial values of FV/FM in non acclimated wheat were 0.77 ± 0.01 -0.79 ± 0.01 for all 

cultivars before photoinhibitory stress was applied, while cold acclimated cultivars ranged 

between 0.66 ± 0.01 and 0.74 ± 0.02. When grown at non acclimated/high CO2 and cold 

acclimated/high CO2, these values did not change much with values of 0.78 ± 0.01-0.80 ± 0.01 

and 0.61 ± 0.02-0.72 ± 0.02, respectively. 

As a measure of plant productivity, NDVI reflectance measurements were used. NDVI is 

calculated from the absorbance and reflectance of two different wavelength of light and has been 

used previously as and index of chlorophyll content (Gamon and Surfus, 1999). NDVI values 

fluctuated between all cultivars with no clear trend in each growth regime with averages between 

0.44 ± 0.05 and 0.72 ± 0.01. In McKenzie, Kyle and AC Andrew the lowest NDVIs were found 

in cold acclimated/high CO2 grown wheat. However, in Snowbird and CDC Raptor, the lowest 

NDVIs were found in plants grown in non acclimated/high CO2 growth regime. In general, the 

highest NDVI were found in the non acclimated/ambient CO2 plants. 

Resistance to photoinhibitory stress is a good indicator of photosynthetic vigour (Long et 

al., 1994). After 8 h of photoinhibitory stress were applied, non acclimated/ambient CO2 plants 

were found to be the least resistant (Table 4.6, Figure 4.1). Decrease in FV/FM for non acclimated 

plants was between 36 and 55% from initial values. The only exception is AC Andrew where 

non-acclimated/high CO2 was found to decrease the most out of all growth regimes at an average 

of 46%.  Other non acclimated/high CO2 plants were also found to be weakly resistant to 

photoinhibition ranging between 39.5 ± 5.35 and 47.04 ± 3.48%. Cold acclimated and cold 

acclimated/high CO2 plants had decreases of 16.24 ± 0.74-26.67 ± 1.2% and 3.06 ± 3.13 -24.43 ± 

3.52 %. AC Andrew and Snowbird both had average drops of a mere 3% in FV/FM in these cold 

acclimated/high CO2 leaves. This represents the most resistant cultivars and growth regime. Most 

cultivars saw the most dramatic decrease after 6 h of photoinhibition (Figure 4.1). After 4 h 

photoinhibition, all cultivars had a slight recovery in FV/FM compared to after 2 h photoinhibition 

in cold acclimated high CO2 plants. 

4.3.3 Xanthophyll pigment quantification during photoinhibition. 

As a result of photoinhibitory stress, photosynthetic xanthophyll pigments are induced 

(Demmig-Adams and Adams, 1996). HPLC analysis was performed on the entire second fully- 
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Table 4.6. Maximal fluorescence yield of PSII (FV/FM) and NDVI of wheat cultivars before 
photoinhibition. Also tabulated is the % drop in FV/FM after 8 h photoinhibition. Values 
represent means ± SD, (n = 3). 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Market Variety Cultivar Growth regime FV/FM NDVI % Drop 
FV/FM 

Canada Western 
Red Spring  

McKenzie  Non-Acc. 0.78 ± 0.01 0.69 ± 0.01 50.62 ± 2.22 
 Cold-Acc. 0.74 ± 0.02 0.65 ± 0.02 20.24 ± 3.85 
 Non-Acc./High CO2 0.79 ± 0.01 0.62 ± 0.05 39.5 ± 5.35 
 Cold-Acc./High CO2 0.72 ± 0.02 0.44 ± 0.05 12.47 ± 2.54 

Canada Western 
Amber Durum  

Kyle Non-Acc. 0.77 ± 0.01 0.57 ± 0.03 49.57 ± 1.35 
 Cold-Acc. 0.66 ± 0.01 0.50 ± 0.05 16.24 ± 0.74 
 Non-Acc./High CO2 0.79 ± 0.01 0.64 ± 0.03 47.04 ± 3.48 
 Cold-Acc./High CO2 0.66 ± 0.02 0.66 ± 0.01 10.99 ± 4.55 

Canada Western 
Soft White Spring  

AC Andrew Non-Acc. 0.77 ± 0.01 0.72 ± 0.01 36.64 ± 0.47 
 Cold-Acc. 0.72 ± 0.01 0.67 ± 0.03 20.73 ± 1.11 
 Non-Acc./High CO2 0.79 ± 0.00 0.69 ± 0.02 45.99 ± 6.37 
 Cold-Acc./High CO2 0.61 ± 0.02 0.48 ± 0.08 3.27 ± 1.68 

Canada Western 
Hard White Spring  

Snowbird Non-Acc. 0.77 ± 0.00 0.71 ± 0.01 55.84 ± 1.3 
 Cold-Acc. 0.75 ± 0.00 0.67 ± 0.02 26.67 ± 1.2 
 Non-Acc./High CO2 0.80 ± 0.01 0.59 ± 0.05 55.23 ± 3.77 
 Cold-Acc./High CO2 0.65 ± 0.02 0.62 ± 0.02 3.06 ± 3.13 

Canada Western 
Red Winter 

CDC Raptor Non-Acc. 0.78 ± 0.01 0.69 ± 0.01 47.24 ± 1.33 
 Cold-Acc. 0.71 ± 0.02 0.57 ± 0.03 22.03 ± 3.13 
 Non-Acc./High CO2 0.78 ± 0.01 0.54 ± 0.04 40.86 ± 3.5 
 Cold-Acc./High CO2 0.72 ± 0.01 0.61 ± 0.03 24.43 ± 3.52 
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Fig. 4.1. Photoinhibitory responses estimated by the Chl fluorescence parameter FV/FM in 
various cultivars of wheat grown in controlled environment chambers. Values represent the 
means ± SD, n = 3 as a percentage of FV/FM prior to photoinhibition. When not present, error 
bars are smaller than symbol size. 
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expanded leaf (Tables 4.7-4.11). β-carotene levels varied between cultivars but did not seem to 

be affected by growth regime or photoinhibitory treatment. Lutein levels were not visibly 

affected by photoinhibitory treatment but were usually the lowest in non acclimated/ambient CO2 

and even lower in non acclimated/high CO2 growth regime. Also there is no clear relationship 

between neoxanthin levels and photoinhibition/growth regime as values fluctuate. 

The most drastic differences are observed when observing the changes in violaxanthin, 

antheraxanthin and zeaxanthin during photoinhibition. Upon photoinhibition, violaxanthin is 

converted into antheraxanthin and eventually, zeaxanthin as a photoprotectant. In most cultivars, 

the total pool size of these three pigments (V+A+Z) is the same before and after 8 h 

photoinhibition. However, the greatest pool sizes are found in plants grown in ambient CO2 

under both non and cold-acclimating conditions. In cold acclimated Kyle and AC Andrew, the 

total pool is size is respectively 15 and 40% larger when compared to plants grown in cold 

acclimated/high CO2. 

Before photoinhibition, Zeaxanthin is very low compared to Violaxanthin or not even detected. 

After photoinhibition, the inverse is true. The 8 h photoinhibition was drastic enough to nearly 

convert all Violaxanthin into Antheraxanthin and Zeaxanthin. Post-inhibition, Antheraxanthin 

increased 3- to 4-fold in all cultivars and growth regimes. The most drastic examples of 

Zeaxanthin induction are shown under cold-acclimating/ambient CO2 conditions. Additionally, 

Zeaxanthin induction was also comparatively high in non-acclimating/ambient conditions 

compared to those grown in high CO2. Minimal differences were seen between cultivars. 

Two other ways to monitor the xanthophyll cycle is by monitoring EPS and PRI (Table 

4.12). EPS is reflected in the de-epoxidation of zeaxanthin from the V+A+Z pool. The higher the 

EPS value the more zeaxanthin is induced. In almost all cases, EPS before photoinhibition 

averaged between 0.91 ± 0.06 and 0.99 ± 0.04. The exception is non acclimated/ambient CO2 AC 

Andrew which has an EPS of 0.74 ± 0.04. This is due to high zeaxanthin levels in these samples. 

After photoinhibition, all samples EPS dropped between 0.90 and 0.71. EPS values appear to 

directly relate to zeaxanthin concentration. Values for PRI also increased during photoinhibition 

in all cultivars. Although PRI changed with EPS, it was not consistent and seemed to increase to 

varying amounts throughout cultivars and growth regimes. 
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Table 4.7. Photosynthetic pigment content of McKenzie wheat grown in controlled chamber 
experiments.  Plants were grown under controlled growth regimes as indicated and analyzed 
pre-and post-photoinhibition. Values represent means ± SD, (n = 3).*Not detected. 
 
 

Cultivar β-C L N V A Z V+A+Z 
(mmol mol-1 Chl a+b) 

Pre-Photoinhibition 
Non-Acc. 96.13 ± 

12.73 
148.01 ± 
20.48 

34.41 ± 
4.28 46.71 ± 4.3 1.58 ± 0.13 nd* 

48.28 ± 
4.88 

Cold-Acc. 
61.8 ± 7.08 

94.57 ± 
12.44 

46.63 ± 
5.73 

46.12 ± 
6.14 4.06 ± 0.53 2.6 ± 0.19 

52.77 ± 
7.54 

Non-
Acc./High 

CO2 

63.43 ± 
4.37 

141.29 ± 
9.66 

24.08 ± 
3.02 

31.59 ± 
3.28 3.61 ± 0.35 nd 35.2 ± 3.99 

Cold-
Acc./High 

CO2 

67.98 ± 
4.41 

185.7 ± 
15.17 12.38 ± 0.8 

37.23 ± 
4.44 5.81 ± 0.34 0.7 ± 0.08 

43.74 ± 
5.35 

Post-Photoinhibition (8h) 
Non-Acc. 111.9 ± 

6.46 
112.64 ± 
11.77 14.7 ± 1.31 Nd 9.34 ± 0.56 

44.98 ± 
3.17 54.32 ± 4.1 

Cold-Acc. 59.48 ± 
7.51 

123.53 ± 
14.18 

50.51 ± 
4.97 Nd 12.67 ± 0.7 

48.68 ± 
4.92 

61.35 ± 
6.17 

Non-
Acc./High 

CO2 

51.82 ± 
2.64 

130.38 ± 
12.75 7.04 ± 0.65 Nd 

11.13 ± 
1.03 

31.46 ± 
2.88 42.58 ± 4.3 

Cold-
Acc./High 

CO2 73.06 ± 8.3 
176.3 ± 
9.94 4.27 ± 0.58 Nd 

13.84 ± 
1.81 

44.24 ± 
2.65 58.08 ± 4.9 
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Table 4.8. Photosynthetic pigment content of Kyle wheat grown in controlled chamber 
experiments.  Plants were grown under controlled growth regimes as indicated and analyzed 
pre-and post-photoinhibition. Values represent means ± SD, (n = 3).*Not detected.  
 

Cultivar β-C L N V A Z V+A+Z 
(mmol mol-1 Chl a+b) 

Pre-Photoinhibition 
Non-Acc. 45.21 ± 

4.33 
153.96 ± 
17.68 

24.24 ± 
3.04 

63.13 ± 
5.63 2.27 ± 0.3 0.01 ± 0.9 65.4 ± 5.4 

Cold-Acc. 80.97 ± 
7.52 

107.73 ± 
13.32 

19.16 ± 
1.81 

75.75 ± 
4.26 3.96 ± 0.53 1.15 ± 0.66 

80.86 ± 
9.21 

Non-
Acc./High 

CO2 

66.72 ± 
4.13 

102.19 ± 
7.52 

17.17 ± 
1.02 43.62 ± 2.5 4.23 ± 0.43 0.02 ± 0.39 

47.85 ± 
7.57 

Cold-
Acc./High 

CO2 

68.01 ± 
5.13 

123.21 ± 
7.47 24.03 ± 1.2 

35.71 ± 
4.54 3.31 ± 0.24 0.5 ± 0.6 

39.52 ± 
10.73 

Post-Photoinhibition (8h) 
Non-Acc. 79.94 ± 

6.75 
151.59 ± 
14.33 

15.28 ± 
1.69 2.6 ± 0.28 9.84 ± 0.87 

53.37 ± 
2.84 

65.82 ± 
4.39 

Cold-Acc. 72.94 ± 
7.37 

123.2 ± 
16.74 16.84 ± 1.1 nd* 

20.12 ± 
1.19 

68.23 ± 
2.29 

88.35 ± 
3.82 

Non-
Acc./High 

CO2 

47.88 ± 
3.14 85.45 ± 4.8 

10.17 ± 
1.15 0.74 ± 0.06 

13.92 ± 
1.31 

36.76 ± 
2.53 51.41 ± 4.3 

Cold-
Acc./High 

CO2 

70.22 ± 
5.74 

169.73 ± 
22.88 

14.69 ± 
0.87 Nd 

12.44 ± 
1.45 

23.05 ± 
2.32 

35.49 ± 
4.15 
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Table 4.9. Photosynthetic pigment content of AC Andrew wheat grown in controlled 
chamber experiments.    Plants were grown under controlled growth regimes as indicated and 
analyzed pre-and post-photoinhibition. Values represent means ± SD, (n = 3).*Not detected.  
 

Cultivar β-C L N V A Z V+A+Z 
(mmol mol-1 Chl a+b) 

Pre-Photoinhibition 
Non-
Acc. 

68.65 ± 
5.79 

90.01 ± 
6.14 

17.89 ± 
2.42 

40.42 ± 
5.52 2.93 ± 0.17 

13.39 ± 
8.11 

56.74 ± 
9.67 

Cold-
Acc. 

84.24 ± 
7.75 

130.86 ± 
16.04 

16.03 ± 
1.35 

89.71 ± 
7.61 6.63 ± 0.45 4.06 ± 0.94 

100.39 ± 
8.2 

Non-
Acc./Hi
gh CO2 

85.07 ± 
6.64 

84.49 ± 
8.23 

21.95 ± 
2.91 

46.75 ± 
4.37 3.31 ± 0.24 0.00 ± 0.75 

50.06 ± 
10.03 

Cold-
Acc./Hi
gh CO2 67.2 ± 5.31 

100.75 ± 
5.56 

21.94 ± 
1.86 

43.29 ± 
3.57 2.98 ± 0.34 0.48 ± 0.58 

46.75 ± 
10.64 

Post-Photoinhibition (8h) 
Non-
Acc. 97.84 ± 8.9 

101.23 ± 
8.47 8.73 ± 0.54 0.38 ± 0.05 10.79 ± 0.7 

47.24 ± 
1.29 58.4 ± 2.24 

Cold-
Acc. 81.95 ± 6.9 

159.04 ± 
10.13 7.57 ± 0.57 3.47 ± 0.22 13.5 ± 1.54 

71.27 ± 
2.32 

88.25 ± 
4.47 

Non-
Acc./Hi
gh CO2 

 67.2 ± 4.1 
74.28 ± 
4.06 

12.01 ± 
1.59 Nd 

13.67 ± 
1.08 

40.96 ± 
2.67 

54.62 ± 
4.13 

Cold-
Acc./Hi
gh CO2 

72.67 ± 
4.46 

124.34 ± 
9.46 

16.77 ± 
1.38 Nd 11.64 ± 0.6 

36.24 ± 
1.98 

47.88 ± 
2.84 
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Table 4.10. Photosynthetic pigment content of Snowbird wheat grown in controlled 
chamber experiments.    Plants were grown under controlled growth regimes as indicated and 
analyzed pre-and post-photoinhibition. Values represent means ± SD, (n = 3).*Not detected.  
 

Cultivar β-C L N V A Z V+A+Z 
(mmol mol-1 Chl a+b) 

Pre-Photoinhibition 
Non-Acc. 

49 ± 3.22 
141.33 ± 
12.76 

20.74 ± 
2.81 

69.52 ± 
7.05 3.09 ± 0.42 1.31 ± 0.07 

73.92 ± 
8.29 

Cold-Acc. 
65.2 ± 3.27 

149.02 ± 
12.88 

25.31 ± 
1.52 

52.55 ± 
4.88 7.44 ± 0.74 7.17 ± 0.81 

67.15 ± 
7.07 

Non-
Acc./High 

CO2 

55.33 ± 
6.24 

87.58 ± 
8.57 

23.89 ± 
1.67 52.5 ± 2.69 4.38 ± 0.52 0.01 ± 0.49 

56.88 ± 
8.89 

Cold-
Acc./High 

CO2 51.8 ± 3.36 
151.23 ± 
8.64 

14.85 ± 
1.17 

39.99 ± 
5.58 3.12 ± 0.29 0.62 ± 0.7 43.73 ± 8.7 

Post-Photoinhibition (8h) 
Non-Acc. 41.95 ± 

5.75 
171.79 ± 
10.12 

20.07 ± 
2.18 0.58 ± 0.06 

10.36 ± 
1.45 

63.57 ± 
7.11 

74.51 ± 
9.48 

Cold-Acc. 45.57 ± 
4.97 

138.49 ± 
12.46 

11.17 ± 
1.17 nd* 

19.84 ± 
2.14 

56.27 ± 
3.31 76.11 ± 6 

Non-
Acc./High 

CO2 

51.73 ± 
3.29 

96.74 ± 
12.29 8.72 ± 1.14 

11.29 ± 
1.35 

12.59 ± 
1.39 44.8 ± 3.88 

68.68 ± 
7.29 

Cold-
Acc./High 

CO2 

60.17 ± 
3.94 

165.35 ± 
21.63 7.43 ± 0.59 Nd 9.18 ± 0.61 35.34 ± 1.2 

44.51 ± 
1.99 
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Table 4.11. Photosynthetic pigment content of CDC Raptor wheat grown in controlled 
chamber experiments.  Plants were grown under controlled growth regimes as indicated and 
analyzed pre-and post-photoinhibition. Values represent means ± SD, (n = 3).*Not detected.  
 

Cultivar β-C L N V A Z V+A+Z 
(mmol mol-1 Chl a+b) 

Pre-Photoinhibition 
Non-Acc. 

46.1 ± 5.23 
118.66 ± 
6.46 4.02 ± 0.48 62.2 ± 7.69 1.93 ± 0.18 2.15 ± 0.84 

66.28 ± 
11.24 

Cold-Acc. 64.59 ± 
4.17 

147.54 ± 
13 17.7 ± 2.34 74.9 ± 8.61 1.87 ± 0.2 2.17 ± 1.11 

78.95 ± 
12.05 

Non-
Acc./High 

CO2 

68.32 ± 
6.74 

88.41 ± 
8.99 

24.46 ± 
1.64 

56.72 ± 
7.19 1.26 ± 0.1 0.10 ± 0.89 

57.98 ± 
10.15 

Cold-
Acc./High 

CO2 

54.86 ± 
6.02 

120.33 ± 
12.79 

29.12 ± 
1.74 

34.55 ± 
3.93 2.13 ± 0.23 1.91 ± 0.59 

38.59 ± 
11.07 

Post-Photoinhibition (8h) 
Non-Acc. 58.88 ± 

7.59 
116.85 ± 
13.16 

13.13 ± 
1.29 nd* 9.86 ± 0.52 

52.69 ± 
1.82 

62.55 ± 
2.57 

Cold-Acc. 78.62 ± 
6.14 

143.24 ± 
13.19 

13.89 ± 
1.92 Nd 9.24 ± 0.67 65.98 ± 2.6 75.22 ± 3.6 

Non-
Acc./High 

CO2 

 72.5 ± 9.87 78.88 ± 7.1 
12.74 ± 
0.94 1.93 ± 0.25 

10.08 ± 
0.51 

43.93 ± 
1.69 

55.94 ± 
2.69 

Cold-
Acc./High 

CO2 

60.88 ± 
7.25 

122.06 ± 
14.59 4.12 ± 0.47 Nd 

10.55 ± 
1.34 

33.78 ± 
1.81 

44.33 ± 
3.46 
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Table 4.12. Comparison of EPS and PRI of wheat grown in controlled environment 
chamber before and after photoinhibition. Δ PRI and Δ EPS are based on increase in PRI and 
EPS after 8 h photoinhibition as monitored by HPLC analysis and a hand-held reflectometer. 
Values were determined on second fully-expanded leaf. Values represent means ± SD, (n = 3). 
 
 

Cultivar Growth regime PRI (0h) EPS (0h) PRI (8h) EPS (8h) 

McKenzie  Non-Acc. -0.33 ± 0.06 0.98 ± 0.05 0.22 ± 0.02 
 

0.09 ± 0.05 
 

Cold-Acc. -0.25 ± 0.02 0.91 ± 0.06 -0.36 ± 0.05 
 

0.1 ± 0.03 
 

Non-Acc./High 
CO2 

-0.3 ± 0.16 0.95 ± 0.04 0.02 ± 0.07 
 

0.13 ± 0.03 
 

Cold-Acc./High 
CO2 

-0.12 ± 0.04 0.92 ± 0.05 0.41 ± 0.1 
 

0.12 ± 0.03 
 

Kyle Non-Acc. -0.37 ± 0.03 0.98 ± 0.05 0.13 ± 0.03 
 

0.11 ± 0.05 
  

Cold-Acc. -0.49 ± 0.06 0.96 ± 0.04 0.53 ± 0.09 0.11 ± 0.05 
 

Non-Acc./High 
CO2 

-0.27 ± 0.1 0.96 ± 0.02 0.09 ± 0.02 
 

0.15 ± 0.05 
 

Cold-Acc./High 
CO2 

-0.28 ± 0.17 0.95 ± 0.05 0.07 ± 0.15 
 

0.18 ± 0.04 
  

AC Andrew Non-Acc. -0.28 ± 0.04 0.74 ± 0.04 0.26 ± 0.03 
 

0.1 ± 0.06 
 

Cold-Acc. -0.45 ± 0.06 0.93 ± 0.03 0.18 ± 0.12 
 

0.12 ± 0.03 
 

Non-Acc./High 
CO2 

-0.27 ± 0.06 0.97 ± 0.04 -0.13 ± 0.06 
 

0.13 ± 0.04 
 

Cold-Acc./High 
CO2 

-0.19 ± 0.06 0.96 ± 0.05 0.24 ± 0.02 
 

0.12 ± 0.06 
 

Snowbird Non-Acc. -0.29 ± 0.02 0.96 ± 0.03 0.23 ± 0.07 
 

0.08 ± 0.05 
 

Cold-Acc. -0.45 ± 0.05 0.84 ± 0.04 -0.36 ± 0.13 
 

0.13 ± 0.04 

Non-Acc./High 
CO2 

-0.31 ± 0.12 0.96 ± 0.06 0.00 ± 0.1 
 

0.26 ± 0.05 

Cold-Acc./High 
CO2 

-0.1 ± 0.04 0.95 ± 0.05 0.31 ± 0.03 
 

0.1 ± 0.03 
 

CDC Raptor Non-Acc. -0.28 ± 0.07 0.95 ± 0.04 0.06 ± 0.02 
 

0.08 ± 0.04 
 

Cold-Acc. -0.49 ± 0.06 0.96 ± 0.04 -0.19 ± 0.03 
 

0.06 ± 0.05 
 

Non-Acc./High 
CO2 

-0.27 ± 0.06 0.99 ± 0.04 -0.11 ± 0.25 
 

0.12 ± 0.04 
 

Cold-Acc./High 
CO2 

-0.41 ± 0.07 0.92 ± 0.03 0.19 ± 0.06 
 

0.12 ± 0.05 
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4.4 Discussion 

Five common Saskatchewan cultivars from five different market varieties were studied 

under four different environmental conditions. Although these cultivars differ in appearance and 

end-product use, minimal differences were observed in their photosynthetic performance. The 

most drastic difference seen in this study is the difference between wheat grown and acclimated 

in different growth regimes. This is expected as plants grown in different temperatures and CO2 

concentrations often undergo photosynthetic and metabolic perturbations (Huner et al., 1993; 

Ainsworth and Long, 2005; Ensminger et al., 2006). Varying degrees of decreases in FV/FM 

during photoinhibition can mostly be explained by modelled values from light and CO2 response 

curves. 

 Wheat that was grown in ambient CO2 and non-acclimating conditions was the least 

photoinhibitory resistant out of the four growth regimes. The average decrease in FV/FM 

throughout the 8 h treatment was between 36 and 55%. It has been shown that development at 

lower excitation pressure does not allow plants to become photoinhibitory tolerant (Gray et al., 

1996). This is probably not due to a decrease in zeaxanthin induction as most plants had similar 

EPS and PRI values before and after photoinhibition. Zeaxanthin induction was also usually 

highest in these plants and therefore is not the only factor in photoinhibitory resistance. The 

difference probably lies with its carbon metabolism. In all non acclimated cultivars CE and are 

much higher than those that are cold acclimated. This is reflected in higher Amax values and CO2 

and light compensations points. Additionally, TPU rate was usually lowest in these non 

acclimated/ambient CO2 cultivars. A decrease in the rate of TPU means a decrease in the ability 

for a plant to handle excess phosphorylated intermediates in the Calvin cycle during 

photoinhibitory stress (Savitch et al., 2000). This is probably the main reason for the poor 

photoinhibitory resistance of wheat grown in this growth regime. 

 When these cultivars are cold acclimated, drastic differences in their responses to 

photoinhibition are shown. Under ambient CO2, the decrease in FV/FM was only between 16 and 

26%. This was due to these plants developing under higher excitation pressure (Gray et al., 

1996). A complete reprogramming of carbon metabolism allowed for a higher TPU rate in most 

cultivars. However these plants had much more conservative photosynthesis when carbon 

assimilation was recorded. CO2 assimilation curves were taken at room temperature. Because 

these plants were still acclimated to 5 C̊ , stomatal conductance was very low. For probably this 
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reason, Amax was the lowest in cold acclimated plants while CO2 saturating and compensation 

points were higher. Because cold acclimated plants are usually limited by temperature, placement 

into a warmer regime makes these plants Rubisco limited. Xanthophyll pool size (V+A+Z) was 

also much higher in plants grown in this growth regime, possibly leading to increased 

photoprotection. 

 It was observed that photoinhibitory resistance was only slightly higher when grown at 

high CO2 and non-acclimating conditions. Some cultivars (Snowbird, Kyle) had photoinhibitory 

responses, as monitored by decrease in FV/FM, which were identical to their ambient CO2 

counterpart. This is also reflected in identical photosynthetic parameters in the light and CO2 

response curves. AC Andrew however showed a decrease in photoinhibitory resistance compared 

to ambient CO2 although TPU and carboxylation rate was higher. This could be explained by the 

fact that electron transport rate was lower when grown at high CO2 as shown previously (Alonso 

et al., 2009). Conversely, CDC Raptor and Mckenzie had increased photoinhibitory resistance 

when grown at high CO2. These cultivars had concomitant changes in Amax, Jmax, TPU and Vc,max. 

Increased activity or expression of Calvin cycle enzymes is believed to account for this (Alonso 

et al., 2009).  

 With the exception of CDC Raptor, all cold acclimated plants had increased 

photoinhibitory resistance when grown at high CO2. With AC Andrew and Snowbird, average 

photoinhibitory resistance increased 4- and 7-fold, respectively. No photosynthetic values 

derived from the light and CO2 curves seem to account for this. In all cultivars, CE, Фa, 

carboxylation rate, TPU, electron transport rate is the same or lower. This phenomenon can also 

not be explained by xanthophyll induction as EPS changes and xanthophyll pool sizes are lower 

than those grown in cold acclimated/ambient CO2.  

 It is clear that although many of these cultivars differ in photosynthetic responses to 

photoinhibition, the major disparities are environmental. Each growth regime has different 

strategies to combat high-light/low temperature stress. Under ambient CO2, cold-acclimation 

leads to increased xanthophyll pool size and TPU. This leads to increased triose-phosphate 

processing, which in turn, decreases excitation pressure. Plants grown at high CO2 do not differ 

in xanthophyll induction but some differ in carboxylation rate, TPU and Jmax. These changes 

could account for the increase in photoinhibitory resistance as high CO2 has been shown to 

increase photosynthetic rates (Harley and Sharkey, 1992; Ainsworth and Long, 2005). The ability 
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for plants to adjust to high CO2 is satisfactory in a world of increasing CO2 concentration. 
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5. GENERAL DISCUSSION 
5.1 Contrasting field and non acclimated wheat 

 In the crop year of 2008 Mckenzie, Kyle, AC Andrew and Snowbird were grown in the 

field. Field-grown wheat from 2008 had similar photochemical efficiencies as those grown under 

non-acclimating/ambient CO2 conditions. Also, they also had comparable photoinhibitory 

resistance. During the 8 h treatment as most plants had decreases in FV/FM of about 50%, similar 

to wheat grown in non-acclimating conditions. Xanthophyll induction was also indistinguishable 

in plants from both growth regimes.  NDVI values were also similar. 

 However, drastic differences are seen between field-grown plants and all other chamber 

plants based on the light and CO2 curves. Field-grown wheat had Amax values that were 1.5 to 2 

fold higher than their non acclimated, chamber-grown counterpart. Light compensation and 

saturation points were at least half in field-grown wheat. CE was double in all cultivars except 

for Mckenzie which was actually tripled in field-conditions. Carboxylation efficiency and TPU 

was usually at least double in field-grown wheat. Averages for Jmax were 2.5-4 fold higher in 

Snowbird and Mckenzie, respectively. Stomatal conductance was also 1.5 fold higher in field-

grown plants. 

Based on these observations, field-grown wheat has a much higher photosynthetic 

capacity that non acclimated wheat. Increased carboxylation, electron transport and sugar 

metabolism allows for increased rates of photosynthesis. Irradiance of a Saskatchewan summer 

can be 10-fold the irradiances (possibly photoinhibitory) in the environmental chambers used in 

this study. The temperature is also constantly changing. Because field-grown wheat thrives in a 

much more variable and comparatively hostile environment, it needs a much more productive 

photosynthesis. In a way, it is acclimated to these harsh field conditions. Surprisingly, 

acclimation to comparatively extreme irradiances does not improve their photoinhibitory 

resistance or their relative xanthophyll pool size. CO2 assimilation curves were also taken at 

higher temperatures (up to 29°C) in the field compared to room temperature for chamber plants. 

This higher temperature could account for higher metabolic and enzymatic rates leading to 

increased photosynthesis. 

 

5.2 Metabolic shifts between cold acclimated and non acclimated wheat 

 Wheat that was grown at 5°C is referred to as cold acclimated and was shown to have 
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increased resistance to photoinhibition as compared to non acclimated wheat. This is due to 

metabolic differences between plants from both growth regimes. Although CE decreased in cold 

acclimated plants, carboxylation rates (Vc,max) increased in most cultivars. An increase in overall 

carboxylation rates refers to either increased activity or abundance of Rubisco. An increase in 

Rubisco activity has also been described by Hurry et al. (1995, 2000) in cold acclimated winter 

rye and Arabidopsis. Cold acclimation has been also characterised by increased expression of 

sucrose phosphate synthase and fructose-1,6-bisphosphatase leading to increased sugar 

phosphate pools. This allows for increased concentration of substrate for the Calvin cycle 

enzymes and allows for their further activation. This trend is reflected in this study as TPU rates 

are higher in most cultivars. In the case of CDC Raptor and Mckenzie, TPU rate increased 2-fold 

when cold acclimated. These data indicate that photosynthesis in cold acclimated spring and 

winter wheat is capable of elevated metabolic flux. Because low temperatures limit enzymatic 

processes, the plant must find a way to overcome this limitation. 

 Cold-acclimation is also associated with increased electron transport rates (Hurry et al., 

1993). Maximal electron transport rates were shown to significantly increase in Mckenzie and 

CDC Raptor but remained unchanged in the other cultivars when cold acclimated. This is 

probably due to an inherent ability for these cultivars to either increase PQ levels or to keep them 

continually oxidized. However, this capacity would allow for increased photoinhibitory tolerance 

over the other cultivars and is not perceived in this study. 

It appears Mckenzie and CDC Raptor has a higher capacity to adjust to low temperature 

metabolically. Conversely, Kyle seems to be the least able to properly cold-acclimate. 

Carboxylation, electron transport and TPU rates actually decreased upon cold-acclimation but 

did not seem to affect its photoinhibitory resistance. Perhaps other cold-acclimation metabolic 

changes not examined in this study are better indicators of photoinhibitory resistance. 

 

5.3 Metabolic shifts between ambient and high CO2 grown wheat    

 Under non-acclimating conditions, CO2 concentration is the limiting factor in 

photosynthesis. Previous work in this field has demonstrated that C3 plants, when grown at 

elevated CO2 concentrations, have increased photosynthetic capacity and biomass accumulation 

(Harley and Sharkey, 1991; Hymus et al., 2001a, 2001b; Alonso et al., 2008; Gutiérrez et al., 

2009). The simplest reason for increased photosynthesis rates is that Rubisco is substrate (CO2) 
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saturated which increases the carboxylation and competitively inhibits the oxygenation reaction. 

In this study however, plants were grown at high CO2 but had photosynthetic rates measured at 

ambient CO2. In this way, acclimation to high CO2 can be studied without substrate-saturating 

Rubisco. 

 Studies have found that acclimation to high CO2 concentrations increases photochemistry 

by increasing Jmax and overall yield of photosystem II (Hymus et al., 2001a, 2001b). This is due 

to the fact that increased carboxylation causes a shift in electron flux to photosynthesis rather 

than the carbon oxidation cycle. In Mckenzie and CDC Raptor, Amax, Jmax and Vc,max have all 

increased under non-acclimating conditions in ambient CO2. Along with increased 

photosynthesis, TPU is also increased, leading to increased carbon flux through the Calvin cycle 

(Harley and Sharkey, 1991). This could allow for the increased resistance to photoinhibition seen 

in these cultivars. 

 Snowbird, AC Andrew and Kyle grown at high CO2, did not show increased 

photosynthetic rates. It has been shown that C3 plants have increased photochemical quenching 

during photoinhibitory treatment (Hymus et al., 2001a; Gutiérrez et al., 2009). Photochemical 

quenching allows dissipation of excess energy from PSII to PSI. In this case, plants grown at 

high CO2 are able to quench excess irradiance without down-regulating photosynthesis or 

inducing the xanthophyll cycle. This is reflected in this study as all high CO2 plants had 

decreased zeaxanthin induction as well as xanthophyll pool size. 

 Under cold-acclimating conditions no significant photosynthetic changes are seen when 

comparing ambient to high CO2 grown wheat. In most cases, Amax has actually decreased. This 

could be due to a down-regulation in photosynthesis caused by a decrease in Rubisco transcript 

or Rubisco enzyme activity (Alonso et al., 2008). It is also well accepted that increased 

photosynthesis due to high CO2 acclimation is temperature dependant (Harley et al., 1992; 

Gutiérrez et al., 2009). This is believed to be caused by release of Rubisco inhibitors and its 

subsequent activation at higher temperatures. With increasing CO2 atmospheric concentrations 

and global temperatures, earth could experience an adjustment in the way its plant life assimilate 

carbon. 

 

5.4 Relating xanthophyll pigment levels and PRI 

 Xanthophyll cycle induction is frequently used for dissipation of excess light energy 
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(Demmig-Adams and Adams, 1996). High levels of irradiance can actually be harmful to the 

plant when light harvesting centers of PSII absorb more light energy than can be used for the 

metabolic reactions of photosynthesis. This leads to an abundance of reactive oxygen species and 

a lower chloroplast lumen pH.  This situation is known as photoinhibition and can be detrimental 

to the plant cell. Fortunately, plants have an immediate defence to photoinhibitory stress. Acidic 

lumen pH stimulates conversion of violaxanthin to antheraxanthin and zeaxanthin via the 

xanthophyll cycle. Zeaxanthin is considered a photoquenching pigment and is used to filter 

excess irradiance as well as function as an antioxidant (Johnson et al., 2007). This process is 

known as NPQ and allows for functional photosynthesis in photoinhibitory conditions (Demmig-

Adams and Adams, 1996). 

 Wheat in this study exhibited complete conversion of violaxanthin into zeaxanthin after 

an 8 h photoinhibitory period. Pigment levels were monitored by HPLC analysis. Plants grown at 

ambient CO2 had the highest concentrations of zeaxanthin per cultivar. Although not drastically 

different, plants grown at high CO2 had less zeaxanthin and overall xanthophyll pool size. It is 

evident that high CO2 grown wheat is able to be more photoinhibitory resistant without as much 

use of the xanthophyll cycle for photoinhibitory tolerance. This is due to metabolic changes 

described in section 5.3. 

 Xanthophyll conversion was also monitored by the change in PRI over the 8 h 

photoinhibitory treatment. PRI is a non-destructive reflectance method used to estimated 

zeaxanthin abundance/conversion. Induction of zeaxanthin and change in PRI (Δ PRI) only 

loosely correlated with one another. Cold acclimated Kyle and AC Andrew both exhibited the 

highest zeaxanthin concentrations as well as the largest Δ PRI. However, some examples are 

contradictory to this as Mckenzie has highly variable Δ PRI between environmental regimes and 

nearly consistent zeaxanthin concentration. According to this study, PRI results should only be 

used for approximation and should be confirmed with HPLC analysis. 

 It is evident that zeaxanthin is integral for photoinhibitory protection for spring and 

winter wheat. However, zeaxanthin concentration varies only slightly between cultivars and 

could not account for the variety of FV/FM decrease during photoinhibition. Metabolic activities, 

as discussed in sections 5.2 and 5.3, must allow for the variety of photoinhibitory responses 

observed in this study. 
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5.5 Conclusions 

 Although the major differences observed in this study were between environmental 

regimes, some differences were noted between cultivars. Mckenzie seemed to be a 

photosynthetically adept cultivar. Being one of the most cultivated wheats in Western Canada, it 

has been economically selected from the large Canada Western Red Spring Wheat market by the 

producer. It has also been selected for yield by the plant breeder. The high yielding trait of 

Mckenzie could be assisted by its photosynthetic performance. In the field, it had the highest 

CO2 assimilation rates with corresponding increases in electron transport, carboxylation rate and 

triose phosphate utilization. It also had low lignin and high cellulose making it ideal for 

lignocellulosic ethanol production. In controlled environmental chambers it was able to 

adequately acclimate to cold and high CO2 conditions. This was also reflected in its 

photoinhibitory tolerance as acclimation in both growth regimes its vigour. 

 CDC Raptor is a Canada Western Red Winter wheat that is also very popular among 

growers. As with any good winter wheat, it readily cold and CO2 acclimated similarly to 

Mckenzie.  Under high CO2 or low temperature, it had increased carboxylation, electron 

transport and TPU. Although it did not have the best photoinhibitory tolerance, it had adequate 

defence to photoinhibitory stress with high TPU and xanthophyll pool size.  

 Kyle acclimated well to low temperature as monitored by photoinhibitory tolerance. Kyle 

did not experience any photosynthetic changes from the modelled CO2 data that indicates that it 

had cold acclimated. Cold acclimated and field-grown Kyle did however have an enormous 

xanthophyll pool size and zeaxanthin concentrations when photoinhibited. This alone could not 

account for increased photoinhibitory resistance when cold acclimated and probably undergoes 

metabolic changes not investigated in this study. Kyle, a Canada Western Amber durum cultivar, 

is commonly grown in the southern and warmer sections of the prairies and is probably less 

influenced by acclimatory performance (McCallum and DePauw, 2008). High CO2 also did not 

seem to significantly improve its tolerance to high irradiance/low temperature. High lignin also 

makes this cultivar unsuitable for cellulosic ethanol technology. 

 AC Andrew is from the Canada Western Soft White Spring wheat class is commonly 

known for its soft, white flour. Like Kyle, it is cultivated in warmer sections of the prairies and 

does not cold-acclimate well in this study. Its does however, have a great capacity to acclimate to 

high CO2. Although electron transport does not change, TPU and carboxylation rates increase 
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30% in elevated CO2 conditions. These changes also have no effect on Amax but do help in its 

photoinhibitory tolerance. Cold acclimated/high CO2 grown AC Andrew had one of the lowest 

drops in FV/FM during 8 h photoinhibition at only 3%. 

 Snowbird seemed photosynthetically indifferent to growth at high CO2 under non-

acclimating conditions. However when comparing Snowbird grown under cold-acclimating 

conditions, elevated CO2 greatly improved its photoinhibitory tolerance (3% drop in FV/FM). This 

cultivar was able to do this without an increase in any photosynthetic parameter observed in this 

study. It can be speculated that photoinhibitory resistance can be attained with increased levels 

and activities of Calvin cycle enzymes leading to increased carbon flux. 

 This study has shown that out of the eleven spring wheat cultivars grown in the field that 

no one cultivar had considerable photosynthetic advantages over the others. This trend was also 

reflected in overall biomass accumulation in the field. However, studies in controlled 

environment chambers revealed major differences between wheat in different growth regimes. 

Development to low temperature allowed for up-regulated carbon metabolism and increased 

photoinhibitory tolerance. Additionally, growth at high CO2 increased electron transport rates 

leading to enhanced photosynthetic capacity. 

 

5.6 Future research  

 The photosynthetic and metabolic differences discussed between wheat grown in 

different growth regimes are supported by previous studies. Photosynthetic changes observed can 

be explained by other publications that looked at expression and activity of Calvin cycle 

enzymes, electron flux or redox status of PQ (Hurry et al., 1995, 2000; Ensminger et al., 2006; 

Alonso et al., 2008). Future studies could be enzyme activity assays that could directly 

characterise Calvin cycle activity of wheat grown in these growth regimes. Some acclimatory 

metabolic changes of anomalous cultivars (discussed in 5.5) may have went unnoticed in this 

study (Snowbird, AC Andrew, ) and this would give a broader perspective. 

 Photoinhibitory responses could also be better investigated by subjecting plants to NPQ 

slow induction kinetics. In this method, chlorophyll fluorescence is monitored over a series of 

saturating flashes during the first few minutes of photoinhibition. In this study, xanthophyll 

induction was only measured over a long time scale (8 h) by HPLC analysis. Slow induction 

kinetics could show differences in photoprotective responses during the first crucial moments of 
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photoinhibition, contributing to its understanding. Excitation pressure (1-qP) could also be 

calculated from these experiments. HPLC analysis could also be performed a few minutes after 

the photoinhibitory treatment begins. Immediate photoinhibitory differences could be seen 

between cultivars/environmental treatment. 

 This study focused on photosynthesis of the leaf. This is a limitation as leaf 

photosynthesis does not take into account photosynthesis/cellular respiration of other tissues. 

Future studies could focus on whole plant photosynthesis using a chlorophyll fluorescence 

camera or a sealed atmospheric chamber (Leonardos et al., 2003). Alternatively, photosynthesis 

could be studied at the ecosystem level with the assistance of satellite NDVI and PRI 

measurements. 

 Considering that the market varieties we see today were not selected for photosynthetic 

performance, it would be interesting to see if there are differences in the expression of 

photosynthetic genes of the light harvesting complex or Calvin cycle enzymes (Ensminger et al., 

2006). Perhaps the more photoinhibitory resistant cultivars could have genetic markers linked to 

photosynthetic hardiness. If suitable genetic markers for photosynthetic hardiness were 

discovered, it could lead to future marker assisted breeding strategies for winter cereals. 

Additionally, winter cereal cultivars could be selected for winter survival success based on their 

photoinhibitory vigour. Cultivars with the highest winter survival ratings may also have the best 

strategies to winter acclimate. 
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Table A1- Photosynthetic data from weekly measurements on field-grown wheat in 2007. 
All measurements were taken under ambient, field conditions. Determined with portable 
reflectometers and fluorometer on newest fully-expanded leaf. Values represent means ± SD, 
(n=3). 
 

 15-Jun-07 22-Jun-07 

Cultivar NDVI FV/FM PRI NDVI FV/FM PRI 

Mckenzie 0.69 ± 0.02 0.73 ± 0.03 -0.33 ± 0.33 0.68 ± 0.02 0.74 ± 0.03 -0.28 ± 0.08 

Glenlea 0.70 ± 0.01 0.72 ± 0.10 -0.35 ± 0.12 0.71 ± 0.02 0.76 ± 0.03 -0.33 ± 0.20 

AC Crystal 0.71 ± 0.03 0.67 ± 0.03 -0.47 ± 0.36 0.70 ± 0.01 0.74 ± 0.01 -0.18 ± 0.13 

AC Andrew 0.71 ± 0.01 0.76 ± 0.01 -0.42 ± 0.08 0.71 ± 0.01 0.76 ± 0.06 -0.22 ± 0.12 

Superb 0.70 ± 0.01 0.73 ± 0.03 -0.62 ± 0.25 0.70 ± 0.03 0.76 ± 0.04 -0.21 ± 0.23 

AC Vista 0.70 ± 0.03 0.76 ± 0.01 -0.37 ± 0.35 0.70 ± 0.02 0.72 ± 0.04 -0.18 ± 0.21 

Snowbird 0.73 ± 0.01 0.74 ± 0.03 -0.55 ± 0.18 0.68 ± 0.03 0.73 ± 0.06 -0.19 ± 0.21 

AC Barrie 0.72 ± 0.03 0.75 ± 0.01 -0.55 ± 0.17 0.70 ± 0.02 0.74 ± 0.01 -0.60 ± 0.42 

5700 PR 0.73 ± 0.01 0.73 ± 0.04 -0.39 ± 0.26 0.68 ± 0.02 0.74 ± 0.04 -0.20 ± 0.08 

Kyle 0.67 ± 0.04 0.71 ± 0.05 -0.29 ± 0.37 0.67 ± 0.04 0.73 ± 0.06 -0.22 ± 0.14 

AC Avonlea 0.69 ± 0.04 0.76 ± 0.02 -0.33 ± 0.30 0.69 ± 0.03 0.73 ± 0.02 -0.26 ± 0.13 
 29-Jun-07 03-Jul-07 

Cultivar NDVI FV/FM PRI NDVI FV/FM PRI 

Mckenzie 0.72 ± 0.04 0.69 ± 0.08 -0.05 ± 0.14 0.73 ± 0.01 0.76 ± 0.01 -0.70 ± 0.20 

Glenlea 0.73 ± 0.03 0.73 ± 0.06 -0.10 ± 0.09 0.73 ± 0.02 0.76 ± 0.02 -0.69 ± 0.29 

AC Crystal 0.73 ± 0.02 0.69 ± 0.02 -0.17 ± 0.09 0.73 ± 0.01 0.75 ± 0.02 -0.72 ± 0.29 

AC Andrew 0.71 ± 0.01 0.74 ± 0.08 -0.17 ± 0.19 0.72 ± 0.01 0.75 ± 0.04 -0.75 ± 0.42 

Superb 0.74 ± 0.02 0.77 ± 0.01 -0.25 ± 0.09 0.73 ± 0.01 0.77 ± 0.01 -0.61 ± 0.39 

AC Vista 0.72 ± 0.05 0.77 ± 0.03 -0.21 ± 0.03 0.72 ± 0.02 0.78 ± 0.01 -0.69 ± 0.31 

Snowbird 0.72 ± 0.03 0.74 ± 0.05 -0.14 ± 0.16 0.70 ± 0.01 0.77 ± 0.02 -0.59 ± 0.43 

AC Barrie 0.75 ± 0.01 0.76 ± 0.05 -0.28 ± 0.19 0.73 ± 0.01 0.73 ± 0.02 -0.73 ± 0.46 

5700 PR 0.72 ± 0.02 0.76 ± 0.08 -0.16 ± 0.15 0.74 ± 0.01 0.78 ± 0.03 -0.58 ± 0.13 

Kyle 0.70 ± 0.03 0.77 ± 0.01 -0.28 ± 0.05 0.69 ± 0.02 0.72 ± 0.06 -0.57 ± 0.41 

AC Avonlea 0.72 ± 0.02 0.69 ± 0.09 -0.18 ± 0.14 0.72 ± 0.01 0.76 ± 0.02 -0.45 ± 0.21 
 19-Jul-07    

Cultivar NDVI FV/FM PRI    

Mckenzie 0.70 ± 0.02 0.7 ± 0.06 -0.68 ± 0.49    

Glenlea 0.72 ± 0.02 0.71 ± 0.08 -0.85 ± 0.43    

AC Crystal 0.69 ± 0.05 0.74 ± 0.02 -0.69 ± 0.45    

AC Andrew 0.74 ± 0.01 0.75 ± 0.01 -0.96 ± 0.69    

Superb 0.73 ± 0.02 0.76 ± 0.01 -0.96 ± 0.25    

AC Vista 0.70 ± 0.01 0.74 ± 0.01 -0.75 ± 0.25    

Snowbird 0.72 ± 0.04 0.70 ± 0.05 -0.96 ± 0.49    

AC Barrie 0.74 ± 0.01 0.73 ± 0.01 -0.84 ± 0.4    

5700 PR 0.73 ± 0.02 0.75 ± 0.01 -1.11 ± 0.15    

Kyle 0.70 ± 0.04 0.73 ± 0.01 -1.21 ± 0.13    

AC Avonlea 0.72 ± 0.04 0.74 ± 0.54 -0.76 ± 0.28    
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Fig A1- Photoinhibition curves of spring wheat cultivars from field-grown wheat in 2007. 
All measurements were taken at room temperature. Determined with chlorophyll fluorescence 
imaging on newest fully-expanded leaf. Values represent means ± SD, (n=3). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



76 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig A2- Meteorological data from 2007 and 2008 crop years. Data was obtained from Kernen 
Research Farm, Saskatoon SK. Data shown begins on May 1 and ends on September 1 in both 
growing seasons. Panels A-C and D-F show weather from 2007 and 2008, respectively. 
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Figure A3-Light and CO2 response curves from field-grown wheat grown in 2008 crop year. 
Panels A-D show light response curves while panels E-H show CO2 response curves. Three 
replicates are shown with the average line of best fit. 
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Figure B1- Light and CO2 response curves from controlled environment studies. Panels A-D 
show light response curves while panels E-H show CO2 response curves. Shown are means ± SD 
(n=3). When not present, error bars are smaller than symbol size. 
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