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Abstract 

 

This thesis considers the combination of Fuzzy logic and Kalman Filtering that 

have traditionally been considered to be radically different. The former is considered 

heuristic and the latter statistical. In this thesis a philosophical justification for their 

combination is presented. Kalman Filtering is revised to enable the incorporation of fuzzy 

logic in its formulation. This formulation is subsequently referred to as the Revised-

Kalman Filter. Heuristic membership functions are then used in the Revised-Kalman 

Filter to substitute for the system and measurement covariance matrices to form a fuzzy 

rendition of the Kalman Filter. The Fuzzy Kalman Filter formulation is further revised 

according to a concept referred to as the “Parallel Distributed Compensation” to allow for 

further heuristic adjustment of the corrective gain. This formulation is referred to as the 

Parallel Distributed Compensated-Fuzzy Kalman Filter.  

Simulated implementations of the above filters reveal that a tuned Kalman Filter 

provides the best performance. However, if conditions change, the Kalman filter’s 

performance degrades and a better performance is obtained from the two versions of the 

Fuzzy Kalman Filters.  
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Chapter 1  
Introduction 

 

Mr. Kim is a well known Korean who has won more than five investment 

tournaments, trading real stocks since 2001. His success was influenced by an interesting 

experience he had while staying in Japan as an exchange student. There, he had a part-

time job at a pachinko shop (Japanese casino) where he recorded the profitability of each 

pachinko machine for fun. After a while, he found that some regular rhythms existed in 

each machine. He quit his job, tried gambling, and won around 36,000 Canadian dollars 

in 2 weeks. Then, he used a similar strategy for investing in stock markets. Quoting him 

directly, he used “Scientific analysis and intuition to guarantee success in investment“, 

[1].  

Another example was Mr. Jang at Daishin Securities Co. who received an extra bonus 

of around 3.6 million Canadian dollars from his company. He did not have a university 

degree. His colleagues attributed his success to his ability to analyze data while having a 

“special intuition” to interpret them, investing in the future’s market, [2]. It is apparent 

from the above examples that sometimes expert experience can outperform, if not 

complement, scientific methods, [2].  

The aim of fuzzy theory is to combine scientific rigour with expert intuition. Fuzzy 

control using fuzzy theory has been studied and applied to many industrial problems 

since Lofti A. Zadeh introduced this concept in the 1960s, [3]. In contrast, there are very 

few publications pertaining to fuzzy estimation. This may be partly explained by the 
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success of the Kalman filter and the historical feud between the proponents of these two 

methods. Quoting from Kalman “...Zadeh’s proposal could be severely, ferociously, even 

brutally criticized from a technical point of view. This would be out of place here. But a 

blunt question remains: Is Zadeh presenting important ideas or is he indulging in wishful 

thinking?...”, [4], and rebutted by Zadeh “…just waived it off and said the Kalman filter 

was “ too Gaussian.” That means it depends too much on a bell curve “, [5]. 

Kalman filtering has been used in navigation, guidance, estimation and other 

control-oriented processes, in a discrete or a continuous form. It is a rigorous optimal 

state estimation strategy that is applied to stochastic signals. In contrast, fuzzy theory 

uses an intuitive experience based-approach for problems that are too difficult to model 

mathematically. The question is which is better for state estimation? Would the combined 

scientific rigour of an optimal stochastic method and the intuitive but nonetheless 

rigorous fuzzy theory provide a more effective estimation method? Our hypothesis is that 

substantive benefit is gained when the two approaches are combined. This combination 

allows a more rigorous capture of a priori information through Fuzzy logic when 

formulating the optimal stochastic estimation method of Kalman filtering. 

 

1.1 Objective of the Thesis 

The objective of the thesis is to develop a Fuzzy-Kalman filter that would combine 

the benefits of the two concepts. A significant limitation of the Kalman filter pertains to 

assumptions made concerning to its internal model. These assumptions are circumvented 

by using Fuzzy logic in the proposed combined Fuzzy-Kalman formulation. 
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1.2 Competition or Cooperation 

In this chapter, the rational for combining the Kalman Filter and the Fuzzy logic is 

hypothetically discussed and explored. Despite Kalman’s and Zadeh’s reservations in 

crediting and acknowledging their respective theories that are based on statistics and 

intuition, real world problems require both viewpoints and perspectives. Even though 

initially it may seem that they do not need one another, careful reflection reveals that 

their combination is beneficial. It is easy to predict snow in winter. But it is difficult to 

say which day it will occur. That can be forecasted with statistics and information 

pertaining to humidity, temperature, etc. That information should be obtained prior to 

forecasting. Although it might be thought that if statistics is used, experience is not 

needed, application of our proposed hypothesis to the above example assumes that 

weather is so difficult to model that its forecasting requires both intuitive experience and 

statistics. 

The first successful application of fuzzy theory was developed by E.H. Mamdani 

[3, 6, 7, 8] and involved the control of a steam engine. Since then, fuzzy theory has been 

applied to transportation systems such as subway trains, process control, image 

processing, and appliances, [3]. Hitachi developed a fuzzy control system for the 

automatic operation of a subway trains. This fuzzy system adopted train drivers’ 

experiences in controlling the velocity, acceleration and braking systems. The rules of 

logic were derived from interviews conducted with train drivers. The rules were obtained 

in view of improving the safety, the convenience, the energy consumption, the travel 

time, and the precision of stoppage at the subway platform. Their implementation 
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resulted in fewer applications of brakes, which led to lower energy consumption and 

improved ride quality for passengers, [3]. 

The concept of vagueness in fuzzy theory should not be confused with probability 

theory employed by the Kalman filter. Fuzzy theory treats the solution with plausibility 

and Kalman filtering does it with probability. It can be said that in fuzzy theory the 

challenge of understanding the uncertain events is made subjectively. Fuzzy theory is 

subjective because it tries to depict the uncertainty of events by a vague definition. 

Kalman filtering is objective as it is related to the degree of occurrence of phenomena. 

John F. Nash, Jr. showed that two differing concepts such as these benefit from 

cooperation by using his famous ‘Game Theory’ in mathematics, [9]. It can be shown 

with Prisoners’ dilemma in Table 1.1, [10].  

 

Suspects A 

 Responses Silence Confession Sentence 

Silence 
1 year 

1 year 

Released 

10 years 

A 

B 
B 

Confession 
10 years 

Released 

5 years 

5 years 

A 

B 

Table 1.1 Prisoners’ Dilemma 

Assume that two people are charged with theft. If one confessed his fault and the other 

denied it, the one who confessed would be freed but the other would be jailed for 10 

years. If both denied their charges, both would be jailed for 1 year. And if they both 

confessed, they would be both jailed for 5 years. Note that the best outcome in Table 1.1 
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occurs when the accused trust one another and remain silent. That is Nash’s equilibrium. 

Game theory shows that mutual cooperation is profitable as competition could sometimes 

worsen result. In this thesis, elements from the Kalman Filter concept and the Fuzzy 

theory are combined to “cooperate” in order to improve the quality of state estimation in 

the presence of modeling uncertainties. 

 

1.3 Inductive Inference and Deductive Inference 

Professor Park of the Department of Aerospace Engineering at Inha University, 

Korea, wrote in his introduction to the book of Prouty’s stresses, on the importance of 

deductive thinking, [11]. Deductive inference logically derives the last proposition from 

the assumption that previous propositions are true. In other words, the last proposition is 

deduced by an assumed logical relationship with previous propositions. But the truth of 

the premises does not guarantee the truth of conclusions. 

 

1.3.1 Deductive Inference and Fuzzy Theory 

An example of deductive inference is as follows: 

I. Hypothetical proposition:  

Canadian (Molson beer) is Canada’s most favourite beer. 

II. Categorical proposition:  

I drink Canadian (Molson beer). 

III. Conclusion:  

I am a Canadian. 
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The truths of the assumed conclusion are not examined here. Although the 

categorical proposition is true, the conclusion could be false. This is non sequitur 

(illogical conclusion) as the premises may not be relevant, [12]. It means that the 

import of conclusions cannot be drawn from the premise because the truth of premises 

cannot confirm whether the conclusion is true or false positively.  

 

The following example illustrates the basis of the Fuzzy logic application to 

estimation. 

 

 Fuzzy Theory (Deduction) 

I. Hypothetical proposition: System model 

II. Categorical proposition: Rules of logic applying to the model used for 

estimation 

III. Conclusion: State estimate 

 

In the above example, the hypothetical proposition is assumed to be true.  The 

categorical proposition is always thought to be true as it relates to a measured quantity. 

But the conclusion can be true or false. This is non sequitur and means the logic of 

relationships are inadequate. For example, if as a result of the application of rules of 

logic the system model becomes unobservable, then the conclusion is no longer valid. 
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1.3.2  Inductive Inference and Kalman Filtering 

When a conclusion is derived from a proposition, inductive inference is used with 

the assumption that the proposition is reasonable to induce the corresponding 

conclusion. Nonetheless, a proposition is true; the conclusion is probably true but not 

absolutely. Typically applying inductive inference, a proposition includes the element 

of a conclusion, [12]. Consider the following inductive inference: 

 

I. Hypothetical proposition: Most Canadians drink Canadian (Molson beer). 

II. Categorical proposition: I am a Canadian. 

III. Conclusion: I like Canadian (Molson beer). 

 

Recursive inference is inductive inference, [13, 14]. As such, the Kalman filter 

can be thought of as being based on inductive inference, with a recursive function 

using feedback correction. The Kalman filter is an iterative methodology that includes 

data collection, deduction, mathematical construction from a model, and feedback 

correction to the deduction, [15, 16]. However, Inductive inference starts from 

premises. Empirical investigation is needed to discriminate the truth of premises. The 

truth of the last proposition depends on these premises that often involve assumptions 

and not facts. If the proposition is true, then the conclusion is probably but not 

absolutely true. This assumption can be nonetheless false under certain circumstances 

at a low degree of probability as follows: 
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 Kalman filtering (Induction) 

I. Hypothetical proposition: System model 

II. Categorical proposition: Prediction and feedback correction 

III. Conclusion: State estimate 

 

Hypothetical proposition is true if the model remains within a confined operating 

region. Otherwise, for a possible lack of observability, the categorical proposition 

could be false. Therefore the conclusion is true or false. Therefore, probability 

(categorical proposition) does not guarantee the right output. As a simple example 

consider the presence of an unmodeled drift in the measurement signal. This drift is 

not detected or compensated for by the Kalman filter resulting in an inaccurate 

prediction or a false conclusion. In this case, Gaussian distribution does not express all 

the natural phenomena present in the environment. 

Scientific theories use mathematical constructs to model natural phenomena. 

However, such physical phenomena are often too complex and need to be represented 

in terms of mathematics that would include both deductive and inductive reasoning.  

History has shown that, in far too many cases, reliance on operator experience versus 

rules of logic has been the right approach. An empirical investigation for constructing 

the rules of logic is therefore necessary. This is the reason why fuzzy theory needs 

expert experience to improve the reliability or the truth of conclusions. Nonetheless, 

the problem is how comprehensive can fuzzy logic rules be and who has the proper 

expertise to define them. 
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1.4 Combination of Kalman Filtering and Fuzzy Logic (Inductive Logic) 

Kalman filtering and fuzzy theory seem heterogeneous in nature. This 

heterogeneity might be the root cause of the challenge to have them cooperate. The 

Kalman filtering and the fuzzy logic have shown their respective superiority in different 

applications and these need to be identified for their combination. Zadeh developed fuzzy 

theory to express ambiguity in a quantitative language. Therefore fuzzy theory relates to 

intelligence in systems. Fuzzy theory exhibits a dominant ability to imitate human 

being’s subjective decision. With fuzzy theory, smart systems can be made to adapt to 

their environment. 

The objective of the fuzzy theory is to provide a more effective representation of 

natural phenomena. Fuzzy theory maps an abstract universe with membership functions; 

accordingly, the semantic of a membership function is based on the concept of 

vagueness. These membership functions are, in effect, simple assumptions that isolate the 

features of interest in natural phenomena. On the other hand, complex abstractions may 

be achieved by combining such simple functions with other forms of mathematical 

knowledge of the system, [16]. It is in this context that the fusion or marriage of the 

Kalman filtering concept and fuzzy logic can occur. To combine the two theories, the 

concept of marriage is used as follows. 

 

- Step 1. - Understanding: “I have to understand myself and my bride 

   (or bridegroom) for marriage.” 

− Fuzzy theory: deduction must have a resonable relationship between 

premise (model) and conclusion (estimate). 
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−  Kalman filter: statistical characterization can provide an effective mean of 

capturing a priori information to provide modeling of an uncertain 

complex nonlinear system. 

 

- Step 2. - Yield: “I admit that my bride (or bridegroom) has a forte and virtuous 

personality. I am ready to accept my partner’s strengths.” 

− Fuzzy theory: The inductive inference of fuzzy can benefit from 

supplementing it with the probability theory. 

− Kalman filter: The probability is more reliable if related to the perceptual 

nonlinear relationship of cause and effect. 

 

- Step 3. - Resemblance: “I start to look and behave like my wife.” 

− Fuzzy theory: Fuzzy takes after the mathematical form of Kalman 

filtering. 

− Kalman filter: According to Gödel's incompleteness theorem∗1, [16], 

relations defined by rules of deduction are not, in general, complete, [17]. 

 

This combination of the fuzzy logic and the Kalman filter is considered in this 

thesis. An outline of the thesis is as follows. 

 

                                                 
(1 “Gödel’s incompleteness theorem makes it clear that mathematics cannot achieve the goal of 

completeness.” 
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1.5 An Outline of the Thesis 

An introduction to fuzzy logic is provided in chapter two. This includes a 

consideration of the fuzzy set, the membership function, the fuzzy inference, and a 

critical mapping proposed by Takagi and Sugeno, [6]. Chapter 3 provides an introduction 

to the Kalman filter. The derivation of this filter and its associated estimation process are 

discussed. A revision to the Kalman filter that would allow its fusion to fuzzy logic is 

presented in Chapter 4. The advantages and the disadvantages of this formulation are 

discussed. A combined Fuzzy-Kalman filter is proposed and presented in Chapter 5. In 

Chapter 6, the Fuzzy-Kalman filter is applied in simulation to an example system. The 

results of this simulation are presented and comparatively discussed. The concluding 

remarks are contained in Chapter 7. 
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Chapter 2  

Introduction to Fuzzy Theory 

 

Fuzzy theory was proposed by Lofti Zadeh, [3, 5, 6, 7, 8]. Since its introduction and 

further to its application to control problems as demonstrated by Mamdani, [3, 6, 7, 8], it 

has gained considerable acceptance within the scientific community. Fuzzy theory can be 

used for constructing nonlinear relationships with heuristic information. As such, it can 

capture operator experience or knowledge even though that may not be initially in a 

mathematical form. Fuzzy theory has had a profound impact on control and intelligent 

systems. In this chapter a brief introduction to fuzzy theory is provided. The text books 

by Passino and Yurkovich, [6], and Tsoukalas and Uhrig, [7] provide an extensive and 

more detailed description of this concept.  

 

2.1 Fuzzy and Crisp Sets 

In the fuzzy context, crisp sets are defined as having a collection of definite and 

distinguishable elements.  

 

 

Universe of Discourse X 

B
Element x 

Figure 2.1 Abstract Crisp Set 
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Consider the crisp set B with elements { }6,5,4=B . Let the domain of B be X , containing 

all values that the elements of B can have. In fuzzy terminology, this domain is referred 

to as the universe of discourse as shown in Figure 2.1. For example, if X is the set of all 

positive integer numbers in the range (0 to 10), and if the requirement is that the elements 

of B be integers in the range of 0 and 10, then X is referred as the universe of discourse. 

Associated with a set are special functions that can be used to establish its elements 

referred to as membership functions. The crisp membership function )(xBµ is used to 

define membership for elements x of X that are members of B. As such if an element 

is also a member of the crisp set B, then the membership functionXx∈ )(xBµ is equal to 

1. Otherwise, )(xBµ is equal to 0. The membership function of a crisp set can only be 

either ‘1’ or ‘0’. For example, let the membership of B be restricted to integer numbers in 

the range of 4 to 6. Then: 

1)( =xBµ  iff Xxx ∈≤≤ ,64  

0)( =xBµ  iff or4<x Xxx ∈> ,6  

If x  is more than  or equal to 4 and less than or equal to 6, it is considered to be a 

member of the crisp set B, otherwise not, as shown in Figure 2.2. 

)(xBµ )(xBµ
1





∉
∈

=
Bx

Bx
xB   iff  0

 iff  1
)(µ

X

64  

Figure 2.2 Classical Crisp Set, [18] 
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In fuzzy theory, it is possible to also define sets for which the boundary is vaguely 

defined as shown in Figure 2.3, [6, 18]. Fuzzy sets are denoted here by using the symbol 

B~ . The membership function of a fuzzy set allows values between ‘0’ and ‘1’. The 

membership function of a fuzzy set is denoted as )(~ xBµ and provides a value indicating 

the possibility or the degree of membership. 

 

Universe of Discourse X 

B~

Element x 

 

Figure 2.3 Abstract Fuzzy Set 

Linguistic variables are the cornerstone of fuzzy logic. They can be used to 

categorize fuzzy sets. For example, let the fuzzy set B~  be used to describe the notion 

‘Average’. Then associated with the set B~  is a membership function. Consider 

 as the score of five pupils. Fuzzy logic can be used to define a set{ 2,7,5,4,1=S } B~  

associated with the subjective notion ‘Average’ with each pupil’s degree of membership 

quantified by B~ ’s membership function B~µ . As such to represent a fuzzy set, the use of 

what is termed as a singleton is required. Singleton is defined as the pair  

for  , [6, 18]. 

( ){ }sB~ = B~,µ

Ss∈,

As an example, consider a fuzzy set B~ such that 
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( ) ( ) ( ){ }2,2,7,7,5,5,4,4,1,1~
~~~~~ BBBBBB µµµµµ 















=         (2.1) 

 The membership function of a fuzzy set not only determines, but also qualifies the 

degree of membership as shown for the notion ‘Average’ in Figure 2.4. The membership 

function of a fuzzy set )(~ xBµ can therefore have a value between ‘0’ to ‘1’. The elements 

of the set S have a degree of membership in B~  and as such the boundary of B~  is not 

clearly defined. 

 

)(~ xBµ

0

1
)(~ xBµ

5

]1,0[)(~ →xBµ

Figure 2.4 Fuzzy Set with the Membership Function for ‘Average’ 

Further to Figure 2.4 and equation (2.1), the fuzzy set B~  with evaluated 

singletons to depict ‘Average’ is: 

 ( ) ( ) ( ) ( ) ( ){ 4.0,2,6.0,7,0.1,5,8.0,4,2.0,1 }~ =B           (2.2) 

The degree of membership of the crisp set S to the fuzzy notion ‘Average’ can also be 

quantified by using the membership function )(~ xBµ  such that: 

{ nnBBB xsxsxsB /)(/)(/)( }~
~22~11~ µµµ K++=′           (2.3) 

If an element is ‘0’, then that element could be ignored. If this mathematical notion is 

adopted, B′~  can be expressed in a simplified form as, [18]: 
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i

n

i
iB ssB /)(~

1
~∑=′

=
µ              (2.4) 

In the previous example where B~  is subjectively associated with ‘Average’ and when 

evaluated for S is: ( ) )( ( ) ( ) ( ){ }4.0,2,6.0,7,0.1,5,8.,2.0,1~ =B 0,4  

The degree of ‘averageness’ of B~ can be indicated by the sum of its evaluated 

membership functions, by scalar cardinality such that, [3]: 

( )∑
∈

=
Ss

sB B~
~ µ              (2.5) 

Further to equation (2.5), then the degree of membership of (e.g. group of pupils’ 

grade) to the notion ‘Average’ is obtained as: 

S

34.06.00.18.02.0~ =++++=B            (2.6) 

It is possible to create multiple membership functions, such as in this example, consider 

the notions of ‘Low’, ‘Average’, and ‘High’. Let the corresponding membership 

functions be )(~ sCµ , ),(~ sBµ  and )(~ sAµ as shown in Figure 2.5. 

  
)(~ sAµ

)(sµ  )(~ sBµ)(~ sCµ

 
Figure 2.5 Fuzzy Set and Membership Functions 

The corresponding degree of membership of function S to ‘Low’ and ‘High’ are: 

0.5 

1.0 

0 
5 Score, S

Average
Low High

10
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4.16.00.00.02.08.0~
=++++=C  and 4.00.04.00.00.00.0~

=++++=A  

The cardinality associated with ‘Low’, ‘Average’ and ‘High’ are respectively 1.4, 3 and 

0.4. The analysis using fuzzy logic indicates that the pupils’ performance given by grades 

on the set S can be mainly categorized as average. 

 

2.2 Fuzzy Operations 

Fuzzy logic has a number of common operators that are briefly described in this 

section. The intersection of fuzzy sets A~ and B~ is defined as: 

( ) ( ) ( ){ } Xxxxx
BABA ∈∀=

∩
,,min ~~~~ µµµ            (2.7) 

Fuzzy intersection is expressed with BA ~~
∩ and takes the smallest membership value of 

the subset of elements that belong to fuzzy sets A~ and B~ . Fuzzy union is denoted 

by BA ~~
∪ and takes the largest membership value of the set containing all elements of 

A~ or B~ . Union of fuzzy sets A~ and B~ is defined as: 

( ) ( ) ( ){ } Xxxxx
BABA ∈∀=

∪
,,max ~~~~ µµµ            (2.8) 

1 

0 

C~ B~CB ~~∩µ  

X

 

CB ~~∪µ
B~C~

1

X 
0

   (a) CB ~~ ∩    (b) CB ~~ ∪    

Figure 2.6 Fuzzy Set Operations 
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In the previous example that used a linguistic approach to describing a student’s score as 

‘Low’, ‘Average’, and ‘High’, where =S {Student’s score} { }2,7,5,4,1= , then further to 

the membership functions of Figure 2.6, the intersection ∩ and union ∪ operators in the 

fuzzy context are illustrated in Figure 2.6. 

 

2.3 α – Cut and Resolution Principle 

To represent the fuzziness of data, it is useful to set a limit on the degree of 

membership. −α cut of a fuzzy set is the set on the universe of discourse where the 

values of the membership functions are greater than or equal toα . −α cut denoted as αB~  

is a crisp set and can be used to screen elements. For example, let: 

{ },)(~
~ αµα ≥∈= sSsB B  0 1≤≤ α  

 

α

S S

B~ αB~
α

µB~B~µ

4 6 4 6

   
1

Figure 2.7 A Fuzzy Set B~ and −α cut 

 

Then graphically αB~ can be represented as in Figure 2.7. In this example, where 

, { 2,7,5,4,1=S } αB~  is equal to the crisp set { }5,4 . An approximate fuzzy set can be 

represented by the unions of −α cuts, such that: 
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[ ]
( ) ( )sSBB BUU

10

~B~

1,0

or  ~~
≤<∈

==
α

α
α

α αµµα            (2.9) 

Equation (2.9) represents the Resolution Principle which means that fuzzy sets can be 

decomposed, [8]. In Figure 2.8, )(~ sBµ is shown as a union of −α cut functions. 

 

1α

S

B~

2α

  
B~µ

1   

 

 

Figure 2.8 A Fuzzy Set B~ and −α cuts 

5.01 =α

S

B~

B~

5.01 =α

S

5.0
~B

5.0
~B

1 1

2.5 7.5 2.5 7.5 

(b) Membership function  (a) Membership function  
 

 

5.01 =α

S

5.0
~5.0 B

5.0
~5.0 B

1

7.5 2.5 

(c) Function  
 

Figure 2.9 A Fuzzy Set B~ and 0.5-cut 
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For example, let Figure 2.8 stand for ‘Average’. For 5.01 =α  and 8.02 =α , then 

{ }5.0)(~
~5.0 ≥∈= sSsB Bµ { },5,4= and { }8.0)(~

~8.0 ≥∈= sSsB Bµ { }5= . 

A crude approximation of the fuzzy set B~  can be obtained according to equation (2.9). 

Here, ( ) ( ){ }5,5,4,45.0~5. 5.0 µµ×=B0 and ( ){ }5,58.0~8.0 8.0 µ×=B , then 

S

8.02 =α

B~

B~

S

8.02 =α

8.0
~B

8.0
~B

 
1 1

6 6 4 4 
(a) Membership function  (b) Membership function  

 
 

S

8.02 =α
8.0

~8.0 B

8.0
~8. B

1

6 4 

(c) Function 0   

Figure 2.10 A Fuzzy Set B~ and 0.8-cut 

As such, 
[ ]
U

8.0,5.0

~~
∈

=
α

ααBB 8.05.0
~8.0~5.0 BB +≈  as depicted in Figure 2.11. 
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Figure 2.11 Approximate Fuzzy Set B~  by −α cuts 

 

2.4 Fuzzy Inference 

Fuzzy inference can be illustrated by using the above example and discussion. 

Fuzzy inference adopts the If ~Then~ rule. As such, if a condition is “GIVEN”, then the 

conclusion is “INFERRED”: 

   If <fuzzy proposition>, Then <fuzzy proposition> 

For example: IF <the overall class performance is low (example of section 2.1)>, THEN 

<more assignments are given>. 

In the example of pupil score, the class performance is 0.4 on the notion ‘High’, 3 on 

‘Average’ and ‘1.4’ on ‘Low’. Fuzzy logic has no problem with this inconsistency. It is 

now possible to use this information under a second fuzzy premise to establish a 

corrective defuzzified action. Further to this example, if the fuzzy rules for the corrective 

action pertain to the number of assignments that are given to the class in relation to their 

performance (“e.g. mid-term exam grade”) then a simple set of fuzzy rules may be as 

depicted in Figure 2.12. 

 
1 

1α

S

B~

2α

5.0
~5.0 B

8.0
~8.0 B

 

4 5 6
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Less

0

( )tµ

( )tµ

8.30 5 10−

High

t

t

extraNo  

21.0

( )tµ

0

Average

t

More ( )tµ

10

79.0

Low

t

T∈

(a) ‘low’ / ’More’ membership function mapping 

(b) ‘Average’ / ’No extra’ membership function mapping 

(c)  ‘High’ / ’Less’ membership function mapping 

Additional assignment, T, t

Center of Gravity 

(d)  Union of active defuzzification membership functions 

 

Figure 2.12 Inferences          
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The associated fuzzy rules for our corrective action could be as given in Table 2.1. 

PROPOSITION CONCLUSION 

Score is low More assignment 

Score is average No extra assignment 

Score is high Reduce the number of assignment 

Table 2.1 Fuzzy Rules for Assignment Scheduling 

Applying these rules to our problem, the mapping between the 1st and 2nd precepts can be 

summarized as given in Table 2.2 that identifies membership functions associated with 

fuzzification and defuzzification. 

SCORE NUMBER OF ASSIGNMENTS 

:~A ‘High’ ‘Less’ 

:~B ‘Average’ ‘No extra’ 

:~C ‘Low’ ‘More’ 

Table 2.2 Correspondence of Fuzzy Membership Functions 

Table 2.2 effectively provides the mapping relationship between membership functions 

used to evaluate scores (given in Figure 2.5) and the membership functions that relate to 

the resulting action (Figure 2.12). This mapping is illustrated in Figure 2.12 where T  is 

the set pertaining to extra assignments. Evaluation of the corrective action from Figure 

2.12 based on the performance of pupils as follows. Consider the pupil grade example 

with . Let N be the number of pupils and { 2,7,5,4,1=S } S~  be the relative cardinality of S 

which can be indicated by the sum of division by N, such that: 
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∑
∈

=
Ss N

s
S~             (2.10) 

Further to equation (2.10), then the degree of membership of S~ (e.g. group of pupils’ 

grade) is obtained as: 

8.3
5
2

5
7

5
5

5
4

5
1~

=++++=S           (2.11) 

From section 2.1, the overall class performance has membership associations with the 

notions ‘Low’,  ‘Average’ and ‘High’ that are respectively 1.4 with 3 and 0.4. 

Furthermore, the degree of membership of S~ is considered to the notion of ‘Average’. 

Further to Table 2.2, the fuzzy rules that relate the pupils score to the corrective action or 

number of assignments may be stated as: 

           IF < S~ is ‘Low’> THEN <T  is ‘More assignments would be given’>. 

ALSO IF < S~ is ‘Average’> THEN <T  is ‘No extra assignment’>. 

ALSO IF < S~ is ’High’> THEN <T  is Less assignments would be given’>. 

 

From Table 2.2, the ‘Low’, ‘Average’ and ’High’ correspond to ‘More’, ‘No extra’ and 

‘Less’ respectively in additional assignment. For this example from Figure 2.5, 3.8 maps 

to ‘More assignments’ with a ‘0.21’ membership function. Furthermore, this ‘Average’ 

corresponds to ‘No extra assignments’ with ‘0.79’, and ‘0’ of ‘Less’ assignments’. These 

relationships can be used for deciding the number of additional assignment by using 

“defuzzification”. 

A commonly used defuzzification method was proposed by Mamdani and 

involves calculating the union of areas of membership functions corresponding to the 
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required corrective action, with the overlap regions being multiply counted, [7]. This 

resulting shape is the shaded area in Figure 2.12 (d). The final defuzzified crisp corrective 

action ”ξ ” is obtained by calculating the center of gravity of the shaded area. A similar 

but simpler strategy to Mamdani’s is to calculate the averaging scheme referred 

specifically as the Center of Gravity, [6]. Where t is the identifier for the membership 

function associated with the corrective action, the Center of Gravity method is specified 

as: 

∑

∑

=

=

×
= 3

1

3

1

)(

)(

i
i

i
ii

t

tt

µ

µ
ξ                (2.12) 

For the example pertaining to student assignments and the relative cardinality, ξ  is 

obtained as:  

79.021.00
010

79.021.00
79.00

79.021.00
21.010

++
×−

+
++

×
+

++
×

=ξ 1.2001.2 =++=     (2.13) 

 where t in this example is the number of additional assignments inferred from students’ 

score [7]. In this example, two extra assignments would be given to the class. 

As Fuzzy logic is considered to be deductive inference, [12, 18], in deductive 

inference, if the proposition is true, then the conclusion should be true. IF ~THEN~ rule 

can be explained with modus ponens meaning that the mode affirms. Modus ponens 

means that the 1st premise is a hypothetical proposition and the 2nd one is a categorical 

proposition. The categorical proposition affirms the priori of the hypothetical proposition. 

The conclusion is derived by affirming the posteriori of hypothetical proposition as 

shown in Figure 2.13. 
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1st premise (hypothetical proposition): 

If score is 2 THEN more assignment will be given.  

2nd premise (categorical proposition): 

:P

:Q

Score is 1 

___________________________________ 

Conclusion: 

                          Two extra assignments are given. 

________________________________________________________________ 

 

Figure 2.13 Fuzzy Inferences 

At first, the hypothetical proposition is given such as “IF score is 2 THEN more 

assignment will be given”.  The categorical proposition (score is 1) recognizes that the 

hypothetical proposition is true, and based on that, it expands its conclusion to “Two 

extra assignments are given”. 

 

2.5 Fuzzy Logic Control (FLC) and Takagi-Sugeno Fuzzy System 

As shown in the previous example, fuzzy control involves the application of fuzzy 

inference. The rules of inference are linguistic and correspond to fuzzy sets. As such the 

inputs should be fuzzified and inference rules are then applied to these to produce fuzzy 

outputs. Fuzzy outputs are then transformed into crisp forms to allow connectivity to 

physical systems. This process is referred to as defuzzification and was demonstrated in 
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section 2.4. Experts’ experiences and knowledge are essential to the construction of fuzzy 

rules and membership functions pertaining to fuzzification and defuzzification. The 

general concept for fuzzy system implementation is illustrated in Figure 2.14.  

Fuzzified Inputs Fuzzy Conclusions 

M
M

Crisp 
Outputs 

Crisp 
Inputs 

Fuzzy Rule-Base y1 x1 D
efuzzification 

Fuzzification 

Fuzzy Inference 
Mechanism  

xm yn Knowledge-Base

Figure 2.14 Fuzzy Controller Systems, [6] 

The rules of inference are made from an expert’s subjectivity and one’s experience. 

There are, in general, a number of these rules of inference that are evaluated in parallel. 

Furthermore, the rules should be considered and applied to all of the data.  

Fuzzy rules may also incorporate complex function evaluations. A mathematical 

function may be used to establish a relationship between inputs and outputs to show the 

conclusion from given inputs. For example: 

If  isze Z~ , Then .              (2.14) ( zefy = )

where  can be a complex dynamic function such as a model of a physical system. ( )xf Z~  

is a linguistic variable for fuzzy inputs and e is the set of fuzzy inputs. z

The use of complex dynamic functions in fuzzy rules was first proposed by 

Takagi and Sugeno, [6], with the name of Takagi-Sugeno Fuzzy Logic Controller (FLC). 
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Takagi-Sugeno’s methodology was proposed to put a controller in the right-hand side of 

a rule. The method also can allow changing of parameters in a controller or a model and, 

lead to the construction of special membership functions such as a Gaussian distribution 

function. Further to Takagi-Sugeno’s methodology, a fuzzy rule pertaining to model 

update may be written as: 

If  is 
1z

e 1
~Z  and e  is 

2z ,~
2LZ  e  is 

jz jZ~ , then kikik UBXAX ×+×=+1         (2.15) 

where Xk is a state vector, Ai is a system matrix, Bi is an input matrix, Uk is an input signal, 

 be fuzzy inputs that can be selected by designer’s subjective decision, and ze jZ~  are 

fuzzy sets. For instance,  can be a measured output that could be used to identify 

regions of piecewise linearity in a nonlinear system. Accordingly fuzzy sets 

ze

jZ~  quantify 

the meaning of a fuzzy input or in this example identify the region of piecewise linearity.  

For example, let there be two fuzzy inputs  and  to stand for position and velocity 

estimates in a hypothetical actuation system.  Let 

1z
e

2ze

1
~Z  and 2

~Z  be operating regions 

linguistically defined as “Micro region” and “Macro region”. In accordance to these 

fuzzy inputs and corresponding jZ~ , the fuzzy output is inferred by fuzzy membership 

functions ( )zi eµ , and a function according to Takagi-Sugeno method, which are 

determined by a designer. The inferred crisp output may be obtained by defuzzification of 

fuzzy output and the Center of Gravity method described in section 2.4 as, [6, 7]: 

( )

( )

( )

∑

∑

=

=
+

××+×
= S

i
zi

S

i
zikiki

k

e

eUBXA
X

1

1
1

µ

µ
                          (2.16) 

where S is the number of fuzzy rules to be inferred.  
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Let ξ  be a crisp variable specified as: 

)(
)(

1

1

ziS

i
zi

i e
e

µ
µ

ξ ×=

∑
=

          (2.17) 

Then equation (2.16) can be depicted with this crisp output to show corrective action 

such as: 

( )

( )

( )

∑

∑

=

=
+

××+×
= S

i
zi

S

i
zikiki

k

e

eUBXA
X

1

1
1

µ

µ ( )

( )

( )

( )∑

∑

∑

∑

=

=

=

=

××
+

××
= S

i
zi

S

i
ziki

S

i
zi

S

i
ziki

e

eUB

e

eXA

1

1

1

1

µ

µ

µ

µ
 

                   (2.18)      ( ) ( ) kz

S

i
iikz

S

i
ii UeBXeA ×









×+×








×= ∑∑
== 11

ξξ

where, it is assumed that the above equation is in a matrix form. 

iµ  can be a special membership function such as a Gaussian distribution function. 

 

2.6 Parallel Distribution Compensation 

This methodology is used in conjunction with the Takagi-Sugeno method for 

applications that involve corrective state feedback, [6]. Here, the input signal U  is 

considered to be a defuzzified crisp signal that is a function of a compensation gain and 

system states. For a gain 

k

jκ  subjected to adjustment by defuzzification functions jψ , 

then 

( ) kkz

S

j
jj UXe =×









×∑
=1

ψκ           (2.19) 
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where similarly to equation (2.17), for a set of a membership functions jλ  and jψ , the 

crisp output is defined as: 

( )

( )∑
=

= S

j
zj

zj
j

e

e

1
λ

λ
ψ            (2.20) 

This method allows feedback gains to smoothly readjust in the presence of uncertainties, 

such as nonlinearities and time-varying dynamics. Substituting equation (2.19) into 

(2.18), the state equation is obtained as: 

( ) ( ) ×








×+×








×= ∑∑
==

+ z

S

i
iikz

S

i
iik eBXeAX

11
1 ξξ ( ) kz

S

j
jj Xe ×









×∑
=1

ψκ     (2.21) 
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Chapter 3  

Kalman Filter 

 

The motion or operation of dynamic systems is described by variables referred to as 

states. For example, an aircraft’s states may be defined as its position, velocity and 

acceleration. Availability of these states can greatly improve control of the aircraft. For 

example, knowing the position, velocity and acceleration of an aircraft can greatly aid an 

air traffic controller or a collision avoidance system in charting a safe course in a busy 

flight space. It is not always possible to measure all of the states associated with a system. 

In such circumstances, the states need to be estimated from the limited number of 

measurements that are available. To compound the problem, measurements are often 

corrupted by noise, thus adversely affecting the quality of the estimation process. An 

optimal strategy that is commonly used is the Kalman filter. This strategy is model-based 

and was first introduced by Kalman in the 1960s, [19, 20]. The Kalman filter uses an 

internal model to predict the initial or a priori estimate of the states. An optimal 

correction that is a function of the error in the predicted output and actual output of the 

system is applied to the a priori state estimate to obtain a refined or a posteriori state 

vector. In the Kalman filter formulation, both the system (w) and measurement (v) noise 

are taken into account. Noise is considered as being white, meaning that it is random and 

has a mean of zero. In the following sections an overview of the Kalman filter concept is 

provided. 
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3.1 Derivation of the Error Covariance 

Consider a system described in a discrete form by the following state space 

equations: 

kkkk wUBXAX +×+×=+1                        (3.1) 

kkk vXHz +×=                         (3.2) 

where the state vector is , the input isU ,















=

n

k

x

x
X M

1
















=

m

k

u

u
M
1

A  is the system matrix, B is 

the input matrix, H is the output matrix, is the system noise and is the measurement 

noise. 

kw kv

Let  and  be defined as the a priori and the a posteriori estimates. The model of 

equations (3.1) and (3.2) are used for obtaining the a priori estimate such that: 

−
kX̂ kX̂

kkk UBXAX ×+×=−
+

ˆˆ
1                        (3.3) 

−
kX̂  is referred to as the a priori estimate and the associate a priori error vector is: 

−− −= kkk XXe ˆ                          (3.4) 

The a priori error covariance matrix is obtained as: 

[ ]T
kkk eeEP −−− ×=                  (3.5)  

Assuming that (system noise), and (measurement noise) are zero mean value, their 

covariance matrices are denoted asQ  and  defined as: 

kw kv

k kR

[ ]T
kkk wwEQ ×=                  (3.6) 
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[ ]T
kkk vvER ×=                  (3.7) 

To obtain the optimal correction that is applied to the a priori estimate of equation (3.3), 

mathematical expressions need to be obtained for the a priori and the a posteriori error 

covariance matrices as follows. 

 

3.1.1 Derivation of the A Priori Error Covariance 

The Kalman filter is a recursive method. After predicting the a priori estimates 

using the model of the system as given by equation (3.3), the filter applies an optimal 

correction to the a priori estimate. This optimal correction is derived by examining and 

expanding the a priori error equation as follows: 

( )kkkkkkkk UBXAwUBXAXXe ×+×−+×+×=−= −
++

−
+

ˆˆ
111  

             kkkkk wUBUBXAXA +×−×+×−×= ˆ ( ) kkk wXXA +−×= ˆ       (3.8) 

The corresponding a priori error covariance matrix expression is obtained by 

substituting equation (3.8) in equation (3.5): 

[ ]T
kkk eeEP −
+

−
+

−
+ ×= 111 ( ){ } ( ){ } 

 +−××+−×=
T

kkkkkk wXXAwXXAE ˆˆ  

     ( ) ( ) ( ) 



 ×−×+



 ×−×−×= TT

kkk
TT

kkkk AXXwEAXXXXAE ˆˆˆ  

( )[ ] [ ]T
kk

T
kkk wwEwXXAE ×+×−×+ ˆ                                                                   (3.9) 

Since is white and uncorrelated to the vectorkw ( )kk XXA ˆ−× , the terms, 

and( ) 



 ×− T

k

T

kk AXXwE ˆ×k ( )[ ]T
kwkkk XXAE ×−× ˆ  are equal to zero. 

Furthermore; 
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( ) ( ) ( ) ( ) TT

kkkk
TT

kkkk AXXXXEAAXXXXAE ×



 −×−×=



 ×−×−× ˆˆˆˆ  

Equation (3.9) can then be simplified to: 

−
+1kP ( ) ( ) T

k

T

kkkkk AXXXXEA ×



 −×−×= ˆˆ [ ]T

kk wwE ×+                      (3.10) 

Let e be the a posteriori error and defined as: k

kkk XXe ˆ−=                                  (3.11) 

Then the corresponding a posteriori error covariance is obtained as: 

[ ]T
kkk eeEP ×=            (3.12) 

Substituting equations (3.6), (3.11) and (3.12) into (3.10), the a posteriori error 

covariance is obtained as: 

−
+1kP k

T
kkk QAPA +××=                     (3.13) 

Equation (3.13) can therefore be used to project the a priori error covariance 

matrix one step ahead by using the a posteriori error covariance, , and the system 

noise covariance matrix,Q . 

kP

k

 

3.1.2 Derivation of the A Posteriori Error Covariance and of the Gain 

The optimal correction of Kalman filter to the a priori state estimate  consists 

of the Kalman gain times the error in the a priori output estimate, such that: 

−
kX̂

( )−− ×−×+= kkkkk XHzKXX ˆˆˆ                (3.14) 
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The Kalman gain is derived to minimize the a posteriori error covariance 

matrix, and hence optimize the a posteriori estimate . The a posteriori error is 

written as:  

kK

kP kX̂

kkk XXe ˆ−= ( ){ }−− ×−×+−= kkkkk XHzKXX ˆˆ          (3.15) 

Substituting from equations (3.2), the a posteriori error is obtained as: 

( )−− ×−+××−−= kkkkkkk XHvXHKXXe ˆ  

    −− ××+×−××−−= kkkkkkkk XHKvKXHKXX ˆ

    ( ) ( ) kkkkkk vKXHKIXHKI ×−××−−××−= −ˆ

         ( ) ( ) kkkkk vKXXHKI ×−−××− −ˆ=           (3.16) 

From equations (3.12) and (3.16), the a posteriori error covariance matrix is 

obtained as: 

kP ( ) ( ){ }[ ××−−××−= −
kkkkk vKXXHKIE ˆ ( ) ( ){ } ×−−××− − T

kkkkk vKXXHKI ˆ  

    ( ) ( ) ( ) ( ){ }
 ×−×−×−××−= −− T

k

T

kkkkk HKIXXXXHKIE ˆˆ  

      ( ) ( ) T
k

T
kkkk KvXXHKI ××−××−− −ˆ  

      ( ) ( )Tk

T

kkkk HKIXXvK ×−×−××− −ˆ ]T
k

T
kkk KvvK ×××+     (3.17) 

As v  is random and uncorrelated to the vector ofk ( ) ( )−−××− kkk XXHKI ˆ , then 

( ) ( )[ ]T
k

T
kkk KvXXHIE ××−×− −ˆ

kK ×  and ( ) ( )×−×− −
k

T

kk HKIXX ˆ




 ×× T

kk vKE  are 

equal to zero. For furthermore, 
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( ) ( ) ( ) ( ){ }
 ×−×−×−××− −− T

k

T

kkkkk HKIXXXXHKIE ˆˆ

( ) ( ) ( ) ( )Tk

T

kkkkk HKIXXXXEHK ×−×



 −×−×× −− ˆˆ

 can be rewritten as 

 and I − [ ]T
k

T
kkk KvvKE ×××  

changes to [ ] T
k

T
kkk KvvEK ××× . 

Then the a posteriori error covariance matrix is obtained as: 

kP ( ) ( ) ( ) ( )Tk

T

kkkkk HKIXXXXEHKI ×−×



 −×−××−= −− ˆˆ T

kkk KRK ××+     (3.18) 

Note that the measurement noise covariance matrix is [ ]T
kkk vvER ×=  from 

equation (3.7) and that the a priori error covariance matrix is equal to 

. Substituting these in equation (3.18), the a posteriori error 

covariance is now simplified to: 

( ) ( 



 −×− −− T

kkkk XXXXE ˆˆ )

kP ( ) ( )Tkkk HKIPHKI ×−×××−= − T
kkk KRK ××+               (3.19) 

The a posteriori error covariance can be rewritten as, [19]:  

kP ( ) ( ){ }T
k

TT
kk KHIPHKI ×−×××−= − T

kkk KRK ××+  

   = ( ) −××− kk PHKI ( ) ( )T
k

T
kk KHPHKI ××××−− − T

kkk KRK ××+  

      (3.20)  ( ) −××−= kk PHKI T
k

T
k KHP ××− − T

k
T

kk KHPHK ××××+ − T
kkk KRK ××+

In the quadratic form,  is assumed to be symmetric and positive 

definite. To minimize , the derivative of equation (3.20) is obtained with respect to 

 and equated to zero, such that: 

k
T

k RHPH +×× −

kP

kK

T
k HP ×− − T

kk HPHK ×××+ − 0=×+ kk RK  
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The optimal Kalman gain is obtained by rearranging the above equation such 

that, [19]: 

kK

( 1−−− +××××= k
T

k
T

kk RHPHHPK )         (3.21) 

Substituting equation (3.21) into equation (3.20), the a posteriori error covariance 

matrix can be obtained by: 

kP −− ××−= kkk PHKP ( ) −××−= kk PHKI               (3.22) 

 

3.2 The Kalman Filter Estimation Process and Algorithm 

The objective of the Kalman filter is to minimize the covariance matrix of e  in 

order to obtain an optimal estimate  of the stochastic signal . The Kalman filter is a 

predictor corrector method and its process is depicted in Figure 3.1. The estimation 

process involves the computation of the Kalman gain  (Step 1). This gain is then used 

in conjunction with the error in the prediction of the output, for correcting the estimate of 

the state vector into its a posteriori form (Step 2). The error covariance matrix is then 

computed for the updated or a posteriori state vector and a projection of it is obtained 

(Step 3 and 4). An a priori estimate of the state vector is predicted for the next iterative 

cycle using the model of the system (Step 5). The above steps are repeated iteratively as 

shown in Figure 3.1. 

k

kX̂ kX

kK
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( ) 1−−− +××××= k
T

k
T

kk RHPHHPK

⇓                                                            

( )
⇓

×−×+= −−
kkkkk XHzKXX ˆˆˆ

( )
⇓

××−= −
kkk PHKIP

k
T

kk QAPAP +××=−
+1

kkk UBXAX ×+×=−
+

ˆˆ
1

Step 1 Calculation of Kalman gain by using the a priori projection or initial 

condition:  

 

Step 2 Correction of the a priori estimate in its a posteriori form: 

 

          Step 3 Calculation of the a posteriori error covariance matrix: 

 

Step 4 Projection of the error covariance matrix for obtaining the a priori 

estimate for the next iteration cycle:  

Step 5 Calculation of the a priori state estimate for the next iteration cycle: 

 

 

Iteration 

Figure 3.1 The Kalman Filter Process 

 

 



 

Chapter 4  

The Revised Kalman Filter 

 

A revised state estimation error is presented here to enable the integration of the 

fuzzy logic with the Kalman filter concept.  Here, the state estimates are denoted by using 

the symbol “~” in order to highlight the distinction of the Kalman filter from its revised 

formulation. 

 

4.1 The Pre-Processor and the Projectile Estimates 

The physical context associated with the output from the predictor and the corrector 

stages of the Revised-Kalman Filter do not lend themselves to the terminologies and the 

natural interpretations corresponding to those of the Kalman filter. Again to highlight the 

difference, the output of the prediction part of this revised form is referred to as the pre-

processor estimate −X~  and the corrector output is referred as the projectile estimate X~ . 

The corresponding equations for the pre-processor and the projectile estimates are the 

following: 

( )kkkkk XHzKXAX ~~~~
1 ×−×+×=−
+                                     (4.1) 

kkk UBXX ×+= −
++ 11

~~                                                    (4.2) 
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−
+1

~
kX  is a function of the previous measurement error, the previous projectile estimate kX~ , 

and the gain kK~ . Substituting equation (4.1) into (4.2), the following governing equation 

is obtained: 

1
~

+kX  ( )kkkkk XHzKUBXA ~~~ ×−×+×+×=               (4.3) 

This differs from the governing equation of the Kalman filter obtained from equations 

(3.3) and (3.14) that simplify to: 

( )−
+++

−
++ ×−×+= 11111

ˆˆˆ
kkkkk XHzKXX ( )−

+++ ×−×+×+×= 111
ˆˆ

kkkkk XHzKUBXA      (4.4) 

In the revised method, kX~  is corrected by a gain and a measurement error vector 

that lag by one time step. The fundamental difference in approach is that the current 

estimate is optimized in the case of the revised formulation with the previous a posteriori 

output error rather than the current a priori output estimate. With this modification, the 

initial measurement error can be assumed to be zero. Therefore, recursive computation 

can be started with possibly a smaller initial error that is transmitted into the next step. 

Furthermore, the revised formulation is not strictly a predictor-corrector methodology 

and can be considered as being an optimal filter. 

 

4.2 Derivation of the Projectile Estimate Error Covariance Matrix kP~  

Let the error between the actual state and the projectile estimate be defined as: 

kkx XXe
k

~−=                   (4.5)  

Then the projectile error e covariance is denoted by
kx kP~  and is defined as: 
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kP~ [ ]T
xx kk

eeE ×=                  (4.6) 

Substituting equation (4.2) into (4.5) then: 

1+kxe ( )kkkkk UBXXXX ×+−=−= −
++++ 1111

~~           (4.7) 

Substituting equations (3.1) and (4.1) into equation (4.7), then: 

1+kxe ( ){ }kkkkkkkk UBXHzKXAwUBXA ×+×−×+×−+×+×= ~~~        (4.8) 

Substituting equation (3.2) into equation (4.8): 

1+kxe ( ){ }kkkkkkkkk UBXHvXHKXAwUBXA ×+×−+××+×−+×+×= ~~~      (4.9) 

The projectile error equation can be re-arranged as: 

1+kxe ( ) ( ) kkkkkk vKwXXHKA ×−+−××−= ~~~                    (4.10) 

Where, the projectile covariance matrix is specified as: 

1
~

+kP [ ]T
xx kk

eeE
11 ++

×=            (4.11) 

Substituting from equation (4.10) into equation (4.11) and rearranging: 

1
~

+kP ( ) ( ){[ kkkk wXXHKAE +−××−= ~~ }kk vK ×− ~  

( ) ( ){ kkkk wXXHKA +−××−× ~~ } ]T
kk vK ×−

~  

       ( ) ( ){[ kkkk wXXHKAE +−××−= ~~ }kk vK ×− ~  

( ) ( ){ T
k

T
k

T
kk wHKAXX +×−×−×

~~ }]T
k

T
k Kv ~×−  

       ( ) ( ) ( ) ( )[ T

k
T

kkkkk HKAXXXXHKAE ×−×−×−××−= ~~~~  

( ) ( ) T
kkkk wXXHKA ×−××−+ ~~ ( ) ( ) T

k
T
kkkk KvXXHKA ~~~ ××−××−−  
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( ) ( ) T
kk

T
k

T
kkk wwHKAXXw ×+×−×−×+ ~~ T

k
T
kk Kvw ~××−  

( ) ( T
k

T
kkkk HKAXXvK ×−×−××−

~~~ ) T
kkk wvK ××− ~ ]T

k
T
kkk KvvK ~~ ×××+        (4.12)  

The vectors  are white and uncorrelated, and hence kw kv and 1
~

+kP  simplifies to the 

following. 

1
~

+kP ( ) ( ) ( ) ( )[ T

k
T

kkkkk HKAXXXXHKAE ×−×−×−××−= ~~~~ T
kk ww ×+  

]T
k

T
kkk KvvK ~~ ×××+           (4.13) 

The projectile covariance matrix can be further simplified to: 

1
~

+kP ( ) ( ) ( )[ ] ( )Tk
T

kkkkk HKAXXXXEHKA ×−×−×−××−= ~~~~ [ ]T
kk wwE ×+  

[ ] T
k

T
kkk KvvEK ~~ ×××+           (4.14) 

For the system noise covariance matrix defined as [ ]T
kkk wwE ×=Q , the measurement 

noise covariance defined as [ ]T
kkk vvER ×=  and where kP~ ( ) ( )[ ]T

kkk XXX ~~
−×kXE −=  

then from equation (4.14) the projectile error covariance is obtained as: 

1
~

+kP ( ) ( )Tkkk HKAPHKA ×−×××−= ~~~
kQ+ T

kkk KRK ~~ ××+       (4.15) 

In an expanded form, the projectile error covariance can be expressed as: 

1
~

+kP ( ) ( )T
k

TT
kk KHAPHKA ~~~ ×−×××−= kQ+ T

kkk KRK ~~ ××+  

       T
k

T
k

T
k KHPAAPA ~~~ ×××−××= T

kk APHK ×××− ~~ T
k

T
kk KHPHK ~~~ ××××+ kQ+  

          T
kkk KRK ~~ ××+                       (4.16) 
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4.3 Derivation of the Gain kK~  

Equation (4.16) can be expanded such that: 

1
~

+kP T
k

T
k

T
k KHPAAPA ~~~ ×××−××= T

kk APHK ×××− ~~
kQ+   

       ( ) T
kk

T
kk KRHPHK ~~~ ×+×××+          (4.17) 

Similarly to the Kalman filter, ( ) T
kk

T
kk KRHPHK ~~~ ×+×××  is considered as symmetric 

and positive definite. As such, it can be factored as, [20]: 

*
kk SS × k

T
k RHPH +××= ~           (4.18) 

Where  is symmetric and the transpose complex conjugate of the matrix . Assuming 

 to be real, then, equation (4.16) can be expressed in terms of  such that: 

*
kS kS

kS kS

1
~

+kP T
k

T
k

T
k KHPAAPA ~~~ ×××−××= T

kk APHK ×××− ~~
kQ+ T

k
T
kkk KSSK ~~ ×××+    (4.19) 

After completing the square, the projectile estimate covariance is formed as: 

1
~

+kP ( ) ( )Tkkkk
T

k CSKCSKAPA −××−×+××= ~~~
kQ+ TCC×−      (4.20) 

where: . Note that C does not involveC ( ) 1~ −
×××= T

k
T

k SHPA kK~ . 

Let the term ( ) ( T
kkkk CSKCSK −××−× )~~ in equation (4.20) be forced to be zero by 

letting: 

1~ −×= kk SCK             (4.21) 

This minimizes 1
~

+kP  since it would result in 0~
~

1 =
∂
∂ +

k

k

K
P . If the matrix  is invertible, then 

from the equation (4.21), the Revised-Kalman gain is obtained as: 

kS
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1~ −×= kk SCK ( ) 11~ −−
××××= k

T
k

T
k SSHPA ( ) 1~ −

××××= T
kk

T
k SSHPA  

      ( ) 1~~ −
+××××× k

T
k

T
k RHPHHPA=          (4.22) 

Substituting equation (4.22) in (4.17), 1
~

+kP  is rewritten as: 

1
~

+kP T
k

T
k

T
k KHPAAPA ~~~ ×××−××= T

kk APHK ×××− ~~
kQ+  

       T
k HPA ××+ ~ ( ) 1~ −

+××× k
T

k RHPH ( ) T
kk

T
k KRHPH ~~ ×+×××      (4.23) 

Rearranging equation (4.23), 1
~

+kP simplifies to: 

1
~

+kP T
kk

T
k APHKAPA ×××−××= ~~~

kQ+                       (4.24) 

The projectile error covariance matrix is then obtained as: 

1
~

+kP ( ) T
kk APHKA ×××−= ~~

kQ+                        (4.25) 

The process for the Revised-Kalman filter can now be summarized as given in Figure 4.1. 
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 Step 1  Calculation of the Revised-Kalman gain: 

( ) 1~~~ −
+×××××= k

T
k

T
kk RHPHHPAK

⇓                                                                     

( )
⇓

×−×+×=−
+ kkkkk XHzKXAX ~~~~

1

⇓

×+= −
++ kkk UBXX 11

~~

( ) k
T

kkk QAPHKAP +×××−=+
~~~

1

 

 

 Step 2  Correction of the projectile estimate into its a priori pre-processor form 

 

 Step 3  Calculation of the projectile state estimate for the next iteration cycle 

 

 Step 4  Calculation of the projectile error covariance matrix for obtaining the projectile  

 estimate for the next iteration cycle: 

 

 

 Iteration
 

Figure 4.1 The Revised-Kalman Filter Process 
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Chapter 5  

The Fuzzy Kalman Filter 

 

Fuzzy logic has been considered for state estimation in [21, 22, 23]. The objective 

of this research is to propose a Fuzzy-Kalman state estimation strategy. The Fuzzy 

control concept employs a linguistic approach in that the instantaneous value of 

controlled variables depends on the inference derived by the IF-THEN-ELSE type rules. 

The rules are generally drawn from state space relationships as might apply to piecewise 

linear systems. Accordingly, the fuzzy logic approach can be applied to uncertain linear 

or nonlinear systems. Furthermore fuzzy membership function can be used for improving 

the characterization of system and measurement noise. 

Conventional logic is binary, that is, something is true or false, positive or 

negative, on or off. Most real world situations, however, do not easily conform to such 

rigid rules and are therefore difficult to control or be modeled using conventional logic. 

Fuzzy logic is a reasoning method that can deal with the uncertainty of the real world. 

Based on fuzzy set theory, fuzzy logic describes inputs in terms of their membership or 

relevance to a description. In this way, Fuzzy logic can provide an effective treatment for 

uncertainty description as it is linguistically based. 

Fuzzy logic systems rely on two distinct and crisp set of variables. These are the 

system’s inputs and outputs that require numerical values and physical units. Using fuzzy 

logic theory, such physical variables can be corresponded to several linguistic variables 
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through membership functions as explained in Chapter 2. A membership function defines 

the degree to which a certain physical variable can be associated with a linguistic 

variable. 

 It is also noted that the linguistic variables can be presented using stochastic 

descriptions. In the search for an easy, efficient, cost-effective control design to satisfy 

increasing demands in terms of accuracy, maneuverability, and stability, a stochastic 

form of rule-construction in fuzzy logic seems to provide a method of reducing the 

complexity of systems and rules while increasing control performance. In this chapter, 

the merging of the stochastic Revised-Kalman filter with fuzzy logic is considered. The 

ability to model problems in a simple and human-oriented way and to produce smooth 

control actions around the set points makes fuzzy logic an especially suitable candidate 

for use in control applications. 

 

5.1 The Fuzzy-Kalman Filter 

Let kX~  be the Fuzzy-Kalman projectile estimate instead of the Revised-Kalman 

estimate. And let be the measurement error defined as: 
kze

kkz XHze
k

~×−=              (5.1) 

As such, e is used as the input to a membership function with the corresponding 

element for center of gravity crisp output being defined as: 

kz

( )
( )∑

=

= S

i
zi

zi
i

k

k

e

e

1
µ

µ
ξ                 (5.2) 
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Further to the pre-processor equation of the Revised-Kalman filter in equation (4.1), the 

corresponding Takagi-Sugeno fuzzy system is obtained as: 

( ) +××=∑
=

−
+

S

i
kzik XeAX

k
1

1
~~ ξ ( ) ( )∑

=

×−××
S

i
kkkzi XHzKe

k
1

~~ξ         (5.3) 

While adopting the concept of the “parallel distributed compensators”, discussed 

in Chapter 2, a residual ( )kkk XHzK ~~ ×−×  can be expressed with a compensator by a 

projectile estimate kX~  as, [6]: 

IF  is 
kze kδ THEN  ( ){ } kkkkk XXHzK ~~~ ×=×−× κ                                    (5.4) 

kκ  is a gain that is derived later further to considerations for optimality the fuzzy rule of 

equation (5.4) can be realized by using corresponding membership and defuzzification 

functions, such that from equation (2.20), the defuzzified crisp output ψ  of the above 

realization is obtained as: 

( )
( )∑

=

= S

j
zj

zj
j

k

k

e

e

1
λ

λ
ψ              (5.5) 

Further to equations (5.4) and (5.5), then: 

( ) ( )∑
=

××=×−×
S

j
kzjkkkk XeXHzK

kj
1

~~~ ψκ           (5.6) 

Note the state feedback is now scaled according to a membership function that is a 

function of the estimate error. It is effectively a gain that is adjusted according to the 

region of the error as well as its magnitude. Further to this strategy, such regions may be 

defined not only in terms of error magnitude but also nonlinearity of the system. The 

nonlinearities are considered in the definition of fuzzy rules as given in equation (5.4) 
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and allow for the smooth interpolation of the gain according to the operation of a 

nonlinear system, [6]. 

Equation (5.6) effectively provides a corrective gain that is a function of an error between 

the predictive and actual output of the system, scaled according to a membership function 

that is adjusted to the operating region. Following a similar strategy as the Revised-

Kalman filter and substituting equation (5.6) into equation (5.3), the projectile estimate 

becomes: 

( ) +××=∑
=

−
+

S

i
kzik XeAX

k
1

1
~~ ξ ( ) ( )∑ ∑

= =

×××
S

i

S

j
kzjkzi Xee

kjk
1 1

~ψκξ           

        =              (5.7) ( )




+×∑
=

S

i
zi k

eA
1

ξ ( ) ( ) kzj

S

i

S

j
kzi Xee

kjk

~
1 1

×




××∑ ∑
= =

ψκξ

It is assumed that the system is piece-wise linear and that iξ  can be used for the selection 

of the operating region according to the error ez or the measured output z. If there is only 

one operating region such that S=1, then the system is linear and, there is one fuzzy rule 

for fuzzy inference (i.e. S=1). Then the Fuzzy-Kalman pre-processor estimate −
+1

~
kX  

becomes similar to that of the Revised-Kalman filter. Considering the case of linear 

systems and 1 membership function such that S=1, then iξ is of dimension1 . 

Furthermore if only 1 error region is considered, then S=1 and equation (5.7) simplifies 

to: 

1×

−
+1

~
kX ( ){ } ( kzzk XeeA

kk
) ~×××+= ξψκ            (5.8) 
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5.2 The Fuzzy Residual Representation 

By experience and repeated experimentation, a set of membership functions may 

be obtained. This experimental heuristic based approach for defining membership 

functions is the advantage of fuzzy logic. The general strategy followed in fuzzy control 

to achieve this is as follows: 

 Experimentation, data collection, and observation 

 Generation of membership functions for fuzzification 

 Rule based inference 

 Defuzzification 

 

Membership functions can be intuitively specified according to the designer’s 

preferences; however, the choice of defuzzification strategy is more limited and the 

center of gravity is predominantly used. In the fuzzy theory application to filtering, a rule 

table is needed to derive a proper fuzzy interpolator from data associations between 

varying noise characteristics and estimates at each operating condition. If proper 

compensation is obtained, this interpolator can be used to coordinate for smooth 

switching i.e. in this context from one operating model to the next. In the context of 

Fuzzy Kalman filter, a mechanism for this interpolation is provided through the use of 

membership function ψ  andξ . In the remainder of this chapter, the derivation of the 

function ψ  and ξ are considered based on a heuristic discussion of the measurement 

error covariance matrix, the Kalman Filter, and the Fuzzy-Kalman filter. 
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5.3 Discussion on the Functionality of the Kalman Filter 

To briefly examine how the Kalman gain works according to the a priori estimation 

error covariance matrix  and the measurement noise covariance , assume that the 

output matrix H is an identity matrix such that: 

−
kP kR
















=

100
010
001

H              (5.9) 

Then the a posteriori estimate of the Kalman filter is obtained as: 

( )−− −+×+= kkkkkk XvXKXX ˆˆˆ          (5.10) 

In equation (3.21), the Kalman gain is stated as: 

( 1−−− +××××= k
T

k
T

kk RHPHHPK )            (3.21) 

where and  are the measurement noise and the a priori error covariance matrices. If 

the output matrix H is assumed to be an identity matrix, then the Kalman gain simplifies 

to: 

kR −
kP

kk

k
k RP

PK
+

= −

−

            (5.11) 

If  is very large and is very small, then the Kalman gain  approximates to: −
kP kR kK

I
P
P

RP
PK

k

k

kk

k
k =≈

+
= −

−

−

−

          (5.12) 

Then, the a posteriori estimate is obtained as: 

( ) ( )−−

→
→

−×+= kkkk
V
R

XXIXX
k
k

ˆˆˆlim
0

,0 kkkk XXXX =−+= −− ˆˆ  
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Therefore, if the measurement noise is very small in amplitude, then the Kalman filter 

estimate gets close to the actual state. If  is very small compared to , then can be 

approximated to: 

−
kP kR kK

( ) 0
0

0limlim
00

=
+

≈







+

= −

−

→→ −−

kkk

k

P
k

P RRP
PK

kk

          (5.13) 

Then, the a posteriori estimate is obtained as: 

( ) ( )−−−− −+×+≈−+×+= kkkkkkkkkk XvXXXvXKXX ˆ0ˆˆˆˆ −= kX̂  

When the estimation error is small even though the measurement error is big, it can be 

said that the only estimate is the a priori one. 

 

5.4 Discussion of the functionality of the Revised Kalman Filter 

Assuming an Identity output matrix, the pre-processor of the Revised-Kalman filter 

in equation (4.1) changes to: 

( )kkkkkk XvXKXAX ~~~~
1 −+×+×=−
+          (5.14) 

The Revised-Kalman gain then simplifies to: 

kk

k
k RP

PAK
+
×

= ~
~~             (5.15) 

If kP~ is very large compared to , the Revised-Kalman gainkR kK~  can be obtained as: 

( ) A
P

PA
RP
PAK

k

k

kk

k

RkR kk

=
+
×

≈








+
×

=
→→ 0~

~
~

~
lim~lim

00
        (5.16) 

Then, the pre-processor estimate is obtained as: 

( ) ( ) kkkkkkkkkk XAXXAXAXvXKXAX ×=−×+×≈−+×+×=−
+

~~~~~~
1     (5.17) 
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If the measurement error is very small, then the pre-processor estimate gets close to the 

actual state vector. If kP~  is very small compared to , then kR kK~  approaches zero: 

( ) 0
0

0
~

~
lim~lim

00
=

+
×

≈








+
×

=
→→

kkk

k

PkP R
A

RP
PAK

kk

        (5.18) 

Then, the pre-processor estimate is obtained as: 

( ) ( ) kkkkkkkkkkk XAXvXXAXvXKXAX ~~0~~~~~
1 ×=−+×+×≈−+×+×=−
+     (5.19) 

Hence similarly to the Kalman filter, when the amplitude of the measurement noise is 

high, the final estimate is due to the a priori stage of the filter. Therefore, under that 

condition, the Kalman gain or the Revised-Kalman filter gain do not have meaningful 

effects on the estimation error. The higher the error, the more significant is the role of the 

gains. 

 

5.5 The Measurement Error Covariance Matrix 

The projectile error covariance of the Revised-Kalman filter equation (4.14) can be 

used for constructing the membership function ofψ , which acts for the representation of 

the residual in equation (5.6). These two equations are restated here and are follows: 

1
~

+kP ( ) ( ) ( )[ ] ( )Tk
T

kkkkk HKAXXXXEHKA ×−×−×−××−= ~~~~ [ ]T
kk wwE ×+  

[ ] T
k

T
kkk KvvEK ~~ ×××+           (4.14) 

( ) ( )∑
=

××=×−×
S

j
kzjkkkk XeXHzK

kj
1

~~~ ψκ               (5.6) 
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 In the Revised-Kalman filter, the measurement error covariance matrix can be derived 

from the measurement error vector of kk XHz ~×− . Let  be the kP̂ measurement error 

covariance matrix obtained as: 

kP̂ [ ]T
zz kk

eeE ×=            (5.20) 

The state estimation error e is defined as: e
kx kkx XX

k

~−= , then the measurement error 

is obtained as: 
kze

kze ( ) kkk vXXH +−×= ~
kx veH

k
+×=          (5.21) 

Substituting equation (5.21) in equation (5.20), then the measurement error covariance 

equation is as follows: 

kP̂ ( ) ( )[ ]T
kxkx veHveHE

kk
+××+×=  

     ( ) ( )[ T
xk

T
xx kkk

eHveHeHE ××+×××= ( ) ]T
kk

T
kx vvveH

k
×+××+  

     ( )[ ]T
xx kk

eHeHE ×××= ( )[ ]T
xk k

eHvE ××+ ( )[ ]T
kx veHE

k
××+  

[ ]T
kk vvE ×+            (5.22) 

Since the vector v is white and uncorrelated to other terms, then the terms k

( )[ ]T
xk k

eHvE ×× and ( )[ ]T
kx veHE

k
××

( )

are equal to zero. Furthermore, 

[ ]T
xk

exk
HeHE ××× , [ ]T

xx kk
eeE × and [ ]T

kk vvE × are equal to [ ] TT
xx HeeEH

kk
××× , 

kP~ and respectively. kR

Then, the measurement error covariance is obtained from the projectile estimation error 

as: 

kP̂ T
k HPH ××= ~

kR+             (5.23) 
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5.6 Heuristic Adaptation of the Measurement Noise Covariance Matrix 

The measurement error can be calculated as: kk XHz ~×−  in state estimation. Let 

the probability distribution of this error function be approximated by the probability 

density function specified as: 

( ) ( ){ }T
kkkk XHzXHz

k e
~~ ×−××−−=Φ           (5.24) 

kΦ is a function of the measurement error and like , reflects the presence and 

magnitude of the measurement noise in the Revised-Kalman filtering of Chapter 4.  

Normally for linear systems a fixed R

kR

k is used. Here to allow for the adjustment of Rk 

using a heuristic assumption of a noise amplitude that is normally distributed, Rk is 

substituted by Φ  for its bounded variation according to the magnitude of the error that 

can be viewed as a function of measurement noise. 

k

Let kP~  be the Fuzzy-Kalman projectile estimation error covariance matrix. Then, the 

fuzzy crisp gain kκ  in equation (5.6) is redefined in terms of kΦ  instead of R as: 

( 1~~ −
Φ+×××××= k

T
k

T
kk HPHHPAκ )         (5.25) 

To see briefly how this fuzzy crisp gain works according to the projectile estimate error 

covariance kP~  and the function , assume that the output matrix H is the identity matrix 

such that: . 

kΦ

















100
010
001

=H

Then, the fuzzy crisp gain is simplified to: 

kk

k
k P

PA
Φ+

×
= ~

~
κ             (5.26) 
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If kP~  is very small, then regardless of kΦ , kκ approaches zero, as illustrated in equation 

(5.27): 

( ) 0
0

0
~

~
limlim

0~0~ =
Φ+
×

=








Φ+
×

=
→→

kkk

k

PkP

A
P

PA
kk

κ         (5.27) 

This is conceptually similar to the case of the Kalman Filter and the Revised-Kalman 

Filter as given by equations (5.13) and (5.18). If kP~ and the measurement error are very 

large, then  becomes very small, such that: kΦ

A
P

PA
P

PA

k

k

kk

k
k =

+
×

≈
Φ+

×
=

0~
~

~
~

κ           (5.28) 

This is similar to equation (5.16) pertaining to the Revised-Kalman filter where limiting 

values for R lead to the same results. Hence the functionality of the Revised-Kalman 

filter at the limits of R is preserved by replacing a fixed R by kΦ that adapts to the 

magnitude of the error. Note that when the measurement error is small, then: 

( ) ( ){ } Iee
T

kkkk XHzXHz
k =≈=Φ ×−××−− 0~~

         (5.29) 

This results in a fuzzy crisp gain kκ  such that: 

IP
PA

P
PA

k

k

kk

k
k +

×
≈

Φ+
×

= ~
~

~
~

κ           (5.30) 

This feature maintains a corrective action while kP~  and the measurement error is not zero 

despite the small amplitude of the error. Only when kP~  is equal to zero and the 

measurement error is equal to zero, then kκ  approaches zero such that: 

( ) 0
0

0
~

~
limlim

0~0~ =
+
×

=








Φ+
×

=
→→ I

A
P

PA

kk

k

PkP kk

κ          (5.31) 
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The heuristic definition of  given in equation (5.29) therefore presents an advantage 

over a fixed R. Its use in multiples allows the gain to be scaled according to operating 

“region” of the error function. 

kΦ

 

5.7 Heuristic Adaptation of the System Noise Covariance Matrix 

The adaptation of the system noise covariance matrix Q can be handled in a similar 

fashion. In equation (4.25), Qk is used in 1
~

+kP to reflect the presence and magnitude of 

uncertainties and system noise in the Revised-Kalman filter. In equations (3.1) and (4.3), 

state estimation is obtained by using the residual ( )kkk XHz ~×−×κ . This partly 

incorporates system noise (wk) and can thus be used for adapting Qk. 

Let Ω  be defined as: k

T
kkkk P κκ ××=Ω ˆ             (5.32) 

This function not only reflects the estimation error but also the corrective gain kκ  that are 

both related to modeling uncertainty and noise as reflected by Q.  Let kP~  be the Fuzzy-

Kalman projectile estimation error covariance (not the Revised-Kalman’s). Let  and kΩ

kκ  be substituted into equation (4.25) instead of Qk and kK~  respectively. Then the 

Fuzzy-Kalman projectile estimation error covariance 1
~

+kP  is obtained as: 

( ) k
T

kkk APHAP Ω+×××−=+
~~

1 κ          (5.33) 

The essence of what is being proposed here is the use of functions that are obtained 

heuristically to adjust the optimal filter according to varying uncertainty levels and noise. 

Let equation (5.32) be substituted into equation (5.33), then: 
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( ) +×××−=+
T

kkk APHAP ~~
1 κ T

kkk P κκ ×× ˆ         (5.34) 

where further to equation (5.23),  is the Fuzzy-Kalman Filter measurement error 

covariance defined in terms of  as: 

kP̂

kΦ

kP̂ T
k HPH ××= ~

kΦ+             (5.35) 

with kP~  being the Fuzzy-Kalman projectile error covariance matrix as defined in equation 

(5.33).  

 When equation (5.35) is substituted in equation (5.34), then: 

( ) +×××−=+
T

kkk APHAP ~~
1 κ  ( ) T

kk
T

kk HPH κκ ×Φ+××× ~
       (5.36)  

Further to the heuristic selection of kΦ  and kΩ  as given by equations (5.24) and (5.32), 

the optimality of the state estimation strategy is maintained with respect to the future 

error such that 0
~

1 =
∂
∂ +

k

kP
κ

. From equation (5.36), for optimality. 

k

kP
κ∂

∂ +1
~

+××−= T
k APH ~ ( ) 0~ =×Φ+×× T

kk
T

k HPH κ       (5.37) 

Rearranging equation (5.37), then: 

=kκ ( )TT
k APH ×× ~ ( ){ }Tk

T
k HPH

1~ −
Φ+××× T

k HPA ××= ~ ( ) 1~ −
Φ+××× k

T
k HPH     (5.38) 

Equation (5.38) is identical to equation (5.25), thus confirming the optimality of the gain 

kκ with respect to 1
~

+kP . The revised estimation process with heuristic and fuzzy 

membership functionsΦ  and Ω is provided in Figure 5.1. k k
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 Step 1 Calculation of the Fuzzy-Kalman gain by using the projectile or initial condition  Step 1 Calculation of the Fuzzy-Kalman gain by using the projectile or initial condition 

( )
⇓

Φ+×××××=
−1~~

k
T

k
T

kk HPHHPAκ

( )
⇓

×−×+×=−
+ kkkkk XHzXAX ~~~

1 κ

⇓

×+= −
++ kkk UBXX 11

~~

T
kkkk P κκ ××=Ω ˆ

( )
⇓

Ω+×××−=+ k
T

kkk APHAP ~~
1 κ

111
~ˆ

+++ Φ+××= k
T

kk HPHP

( )
⇓

Φ+×××××=
−1~~

k
T

k
T

kk HPHHPAκ

( )
⇓

×−×+×=−
+ kkkkk XHzXAX ~~~

1 κ

⇓

×+= −
++ kkk UBXX 11

~~

T
kkkk P κκ ××=Ω ˆ

( )
⇓

Ω+×××−=+ k
T

kkk APHAP ~~
1 κ

111
~ˆ

+++ Φ+××= k
T

kk HPHP
IterationIteration

  

 Step 2 Correction of the projectile estimate in its a priori or a pre-processor form  Step 2 Correction of the projectile estimate in its a priori or a pre-processor form 

  

 Step 3 Calculation of the projectile state estimate for the next iteration cycle  Step 3 Calculation of the projectile state estimate for the next iteration cycle 

  

 Step 4 Calculation of the projectile error covariance matrix for obtaining the projectile  Step 4 Calculation of the projectile error covariance matrix for obtaining the projectile 

 estimate for the next iteration cycle  estimate for the next iteration cycle 

  

  

 Step 5 Calculation of the measurement error covariance using the projectile estimation  Step 5 Calculation of the measurement error covariance using the projectile estimation 

 error covariance  error covariance 

  

  

  

Figure 5.1 Fuzzy-Kalman Filter ProcessFigure 5.1 Fuzzy-Kalman Filter Process
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5.8 Fuzzy Kalman Filter Implementation in a “Parallel Distributed Compensator” 

Form (PDC-Fuzzy Kalman Filter)  

Further use of fuzzy concept in state estimation is possible through the use of the 

“parallel distributed compensator” that is a heuristic method employed by Passino, [6]. 

The structure of the corrective gain is changed as a result to that of equation (5.6). Further 

to equation (5.6), the function kψ  is used to relate and scale the corrective action kκ  of 

the Fuzzy Kalman gain according to the error ( )kk XHz ~×− .  As such, let kψ  be 

heuristically defined in terms of the measurement error covariance matrix as: 

HPkk ×= ˆψ             (5.39) 

where  is the Fuzzy-Kalman measurement error covariance matrix defined in equation 

(5.35). Substituting equation (5.39) in equation (5.6), then: 

kP̂

( )=×−× kkk XHzK ~~
kkk XHP ~ˆ ×××κ         (5.40) 

The Fuzzy-Kalman pre-processor estimate is obtained by substituting equation (5.39) in 

equation (5.8) such that: 

−
+1

~
kX ( ){ } ( kzzk XeeA

kk
) ~×××+= ξψκ { } ( ) kzkk XeHPA

k

~ˆ ××××+= ξκ     (5.41) 

 In a nonlinear application ξ  can be a membership function that would allow for 

model adjustment according to piecewise linear regions or error regions. Here a linear 

system is considered with 1=ξ . The process for the Parallel Distributed Compensator 

form of the Fuzzy-Kalman filter (PDC-Fuzzy-Kalman Filter) can now be summarized as 

given in Figure 5.2. 
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 Step 1 Calculation of the Fuzzy-Kalman gain by using the projectile or initial condition 

( )
⇓

Φ+×××××=
−1~~

k
T

k
T

kk HPHHPAκ

⇓

×




 ××+=−

+ kkkk XHPAX ~ˆ~
1 κ

⇓

×+= −
++ kkk UBXX 11

~~

T
kkkk P κκ ××=Ω ˆ

( )
⇓

Ω+×××−=+ k
T

kkk APHAP ~~
1 κ

111
~ˆ

+++ Φ+××= k
T

kk HPHP

 

 Step 2 Correction of the projectile estimate in its a priori or a pre-processor form 

 

 Step 3 Calculation of the projectile state estimate for the next iteration cycle 

 

 Step 4 Calculation of the projectile error covariance matrix for obtaining the projectile 

 estimate for the next iteration cycle 

 

 

 Step 5 Calculation of the measurement error covariance using the projectile estimation 

 error covariance 

 
Iteration 

 

Figure 5.2 The PDC-Fuzzy-Kalman Filter Process



 

 

Chapter 6  

Simulation Results and Discussion 

 

 In this chapter, the performance of the Kalman filter, the Revised-Kalman filter 

and the Fuzzy-Kalman filter are compared by using computer simulation. These 

methodologies are applied to the model of an Electro hydraulic actuator, [24]. 

 

6.1 The Model System: The Electro Hydraulic Actuator 

An ElectroHydraulic Actuator has been described and extensively studied in [24]. 

The mathematical model of this actuator is used in a linearized form in this study. 

Let the state space equation of this actuator be specified as: 

kkkk wUBXAX +×+×=+1  

The elements of the state vector correspond to the actuator’s position (cm), velocity 

(cm/s), and acceleration (cm/s2).  The initial value of the state vector is assumed as: 
















=

0
0
0

0X               (6.1) 

The system matrix A is obtained as, [24]: 

















−−
=

9418.0616.2802.522
001.010
0001.01

A            (6.2) 
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B is the input matrix and specified as: 
















=

02.542
0
0

B               (6.3) 

The system noise is assumed white with a maximum amplitude of 0.001, such that: 

( )















=

001.0
001.0
001.0

max kw . Random signal with a maximum amplitude of the value of 1 is used 

as an input, U. The output equation of the actuator is specified as: 

kkk vXHz +×=              (6.4) 

where the output matrix H is pseudo-diagonal such that: 









=

010
001

H              (6.5) 

Therefore, the output zk has elements corresponding to the measured position and 

velocity. Let the sampling time  be 0.001 second. The measurement noise is assumed 

white with an upper amplitude bound of 0.1: 

∆

( ) 







=

1.0
1.0

max kv  

 

6.2 The Kalman Filter 

The Kalman Filter estimation process is summarized in Figure 3.1 of Chapter 3.  

The initial condition of the state vector is specified as: 
















=

0
0
0

0X  
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For this process, the measurement error covariance matrix is specified as: 









×

×
=

1.01.00
01.01.0

kR  

Similarly the system noise covariance matrix is specified as: 

















×
×

×
=

001.0001.000
0001.0001.00
00001.0001.0

kQ  

The remaining initial conditions for the filter were specified as follows: 
















=

0
0
0

ˆ
0X  and  
















=−

1000
0100
0010

0P

The , Q and R matrices were set by trial and error, a tuning method commonly used in 

the Kalman filter concept. 

−
0P

 

6.3 The Revised-Kalman Filter 

The Revised-Kalman filter is summarized in Figure 4.1 of Chapter 4. It is applied 

to the system of section 6.1 with the following initial conditions: 









×

×
=

1.01.00
01.01.0

kR
















=

1000
0100
0010

~
0P

,Q ,  

and  

















×
×

×
=

001.0001.000
0001.0001.00
00001.0001.0

k
















=

0
0
0

~
0X
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6.4 The Fuzzy-Kalman Filter and the PDC Fuzzy-Kalman Filter 

The respective process of Fuzzy-Kalman Filter and the PDC Fuzzy-Kalman Filter 

are summarized in Figures 5.1 and 5.2 of Chapter 5. The initial projectile estimate, 

projectile estimate error covariance matrix, and the initial measurement error covariance 

matrix for these filters are specified as: 
















=

0
0
0

~
0X





=0̂P

, ,Φ  

and . The initial condition pertaining to 

















×
×

×
=

001.0001.000
0001.0001.00
00001.0001.0

~
0P





×

×
1.01.00

01.01.0









×

×
=

1.01.00
01.01.0

0

ψ  of the PDC Fuzzy-

Kalman Filter is set to: 

H×P= 00
ˆψ  




01.
00

0



=








×








×

×
00

1.0
010
001

1.01.00
01.01.0

= . The initial κ  is 

calculated by substituting 0
~P 0 andΦ  in equation (5.25). 

 

6.5 Simulation Results and Comparative Discussions 

The simulation results from the implementation of the three filters are provided in 

this section. The first simulation is conducted by setting the covariance matrices to 

correctly represent the system noise and the measurement error as given in equations 

(5.32) and (5.24). Figure 6.1 depicts the input and the output signals. Through Figures 6.2 

to 6.4, the simulated actual and estimated states pertaining to the Kalman filter, the 

Revised-Kalman filter and the Fuzzy-Kalman filter are presented. In Figures 6.5 to 6.7, 

the results are compared by expanded views. By simulation, it is shown that the state 
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estimates from the Kalman filter are marginally more accurate than the Fuzzy-Kalman 

filter. Similar results are presented for the PDC-Fuzzy-Kalman Filter in figures 6.8 to 

6.12. The system noise and the measurement error are assumed to be within their 

assumed covariance level. In Figures 6.9 to 6.11, the simulated actual and estimated 

states pertaining to the Kalman filter, the Revised-Kalman filter and the PDC-Fuzzy-

Kalman filter are compared by their expanded views. Again, it can be observed that state 

estimates from the Kalman filter are marginally more accurate than the PDC-Fuzzy-

Kalman filter. The Fuzzy-Kalman filter and the PDC-Fuzzy-Kalman filter are compared 

by an expanded view of simulation results in Figure 6.12. This figure shows that Fuzzy-

Kalman filter and the PDC-Fuzzy-Kalman filter performances are comparable. 

The second simulation is conducted by increasing the measurement noise level to 

beyond its assumed covariance level as: 

,~
kk XHz ×=               (6.6) 

where . Equation (6.6) instead of equation (3.2) is used for output 

measurement. 









+

+
=

010
001~

η
η

H

η  is a random signal noise with an upper amplitude bound of 0.1. All four 

filters are applied to this new condition without further retuning. This simulation is 

conducted to reflect the assumption that real noise can go beyond its assumed level. The 

state estimation results from the filters are shown in Figures 6.13 to 6.21. It is observed 

that the estimates from the Fuzzy-Kalman filtering and the PDC-Fuzzy-Kalman filtering 

are more correct than the Kalman filter. From the simulation results, it can be observed 

that the accuracy of the Kalman filter and the Revised-Kalman filter are comparable.  
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 The third simulation is conducted by changing the condition of measurement error 

as: 

kkk UBXAX ×+×=+
~

1             (6.7) 

kk XHz ×= ~               (6.6) 

where . Equation (6.7) is used instead of 

equation (3.1) to calculate the actual states. 

















++−+−
+

+
=

ωωω
ω

ω

9418.0616.2802.522
001.010
0001.01

~A

ω  is a random signal noise with an upper 

amplitude bound of 0.001. And equation (6.6) is used for its measurements. Figure 6.22 

depicts the input and the output signals. Through Figures 6.23 to 6.36, the simulated 

states and the state estimation results pertaining to the Kalman filter, the Revised-Kalman 

filter, the Fuzzy-Kalman Filter, and the PDC-Fuzzy-Kalman filter are presented. By 

simulation, it is observed that state estimates from the PDC-Fuzzy-Kalman filter are more 

accurate than the Kalman filter. 

 67



 

For Comparing the Kalman Filters and the Fuzzy-Kalman Filter Estimations 

 

Time (Sec) 

Figure 6.1 Input and Output Signals within the Assumed Noise Covariance 
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Time (Sec) 

Figure 6.2 Position Estimate within the Assumed Noise Covariance (cm) 
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Time (Sec) 

Figure 6.3 Velocity Estimate within the Assumed Noise Covariance (cm/s) 
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Time (Sec) 

Figure 6.4 Acceleration Estimate within the Assumed Noise Covariance (cm/s2) 
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Time (Sec) 

Figure 6.5 Expanded View for Comparing Position Estimations (cm) 

 
Time (Sec) 

Figure 6.6 Expanded View for Comparing Velocity Estimations (cm/s) 
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Time (Sec) 

 

Figure 6.7 Expanded View for Comparing Acceleration Estimations (cm/s2)
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For Comparing the Kalman Filters and the PDC-Fuzzy-Kalman Filter Estimations 

 
Time (Sec) 

Figure 6.8 Input and Output Signals within the Assumed Noise Covariance 
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Time (Sec) 

Figure 6.9 Expanded View for Comparing Position Estimations (cm) 

 
Time (Sec) 

Figure 6.10 Expanded View for Comparing Velocity Estimations (cm/s) 
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Time (Sec) 

Figure 6.11 Expanded View for Comparing Acceleration Estimations (cm/s2) 

 
Time (Sec) 

Figure 6.12 Expanded View for Comparing Two Fuzzy Kalman Filters 
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For Comparing the Kalman Filters and the Fuzzy-Kalman Filter Estimations 

 
Time (Sec) 

Figure 6.13 Input and Outputs beyond the Assumed Measurement Noise Covariance 
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Figure 6.14 Expanded View for Comparing Position Estimations (cm) 
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Figure 6.15 Expanded View for Comparing Velocity Estimations (cm/s) 
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Figure 6.16 Expanded View for Comparing Acceleration Estimations (cm/s2) 
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For Comparing the Kalman Filters and the PDC-Fuzzy-Kalman Filter Estimations 

 
Time (Sec) 

Figure 6.17 Input and Outputs beyond the Assumed Measurement Noise Covariance 
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Figure 6.18 Expanded View for Comparing Position Estimations (cm) 
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Figure 6.19 Expanded View for Comparing Velocity Estimations (cm/s) 
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Figure 6.20 Expanded View for Comparing Acceleration Estimations (cm/s2) 
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Figure 6.21 Expanded View for Comparing Two Fuzzy Kalman Filters 
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For Comparing the Kalman Filters and the Fuzzy-Kalman Filter Estimations 

 
Time (Sec) 

Figure 6.22 Input and Output Signals beyond the Assumed Noise Covariance 
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Figure 6.23 Position Estimate beyond the Assumed Noise Covariance (cm) 

 84



 

 

 
Time (Sec) 

Figure 6.24 Velocity Estimate beyond the Assumed Noise Covariance (cm/s) 

 85



 

 

 

Time (Sec) 

Figure 6.25 Acceleration Estimate beyond the Assumed Noise Covariance (cm/s2) 
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Figure 6.26 Expanded View for Comparing Position Estimations (cm) 
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Figure 6.27 Expanded View for Comparing Velocity Estimations (cm/s) 
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Figure 6.28 Expanded View for Comparing Acceleration Estimations (cm/s2) 
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For Comparing the Kalman Filters and the PDC-Fuzzy-Kalman Filter Estimations 

 
Time (Sec) 

Figure 6.29 Input and Output Signals beyond the Assumed Noise Covariance 
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Figure 6.30 Position Estimate beyond the Assumed Noise Covariance (cm) 
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Figure 6.31 Velocity Estimate beyond the Assumed Noise Covariance (cm/s) 
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Figure 6.32 Acceleration Estimate beyond the Assumed Noise Covariance (cm/s2) 
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Figure 6.33 Expanded View for Comparing Position Estimations (cm) 
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Figure 6.34 Expanded View for Comparing Velocity Estimations (cm/s) 
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Figure 6.35 Expanded View for Comparing Acceleration Estimations (cm/s2) 
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Figure 6.36 Expanded View for Comparing Two Fuzzy Kalman Filters
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Chapter 7  

Conclusions  

 

 The Kalman filter needs to be tuned according to the choice of an assumed 

system matrix, noise and the level of uncertainties. If conditions change to invalidate the 

tuning of the filter such as an increase in the amplitude of the measurement noise, then 

the amplitude of the estimates degrade. In this thesis the Fuzzy-Kalman filter is proposed 

to allow for the adaptation of the estimation process to changing system characteristics 

and noise. This filter constitutes a fusion of fuzzy logic and the Kalman Filter. For this 

fusion, the Kalman Filter concept has been revised into a form referred to as the Revised-

Kalman Filter. The fundamental conceptual difference between the Kalman filter and its 

revised form is in the calculation of the corrective term. In the former the corrective term 

is a function of a gain and the a priori estimation error between the current computation 

step. Whereas, in the latter revised formulation, the a posteriori estimation error from the 

previous iteration step is used. In both cases, the associated gain multiplying the error 

term is an optimal derivation in the least square sense. In a simulation example, albeit 

limited, it is shown that the Revised-Kalman filter is as effective as the Kalman filter, but 

lends itself better to the application of fuzzy logic through the Sugeno-Takagi and 

parallel distributed compensator concepts. Further to a simulated example, it is found that 

the estimate from a tuned Kalman filter can be more accurate than the estimate from the 

Fuzzy-Kalman. However once outside the tuning envelope, the results of simulation 

show that the Fuzzy-Kalman outperforms the Kalman filter. This is because the Kalman 
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filter assumes that the system noise and the measurement noise are white and as such 

uncorrelated to the states and inputs. This assumption simplifies the derivation of the 

Kalman filter. In reality however, the noise may not be white and may not be of zero 

mean, [20], thus invalidating the optimality of the Kalman Filter. Fuzzy logic can be used 

for compensating for departures from ideal conditions. In the Fuzzy-Kalman formulation 

presented in this thesis, adjustments to the estimates are made through the adaptation of 

the system and measurement noise covariance matrices. Measurement error covariance 

matrix that is used as a membership function is used in this adaptation. Furthermore, 

provisions are made for the adaptation of the system matrix involved in the initial 

prediction of the states.  

In conclusion, the methodology presented in this thesis successfully combines the 

Kalman filter concept and fuzzy logic. The preliminary simulation study considered here 

indicates that this combination is better at handling uncertainties. 

 

Future Research: 

This thesis has not provided a comprehensive adaptation of the Fuzzy-Kalman 

with multiple memberships. It is recommended as a continuation of this research, that the 

Fuzzy-Kalman Filter is applied to a real system thus forcing a realistic context for 

consideration of membership functions. 
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