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ABSTRACT 
 
 Neutrophils are implicated in many inflammatory lung disorders. However, the 
mechanisms regulating neutrophil migration in acute lung inflammation are incompletely 
understood. Although, integrin β2 mediates neutrophil migration in lungs in response to many  
stimuli such as E. coli, integrin involved in S. pneumoniae induced neutrophil migration is not 
known. Therefore, the role of integrin αvβ3 in neutrophil recruitment was tested. First, it was 
found that the number of neutrophils expressing the integrin subunits αv and β3 is reduced or 
remains in lung inflammation induced by E. coli or S. pneumoniae, respectively. Next, the role of 
integrin αvβ3 using β3 knockout mice (β3

-/-) and function blocking antibodies was addressed. 
Neutrophil recruitment did not vary between wild type and β3

-/- mice. Although β3 antibodies 
reduced neutrophil recruitment, similar effect was observed with isotype antibodies. Therefore, 
one can conclude that integrin αvβ3 is not critical for neutrophil recruitment in S. pneumoniae 
induced pneumonia. 
 Apart from integrins, TLR4 also regulate neutrophil migration. Because, the pattern of 
TLR4 expression at various times of lung inflammation is not known, TLR4 expression during 
different phases of lung inflammation in a rat model of LPS-induced inflammation was studied. 
TLR4 expression in the septum increased and decreased at 6h and 12-36h of inflammation, 
respectively. Since these correlate with the time of increase and decline of neutrophil recruitment, 
the findings support previously observed requirement for TLR4 in neutrophil recruitment. 
 Neutrophils recruited into the lungs regulate the inflammatory process by controlling 
subsequent monocyte/macrophage recruitment. The mechanisms involved and the pattern of 
monocyte/macrophage recruitment in lungs are not completely understood. Therefore, the 
possible involvement of monocyte chemoattractant protein (MCP)-1, which is a premier 
chemokine in monocyte/macrophage migration and produced by neutrophils and other cells was 
tested. This was addressed by quantification of monocytes/macrophages at various times and 
using neutrophil depletion experiments in LPS-induced lung inflammation in rats. It was found 
that monocytes/macrophages migrate very early and before neutrophils in addition to their 
migration in the late phase of acute lung inflammation. Neutrophil depletion abrogated both early 
as well as the late monocyte/macrophage recruitment without altering the expression of MCP-1. 
Therefore, possibly other chemokines and not MCP-1 are involved in neutrophil dependent 
monocyte/macrophage recruitment. 
 To conclude, the experiments further the understanding on acute lung inflammation by 
ruling-out the involvement of integrin αvβ3 and MCP-1 in β2-independent neutrophil migration 
and neutrophil dependent monocyte/macrophage recruitment, respectively. Further studies are 
essential to find the integrins and chemokines operating in the above situations. Equally 
important will be to understand the functional significance of early recruited 
monocytes/macrophages in the lung. 
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CHAPTER 1: REVIEW OF LITERATURE 
 

1.1. Introduction 
 Inflammation is tissue’s response to a physical, chemical or biological stimulus, 

characterized by cellular and vascular changes (Allison et al. 1955). Vascular changes are 

characterized by congestion and increased permeability leading to edema formation. Cellular 

changes are characterized by accumulation of neutrophils followed by monocytes/macrophages, 

which would normally result in resolution of inflammatory process (Ryan and Majno. 1977). 

Inflammation is an essential process for the host defense. However, when dysregulated, the 

inflammatory process could result in tissue injury (Smith. 1994). 

 Lung has the largest surface area of the epithelium in the mammalian body that is 

constantly exposed to various agents such as particulate matters and microbes (Reynolds. 1987;  

Zhang et al. 2000). Normally these agents are cleared from the lungs by the mechanical barriers 

including mucociliary clearance and immune cells such as macrophages to maintain homeostasis 

(Reynolds. 1987). When the stimulus is not cleared completely from the lung, inflammatory 

process is initiated to clear the stimulus (Delclaux and Azoulay. 2003).  Such a process will result 

in the recruitment of inflammatory cells in a tightly regulated fashion. In lung the majority of 

neutrophil migration occurs from the microvasculature (Lien et al. 1991). Lung microvasculature 

holds 20-40% of total neutrophils in the body (Reynolds. 1987;  Zhang et al. 2000) and has a 

huge surface area to an extent of 60 m2 (Hogg. 1987). Therefore, process of dysregulated 

neutrophil recruitment can result in massive influx and activation of neutrophils and other cells 

such as endothelium, which leads to altered microvascular permeability, edema formation, 

decreased oxygenation and lung injury. Neutrophil recruitment is an essential process and its 

absence or defective function results in overwhelming lung infections (Marlin et al. 1986;  Moore 

et al. 2000;  Tsai et al. 2000;  Tsai et al. 1998). However, dysregulated recruitment results in 

several inflammatory lung disorders such as acute lung injury (ALI), acute respiratory distress 

syndrome (ARDS) and transfusion related acute lung injury (TRALI) 
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(Matthay et al. 2003;  Menezes et al. 2005;  Piantadosi and Schwartz. 2004;  Toy et al. 2005;  

Ware and Matthay. 2000). All these pathological conditions have significant morbidity and 

mortality rates. For example, ALI/ARDS affects approximately 20-50 per 100,000 persons 

annually in the United States of America with a mortality rate of 40% (Matthay et al. 2003;  

Rubenfeld. 2003). TRALI has a mortality rate of up to 25% (Silliman et al. 2003;  Toy et al. 

2005). In all these cases neutrophils play a critical role (Silliman et al. 2005;  Silliman et al. 

2003;  Ware and Matthay. 2000). Apart from the conditions mentioned above, neutrophils play 

an important role in several bacterial pneumonias (Rijneveld et al. 2005;  Tsai et al. 2000). 

Amongst various causes, Streptococcus pneumoniae (S. pneumoniae) is a major pathogen 

causing bacterial pneumonia and it accounts for 40-50% of community acquired pneumonia 

(Kadioglu and Andrew. 2004). World wide, over one million children suffer from S. pneumoniae 

induced pneumonia (Kadioglu and Andrew. 2004). Pneumonia is also considered to be one of the 

important causes for ALI/ARDS. Because dysregulated migration of neutrophils into lungs has 

profound implications, it is critical to have a precise understanding of the mechanisms that 

regulate their migration. 

 Neutrophil migration is followed by the entry of monocytes/macrophages into the 

inflamed lungs (Ryan and Majno. 1977). Apart from their direct effects on the tissues, 

neutrophils also influence the outcome of an inflammatory process by playing a role in the 

recruitment of monocytes/ macrophages (Doherty et al. 1988;  Maus et al. 2002b).  However, 

knowledge on the mechanisms of neutrophil mediated monocyte recruitment in the lung is 

incomplete. Understanding this mechanism is important as macrophages in the alveolar space 

play an important role in lung inflammation (Fels and Cohn. 1986;  Maus et al. 2002c;  Reynolds. 

1987;  Reynolds. 2005). Also, pulmonary intravascular macrophages are known to play a major 

role in lung inflammation in the host species such as equines and bovines (Parbhakar et al. 2005;  

Singh et al. 2004). In addition, species which lack intravascular pool of macrophages, such as 

rats can also recruit monocytes/macrophages into pulmonary microvasculature and play a role in 

inflammation (Singh et al. 1998;  Sztrymf et al. 2004). All these indicate that 

monocytes/macrophages, irrespective of their location (alveolar or intravascular), can regulate 

lung inflammation. However, because of the accepted paradigm that monocytes are recruited 

after the neutrophils, the studies which have examined the recruitment of 

monocytes/macrophages in the lung have predominantly concentrated on those which are 
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recruited into the alveolar spaces in the post-neutrophilic phase (Fillion et al. 2001;  Maus et al. 

2002b;  Ulich et al. 1991;  Yamamoto et al. 1998). Despite evidences for the early monocyte 

recruitment either before or along with the neutrophils in inflammatory conditions of other 

organs (Henderson et al. 2003;  Issekutz and Issekutz. 1993;  Issekutz et al. 1981), the total 

accumulation of monocytes/macrophages in lung inflammation is not well addressed. Since 

monocytes/macrophages in the inflamed lungs, irrespective of their location, can significantly 

contribute to inflammation by producing cytokines and free oxygen radicals (Elias et al. 1985a;  

Elias et al. 1985b;  Li et al. 1998;  Maus et al. 2002a), it is important to assess the total 

monocyte/macrophage recruitment in the lung.  

 Because of the reasons mentioned above, in the following sections I will review the 

literature pertaining to neutrophil recruitment and monocyte/macrophage recruitment with 

specific emphasis on integrin and neutrophil dependent mechanisms respectively, in the lung. 

This will provide information on the known and unknown facts in the area of lung leukocyte 

recruitment and provides a logical basis for the experimental work presented in this thesis. 

1.2. Neutrophil recruitment 
 The mechanism of neutrophil recruitment in the lung varies considerably from those 

observed in other locations (Burns et al. 2003;  Wagner and Roth. 2000). In the following 

sections general mechanisms will be reviewed first and wherever appropriate, mechanisms 

specific to the lungs will be discussed.  

 Leukocyte migration from the vasculature is a multi-step process involving sequential 

activation of adhesive proteins and the ligands present on both leukocytes and endothelial cells 

(Albelda et al. 1994). The process of migration begins with rolling of neutrophils on the 

endothelium (Allison et al. 1955;  Florey and Grant. 1961;  Marchesi and Florey. 1960;  

Tonnesen et al. 1984). If there is a stimulus, the rolling neutrophils firmly adhere to the 

endothelium and is followed by transmigration, resulting in recruitment of neutrophils out of the 

blood vessels (Allison et al. 1955;  Florey and Grant. 1961;  Marchesi and Florey. 1960;  Muller 

et al. 1993;  Springer. 1994;  Tonnesen et al. 1984;  van Buul and Hordijk. 2004;  Zimmerman 

and Hill. 1984).  

3 



 

1.2.1. Rolling 

 Rolling of neutrophils from the circulating blood on to the endothelium, the initial event 

in neutrophil recruitment, is due to the reversible binding of transmembrane adhesive 

glycoproteins called selectins found on both neutrophils and endothelial cells (Bevilacqua and 

Nelson. 1993;  Lasky. 1992;  von Andrian et al. 1991). Initially the name “selectin” was proposed 

to represent the selective expression and function of these molecules as well as the presence of 

lectin domain in these molecules (Bevilacqua and Nelson. 1993). There are three selectins, 

namely leukocyte selectin (L-selectin), platelet selectin (P-selectin) and endothelial selectin (E-

selectin), involved in the neutrophil recruitment (Lasky. 1992). These selectins share a common 

structure, a lectin like domain at the amino terminal end which allows them to interact with 

specific carbohydrate ligands (Varki. 1997). 

 L-selectin (CD62L) is constitutively expressed on the cell surface of lymphocytes, 

monocytes and neutrophils (Lasky. 1992) and the expression is more on the neutrophils newly 

released from the bone marrow (Matsuba et al. 1997). L-selectin is  shed from the neutrophils as 

they interact with the endothelium (Kishimoto et al. 1989;  Matsuba et al. 1997). The endothelial 

ligand of neutrophil L-selectin is a member of a group of sialomucin oligosaccharides that share 

affinity for selectins expressed on platelets, lymphocytes and monocytes (Varki. 1997). CD34 is a 

well characterized ligand for L-selectin (Krause et al. 1996). In addition, P-selectin glycoprotein 

ligand (PSGL)-1 (CD162) is also a ligand for L-selectin and mediates leukocyte rolling through 

leukocyte-leukocyte interactions during inflammatory conditions (Sperandio et al. 2003). 

 P-selectin (CD62P) is constitutively stored intracellularly in Wiebel-Palade bodies of 

endothelial cells and in the α-granules of platelets (Bonfanti et al. 1989;  Hsu-Lin et al. 1984;  

McEver et al. 1989;  Stenberg et al. 1985). P-selectin is rapidly mobilized to the surface of 

endothelial cells following exposure to inflammatory mediators (Patel et al. 2002). PSGL-1 and 

CD24 present on neutrophils and other cells are the ligands for P-selectin (Moore et al. 1995;  

Patel et al. 2002;  Sammar et al. 1994;  Yang et al. 1999). PSGL-1 consists of a disulfide-

bounded homodimer allowing its binding with two P-selectin ligands simultaneously and this 

could increase the avidity of P-selectin and PSGL-1 interactions (McEver and Cummings. 1997;  

Wagner and Roth. 2000) . Like L-selectin binding, P-selectin interaction is short lived and 

reversible if additional adhesive events are not involved (Albelda et al. 1994;  von Andrian et al. 

1991). 

4 



 

 E-selectin (CD-62), a selectin molecule expressed on endothelial cells, is not 

constitutively stored in the cells but expressed in response to inflammatory stimulus (Bevilacqua 

et al. 1987;  Cotran et al. 1986;  Pober et al. 1986). Peak expression and activity in endothelial 

cells, in vitro, occurs after 4 hours of exposure to inflammatory cytokines (Bevilacqua et al. 

1987). E-selectin ligand-1 is the primary ligand for E-selectin (Levinovitz et al. 1993) and it can 

also bind to other ligands such as PSGL-1 and L-selectin (Zollner et al. 1997). However, PSGL-1 

is not critical for E-selectin mediated neutrophil rolling (Yang et al. 1999). E-selectin may play a 

role in maintaining neutrophil rolling after P-selectin down regulation (Wagner and Roth. 2000). 

 The initial events in the neutrophil recruitment in pulmonary circulation are different 

compared to the systemic circulation. Pulmonary microvasculature contains 35-100 times more 

neutrophils than those seen in the systemic circulation (Doyle et al. 1997;  Gee and Albertine. 

1993;  Hogg et al. 1988;  Wagner and Roth. 2000). The diameter of pulmonary microvasculature 

ranges from 1-10 µm (mean of 6 µm) (Doerschuk et al. 1987;  Hogg et al. 1988) whereas that of 

a neutrophil ranges from 5-9 µm (Schmid-Schonbein et al. 1980). Therefore a significant portion 

of the microvasculature has a diameter which is smaller than the diameter of a neutrophil  

(Doerschuk et al. 1993) and neutrophils have to change their shape to pass through these 

microvasculature (Gebb et al. 1995). The requirement for a change in the shape results in the 

slower movement of the neutrophils through the lung microvasculature (Hogg et al. 1988;  Lien 

et al. 1987). Because of these anatomical differences the capillaries in the lung may be too small 

to allow rolling of neutrophil (Wagner and Roth. 2000). Kuebler et al. and Yamaguchi et al. have 

reported a reduced rolling of neutrophils in the lung microvasculature on blocking L-selectin 

whereas Doyle et al. and Mizgerd et al. have, using L-selectin and E/P selectin deficient mice 

respectively, found no role for selectins in the  neutrophil recruitment in the lung (Doyle et al. 

1997;  Kuebler et al. 1997;  Mizgerd et al. 1996;  Yamaguchi et al. 1997). Burns et al. found 

antibody blocking of L-, P- or E- selectins in lung did not inhibit neutrophil recruitment in 

response to LPS (Burns et al. 2001). Thus, the role of selectins in neutrophil recruitment in the 

lung is controversial (Doyle et al. 1997;  Kuebler et al. 1997;  Mizgerd et al. 1996;  Yamaguchi 

et al. 1997). 

1.2.2. Firm adhesion 

 Firm adhesion of neutrophils follows rolling,  in the presence of an appropriate stimulus 

(von Andrian et al. 1991). Under physiological conditions the strength of leukocyte binding 
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during rolling may not be sufficient to induce a stronger adherence but, the affinity of selectin 

interaction increases after stimulation of neutrophils (Spertini et al. 1991). This is brought about 

by the interaction of chemokines with their receptors which results in phosphorylation of L-

selectin leading to increased affinity of L-selectin binding (Haribabu et al. 1997). Engagement of 

selectins on neutrophils and presence of proinflammatory molecules results in increased 

expression and adhesive affinity of neutrophil integrins that are essential for the firm adhesion of 

neutrophils on the endothelium (Crockett-Torabi et al. 1995;  Gopalan et al. 1997;  Simon et al. 

1995;  Simon et al. 1999;  Steeber et al. 1997). 

1.2.2.1. Integrins 

 Integrins are a group of heterodimeric transmembrane glycoproteins found on neutrophils 

and other cells which mediate cell-cell and cell-matrix adhesions (Hynes. 1987). The 

heterodimers are formed from one α and one β sub-unit, and both are essential for ligand binding 

(Hynes. 1992). These molecules are named as “integrins” after their ability to integrate 

extracellular matrix with the cell’s cytoskeleton (van der Flier and Sonnenberg. 2001). Integrins 

play a very important role in pathological processes such as tumor metastasis (Voura et al. 1998) 

and inflammation (Springer. 1994). To date there are 8 different β sub-units (β1-β8) that associate 

with one of the 16 α sub-units to form at least 24 known receptors in a variety of cells (Arnaout 

et al. 2005;  van der Flier and Sonnenberg. 2001). The accepted model of regulation of integrin 

activation is that in a normal state the activity is inhibited by interaction of cytoplasmic tails of α 

and β subunits. Upon activation the subunits undergo conformational change which will allow 

interaction of integrin with the ligand and this further leads to clustering of integrins which 

increases the affinity of interaction (Laudanna and Alon. 2006;  Springer. 1994;  Vinogradova et 

al. 2000). The integrins are expressed on variety of cells including neutrophils and endothelial 

cells and they bind with various molecules such as vitronectin, fibronectin, laminin, fibrinogen, 

von Willibrand factor and other molecules, depending on the type of integrin and the cell in 

which they are expressed. The details of all the cell types and all the ligands are beyond the scope 

of this review and are detailed in several excellent reviews (Hynes. 1987;  Hynes. 1992;  Jones 

and Walker. 1999;  Plow et al. 2000;  Ruoslahti. 1991;  van der Flier and Sonnenberg. 2001).  In 

the context of this thesis I will focus only on the expression, interaction and function of those 

integrins which are present on neutrophils and endothelium. Although, the site of neutrophil 
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migration in the lung is predominantly through the capillaries, as apposed to the post capillary 

venules in the systemic circulation, much of the knowledge on neutrophil transmigration 

involving integrins are from experiments in systemic circulation (Burns et al. 2003). Wherever 

appropriate literature is available, the role of integrins specific to neutrophil migration in the 

lungs will be discussed. 

1.2.2.2. Neutrophil integrins 

 Neutrophils express several integrins; 1) Integrins with β2 subunit which include αmβ2 , 

αLβ2,  αxβ2 and αdβ2 (Springer. 1990;  Springer et al. 1987;  van der Flier and Sonnenberg. 2001;  

Walzog et al. 1999). 2) Integrins with β1 subunit (Bohnsack. 1992;  Bohnsack et al. 1990;  

Bohnsack et al. 1995;  Gao and Issekutz. 1997;  Issekutz et al. 1996;  Kubes et al. 1995;  Ridger 

et al. 2001;  Shang and Issekutz. 1997;  Springer. 1990;  Taooka et al. 1999;  Werr et al. 2000) 

which includes α2β1, α3β1, α4β1, α5β1, α6β1and α9β1. 3) Integrin with β3 subunit which includes 

αvβ3 (Hendey et al. 1996;  Horton. 1997;  Lawson and Maxfield. 1995;  Sixt et al. 2001;  Taooka 

et al. 1999;  van der Flier and Sonnenberg. 2001;  Yauch et al. 1998).  

1.2.2.3. Integrins with β2 subunit 

 Neutrophil binding to activated endothelium is primarily mediated by integrins consisting 

of β2 subunits. These integrins are specific to hematopoietic cells and are not present on other 

cells (Harris et al. 2000). The integrins in this category are;  

1. CD11a/CD18 (LFA-1 / αLβ2),  

2. CD11b/CD18 (Mac-1 / αmβ2 / MO-1 / CR3),  

3. CD11c/CD18 (gp150; 95 / αxβ2), and  

4. CD11d/CD18 (αdβ2). 

These integrins are preformed and stored in secretory vesicles, gelatinase granules  and specific 

granules of neutrophils (Arnaout et al. 1984;  Borregaard and Cowland. 1997;  Borregaard et al. 

1987;  Buyon et al. 1997). These integrins stored in the granules are not functional because of the 

phosphates present in the granules, which prevent phosphorylation of integrin molecules (Buyon 

et al. 1997).Upon stimulation with a chemoattractant, these are rapidly mobilized onto the surface 

of the neutrophils (Arnaout et al. 1984;  Borregaard et al. 1987;  Buyon et al. 1997;  de Haas et 

al. 1994). The surface translocation is substantial by 30 minutes after stimulation with agonists 
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such as phorbol myristate acetate (PMA) (Buyon et al. 1997). However, mere increase in the 

expression will not result in increased adhesiveness of neutrophils (Buyon et al. 1988;  Buyon et 

al. 1997;  Philips et al. 1988;  Vedder and Harlan. 1988). Phosphorylation of these integrins after 

translocation on to the plasma membrane, specifically on the cytoplasmic part of the α-chain is 

important in inducing the conformational change which is essential for  integrin’s interaction 

with its ligands (Buyon et al. 1997).  

 The activation of integrin and transendothelial migration involves what is known as 

“inside-out signaling” and “outside-in signaling”. The inside-out signaling is initiated by the 

interaction of chemokine receptors on the leukocyte and the chemokines on the endothelium 

which results in affinity modulation (Hughes and Pfaff. 1998;  Williams. 1999). Chemokines are 

chemotactic cytokines produced by various cells including neutrophils and endothelial cells 

(Lustor. 1998). There are mainly 4 classes of chemokines; namely, CXC, CC, CX3C and C 

depending on the number of amino acids present between the first two cysteine residues present 

at the amino terminal end of these proteins (Zlotnik and Yoshie. 2000). Amongst these, CXC 

chemokines are mainly involved in neutrophil recruitment and CC chemokines are associated 

with monocyte recruitment (Olson and Ley. 2002). There are several chemokines in the CXC 

category and include interleukin (IL)-8, neutrophil activating peptide-2, GRO-α (Growth related 

oncogene/melanoma growth stimulating activity; MIP2/KC), GRO-β (MIP-2α), GRO-γ (MIP-

2β), Neutrophil activating peptide-78 and platelet factor-4 (Olson and Ley. 2002). Corresponding 

to these chemokines there are several receptors named from CXCR1- CXCR6 (Rollins. 1997).  

 The interaction of chemokines with their receptors initiate  “inside-out signaling” through 

G-proteins coupled to cytoplasmic tail of the receptors (Hughes and Pfaff. 1998;  Murdoch and 

Finn. 2000). G-proteins in turn activate phospholipase-C which results in formation of secondary 

messengers such as phosphatidylinositol 1,4,5-triphosphate  and diacyl-glycerol. These secondary 

messengers activate Protein Kinase C. In addition, several proteins that interact with the 

cytoplasmic tails of the integrins have been identified. Despite these findings, the exact 

mechanism by which these molecules bring about affinity modulation of integrins is poorly 

understood (Hughes and Pfaff. 1998). Nevertheless, it is accepted that the inside-out signaling 

brings about  conformational change and clustering of integrins (Calderwood et al. 2000). This 

favors the interaction of integrins (for example β2) with ligands such as intercellular adhesion 

molecule-1 (ICAM-1), ICAM-2, ICAM-3 and junctional adhesion molecule (JAM) present on 
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the endothelial cells, initiating the “outside in signaling” process. This results in cytoskeletal 

rearrangements and shape changes, which help neutrophil transmigration (van Buul and Hordijk. 

2004;  Wittchen et al. 2005). Apart from this, it also leads to increased gene expression for pro-

inflammatory molecules such as IL-8, which augments the process of neutrophil recruitment 

(Walzog et al. 1999).  

1.2.2.4. Role of β2 integrins in pulmonary vasculature 

 As apposed to systemic circulation, migration of neutrophils in the pulmonary vasculature 

is of two types. One is integrin β2-dependent and the other is integrin β2-independent (Doerschuk 

et al. 2000;  Doerschuk et al. 1990;  Folkesson and Matthay. 1997;  Yamamoto et al. 1998). 

Results of various studies involving different stimuli indicate that the pathway involved is a 

stimulus and organ specific phenomenon. Monoclonal antibodies against integrin β2 resulted in 

defective lung migration of neutrophils in response to endotoxin but not to S. pneumoniae and 

hydrochloric acid (Doerschuk et al. 1990). However, the same stimuli induced neutrophil 

migration in integrin β2-dependent manner in the abdominal wall of the rabbits (Doerschuk et al. 

1990). Similarly, Ramamoorthy et al. observed integrin β2-dependent and -independent migration 

of neutrophils in E. coli and Staphylococcus aureus induced pneumonia respectively, in rabbits 

(Ramamoorthy et al. 1997). Within the integrin β2-dependent pathway, αmβ2, compared to other 

β2-integrins play a major role in neutrophil migration into the lung (Moreland et al. 2002). 

Several other stimuli are known to induce integrin β2- dependent and -independent neutrophil 

migration in the lung (Doerschuk et al. 1990;  Folkesson and Matthay. 1997;  Hellewell et al. 

1994;  Kumasaka et al. 1996) and are tabulated in Table 1.1.  

 In addition to the above observations, various other factors affect the type of neutrophil 

migration in the lung. In an in vitro experiment using human pulmonary arterial endothelial cells, 

Mackarel et al. have shown that the neutrophil migration to formyl-methionyl-leucyl-

phenylalanine (fMLP) is integrin β2-dependent, whereas it is integrin β2-independent for IL-8 and 

leukotriene-B4 (Mackarel et al. 2000). Similarly, in response to KC, a murine homolog of human 

IL-8, mice showed integrin β2-independent neutrophil migration in the lung (Ridger et al. 2001).  

In an experiment involving intraperitoneal administration of E. coli bacteria in mice, neutrophil 

migration involves both integrin β2-dependent and –independent pathways in a time dependent 

manner (Gao et al. 2001); When β2 integrin specific antibodies were used, Gao et al. observed a 
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75% reduction in neutrophil migration into the lungs at 1 hour post infection, while it was only 

50% by 3-6 hours. In another study in rabbits, neutrophil migration in Pseudomonas aeruginosa 

induced pneumonia was integrin β2-dependent on the first exposure and was predominantly 

integrin β2-independent, when pneumonia was induced seven days later at the same site 

(Kumasaka et al. 1996). These experiments indicate that apart from the stimulus, the type of 

neutrophil migration is also dependent on the time and chemoattractant inducing the response. 

 In addition to the above complexities contradictory observations do exist, both in vitro 

(Moreland et al. 2004) and in vivo (Burns et al. 2001;  Ong et al. 2003), indicating a β2-

independent mechanism in response to E. coli or E. coli-LPS. In an in vitro experiment E. coli 

initiated predominantly integrin β2-independent neutrophil migration across pulmonary 

microvascular endothelium (Moreland et al. 2004). In mice lung, neutrophils infiltrate in a β2-

independent manner in response to E. coli when Neutrophil Inhibitory Factor, a specific inhibitor 

of integrin β2, was made to express in the pulmonary vasculature using a liposome based gene 

delivery system (Ong et al. 2003). Similarly, neutrophil migration caused by E. coli-LPS 

infection was not blocked by anti-integrin β2 antibody (Burns et al. 2001). Despite these few 

reports the existence of integrin β2-independent pathway in lungs in response to certain stimuli is 

well accepted and the integrin involved in the integrin β2-independent pathway is not known 

(Burns et al. 2003;  Wagner and Roth. 2000). 

1.2.2.5. Integrins with β1 subunit 

 In an attempt to unravel the molecule involved in the integrin β2-independent pathway 

several integrin molecules have been evaluated in the context of lung inflammation. Several 

integrins containing β1 subunit such as α2β1, α3β1, α4β1, α5β1, α6β1and α9β1 have been evaluated 

as these integrins are expressed on the neutrophils (Bohnsack. 1992;  Bohnsack et al. 1990;  

Bohnsack et al. 1995;  Gao and Issekutz. 1997;  Issekutz et al. 1996;  Kubes et al. 1995;  Ridger 

et al. 2001;  Shang and Issekutz. 1997;  Springer. 1990;  Taooka et al. 1999;  Werr et al. 2000). 

In an experiment involving intratracheal instillation of KC, a chemokine known to induce 

integrin β2-independent neutrophil migration, the neutrophil recruitment into the lung was 

reduced in response to antibody treatments against integrin subunits β1, α2, α4, α5 and α6 (Ridger 

et al. 2001). However, these molecules blocked the neutrophil migration at the level of 

extracellular matrix and not at the level of endothelium. In LPS-induced inflammation in which 
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20-40% of neutrophil migration is integrin β2-independent (Tasaka et al. 2002), blocking α4 and 

α5, the α chains of integrin heterodimers α4β1 and α5β1, alone had no effect on the neutrophil 

migration (Burns et al. 2001). Integrin α4β1 also did not have a role in neutrophil migration from 

the vasculature in S. pneumoniae infection (Tasaka et al. 2002). These studies were not 

successful in identifying the molecule involved in integrin β2-independent pathway. It appears 

that β1 integrins strengthen leukocyte adhesion by mediating neutrophil-extracellular matrix 

interaction and possibly by “inside-out signaling” which has been demonstrated for lymphocytes 

following ligation with their ligand vascular cellular adhesion molecule (Chan et al. 2000;  

Frieser et al. 1996;  Lindbom and Werr. 2002;  Shang and Issekutz. 1997;  Werr et al. 2000;  

Werr et al. 1998).  

1.2.2.6. Integrins with β3 subunit 

 There are only two integrin heterodimeric combinations that are possible with the integrin 

subunit β3; 1) αvβ3 and 2) αIIbβ3 (van der Flier and Sonnenberg. 2001). Of these, only αvβ3 is 

expressed on neutrophils while αIIbβ3 is expressed on platelets. Integrin αvβ3 consists of αv and β3 

subunits which have a molecular weight of 125 kD and 105 kD respectively and both the subunits 

are essential for the ligand recognition (Buckley et al. 1996;  Horton. 1997). The subunit αv can 

form heterodimers with at least 4 other β subunits, β1, β5, β6 and β8 while subunit β3 can form a 

heterodimer with only αv on neutrophils, endothelial and other cells (Hynes. 2002;  van der Flier 

and Sonnenberg. 2001). The heterodimer αvβ3 on the cell surface is normally present in a bent 

conformation which represents its inactive state and it changes to an extended conformation upon 

activation (Beglova et al. 2002). Compared to all other integrins, integrin αvβ3 is promiscuous in 

its binding to various plasma and extracellular matrix proteins including vitronectin, fibronectin, 

laminin, and tumstatin by ligating Arginine-Glycine-Aspartic acid (RGD) residues present on its 

ligands (Maeshima et al. 2002;  Stupack and Cheresh. 2002). Interaction of integrin αvβ3 with its 

ligands mediate cell signaling, cell migration, cell proliferation and cell survival (Wilder. 2002).   

1.2.2.7. Known functions of integrin αvβ3

Angiogenesis 

 The role of integrin αvβ3 in angiogenesis has been studied extensively (Brooks et al. 

1994a;  Brooks et al. 1994b;  Carmeliet. 2002;  Rupp and Little. 2001;  Tsou and Isik. 2001). Its 

interaction with its ligand vitronectin increases the expression of various growth factor receptors 
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such as vascular endothelial growth factor receptor-1, fibroblast growth factor receptor-1 and -2 

on the endothelium (Tsou and Isik. 2001). Engagement of integrin αvβ3 results in increased 

expression and activation of vascular endothelial growth factor-2 to promote angiogenesis and 

inhibition of this interaction blocks angiogenesis (Carmeliet. 2002). Similarly, the vascular lumen 

formation can be inhibited in vitro by using anti- αvβ3 antibodies in a 3 dimensional fibrin matrix 

(Bayless et al. 2000). Interaction of integrin αvβ3 with extracellular matrix decreases expression 

of membrane-type 1 matrix metalloproteinase (MT-1 MMP). MT-1 MMP processes pro-MMP-2 

to active MMP-2 and is important in degradation of extracellular matrix, which promotes 

angiogenesis (Yan et al. 2000).  Blocking the integrin αvβ3  using antibodies decreases the 

expression of MT-1 MMP and prevent angiogenesis (Yan et al. 2000).  Thus, there is clear 

evidence for the role of integrin αvβ3 in angiogenesis and several of αvβ3 antagonists are in 

clinical trials for their use in preventing angiogenesis in cancer patients (Carmeliet and Jain. 

2000;  McNeel et al. 2005). 

Regulation of endothelial cell survival and apoptosis 

 Integrin αvβ3 is known to regulate survival and apoptosis of cells in both adhesion- 

dependent and –independent manner through a variety of mechanisms (Brassard et al. 1999;  

Brooks et al. 1994b). Blocking integrin αvβ3 on endothelial cells of chick chorioallantoic 

membrane using antibodies induce apoptosis of endothelial cells by increasing expression of p53, 

a protein which regulates the cell cycle progression. On the contrary, when the integrin is made to 

ligate with stabilized ligand in vitro, it decreases expression of p53 protein and increases bcl/bax 

ratio by increasing expression of bcl protein (Stromblad et al. 1996). Thus, integrin αvβ3 mediates 

proliferation or apoptosis of endothelial cells by regulating p53 and bcl protein levels in the 

endothelial cells. In another experiment, function blocking anti-β3 antibodies prevented 

osteopontin-induced NF-kB activation and induced apoptosis in rat aortic endothelial cells 

(Scatena et al. 1998). This describes a pathway through which ligation of αvβ3 regulates NF-κB 

activation to control apoptosis and survival of endothelial cells. Unligated integrins recruit 

caspase-8, an initiator caspase involved in apoptosis, to mediate apoptosis of endothelial cells 

(Stupack et al. 2001). Human brain endothelial cells undergo apoptosis if integrin αvβ3 is 

inhibited by blocking peptides which activates acid sphingomyelinase and increases production 

of ceramide (Erdreich-Epstein et al. 2005). Although all these angiogenic mechanisms are well 

characterized, many of them have been questioned in the light of observations made in integrin β3 
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knockout mice (Hynes. 2002;  Reynolds et al. 2002). These mice show increase- as apposed to 

expected reduction, in the angiogenesis process in the absence of integrin αvβ3’s ligation with its 

ligands (Reynolds et al. 2002). Since subunit β3 can form heterodimer with only αv on neutrophils 

and endothelial cells, it indirectly relates to the function of αvβ3 (Hynes. 2002;  van der Flier and 

Sonnenberg. 2001). Absence of transdominant inhibition of other integrins that promote 

angiogenic process (Bouvard et al. 2001) has been proposed as a possible explanation for the 

increased pathological angiogenesis in mutant mice (Carmeliet. 2002). Whatever be the 

mechanisms, the involvement of integrin αvβ3 in regulating angiogenesis is indisputable.  

Endothelial cell signaling and barrier maintenance  

 Integrin αvβ3  is expressed on both luminal and abluminal surfaces of cultured endothelial 

cells and normal microvasculature in rat lungs (Cheng et al. 1991;  Conforti et al. 1992;  Gawaz 

et al. 1997;  Singh et al. 2000). Microvascular barrier is maintained and regulated by a complex 

interaction between integrins and extra cellular matrix components involving fibronectin and 

vitronectin (Wu et al. 2001). The luminal integrin αvβ3 initiates endothelial cell signaling to 

increase capillary permeability following ligation with multimeric vitronectin (Bhattacharya et al. 

1995;  Bhattacharya et al. 2001;  Bhattacharya et al. 2000;  Tsukada et al. 1995). This effect of 

the integrin involves phosphorylation of various cytoskeletal proteins following activation of 

tyrosine kinases because permeability increases can be blocked using tyrosine kinase inhibitors 

(Tsukada et al. 1995). It also enhances the production of arachidonate from the endothelial cells 

through phospholipase A2 activation, which is brought about by either activation of 

phospholipase-C or by activation of focal adhesion kinase/mitogen activated protein kinase 

pathways (Bhattacharya et al. 2001). These studies show that integrin αvβ3 on the luminal side of 

the endothelial cells play a different role and could be a major molecule in regulation of lung 

inflammation. 

Leukocyte recruitment 

 Although there is no direct evidence for the role of integrin αvβ3 in neutrophil recruitment 

in inflamed lungs, many observations do suggest such a possibility. First, integrin αvβ3 is 

expressed on neutrophils (Hendey et al. 1996;  Lawson and Maxfield. 1995;  Rainger et al. 1999;  

Sixt et al. 2001) and endothelial cells  (Cheng et al. 1991;  Conforti et al. 1992;  Gawaz et al. 

1997;  Singh et al. 2000). Second, its expression on endothelial cells increases in response to 

proinflammatory stimuli such as IL-1β (Gawaz et al. 1997). Third, neutrophils are capable of 

13 



 

binding to various proteins including vitronectin, which is  present both in the circulation and the 

extracellular matrix  (Hendey et al. 1996;  Lawson and Maxfield. 1995;  Preissner. 1991;  

Tsukada et al. 1995). Fourth, vitronectin is an acute phase protein and its level in plasma 

increases under inflammatory conditions (Langlois and Gawryl. 1988;  Seiffert et al. 1994). 

Inspite of all these, the role of integrin αvβ3 in neutrophil recruitment is not well studied and only 

a few studies have explored the role of integrin αvβ3 in leukocyte recruitment. The importance of 

integrin αvβ3 in leukocyte migration across the endothelium has been shown in vitro using 

monocytes (Weerasinghe et al. 1998). Integrin subunit β3 has been shown to be important for 

neutrophil migration on the extracellular matrix in vitro (Bruyninckx et al. 2001) and 

transmigration of leukocytes from the mesenteric venules in response to fMLP (Thompson et al. 

2000). All these highlight the possible involvement of integrin αvβ3 in neutrophil migration.   

1.2.3. Transendothelial migration 

 Transendothelial migration is a process that follows firm adhesion of neutrophils on the 

endothelium (Springer. 1994). The transmigration of neutrophils can happen either by a 

paracellular route, i.e., migration through the endothelial junctions, or by a transcellular route in 

which neutrophils pass through the cytoplasm of an endothelial cells (Britta Engelhardt. 2004;  

Feng et al. 1998;  Muller. 2001;  Muller et al. 1993). Compared to the extensive studies on the 

rolling and firm adhesion processes in the neutrophil migration, the information on 

transendothelial migration is limited. Further, there are very few studies which address this issue 

specifically in lungs (Burns et al. 2003;  Wagner and Roth. 2000). However, roles of several 

molecules such as platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), JAM, CD99 

and vascular-endothelial (VE) – cadherins have been studied in various other tissues (Burns et al. 

2003). The role of each molecule is very complex and is not discussed in this review. Some of the 

excellent reviews highlight the complexities of molecular interactions and signaling involved in 

neutrophil transendothelial migration (Britta Engelhardt. 2004;  Muller. 2001;  Nourshargh and 

Marelli-Berg. 2005;  van Buul and Hordijk. 2004;  Wittchen et al. 2005). 

1.2.4. Other molecules regulating neutrophil recruitment 

 Apart from the adhesion molecules, other factors such as fibroblasts in the alveolar 

septum, neutrophil migration across the alveolar epithelium and various signaling molecules 

contribute to the complexity of neutrophil recruitment in the lung (Andonegui et al. 2002;  Burns 
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et al. 2003). In addition to adhesion molecules on the endothelium and neutrophils, understanding 

the signaling molecules such as toll-like receptor (TLR) 4 involved in the recruitment of 

neutrophils is also critical for regulating the inflammatory process (Takeda and Akira. 2005). 

TLR4 belongs to a family of transmembrane receptors that were first described for their 

involvement in innate immunity in Drosophila (Takeda et al. 2003). TLR4 is expressed on 

variety of cells including neutrophils and endothelial cells and it recognizes bacterial LPS to 

initiate signaling and augment the inflammatory process (Andonegui et al. 2003;  Medzhitov et 

al. 1997;  Takeda et al. 2003). The critical role of TLR4 in regulating inflammation is evident 

from the experiments in mice that lack TLR4 receptors and hence show a poor response to LPS 

(Hoshino et al. 1999;  Poltorak et al. 1998). Recently, TLR4 was shown to be important for 

neutrophil recruitment in the lung (Andonegui et al. 2003;  Andonegui et al. 2002;  

Hollingsworth et al. 2005). Mice lacking TLR4 were resistant to LPS administration and did not 

show an increase in neutrophil recruitment in the lung (Andonegui et al. 2002). Further, 

Andonegui  et al. showed that TLR4 on the endothelium, rather than the neutrophil, is critical for 

the recruitment of neutrophils into the lung (Andonegui et al. 2003). However, studies from Dr. 

David Schwartz’s laboratory have contradicted these findings (Hollingsworth et al. 2005). They 

showed that the TLR4 expressed on the neutrophils and not the TLR4 on the endothelium is 

important for neutrophil recruitment and the inflammatory response in the lung.  Although, it is 

hard to account for the differences between these two studies, for sure they highlight the 

important role of TLR4 in neutrophil recruitment in the lung. Because of this and the lack of 

complete information on the expression of TLR4 in the lungs, it is essential to understand the 

pattern of TLR4 expression in lung inflammation. 

1.3. Neutrophil dependent monocyte recruitment in the lungs. 
 Along with neutrophils, monocytes/macrophages also play a major role in regulating the 

inflammatory process (Andrews and Sullivan. 2003;  Reynolds. 1987;  Ryan and Majno. 1977). 

Compared to extensive list of studies addressing the mechanism and effect of neutrophil 

recruitment into the lung, there are very few studies on monocyte recruitment (Abraham. 2003;  

Burns et al. 2003;  Maus et al. 2002a;  Wagner and Roth. 2000). This creates a need for studies 

aimed at understanding the mechanisms of monocyte recruitment in lung inflammation. One of 

the factors regulating the monocyte recruitment into the lung is neutrophil (Doherty et al. 1988;  

Maus et al. 2002b). An elegant study by Doherty and colleagues, by depleting neutrophils in the 
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rabbit, clearly demonstrated the dependency of monocyte recruitment on neutrophils in the lung 

(Doherty et al. 1988). Another study involving neutrophil depletion in mice reconfirmed the 

neutrophil dependent monocyte recruitment (Maus et al. 2002b). Although, this phenomenon has 

been known for several years and several studies have tried to address the mechanism(s), the 

understanding is incomplete (Doherty et al. 1990;  Maus et al. 2002b;  Yamamoto et al. 1998). 

 Monocyte chemoattractant protein (MCP)-1 is a chemokine capable of inducing 

monocyte recruitment into the lung (Maus et al. 2002a;  Maus et al. 2002b). MCP-1, a CC 

chemokine, is a major chemoattractant for monocytes and is produced by monocytes, epithelium, 

endothelium, fibroblasts and smooth muscle cells (van Coillie et al. 1999). The neutrophil 

expression of MCP-1 has been documented both in vitro and in vivo (Burn et al. 1994;  Ogata et 

al. 1997;  Sakanashi et al. 1994;  Yamashiro et al. 1999) and it has been proposed that neutrophil 

dependent monocyte recruitment could be mediated through MCP-1 (Yamamoto et al. 1998). 

However, there is no direct evidence to confirm neutrophils as a major source of MCP-1 and 

hence its involvement in the neutrophil dependent monocyte recruitment.  

 A recent study examining the recruitment of monocytes found an early recruitment of 

monocytes into the peritoneal cavity of mice, even before the recruitment of neutrophils 

(Henderson et al. 2003). Similar findings have been documented in the past in dermatitis 

(Issekutz and Issekutz. 1993;  Issekutz et al. 1981). However, no such observations have been 

made in lung inflammation. This is because the earlier studies, based on the accepted paradigm 

that monocytes are recruited in the post-neutrophilic phase (Doherty et al. 1988;  Fillion et al. 

2001;  Li et al. 1998;  Maus et al. 2002b;  Ulich et al. 1991), concentrated on the later part of the 

inflammation to understand the monocyte recruitment (Doherty et al. 1988;  Li et al. 1998;  

Yamamoto et al. 1998). In addition, the understanding of monocyte recruitment comes from the 

studies using bronchoalveolar lavage of inflamed lungs (Fillion et al. 2001;  Maus et al. 2002b;  

Ulich et al. 1991;  Yamamoto et al. 1998). These kinds of studies give us only the information on 

the number of cells in alveolar space and not on the cells present in septum, which can also 

contribute to the inflammatory process (Elias et al. 1985a;  Elias et al. 1985b;  Li et al. 1998;  

Maus et al. 2002a). Therefore, a better understanding on the recruitment of 

monocytes/macrophages in the whole lung is essential. 
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1.4. Conclusions 
 From the literature reviewed in this section it is evident that both neutrophils and 

monocytes are important in lung inflammation. Lung injury resulting from a dysregulated 

inflammatory process necessitates a better understanding of the recruitment of inflammatory 

cells. Studies addressing integrin β2-independent pathway of neutrophil recruitment, the 

expression of TLR4 in lung inflammation and mechanism of neutrophil-dependent monocyte 

recruitment will enhance our understanding on lung inflammation.  
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Integrin β2-dependent neutrophil migration Integrin β2-independent neutrophil 
migration 

E. coli  (Ramamoorthy et al. 1997) Streptococcus pneumoniae (Doerschuk et 
al. 1990) 

E. coli-LPS (Doerschuk et al. 1990) Group B Streptococcus (Sherman et al. 
1992) 

Pseudomonas aeruginosa (Kumasaka et al. 
1996) 

Hydrochloric acid (Doerschuk et al. 1990;  
Folkesson and Matthay. 1997) 

Phorbol myristate acetate (Doerschuk et al. 
1990) 

Leukotriene-B4 (Mackarel et al. 2000) 

Immunoglobulin G-immune complex 
(Mulligan et al. 1993) 

IL-8 (Mackarel et al. 2000) 

IL-1 (Hellewell et al. 1994) KC (Ridger et al. 2001) 
fMLP (Mackarel et al. 2000) Staphylococcus aureus (Ramamoorthy et 

al. 1997) 
 C5a (Hellewell et al. 1994) 

Table 1.1.  Various stimuli involved in the integrin β2-dependent and -independent neutrophil 
migration in the lungs. 
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CHAPTER 2: HYPOTHESES AND OBJECTIVES 
 
 

2.1. Hypotheses 
1. Integrin αvβ3 mediates neutrophil recruitment into the lung in S. pneumoniae induced 

pneumonia. 

2. Neutrophils are the major source of MCP-1 and therefore regulate monocyte/macrophage 

recruitment in acute lung inflammation. 

2.2. Objectives 
1. To evaluate the role of integrin αvβ3 in the recruitment of neutrophils into the lungs in response 

to Streptococcus pneumoniae. 

2. To understand the expression of TLR4 in lungs at various time points of inflammation. 

3. To understand the pattern of total monocyte/macrophage recruitment at various time points of 

acute lung inflammation. 

4. To understand the mechanisms of neutrophil dependent monocyte recruitment. 

 

 

The rationale and the questions being asked are depicted in Figure 2.1
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Figure 2. 1. Schematic representation of the rationale and the questions being asked 
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CHAPTER 3: EXPRESSION OF INTEGRIN SUBUNITS αv AND β3 IN ACUTE LUNG 
INFLAMMATION∗

 

3.1. Abstract 
 Integrin subunits αv and β3 form a dimer αvβ3, which is expressed on normal neutrophils 

and endothelium. I investigated the expression of integrin subunits αv and β3 in acute lung 

inflammation in Sprague-Dawley rats (N = 5 each) following intratracheal challenge with E. coli 

or S. pneumoniae, which induce neutrophil recruitment through different mechanisms. Control 

rats (N = 5) were given endotoxin-free saline. Both bacterial challenges induced similar levels of 

recruitment of neutrophils in lungs. Western blots showed lower expression of integrin subunits 

αv and β3 in lungs challenged with E. coli compared to those given S. pneumoniae. 

Immunohistochemistry and immunogold electron microscopy localized both integrin subunits in 

neutrophils and endothelium in the control and treated rat lungs. Quantitative 

immunohistochemistry showed that E. coli -challenged rat lungs contained a lower percentage of 

neutrophils expressing integrin subunits αv and β3 compared to those challenged with S. 

pneumoniae (P< 0.05). I conclude that E. coli infection decreased the percentage of neutrophils 

expressing integrin subunits αv and β3 compared to S. pneumoniae infection. These data lay the 

foundation for further characterization of these integrin subunits in neutrophil migration 

specifically in S. pneumoniae infection that utilizes molecules other than β2 integrins for 

neutrophil recruitment.  

                                                 
∗ Histochemistry and Cell Biology (2004) 121:383–390 
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00418-004-0649-1
“The original publication is available at www.springerlink.com”. 
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3.2. Introduction  
 In the United States alone, approximately 75 out of every 100,000 people suffer from 

ARDS with a mortality rate of 50% (Ware and Matthay. 2000). Inflammation leading to diffuse 

alveolar damage is central to the pathophysiology of ARDS, and exuberant influx of neutrophils 

contributes to the damage (Weinacker and Vaszar. 2001). Neutrophil migration from the 

vasculature occurs by a multi-step process that is tightly regulated by the sequential activation of 

adhesive proteins and their ligands present on both leukocytes and endothelial cells (Hogg and 

Doerschuk. 1995;  von Andrian et al. 1991). Neutrophil migration from lung microvessels is 

mediated mainly by β2 integrins and partially by molecules other than β2 integrins in response to 

E. coli, E. coli-LPS, Pseudomonas aeruginosa, immunoglobulin-G complexes and interleukin-

1(Doerschuk et al. 1990;  Mizgerd et al. 1997). However, β2 integrin-independent pathways 

predominate in neutrophil migration incited by S. pneumoniae, Staphylococcus aureus, and 

hyperoxia (Doerschuk et al. 1990;  Mizgerd. 2002). There is an extensive search underway to 

identify molecules other than β2 integrins that mediate neutrophil migration in the lung and to 

date none has been identified (Burns et al. 2003). Because neutrophil migration is fundamental to 

acute lung inflammation, it is critical to identify and precisely understand the functions of 

molecules that impact the migration of neutrophils. 

 Integrin αvβ3, a receptor for vitronectin, is expressed on the luminal and abluminal 

surfaces of proliferating endothelial cells in culture and in resting microvessels of rat lungs 

(Conforti et al. 1992;  Horton. 1997;  Singh et al. 2000). The integrin occurs in large blood 

vessels and airway epithelium of human lungs (Damjanovich et al. 1992;  Koukoulis et al. 1997). 

Integrin αvβ3 also occurs on neutrophils, monocytes and vascular smooth muscle cells(Horton. 

1997;  Lawson and Maxfield. 1995). The role of this integrin is well established in tumor 

angiogenesis and cell signaling (Bhattacharya et al. 2001;  Brooks et al. 1994a;  Bruyninckx et 

al. 2001). Ligation of luminal integrin αvβ3 by vitronectin initiates a signaling cascade and 

increases microvascular permeability (Bhattacharya et al. 1995;  Bhattacharya et al. 2001;  

Bhattacharya et al. 2000). The integrin promotes monocyte migration and is involved in 

neutrophil mobility on extracellular matrix substrates in vitro and leukocyte migration across the 

mesenteric endothelium in vivo (Bruyninckx et al. 2001;  Burns et al. 2003;  Sixt et al. 2001;  

Thompson et al. 2000;  Weerasinghe et al. 1998). Furthermore, neutrophils lacking β2 integrins 

migrate normally on extracellular matrix and their migration is inhibited by blocking of β3 
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integrin (Sixt et al. 2001). These data suggest a role for integrin β3 in neutrophil mobility and 

recruitment.  

 There is considerable evidence on the expression and functions of β2 and β1 integrins in 

neutrophil migration in acute lung inflammation (Burns et al. 2003;  Mizgerd. 2002). However, 

there are no data on the expression and functions of integrin subunits αv or β3 in acute lung 

inflammation. Because these integrins may play a fundamental role in neutrophil recruitment in 

inflamed lungs, it is logical and critical to study their expression to eventually determine their 

functions in neutrophil recruitment. Furthermore, it is also crucial to study the expression of 

integrin subunits αv and β3 in conditions where neutrophil recruitment is independent of β2 

integrins. Therefore, I investigated expression of integrin subunits αv and β3 in two different 

models of bacterial lung inflammation in which neutrophil migration is regulated by different 

molecular mechanisms.  

3.3. Materials and methods 

3.3.1. Rats and treatment groups 

 The experimental protocols were approved by the University of Saskatchewan Committee 

on Animal Care Assurance and experiments were conducted according to the Canadian Council 

on Animal Care Guidelines. Fifteen specific pathogen-free, ten-week-old male Sprague-Dawley 

rats were procured from Charles River Laboratories, Canada. Animals were acclimatized for a 

period of one week in the animal care unit. Animals were randomly divided into three groups of 

five animals each. 

3.3.2. Antibodies and reagents 

 Antibodies against integrin subunits αv and β3, and actin were purchased from Chemicon 

Int., USA, and Santa Cruz Biotechnology Inc., USA. Horseradish peroxidase (HRP)-conjugated 

secondary antibodies were obtained from DAKO Diagnostics Canada Inc., Canada and 

peroxidase substrate kit was from Vector Laboratories, USA. LR-white resin was purchased from 

London Resin Company, USA and gold-conjugated secondary antibody was from British BioCell 

International, UK. Endotoxin-free saline, protease inhibitor cocktail and bovine serum albumin 

were purchased from Sigma-Scientific, USA. ECL western blotting detection system and 
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nitrocellulose membrane (Hybond-ECL) were purchased from Amersham Pharmacia Biotech, 

UK.  

3.3.3. Acute lung inflammation 

 Rats were anesthetized by intraperitoneal administration of xylazine (20 mg/kg) and 

ketamine (100 mg/kg). Trachea was exposed surgically and 300µL of endotoxin-free saline or E. 

coli (2 X 108 CFU) or S. pneumoniae (5 X 107 CFU) was instilled intratracheally. Animals were 

allowed to recover and euthanized 9 hours post-treatments. 

3.3.4. Tissue collection and processing  

 From predetermined sites, three pieces from each lung were collected for light 

microscopy. Tissues for western blots were snap frozen using liquid nitrogen and stored at -80ºC 

until further use. Lung pieces for histology and immunohistology were fixed in 4% 

paraformaldehyde for 16 hours. These pieces were processed through ascending grades of alcohol 

and embedded in paraffin. Five μm sections were cut from all the 6 tissue blocks from each 

animal. Lung samples for immunoelectron microscopy were fixed in 2% paraformaldehyde 

containing 0.1% glutaraldehyde for 3 hours at 4°C. These samples were dehydrated in ascending 

grades of alcohol and embedded in LR-white resin followed by polymerization under UV light at 

-1οC for 48 hours.  

3.3.5. Western blots  

 Frozen lung samples were homogenized in lysis buffer [150 mM sodium chloride, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris (pH 8.0), 5 mM EDTA and protease 

inhibitor cocktail (100 µl/10 ml)]. Homogenates were collected after centrifuging the samples at 

25,000 g for 20 minutes. Equal amounts of proteins were resolved on 10% SDS-PAGE, 

transferred to a nitrocellulose membrane and blocked with 5% skim milk powder in PBS with 

0.1% Tween20. The membrane was incubated with αv (1:3,000) or β3 (1:200) antibodies and 

appropriate HRP-conjugated secondary antibodies (1:30,000 or 1:50,000) followed by incubation 

with an enhanced chemiluminescence western blotting detection reagent. Incubation with normal 

serum was the negative control while probing for actin was the loading control. Spot 

densitometry was performed using Alpha ImagerTM (Alpha innotech corp., USA) and the results 

were interpreted using the average integrated density value.  
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3.3.6. Immunohistology  

 Tissue sections were deparaffinized in xylene and rehydrated in descending grades of 

alcohol followed by treatment with 5% hydrogen peroxide to quench endogenous peroxidase. 

Sections were treated with pepsin (2 mg/ml in 0.01N hydrochloric acid) for 45 minutes to 

unmask the antigens and with 1% bovine serum albumin to block non-specific binding. Sections 

were incubated with primary antibodies against αv (1:100) or β3 (1:100) followed by appropriate 

HRP-conjugated secondary antibodies (1:100). The antigen-antibody complex was visualized 

using a color development kit. Controls consisted of staining without primary antibody or with 

normal serum instead of primary antibody.  

3.3.7. Quantification of immunohistology data  

 I wanted to precisely determine percentage of neutrophils positive for integrin subunits αv 

or β3 in inflamed lungs. Therefore, I used an objective lens graticule that covered an area of 

0.0064 mm2, to first count neutrophils in sections stained with hematoxylin and eosin. The counts 

were made in 10 randomly selected high-power fields (100×) in each section covering a total area 

of 0.064 mm2/section (3 sections/animal; 30 fields/animal = total lung area 0.192 mm2). Separate 

counts of neutrophils made in alveolar septa and alveolar space were added to obtain the total 

numbers. Total neutrophil counts were followed by numeration of neutrophils positive for 

integrin subunits αv or β3 in alveolar septa, alveolar space and the total. Neutrophil counts 

positive for the integrins were converted into percentages with the following equation. Percentage 

of αv or β3 positive neutrophils = average number of neutrophils positive for αv or β3 / average 

number of neutrophils in the hematoxylin and eosin stained section × 100. 

3.3.8. Immunogold electron microscopy  

 Ultrathin sections (80-100 nm) were incubated with 1% bovine serum albumin to block 

non-specific sites. This was followed by incubations with αv or β3 (1:50) antibodies for 60 

minutes and appropriate 15 nm gold-conjugated secondary antibodies (1:100; for 30 minutes). 

Sections were stained with uranyl acetate and lead citrate and examined in Philips 410LS 

transmission electron microscope. Control sections were labeled without primary antibody or 

with normal serum instead of primary antibody.  
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3.3.9. Statistical analyses  

 All values are presented as mean±SE. Analyses were performed using a statistical 

package (SPSS, release 10.05, SPSS Inc.). In E. coli and S. pneumoniae-treated groups, 

differences between the total neutrophil numbers and the percentage of neutrophils expressing 

integrins (in alveolar space and total) were tested using independent-samples t-test. The 

differences between the percentages of neutrophils expressing integrins, in the alveolar septa of 

the E. coli and S. pneumoniae-treated and control animals were compared using one-way analysis 

of variance. Fisher’s LSD was used for post-hoc comparisons. Statistical significance was 

accepted at p<0.05.  

3.4. Results 

3.4.1. Acute lung inflammation 

 Lung sections from saline-treated rats had no histological signs of acute lung 

inflammation (Figure 3.1.A). However, the sections from lungs of rats challenged with either E. 

coli or S. pneumoniae showed edema, congestion, hemorrhage and infiltration of neutrophils into 

the alveolar spaces (Figures 3.1.B-C). Numerical counts of neutrophils in lung sections showed 

no differences between rats challenged with either E. coli or S. pneumoniae (Figure 3.1.D; 

P=0.067) to suggest similar degree of inflammation.  

3.4.2. Expression of integrin αv and β3

 Western blots on lung homogenates detected integrin subunits αv and β3 in all the groups. 

Densitometry showed that protein expression for the integrin subunits in E. coli-treated lung 

homogenates was lower compared to the control and S. pneumoniae-treated rats (Figures 3.2.A-

C). 

 Immunohistochemistry showed similar patterns of septal staining for integrin subunits αv 

(Figures 3.3.A, C and E) and β3 (Figures 3.3.B, D and F) in lungs of the control and treated rats. 

However, numbers of neutrophils expressing integrin subunits αv or β3 appeared to be more in S. 

pneumoniae compared to E. coli-treated rat lungs (Figures 3.3.C and D; 3.3.E and F). These 

integrins were also localized in peribronchiolar blood vessels, large blood vessels and connective 

tissues (data not shown). Lung sections incubated with normal serum lacked any staining (Figure 

3.3.G). Immunogold electron microscopy showed expression of integrin subunits αv (Figure 3.4.) 
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and β3 (data not shown) in the endothelium and the neutrophils but not the alveolar epithelium. 

The integrin subunits were localized on the membrane, cytoplasm and nucleus of neutrophils and 

endothelial cells.  

3.4.3. Quantification of neutrophils stained for integrin αv and β3

 Since control animals had no neutrophils in the alveolar space, these were excluded from 

group comparisons of neutrophils in the alveolar space and total neutrophils. The percentages of 

septal neutrophils expressing integrin subunit αv were not different among the groups (Table 3.1; 

Figure 3.5.A). However, the percentages of alveolar and total neutrophils positive for integrin αv 

were lower in rats given E. coli compared to those treated with S. pneumoniae (Table 3.1; Figure 

3.5.C). Neutrophils positive for integrin subunit β3, as a percentage of the total and those present 

in the alveolar septa and alveolar spaces, were lower in rats challenged with E. coli compared to 

those given S. pneumoniae (Table 1; Figures 3.5.B and D).  
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Table 3. 1. Percent neutrophils positive for integrin subunits α  or β  in different groups.  v 3

Values are presented as Mean±SE. Since control animals had no neutrophils in the alveolar 
space, these were excluded from group comparisons of neutrophils in the alveolar space and total 
neutrophils. 

 
Percent neutrophils 
positive for integrin 

subunit αv

Control E. coli S. pneumoniae P value 

In the septa 52±14.60 49.90±17.33 85±8.00 > 0.05 
In the alveolar space - 14.469±6.70 51.77±12.50 0.046 
Total - 18.65±7.92 58.50±10.70 0.025 
Percent neutrophils 
positive for integrin 

subunit β3

    

In the septa 92.44±4.00 42.49±13.01 86.48±9.20 < 0.05 
In the alveolar space - 22.33±4.00 69.99±8.27 0.002 
Total - 24.06±4.79 73.30±7.18 0.001 
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Figure 3. 1. Acute lung inflammation.  

Lung sections from a saline treated rat (A), stained with hematoxylin and eosin show no signs of 
inflammation, while E. coli (B) and S. pneumoniae (C) treated rats show edema, congestion and 
neutrophil infiltration into the alveolar spaces. Both the treatments induced similar degree of 
acute lung inflammation as shown by the similar neutrophil recruitment (D; P=0.067). 
Magnification- A-C: ×400. 
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Figure 3. 2. Expression of integrin subunits αv and β3.  

Western blot assay using lung homogenates show expression of integrin subunits in all the groups 
(A). Densitometric analysis for integrin subunits αv (B) and β3 (C) shows a decreased expression 
in E. coli-treated lungs compared to saline and S. pneumoniae- treated lungs. Actin was used as a 
loading control. Similar results were obtained from another set of rat lungs with similar 
treatments (two experiments, each in duplicates). 
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Figure 3. 3. Immunohistochemical expression of integrin subunits αv and β3.  

Similar expression of integrin subunits αv (A, C & D) and β3 (B, E & F) is seen in lung sections 
of rats treated with saline (A & B), E. coli (D & F) or S. pneumoniae (C & E). The number of 
neutrophils (arrowheads) expressing these subunits appeared to be less in E. coli-treated rat lungs 
compared to those given S. pneumoniae. Lung sections incubated with normal serum in place of 
primary antibody showed no staining (G). Magnification- A-F: ×1,000; G: ×100. 
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Figure 3. 4. Immunogold electronmicroscopy.  

Integrin subunits αv was localized in neutrophils in control and treated rat lungs. Representative 
picture from S. pneumoniae treated rat lung show gold particles (arrowheads) labeled for integrin 
subunit αv on the surface, cytoplasm and nucleus of a neutrophil (N) in a lung microvessel. 
Endothelium (E) also shows labeling (arrows) for the integrin subunit. Ep: alveolar epithelium; 
AS: alveolar space; Magnification- × 20,000. 
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Figure 3. 5. Quantitative immunohistochemistry.  

Percentage of neutrophils in the alveolar septa expressing integrin subunit αv did not differ 
among the groups (A; P>0.05). However, percentages for β3 were lower (P< 0.05) in E. coli-
treated rats compared to those given saline or S. pneumoniae (B). Integrin subunit αv or β3-
positive neutrophils as a percentage of the total and those present in the alveolar spaces were 
significantly lower (P< 0.05) in E. coli-treated rats compared to S. pneumoniae challenge (C-D). 
∗ Indicates significant difference. 
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3.5. Discussion 

 There is considerable information on the expression and functions of β2 integrins in 

neutrophils in acute lung inflammation (Mizgerd. 2002). However, neutrophil recruitment into 

lungs such as that provoked by S. pneumoniae is not mediated by β2 integrins and there are yet no 

proven candidate molecules to account for it (Mizgerd. 2002). Many investigators have 

repeatedly stressed the need to evaluate the expression and functions of other adhesion molecules 

to explain neutrophil recruitment, which is independent of β2 integrins (Burns et al. 2003). 

Therefore, as an initial attempt to address this question, I investigated the expression of integrin 

subunits αv and β3 in acute lung inflammation caused by E. coli or S. pneumoniae, which induce 

neutrophil recruitment into inflamed lungs through diverse mechanisms. Although integrin 

subunits αv and β3 and the αvβ3 heterodimer are constitutively expressed in normal human and rat 

lungs (Damjanovich et al. 1992;  Singh et al. 2000), no such data exist for inflamed lungs.  

 Integrin subunits αv or β3 can form many distinct heterodimers such as αvβ1, αvβ3, αvβ5, 

αvβ6 and αvβ8 (van der Flier and Sonnenberg. 2001). Integrin αvβ3, however, is the only 

functional heterodimer of αv and β3 subunits, which is known to be expressed in neutrophils 

(Berton and Lowell. 1999). Moreover, studies on individual integrin subunits in addition to the 

heterodimers have yielded very useful information on their biology and cell signaling 

(Bruyninckx et al. 2001;  Thompson et al. 2000). Therefore, I chose to investigate the expression 

of integrin subunits αv and β3, instead of their heterodimer αvβ3, in acute lung inflammation.  

 The constitutive expression of integrin subunits αv and β3 on neutrophils and endothelium 

in the lungs in our experiments is in agreement with data from previous in vitro and in vivo 

studies (Conforti et al. 1992;  Hendey et al. 1996;  Lawson and Maxfield. 1995;  Rainger et al. 

1999;  Singh et al. 2000;  Tsukada et al. 1995;  Zanetti et al. 1994). In this study, 

immunohistology and immunogold electron microscopy showed both the integrin subunits αv and 

β3 in neutrophils and endothelial cells in control and inflamed lungs. It is interesting that 

neutrophils and endothelium showed considerable and novel nuclear labeling for both the integrin 

subunits. Although similar labeling was reported for β2 integrins (Miller et al. 1987), the 

functions of nuclear integrins was not discussed and still remain unknown. However, a more 

interesting finding was the lower percentage of neutrophils expressing integrin subunits αv or β3 

in E. coli-treated rat lungs compared to the lungs from S. pneumoniae-treated rats. These 
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numerical differences in neutrophils expressing the integrin subunits assume significance because 

total numbers of recruited neutrophils were similar in both the groups. This unique finding of 

differential expression of integrin subunits αv or β3 may have functional significance in 

neutrophil recruitment promoted by different bacteria through molecular tactics other than β2 

integrins.  

 The mechanisms that induce differential regulation of integrin subunits αv and β3 by E. 

coli and S. pneumoniae are neither known nor addressed by our experiments. One of the possible 

mechanisms of modulation of integrin expression is the cross-talk between various integrins. 

There is evidence that activation of β2 integrins on lymphocytes decreases activity of α4β1 

integrins (Porter and Hogg. 1997). Similarly, the integrin β1 increases decay of β3 mRNA to 

inhibit expression of integrin subunit β3 (Retta et al. 2001). It is well established that E. coli 

provokes neutrophil recruitment into inflamed lungs mainly via activation and changes in β2 

integrin avidity for its ligands (Mizgerd. 2002). Therefore, robust activation of β2 integrins by E. 

coli may inhibit expression of integrin subunits αv and β3. On the other hand, sustained 

expression of αv and β3 subunits on neutrophils in rats challenged with S. pneumoniae may be 

important for their recruitment to sites of inflammation via β2 integrin independent mechanisms.  

 The functions of integrin subunits αv and β3 in neutrophil migration in inflamed lungs 

remain unknown. However, differential neutrophil expression of integrin subunits in inflamed 

lungs and data from other organs suggest a functional role for these integrin subunits in 

neutrophil sequestration in the lungs. Blockade of integrin subunit β3 inhibits fMLP-induced 

leukocyte migration from the mesenteric microvessels (Thompson et al. 2000). Monocytes that 

lack β3 integrin subunit migrate defectively across an endothelial monolayer in vitro 

(Weerasinghe et al. 1998). Integrin αvβ3 may influence neutrophil migration by engaging 

multimeric vitronectin, which is one of its receptors and an acute phase protein (Seiffert and 

Smith. 1997;  Zanetti et al. 1994). Vitronectin levels, including those associated with 

complement complexes, are increased in acute inflammation seen in various conditions such as 

ARDS (Langlois and Gawryl. 1988;  Seiffert. 1997). Multimeric vitronectin may bridge the 

integrin αvβ3 expressed on vascular endothelium and neutrophils, as I observed for the subunits in 

inflamed lungs, to induce firm adhesion between them. While functional evaluation of integrin 
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subunits in neutrophil migration is awaited, I speculate that integrin subunits αv and β3 facilitate 

neutrophil recruitment in lung inflammation specifically that induced by S. pneumoniae.  

 In conclusion, the data show that integrin subunits αv and β3 are expressed on neutrophils 

and endothelium and their expression is differentially regulated in acute lung inflammation 

induced by E. coli or S. pneumoniae. The findings are significant because these bacteria elicit 

neutrophil recruitment into inflamed lungs through different molecular pathways. Further studies 

are needed to investigate functional significance of persistent expression of integrin subunits αv 

and β3 in neutrophils in acute lung inflammation induced by S. pneumoniae. Of equal importance 

is to examine the mechanisms by which E. coli reduces expression of these integrin subunits in 

neutrophils. 
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CHAPTER 4: INTEGRIN SUBUNIT β3 IN NEUTROPHIL RECRUITMENT IN 
PNEUMOCOCCAL PNEUMONIA 

 
 

4.1. Abstract 
 Streptococcus pneumoniae is one of the most common causes of bacterial pneumonias in 

humans. Neutrophil migration into S. pneumoniae infected lungs is central to host defense. But 

the mechanisms of S. pneumoniae mediated neutrophil recruitment into lungs are not completely 

understood. Therefore, I assessed the role of an adhesion molecule, integrin αvβ3, by evaluating 

the integrin’s subunit β3 in a mouse model of S. pneumoniae induced lung inflammation. Integrin 

subunit β3 knockout (β3
-/-) mice and the wild type (WT) mice were intratracheally instilled with 

either 50µl of S. pneumoniae (ATCC®6303; n=6/group) or saline (n= 4-7/group). Another group 

of WT mice were treated intraperitoneally with 25 µg or 50 µg of monoclonal antibody against 

integrin subunit β3 (n=5) or with an isotype matched antibody (n=5), 1 hour before instillation of 

S. pneumoniae. Mice were euthanized 24 hours after the treatments. Flow cytometry confirmed 

absence and presence of integrin subunit β3 on peripheral blood neutrophils in the β3
-/- and WT 

mice, respectively. Bronchoalveolar lavage (BAL) from β3
-/- and WT mice infected with S. 

pneumoniae showed no difference in the number of recruited neutrophils. The number of 

neutrophils in BAL was less in β3-antibody+ S. pneumoniae mice compared to no-antibody+ S. 

pneumoniae mice. However, a similar effect was also evident in isotype-antibody+ S. 

pneumoniae mice. Further, there was no difference between the isotype-antibody+ S. pneumoniae 

mice and β3-antibody+ S. pneumoniae mice. Therefore, I conclude that integrin αvβ3 is not critical 

for neutrophil migration into the S. pneumoniae infected and inflamed lungs.
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4.2. Introduction 

 Streptococcus pneumoniae (S. pneumoniae) is a major pathogen responsible for bacterial 

pneumonia in adults and children,  and world wide over one million children suffer from S. 

pneumoniae induced pneumonia (Kadioglu and Andrew. 2004). The recruitment of neutrophils 

into the lung is critical for host defense in bacterial pneumonia (Rijneveld et al. 2005). 

Neutrophil recruitment from the blood vessel is a multi-step process involving rolling, firm 

adhesion and transmigration (Springer. 1994). The firm adhesion of neutrophils onto the 

endothelium, an essential step for transmigration, is mediated by integrins (Hynes. 1992). 

Integrins are heterodimeric proteins, consisting of α and β subunits and are involved in cell-cell 

and cell-matrix interactions (Hynes. 1987). While the process of neutrophil migration in the 

systemic vasculature is relatively well characterized, our knowledge on neutrophil migration in 

pulmonary microvasculature is incomplete (Burns et al. 2003;  Wagner and Roth. 2000). In lung 

microvasculature, neutrophil recruitment into the alveolar space induced by gram negative 

bacteria such as Escherichia coli is integrin β2-dependent, and the neutrophil recruitment induced 

by gram positive bacteria such as S. pneumoniae is integrin β2-independent (Doerschuk et al. 

2000). The molecule(s) mediating the integrin β2-independent pathway of neutrophil recruitment 

in the lung are yet to be identified (Burns et al. 2003;  Mizgerd. 2002).  

 Integrin αvβ3, a heterodimer formed by αv and β3 subunits, is expressed on endothelium 

and neutrophils (Conforti et al. 1992;  Lawson and Maxfield. 1995;  Singh et al. 2000). It can 

bind to various proteins including vitronectin in the circulation and in the extracellular matrix 

(Preissner. 1991;  Tsukada et al. 1995). Although, the role of integrin αvβ3 in angiogenesis is 

extensively studied, its role in leukocyte involvement is not completely addressed (Brooks et al. 

1994a;  Hynes. 2002). The importance of integrin αvβ3 in monocyte migration across the 

endothelium has been shown in vitro (Weerasinghe et al. 1998). Integrin subunit β3 is implicated 

in neutrophil migration on the extracellular matrix in vitro (Bruyninckx et al. 2001) and 

transmigration of leukocytes from the mesenteric venules in response to fMLP, in vivo 

(Thompson et al. 2000). Recently, I have shown that integrin subunits αv and β3 expression on 

neutrophils is reduced in acute lung inflammation induced with E. coli but not with S. 

pneumoniae (Janardhan et al. 2004). Therefore, it is logical to evaluate integrin αvβ3 as an 

adhesion molecule involved in S. pneumoniae induced neutrophil migration in the lungs.  
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 Endothelial and neutrophil integrin subunit αv can dimerize with many β subunits such as 

β1, β3, β5, β6 and β8, where as integrin subunit β3 can dimerize only with integrin subunit αv 

(Hynes. 2002). Since both integrin subunits αv and β3 are essential for the ligand recognition, the 

specific role of integrin αvβ3 in neutrophil migration can be assessed by studying integrin subunit 

β3 (10). Therefore I designed an experiment using integrin subunit β3 knockout (β3
-/-) mice and 

function blocking anti-integrin β3 antibody to evaluate the role of αvβ3 in S. pneumoniae induced 

neutrophil recruitment in the lungs. 

4.3. Materials and methods 

4.3.1. Animal groups 

 The experimental protocols were approved by the University of Saskatchewan Committee 

on Animal Care Assurance and experiments were conducted according to the Canadian Council 

on Animal Care Guidelines. β3
-/- mice were procured from the Jackson laboratory (B6;129S2-

Itgb3tm1Hyn/J; stock number 004669; The Jackson Laboratory, Bar Harbor, USA). B6129SF2/J 

mice (F2 hybrid of C57BL/6J and 129S1/SvImJ; Stock number 101045), the most appropriate 

control, were also procured from the Jackson laboratories. Mice were maintained in the animal 

care unit and were acclimatized at least for a period of one week. The treatment groups are 

depicted in Table 4.1.  

4.3.2. Streptococcus pneumoniae for intratracheal instillation 

 S.  pneumoniae  ATCC® 6303 was procured from American Type Culture Collection 

(ATCC, VA, USA). Freeze dried bacterial culture was resuspended in 15 ml of  Brain Heart 

Infusion (BHI) broth (3 tubes of 5 ml each) and grown for 24 hours at 37°C with 7% CO2. After 

24 hours the growth was mixed with an equal volume of BHI containing 20% glycerol. Aliquots 

of 1 ml each were prepared and stored at -80°C for future use in the experiments.  

 Time required for the bacteria to reach the mid logarithmic phase was determined in the 

initial experiments based on the findings of Branger et al. (Branger et al. 2004). One ml of frozen 

aliquot of bacterial culture was thawed and mixed with 9 ml of BHI broth. Bacteria were allowed 

to grow for 16 hours at 37°C with 7% CO2. From this, 1 ml of bacterial culture was mixed with 

several tubes containing 9 ml each of BHI broth and incubated at the above mentioned 

conditions. Starting with 0 hour, OD at 600 nm (Tasaka et al. 2003) was recorded using a 
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spectrophotometer at regular intervals until no change in the OD was observed. At each time 

point (0, 2, 3, 4, 5, 6, 8 and 10 hours) serial dilutions of the culture were made and plated on 

blood agar plates to determine the number of colony forming units. These numbers were plotted 

against the time to determine the mid logarithmic phase. Based on the findings it was determined 

that if I mix 1 ml of fresh bacterial culture with 9 ml of BHI broth, it will take 5 hours to reach 

the mid logarithmic phase.  

4.3.3. Induction of pneumococcal pneumonia 

 Mice were anaesthetized by intraperitoneal administration of xylazine (20 mg/kg) and 

ketamine (100 mg/kg). The treatments and the number of mice in each group are described in 

Table 4.1. Trachea was exposed surgically and 50 µl of endotoxin-free saline (Sigma, St.Louis 

MO, USA) or 50 µl of S. pneumoniae (3.4 ± 1.1 × 107 CFU/ml) was instilled intratracheally. An 

hour before instillation of S. pneumoniae, some of the wild type mice were intraperitoneally 

treated either with 25 µg or 50 µg of isotype matched immunoglobulins (purified hamster IgG) or 

anti-integrin β3 monoclonal antibody (purified hamster anti-mouse CD61) purchased from BD-

Biosciences, ON, Canada. This antibody has been used previously, both in vitro and in vivo, to 

block the function of integrin subunit β3 (Illera et al. 2000;  Piali et al. 1995;  Schultz and 

Armant. 1995;  Song et al. 2003). Animals were euthanized at 24 hours post-treatment. In the 

saline treated wild type mice group, five were euthanized 6 hours after the treatment and 2 were 

euthanized 24 hour after the treatment. Since there were no differences, in the number of cells in 

bronchoalveolar lavage, integrin β3 expression on neutrophils and lung histology, these were 

considered together.  

4.3.4. Flow cytometric analyses of integrin subunit β3 expression on neutrophils 

 At the time of euthanizing the mice, blood was collected from the heart into a microtainer 

tube (BD Biosciences, ON, Canada) containing potassium EDTA. Blood (0.5-1 ml) was 

centrifuged at 400g for 20 minutes. After discarding the supernatant, 9 ml of ammonium chloride 

lysis buffer (8.7 g of Ammonium Chloride and 1.211 g of Tris in 1 l of distilled water; pH 7.2) 

was added and the solution was incubated in a water bath at 37°C for 5-6 minutes followed by 

centrifugation at 400g for 10 minutes. The cell pellet thus obtained was washed twice and 

resuspended in buffer [Calcium and magnesium free Dulbecco’s PBS (Invitrogen, ON, Canada) 

containing 1% fetal calf serum and 1% sodium azide]. After determining the number of cells 
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using a hemocytometer, cells were mixed with either PE-conjugated anti-integrin β3 (Sixt et al. 

2001) or isotype matched antibody (BD Biosciences, ON, Canada; 5 µg/106 cells) and incubated 

on ice, in dark for 30 minutes. After staining, cells were washed twice using the buffer and 

resuspended in 1 ml of buffer. Cells were analyzed using Epics Elite ESP analyzer (Beckman 

Coulter). Neutrophils were gated using their side and forward scatter characteristics. From each 

sample 10,000 cells were analyzed for the expression of integrin β3. 

4.3.5. Bronchoalveolar lavage 

 To perform bronchoalveolar lavage (BAL), a small catheter was placed into the trachea 

and was held in the same position during BAL using a cotton thread which also prevented the 

backflow of BAL fluid. Lungs were lavaged by twice injecting and slowly aspirating the same 1 

ml of Dulbecco’s PBS containing 0.6 mM EDTA. This procedure was repeated three times and 

resulted in 2.8-2.9 ml of the BAL fluid. Total number of leukocytes were determined using a 

hemocytometer and cells were spun onto a slide using a cytocentrifuge (Shandon III). Cells were 

stained using Wright’s stain and differential cell count was performed. In the experiments using 

blocking antibodies, the person counting the cells was blinded to the groups. The absolute 

number of neutrophils were calculated using the total number of leukocytes in the BAL. 

4.3.6. Tissue collection and processing  

 After BAL, right lung was tied off at the level of the bronchus. All the lobes on the right 

side were snap frozen in liquid nitrogen and stored at -80°C for future use. Left lung was infused 

at 22 cm water pressure with a solution of 2% paraformaldehyde containing 0.1% glutaraldehyde 

in sodium cacodylate buffer. Lungs were collected en bloc into a jar containing the same fixative. 

After at least 60 minutes, left lung was cut into 3 pieces and fixed in 4% paraformaldehyde at 

4°C for 16 hours followed by dehydration and embedding in paraffin.  

4.3.7. Gram’s staining of lung sections 

To confirm the proper instillation of bacteria into the lungs, representative lung sections 

were stained with Gram’s stain. Lung sections were deparaffinized, hydrated and stained with 

crystal violet for 3 minutes followed by a rinse using warm tap water (on and off for 3-4 times). 

Then the sections were treated with gram’s iodine for 2 minutes and again rinsed with warm tap 

water. After blotting sections dry, they were differentiated in acetone (2-3 quick dips) until the 
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purple color ceased to run away and were rinsed in water. Sections were then incubated with 

Gram’s iodine for 2 minutes and with 1% neutral red for 1 minute with a water rinse in between 

and after. The sections were dehydrated in alcohol and cleared in xylene. 

4.3.8. Histopathology and immunohistochemistry 

 Lung sections were stained with hematoxylin and eosin to evaluate lung histology for 

induction of inflammation and neutrophil migration. Sections were stained for neutrophils using 

antibodies MCA771G (1:50) and goat anti-rat HRP-conjugated secondary antibody (1:100; 

STAR72; Serotec, NC, USA). Immunohistology protocol is explained under Section 3.3.6. 

4.3.9. Quantification of septal neutrophils 

 To determine if there are any differences in the septal neutrophil accumulation, 

neutrophils in the control, WT- S. pneumoniae, 50 µg antibody + S. pneumoniae and 50 µg 

isotype antibody + S. pneumoniae mice were quantified using lung sections stained with anti-

neutrophil antibody. The person counting the cells was blinded to the groups. Five mice in each 

group (4 in control) were used for evaluation. From each mouse, neutrophils in the septa were 

counted in 3 random fields and from 3 sections under 100× objective (0.025 mm2 area per field; a 

total of 0.225 mm2) and were expressed as number of neutrophils /0.025 mm2. 

4.3.10. Statistical analyses 

 Data were analyzed using Sigma stat software (Sigma stat version 3.1). Two groups were 

compared using student’s t- test and more than two groups were compared using one-way 

analysis of variance. Fisher’s LSD was used for post-hoc comparisons. Statistical significance 

was accepted at P<0.05. 

4.4. Results 

4.4.1. Induction of lung inflammation 

 Gram’s staining revealed gram positive cocci in lungs of infected animals and indicated 

proper instillation of bacteria (Figure 4.1). Inflammation, as evidenced by leukocytes in BAL, 

perivascular and septal accumulation of leukocytes, perivascular edema and hemorrhage, was 

present in the lungs of all S. pneumoniae instilled mice (Figure 4.2).   
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4.4.2. Expression of integrin subunit β3 on neutrophils 

Flow cytometry confirmed the presence and absence of integrin subunit β3 expression on 

the neutrophils from WT and β3
-/- mice respectively. The integrin expression on neutrophils from 

WT and β3
-/- mice was not altered by S. pneumoniae treatment (Figures 4.3A & B).  

4.4.3. Neutrophil recruitment in β3
-/- mice 

The neutrophil recruitment into the lung was evaluated using BAL. There were no 

differences between the alveolar leukocyte and neutrophil numbers in the WT and β3
-/- mice 

treated with saline (Figures 4.4 A & B). In S. pneumoniae infected WT and β3
-/- mice there were 

more neutrophils compared to respective saline controls (P=0.001). However, the leukocyte and 

neutrophil numbers did not vary between S. pneumoniae infected WT and β3
-/- mice (Figures 4.4 

C & D) indicating recruitment of neutrophils in the absence of integrin subunit β3.  

4.4.4. Neutrophil recruitment after blocking integrin subunit β3

I further confirmed the findings of β3
-/- mice, using a function blocking antibody against 

the integrin subunit β3. The antibodies were given one hour before the intratracheal challenge 

with S. pneumoniae. Compared to no antibody treated S. pneumoniae infected mice, the number 

of recruited neutrophils were reduced in β3-antibody treated mice. However, similar reduction in 

neutrophil numbers was also observed in the isotype-control antibody treated mice (Figure 4.5). 

4.4.5. Total leukocyte numbers in blood  

 To ensure that the lack of difference in the leukocyte and neutrophil numbers in the lungs 

of S. pneumoniae infected WT and β3
-/- mice is not due to alterations in the circulating leukocyte 

numbers, I determined total leukocyte numbers in the blood. There was no difference in the 

leukocyte numbers between WT and β3
-/- mice either after saline or S. pneumoniae treatment 

(Figures 4.6A & B).  

 Among antibody treated mice, only 25 µg isotype antibody treated mice had lower 

number of leukocytes compared to mice given no antibody (Figures 4.6 C & D). 

4.4.6. Quantification of neutrophils in the septum 

 To evaluate the possible mechanism of reduced leukocyte and neutrophil recruitment in 

the isotype and β3-antibody treated mice, I quantified the number of neutrophils in the septum. 
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The number of neutrophils in the septum was significantly more in the no antibody and S. 

pneumoniae treated mice compared to saline treated mice lungs (Figure 4.7). The number of 

septal neutrophils in both the isotype and anti-β3 antibody treated S. pneumoniae infected mice 

lungs was significantly lower compared to no antibody treated S. pneumoniae infected mice 

(Figure 4.7). 

44 



 

 

 

 

 

 

 Table 4. 1. List of treatment groups 

 
Mice Treatment ‘n’ number 

Wild type Endotoxin free saline 7 
Wild type S. pneumoniae 6 

Integrin β3 knockout Endotoxin free saline 4 
Integrin β3 knockout S. pneumoniae 6 

Wild type Anti-integrin β3 antibody (25 µg, intra 
peritoneal) + S. pneumoniae 

5 

Wild type Isotype matched control antibody (25 µg, 
intra peritoneal) + S. pneumoniae 

6 

Wild type Anti-integrin β3 antibody (50 µg, intra 
peritoneal) + S. pneumoniae 

5 

Wild type Isotype matched control antibody (50 µg, 
intra peritoneal) + S. pneumoniae 

5 
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Figure 4. 1. Gram’s staining of lung sections.  

Lung section from a S. pneumoniae treated animal showing Gram positive cocci in an alveolar 
macrophage (arrow). Most of the bacteria were washed out during the bronchoalveolar lavage 
and were evident in the Gram stained cytospin preparations (Top inset). Lower inset shows 
another area of the lung containing many Gram positive organisms. Magnification- ×1,000 
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Figure 4. 2. Acute lung inflammation. 

Representative, hematoxylin and eosin stained lung section from a S. pneumoniae treated mouse 
showing inflammation in the lung as evidenced by the presence of hemorrhage, edema and 
neutrophil recruitment in the perivascular area (PV). Neutrophils are also evident in the septum 
and alveolar space. BV: Blood vessel; BL: Bronchial lumen. Magnification- ×200
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Figure 4. 3. Flow cytometric observations for expression of integrin subunit β3 on neutrophils.  

A: Neutrophils from saline treated (A) and S. pneumoniae treated (B), wild type (thin line) and 
knockout mice (dotted line) were stained with PE-conjugated anti-integrin subunit β3 antibody or 
an isotype matched antibody (thick line). Wild type mice showed β3 expression, while knockout 
mice had no expression and was similar to the expression observed with the isotype matched 
antibody (thick line). The data presented is representative of observations from 4-5 mice in each 
group. 
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Figure 4. 4. Neutrophil recruitment in β3
-/- mice.  

Total leukocytes and neutrophils were quantified in the bronchoalveolar lavage fluid (BALF) 
from wild type (WT) and β3

-/- (KO) mice treated with saline (A & B) or S. pneumoniae (C & D). 
There was no difference in the number of leukocytes or neutrophils in the bronchoalveolar lavage 
fluid of saline treated or S. pneumoniae infected mice. In each group, the solid bar represents the 
mean value. 
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Figure 4. 5. Neutrophil recruitment in mice treated with anti-β3 antibody.  

One hour before intratracheal instillation of S. pneumoniae, mice were intraperitoneally treated 
with 25 or 50 µg of either integrin subunit β3 antibody (β3) or isotype matched antibody as a 
control (IC). Lungs were lavaged 24 hours post-treatment and the total number of leukocytes and 
neutrophils in the bronchoalveolar lavage fluid (BALF) were quantified. β3 and IC treated mice 
showed reduced number of neutrophil recruitment into the lungs compared to S. pneumoniae 
instilled, no antibody (NA) treated mice. Further, there was no difference between the IC and β3 
treated mice. In each group, the solid bar represents the mean value. In 25 and 50 µg IC groups, 
using a statistical software (Grubb’s test; Statagraphics Centurion XV, Version 15.0.10), one 
observation each was identified as an outlier and was excluded from the analyses. 
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Figure 4. 6. Peripheral blood leukocyte count.  

Total leukocyte counts between the wild type (WT) and β3
-/- (KO) did not vary either in saline 

treated (A) or in S. pneumoniae treated (B) mice. Among antibody treated mice, only 25 µg 
isotype antibody treated mice had lower number of leukocytes compared to mice given no 
antibody (C). NA: no antibody; IC: isotype control; β3: β3 antibody. 
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Figure 4. 7. Quantification of neutrophils in the septa.  

To understand the mechanism of decreased neutrophil recruitment in antibody treated groups, I 
quantified neutrophils in the septa of saline, S. pneumoniae with no antibody(NA), S. 
pneumoniae with 50 µg isotype antibody (IC) and S. pneumoniae with 50 µg β3 antibody (β3) 
treated mice. Compared to saline treated mice, there were more neutrophils in the alveolar septa 
of S. pneumoniae treated mice. In response to S. pneumoniae, both the isotype and β3 antibody 
treated mice showed reduced number of neutrophils in the septa when compared with those given 
no antibody. 
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4.5. Discussion
 
 My objective was to evaluate the role of integrin subunit β3 in neutrophil recruitment in S. 

pneumoniae induced lung inflammation. I addressed this issue using β3
-/- mice and a function 

blocking monoclonal antibody. The data show that the absence of integrin subunit β3 does not 

affect neutrophil recruitment in the lungs of mice infected with S. pneumoniae. 

First, I confirmed the presence and absence of integrin subunit β3 on neutrophils from the 

WT and β3
-/- mice, respectively, with flow cytometry. The β3

-/- mouse has been used by others to 

understand the role of integrin αvβ3 in various pathological conditions such as tumor angiogenesis 

and osteoporosis (Reynolds et al. 2002;  Zhao et al. 2005). Neutrophils from the β3
-/- mice did not 

express β3 while neutrophils from WT mice showed β3 and the expression was unaltered after the 

challenge with S. pneumoniae. This is in accordance with the previous reports of integrin subunit 

β3 expression on unstimulated and phorbol myristate acetate stimulated neutrophils (Janardhan et 

al. 2004;  Lawson and Maxfield. 1995;  Sixt et al. 2001). 

 Next, I evaluated BAL to quantify the neutrophil recruitment into the lung. Compared to 

saline treated mice, significant recruitment of neutrophils was observed in the lungs of both WT 

and β3
-/- mice infected with S. pneumoniae, and there were no differences between these two 

types of mice. Previous in vitro reports on monocyte migration across the endothelium and 

neutrophil migration in the extracellular matrix, and an in vivo report on leukocyte migration 

across the mesenteric vessels indicated a role for integrin subunit β3 (Bruyninckx et al. 2001;  

Thompson et al. 2000;  Weerasinghe et al. 1998). The lack of effect of β3 integrin on neutrophil 

recruitment in lung inflammation in our experiments could be due to several reasons. One, there 

could be upregulation of other known and unknown molecules in the absence of integrin β3 

subunit. This process is known as “transdominance” where presence of one integrin could 

prevent the function and expression of other integrins, and in the absence of that particular 

integrin the control is lost, leading to expression or function of the suppressed integrin (Blystone 

et al. 1995;  Blystone et al. 1999;  Carmeliet. 2002;  Diaz-Gonzalez et al. 1996). The best 

example is the role of integrin αvβ3 in angiogenesis. Its ligation using antibodies helps to control 

pathological angiogenesis. But in β3
-/- mice, increased angiogenesis is observed because of lack 

of transdominance and resulting increased expression of other angiogenic integrins such as αvβ1, 

α2β1 and α5β1 (Hynes. 2002). Second possibility could be that the absence of integrin subunit β3 

could lead to pronounced neutrophilia, which could result in relative increase in the neutrophils 
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recruited into the lung, as observed in integrin β2 deficient mice (Mizgerd et al. 1997). But this is 

not the case in my experiments, as absence of integrin subunit β3 did not alter the number of 

circulating neutrophils. The third possibility could be that integrin subunit β3 may be functionally 

redundant and hence is not critical for the neutrophil recruitment. To further confirm this 

possibility I did another set of experiments using a function blocking antibody. 

 The antibody used in this experiment has previously been shown to block the function of 

integrin subunit β3 both in vitro and in vivo (Illera et al. 2000;  Piali et al. 1995;  Schultz and 

Armant. 1995;  Song et al. 2003) and it did not affect the neutrophil numbers in the blood. I 

tested two doses of β3 antibody in our experiments and at both the doses there was a decrease in 

the number of neutrophils recruited into the lungs of infected mice. However, treatment with 

isotype antibody also induced similar reduction in neutrophil recruitment and there was no 

difference in number of recruited neutrophils between the mice treated with integrin β3 antibody 

or isotype antibody. This implies that the observed effect is a general effect of treatment with 

immunoglobulins and not specific to integrin β3 antibody. The lack of effect of β3 antibody on 

neutrophil recruitment is in agreement with data from the β3
-/- mice and show that the integrin 

subunit β3 is not critical for neutrophil recruitment into the lung in response to S. pneumoniae. 

Thus, my experiments rule out the role of one more integrin in the β2-independent neutrophil 

migration but do not reveal the identity of molecule(s) that may mediate integrin β2-independent 

neutrophil migration. Probably multiple integrins, rather than one single molecule, are involved 

in the β2-independent neutrophil migration and experiments involving blocking of several 

integrins could help us to solve the puzzle. 

 The observed reduction in neutrophil recruitment due to immunoglobulin (both isotype 

and β3 antibody) treatment was an unexpected finding in our study and is difficult to explain. 

However, it can be compared to the effects of intravenous immunoglobulin therapy (IVIg) 

observed in humans and animal models. In humans, IVIg is used to treat various inflammatory 

and autoimmune conditions and the mechanism is not completely understood (Bayry et al. 2003). 

A recent study in a feline model of ischemia reperfusion showed that intravenous 

immunoglobulin therapy interferes with selectins and β2 integrins on the leukocytes to reduce the 

rolling and adhesion in the mesenteric microvessels (Gill et al. 2005). Similarly, interference with 

the leukocyte-endothelial interactions in our study seems to be the most likely possibility as I 

observed a reduced number of neutrophils in the septum of mice treated with both β3 and isotype 
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antibodies compared to those which were treated with S. pneumoniae alone (Figure 4.7). 

However, there are certain caveats to comparison of our observation with IVIg treatments. First, 

neither the dose nor the method of preparation of antibodies used in our experiments are 

comparable to the ones which are used in IVIg treatment (Bayry et al. 2003;  Gill et al. 2005). 

Immunoglobulin for IVIg treatment is obtained by pooling plasma from 3,000-10,000 healthy 

donors (Bayry et al. 2003) while the antibody used in the experiment is hamster IgGκ, purified 

from tissue culture supernatant. Second, the selectins and most of the integrins expressed by 

neutrophils have been shown not to play a role in S. pneumoniae induced pneumonia and other 

stimuli (Doerschuk et al. 1990;  Mizgerd et al. 1996;  Ridger et al. 2001;  Tasaka et al. 2002) and 

hence one has to presume that treatment with immunoglobulins interferes with a yet-to-be 

identified molecule on neutrophils. Finally, I have no explanation as to why the previous studies 

using antibodies to understand leukocyte recruitment have failed to show reduced neutrophil 

recruitment with isotype matched immunoglobulins (Ridger et al. 2001;  Tasaka et al. 2002). 

 To summarize, the experiments show that integrin subunit β3, and therefore αvβ3, is not 

required for neutrophil recruitment in pneumococcal pneumonia in mice. Thus, this current study 

and previous studies rule out the requirement of all known integrins expressed on the neutrophils 

in their recruitment into the lung in S. pneumoniae induced pneumonia. This study also shows 

that pretreatment with immunoglobulins significantly reduce the neutrophils recruited into the 

lung in response to S. pneumoniae and the mechanisms mediating this need to be addressed.
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CHAPTER 5: TOLL-LIKE RECEPTOR 4 EXPRESSION IN LIPOPOLYSACCHARIDE 
INDUCED LUNG INFLAMMATION∗

 
 

 

5.1. Abstract 
 Bacterial lipopolysaccharides (LPS) initiate immune response through Toll-like receptor 4 

(TLR4). More often host is confronted with secondary bacterial challenges; therefore it is critical 

to understand TLR4 expression following initial provocation. I studied TLR4 expression in rats at 

various times after intra-tracheal instillation of LPS. Although TLR4 mRNA was undetectable in 

normal lungs, it increased at 6 hours and 12 hours and declined at 36 hours post-LPS treatment. 

Western blots showed TLR4 protein at all time points. Immunohistochemistry localized TLR4 in 

alveolar septal cells, bronchial epithelium, macrophages and endothelium of large and 

peribronchial blood vessels. Dual label immunoelectron microscopy showed co-localization of 

TLR4 and LPS in the cytoplasm and nucleus of various lung and inflammatory cells. Nuclear 

localization of TLR4 was confirmed with Western blots on lung nuclear extracts. I conclude that 

TLR4 expression in lung is sustained up to 36 hours and that TLR4 and LPS are localized in the 

cytoplasm and nuclei.

                                                 
∗ Histology Histopathology (2006) 21:687-96. 
http://www.hh.um.es/2006/HH_21_7_2006.htm
“The original publication is available at www.hh.um.es”.  
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5.2. Introduction  

 Lung diseases characterized by acute inflammation arise from various causes including 

Gram-negative bacterial infections (Davidson et al. 1999;  Matthay et al. 2003). The outer cell 

wall of Gram-negative bacteria contains lipopolysaccharide (LPS), that activates cells such as 

macrophages and endothelial cells to produce pro-inflammatory mediators, cytokines and 

chemokines leading to expression of adhesion molecules and recruitment of inflammatory cells 

(Aderem. 2001;  Andonegui et al. 2003;  Dayer et al. 1993). The inflammation that results is a 

necessary response to protect the body from pathogens.  

 Inflammatory response to endotoxins is largely mediated through Toll-like receptor 4 

(TLR4) (Takeda et al. 2003). TLR4 belongs to a transmembrane family of receptors that were 

first described for their involvement in innate immunity in Drosophila (Takeda et al. 2003). 

Normal cellular expression of TLR4 is well characterized (Andonegui et al. 2003;  Armstrong et 

al. 2004;  Muir et al. 2004;  Muzio et al. 2000;  Zarember and Godowski. 2002). However, there 

is a lack of consensus on the effect of LPS on the expression of TLR4 in various organs including 

the lung. For example, TLR4 expression on the surface of peritoneal macrophages was decreased 

within a few hours of LPS stimulation and remained suppressed for more than 24 hours even 

though mRNA expression returned to normal by 24 hours (Nomura et al. 2000). In contrast, LPS 

exposures increased TLR4 expression in human monocytes and polymorphonuclear leukocytes 

(Muzio et al. 2000). Recently, I reported a reduced immunohistochemical expression of TLR4 on 

epithelium and large blood vessels, but not macrophages, in lungs of calves infected with 

Mannheimia hemolytica (Wassef et al. 2004). Otte and colleagues found that even though TLR4 

mRNA and protein levels were unaffected in LPS exposed intestinal epithelial cells, the cell 

surface expression of TLR4 was significantly decreased suggesting internalization at 24 hours 

post-LPS treatment (Otte et al. 2004). Moreover, there is conflicting evidence of unaltered 

expression of TLR4 protein in normal or chronically inflamed intestinal epithelial cells (Abreu et 

al. 2001;  Cario et al. 2000;  Hausmann et al. 2002). These studies highlight the controversy 

regarding TLR4 expression in inflamed organs including the lung.  

 Since TLR4 expression is central to host’s ability to respond to bacterial challenges, it is 

important to understand the impact of an initial challenge on subsequent expression of TLR4. 

Therefore, I determined the expression of TLR4 mRNA and protein at various times following a 

single intratracheal challenge with E. coli LPS. Our data show that LPS treatment induces TLR4 
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mRNA followed by its return to minimal levels while the protein expression is sustained up to 36 

hours with few cell specific variations. I also show co-localization of TLR4 and LPS in 

cytoplasm and nucleus of various cells in the treated lungs and believe it to be the first report of 

nuclear localization of TLR4.  

5.3. Materials and methods: 

5.3.1. Animal groups 

 The experimental protocols were approved by the University of Saskatchewan Committee 

on Animal Care Assurance and experiments were conducted according to the Canadian Council 

on Animal Care Guidelines. Specific pathogen-free, ten-week-old, male Sprague-Dawley rats 

were procured from Charles River laboratories, Canada. Rats were maintained in the animal care 

unit and were acclimatized for a period of one week. Rats were randomly divided into five groups 

(N = 5 each).  

5.3.2. Acute lung inflammation 

 Rats were anaesthetized by intraperitoneal administration of xylazine (20 mg/kg) and 

ketamine (100 mg/kg). Trachea was exposed surgically and endotoxin-free saline (Sigma, 

St.Louis MO, USA) or E. coli LPS (250 µg; serotype 0128:B12; Sigma, St.Louis MO, USA) was 

instilled intratracheally. Animals were euthanized at 6, 12, 18, and 36 hours (n = 5 each) post-

treatment. Control animals (n = 5) were euthanized at 6 hours post saline treatment. 

5.3.3. Tissue collection and processing  

 Tissues for reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blots 

were snap frozen and stored at -80ºC. Processing of lung pieces for histology and 

immunohistology and immunoelectron microscopy is explained under Section 3.3.4.  

5.3.4. Preparation of whole lung homogenates and nuclear fractionation 

 Lung homogenization is explained in Section 3.3.5. Nuclear fractionation of lung was 

carried out using a previously described method (Spector et al. 1998) with slight modifications. 

Lung (0.3 g) was cut into small pieces and homogenized using a lysis buffer containing 0.25 M 

sucrose, 50 mM Tris-HCl (pH 7.8), 10 mM EDTA, 3 mM magnesium chloride, 2 mM PMSF, 2 

mM benzamidine and 1 µM leupeptin. The homogenate was passed through glass wool to get rid 
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of the cell debris. The filtrate without cell debris was overlaid on the lysis buffer containing 1.5 

M sucrose and spun for 15 minutes at 35,000 rpm in Beckman L8-55 ultracentrifuge using Type-

45 T1 rotor. Even though, method described by Spector et al., (Spector et al. 1998) suggests 

using 2 M sucrose for rat liver nuclei, I was not able to precipitate nuclei either at 2 M or at 1.75 

M.  The pellet containing nuclei was washed twice with the lysis buffer and resuspended in 300 

µl of RIPA lysis buffer.  

5.3.5. Reverse transcriptase-polymerase chain reaction 

 Total RNA was isolated using the RNeasy® Mini Kit (Qiagen Inc., ON, Canada) 

following manufacturer’s protocol. Using a glass-homogenizer, 30 mg of frozen lung tissue was 

homogenized in 600 μl of buffer followed by the optimal on-column DNase digestion with the 

RNase-free DNase to eliminate DNA contamination. TLR4 and GAPDH primers were purchased 

from Invitrogen (Burlington, ON). For rat TLR4 (458bp) forward primer was - 5'-

CATGAAGGCCTCCCTGGTGTT and the reverse primer was 5’- 

TGCCAGAGCGGCTACTCAGAA. For GADPH (298bp), forward primer was 5'- 

TGAAGGTCGGTGTGAACGGATTTGG and the reverse primer was 5'-

ACGACATACTCAGCACCAGCATCAC. All other reagents were purchased from Fermentas 

Inc. (Burlington, ON, Canada) 

 The first step in a two step RT-PCR involved mixing of 5 µl of RNA with 1.5 µl of 

reverse primer, 4.5 µl of water and incubation at 70ºC for 10 minutes followed by addition of 9 µl 

of reaction mixture (5 µl of 5X-revert aid buffer, 0.5 µl 10 mM dNTP, 1.5 µl water, 1 µl RNase 

out and 1 µl Revert Aid enzyme). The samples were held at 42ºC for 30 minutes followed by 

incubation at 85ºC for 5 minutes. Second step involved amplification of 2 µl of RT product in a 

PCR mixture (34.25 µl water, 5 µl 10X-PCR buffer, 4 µl of MgCl2, 0.5 µl of 25 mM dNTP 

mixture, 2 µl each of 25 pmol forward and reverse primers and 0.25 µl Taq DNA polymerase). 

After the initial denaturation at 94ºC for 3 minutes, 40 cycles were carried out as follows (TLR4: 

94ºC for 30 sec, 57ºC for 30 sec and 72ºC for 45 sec; GAPDH: 94ºC for 1minute, 65ºC for 2 

minutes and 72ºC for 3 minutes). This was followed by a final extension step at 72ºC for 10 

minutes. One of the controls was direct PCR of lung RNA to rule out the DNA contamination. 

Second control was substitution of RNA extract with water.  

 The RT-PCR products from three rats from each treatment group were electrophoresed on 

a 1.5% agarose gel and were stained with ethidium bromide. Images were captured using Alpha 
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ImagerTM (Alpha innotech corp., USA). Spot densitometry was performed and the results were 

interpreted using the average pixel value. The values were normalized to the expression of 

GAPDH and are presented as ratio of TLR4:GAPDH. 

5.3.6. Western blots  

 Equal amounts of protein from whole lung homogenate and nuclear extracts were 

resolved on 12% Precise protein gels (Biolynx Inc. Ontario, Canada) using SDS-PAGE. The 

method is described in Section 3.3.5. The blots were probed with anti- rat TLR4 (1:100), -actin 

(1:250), -Lamin (1:200) and -goat horseradish peroxidase (HRP)-conjugated secondary antibody 

(1: 7500), which were purchased from Santa Cruz Biotechnology Inc., USA. Use of isotype 

matched goat immunoglobulins instead of primary antibodies served as a negative control.  

5.3.7. Histopathology 

 Lung sections were stained with hematoxylin and eosin to evaluate lung histology for 

induction of inflammation. 

5.3.8. Immunohistochemistry 

 Immunohistology protocol is described in Section 3.3.6 and lung sections were stained 

using, TLR4 (1:50), E. coli LPS (1:300, Cedarlane Laboratories Limited, ON, Canada) and anti-

goat HRP-conjugated antibodies (1:100; DAKO Diagnostics Canada Inc., ON, Canada).  

5.3.9. Immunoelectron microscopy  

 Thin sections (80-100 nm) were incubated with 1% bovine serum albumin to block non-

specific antigen sites. This was followed by incubations with primary (TLR4; 1:25; 60 minutes) 

antibodies and anti-goat 15 nm gold-conjugated secondary antibodies (1:100; for 30 minutes). 

This procedure was repeated using anti-LPS antibody (1:175) and anti-rabbit 10nm gold-

conjugated antibodies (1:100; for 30 minutes) on the same grids followed by staining with uranyl 

acetate and lead citrate. The sections were examined in Philips 410LS transmission electron 

microscope. Controls consisted of using isotype matched immunoglobulins and labeling without 

primary antibody. The number of gold particles seen on these controls was subtracted while 

interpreting the results of labeled lung sections. Secondary antibodies used in this experiment 

were from British Bio Cell International, UK. 
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5.4. Results 

5.4.1. Lung inflammation 

 Lung sections from control rats instilled intratracheally with endotoxin-free saline showed 

normal lung histology (Figure 5.1.A) while from those treated with E. coli LPS showed 

perivascular, peribronchiolar and alveolar infiltration of neutrophils and mononuclear phagocytes 

(Figure 5.1.B). The deposition of LPS into the lung was confirmed using an anti-LPS antibody. 

The LPS was localized in the epithelium, endothelium, smooth muscle cells and macrophages 

(Figure 5.1.C). 

5.4.2. TLR4 mRNA expression  

 TLR4 mRNA expression was assessed in lungs from the normal and LPS-challenged rats 

with semi-quantitative RT-PCR. The absence of DNA was confirmed with direct PCR, without 

the RT step on RNA extracted from lungs (data not shown). Lungs from control rats lacked 

mRNA for TLR4 (Figure 5.2). The expression of TLR4 mRNA was increased at 6 hours 

followed by a further increase at 12 hours post-LPS treatment. However, the mRNA values were 

reduced by 36 hours post-treatment.  

5.4.3. TLR4 protein expression 

 I examined TLR4 protein expression with Western blots on lung homogenates (Figure 

5.3). Lungs from the control and all of the treated rats showed TLR4 protein (Figure 5.3). 

However, I observed two bands for TLR4; one at ~87 kD and another at ~69 kD. Spot 

densitometry for TLR4 at ~87 kD showed a decrease in TLR4 at 6 hours followed by an increase 

at later time points. Spot densitometry for TLR4 at ~69 kD showed unaltered TLR4 expression at 

6 hours followed by an increase at later time points compared to the controls. 

5.4.4. TLR4 immunohistochemistry  

 I used immunohistochemistry to precisely identify the cells expressing TLR4. Lung 

sections stained only with secondary antibody (Figure 5.4A) or isotype-matched antibody (Figure 

5.4B) lacked any staining and ruled out non-specific binding of antibodies. Previously, I have 

used a TLR4 blocking peptide to determine specificity of the TLR4 antibody used in this 

experiment (Wassef et al. 2004). The immunohistochemical data are summarized in Table 5.1. 
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Lung sections from control rats showed a minimal expression of TLR4 in few of the septal cells 

and bronchial epithelium; however, alveolar macrophages and endothelium of large and 

peribronchial blood vessels were intensely positive (Figure 5.4C). Compared to the controls, the 

6 hour post-LPS treated lungs showed intense TLR4 staining in the septum and infiltrating 

neutrophils (Figure 5.4D). Interestingly, the septa were negative for TLR4 while bronchiolar 

epithelium, endothelium of large blood vessels, macrophages and a few neutrophils were positive 

at 12 and 36 hours post-LPS treatment (Figure 5.4E).  

5.4.5. TLR4 immunoelectron microscopy 

 I performed dual immunogold labeling for TLR4 and LPS on thin lung sections from the 

control and LPS-treated rats. Labeling with isotype matched immunoglobulins showed negligible 

labeling (Figure 5.5). Lung sections from the control and the treated rats contained TLR4 staining 

in the macrophages (Figure 5.6), Type I and II alveolar epithelial cells, microvascular and 

macrovascular endothelium, monocytes, neutrophils (Figure 5.7-5.10) and eosinophils (not 

shown). In both control and LPS-treated lung sections, TLR4 was mainly detected in the 

cytoplasm and the nucleus. LPS was also predominantly localized in the cytoplasm and nucleus 

of macrophages, monocytes, neutrophils and endothelium in the treated lungs (Figure 5.6-5.9). 

Although LPS and TLR4 were colocalized in the cytoplasm and nucleus of endothelial cells in 

capillaries as well as large blood vessels, Type I epithelial cells, neutrophils, monocytes in the 

inflamed lungs, colocalization was detected in only a few cells (Figures 5.6-5.9). Saline-treated 

control lungs showed a negligible labeling for LPS. 

5.4.6. TLR4 in lung nuclear extracts 

 I confirmed immunoelectron microscopic observation on TLR4 localization in nucleus, 

with Western blots on nuclear extracts. The nuclear extracts were positive for lamin-B, which is a 

nuclear protein (Figure 5.11). The blots probed with TLR4 antibody revealed two bands, 

approximately 87 kD and 69 kD, similar to the proteins observed in the crude lung extracts. 
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          Table 5. 1. Expression of TLR4 in various cells of control and LPS treated lungs.  

    +: minimal; ++: intense; -: not detected. 

 
        

 Bronchioles Septum Endothelium-
large blood 

vessels 

Endothelium-
peribronchiolar blood 

vessels 

Macrophages Neutrophils 

Control + + ++ ++ ++ + 

6h post-
treatment 

+ ++ ++ ++ ++ ++ 

12h post-
treatment 

+ - ++ ++ ++ + 

36h post-
treatment 

+ - ++ ++ ++ + 
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Figure 5. 1. E. coli-LPS induced lung inflammation.  

Saline treated lungs showed normal histology (A). Instillation of LPS resulted in inflammation 
characterized by infiltration of inflammatory cells into the perivascular, peribronchiolar and 
alveolar spaces (B). Instillation of LPS was confirmed using an anti-LPS antibody (C). LPS was 
localized in the epithelium (arrows), macrophages (large arrow), endothelium (arrowhead) and 
smooth muscle cells (double arrow). Magnification A-B: ×400 C: ×1,000 
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Figure 5. 2.  Expression of TLR4 mRNA in the lung.  

RT-PCR  on RNA extracted from the saline- (1) and LPS-treated [6 hours (2), 12 hours (3), 18 
hours (4) and 36 hours (5)] rat lungs showed expression of TLR4 only in LPS-treated lungs. 
Densitometric evaluation (average pixel value expressed as ratio of TLR4:GAPDH) showed 
maximal expression at 12 hours and lowest expression at 36 hours post LPS-treatment. *: lane for 
DNA ladder. For each time point, n = 3; densitometric values represent mean of 3 samples for 
each time point. 
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Figure 5. 3. Expression of TLR4 protein in the lung.  

Western blots on lung homogenates from the saline (1) - and LPS-treated [6 hours (2), 12 hours 
(3), 18 hours (4) and 36 hours (5)] rat lungs showed expression of TLR4 at all the time points. 
There were two bands for TLR4; one at ~87 kD and another at ~69 kD. The results were 
interpreted using spot densitometry. For each time point, n=2 and the experiment was repeated 
twice. 
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Figure 5. 4. TLR4 immunohistochemistry.  

No reaction in the TLR4 antibody omitted (A) and isotype matched immunoglobulin treated (B) 
lung sections ruled out non-specific reactions. In saline treated lung sections (C), minimal 
expression was observed in few of the septal cells and in the bronchiolar epithelium (Br). 
Expression was more intense in the endothelium of large blood vessels (BV) and peribronchiolar 
blood vessels (PBV). Increase in the expression of TLR4 was observed in the septum and 
neutrophils (inset) after 6 hours of LPS treatment (D). At 36 hours post-LPS treatment (E), no 
expression was observed in the septum. However, expression was present in the large blood 
vessels (arrow) and few of the neutrophils.   Magnification- A-C and E: ×400; D: ×1,000; Insets: 
×2,000 
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Figure 5. 5. Negative control.  

Dual immunogold labeling on a lung section with isotype matched rabbit and goat 
immunoglobulins showed negligible labeling. AS: alveolar space; RBC: Red blood cell; En: 
endothelium; Ep: epithelium. Magnification- ×17,500. 
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Figure 5. 6. Dual labeling for TLR4 and LPS in an alveolar macrophage.  

Electron micrograph of an alveolar macrophage from an LPS-treated lung shows predominantly 
nuclear colocalization (circles) of TLR4 and LPS. TLR4: large particles (large arrows), LPS: 
small particles (small arrows). Magnification- ×56,000. 
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Figure 5. 7. Dual labeling for TLR4 and LPS in a monocyte and a platelet.  

Electron micrograph from an LPS-treated lung shows localization of TLR4 and LPS in the 
epithelium (Ep), endothelium (En), platelet (P) and a monocyte. Colocalization of TLR4 and LPS 
(circles and insets) can be observed in both epithelium and endothelium. Monocyte shows 
predominantly nuclear localization of LPS and TLR4. TLR4: large particles (large arrows), LPS: 
small particles (small arrows). Magnification- ×36,000. Insets- ×72,000. 
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Figure 5. 8. Dual labeling for TLR4 and LPS in a neutrophil.  

Neutrophil in the alveolar space of an LPS-treated lung shows colocalization of TLR4 and LPS in 
the cytoplasm and the nucleus (circles). TLR4: large particles (large arrows), LPS: small particles 
(small arrows). Magnification- ×30,000. Inset- ×52,000 
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Figure 5. 9. Dual labeling for TLR4 and LPS in an endothelium.  

Endothelium of a large blood vessel from a LPS-treated rat lung shows colocalization of TLR4 
and LPS in the cytoplasm and the nucleus (circles). TLR4: large particles (large arrows), LPS: 
small particles (small arrows). Magnification- ×30,400 
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Figure 5. 10. Dual labeling for TLR4 and LPS in a type II alveolar epithelium.  

Electron micrograph of a Type II alveolar epithelium shows labeling mainly for TLR4. 
Compared to other cells in the lung, relatively less LPS was observed in these epithelial cells. 
TLR4: large particles (large arrows), LPS: small particles (small arrows). Magnification - 
×30,400. 
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Figure 5. 11. TLR4 in lung nuclear extracts.  

Western blots on lung nuclear extracts showed presence of TLR4 in the nucleus. Similar to the 
crude lung extracts, I observed two bands; one at ~87 kD and another at 69 kD. Presence of a 
nuclear protein, lamin confirmed that it is a nuclear fraction and probing with an isotype matched 
immunoglobulin ruled out possible non-specific reaction. A: Saline treated and B: LPS-treated rat 
lung nuclear extracts. The first lane on all the blots is a molecular weight marker. Experiment 
was performed on one sample from each treatment and was repeated twice. 
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5.5. Discussion 

 Because TLR4 is a molecule with well-established role in handling of Gram negative 

pathogens and LPS and there is a paucity of data on its temporal expression in inflamed lungs, I 

examined expression of TLR4 mRNA and protein in a rat model of acute lung inflammation. The 

expression of TLR4 was determined in lung homogenates with RT-PCR and Western blots, and 

in situ with immunohistology and immunoelectron microscopy. The data demonstrate that TLR4 

gene transcription was increased at 6 hours followed by a decrease at 36 hours post-LPS 

challenge. There were cell-specific differences in TLR4 protein expression in control and LPS-

treated rat lungs. I also report co-localization of TLR4 and LPS in the cytoplasm and nucleus of 

various lung cells.  

 I observed absence and presence of TLR4 mRNA in lungs from the control and LPS-

treated rats, respectively. The absence of TLR4 mRNA in normal rat lungs is in disagreement 

with previous reports of its occurrence in normal mouse lungs (Fan et al. 2002). The reasons for 

this disagreement between the data are not apparent but there are some possibilities. First 

possibility that it could be due to technical reasons is discounted by the detection of mRNA in the 

treated rat lungs with the same protocol. Second possibility could be that our technique is not 

sensitive enough to detect minimal constitutive TLR4 gene expression in the lungs. Lastly, the 

absence of TLR4 mRNA in the lungs of control rats could be a species-specific phenomenon. 

Interestingly, the LPS treatment induced expression of TLR4 mRNA at 6 hours of the challenge 

and a return to barely detectable levels at 36 hour post-challenge. These data show that a single 

challenge with LPS induces TLR4 gene transcription. 

 The protein expression of TLR4 was detected with Western blots on lung homogenates 

and immunocytochemistry on lung sections of normal and all the LPS-treated rats. Western blots 

revealed two bands of ~87 kD and at ~69 kD and the first band is closer to the reported molecular 

weight of regular TLR4. I have not addressed the origin or the function of 69 kD band. Although 

this band could result from proteolysis of TLR4 molecule, I did include sufficient amounts of 

protease inhibitors in the lysis buffer and I did not observe proteolysis with few other proteins 

probed in our laboratory (B. Singh and K. Janardhan, unpublished observations). The other 

possibility could be the presence of a variant form of TLR4 protein. There are previous reports on 

the possibility of alternative splicing of TLR4 mRNA which could result in lower molecular 
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weight proteins (Iwami et al. 2000). There is evidence that recombinant soluble TLR4 has a 

molecular weight of approximately 80 kD (Hyakushima et al. 2004). Nevertheless, the data show 

expression of TLR4 protein with two different molecular weights in lungs from the control and 

LPS-treated rats.  

 Immunohistology showed cell specific differences in the expression of TLR4 in the lungs 

from control and the treated rats. The most interesting observation was the increase in TLR4 

staining in alveolar septa and infiltrating neutrophils at 6 hours post-LPS treatment which was 

reduced at 12 and 36 hours of the treatment. In the light of recent evidence, the septal and 

neutrophil expression of TLR4 may have significant implications for leukocyte recruitment in 

inflamed lungs. Kubes and colleagues have reported that lung microvascular endothelial TLR4 is 

involved in the recruitment of neutrophils in inflamed lungs (Andonegui et al. 2003). There is 

also evidence that TLR4 on neutrophils is critical for maximal neutrophil recruitment into the 

inflamed lungs (Hollingsworth et al. 2005). Therefore, increased expression in the septum and 

infiltrating neutrophils may facilitate neutrophil migration into inflamed lungs. The decline in 

TLR4 expression in the septa and infiltrating neutrophils at 12 - 36 hours in our experiments 

coincides with well established decline in migration of neutrophils at this time point in LPS-

induced lung inflammation (Ulich et al. 1991). Therefore, reduced expression of TLR4 in septal 

microvessels at 12 hours may be one of the molecular mechanisms to inhibit neutrophil 

recruitment in inflamed lungs. Sustained expression of TLR4 in large and peribronchiolar blood 

vessels at all the time points may also promote leukocyte migration into the peribronchial and 

perivascular spaces of lung; such perivascular and peribronchial leukocyte migration has been 

reported in various models of lung injury (Curtis et al. 1990;  Ichikawa et al. 1996;  Pabst and 

Tschernig. 2002). The minimal expression of TLR4 in the bronchial epithelium in both control 

and LPS-treated rats is in agreement with the previous in vitro observations on bronchial 

epithelial cells (Guillot et al. 2004;  Sha et al. 2004). Taken together, septal and leukocyte 

expression of TLR4 may be critical for neutrophil trafficking into inflamed lungs.  

 The immunoelectron microscopy revealed predominantly cytoplasmic and nuclear 

staining for TLR4. Similar intracellular expression of TLR4 has been reported in the bronchial 

and alveolar epithelial cells, and intestinal epithelial cells grown in vitro (Guillot et al. 2004;  

Hornef et al. 2003). However, surface expression of TLR4 is also well established in 

macrophages and alveolar epithelium (Akashi et al. 2000;  Armstrong et al. 2004;  Punturieri et 
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al. 2004). One of the reasons for not detecting the surface expression of TLR4 in our tissue 

samples could be that the antibody used was raised against the carboxy terminus of the TLR4 

protein. Furthermore, predominant cytoplasmic localization of TLR4 may result from rapid 

internalization of TLR4 (Guillot et al. 2004;  Hornef et al. 2003). However, intracellular versus 

surface localization of TLR4 may have no bearing on LPS responsiveness, because even 

intracellular interactions of LPS with TLR4 can result in potent signaling (Espevik et al. 2003). 

 An intriguing finding was ultrastructural localization of TLR4 in the nuclei of monocytes, 

macrophages, neutrophils and endothelial cells in the lungs from control and LPS-treated rats. I 

further strengthened this observation by demonstrating TLR4 in nuclear extracts prepared from 

the normal and LPS-treated lungs. Previously, nuclear localization of TLR2 has been shown in 

vitro in monocytes and macrophages (Flo et al. 2001). However, to my knowledge this is the first 

report to demonstrate nuclear localization of TLR4. Even more interestingly, my data show 

colocalization of TLR4 with LPS in the nuclei of various lung cells. Although others have 

reported rapid trafficking of LPS into the nuclei of macrophages (Kang et al. 1990;  Risco et al. 

1991;  Singh and Atwal. 1997), this study provides first evidence of nuclear localization of an 

LPS signaling receptor. My data do not clarify whether the TLR4-LPS complex is formed on the 

cell surface or in the cytoplasm prior to its migration into the nuclei or whether LPS complexes 

with pre-existing TLR4 in the nucleus of these cells. Because TLR4 is a signaling molecule, it is 

critical to address the mechanisms as well as implications of its nuclear colocalization with LPS 

in future studies.    

 To summarize, this study shows that TLR4 expression is sustained, with few cell specific 

variations, at least up to 36 hours in E. coli-LPS induced lung inflammation. The sustained TLR4 

expression in the inflamed lungs suggests lung’s ability to respond to a secondary challenge. 

Predominant localization of TLR4 in the cytoplasm and nucleus in my study creates a need to 

explore the mechanisms involved in trafficking of TLR4 from intracellular compartments to and 

from the cell surface, and the functional consequences of TLR4 and LPS localization in the 

nucleus.
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CHAPTER 6: NEUTROPHIL DEPLETION INHIBITS EARLY AND LATE 
MONOCYTE/MACROPHAGE INCREASE IN LUNG INFLAMMATION∗

 

6.1. Abstract  
 
 Monocytes/macrophages have critical impact on outcomes of lung inflammation. Kinetics 

and mechanisms of monocyte/macrophage increase in lungs are not completely understood. 

Therefore, I examined the pattern and mechanisms of monocyte/macrophage increase in acute 

lung inflammation. Sprague-Dawley rats were instilled intratracheally with E. coli-LPS (250 µg; 

N = 35) or endotoxin-free saline (N = 5). Increase in monocytes/macrophages, neutrophils and 

monocyte chemotactic protein-1 (MCP-1) were quantified at various time points after LPS 

treatment. The role of neutrophils in monocyte/macrophage increase was addressed in LPS-

challenged neutropenic rats (N=8).  In contrast to typical pattern of neutrophil influx between 6 

and 24 hours, monocytes/macrophages increased in two distinct phases, early at 3 hours and late 

at 24 hours. Neutrophil depletion before LPS-instillation abrogated the early as well as late 

monocyte/macrophage increases in the lung. I quantified MCP-1, which is one of the major 

chemoattractants for monocytes, in lung homogenates and found similar concentrations of MCP-

1 in neutropenic and non-neutropenic LPS-challenged rats. I conclude that monocyte/macrophage 

increase in lung occurs in two phases, a novel early phase and a well-established late phase, in 

LPS-induced acute lung inflammation and both phases of monocyte/macrophage increase are 

dependent on neutrophils.

                                                 
∗ Frontiers in Bioscience 11, 1569-1576, May 1, 2006 
“The original publication is available at www.bioscience.org”. 
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6.2. Introduction  
 Acute inflammation in the lung and other organs is characterized by early influx of 

neutrophils followed by monocytes and macrophages (Kaplanski et al. 2003;  Larsen and Holt. 

2000). It is well established that increase in monocyte numbers occurs in late, post-neutrophilic, 

phase of inflammation in the lung (Doherty et al. 1988;  Fillion et al. 2001;  Li et al. 1998;  Maus 

et al. 2002b;  Ulich et al. 1991). However, in animal models of inflammation in other organs, 

such as peritonitis and dermatitis there is also a documentation of very early increase in 

monocyte/macrophage numbers either before or along with increase in neutrophil numbers 

(Henderson et al. 2003;  Issekutz and Issekutz. 1993;  Issekutz et al. 1981). Such observations on 

the early increase in the monocyte/macrophage numbers have not been made in the context of 

lung inflammation. This could be either due to the primary focus of previous studies on 

monocyte/macrophage  increase in the late phase of inflammation (Doherty et al. 1988;  Li et al. 

1998;  Yamamoto et al. 1998) or because most of the investigators have used bronchoalveolar 

lavage (BAL) to assess migration of inflammatory cells into inflamed lungs (Fillion et al. 2001;  

Maus et al. 2002b;  Ulich et al. 1991;  Yamamoto et al. 1998). Although BAL is an useful tool to 

assess migration of inflammatory cells into the lungs, it does not account for inflammatory cells 

that are present in the septum which includes cells in the microvasculature and interstitial space 

(Li et al. 1998). Since monocytes/macrophages in inflamed lungs, irrespective of their location, 

can significantly contribute to inflammation by producing cytokines and free oxygen radicals 

(Elias et al. 1985a;  Elias et al. 1985b;  Li et al. 1998;  Maus et al. 2002a), it is important to 

assess the total number of monocytes/macrophages accumulated in the lung instead of examining 

only those which migrate into the airspace. Therefore, I decided to examine the pattern of total 

monocyte/macrophage population up to 36 hours post-LPS treatment in the lung. 

 MCP-1, a CC chemokine, is a major chemoattractant for monocytes and is produced by 

various cells including neutrophils (Burn et al. 1994;  Sakanashi et al. 1994;  van Coillie et al. 

1999). There is evidence that neutrophils regulate the monocyte increase in the late phase of C5a 

and LPS induced lung inflammation in rabbits and mice, respectively (Doherty et al. 1988;  Maus 

et al. 2002b). It is also suggested that MCP-1 release by neutrophils could possibly play a role in 

late monocyte/macrophage increase in inflamed lungs (Yamamoto et al. 1998). But there is no 

direct evidence to show that neutrophils are the major source of MCP-1 in the lung. Therefore, I 

wanted to assess the role of neutrophils on MCP-1 concentration and its effect on 
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monocyte/macrophage numbers in inflamed lungs. To address these questions, I conducted an in 

vivo quantitative study in rats and evaluated increase in total monocytes/macrophage numbers, 

without making a distinction between alveolar, interstitial and microvascular, in inflamed lungs. 

Then, I investigated the role of neutrophils in relation to MCP-1 expression in 

monocytes/macrophage increase in acute lung inflammation. The data show an early, in addition 

to previously established late, increase in monocytes/macrophage numbers. The data also shows 

that neutrophil depletion inhibits both early as well as the late increase in monocyte/macrophage 

numbers without affecting concentrations of MCP-1 in the lung.  

6.3. Materials and methods 

6.3.1. Rats and treatment groups 

 The experimental protocols were approved by the University of Saskatchewan Committee 

on Animal Care Assurance and experiments were conducted according to the Canadian Council 

on Animal Care Guidelines. Specific pathogen-free, ten-week-old, male Sprague-Dawley rats 

were procured from Charles River laboratories, Canada. Rats were maintained in the animal care 

unit and were acclimatized for a period of one week. Rats were randomly divided into eight 

groups of five each. 

6.3.2. Acute lung inflammation 

 Rats were anaesthetized by intraperitoneal administration of xylazine (20 mg/kg) and 

ketamine (100 mg/kg). Trachea was exposed surgically and endotoxin-free saline (Sigma, 

St.Louis MO, USA) or E. coli LPS (250 µg; serotype 0128:B12; Sigma, St.Louis MO, USA) was 

instilled intratracheally. Animals were euthanized at 1, 3, 6, 12, 24, 30 and 36 hours (n = 5 each) 

post-treatment. Control animals (n = 5) were euthanized at 6 hours post saline treatment.  

6.3.3. Tissue collection and processing  

 Described in Section 3.3.4. 

6.3.4. Immunohistology  

 Procedure is described under Section 3.3.6. Tissue sections were stained using rat 

monocyte/macrophage (1:75; ED-1, Serotec Inc. NC, USA), rat MCP-1 (1:300; Torrey Pines 
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Biolabs, Inc. TX, USA), E. coli-LPS (1:300, Cedarlane Laboratories Limited, ON, Canada) and 

HRP-conjugated antibodies (1:100; Dako cytomation, ON, Canada).  

6.3.5. Quantification of monocytes/macrophages and neutrophils  

 Neutrophils were counted in hematoxylin and eosin (H&E) stained lung sections while 

monocytes/macrophages were counted in ED-1 immunostained lung sections. I did not use 

immunohistochemistry for identifying neutrophils as these cells are easily identifiable by their 

morphology. Cells were counted in 10 high power fields (100× objective)/section from each of 

the six lung pieces from every rat. Area of the field was calculated using a stage micrometer 

(Tissue area: 0.025 mm2/field, 0.25 mm2/section, 1.5 mm2/rat). The fields for counting the cells 

were randomly selected and those fields containing larger blood vessels, bronchioles and larger 

airways were excluded (Mizgerd et al. 1997).  

6.3.6. Immunoelectron microscopy  

 The procedure is described in Section 3.3.8. Sections were labeled using ED-1(1:50), 

MCP-1(1:250) and 15 nm gold-conjugated secondary antibodies (1:100).  

6.3.7. Induction of neutropenia and lung inflammation 

 Eight rats were given anti-neutrophil antibody (0.3 ml/100 g; intraperitoneal; Catalogue 

number AIA51140; Accurate Chemicals, NY, USA) (Riedemann et al. 2004;  Sir et al. 2000). 

Differential counts were performed on peripheral blood samples before and after the treatment to 

confirm the induction of neutropenia (Sir et al. 2000). Before antibody treatment the differential 

count of neutrophil in peripheral blood was 12.65±2.3 % (mean±SD). After 24 hours of the 

antibody treatment the neutrophil counts declined to 0% in six rats and 1% in two rats. After 24 

hours of anti-neutrophil antibody treatment, rats were anaesthetized to instill 250 µg of E. coli-

LPS intratracheally followed by euthanasia at 3 hours (n=4) or 24 hours (n=4) after the treatment. 

Tissues were collected and processed for light microscopy, immunohistochemistry and ELISA.  

6.3.8. Quantification of MCP-1 in lung homogenates 

 Purified anti-rat MCP-1 (clone C4) and biotinylated anti-rat MCP-1 (clone B4) and 

recombinant rat MCP-1 were purchased from BD Biosciences, ON, Canada. Lung samples were 

homogenized in HBSS (0.1 g/ml) containing protease inhibitor cocktail (100 µl/10 ml; Sigma-
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Aldrich Co, MO, USA).  Microtiter plates (Immulon 4 HBX, VWR CAN LAB, AB, Canada) 

were coated with 50 µl of purified anti-rat MCP-1 antibody (10 µg/ml) and incubated at 4°C 

overnight. After 12 hours, plates were washed with PBS containing 0.05%-Tween (PBST) before 

incubating with 200 µl of blocking buffer (1% BSA in PBS) for one hour at 37°C. Plates were 

washed 5 times with PBST and incubated with 100 µl standard or samples in duplicates for two 

hours at 37°C. After adding 100 µl of biotinylated anti-rat MCP-1 antibody (2 µg/ml) diluted in 

blocking buffer with Tween, plate was incubated at 37°C for an hour. This was followed by 

incubation with streptavidin-HRP (1:2500 in PBS; DAKO A/S, Denmark) for 30 minutes at 

37°C. The reaction was visualized using TMB substrate (Mandel Scientific, ON, Canada) and 

reaction was stopped using 50 µl of 1M sulfuric acid, followed by reading at 450 nm.  

6.3.9. Statistical analyses  

 All values are presented as mean±SE, unless otherwise mentioned. Differences between 

two groups were tested using independent-samples t-test and more than two groups were 

compared using one-way analysis of variance with Fisher’s LSD for post hoc comparisons. 

Statistical significance was accepted at P<0.05. 

6.4. Results  

6.4.1. Monocyte/macrophage and neutrophil kinetics in acute lung inflammation  

 Monocyte/macrophage and neutrophil counts were performed in sections stained with 

ED-1 antibody, which recognizes both monocytes and macrophages (Figure 6.1A) and H&E, 

respectively. ED-1 positive cells in control animals consisted of alveolar macrophages and few 

monocytes in the septum (Figure 6.1B). Inflamed lungs, however, showed increased numbers of 

monocytes/macrophages in the lungs (Figures 6.1C and D). Electron microscopy confirmed that 

at 1 hour and 3 hours of LPS treatment most of the septal cells were monocytes and were in the 

septal microvessels (Figure 6.1E).  

 Quantitative analyses showed elevated numbers of monocytes/macrophages at 1 hour 

(20.16±1.01; P=0.053), 3 hours (22.66±2.32; P=0.019), 6 hours (23.77±1.48; P=0.012) and 12 

hours (23.9±2.19; P=0.011) post-LPS challenge compared to the controls (9.25±0.89; Figure 2); 

however, there were no differences between these post-LPS treatment time points. Second 

increase in monocyte/macrophage numbers occurred at 24 hours (38.23±6.97; P<0.001) 30 hours 
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(38.72±4.21; P<0.001) and 36 hours (46.21±6.79; P<0.001) compared to controls (Figure 6.2). In 

contrast to monocytes/macrophages, neutrophils in the lungs increased steadily till 24 hours 

compared to the control (6 hours: 26.30±5.33, P=0.027; 12 hours: 38.00±7.42, P=0.001; and 24 

hours: 57.14, P<0.001) followed by a decline at 30 hours (33.36±5.08; P=0.019) and 36 hours 

(35.33±4.24; P=0.031) compared to 24 hours (Figure 6.2).  

6.4.2. Effect of neutropenia on number of monocytes/macrophages in lungs  

 I determined the role of neutrophils in the early as well as the late increase of 

monocytes/macrophages by provoking acute lung inflammation in neutropenic rats. The antibody 

reduced the differential count of neutrophils in peripheral blood from 12.65±2.3% (mean±SD) 

before the treatment to 0% in six rats and 1% in two rats at 24 hours after the treatment. The 

antibody used in our experiment has been shown not to affect the monocyte and alveolar 

macrophage numbers in rats (Snipes et al. 1995).  Lungs from neutropenic rats demonstrated a 

reduction in monocyte/macrophage numbers at 3 hours and 24 hours post-LPS administration 

compared to non-neutropenic time-matched LPS-challenged rats (Figures 6.3 A-C; 22.66±2.32 

v/s 11.92 ± 0.46, P= 0.001 and 38.23±6.97 v/s 12.19 ± 2.25, P= 0.015, respectively). 

Immunohistology for the LPS showed staining in the alveolar epithelium, macrophages, 

bronchiolar epithelium and smooth muscle cells (Figure 6.3D) and ruled out the possibility that 

reduction in monocyte/macrophage numbers is due to improper instillation of LPS.  

6.4.3. MCP-1 expression and concentrations in lung  

 To obtain an insight into implications of MCP-1 as a downstream signal in neutrophil-

dependent monocyte/macrophage increase, I first confirmed expression of MCP-1 in neutrophils 

using immunohistochemistry (Figure 6.4A) and immunoelectronmicroscopy (Figure 6.4B). 

MCP-1 staining was observed in alveolar septa as well as neutrophils in the septum. Lung 

sections stained as the controls for immunohistology (data not shown) or immunoelectron 

microscopy showed no staining (Figure 6.4C). Next, I determined MCP-1 concentrations in lung 

homogenates from non-neutropenic and neutropenic rats at 3 and 24 hours post-LPS treatment 

(Figure 6.4D and 6.4E). I chose 3 and 24 hours post-LPS intervals because significant increases 

in monocyte/macrophage numbers occurred at these times points (Figures 6.1 and 6.2). 

Compared to saline treated controls (126.19 ± 46.97 pg/ml), MCP-1 concentrations increased at 3 

hours (1260 ± 46.08 pg/ml; P<0.001) and 24 hours (1201 ± 195.16 pg/ml; P<0.001) post-LPS 
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treatment in non-neutropenic LPS-treated rat lungs (Figure 6.4D). However, there were no 

differences in MCP-1 concentrations at 3 hours and 24 hours time points (P = 0.717). MCP-1 

concentrations were also similar between LPS-challenged non-neutropenic and neutropenic rats 

at 3 hours (1260.18 ± 46.08 pg/ml v/s 1269.31± 190.35 pg/ml; P = 0.822) and 24 hours (1201.86 

± 195.16 pg/ml v/s 815 ± 263.11 pg/ml; P= 0.304) post-treatment (Figure 6.4E).  
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Figure 6. 1. Monocyte/macrophage increase in acute lung inflammation.  

Monocytes/macrophages were identified using a monoclonal antibody, ED1. Staining with an 
isotype matched immunoglobulin did not show any reaction (A). Compared to saline treated 
controls (B), monocyte numbers appeared to increase at 3 hours post-LPS-treatment (C). The 
increase in monocyte numbers was much higher at 24 hours post-LPS-treatment (D). E. Electron 
microscopic observations showed that the early increase in the monocyte/macrophage numbers 
were mainly due to the presence of monocytes (arrows) mainly in the lung microvasculature. 
Magnification- A-D:×400; E: ×1600 
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Figure 6. 2. Monocyte/macrophage and neutrophil kinetics in acute lung inflammation.   

Number of monocytes/macrophages and neutrophils in lungs at various time points after LPS 
treatment are shown. Increase in monocyte/macrophage numbers was biphasic; the early increase 
was observed at 3 hours post-LPS-treatment and the late increase occurred at 24 hours post-LPS-
treatment. Neutrophils increased from 6 hours to 24 hours followed by a decline at 30 and 36 
hours post-LPS treatment.   For monocytes/macrophages, time points from 3 hours to 36 hours 
are different from control; 1 hour, 3 hours, 6 hours and 12 hours are not different; 24 hours, 30 
hours and 36 hours are different from 12 hours. For neutrophils, 6 hours to 36 hours time points 
are different from controls; 30 hours and 36 hours are different from 24 hours. 
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Figure 6. 3. Monocyte/macrophage kinetics in non-neutropenic and neutropenic rat lungs. 

 Monocyte/macrophage numbers in the neutropenic rat lungs at 3 hours (A) and 24 hours post-
LPS-treatment (B) appeared to be less compared to non-neutropenic rat lungs (compare with 
Figures 1C and D). Quantification of monocyte/macrophage numbers showed a significantly 
lower number of monocytes in neutropenic rat lungs (C). D: The LPS localization using anti-LPS 
antibody in the bronchial epithelium, smooth muscle cells and alveolar epithelium confirmed 
proper instillation of LPS. Inset: staining with an isotype-matched immunoglobulin showed no 
reaction. Magnification- A, B and D: ×400 
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Figure 6. 4. MCP-1 expression and concentrations in lung. 

 A. At 3 hours post-treatment, MCP-1 expression was present in the neutrophils (arrowheads). B. 
Immunoelectron microscopy confirmed the presence of MCP-1 in neutrophils. C. Lung section 
stained with only secondary antibody lacked any labeling and ruled out non-specific binding (N: 
neutrophil; AE: alveolar epithelium; E: microvascular endothelium; AS: alveolar space; Arrows 
indicate gold particles labeled for MCP-1). D and E show concentration of MCP-1 in lung 
homogenates. Compared to controls, the concentrations of MCP-1 in lung homogenates were 
increased at 3 and 24 hours post-treatment. But there was no difference between 3 and 24 hours 
time points (D).  E).  Similar concentrations of MCP-1 in neutropenic rats compared to non-
neutropenic rats at both 3- and 24 hours after LPS treatment. Magnification- A:×400 and 
inset:×1,000; B:×18,000; C:×13,000 
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6.5. Discussion  
 In this manuscript, I report an early increase in monocyte/macrophage numbers in acute 

lung inflammation. The data further demonstrate that neutrophil depletion inhibits both early as 

well as the late increase of monocytes/macrophages without affecting MCP-1 concentrations in 

inflamed lungs.  

 First, I wanted to know if there is an early increase in monocyte/macrophage numbers in 

inflamed lungs, as observed in peritonitis and dermatitis (Henderson et al. 2003;  Issekutz and 

Issekutz. 1993;  Issekutz et al. 1981). For this I undertook a detailed quantification of 

monocyte/macrophage numbers in normal and inflamed lungs. This became necessary because of 

lack of data on in situ quantification of monocytes/macrophages in inflamed lungs. Most of the 

previous studies have used only BAL to quantify cells such as mononuclear phagocytes and 

neutrophils in normal and inflamed lungs (Fillion et al. 2001;  Maus et al. 2002b;  Ulich et al. 

1991;  Yamamoto et al. 1998). Despite usefulness of BAL analyses in evaluation of cells that 

have migrated into the air spaces, it does not provide information on the inflammatory cells 

present in the septa (Li et al. 1998). For example, recent data convincingly showed that although 

bromo-deoxyuridine labeled monocytes disappeared from the peripheral blood into alveolar septa 

within 1 hour of their infusion, an increase in their numbers in BAL was observed after 48 hours 

(Goto et al. 2004). Therefore, BAL may not capture early increase in monocyte/macrophage 

numbers in the septum. Because intravascular monocytes/macrophages can influence the course 

of lung inflammation, it is important to undertake direct in situ quantification of all the 

monocytes/macrophages in unlavaged lungs.  

 These experiments resulted in an observation of an early increase in ED-1 positive 

monocyte/macrophage numbers in inflamed lungs. Previously, the early increase of 

monocytes/macrophages may have been missed due to reliance on BAL analyses or the studies’ 

primary focus on the late, post-neutrophilic increase of monocytes/macrophages (Doherty et al. 

1988;  Fillion et al. 2001;  Li et al. 1998;  Maus et al. 2002b;  Ulich et al. 1991;  Yamamoto et al. 

1998). The early increase in the cell numbers could be either due to increased recruitment of 

monocytes or due to local proliferation of macrophages (van oud Alblas and van Furth. 1979). 

Local proliferation of macrophages could be one of the pathways, mainly in chronic lung 

inflammation (Bitterman et al. 1984) and such an event is very unlikely at 3 hours after the LPS 

stimulation (van oud Alblas and van Furth. 1979), time at which I observed an increase in 
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monocyte/macrophage numbers. The electron microscopic observations showed that the early 

increase in ED-1 cells was largely due to the monocytes present in septal microvessels, which 

may be a prelude to their migration into the interstitium and alveolar spaces. I counted ED-1 cells 

without making a distinction between the alveolar, microvascular and the interstitial because both 

macrophages and monocytes, whether present in the alveolar space or interstitium or 

microvasculature can influence the inflammatory process by producing free oxygen radicals and 

cytokines (Elias et al. 1985a;  Elias et al. 1985b;  Li et al. 1998;  Maus et al. 2002a). 

Furthermore, monocytes are the source of renewal of pulmonary macrophages (van oud Alblas 

and van Furth. 1979) and produce more cytokines, such as IL-1β, than alveolar macrophages 

(Elias et al. 1985a). Therefore, an early increase in monocytes/macrophages in inflamed lungs 

may significantly impact the course of inflammation.  

 Next, I addressed the role of neutrophils in relation to MCP-1 expression in the early as 

well as the late phase of monocyte/macrophage recruitment by inducing lung inflammation in 

neutropenic rats.  The data confirms the previously demonstrated role of neutrophils in the late 

phase of monocyte/macrophage increase in lung (Doherty et al. 1988;  Maus et al. 2002b). 

Because early recruitment of monocytes/macrophages in lung inflammation has not been reported 

so far, the importance of neutrophils in this early monocyte/macrophage increase in the lung 

remains unexplored. Now, my experiments provide the data to show that neutrophil depletion 

blocks early increase in monocyte/macrophage numbers in inflamed lungs. Although neutropenia 

inhibited early increase in monocyte/macrophage in inflamed lungs, at 3 hours, the non-

neutropenic LPS-challenged rats had very few neutrophils in their lungs. Therefore, the data 

suggest that even fewer numbers of neutrophils may mediate the early increase of 

monocyte/macrophage numbers and underscores the complexity of cellular and molecular 

interactions in the recruitment of monocytes/macrophages in lung inflammation. Interestingly, 

inhibition of monocyte/macrophage recruitment in neutropenic animals was not accompanied by 

expected suppression of MCP-1 expression. Consistent with previous observations, my 

observation with light and electron immunocytochemistry showed MCP-1 in neutrophils (Burn et 

al. 1994;  Sakanashi et al. 1994;  van Coillie et al. 1999). Because neutrophil depletion did not 

alter MCP-1 concentrations in inflamed lungs, these cells may not be major contributors of MCP-

1. An intriguing fact remains that elevated concentrations of MCP-1 were not accompanied by an 

increase in numbers of monocytes/macrophages in inflamed lungs of neutropenic rats. At this 
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stage, I do not have an explanation for this apparent discord between MCP-1 expression and lack 

of monocyte/macrophage recruitment in inflamed lungs. One of the possibilities may be that 

neutrophil depletion alters the production of other mediators of inflammation such as IL-1β, IL-8, 

fibronectin and elastin, which participate in monocyte/macrophage sequestration (Abraham. 

2003;  Doherty et al. 1990;  Fillion et al. 2001;  Gerszten et al. 1999;  Parsey et al. 1998;  Senior 

et al. 1980;  Yamamoto et al. 1998). Another explanation could be that an interaction between 

neutrophils and MCP-1 is required to signal monocyte/macrophage increases in inflamed lungs. 

Nevertheless, the data show significance of neutrophils as well as complexity of cellular and 

molecular interactions in the recruitment of monocytes/macrophages in inflamed lungs.  

 Despite novel observations on the early increase of monocyte/macrophage increase in 

acute lung inflammation, there are certain limitations to this study. First, I did not study the 

functional implication of early monocyte/macrophage increase. Next, I observed that even with 

increased MCP-1 concentration, monocyte/macrophage increase does not occur in the absence of 

neutrophils. Neither my study nor previous literatures offer any explanation about the possible 

mechanism.  Since monocytes/macrophages are capable of influencing the inflammatory process, 

further studies including MCP-1 blocking in neutropenic animals are warranted to establish the 

functional significance of early increase in monocyte/macrophage numbers and to identify the 

complex interaction between neutrophils and MCP-1. Lastly, it will be important to explore, if 

neutrophil depletion alters expression of any other monocyte/macrophage chemoattractants.
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CHAPTER 7: GENERAL DISCUSSION AND FUTURE DIRECTIONS 
 
 
 The overall objective of my experiments was to understand the mechanisms of neutrophil 

recruitment into the lungs and contribution of neutrophils to the inflammatory process. 

Specifically, I set out to understand the role of integrin αvβ3 in neutrophil migration, understand 

the modulation of expression of TLR4 and the role of neutrophils in monocyte recruitment in 

acute lung inflammation (Figure 2.1).  

 

1) First, I evaluated the role integrin αvβ3 as a molecule mediating integrin β2-independent 

neutrophil migration in the lungs (Chapters 3 & 4). I chose S. pneumoniae for my experiment, 

because this organism is known to induce integrin β2-independent neutrophil migration in lungs 

(Doerschuk et al. 1990) and is a clinically important pathogen (Finn and Jenkinson. 2006;  

Kadioglu and Andrew. 2004). In the first experiment (Chapter 3) I compared expression of 

integrin subunits αv and β3 on neutrophils in response to E. coli and S. pneumoniae,  known 

inducers of integrin β2-dependent and –independent pathways, respectively (Doerschuk et al. 

1990). I chose to study individual subunits αv and β3 instead of the heterodimer αvβ3 because, 

both the subunits are required for the functioning of the heterodimer and understanding one 

subunit will indirectly indicate the function of the heterodimer (Horton. 1997) . My experiment 

led to interesting observations that the expression of the integrin subunits is reduced in response 

to E. coli whereas the expression was unaltered in S. pneumoniae infection. This implied that 

integrin αvβ3 might have a role in S. pneumoniae induced neutrophil recruitment. But mere 

expression of integrin expression on neutrophils is not the proof of function. Therefore, I decided 

to evaluate the function of integrin αvβ3 by focusing on integrin subunit β3 in mice. I focused 

selectively on β3 because, unlike promiscuity of αv, it dimerizes only with αv.  Fortunately, 

integrin β3
-/- mice and the function blocking antibodies were available. The data from antibody 

blocking and the knock out mice studies show that integrin subunit β3 and therefore, integrin αvβ3 

is not critical for S. pneumoniae induced neutrophil recruitment in the lungs. 
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2) While search for the molecule mediating integrin β2-independent pathway still continues, my 

experiments make a significant contribution in the area of neutrophil recruitment by ruling out of 

the role of integrin αvβ3. My experiments along with the previous studies (Doerschuk et al. 1990;  

Mizgerd et al. 1996;  Ridger et al. 2001;  Tasaka et al. 2002) rule out the roles of all possible 

integrins that are expressed on neutrophils, in their recruitment in response to S. pneumoniae. My 

experiments rule out the requirements of integrin αvβ3 in the interactions of neutrophils with both 

endothelium and extracellular matrix. This creates a challenge to identify molecules involved in 

the neutrophil recruitment in conditions not regulated by β2 integrins. In this situation we can 

think of few other possibilities. Many, instead of one single integrins might be involved in the 

neutrophil recruitment. Therefore, blocking multiple molecules may be more rewarding than the 

reductionist approach taken by me. Because of the complexity involved in blocking many 

molecules, we can also try to dampen some of the signaling molecules driving the inflammatory 

process. For example, molecules such as TLR4 and lipopolysaccharide binding protein are 

known to play important roles in innate immunity against S. pneumonia (Paterson and Mitchell. 

2006). More understanding on these might help us to understand mechanisms that regulate the 

neutrophil recruitment in S. pneumoniae induced pneumonia. Another possibility could be to 

evaluate the role of several other molecules such as PECAM-1, JAM and CD99 in the context of 

lung inflammation. Since these molecules are essential for transendothelial migration (Britta 

Engelhardt. 2004;  Muller. 2001), we could probably regulate neutrophil recruitment in response 

to multiple pathogens by interfering with one single molecule.   

 

3) During evaluation of integrin subunit β3’s role using function blocking antibody and isotype 

matched antibodies, I observed reduced neutrophil recruitment in response to immunoglobulin 

(both isotype and β3 antibody) treatment. While we need to interpret the finding with caution, it is 

exciting to consider future studies evaluating the mechanisms and effect of immunoglobulin 

treatment on lung inflammation in response to variety of inflammatory stimuli. It gains more 

importance in the light of recent finding that immunoglobulins interfere with adhesion of 

neutrophils onto the endothelium (Gill et al. 2005). A good way to start will be to evaluate the 

adhesion of neutrophils onto pulmonary microvascular endothelial cells in vitro, using different 

stimuli and immunoglobulin treatments.  
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4) Another novel observation was localization of integrins in the nucleus (Chapter 3) of 

neutrophils and endothelial cells. There are only two other reports on the nuclear localization of 

the integrins (Merono et al. 2002;  Miller et al. 1987). Because of the integrin’s ability to bind 

with many proteins, it will be interesting to see if they play a role in transporting some of the 

proteins into the nucleus. On the other hand, they might directly regulate gene expression and 

nuclear architecture. However, it is difficult to predict the function of these molecules unless we 

explore the proteins with which these molecules are interacting. In vitro experiments such as 

immunoprecipitation of integrins from cytoplasmic and nuclear fractions will help us to answer 

some of these questions. 

 

5) In addition to the integrins, TLR4 has been shown to regulate neutrophil recruitment in the 

lung (Andonegui et al. 2003;  Hollingsworth et al. 2005). But, there was no information available 

on the pattern of expression of TLR4 in lung inflammation, specifically at different times after 

the induction of inflammation. My experiments (Chapter 5) revealed that TLR4 expression is 

increased at 6 hours, the time of neutrophil increase, and reduced at 12-36 hours, the time of a 

decline in neutrophil migration, after the LPS treatment (Ulich et al. 1991). Thus, the expression 

pattern observed in my experiments supports the previous observations that TLR4 plays a role in 

neutrophil recruitment. This opens an exiting opportunity to think about therapeutic strategies to 

modulate TLR4 in inflammatory situations. One might argue that modulating TLR4 expression 

may interfere clearance of bacteria from the lung, but recent findings suggested that it may not be 

the case (Lee et al. 2005). 

 

6) While understanding the expression of TLR4 in lung inflammation, I also observed 

localization of TLR4 and LPS in the nucleus. Although nuclear localization of LPS has been 

reported previously (Kang et al. 1990;  Kang et al. 1992;  Risco et al. 1991;  Singh and Atwal. 

1997), my study is the first to localize TLR4 in nucleus of various lung cells in vivo. Although, 

localization of LPS in the nucleus has been known for more than 25 years (Kang et al. 1990) and 

there is an evidence to its ability to bind with nuclear histone (Hampton et al. 1988), the function 

of LPS in the nucleus is not seriously examined. It was proposed that LPS in the nucleus might 

regulate the transcriptional activity (Kang et al. 1990;  Kang et al. 1992;  Risco et al. 1991). 

However, after the ability of TLR4 to recognize LPS and initiate signaling events was recognized 
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(Medzhitov et al. 1997), not much has been addressed on the localization of LPS. It is important 

and interesting to understand the molecules involved in transport of these molecules into the 

nucleus. Equally important will be to test if both TLR4 and LPS in the nucleus initiate anti-

inflammatory signals to control the inflammation. Immunoprecipitation and electrophoretic 

mobility shift assays on nuclear fractions could provide important answers to these questions.  

  

7) The other interesting observation in my experiments was the presence of two fractions of 

TLR4. One fraction was similar to the regular TLR4 in terms of molecular weight, while the 

other fraction was of lower molecular weight. Previously, a naturally occurring soluble form of 

TLR4 has been identified and a recombinant protein without transmembrane and cytoplasmic 

domain has been generated (Hyakushima et al. 2004;  Iwami et al. 2000). Both of these variants 

of TLR4 have been shown to suppress TLR4 mediated signaling. In this regard, it is important to 

further characterize the lower molecular weight TLR4 observed in my experiments. It might have 

a role similar to other soluble forms reported and could probably be a potential mechanism 

involved in the regulation of inflammatory process. 

 

8) My last objective was to address the mechanism of neutrophil dependent 

monocyte/macrophage recruitment in the lung. Specifically, I wanted to test if MCP-1 produced 

by neutrophils is the mechanism regulating neutrophil dependent monocyte/macrophage 

recruitment in lungs. Although, neutrophils expressed MCP-1, they were not the major source as 

depleting neutrophils did not affect the MCP-1 levels. However, my experiments confirmed the 

existence of neutrophil dependent monocyte recruitment in the lungs showing the critical role of 

neutrophils in regulating inflammatory process in the lung. Thus, we still do not understand the 

mechanism of monocyte/macrophage recruitment regulated by neutrophils and it is possible that 

other chemokines might be involved in regulating this mechanism. Also, I made an observation 

that monocyte/macrophage number increases in the lungs very early in the inflammatory process. 

Since monocytes/macrophages can significantly modulate the inflammatory process, functional 

significance of early recruitment of these cells in the inflammatory process needs to be addressed. 
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To conclude, my experiments furthered the understanding on the leukocyte recruitment in lung 

inflammation. In the process, my experiments also raised some important questions that are 

discussed above (depicted in Figure 7.1).  
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Figure 7. 1. What did my experiments contribute to the understanding of acute lung inflammation?  

The questions asked before the experiments are in red. The answers to those questions, obtained from my experiments, are in blue. The 
questions presented in the black are some of many questions that my experiments have raised. 
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