
THE ROLE OF RGD-ROSETTE NANOTUBES IN MIGRATION  

AND APOPTOSIS OF BOVINE NEUTROPHILS 

 

 

 

 

 

A Thesis Submitted to the College of Graduate Studies and Research 

in Partial Fulfillment of the Requirements for the Degree of Master of Science 

in the Department of Veterinary Biomedical Sciences 

University of Saskatchewan 

Saskatoon 

 

 

 

By 

Le Minh Hong Anh 

 

 

 

 

 

© Copyright Le Minh Hong Anh, December 2008. All rights reserved.



  

 i 

  

 

  

 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate de-

gree from the University of Saskatchewan, I agree that the Libraries of this University 

may make it freely available for inspection. I further agree that permission for copying of 

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by 

the professor or professors who supervise my thesis work or, in thesis absence, by the 

Head of the Department or the Dean of the College in which my thesis work was done. It 

is understood that any copying or publication or use of this thesis or parts thereof for fi-

nancial gain shall not be allowed without my written permission. It is also understood 

that due recognition shall be given to me and to the University of Saskatchewan in any 

scholarly use which may be made of any material in my thesis. 

 

Requests for permission to copy or to make other use of material in this thesis in whole 

or part should be addressed to: 

 

Head of the Department of Veterinary Biomedical Sciences 

Western College of Veterinary Medicine 

52 Campus Drive 

University of Saskatchewan 

Saskatoon, Saskatchewan 

S7N 5B4 Canada 



  

 ii 

  

 

  

 

ABSTRACT 

Bovine respiratory disease complex is the most common disease that causes sig-

nificant economic loss, typically in feedlot cattle. Current treatment methods are focused 

on reducing inflammatory responses, control of airway reactivity and improvement of 

pulmonary functions without potential side effects. Neutrophils are the key contributors 

in acute lung inflammation. However, activated neutrophils live longer and cause exces-

sive tissue damage upon migration into lungs. Therefore, modulation of their migration 

and lifespan are attractive approaches in treatment strategies of bovine respiratory dis-

ease. Nanotechnology holds significant potential to design new compounds by our ability 

to manipulate at the nanoscale. Helical rosette nanotubes are a class of novel, biologi-

cally inspired, water soluble and metal-free nanotubes. I used helical rosette nanotubes 

conjugated to arginine-glycine-aspartic acid (RGD-RNT) to study their effects on neu-

trophil chemotaxis, cell signaling and apoptosis. Bovine neutrophils exposed to 5% 

RGD-RNT reduced their migration in response to fMLP (formyl-Methionyl-Leucyl-

Phenylalanine), compared to the non-treated group (P<0.001). This inhibitory effect was 

the same as that of groups treated with ERK1/2 inhibitor (UO126) and p38 MAPK in-

hibitor (SB239063). In addition, the phosphorylated ERK1/2 and p38 MAPK for the first 

time were quantified by sandwich ELISA to elucidate the mechanism of neutrophil mi-

gration. The phosphorylation of both the ERK1/2 and p38 was inhibited at 5 minutes by 

RGD-rosette nanotubes (P<0.05). Furthermore, integrin αvβ3 is possibly involved in mi-

gration of bovine neutrophils. Moreover, RGD-RNT did not induce apoptosis of bovine 

neutrophils which was inversed by pre-exposing them to LPS for 30 minutes (P<0.001). 
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These experiments provide the first evidence that RGD-rosette nanotubes suppress phos-

phorylation of ERK1/2 and p38 MAPK and inhibit chemotaxis of bovine neutrophils. 
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1. INTRODUCTION  

1.1. Bovine respiratory disease 

Bovine respiratory disease  complex (BRD) is the most common disease that 

causes significant economic loss, typically in feedlot cattle [1]. It is documented that the 

incidence of BRD in feedlot cattle varies from 4.6 to 43.8% in the United States from 

1987 to 2001. Importantly, the number of calves observed with BRD drastically increases 

during the early days of their entry into the feedlot. The BRD complex accounts for 

lower average daily gain, increases in cost of treatment, mortality and culling rate [2].  

Bovine respiratory disease is caused by multiple pathogens including viruses (bo-

vine respiratory syncytial virus, BRSV; infectious bovine rhinotracheitis, IBR; parainflu-

enza-3 virus, PI-3; bovine viral diarrhea, BVD), bacteria (Pasteurella multocida, Mann-

heimia (Pasteurella) haemolytica, Haemophilus somnus) and mycoplasma spp. Many 

other risk factors contribute to progression of bovine respiratory disease. These factors 

include the environment (temperature, humidity, weather changes and dust particles) 

management (stress resulting from nutritional changes, weaning, shipping, vaccination, 

ventilation and stock density) and immunological background [2, 3]. 

Among these infectious agents, Mannheimia haemolytica is the major cause of 

acute pneumonia, also called Shipping Fever, in cattle [4, 5]. It is estimated to cause 

losses as high as one billion dollars a year to North American beef cattle industry [6]. M. 

haemolytica resides in the upper part of ruminant respiratory tract as an opportunist 

which causes acute pulmonary infection when the host immune system is suppressed by 

other factors. Infected cattle show typical clinical signs of BRD including fever, nasal 
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discharges, coughing, dyspnea, distress along with less appetite and weight loss. The in-

fection with M. haemolytica results in rapid infiltration of neutrophils into alveoli to-

gether with fibrin and protein in the exudates. M. haemolytica components such as 

lipopolysaccharide (LPS) and leukotoxin in cooperation with neutrophil release of in-

flammatory factors cause damage to pulmonary parenchyma and alveolar epithelial cells 

[4, 5].  

Additionally, lungs of cattle have a specific structure which limits their ability to 

resolve pulmonary diseases. Ruminants have less physiological gas exchange capacity 

but greater airflow rate and greater total lung volume for basal breathing than other ani-

mals. Small gas exchange capacity may lower the level of oxygen in the lungs, especially 

when the alveoli are obliterated by edema fluid or exudates. High ventilatory activity for 

compensation would be detrimental when cattle inhale contaminated air with infectious, 

noxious or airborne materials. Extensive interlobular septa in the lungs and interalveolar 

pores reduce the extent of alveolar expansion and collateral ventilation. These features 

predispose cattle to respiratory diseases [4, 7]. 

Bovine respiratory disease remains a major concern despite advances in genetic 

selection, vaccination, the use of antibiotics and anti-inflammatory drugs and other syn-

ergistic interventions. The thrust of current treatment modalities is to reduce inflamma-

tory responses, control of airway reactivity and improvement of pulmonary functions 

without potential side effects [1].  
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1.2. Roles of neutrophils in acute lung inflammation 

Neutrophils are the key contributors in acute lung inflammation [8]. The migra-

tion of activated neutrophils into the lungs as a result of increased alveolar capillary per-

meability along with production of a wide variety of inflammatory mediators contribute 

to elimination of invading pathogens. However, intensive and excessive neutrophil se-

questration in response to stimuli can exacerbate the inflammatory condition [4].  

The role of neutrophils in acute lung injury has been extensively studied in hu-

mans and animal models such as mice, hamsters and rabbits [8-12]. Neutrophil depletion 

prior to inoculation with M. haemolytica inhibits development of pneumonic lesions and 

protects calves against acute lung injury [13]. Elimination of neutrophils by antibodies 

against them significantly reduces endotoxemia- or hemorrhage-induced lung injury in 

mice [10]. During inflammation, neutrophils are activated by inflammatory mediators. 

These activated neutrophils generate a large amount of oxidants such as reactive oxygen 

(ROS) and nitrogen (RNS) species by the phagocyte NADPH oxidase and nitric oxide 

synthase (NOS); proteinases and peptides such as serine proteases and defensins. These 

products act as antimicrobial agents in the phagolysosome but are harmful to the host 

cells when released extracellularly [12, 14]. Apart from contribution to the redox signal-

ing and microbial clearance, increased ROS impair oxidant-antioxidant balance leading 

to oxidative stress and consequent oxidative damage to pulmonary endothelial cells [15]. 

It is reported that neutrophil elastase triggers lung epithelial barrier dysfunction and in-

crease alveolar edema by inducing apoptosis of these cells [12]. Due to deleterious con-

sequences of excessive infiltration of neutrophils into alveolar spaces, modulation of 
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their migration is an attractive approach among treatment strategies of bovine respiratory 

disease.  

 

1.3. Cell migration  

Cell migration is an integrated process, which plays a key role in single-celled as 

well as in higher organisms. This process contributes to a large variety of biological phe-

nomena starting from gastrulation and remaining during lifetime in normal physiological 

and pathological conditions as well. Migration governs fertilization, embryonic morpho-

genesis, contributes to cellular differentiation and specialization. Cell migration takes 

part in tissue repair, wound healing and regeneration, which involves migration of cells 

such as fibroblast, endothelial and epithelial cells. Remarkably, leukocyte migration in 

inflammation has been noted to modulate immune functions and contribute to the host 

defense by quickly moving from the circulation to target tissues in order to engulf patho-

gens, their debris and infected cells. However, dysregulated migration potentiates disease 

development in various chronic inflammatory diseases such as rheumatoid arthritis, mul-

tiple sclerosis and in tumor metastasis which give rise to many concerns. Therefore, 

many studies have been done to understand the mechanism of cell migration and to apply 

the understanding for the development of better therapeutics [16, 17]. 

Cell movement involves many factors including properties of migratory cells and 

their stimuli in the extracellular environment [16]. Cells are able to respond to various 

environmental changes that lead to different types of movements named chemotaxis, ne-

crotaxis, galvanotaxis and haptotaxis [18]. Among these, chemotaxis is noticeably men-
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tioned in leukocyte recruitment during inflammation. Chemotaxis is a cellular migration 

directed by gradient of chemoattractants in the extracellular environment [19]. It is dis-

tinguished from random migration by the presence of chemical stimulants.  

 

1.3.1. Neutrophil directional migration (neutrophil chemotaxis)  

Polymorphonuclear leukocytes (neutrophils; PMNs) play a crucial role as cellular 

components in the host innate immune system. They emigrate from peripheral blood to 

sites of infection in response to chemotactic factors derived from the host or invading 

pathogens [20]. The neutrophil migration is regulated by various proteins and signaling 

pathways and includes many steps such as rolling, tethering and adhering to the endothe-

lium of postcapillary venules and finally crossing the endothelial barrier to reach ex-

travascular tissues [21].  

Neutrophils express various receptors for chemotactic stimuli which evoke neu-

trophil migration. Chemoattractants for neutrophils are derived from bacteria such as 

formylated bacterial peptides, fMLP (formyl-Methionyl-Leucyl-Phenylalanine), or from 

the host cells including endothelial, epithelial cells, macrophages, monocytes, lympho-

cytes, platelets, parenchymal cells and neutrophils. Chemoattractants not only attract 

neutrophils to move along their gradient but activate these cells to express adhesive pro-

teins for migratory process, as well. Additionally, complement protein C5a and fMLP 

elicit potent activities such as cytoskeletal changes, degranulation, and oxidative burst 

[22].  
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1.3.2. Mechanism of neutrophil chemotaxis  

Neutrophil chemotaxis is initiated by gradient sensing of chemoattractants in the 

environment followed by transmission of the signals across the plasma membrane 

through the binding of chemoattractants and their receptors expressed on neutrophils [19]. 

The receptor occupancy is dependent on chemotactic concentration [23]. Neutrophils 

sense chemoattractants via tyrosine kinase receptors and G protein-coupled (seven-

transmembrane-helix) receptors [24-26]. It is interesting that neutrophils are able to am-

plify their responses to very little chemoattractant gradient at the early steps of gradient 

sensing. This is followed by polarization in which neutrophils turn into an asymmetric 

shape where the anterior and posterior parts of the cells differ [23, 27].  

To migrate, cells must generate intracellular forces that lead them along the 

chemotactic gradient. The cytoskeletal asymmetry enables neutrophils to localize the fil-

amentous actin (F-actin) at the leading edge of cells that leads to membrane protrusion 

and drives them to move forward. There are two structures which are rich in F-actin and 

responsible for protrusion: lamellipodia and filopodia [16, 17, 25]. While actin filaments 

form branching network in lamellipodia, they cluster into rope-like bundles in filopodia. 

Both types of polymerization are mediated by actin-binding proteins which play an im-

portant role to stabilize the actin polymer structure against the membrane. Of the many 

different signaling pathways proposed in regulation of the cytoskeleton, the Rho family 

GTPases have shown their critical role in many cell types. They consist of Rac, Cdc42 

and Rho. GTPases are GTP binding proteins which are activated by GDP and GTP re-

lease dependent on guanine nucleotide-exchange factors (GEFs) [27]. Rac and Cdc42 
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play the central parts in actin polymerization and pseudopod formation at the leading 

edge of migrating neutrophils [28]. The actin polymerization and membrane protrusion 

generate tractional force in the direction of chemotactic gradient [16, 17].  

At the back and sides of migrating cells, myosin II filaments play a crucial role in 

preventing the extension of pseudopods from the back of the cell and mediating contrac-

tion of the tail in order to translocate their cell bodies forward and detach the adhesion 

sites [24, 28]. The contractile force results from actin-myosin interaction and may in-

volve other mechanisms related to contraction of filaments connecting to adhesive sites 

and polarized sensitivity [16, 17].  

While actin filaments are believed to provide protrusive and contractile forces, 

other cytoskeletal components, microtubules, are responsible for movement of cellular 

organelles and proteins towards the correct orientation and maintenance of cell polarity 

[17]. However, microtubules show opposite effects on moving neutrophils to those in 

other cell types.  Microtubules suppress neutrophil polarity in different ways which are 

related to Rho activation [29].  

In support of membrane extension, adhesion structures are formed on neutrophils 

in order to facilitate their attachment to the substratum. They include selectins and in-

tegrins. Selectins are transmembrane glycoproteins including E-selectin, P-selectin and 

L-selectin, which are expressed by endothelial cells, platelets and neutrophils respec-

tively. P-selectin is also expressed on endothelial cells. The family of selectins is respon-

sible for initial tethering and rolling of neutrophils along the endothelium of the blood 

vessels [22, 30-32]. Membrane proteins including integrins are recruited towards the cell 

rim. Intracellular proteins such as talin bind to the cytoplasmic tails of integrins contrib-
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uting to integrin activation. Once activated, integrins serve as a bridge connecting the 

extracellular matrix to the intracellular cytoskeleton. Adhesion is a critical step during 

cell migration through which cells gain traction to maintain motility [16, 17, 33]. 

 

1.3.3. Integrins 

Integrins are heterodimeric transmembrane receptors expressed on a variety of 

cells in many animal species. They are comprised of two subunits α and β with an ex-

tracellular globular head, a long transmembrane region and a short cytosolic tail. There 

are 18 α (α1-α11, αE, αV, αIIb, αL, αM, αX, and αD) and 8 β (β1-β8) subunits that 

form 24 heterodimers in mammals [34, 35]. Integrins contribute to various fundamental 

cellular functions during development through linkage of cells and the extracellular ma-

trix to facilitate cell adhesion, direct cells to their targets and transmit signals that medi-

ate the growth, differentiation and survival of cells and tissues [33, 36].  

 

1.3.3.1. The role of integrin signaling in neutrophil migration 

Integrins play an important role in neutrophil migration, especially in the lung 

where neutrophil trafficking is substantially different from that in the systemic circula-

tion. The number of neutrophils in alveolar capillaries is more than in systemic vessels 

while the role of selectins in neutrophil migration is less pronounced [37]. In contrast to 

the venular migration of neutrophils in organs such as liver, the capillaries are the site of 

neutrophil migration in the lung. Another difference is the contribution of the β2 integrin 

family [22]. They are 4 members including αLβ2 (CD11a/CD18; LFA-1: lymphocyte 
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function-associated antigen-1), αMβ2 (CD11b/CD18; Mac-1: macrophage-1 molecules), 

αXβ2 (CD11c/CD18) and αDβ2 (CD11d/CD18) [35, 38]. Neutrophil emigration into the 

lungs is mediated by two pathways with or without β2 integrin involvement dependent 

on various stimuli. Neutrophil migration is β2 integrin dependent when it is induced by E. 

coli and their endotoxin (LPS), Pseudomonas aeruginosa, immunoglobulin immune 

complex, interleukin-1 (IL1) and phorbol myristate acetate (PMA). In contrast, neutro-

phil migration into inflamed lungs can occur independently of β2 integrins in response to 

Gram-positive bacteria such as Streptococcus pneumoniae, group B Streptococcus, 

Staphylococcus aureus, hydrochloric acid, hyperoxia and complement protein C5a [22, 

39, 40]. However, β2 integrin regulation of neutrophil migration can be altered not only 

by stimuli but inflammatory mediators produced by these stimuli and status of inflamma-

tion as well [41]. β2 integrins bind to their ligands, ICAM-1 (intercellular adhesion 

molecule), on activated endothelial cells following exposure to stimuli which induce β2 

integrin-dependent neutrophil migration [39]. β2 integrins associated with their ligands 

mediate firm adhesion and transendothelial migration of neutrophils in response to 

chemoattractants. It is also believed that β2 integrins function in neutrophil attachment to 

the extracellular matrix [31]. 

Integrins, in addition to direct role in neutrophil migration, also initiate cell sig-

naling. Integrin signaling occurs in two ways which are termed inside-out and outside-in. 

Integrins are normally expressed on the cell surface in inactive states with the bent con-

formation which prevents them from binding to their ligands. The low affinity can be 

changed through a process called inside-out signaling. This is initiated by changes of in-
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tracellular signals following the cell activation induced by other factors such as chemoki-

nes and cytokines. In response to the signaling events, the cytoplasmic tails of integrins 

are separated from the ectodomains leading to unfolded conformation. The extended con-

formation of integrins makes them activated and induces high affinity for their ligands 

[33, 42, 43]. Conformational changes in the integrin length in turn initiate the outside-in 

signaling pathways. Unlike the inside-out signaling, the outside-in signaling requires col-

laboration with enzymes, proteins which regulate and/or assemble in adhesion structures. 

The outside-in signaling is initiated by integrin ligation with their extracellular ligands 

[44]. Following conformational changes, the integrins transmit signals through trans-

membrane domains to cytoplasmic domains resulting in various subsequent responses. 

Integrins influence cell migration in many species during development [36]. The 

activation of integrins with separated cytoplasmic tails initiates their interaction with the 

actin cytoskeleton through binding to proteins in the cytoplasm. Talin has a prominent 

place among a complex of proteins that interact with integrins. Talin connects the β cy-

toplasmic domain of integrins to cytoskeleton at the beginning of adhesive complex  

formation to obtain higher affinity for their extracellular ligands [45]. Once bound to the 

extracellular matrix, integrins are clustered on the cell surface, which promotes more as-

sociation with the cytoskeleton. In turn, it is possible that more integrin clustering and 

reorganization of cytoskeleton and the matrix results in cell migration [46].  

Integrin activation influences downstream signaling pathways that contribute to 

cell movement including focal adhesion kinase (FAK) and Ras/Rho GTPases. The FAK 

pathway is activated upon the integrin-ligand interaction. FAK, which is required for fo-

cal adhesions, is able to bind to integrin cytoplasmic domains, interact with cytoskeletal 
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proteins, talin and paxillin. The activation of FAK is further induced by interaction with 

Src kinase and through phosphorylation of two cytoskeletal proteins paxillin and tensin. 

Together with recruitment of other proteins, FAK activation is essential for cytoskeletal 

organization and mitogen-activated protein kinase (MAPK) activation [33, 45, 46]. Both 

Ras and Rho GTPases act upstream and downstream of integrin activation. These small 

GTPases, for example Rac and Cdc42, promote integrin clustering and this leads to their 

further activation and translocation on the cell membrane [47].  

 

1.3.3.2. Role of ααααvββββ3 integrin and its specific ligand, RGD peptides, in neutrophil 

migration 

The αvβ3 integrin is one of the integrins involved in neutrophil migration. αvβ3 

is expressed on many cell types including endothelial cells, platelets, smooth muscle cells, 

osteoclasts, tumor cells, monocytes and neutrophils [48, 49]. It has been found in several 

organs of dogs, pigs and cattle such as small intestine, kidneys, liver, skin, spleen, skele-

tal muscle and lungs [50]. In particular, integrin subunits αv and β3 have been shown in 

neutrophils and endothelium of rat acute inflamed lungs [51]. Ligation of αvβ3 integrin 

initiates various intracellular signaling pathways which are involved in physiological and 

pathological processes [49]. The heterodimer αvβ3 expressed on neutrophils is essential 

for their interactions with extracellular matrix (ECM) molecules and their interstitial mo-

bililty [52, 53].  

The αvβ3 integrin has been found at the leading edge of neutrophils migrating on 

vitronectin [54]. The integrin, however, is recruited and endocytosed at the rear end then 



  

 12 

  

 

  

 

recycled to the front of the cells along with increase in cytosolic calcium concentration. 

These findings are consistent with the fact that integrin internalization is required for cell 

migration [55]. αvβ3 integrin constantly forms stationary focal adhesions to the substra-

tum at the cell anterior within the zone of transient integrin clustering. The integrin in 

low density forms a tight bond to the cytoskeleton, which potentiates formation of lamel-

lipodium. Rapid dispersal of integrins at the rear end of integrin clustering zone provides 

high density integrin focal adhesions and is regulated by depolymerization and collapse 

of the lamellipodial actin filaments. When the cell moves forward, the integrin in high 

density focal adhesions lose their firm cytoskeletal interactions at the cell posterior, start 

sliding and finally detach the substratum [56]. 

The αvβ3 ligands, RGD-containing peptides, are present in various extracellular 

matrix proteins such as vitronectin, fibronectin, fibrinogen and other proteins. The RGD 

(arginine-glycine-aspartic acid) sequence is recognized by integrin αvβ3 and other in-

tegrin heterodimers. However, the crystal structures of the extracellular domain of αvβ3 

and ligand specificity contribute to their relatively high affinity binding. The ligand ar-

ginine binds to the αv subunit in a shallow groove while the aspartic acid side chain links 

the β3 subunit in the MIDAS region (metal ion-dependent adhesion site) through the 

metal ion. The two-site binding mode forms a bridge between the two subunits αv and 

β3 at the centre of the ligand-binding pocket. The glycine residue in the interface be-

tween the two subunits creates the hydrophobic interactions. The distance of arginine and 

aspartic acid side chains in the RGD motif that determines the high affinity to integrin 

αvβ3 is regulated by the ring closure, flanking amino acid groups and backbone confor-
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mation. Furthermore, cyclization of RGD peptides also protects them against susceptibil-

ity to chemical degradation and improves their binding properties to the integrin [49, 57-

60]. 

The aspartic acid of the cyclic RGD peptide plays an important role in formation 

of contact with both MIDAS and LIMBS (the ligand-associated metal binding site) ions 

during equilibration. Water in medium also contributes to the binding process with two 

molecules at the adjacent MIDAS and one at MIDAS ions. The coordination of these wa-

ter molecules prevents access of other free water molecules to the tight coordination of 

the MIDAS ion and RGD loop aspartic acid. Additionally, electrostatic interactions be-

tween divalent cations and the positively charged arginine or negatively charged aspartic 

acid in the RGD sequence have a critical role in stabilization of the RGD-integrin αvβ3 

complex [57, 58]. These structural insights into ligand recognition by integrins are essen-

tial for improvement of RGD-targeting approaches.  

Importantly, there is evident that integrins impact cell migration through regula-

tion of the extracellular signal regulated protein kinase (ERK) signaling (see details of 

signaling pathways in the following section). Ligation of integrins enhances autophos-

phorylation and activation of receptor tyrosine kinases (RTKs) which are required for the 

ERK activation. Furthermore, integrin engagement is essential for cytoplasmic cascades 

and translocation of the active ERK from the cytoplasm to the nucleus to modulate tran-

scription which then induces and prolongs cell mobility consequent upon sustained 

MAPK activation and regulation of other activities such as cytoskeletal dynamics, organ-

elle reorganization and integrin signaling [61-63].  
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1.3.4. MAPKs (mitogen-activated protein kinases) and neutrophil chemotaxis 

Mitogen-activated protein kinases (MAPKs) are a family of kinases which phos-

phorylate substrates on the serine/threonine residues. They are involved in regulation of a 

wide variety of biological and pathological processes in vertebrates through contribution 

to cellular responses to various extracellular stimuli. These processes include cell differ-

entiation, proliferation, transcription, metabolism, survival and motility [64]. MAPKs are 

differentiated by distinct motifs in their activation loops, consisting of extracellular-

signal-regulated protein kinase (ERK/MAPK) with Thr-Glu-Tyr motif, p38 with Thr-

Ala-Tyr motif, and Jun N-terminus kinase (JNK) with Thr-Pro-Tyr motif [65].  

 

1.3.4.1. The ERK1/2 MAPK signaling 

Two isoforms of the ERK are ERK1 (p44) and ERK2 (p42) that play critical roles 

in cell migration. They are activated through the engagement of integrins such as integrin 

αvβ3 with their ligands and the binding of many growth factors and cytokines to tyrosine 

kinase receptors at the plasma membrane. These result in Ras activation followed by  

Raf-1 recruitment and subsequent phosphorylation of MEK1/2 leading to activation of   

ERK1/2 [61, 65]. The ERK1/2 can also be activated by Ras-independent pathways, 

which are involved in the Rho family GTPases, Rac and Cdc42, and their downstream 

effector PAK [62].  

Activated ERK1/2 directly modulates cell migration through various pathways. 

Apart from the role in transcription, the ERK1/2 enables regulation of cytoskeletal dy-

namics and coordination with focal adhesion and microtubules in migrating cells [62, 66]. 
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They phosphorylate myosin light chain kinase (MLCK), which enhances phosphorylation 

of myosin light chains (MLC) and consequently promotes actin polymerization and ac-

tin-myosin interaction. These events generate contractile force essential for cell migra-

tion [61, 65, 66]. Phosphorylated myosin II is important for the assembly of protein vin-

culin and zyxin at focal adhesions and in preventing membrane protrusion at the cell rim 

[67].  

The ERK1/2 regulates cell motility through adhesion complex. They phosphory-

late focal adhesion kinase (FAK), cytoskeletal protein, paxillin, and Ca
2+
-activated pro-

teolytic enzymes, calpains. These are essential keys for assembly and disassembly of ad-

hesion complex during migration [65]. In addition, active ERK1 in association with 

αvβ3 integrin is essential for effective function of this integrin during cell spreading on 

vitronectin [68]. Figure 1.1 summarizes linking of integrin ligation with intracellular sig-

naling pathways that regulate neutrophil migration.  

 

1.3.4.2. The p38 MAPK signaling 

There are four isoforms of the p38 MAPK comprised of p38α, p38β, p38γ, and 

p38δ. The p38 is stimulated by many growth factors, cytokines and chemoattractants 

such as fMLP. Active p38 downstream activates MAPKAPK2/3 followed by phosphory-

lation of heat shock protein 27 (HSP-27) leading to reorganization of actin. The p38 also 

regulates adhesion dynamics through activation of paxillin and caldesmon [65, 69].  
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Figure 1.1. Integrin- and MAPK-mediated signaling pathways in cell migration. 

Cell migration is initiated by polarization. Membrane protrusion at the front is mediated 

by the Rho family through assembly and disassembly of actin cytoskeleton. The Arp2/3 

complex which is formed by regulation of activated Rac and Cdc42 facilitates branching 

of actin filaments causing membrane ruffles. Actin polymerization is regulated by two 

proteins with opposing effects: profilin (assembly) and cofilin (disassembly). Protrusion 

is enhanced by the formation of focal adhesion dynamics, a result of integrin engagement 

to the extracellular matrix (ECM). Integrins bridge the actin filament network and the 

extracellular matrix through cytoskeletal proteins, talin and paxillin. Ligation of integrins 
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enhances autophosphorylation and activation of receptor tyrosine kinases (RTKs) which 

are required for the ERK activation. Binding of growth factors to RTK activates Ras re-

sulting in recruitment and activation of the Raf family at the cell membrane. Activated 

Raf phosphorylates the MEK1/2 kinase and downstream activates the ERK1/2. Active 

ERK1/2 in turn activates focal adhesion kinases (FAK) needed for detachment of cells 

from the ECM and moving forward. Another way of activation of ERK1/2 during adhe-

sion is PAK, a downstream effector of Rac and Cdc42. At the back and sides of migrat-

ing cells, myosin II prevents the extension of pseudopods from the back and mediates 

contractile force for detachment. Myosin II activity is regulated by myosin light chain 

kinase (MLCK), which is phosphorylated by activated ERK, Rho kinase (ROCK) and 

MLC phosphatase [17, 62, 65]. 
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1.4. Neutrophil apoptosis 

After migrating to sites of infection and killing pathogens, neutrophils undergo 

spontaneous apoptosis. Apoptotic neutrophils are phagocytosed by macrophages in order 

to protect the host from noxious products of activated neutrophils such as proteolytic en-

zymes and reactive oxygen species [70]. 

Apoptosis is a process called programmed cell death, in which unwanted cells are 

genetically determined to be eliminated during development and homeostasis [71]. 

Apoptosis is characterized by morphological changes including cell shrinkage with con-

densed cytoplasm, rearrangement of cytoskeleton, chromatin condensation, nuclear 

membrane collapse, plasma membrane blebbing and formation of apoptotic bodies [72, 

73].  

 

1.4.1. Mechanism of apoptosis 

Apoptosis is a complicated process modulated by two signaling pathways shown 

in figure 1.2: the extrinsic mediated by death receptors and the intrinsic dependent on 

mitochondria [73]. Extrinsic (death receptor-mediated) pathway is initiated by the bind-

ing of Fas death receptor to its ligand FasL. This leads to recruitment of adaptor protein 

FADD in association with procaspase-8 or procaspase-10 to form a death-induced signal-

ing complex (DISC) at the plasma membrane. Caspase-8, activated by procaspase-8 

autoactivation, directly activates caspase-3 and caspase-7, starting the execution phase of 

apoptosis [73, 74]. 

Intrinsic (mitochondrial-dependent) pathway is induced by various stimuli such 
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as toxins, radiation and free radicals. These stimuli cause changes in mitochondrial 

membrane resulting in release of proapoptotic proteins from the intermembrane space. 

The apoptotic protease activating factor-1 (Apaf-1) is activated by the release of cyto-

chrome c from the mitochondria into the cytosol. The Apaf-1 binds to procaspase-9 in 

the presence of ATP to form the apoptosome for activation of caspase-9. Activated cas-

pase-9 in turn downstream activates caspase-3, caspase-6 and caspase-7 [75, 76]. 

Both extrinsic and intrinsic signaling pathways end at the execution phase with 

the activation of execution caspases like caspase-3, caspase-6 and caspase-7. These cas-

pases subsequently activate other proteases for degradation of nuclear and cytoskeletal 

proteins and substrate cleavage. Consequently, morphological features specific to apop-

totic cells are revealed [73]. 
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Figure 1.2. The two main apoptotic pathways: extrinsic and intrinsic [72, 73, 75]. 
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1.5. Nanotechnology 

Nanotechnology can be defined as a technology that develops and exploits the 

novel properties of materials at the nanometer scale [77]. According to the US National 

Nanotechnology Initiative (NNI), nanotechnology is also defined as “research and devel-

opment aimed at understanding and working with – seeing, measuring and manipulating 

– matter at the atomic, molecular and supramolecular levels. This correlates to length 

scales of roughly 1 to 100 nanometers. At this scale, the physical, chemical and biologi-

cal properties of materials differ fundamentally and often unexpectedly from those of the 

corresponding bulk materials” [78].  

 

1.5.1. Nanomaterials  

Nanomaterials are generic terms for nanosized materials, which have at least one 

dimension from 1 to 100 nm [79]. Nanomaterials exist in the natural environment for 

many years as byproducts of minerals, biological processes under influences of weather-

ing, changes in climate and the earth crust [80, 81]. However, anthropogenic nanoparti-

cles are increasingly introduced into the environment as a result of fuel combustion, ur-

banization, industrial emission and engineered nanoparticle production [82].  

Nanomaterials exhibit large surface area compared to small size that gives them 

high reactivity or functionalization with other molecules [83]. Nanomaterials with exclu-

sive properties are widely used in many products such as sunscreen, composite materials, 

paints, stains in textile industry and medical devices [79]. With enormous potential and 

great demand in various fields, nanomaterials are designed and functionalized with dif-
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ferent materials that make them more specific and desirable for intentional approaches in 

electronics, energy and material production, optics, environmental purposes, medical di-

agnostics and therapeutics, and medicine [84]. 

 

1.5.2. Carbon nanotubes 

Nanotubes together with nanofibers and nanowires are considered as nanomateri-

als with two dimensions in nanometric scale [84]. Carbon nanotubes (CNT) were first 

discovered in the 1950s for industrial application but they were not studied until 1991 

[85]. CNT including diamond and graphite are members of the family of fullerenes, the 

third allotropes of carbon. CNT are composed of sheets of carbon atoms (called gra-

phene) in a honeycomb-lattice structure that roll up into a cylinder with the two ends 

closed. CNT are categorized into two common types due to their structures: single-

walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT). SWNT 

consist of one cylindrical sheet of graphene with diameters from 0.4 to 2 nm and lengths 

approximately in the range of 20 to 1000 nm. MWNT are comprised of several concen-

tric grapheme layers with 1.4 – 100 nm diameters and lengths up to several µm [86-88]. 

CNT are functionalized by additional reactions or with surfactants, polymers and 

biopolymers that make them more soluble in solutions. Functionalization of CNT helps 

to improve their solubility and to reduce their toxicity for biomedical approaches. How-

ever, toxicity of CNT is dependent on types of CNT, methods and conjugated groups 

used for functionalization [87, 88].  
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1.5.3. Helical rosette nanotubes 

Helical rosette nanotubes (HRN) are a new class of nanotubes which are self-

assembled in water from low molecular weight synthetic modules [89, 90]. The forma-

tion of HRN is characterized by the self-assembly of the G^C motif, which mimics the 

complementary hydrogen bonding array of guanine and cytosine of DNA. G^C self-

assembles into a six-membered supermacrocycle called rosette due to spatial arrange-

ment of asymmetric hydrogen-bond network under physiological conditions. The rosettes 

are stabilized by 18 H-bonds and hydrophobic interactions that in turn self-organize into 

a helical stack with an approximate outer diameter of 3.5 nm, a 1.1 nm core and up to 

several µm in length (Figure 1.3) [89, 91-93].  

Owing to biologically inspired features, rosette nanotubes have specific properties 

upon synthesis. Functional groups covalently attached to the G^C motif are exposed on 

the tube surface that give helical rosette nanotubes physical and chemical properties suit-

able for a variety of applications [93]. The stability of self-assembling tubes is dependent 

on several factors including density of functional groups, electrostatics (net charge), hy-

drophobic and stacking interactions [89]. The thermal stability of nanotubes is increased 

with more H-bonds per synthetic module and the organization of twin rosettes before 

building up a helical stack. Furthermore, the aggregation state of rosette nanotubes is pH 

dependent. At the low pH, these tubes are well dispersed while they form superhelices at 

the high pH [94]. This ability of helical rosette nanotubes to form different structures in 

biological solutions and systems remains unknown and is expected to be modified. 

Together with development of nanobiotechnology, small cyclic peptides are in-
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tensively studied and employed as biological molecules for nanotube functionalization. 

Specificity of binding sites and conformations of peptides give them selective affinity to 

carbon nanotubes [95]. The interaction of nanotubes and peptides provides specific tools 

for biological applications. Because of the critical role of neutrophil migration in in-

flammation and potential biomedical application of rosette nanotubes, we employed heli-

cal rosette nanotubes conjugated with RGD peptides to study bovine neutrophil chemo- 

taxis in vitro.
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Figure 1.3. Helical rosette nanotubes. Modules (A) initially self-assemble into rosettes 

(B) which then organize into a helical stack with 1.1 nm core and a diameter of 3.5 nm. 
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2. HYPOTHESES 

• RGD-rosette nanotubes (RGD-RNT) inhibit fMLP-induced neutrophil chemotaxis 

through binding to integrin αvβ3 and inhibiting activation of the ERK1/2 and p38 

MAPK. 

• RGD-rosette nanotubes induce apoptosis in neutrophils. 

 

3. OBJECTIVES 

• To determine if RGD-rosette nanotubes inhibit neutrophil migration via binding to 

αvβ3 and blockade of ERK1/2 and p38 MAPK. 

• To study the apoptosis in normal and activated neutrophils after exposure to RGD-

rosette nanotubes. 
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4. MATERIALS AND METHODS 

4.1. Isolation of bovine blood neutrophils  

Blood from healthy cattle was collected in vacutainer tubes containing heparin. 

Polymorphonuclear leukocytes (PMN, neutrophils) were isolated by density gradient 

centrifugation with lymphocyte separation media (LSM, MP Biomedicals) after using 

ammonium chloride for erythrocyte lysis [96]. After isolation, neutrophils were sus-

pended in RPMI 1640 medium (Invitrogen) modified with 10% fetal bovine serum (FBS) 

and glutamine. The viability of isolated PMN was assessed immediately by trypan blue 

(Sigma-Aldrich
®
) exclusion using hemacytometer. Cell cytospin preparation was stained 

with Diff-Quik

 and used for differential cell count. PMN viability was greater than 97% 

and their purity was more than 90%.  

 

4.2. Neutrophil migration  

4.2.1. Blocking the ααααvββββ3 integrin by antibody 

Isolated bovine neutrophils were suspended in modified RPMI-1640 medium, 

resting for 1 hour before any treatments. The anti-αvβ3 monoclonal antibody (mAb) spe-

cific to human αvβ3 integrin was purchased from R&D Systems. Neutrophils were incu-

bated with the antibody at the concentration of 1 µg/ml for 1 hour at room temperature 

[97, 98]. The cells were then used for chemotaxis assay.  
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4.2.2. Blocking MAPK by MAPK inhibitors 

Isolated bovine neutrophils were incubated with 20 µM of each MAPK inhibitors, 

either ERK1/2 inhibitor UO126 (Cell Signaling Technology, Inc.) or p38 MAPK inhibi-

tor SB239063 (Calbiochem®), for 1 hour at 37
0
C in humidified air with 5% CO2. As 

UO126 and SB239063 were diluted in DMSO (dimethyl sulfoxide), DMSO was used as 

a negative control. The concentration of DMSO in all treatments was 0.2% (vol/vol) [99]. 

Subsequently, these cells were applied for chemotaxis assay. 

 

4.2.3. Neutrophil chemotaxis assay  

Chemotaxis of bovine neutrophils was assessed in 48-well Boyden chambers. The 

upper and lower parts of the chamber are separated by a 5 µm pore polycarbonate filter 

(Neuro Probe, Inc.) [100]. Neutrophil suspensions (50µl) with or without treatments were 

loaded in triplicate wells for each treatment with 5.10
4
 cells per well. Cells in upper wells 

were allowed to migrate toward chemoattractant fMLP at the concentration of 114 nM in 

lower wells. The assay was conducted at 37
0
C in humidified air with 5% CO2 for 30 

minutes. Non-migrated cells were wiped off the filter. Cells that had migrated and were 

stuck in filter pores were counted following drying and staining the filter with Diff-

Quik

 (Hemacolor stain set, EMD Chemicals). The stained filter was mounted on glass 

slides and cells within filter pores were then counted in 5 random fields under light mi-

croscopy at 400X magnification. Results are presented as the number of migrated neu-

trophils per microscopic field.



4.3. Detection of MAPK phosphorylation 

4.3.1. Neutrophil stimulation with RGD-rosette nanotubes (RGD-RNT) 

Isolated neutrophils were maintained in modified RMPI-1640 before incubation 

with RGD-rosette nanotubes (RGD-RNT; at the concentration of 0.1 µM RGDSK: 2 µM 

K1) in humidified air with 5% CO2 at 37
0
C at different time points at 0, 5, 10, 15, 30 and 

60 minutes. fMLP (5µM) was also used as a positive control to induce phosphorylation 

of MAPK for 1 minute at 37
0
C [101]. Stimulation was stopped by cell sedimentation and 

discarding of supernatants followed by freezing pellets in liquid nitrogen. Subsequently, 

cell pellets were stored at – 80
0
C for later use. 

 

4.3.2. Enzyme linked-immunosorbent assay (ELISA) 

Cellular extracts were prepared by solubilizing pelleted cells at 5 x 10
6
 cells/ml in 

lysis buffer comprised of 1 mM EDTA, 0.5% Triton X-100, 5 mM NaF, 6 M urea, 10 

µg/ml leupeptin, 10 µg/ml pepstatin, 100 µM PMSF, 3 µg/ml aprotinin, 2.5 mM sodium 

pyrophosphate, 1 mM activated sodium orthovanadate in PBS, pH 7.2 – 7.4. The proto-

col is recommended by the manufacturer (R&D Systems, Inc.). After vortex and ice in-

cubation, supernatants were collected. Sample protein concentration was quantified using 

a protein microassay based on the Bradford dye-binding procedure (Bio-Rad). Cell lys-

ates in duplicate for each time points were then used for sandwich ELISA (DuoSet

 IC 

kit, R&D Systems, Inc.) to measure phosphorylated levels of ERK1/2 and p38 MAPK. 

Results are expressed by the amount of phosphorylated ERK1/2 or p38 MAPK (ng) per 

µg of total protein quantified. 
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4.4. Detection of neutrophil apoptosis 

4.4.1. Cell treatments 

Isolated neutrophils at 5 x 10
6
 cells/ml were pre-incubated at 37

0
C in humidified 

air with 5% CO2 with or without LPS (lipopolysaccharide, 1 µg/ml). After 30 minutes, 

LPS was discarded and cells were resuspended in modified RPMI 1640. Cells were then 

treated with 0.1 µM of RGDSK peptide (an Arg-Gly-Asp-Ser-Lys containing peptide, 

Peptides International), 5% RGD-RNT (0.1 µM RGDSK: 2 µM K1) or 10% RGD-RNT 

(0.2 µM RGDSK: 5 µM K1) or modified RPMI 1640 only (control) for 18, 24 and 36 

hours at 37
0
C in humidified air with 5% CO2. Cells were centrifuged at 400g followed by 

the removal of supernatant and snap freezing. The cell pellets were kept at - 80
0
C for 

later use.  

 

4.4.2. Caspase-3 quantification in apoptotic cells 

Pelleted cells were applied for quantitative determination of caspase-3 using cas-

pase-3 colorimetric assay kit (Assay Designs, Inc.). Cell lysates were used for caspase-3 

colorimetric detection. Active caspase-3 in apoptotic cells converses a specific chro-

mogenic substrate from colorless into colored product. The conversion was then meas-

ured kinetically at 405 nm. The activity of caspase-3 in samples was calculated as unit/ml. 

 



  

 31 

  

 

  

 

4.4.3. Flow cytometric detection of apoptosis 

For flow cytometry, the Annexin V-FITC apoptosis detection kit II from BD Bio-

sciences was applied. Similar protocol was also described by Van Oostveldt et al. in 1999 

[102]. Cells after 24 hours of treatments were collected, washed twice with cold PBS 

(phosphate buffer saline). They were then resuspended in 100 µl of 1X Annexin V bind-

ing buffer at the concentration of 1 x 10
6
 cells/ml, following by adding 5 µl of Annexin 

V-FITC and 5 µl of PI (propidium iodide). The cell suspension was vortexed gently and 

incubated at room temperature in dark. Finally, 400 µl of 1X Annexin V binding buffer 

was added and cells were ready for flow cytometric analysis within one hour. Cells un-

stained with Annexin V-FITC and PI are live. Apoptotic cells in the early phase only 

stained with Annexin V-FITC while in the late phase they are stained with both Annexin 

V-FITC and PI. Results are expressed as the percentage of apoptosis. 

 

4.5. Data analysis 

Data was analyzed using SigmaStat® statistical software. All-pairwise compari-

sons were performed followed by analysis of variance (ANOVA) to compare differences 

between treatment groups. Results of at least 3 separate experiments are displayed as 

mean ± standard error of the mean (SEM). Differences are considered statistically sig-

nificant when the probability (P) < 0.05. 
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5. RESULTS  

5.1. Effect of RGD-RNT on neutrophil chemotaxis 

Chemotaxis assays of bovine neutrophils were performed using 48-well Boyden 

chamber. Neutrophils in top of the chamber were allowed to migrate through filter pores 

towards chemoattractant fMLP in the bottom. Migrated cells stuck in the filter pores 

were stained and counted under light microscope. The modified RPMI-1640 was used in 

the bottom chamber to differentiate between directed (positive control) and random 

(negative control) migration. Neutrophils exposed to 5% RGD-RNT showed reduced 

random migration (P<0.01) as well as chemotaxis (P<0.001), compared to the non-

treated group in control settings (Figure 5.2). Following exposure to 5% RGD-RNT for 5 

minutes, neutrophils did not show significant increase in migration in response to 

chemoattractant fMLP. 
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Figure 5.1. Bovine neutrophils isolated from heparinized blood. 
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Figure 5.2. Effect of 5% RGD-RNT on bovine neutrophil chemotaxis.  

Neutrophil migration was determined by counting the number of neutrophils stuck in fil-

ter pores after 30 minutes of chemotaxis assay at 37
0
C in humidified air with 5% CO2. 

Neutrophils significantly reduced migration after exposure to 5% RGD-RNT for 5 min-

utes, compared to non-treated group in control settings. Following exposure to 5% RGD-

RNT for 5 minutes, neutrophils did not show significant increase in migration in re-

sponse to chemoattractant fMLP. Modified RPMI-1640 and fMLP (114nM) in the lower 

chamber were used as negative and positive controls, respectively. Results are displayed 

as mean ± SEM of 3 separate experiments. Significant differences between treatment 

groups are expressed by different letters above bars (P<0.001). 
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5.2. Effect of RGD-RNT on MAPK phosphorylation 

To understand effects of RGD-RNT on neutrophil migration, cells were exposed 

to 5% RGD-RNT at different time points and then their lysates were used to quantify the 

phosphorylated ERK1/2 and p38 MAPK by sandwich ELISA. fMLP was also used as a 

positive control to induce phosphorylation of MAPK. There was a significant difference 

between treatment groups with P<0.001 (the ERK1/2, Figure 5.3) and P<0.01 (p38 

MAPK, Figure 5.4). The phosphorylation of both the ERK1/2 and p38 was inhibited at 5 

minutes (P<0.05) of the RGD-RNT incubation followed by an increase at 10 minutes 

which was then sustained until 60 minutes. 
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Figure 5.3. Phosphorylation of ERK1/2 in bovine neutrophils treated with 5% RGD-

RNT at different time points. Phosphorylation of ERK1/2 was significantly inhibited at 5 

minutes exposure to RGD-RNT. Non-treated and treated neutrophils with 5 µM of fMLP 

for 1 minute were used as negative and positive controls, respectively. Results of 3 inde-

pendent experiments are represented as mean ± SEM. Significant differences between 

treatment groups are expressed by different letters above bars (P<0.001). 
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Figure 5.4. Phosphorylation of p38 MAPK in bovine neutrophils treated with 5% RGD-

RNT in one hour time course. Phosphorylation of p38 MAPK was significantly inhibited 

at 5 minutes exposure to RGD-RNT. Non-treated and treated neutrophils with 5 µM of 

fMLP for 1 minute were used as negative and positive controls, respectively. Results of 3 

independent experiments are represented as mean ± SEM. Significant differences be-

tween treatment groups are expressed by different letters above bars (P<0.01). 
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Neutrophils were also treated with the ERK1/2 inhibitor (UO126) and p38 inhibi-

tor (SB239063) to assess the involvement of MAPK in their migration. The number of 

migrated neutrophils was significantly diminished (P<0.001) after exposure to these in-

hibitors. Intriguingly, the inhibitory effects of 5% RGD-RNT and MAPK inhibitors on 

neutrophil chemotaxis were not statistically different (Figure 5.5). 



  

 39 

  

 

  

 

 

Figure 5.5. Inhibition of bovine neutrophil chemotaxis induced by 5% RGD-RNT or 

MAPK inhibitors. Neutrophil migration was determined by counting the number of neu-

trophils stuck in filter pores after 30 minutes of chemotaxis assay at 37
0
C in humidified 

air with 5% CO2. Neutrophil migration was significantly diminished after exposure to 5% 

RGD-RNT for 5 minutes or MAPK inhibitors for 1 hour. Modified RPMI-1640 and 

fMLP (114nM) in the lower chamber were used as negative and positive controls, respec-

tively. DMSO (dimethyl sulfoxide), a solvent of MAPK inhibitors, was used as a nega-

tive control. Results of 3 independent experiments are displayed as mean ± SEM. Sig-

nificant differences between treatment groups are expressed by different letters above 

bars (P<0.001). 
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5.3. Involvement of the ααααvββββ3 integrin on bovine neutrophil chemotaxis 

To determine the participation of the αvβ3 integrin in bovine neutrophil migra-

tion, chemotaxis assay was conducted with or without pre-incubation of neutrophils with 

monoclonal antibody (mAb) against the αvβ3 integrin. Migration of neutrophils treated 

with the αvβ3 integrin antibody was increased (P<0.001, Figure 5.6). Exposure of neu-

trophils to 5% RGD-RNT after incubation with the antibody had no effects on neutrophil 

migration in response to fMLP. There were no differences in the number of migrated 

neutrophils between groups with or without 5% RGD-RNT treatment after blocking by 

anti-αvβ3 mAb.  



  

 41 

  

 

  

 

 

Figure 5.6. Effect of blockade of the αvβ3 integrin on bovine neutrophil chemotaxis. 

Neutrophil migration was determined by counting the number of neutrophils stuck in fil-

ter pores after 30 minutes of chemotaxis assay at 37
0
C in humidified air with 5% CO2. 

Neutrophil migration increased significantly after blocking by antibody against αvβ3 in-

tegrin. Exposure to 5% RGD-RNT after blocking the αvβ3 integrin by mAb had no ef-

fects on neutrophil migration to fMLP. Modified RPMI-1640 and fMLP (114nM) in the 

lower chamber were used as negative and positive controls, respectively. Results of 3 

independent experiments are displayed as mean ± SEM. Significant differences between 

treatment groups are expressed by different letters above bars (P<0.001). 
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These results indicate that RGD-RNT at the dosage used inhibited the migration 

of bovine neutrophils. RGD-RNT also inhibited the phosphorylation of the ERK1/2 and 

p38 MAPK. The experiments show an intriguing role for the αvβ3 integrin in neutrophil 

chemotaxis as the migration was increased following neutrophil treatment with the in-

tegrin antibody. The pre-treatment with the antibody also abrogated the anti-migratory 

effect of RGD-RNT, which suggests that both possibly bind to the same protein on the 

neutrophil surface. 



  

 43 

  

 

  

 

5.4. Effects of RGD-RNT on bovine neutrophil apoptosis 

Neutrophils were incubated without (controls) or with RGDSK peptide, 5% 

RGD-RNT or 10% RGD-RNT at different time points 0h, 18h, 24h and 36h. As shown 

in Figure 5.7, caspase-3 activity was increased over time in LPS-stimulated and non-

stimulated neutrophils. However, the activity was not remarkably different over 3 time 

points namely 18h, 24h and 36h by the same inducible agent. The peptide and RGD-

RNTs did not increase caspase-3 activity. But, 10% RGD-RNT significantly induced 

caspase-3 activity compared to the control at 18h (P<0.05). In addition, LPS caused sig-

nificant suppression of caspase-3 activity in all treatments at all time points (P<0.001). 
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Figure 5.7. Effect of RGD-RNT on caspase-3 activity. Neutrophils with or without pre-

exposure to LPS (1µg/ml) were treated with RGDSK, 5% RGD-RNT or 10% RGD-RNT 

for 0h, 18h, 24h and 36h. Cell lysates were used for measurement of caspase-3 activity. 

Results of 3 different experiments are displayed as mean ± SEM. P<0.001 when com-

pared LPS and non-LPS treated groups. 
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The  effects of RGD-RNT and LPS on bovine neutrophil apoptosis was also ex-

amined by flow cytometric analyses of labeling Annexin V-FITC which binds to phos-

phatidylserine expressed on cells undergoing apoptosis. There was no effect of treatment 

with RGDSK peptide, 5% or 10% RGD-RNT on neutrophil apoptosis at 24 hour. How-

ever, apoptosis was markedly suppressed in cells treated with LPS for 30 minutes 

(P<0.001, Figure 5.8). 
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Figure 5.8. The effect of LPS on bovine neutrophil apoptosis at 24 hour in the presence 

of RGD-RNT. The percentage of neutrophil apoptosis is displayed as mean ± SEM of 5 

separate experiments (A). The level of apoptosis was measured by Annexin V-FITC 

staining after 24h incubation without LPS-pretreatment (B) and with LPS-pretreatment 

(C). Significant differences between treatment groups are expressed by different letters 

above bars. 
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These observations indicate that RGDSK peptide and RGD-RNTs did not induce 

apoptosis or changes in caspase-3 activity of bovine neutrophils, except the induction of 

caspase-3 activity by 10% RGD-RNT at 18h.  
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6. DISCUSSION  

6.1. RGD-rosette nanotubes inhibited neutrophil chemotaxis 

Neutrophil migration into sites of infections is a critical component of the host re-

sponse [103]. Activated neutrophils phagocytose and kill bacteria. However, there is 

growing evidence that dysregulated migration of activated neutrophils leads to tissue 

damage which results in morbidity and mortality [104]. This creates a need to exploit our 

understanding of mechanisms of neutrophil migration to develop approaches to fine tune 

their migration into inflamed organs. The motility of neutrophils is governed by integrin 

signaling as a consequence of interactions with their ligands in the environment [61]. In 

this respect, peptides containing RGD motif have been investigated to study cell adhe-

sion and migration due to the recognition of this motif through integrins on the cell sur-

face [105]. Cell migration is influenced by RGD and integrin clustering and their binding 

on the cell surface to form focal adhesions. Integrins have high affinity to RGD peptide 

even with their bent conformation which is considered an inactive conformation for other 

biological ligands [106]. Furthermore, integrins can efficiently bind to RGD ligands 

which are clustered on the surface at low density [107]. The binding of integrins to RGD 

motif causes conformational changes of integrins that in turn regulate integrin affinity to 

ligands and integrin redistribution on the cell membrane [108].  

I conducted these experiments to study the effects of RGD-rosette nanotubes on 

neutrophil migration. The perceived advantage of RGD-nanotubes compared to cyclic 

RGD peptides is that the nanotubes may be highly effective at lower concentrations ow-

ing to their multivalent interactions with the integrins on the neutrophil surfaces. There is 
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some evidence that cyclic RGD peptides conjugated on nanoparticles are more active at 

the lower concentration than their monovalent states as peptides [109]. Helical rosette 

nanotubes have an added advantage of being organic, biologically inspired, water soluble 

and free of metal. 

RGD-rosette nanotubes applied in this study inhibited chemotaxis of bovine neu-

trophils in vitro. The inhibition of human neutrophil migration has been observed when 

neutrophils were treated with flavoridin (FL), an RGD-disintegrin ligand of αvβ3 and 

α5β1 [110, 111]. Integrin ligands are able to trigger opposite effects dependent on their 

states in the extracellular environment. Non-immobilized ligands like RGD peptides act 

as inhibitors of cell adhesion while immobilized ligands promote cell adhesion to the ex-

tracellular matrix [105]. The other interpretation for inhibition of RGD-rosette nanotubes 

on neutrophil chemotaxis is desensitization. It can occur as a result of interactions be-

tween neutrophils and nanotubes. Migrating immune cells need to stop moving when 

they face target cells or invasive particles. Their responses to chemoattractants are desen-

sitized by phosphorylation of chemokine receptors, G protein-coupled receptors (GPCRs) 

resulting from recruitment of G protein-coupled receptor kinases [112, 113]. Neverthe-

less, these are the first data on the anti-chemotactic effects of RGD-rosette nanotubes on 

the migration of bovine neutrophils. 

 

6.2. RGD-rosette nanotubes inhibit the phosphorylation of ERK1/2 and p38 

MAPK 

I studied the activation status of MAPK as one of the possible mechanisms of 
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anti-chemotactic effects of RGD-rosette nanotubes. The binding of integrins and their 

RGD-ligand induces various intracellular signalings [46]. Of note, MAP kinase cascade 

regulates directional cell migration [65]. Activation of FAK (focal adhesion kinase) and 

c-Src is required for the MAPK activation by integrins. In turn, activity of the ERK is 

important for focal adhesion disassembly that leads to cell migration [62]. ERK1/2 has 

been found to modulate cell motility by direct phosphorylation of MLCK (myosin light 

chain kinase), which is required for myosin light chain (MLC) activity resulting in cell 

contraction and movement [114]. Because of the importance of ERK1/2 and p38 MAPK 

activation in neutrophil migration, I focused on these kinases. 

The data from my experiments show significant suppression of the ERK1/2 and 

p38 MAPK activation after addition of RGD-rosette nanotubes to neutrophil suspensions 

for 5 minutes. It has been demonstrated that cell migration on fibrinogen is mediated by 

the αvβ3 integrin through the ERK signaling pathway [115], and cyclic RGD peptides 

are considered as potent and selective antagonist of the αvβ3 integrin [116]. Even though 

the ERK enable direct and rapid regulation of cytoskeletal dynamics in migrating cells, 

integrin ligation is required for induction and persistence of cell migration with regard to 

MAPK regulation [61-63, 66]. Considering the role of MAPK activation in cell migration, 

the reduction in MAPK phosphorylation at 5 minutes by RGD-rosette nanotubes suggests 

that the ERK1/2 and p38 MAPK may be involved in the inhibition of neutrophil chemo-

taxis by RGD-rosette nanotubes. There, however, is a need for further experiments to 

clarify the relationship of RGD-rosette nanotubes induced inhibition of MAPK phos-

phorylation and inhibtion of neutrophil chemotaxis.  
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6.3. Integrin ααααvββββ3 is involved in bovine neutrophil chemotaxis 

In contrast to the inhibitory effect of RGD-rosette nanotubes, the monoclonal an-

tibody (mAb) against αvβ3 integrin increased neutrophil migration in response to fMLP. 

It was expected that blocking with anti-αvβ3 mAb would inhibit the binding of αvβ3 

integrin on neutrophils and RGD peptides on rosettte nanotubes. However, mAb may 

regulate integrin-ligand interactions in different ways. The mAb, which recognizes epi-

topes present in the ligand-occupied sites, LIBS (ligand-induced binding sites), of in-

tegrins can induce conformational changes of integrins leading to ligand binding. Recog-

nition of epitopes in the unoccupied sites, LABS (ligand-attenuated binding sites), con-

versely inhibits ligand binding [117]. On the other hand, the blocking mAb is thought to 

be endocytosed by an integrin-dependent pathway. The mAb together with αvβ3 integrin 

are internalized in lysosomes. As a result, integrins on the cell surface are functionally 

blocked [118]. However, there is strong evidence that αvβ3 integrin is internalized and 

recycled to the leading edge of neutrophils migrating on vitronectin [54].  

It is possible that ligation of the αvβ3 integrin by the antibody may have led to its 

cross-linking and consequent activation of cell signaling pathways resulting in increased 

neutrophil migration [44]. Furthermore, there are various integrins expressed on neutro-

phil surface that participate in cell movement. The activation of one integrin may cross-

activate other integrins on the same cells [119]. Therefore, complete blocking of the 

αvβ3 integrin by the mAb may also induce ligation of other integrins causing cell migra-

tion. Because pre-treatment of neutrophils with the antibody resulted in lack of effects of 

RGD-rosette nanotubes on neutrophil chemotaxis, it appears that both antibody and 
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nanotubes may be binding to the same protein, the αvβ3 integrin.  These data, despite the 

need of more confirmation, implicate the involvement of integrin αvβ3 in neutrophil mi-

gration and RGD-rosette nanotubes may be acting through it.  

 

6.4. Effect of RGD-rosette nanotubes on apoptosis of bovine neutrophils 

The activated neutrophils compared to the normal ones live longer. The activation 

of neutrophils extends their lifespan by inhibiting constitutive apoptosis in normal neu-

trophils [120]. Caspase-3 is one of the critical enzymes involved in the terminal events 

leading to apoptosis [73]. Activation of caspase-3 is induced rapidly in apoptotic granu-

locytes without early mitochondrial changes [121]. Therefore, measurement of caspase-3 

activity is necessary to detect early apoptosis in bovine neutrophils.  

The cyclic RGD peptide is internalized by a fluid-phase endocytosis, which is not 

regulated by integrins [118]. Once getting into the cell, RGD is recognized via RGD-

binding motif on procaspase-3 and some other caspases in the cytosol which then directly 

activates caspase-3 and promotes cell apoptosis [122]. It is consistent with our data that 

caspase-3 activity was increased in neutrophils treated with RGDSK peptide compared to 

the control over 36h time course. However, the activity of caspase-3 in RGDSK-treated 

group was not different from those exposed to RGD-rosette nanotubes. 

Bacterial lipopolysaccharide (LPS) is believed to prolong neutrophil survival and 

hence hinder their constitutive apoptosis [123]. Prolongation of neutrophil survival is 

beneficial for the host resistance and regulation of inflammation; on the other hand, neu-

trophil activation causes more harm to tissues at sites of inflammation as a consequence 
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of production of inflammatory mediators such as reactive oxygen species [124]. There-

fore, it is generally believed that we need to develop molecular approaches to regulate 

the lifespan of activated neutrophils.  

My data show that treatment of bovine neutrophils with LPS for 30 minutes sig-

nificantly suppressed caspase-3 activity in all treatments with or without RGDSK or 

RGD-rosette nanotubes at all time points. Exposure to RGDSK or RGD-rosette nano-

tubes did not induce the activity of caspase-3 except 10% RGD-rosette nanotubes which 

increased caspase-3 activity at 18h.  

Percentage of neutrophil apoptosis at 24h was assessed by flow cytometric 

method using Annexin V and propidium iodide (PI) labeled with flourescein isothiocy-

anate (FITC) [102]. This procedure allows detection of apoptotic neutrophils at the early 

stage by staining with Annexin V, which binds to exposed phosphatidylserine (PS) in the 

outer plasma membrane of apoptotic cells. In addition, staining with PI, a vital dye, is 

able to distinguish cells in the early stage of apoptosis. At 24h, there was no significant 

effects of RGDSK peptide or 5% or 10% RGD-rosette nanotubes on neutrophil apoptosis 

compared to the control. However, significant differences were observed between LPS 

and non-LPS treated groups. This is consistent with many studies showing that LPS in-

hibits apoptosis of neutrophils [125-127]. Delayed apoptosis prolongs neutrophil viabil-

ity and sustains their ability to eradicate pathogens by release of antibacterial factors, 

which in turn cause more tissue damage. On the other hand, LPS induces neutrophil ne-

crosis that increases tissue destruction and persistence of inflammation [128, 129]. In-

deed, LPS pretreatment statistically increased percentage of dead neutrophils while in-

hibited their apoptosis in all treatments at 24h (P<0.001). 
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This study showed that RGDSK peptide and RGD-rosette nanotubes at the con-

centrations used did not induce apoptosis or caspase-3 activity in bovine neutrophils ex-

cept the induction of caspase-3 activity by 10% RGD-rosette nanotubes at 18h. In retro-

spect, I wonder whether using different concentrations of the RGD-rosette nanotubes or  

analyzing neutrophils for apoptosis beyond 36h would have shown effects of the RGD-

rosette nanotubes as these tubes may need more time to manifest their effects in LPS-

treated neutrophils.  
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7. SUMMARY 

The first objective was to determine if RGD-rosette nanotubes inhibit bovine neu-

trophil migration. Incubation of neutrophils with 5% RGD-rosette nanotubes for 5 min-

utes reduced neutrophil chemotaxis to fMLP. This suggests the inhibitory effect of RGD-

rosette nanotubes on bovine neutrophil chemotaxis. 

To further understand molecular effects of RGD-rosette nanotubes on neutrophils, 

I assessed the phosphorylation of the ERK1/2 and p38 MAPK during an hour time course. 

The nanotubes reduced phosphorylation of both ERK1/2 and p38 at 5 minutes, which 

may be one of the mechanisms of action of RGD-rosette nanotubes on neutrophil chemo-

taxis. In addition, RGD-rosette nanotubes may bind to integrin αvβ3 to affect neutrophil 

chemotaxis but more experiments are needed to clarify this aspect.   

Finally, I examine neutrophil apotosis through measurement of caspase-3 activity 

and level of apoptosis. There were no effects of treatments with RGDSK peptide or 

RGD-rosette nanotubes on apoptosis and caspase-3 expression in bovine neutrophils, ex-

cept an increase in caspase-3 activity by 10% RGD-rosette nanotubes at 18h.  
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8. CONCLUSION 

In general, this study provides the first evidence that RGD-rosette nanotubes 

showed their inhibitory effects on bovine neutrophil chemotaxis and phosphorylation of 

the ERK1/2 and p38 MAPK. These bovine phosphorylated proteins, ERK1/2 and p38 

MAPK, were quantified at the first time by capture ELISA. Additionally, blockade of 

anti-αvβ3 resulted in more neutrophil migration which implicates the involvement of in-

tegrin αvβ3 on neutrophil migration. Importantly, RGD-rosette nanotubes at the concen-

trations used in my studies did not induce apoptosis significantly and LPS dramatically 

suppressed the level of bovine neutrophil apoptosis. 
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9. FUTURE STUDIES 

Based on the experiments described in this thesis, the following studies are pro-

posed.  

a. To study the specific role of the αvβ3 integrin in bovine neutrophil migration. 

b. To conduct experiments in vivo to assess effects of the RGD-rosette nano-

tubes on bovine neutrophil migration. 

c. To understand the role of the αvβ3 integrin in bovine neutrophil apoptosis. 

d. To study the long-term effects of higher concentrations of RGD-rosette nano-

tubes on bovine neutrophil apoptosis. 
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