
Data Synchronization in a Network-Volatile Mobile

Ecosystem

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Wen Fu

c©Wen Fu, October/2014. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Today, it is a major issue for mobile applications to maintain a replica state of the server on mobile devices.

This creates the need to keep data on both the server and the mobile. In such cases, when the data changes

on the server, the new state of the data has to be updated on the mobile in order to maintain a consistent

view of the data flow. However, mobile devices communicate over wireless mediums (.e.g., Bluetooth, Wi-Fi,

3.5G/4G, etc.) which can experience intermittent connectivity. The volatility of the network is also influenced

by low-bandwidth. The direct effects of these issues are high latency and inconsistency issues between the

data on the mobile clients and the remote servers. In this work, I present a detail review on the topic of data

synchronization in mobile networks. Then, a generic architecture called MobiQ is proposed which can keep

working in an offline mode to record local modifications and can synchronize with the remote servers when

connectivity is restored. This is achieved through the proposal of an efficient synchronization protocol which

combines different synchronization and replication strategies. Moreover, the MobiQ framework provides a

secured environment to work with data. The implemented architecture is designed and tested in mobile

questionnaire system and the result is encouraging.

ii

Acknowledgements

Foremost, I would like to thank my supervisor, Dr. Ralph Deters for his support, guidance, patience and

financial assistance for my two years of study. Besides my supervisor, I would like to thank the rest of my

thesis committees: Dr. Julita Vassileva, Dr. Eric Neufeld, and Dr. Chris Zhang for their valuable advices.

Also, I would like to thank Ms. Gwen Lancaster, Graduate Correspondent at the Department of Computer

Science, who has been very helpful throughout my study at the University of Saskatchewan. Finally, I would

like to thank my parents, Jianguang and Shengyu, for their love and faith in me.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Problem Definition 3
2.1 Unreliable Wireless Network . 3
2.2 Security Risks . 4
2.3 Research Goal . 5

3 Literature Review 6
3.1 Cloud Computing in Mobile Environments . 6

3.1.1 Cloud Computing . 6
3.1.2 Mobile Computing . 7
3.1.3 Mobile Cloud Computing . 8
3.1.4 Google Cloud Platform . 9

3.2 Web Services . 10
3.2.1 SOAP . 11
3.2.2 REST . 12
3.2.3 SOAP for Mobile . 13
3.2.4 REST for Mobile . 13
3.2.5 Performance Comparison . 14
3.2.6 Summary . 14

3.3 Data Store . 14
3.3.1 ACID . 14
3.3.2 CAP Theorem . 15
3.3.3 BASE . 16
3.3.4 NoSQL (not only SQL) . 17
3.3.5 Difference between NoSQL and SQL . 17
3.3.6 Summary . 18

3.4 Data Synchronization . 18
3.4.1 Data Synchronization Design Pattern . 19
3.4.2 Data Synchronization in Practices . 19

3.5 Data Replication . 20
3.5.1 Replication in Database . 21
3.5.2 Replication Design Patten . 21

3.6 Data Security . 24
3.7 Online Questionnaire System . 24
3.8 Conclusion . 24

iv

4 Design and Architecture 28
4.1 Example Scenario . 29
4.2 Architecture Overview . 33
4.3 Client Side Architecture . 33

4.3.1 Connection Loss . 35
4.3.2 Data Synchronization . 35
4.3.3 Wireless Network Bandwidth . 37
4.3.4 Local Data Security . 37
4.3.5 Transmission Security . 38

4.4 Server Architecture . 38
4.4.1 Anytime Access . 39

5 Implementation of the Mobile Questionnaire System 40
5.1 The mobile client of the mobile questionnaire system . 40

5.1.1 Models of the mobile questionnaire system’s client . 40
5.1.2 Controllers of the mobile questionnaire system’s client 42

5.2 The cloud server of the mobile questionnaire system . 45
5.3 Conclusion . 46

6 Experiments 47
6.1 Experiment Setup . 47
6.2 Offline Capability . 48
6.3 NoSQL and SQL database on mobile devices . 49
6.4 Data Synchronization (DS) . 51
6.5 Performance of the Synchronization Protocol (SP) . 52
6.6 Data Protection (DP) . 54
6.7 Conclusion . 56

7 Summary and Contribution 57

8 Future Works 59

References 61

v

List of Tables

3.1 Categorizes and Lists All the Reviewed Research . 26

6.1 Hardware Specification of iPhone 5s . 47
6.2 Hardware Specification of iPod 5th Generation . 48
6.3 Runtime environment of the server application . 48
6.4 Results of offline capability experiments . 49
6.5 Results of data protection experiments . 55

vi

List of Figures

1.1 The main scenario of a mobile questionnaire system . 1

3.1 The architecture of web service[7] . 10
3.2 The architecture of SOAP based web service[5] . 11
3.3 The architecture of REST based web service[2] . 12
3.4 CAP Theorem[39] . 16
3.5 Two-tier Replication Architecture[11] . 22

4.1 The proposed architecture design of MobiQ . 28
4.2 Administrator in e-Questionnaire system . 30
4.3 Student in e-Questionnaire system . 31
4.4 Professor in e-Questionnaire system . 32
4.5 MVC in e-Questionnaire System . 34
4.6 The synchronization protocol of e-Questionnaire system . 36

6.1 Insert objects into the NoSQL and SQL database of the mobile devices 50
6.2 Update objects into the NoSQL and SQL database of the mobile devices 50
6.3 Delete objects into the NoSQL and SQL database of the mobile devices 51
6.4 Synchronization with 50 question objects . 53
6.5 Synchronization with 100 question objects . 54
6.6 User’s password in the local database . 55

vii

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
BASE Basically Available, Soft state, Eventual consistency
DS Data Synchronization
DP Data Protection
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
NoSQL Not Only Structured Query Language
REST Representational State Transfer
SOAP Simple Object Access Protocol
SP Synchronization Protocol
SQL Structured Query Language

viii

Chapter 1

Introduction

Today, data is typically collected from user inputs and activities through the web. An example is the web-

based questionnaire, which is the process of collecting data through answering electronic sets of questions on

the web [22]. According to Evans and Mathur [9], it was estimated that one third of all types of questionnaires

will be web-based surveys in the USA as of 2006. Furthermore, enterprises are shifting focus to the web since

it has the power to reach vast majority of users. This potential is now being extended to mobile computing,

which is becoming pervasive and ubiquitous.

The advancement in modern mobile devices in terms of storage and support for diverse wireless networks

(e.g., Wi-Fi and 3.5/4G) provides new opportunities for client-server interactions. The new mobile-based

architecture not only inherits design flexibility and real-time access but also improves mobility from the

web-based perspective. This enhances remote accessibility of information on the go without any perceived

delay.

Figure 1.1: The main scenario of a mobile questionnaire system

1

In the Figure1.1, the architectural design of a mobile questionnaire system is illustrated. In order to

clearly explain this concept, I describe the mobile questionnaire scenario. In the Figure1.1, there are several

people at different locations using the mobile questionnaire system through their mobile devices. User1

and User4 use smartphones while User2 and User3 use tablets. All of them directly download specific

questionnaires from the server, locally work with these data, and finally upload results back to the server.

Then, the server processes the uploaded results and stores them into its database. Additionally, there is an

administrator who is responsible for managing the database in this system, so the administrator will create

new questionnaires, update existing questionnaire, delete redundant information and also collect submitted

results from users. The goal is to provide the latest available data to serve requests from clients. Under

the circumstances, this system aims to provide an environment that mobile clients can pull and push data

anywhere at anytime. However, the communication between mobile clients and the server is over the wireless

communication network which is unreliable [20]. Also, the data in the mobile questionnaire system always

contains personal information that need to be highly secured. Therefore, this research proposed a 2-tire

distributed mobile architecture (i.e. client-server) that can enable users to complete their questionnaires

effectively. The proposed system further enables the mobile input to be synchronized efficiently in the

network volatile environment. To achieve this, methodologies such as mobile caching and server side pushing

are adopted to support offline use and the update management and propagation.

The remaining sections of the thesis are structured as follows:

• Chapter 2 discuss the definition of problems

• Chapter 3 reviews the related technologies and researches

• Chapter 4 explain detail architecture and design

• Chapter 5 explain detail implementation

• Chapter 6 discuses the experiment and results

• Chapter 7 discuses the contributions

• Chapter 8 discusses the future work

2

Chapter 2

Problem Definition

With the improvement in wireless technology and portable devices, the client and server application

has been migrating from the desktop application architecture to the mobile environment. Mobility has been

greatly improved, but it also implies that users may access data from different locations and even have to stay

connected while on the move. Under this condition, unreliable wireless network may cause connection failure

or even terminate applications. Additionally, how to securely deal with data on the mobile environment is

another issue. Thus, the next two sub-sections will detail these two difficulties in a mobile environment.

2.1 Unreliable Wireless Network

The wireless network is characterized by intermittent connectivity. It means the connection can be temporally

terminated between the clients (i.e. the mobile) and the server, which is mostly the back-end. Due to the

variability, the wireless network is considered as unreliable since the reliability of constantly staying connected

is threatened. This can subsequently hinder data accessibility on the server from the mobile node (pulling)

or sending data to the server.

Challenge 1. Connection Loss

The intermittent loss of connectivity occasionally causes the mobile devices to be partially or totally

disconnected from the distributed network [19]. During this period, any request from the mobile clients

will fail to be delivered to the server or other nodes that are connected to the architecture. As a result,

the mobile application may freeze or even force to shut down. To avoid this situation, the mobile

application should still be responsive and have computation ability during the disconnected period.

Challenge 2. Data Synchronization Issue

Agrawal [1] pointed that any mobile application which provides data access has to deal with the inherent

problem of data synchronization. In any client-server mobile application, the mobile clients have to

retrieve data from the server and may store them into a local storage on each mobile device. This is

called caching. On the other hand, the server needs to save real-time updates from the mobile clients.

Therefore, mobile clients and a server should have the consistent state. For this reason, if the related

data changes on one side, the other sides will have to be updated. Also, this synchronization process

has to work seamlessly. However, due to the unstable connection, the real-time synchronization can

3

be interrupted and cause inconsistency between the data on the mobile clients and the server. Thus,

a good mobile application framework should have its own customized synchronization and replication

process to deal with the unreliable network.

Challenge 3. Bandwidth

In mobile wireless networks, the bandwidth is limited. Moreover, the bandwidth is affected/influenced

when several people share the same network simultaneously. To effectively communicate, mobile archi-

tectures are designed to support seamless exchanges of data between the clients and the backend server.

Therefore, the minimization of the data/messages across the system can improve the bandwidth usage.

2.2 Security Risks

In distributed mobile systems, mobile clients are sometimes expected to frequently retrieve data from the

server and locally store the data to deal with the unreliable connection. Therefore, the security risks and

privacy invasion issue are increased. In my work, I focus on the next two challenges.

Challenge 1. Security Issue on the Mobile Device

The mobile clients need to download data into the local storage and also locally save the newly created

data before uploading, so that the data will live in the client storage for a certain time. If the device

is lost through some unforeseen circumstance, other people will easily access the data and then the

private information will be leaked. In order to protect user’s private information, the system needs to

secure the data on the mobile devices.

Challenge 2. Security Issue during the Transmission

Most mobile applications consume web services over the HTTP transport protocol. However, the

default setting for every data in the HTTP message is plain text. If attackers intercept such HTTP

requests, they can easily read these messages. So data in the HTTP transport protocol are unsure.

As most data in the mobile questionnaire system is private information, the system should protect its

information during the transmission.

4

2.3 Research Goal

This work proposes a mobile questionnaire framework that is a client and server model application to overcome

the above highlighted challenges. The client component is a mobile application which is running on the mobile

devices; and the server component is hosted remotely to provide no downtime services. The connection

between the two components relies on the wireless network. However, it does not mean this application has

to be limited because of unreliable connection. Also, the system has to be designed to be highly secured and

all data has to be fully protected. Therefore, the following sub-goals and features will be provided in the

proposed work.

Goal 1. To support work when the connectivity is unstable

• Online and offline mode

• Efficient synchronization protocol

Goal 2. To ensure data security in the system

• Protect data on the mobile devices

• Protect data during the transmission channel

5

Chapter 3

Literature Review

In order to overcome the challenges of a mobile questionnaire system, this chapter reviews related re-

searches and technologies in the following fields.

• Cloud Computing in Mobile Environment

• Web Service

• Data Store

• Data Synchronization

• Data Replication

• Data Security

• Online Questionnaire System

3.1 Cloud Computing in Mobile Environments

This section will discuss two macro trends, which are: cloud computing and mobile computing. The concepts

of merging the two technologies in order to meet some transactional requirements is known as the mobile

cloud computing. This area is fairly new and the details are discussed next.

3.1.1 Cloud Computing

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configuration computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider interaction.” [21]

Cloud computing users can easily request network-oriented services anywhere and anytime without worrying

about constraints and management of physical resources (e.g., servers, network, etc.). Depending on the

business model of the cloud service provider, consumers only pay for what they use. The cloud architecture

is categorized into three main groups namely:

6

• Software as a Service (SaaS)

This service enables the provider’s application to run on the cloud infrastructure. On the other side,

consumers can access the application via program application interfaces on various client devices (e.g.,

browsers, mobile Apps, etc.). Moreover, accessing software and applications from a cloud provider

through APIs means the consumers are shielded from the complexities of the physical architecture,

which sometimes follow complex logics [21][16]. Examples are: Salesforce.com, Social media, etc.

• Platform as a Service (PaaS)

This service allows consumers to easily deploy their applications into the cloud infrastructure where the

providers have already provided supported programming languages, libraries, services, and helper tools.

Identical to software as a service, consumers don’t manage or control the network, servers, operating

systems or storage of the cloud infrastructure. A good example of PaaS is Google App Engines (GAE).

It is a cloud platform which provides services to develop and host web applications or backend services

with the Google infrastructure in the cloud [21][26].

• Infrastructure as a Service (IaaS)

This service is also called Hardware as a Service (HaaS). It is the lowest level of all cloud services. This

service facilitates users to work directly with the virtual machine. So consumers are able to customized

the virtual machine to run arbitrary softwares or operating systems. Infrastructure as a service can

also include virtualized databases, networks, and servers.

3.1.2 Mobile Computing

Mobile computing allows users to share data, voice and video from a computer or any type of mobile device

that supports wireless connection to other computing machines [37]. Mobile computing comprises three major

components.

• Mobile Communication

The communication in mobile computing refers to data/message transmission between two components

in a wireless network environment. The communication should be reliable and seamless. As mobile

communication relies on wireless networks that experience instability (in comparison to wired net-

works), transmission protocols, services, bandwidth and portals are necessary to facilitate and support

uninterrupted data transmission in the mobile environment. Moreover, the format of the data across

the various components during mobile communication needs to be predefined. This ensues that there

is no parse error while mobile devices retrieve data [37].

• Mobile Hardware

Mobile hardware includes any type of device that can receive or request data via wireless links. Some

examples are portable laptops, smartphones, tablets and so on. These devices contain receptor medium

7

which can search available signals and connect to them. Also, the receiving and sending functionalities

can work simultaneously [37].

• Mobile Software

Mobile software is an application which is running on a mobile device. In general, there are two types

of mobile applications.

– Native Applications

Native applications (also known as, resident applications) are application software that only works

for specific hardware, so they have better performance. For the same reason, they are not easily

portable to other platforms. Additionally, native applications are fat clients, because they locally

process the presentation and business logic with data downloaded from the backend servers. As

the downloaded data is always stored into the local storage, they occupy most of the available

resource space [17].

– Web Application

Mobile web-based application rely on the connection between clients (i.e., the mobile device)

and servers. And most computations are done on the backend server. Compared to the native

application, web applications have higher latency but they have no issues with cross platform

deployment. So web applications are powerful alternative to native applications [17].

3.1.3 Mobile Cloud Computing

In the review of cloud computing, we know that cloud computing is a group of servers in the network

to provide powerful computation and large storage to serve clients. Whether the client devices have poor

performance or not, as long as they can pull and push data to the servers, the servers will respond with a

result. Further, we know that in mobile computing, mobile devices are able to exchange input and output

data with remote devices. So the advantage of cloud computing can be merged into mobile computing. The

research community has named this new combination of cloud computing and mobile technology as mobile

cloud computing [25]. Qureshi et al [25] categorized the solutions of mobile cloud computing into two groups

as general purpose mobile cloud computing and application specific mobile cloud computing.

• General Purpose Mobile Cloud Computing (GPMCC)

The general purpose mobile cloud computing helps improve mobile device performance. Although the

performance of mobile devices has increased by each device generation, the constraints are still there

such as limited processing capability, storage and battery life. In GPMCC, offloading computation

from the mobile device to the clouds is the primary approach. When the clients and servers are well

connected, the large data and complicated computation will be moved and processed in the cloud [25].

• Application Specific Mobile Cloud Computing

The application specific mobile cloud computing does not only offload heavy tasks to the backend cloud,

8

but also provides powerful computation to other devices. Serendipitys [29] is a framework that enables

mobile devices to use other mobile devices’ computational resource to increase their own computing

ability and decrease their own energy use.

Different solutions of mobile cloud computing improve the performance issues of mobile devices, but at the

same time, there are lots of potential issues that affect the smooth delivery of mobile cloud computing services.

• Resource Limitation of Mobile Devices

This is inherent issue in mobile cloud computing. Generally mobile devices (e.g., phones) have less

computation power, limited storage capacity and battery constraints as compared to desktop computers.

• Network Bandwidth

Another issue is limited or fluctuating bandwidth in the mobile cloud network. In some geographical

areas, mobile devices can encounter poor signal reception which leads to lower bandwidth [25].

• Intermittent Connectivity

In mobile cloud computing, seamless connectivity is impossible due to the unreliable wireless connection.

The applications experience temporary loss of connectivity sometimes due to user mobility.

• Security Concerns

Mobile applications mostly require to protect user data. In mobile cloud computing, the security

problems are divided into the client side and server side. Additionally the transmission channel also

needs to be highly secure.

In a nutshell, mobile cloud computing has changed traditional mobile computing. The general purpose

mobile cloud computing and application specific mobile cloud computing both can increase the performance

of mobile devices. Although potential issues do trouble mobile cloud computing, it is likely that many can

be alleviated through good design.

3.1.4 Google Cloud Platform

Basically Google cloud platform is ”Google” because it relies on the same infrastructure that Google currently

uses for its own website and applications. Google cloud platform is composed of five main components.

• Google App Engine (GAE)

It is a cloud platform to deploy and host web and mobile applications. It uses Google’s large-scale

server infrastructure with 99.95% uptime service level agreement. With GAE, developers do not need

to be concerned with physical issues such as CPU, storage and bandwidth. According to the application

usage, these demands will automatically increase or decrease as needed [30].

• Google Cloud Datastore

It is a non-relational database that supports automatic scale up to massive data. And it is a schema-less

database that does not require pre-defined data columns [31].

9

• Google Cloud SQL

It is a relational database that offers fully managed functionalities for MySQL database. In order to

get high availability and durability, all the entire dataset is replicated in multiple locations [32].

• Google Big Query

It is a service to help analyze massive amounts of data. Based on Google’s infrastructure, Google big

query is a high speed data analyzer, and there are different user interfaces to interact with queries’

results [33].

• Google Compute Engine

It is an infrastructure as a service that allows clients to create virtual machines (VMs). And these VMs

can run large scale computing tasks as efficiently, quickly and consistently as possible [34].

This research proposes a framework, called MobiQ, to provide anytime, and anywhere access services.

In order to achieve this requirement, the server side of MobiQ should be accessible and responsive all the

time. The Google app engine with Google’s infrastructure guarantees high availability and durability.

Therefore, the server side of MobiQ hosts on the Google app engine. Also, MobiQ uses Google cloud

data store as database because of high scalability. The reason why MobiQ chooses NoSQL database

other SQL will be explained in section 3.3 on Data Store.

3.2 Web Services

Figure 3.1: The architecture of web service[7]

A web service is a method of communication between clients and servers over the World Wide Web and

the figure 3.1 illustrates the architecture of web service. The W3C defines web service as a [13] “software

system designed to support interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically Web Services Description Language). Other systems

10

interact with the Web service in a manner prescribed by its description using SOAP-messages, typically

conveyed using HTTP with an XML serialization in conjunction with other Web-related standards”. In

general, two types of web services exist: Simple Object Access Protocol (SOAP) and the Representational

State Transfer (REST).

3.2.1 SOAP

The Figure 3.2 represents the architecture of SOAP-based Web service that consists of three components.

• Service Provider

It creates and deploys SOAP based Web services. Additionally, it publishes services using the WSDL

through service registry such as UDDI.

• Service Registry

It registers and categorizes published services and also enables the search functionality.

• Service Request

It uses the service registry to discover the WSDL-described web services. In the description, it gets

information about methods and bind information. Based on this information, it calls the service

provider.

Figure 3.2: The architecture of SOAP based web service[5]

The communication between these three components is based on the SOAP message. The message uses the

XML format which commonly exchanged over HTTP, even though other transport protocols such as FTP,

TCP or UDP are also possible [3] [40].

11

3.2.2 REST

Figure 3.3 shows the architecture of the Representational State Transfer (REST) Web service. REST uses

the client-server architecture. The client sends requests to the server and the server responds to each request.

Like SOAP based web service, REST is independent of the transport protocol, but it is normally over the

HTTP. REST relies on four design principles.

• Addressability

In the REST, each service has unique URI for the identification of the main entities (resources). The

source to the resource is linked with these URIs.

• Uniform Interface

In the REST, the set of operations depends on the application protocol. For HTTP transport protocol,

the standard HTTP operations (GET, PUT, DELETE, and POST) are used.

• Representation Oriented

In the REST, any service is represented according to client requests. For HTTP, the client can specify

the represented type (XML, JSON, or YAML) though the Content-Type header.

• Stateless

In the REST, stateless means the client session data will not be stored on the server. Each request

contains all the information that the server needs, and the server never relies on history to answer a

request.

Figure 3.3: The architecture of REST based web service[2]

In a nutshell, REST web service is addressable through specific URI and can be represented in different data

formats. Comparing to other Web services, REST is simple, interoperable, and flexible.

12

3.2.3 SOAP for Mobile

As many web applications are built with SOAP based web service, the assumption that SOAP based web

service also is the best choice for mobile applications is made. However, SOAP is designed before the explosion

of mobile application. There are some potential problems.

• Limited library-support

According to DuVander [8], he pointed out that the support for the SOAP-based API is decreasing.

This means, the developer interest and the business interest from services providers (e.g., cloud services)

are going down.

• Heavy-weighted

The soap message is based on a large chunk of XML data. Upadhyaya indicated [38] “mostly XML

tags are not all necessary for mobile clients”. Mobile applications, which have been built and tested

using the SOAP standard, also prove to consume high bandwidth and experienced intolerable latency

[20] [40].

3.2.4 REST for Mobile

In REST, due to unique URIs, the client can simply invoke services. As a result, it is easier to consume in a

mobile application. There are key features for REST in mobile application.

• Simplicity

The architecture and implementation is simple in REST. Moreover, REST can operate with thin clients

to different services types (Java, PHP, Python, .NET and so on).

• Cacheable

REST is well suited for caching. The request is expressed in the URL. Network caching infrastructure

can provide correct response [15].

• Scalable

By the definition of REST, servers don’t manage client session. Due to this design principle, the server

is easier to scale [20].

• Efficient

The message of REST web service supports in different formats such as JSON, XML or YAML. Com-

paring to SOAP based web service, the message is restricted in the XML format. The client may need

other steps to parse messages which cost extra memory and power.

13

3.2.5 Performance Comparison

SOAP and REST are two major technologies to build web services. In order to choose high efficiency

web service technology for mobile applications, the performance of each web service technology needs to

be considered. From Potti’s experiments [23], the results pointed out that REST has more scalability,

interoperability and performance compared to SOAP. Additionally, Belqasmi et al. also highlighted [3] that

SOAP takes 10 times longer to process same requests than REST in a mobile environment. In conclusion,

REST web service is more efficient for mobile applications.

3.2.6 Summary

In a mobile environment, the mobile client is designed to be thin client. It means there are lots of commu-

nications between clients and servers. Therefore, the web service in a mobile environment must be designed

to be simple, flexible, and efficient. REST can satisfy all the requirements. In my proposed framework, the

cloud server is a REST-based web services for the mobile clients.

3.3 Data Store

For decades, SQL was the most successful database for applications. However, recently there is another

option for choosing a database, which is the NoSQL that stands for not only SQL. The “no” in this term

does not mean to reject SQL. It means to compensate for the limitation of the SQL system. In order to

appropriately choose data store for the proposed framework, this section reviews several fundamental design

rules of data store.

3.3.1 ACID

ACID is a set of properties in the traditional database transactions. In order to provide reliable services ,

these four properties must be guaranteed.

• Atomicity

All of operations in the transaction will complete. If one of them fails, the entire transaction fails .

• Consistency

According to Pritcheit[24], “the database will be in a consistent state when the transaction begins

and ends”. This property ensures that any transaction will bring the database from one valid state to

another.

• Isolation

There is no communication between transactions, therefore transactions cannot see each other during

the processing time.

14

• Durability

After completing a transaction, the operation cannot be rolled back.

In a nutshell, traditional database can protect data transaction in a single node by following ACID proprieties.

However, availability and performance are impaired.

3.3.2 CAP Theorem

In 2000, the CAP theorem which is shown in figure3.4 (Consistency, Availability and Partitioning Tolerance)

was firstly introduced by Erick Brewer who is a professor at the University of California, Berkeley [4].

• Consistency

Regardless of locations, the data should be the same in the cluster - “ what you write is what you read

”. Additionally, the order of operations must follow.

• Availability

A service should be available even if a node in the cluster goes down. Moreover, each request has to

have a response to indicate if it is successful or failed.

• Partition tolerance

The cluster can be partitioned into several groups of nodes, which cannot communicate with each other.

As a result, the data in some parts of the cluster keeps getting updated, but others are unsynchronized.

It is impossible to achieve all three guarantees together for web services. The tradeoff must be made among

the CAP. There are three possible combinations.

• CA (Consistency and Availability)

With this option, the data must always be consistent in the cluster. As long as the node is online,

the data can be updated from others and keep multiple consistent copies. Unsynchronized data only

happen, when working a partition between two nodes. In conclusion, this is a good design when servers

are in the same data centre [10].

• CP (Consistency and Partition tolerance)

With this option, the data is synchronized in the cluster. And it supports partition tolerance when all

nodes are available. However, if one node goes down, the synchronization breaks down.

• AP (Availability and Partition tolerance)

With this option, all nodes stay online but data divided into different groups which may not commu-

nicate with each other. In this case, data consistency cannot be guaranteed. However, the data will

try to synchronize with others when they are available to communicate with each other. Finally it will

achieve consistency through gradual replication.

15

Figure 3.4: CAP Theorem[39]

According to Gilbert and Lynch[10], “the CAP theorem is one example of a fundamental trade-off between

safety and liveness.” Due to specification of each application, the trade-off also is designed to be different.

In mobile wireless network, the intermittent network is common and leads to unpredictable message lose.

Under this circumstance, partition tolerance becomes a given. Hence, applications need choose one more

option between Consistency and Availability [18].

3.3.3 BASE

BASE [28] is another design philosophy for database and it is absolutely opposed to ACID

• Basically Available

This option is to guarantee availability. However, the data may be inconsistent in different nodes.

• Soft State

Due to eventual consistency, the state of the system can be updated even if currently no modification

is made

16

• Eventual Consistency

The system finally will be eventually consistent. But it may take short or long time to complete the

whole synchronization process.

The BASE is a design to trade off consistency in CAP for availability. Consistency does not require syn-

chronization after each update, but the data will be eventually consistent. Comparing to the ACID rule, the

BASE improves availability and performance.

3.3.4 NoSQL (not only SQL)

NoSQL is a non-relational database management system. Comparing to SQL, NoSQL has different design

principles. It is based on the CAP theorem and BASE rules to provide high availability and performance

in database management systems. As NoSQL follows BASE rules, it drops the Atomicity, Consistency and

Durability in ACID. Thus it improves scalability in traditional database.

3.3.5 Difference between NoSQL and SQL

NoSQL and SQL are two database management systems. Differences between them are as follows.

• Design Principles

SQL

follows ACID rules to build strong consistency and high durability database management system.

However, in order to provide consistency in distributed system, it is difficult to scale up [14].

NoSQL

follows BASE rules to design database management system. To increase scalability and perfor-

mance in the distributed system, it replaces strong consistency with eventual consistency. Also

introduces MVCC (Multi-Version concurrency control) as another method to keep data consis-

tent. However, different implementations in the application layer may cause inconsistency even if

the data is supposed to be consistent [14].

• Data Model

SQL uses relational data model which provides structured and secured data in the system. However,

due to no overlap in data presentation, the system process queries not efficiently. Moreover, the

relational data model is possible to create errors in the distributed system [14].

NoSQL uses a different approach to manage data. Generally, there are three main solutions.

– Document-oriented. Data is stored as documents such as JSOn or XML formats [14].

17

– Graph-based. Data is stored as nodes and edges. And there are plain and efficient user

interfaces to manage relations. This data model is widely used in social networking sites

[14].

– Key-value. Data is stored in schema-less way. Each data has unique key to look up.

• Scalability

SQL Consistency of ACID means that the same data must be identical. If one node changes, others

must be updated. However, the data across different servers in the distributed system cannot

ensue the immediately update. Therefore, ACID rule limits scalability in SQL.

NoSQL are generally designed to work with distributed data. NoSQL follows BASE rules instead of

ACID, so they sacrifice consistency and in return it increase scalability.

3.3.6 Summary

In the past, SQL is almost synonymous with databases. As a result, SQL is a one-size-fits-all solution for

data persistence and retrieval. As time goes by, new web and mobile applications request more scalabil-

ity and performance for data store. These new requirements have already challenged one-size-fits-all SQL

database. This research proposes a mobile questionnaire system framework which is designed for high scala-

bility. Through the review of difference between NoSQL and SQL, NoSQL is more scalable and flexible than

SQL. Therefore, this proposed framework will take advantages of NoSQL.

3.4 Data Synchronization

In a distributed system, data can have many identical copies that are stored on machines located in the

different physical places. These copies may be accessed and modified by individual owners. As a result,

the original data may have different versions. In order to have a consistent state version for later use, the

separated modifications should merge together. This process is defined as data synchronization [36].

In the mobile network, each mobile device can be represented as a node. The nodes intermittently connect

to other nodes and maintain the consistency. In this situation, there are two possible synchronization re-

lationships. One is single-device synchronization (1 : 1) and another is multi-devices synchronization (1 :

n). In both two synchronization relationships, there must be one node that is always actively updated and

send latest modifications to the others. In single-device synchronization, mobile devices only synchronize

with the same machine such as personal computer or web server. The timestamps and flags are employed to

identify different data. With this relationship, two devices only need to update modifications that are created

after the last synchronization. On the other hands, multi-devices synchronization is much more complicated,

because the synchronization needs to detect individual modification, put them together, and then eliminate

conflicts [36] [1].

18

3.4.1 Data Synchronization Design Pattern

• Asynchronous Data Synchronization

With this pattern, the mobile application synchronizes with backend servers without blocking user

interfaces. And still runs with local data or caches. However, presented data in the devices may be

inconsistent with the backend server during synchronization.

• Synchronous Data Synchronization

It is a mechanism pattern. when a synchronization process starts, the mobile application has to wait

until the synchronization is finished. Obviously, the user interface’s thread is also blocked. But this

pattern ensures that all data is highly consistent with the server.

• Partial Storage

This pattern allows an application only to store the data as needed. Therefore, mobile devices decrease

the usage of local storage and also optimize network bandwidth.

• Complete Storage

In this pattern, a mobile application will download all data from servers even if it does not need it right

away. Thus, this application has high availability to access data even if the connection is unavailable.

However, this design may waste a great amount of local storage and bandwidth.

• Full Transfer

In order to reduce the conflicts after synchronization, the full transfer pattern requires to upload and

download all data for each synchronization request. Therefore, the traffic of duplicated data wastes

bandwidth.

• Timestamp Transfer

Timestamp transfer uses a timestamp as identifier to updates unsynchronized data as need, so it saves

bandwidth from redundant data.

• Mathematical Transfer

This pattern is similar to the timestamp transfer. Besides simple comparison in timestamp, there are

a few significant mathematical calculations to detect unsynchronized data.

3.4.2 Data Synchronization in Practices

• Palm HotSync Protocol

HotSync protocol is a synchronization protocol that helps programs to synchronize data with other

devices or servers in Palm’s OS. With this protocol, there are two synchronization models, Fast Sync

and Slow Sync.

19

– Fast Sync

There is one prerequisite for this protocol. Mobile devices can only synchronize with the same

machine that they synchronize with at first time. Under this condition, a personal computer or

web server should host a database that stores the newest updated data. Each mobile client can

use its own data timestamps or flags to compare with the last synchronized timestamps in the

database. If its own timestamps is greater than last synchronized timestamp, it means that PCs’

data is out of date. The timestamp of data only changes when new data is inserted, existed data

is updated, or redundant data is deleted in the mobile client. To update modifications, there are

several steps. Firstly, PC will check if there are new items created (insertion). Secondly, PC will

detect if inconsistent data is stored in the mobile client (modification). Thirdly, PC will find out if

the data has already been deleted in the client (deletion). Fourthly, PC will execute modifications

on its own database and then update status flags. In a nutshell, this synchronization process relies

on each flag of data which is stored in the client and server. As each synchronization evaluate

last update flag, it is impossible to synchronize with different PCs [36].

– Slow Sync

There is no prerequisites to execute synchronization process. With Slow Sync, mobile devices can

synchronize with multiple PCs or servers. In this situation, the synchronization flags is not as

important as in the Fast Sync. During the synchronization, all data in the local storage will send

to the PC.Therefore, this protocol is similar with backup data from mobile client to server [36].

In the mobile environment, the intermittent connectivity causes low bandwidth and long latency, so

transmission data is designed to be as small as possible. Between Slow Sync and Fast Sync, less data

transports in the Fast Sync protocol, because only modified data will sent to the PC from mobile

devices. Therefore, this protocol saves bandwidths and improves latency, so it should be an efficient

protocol in mobile application system.

3.5 Data Replication

Replication is a technique where data is copied from one server to another in distributed systems. When errors

happen suddenly, the server can go down. If this server has already copied its data to others, the same services

will still be available. Therefore, users will not be affected by the downtime of the server. The purpose of

replication is to increase availability and performance of the servers [11] [36]. In the mobile environment, each

device is considered as an individual server which needs to run application services with data from databases.

With connection, each mobile client needs to update its database when a new modification happens at the

server side. Also, the mobile needs to notify others to update when a new modification happens locally.

20

3.5.1 Replication in Database

Most servers contain a data store to save information. If many servers share only one database, each server

needs to wait a long time to access the stored data. Also, all the servers will be unavailable because of failure

of this database. Thus, in addition to the server replication technique, the database also needs to be copied

[36]. In the mobile environment, the network is unreliable. When the connection is unavailable, mobile clients

still need to live. Therefore, database replication is a strategy to provide necessary data on the client even if

there is no connection between mobile devices and servers.

3.5.2 Replication Design Patten

• Single Master Replication

With this pattern, there is only one primary replica that is stored on the master nodes. The rest of

the nodes save the copy of primary replica called secondary replica. The node that stores the primary

replica is responsible for updating all the transaction of this systems. And then sends the copy of the

primary replica to others. Since only one primary replica can be modified, there are no conflicts in the

distributed nodes. Furthermore, the secondary replica in the nodes also can be another primary replica

for its subset system, but the primary node is exclusive in a distributed system.

– Eager Replication in Single Master Replication

It is also known as the synchronous technique pattern. When a copy changes, the rest is going

to modify. This pattern ensures that the consistency of replica in the system. However, due to

updates in all copies, it not only reduces performance but also increases transactions. With eager

replication, online nodes always provide the newest data of the system when others make request.

However, offline nodes may provide out of date data because modifications can happen during

disconnected periods. In some systems, they are required with data consistency, so they stop to

write new modifications when one node disconnect. In these systems, all data must be consistent

in each copy. On the other hand, some systems are more available than the previous system.

They allow changes when some nodes are disconnected and only update lived nodes. And when

disconnected nodes are available again, they take extra steps to synchronize. Frankly, even if

all node connect all the time, they still may meet dead lock or fatal errors because of increased

transaction [11]

– Lazy Replication in Single Master Replication

This replication pattern is also known as an asynchronous technique. When a transaction happens,

the primary replica will update itself and then send new replica to the rest. Each replica contains

a timestamp to specify versions. When the rest is received new data and ready to update, firstly

they compare the timestamp of incoming data with the local version. If the new one is greater than

21

the local one, the update starts. But if the local one is greater than the incoming one, the update

stops and the new replica is abandoned. Comparing with Eager Replication, this pattern have

better performance in response time. Additionally, it does not deal with reconciliation failures

and conflicts [11].

• Multi Master Replication

Different from a single master replication, each node be a master node containing a primary replica.

And this replica can modify in any network condition even if this node is disconnected. In this situation,

it is possible to cause conflicts with multiple modifications. In order to avoid errors, the systems have

to implement specific mechanisms.

– Eager Synchronization in Multi Master Replication

This pattern is similar with eager synchronization in single master replication. But a system can

have more than one master node.

– Lazy Synchronization in Multi Master Replication

This pattern allows arbitrary nodes to update local data. When a transaction is received, the local

data will be updated, so there is possibility for conflict when two updates are working with the

same data. In order to avoid data lose, timestamps is a common strategy to detect and reconcile

conflicts [11].

Figure 3.5: Two-tier Replication Architecture[11]

• Two-Tire Replication

Two-tier replication is a replication solution for mobile applications [11]. In Figure3.5, there are several

terms to describe the structure.

– Mobile Node

This node is disconnected for a while so that some modifications can be made offline, and these

modifications will have to be updated with the online nodes

22

– Base Node

This node is always connected to others. Therefore, it has the latest version of replicas.

– Master Version

This version of data is the newest. However, it is possible to be outdated when it is in the mobile

node.

– Tentative Version

This version of data is modified when the node is disconnected. Thus it is only in the mobile

node.

– Base Transaction

This transaction works in the online nodes. Also, only one of the nodes is unsynchronized.

– Tentative Transaction

This transaction executes locally when the mobile node is disconnected.

This replication pattern is designed to synchronize with nodes which experience unpredicted disconnec-

tions. When this node gets connection again, it has to synchronize with others through several steps as

follows. Firstly, the mobile nodes abandon tentative versions of data. Secondly, mobile nodes need to

submit changes to all base nodes. Thirdly, mobile nodes need to wait for base nodes, because they need

to synchronize with tentative transactions and reconcile conflicts. Fourthly, mobile nodes get copies

of the newest replica and install them. Fifthly, mobile nodes will get responses of each update if it is

successful or failed. Sixthly, mobile nodes change the status to base nodes. For base nodes, they also

need to go through some steps. Firstly, base nodes need to the newest data to mobile nodes. Secondly,

base nodes will get all tentative transition from mobile nodes. Thirdly, base nodes will execute all

transaction with committed order. And also reconcile all conflicts. Fourthly, base nodes will send

correct data to mobile nodes.

In the mobile environment, the application system is looking for a replication pattern that can satisfy

availability, scalability, mobility, serializability and convergence. The eager and lazy replication can

provide a safest transactional replication and no reconciliation problems. However, there are other

problems. First, all nodes has to connect to network. Without connection, there is no way to update.

Secondly, the probability of dead lock or error is increased by new joins. Thirdly, lazy synchronization

in multi master replication cannot provide ACID serializability. On the other hand, two-tier can satisfy

all requirements of mobile applications. Therefore, it should be a good replication pattern for mobile

applications [11].

23

3.6 Data Security

Most mobile applications have to load data from the local storage which can contain sensitive and private

data. Therefore, there should be ways to protect data which live in the local storage.

• Encryption is a way to transform data into secured format. And only can be consumed by a person

who is intended to consume the data.

• Hashing is a method to create a fixed-length number generated from another number or string. With

hashing methods, outputs are not possible to go back to inputs.

In the mobile environment, the energy consumption is extremely important. When considering energy effi-

ciency, algorithms of encryption and hashing have different performances. According to Damasevicius, et al.

[12], they concluded “the most energy-efficiency of hash function on a mobile device is SV1 for cryptographic

applications, and crc 16 for non-cryptographic application ”. And for encryption algorithms Salama et al.

[27] stated that Blowfish has better performance than AES, DES, 3DES, RC6 and RC2.

3.7 Online Questionnaire System

Online questionnaire system is a tool that collect data through computers. With online surveys, researchers

or business companies can get feedbacks from customers faster and more accuractely. Currently, there are

lots of different online tools out there.

The SurveyMonkey is one of the most popular online questionnaire systems. With SurveyMonkey, users build

customized questionnaires, send them to specific or general groups, and then analyze results with powerful

tools. Currently, the SurveyMonkey only has a web based application. And it does not support offline work.

3.8 Conclusion

Mobile cloud computing consists of advantages of mobile computing and cloud computing. The application

of mobile cloud computing increases a mobile device’s computation capacity, decrease its energy consump-

tion and also balances its space in the local storage. These improvements greatly benefit the performance

of mobile applications. Because of high scalability and availability, a NoSQL database is a good choice to

save data in the cloud server. Also, the schema free and simple query features of a NoSQL database benefit

for developing. From reviewing data synchronization and replication, each pattern has its own advantages

and disadvantages. However, the centralized server architecture, the fast sync and two tire replication are

a combination for providing high efficient protocol to keep data consistent. Therefore, this research will

propose a mobile questionnaire system that takes advantage of all these benefits.

In summary, the current research indicates:

24

• Connection Loss

– Due to the connection may temporally loss, mobile applications need to cache necessary data in

the client side.

– Mobile applications should provide offline storage capability. When the connection goes down,

all changes need to save into the local storage. Later, all changes should synchronize with the

backend server.

• Data Synchronization Issue

– The intermittent connectivity can interrupt the real-time synchronization. Therefore, all mobile

clients need to firstly update changes in local database and then synchronize with the backend

server when the connection restores. The two-tire replication strategy allows mobile clients read,

write and update the local database while disconnected with the network. And later synchronize

all changes with the backend

• Bandwidth

– The REST-based web services provide light weight data communication to minimize the band-

width usage.

– The data synchronization protocol use timestamps to classify synchronized and need to synchro-

nize data. And only pass data that does not synchronize between the clients and server.

• Security Issues on the Mobile Devices

– Mobile applications never store passwords in the plain text.

– Mobile applications need encrypt all sensitive data.

• Security Issues during the Transmission

– All data should encrypt before sending and decrypt before using.

• Availability and Scalability

– NoSQL database provide high availability and scalability.

– Mobile Cloud Computing increases application mobility and scalability.

However, there are still open questions related to mobile questionnaire system :

• How to caching enough data for disconnecting use ?

• How to synchronize with multiple servers ?

25

Table 3.1: Categorizes and Lists All the Reviewed Research

Cloud computing

• Definition of Cloud computing [21]

• Different services of cloud computing (SaaS, IaaS, Paas) [21]

Mobile cloud computing

• Taking advantages from cloud computing and mobile computing

[25]

• Offloading computations to the cloud server [25]

• Providing computations to help other devices in distributed sys-

tems [25]

Web service

• The definition of SOAP and REST web service [13] [3]

• The mobile platform has limited libraries to consume SOAP ser-

vices [40]

• The SOAP message contains unnecessary data for mobile clients

[38]

• The REST web service has much better performance than SOAP

web service in mobile environment [23] [3]

Data store

• The definition of ACID, BASE and CAP theorem

• From the CAP theorem, the three requirements, consistency,

availability and partition-tolerance, can be simultaneously guar-

anteed by two of three[10]

• Differences in NoSQL and SQL[14]

26

Data Synchronization

• Different design patterns in data synchronization

• Examples in Fast Sync and Slow Sync[36]

Data Replication

• Different design patterns in data replication

• Details of Two-tire replication [11]

Data Security

• Different methods to secure data

• Energy efficient algorithm of encryption and hashing in mobile

devices[27][12]

Online Questionnaire System

• Review the SurveryMonkey web-based questionnaire system

27

Chapter 4

Design and Architecture

This chapter discusses the architectural design of the MobiQ framework (Figure 4.1). The architecture is

proposed to enforce efficient synchronization of data in volatile network environments. Due to the intermittent

network disconnections, mobile applications need efficient synchronization and replication protocols which

should consume minimal bandwidth to keep data consistent between the cloud server and mobile clients. In

addition, all data should be secured while saving in the local database and passing in the transmission chan-

nel. I aim is to advance on the previously proposed two-tire replication concept to build a synchronization

protocol and ensure consistent data between mobile clients and the cloud servers.

Figure 4.1: The proposed architecture design of MobiQ

The solutions of the MobiQ framework for challenges are discussed in the Chapter 2 are listed below :

• Connection Loss

– The MobiQ mobile client provides a lightweight database to store necessary cache data.

28

– All data in the local database can be accessed and modified in anytime.

• Data Synchronization Issue

– The MobiQ mobile clients can read, write and update local data in anytime. And all new created

changes will synchronize with the server if the connection is available.

• Bandwidth

– The MobiQ mobile client communicate with the backend through lightweight REST protocol.

– Each data in the MobiQ mobile client has a property to indicate the synchronize status. And

only unsynchronized data will upload to the cloud server.

• Security Issues on the Mobile Devices

– Any password in the MobiQ mobile client is hashed by the SHA256 hash algorithm before saving

into the local storage.

– All sensitive data in the local database is encrypted.

• Security Issues during the Transmission

– The MobiQ framework uses highly secured HTTPs protocol to exchange data

• Availability and Scalability

– The server side of the MobiQ framework is hosted on the Google App Engine to increase avail-

ability.

– The data store of the MobiQ cloud server uses NoSQL database to increase scalability.

4.1 Example Scenario

To understand the architecture and functionalities of MobiQ framework, I will use the example of e-Questionnaire

system throughout this chapter. It is a client-server based mobile questionnaire application that helps med-

ical professors in conducting examinations by mobile devices. Before the examination, an administrator will

create and download exam questions and check lists to the mobile devices. During the exam, students will

answer exam questions with mobile devices. And then they will be asked to diagnose patients. At the same

time, professors will evaluate the student’s performance with checklists. After the exam, the student’s an-

swers and the result of check lists will be uploaded to the backend server. Next, I will introduce these three

roles, Administrator, Student, Professor, in details.

29

Administrator

Figure 4.2: Administrator in e-Questionnaire system

The Administrator is responsible for creating questions and checklists for students and professors

through web interfaces. As show in the figure 4.2, the administrator will download necessary data

into the mobile devices of students and professors before the examination’s date.

30

Student

Figure 4.3: Student in e-Questionnaire system

Before starting any exam, student must go through an authentication step. A student has to provide

his username and password pair after which the student can start his exam. Different types of questions

are presented in the examination such as question answer, multiple choices and true or false. When

a student finishes the exam, he can upload his answer back to the server if the wireless connection

is available. Otherwise, all data will be saved into local data storage. Later, the administrator will

manually upload them.

31

Professor

Figure 4.4: Professor in e-Questionnaire system

The Professor will evaluate students’ performances when they are diagnosing patients, and give marks

to each student according to requirements of the checklist. Similar to the student, a professor also needs

to authenticate first. As shown in Figure 4.4, when a professor is logged-in, he has full permissions to

access all student information and checklists. Also, a professor can chat with administrators to report

real-time status. All new data will be saved into the local database first. When the professor is logged-

off, all the data is automatically sent to the backend server if the connection is possible. Otherwise,

the administrator will upload all data when the connection is available again.

32

4.2 Architecture Overview

The aim of the MobiQ framework is to provide a reliable system to consume data. It consists of two main

components: the clients and the server.

Client

Due to the processing lack of power in mobile devices, the clients of MobiQ are thin clients that do

not compute intensive tasks. They download data from the cloud server and users can read and write

downloaded data or locally create new data. If there is updated or newly created data, all changes will

be uploaded to the server. There are four manager classes in the mobiQ’s client.

• SecurityManager

• LocalStorageManager

• SyncManager

• WebServicesManager

The detail of each manager will be explained in the implementation chapter.

Server

To ensure accessibility at anywhere and anytime, the server of MobiQ is hosted in the cloud and

NoSQL data store is provided to save the data. Also, to increase the performance on the server side,

the memcache mechanism [35] is implemented. There are two managers in the mobiQ’s server.

• WebStorageManager

• AuthenticationManager

The detail of each manager will be explained in the implementation chapter.

4.3 Client Side Architecture

The architecture of MobiQ’s client follows the classic Model-View-Controller (MVC) design pattern. Accord-

ing to three different roles of objects in the client, it separates display and processing functionalities. Also,

each object can be easily reused. The three roles are:

Model

The objects that are used to store application data and define how to manipulate them. For example,

the Question, Answer, Checklist, Student, Professor classes are Models in the e-Questionnaire system.

33

View

The views are the visualized user interfaces of applications. Users interact with them to control Models

and Controllers. For example, QuestionView, CheckListView, LoginView classes are Views in the

e-Questionnaire system.

Controller

The objects that are core parts of the applications. According to different inputs from users, they load

data from the model and represent it with views. In the e-Questionnaire system, security manager,

local storage manager, sync manager and web services manager classes car Controller class.

Figure 4.5: MVC in e-Questionnaire System

As show in Figure 4.5, Model classes can notify Controllers when a resource’s data is changed. Then the

Controllers will update the Views to show the new data. On the other hand, when Views received user’s

requests, they will ask Controllers to update the Models if necessary or retrieve any other requested data.

34

4.3.1 Connection Loss

Since the wireless connection is not always stable, the mobile client needs to work in an offline situation. To

handle this problem, it is important to:

• Detect if network is available

The connection status is not always available. Therefore, WebServiceManager has to check out the

status of the connection before sending data. If the connection is available, the WebServiceManager

makes a request to retrieve data. Otherwise, it will cancel this request. This steps can guarantee

robustness of the client application.

• Offline storage

During the disconnected period, any data cannot be sent to the cloud server. The offline storage is

a solution to save data in the local storage. When the network is connected again, the data can be

synchronized with the backend server. Also, the offline storage is a performance booster. Users can

save a large chuck of data into the device. And then they can quickly access these data instead of

waiting for a long time to download again and again.

e-Questionnaire System Example Reference

When the e-Questionnaire system starts, the LocalStrageManager will create a table for Question

and Checklist model classes if it uses a SQL database. When administrators select an examination, the

Question and Checklist will download from the cloud server and save into the local storage. Then, these

data can be accessed in whatever connection status. Also, even if the connection is available, the same

Question and Checklist will not download again. It saves time and bandwidth. When students start

their examination, they will create Answer objects for each Question object. These objects would be

back-up to the cloud server when they are created. However, due to the connection problem, they may

not be sent to the backend immediately. The local storage is another place to store them. Therefore,

all created Answer objects will not loss. This is very important to the e-Questionnaire system because

no students want to do the same tests twice. Later, administrator will collect data and save into the

cloud server.

4.3.2 Data Synchronization

Data synchronization is a process to ensure that the client and server have the same data. However, the client

and server cannot notify modifications in time during disconnected period. Hence, the MobiQ framework

proposed a protocol which is based on the two-tire replication and fast sync strategies. This protocol contains

next a few steps to synchronize data.

• All data in the client and server side has a field to save last synchronized timestamps. After disconnect-

ing, mobile clients will check timestamps for all downloaded data and then send them to the backend

35

server.

• When the cloud server receives a request, it will search all timestamps of the same object requested

by the client. And then it will compare the two timestamps from clients and the server. If the

timestamps are the same, it means there are no updates on this object. And if the timestamps are

not the same, it means there are updates on this object. In the MobiQ system, the server always has

the highest priority. Therefore, the system will give up updates from the client and mark this object

as unsynchronized object. Finally, the server will send the latest version of the unsynchronized data

object back to the clients.

• After getting the response from the server, the client gets a list of unsynchronized object and will use

those to update its local data.

• When the newly created objects are related to unsynchronized objects, the client will find them out

and delete them. This is to ensure that no unexpected error will happen later.

• After deleting, the rest of the newly created data will be sent to the cloud server.

Figure 4.6: The synchronization protocol of e-Questionnaire system

e-Questionnaire System Example Reference

The Figure 4.6 explains synchronization steps of e-Questionnaire system. For example, there are three

36

questions in the client’s local database. Users can access them anytime and anywhere. When the

connection breaks down, the server side updates the second question. And at the same time user

answers all three questions. When connection is available again, the client tries to synchronize its data

with the backend. The mobile application will send the id and last synchronized timestamps of three

questions to the server. Then the server will check them. And it will find the second question has

already been updated, so it will send the newest version of second question to the client. After getting

the new data version, the client application will immediately use the new data instead of the old second

question. And then check if there is an Answer object related to the second question. Because users

have already answered all questions, there is an answer for second question. Thus, this answer will be

deleted. Finally, the application will send the answer of first and second questions to the server side.

4.3.3 Wireless Network Bandwidth

In the mobile environment, the bandwidth is extremely valuable. Thus the MobiQ framework tries to

minimize the usage of bandwidth in two ways.

• Only necessary data will pass between the mobile client and server.

• No repeat downloads for the same data

e-Questionnaire System Example Reference

When synchronizes with the cloud server, the mobile client only sends the object id and last update

timestamps. It will not send the whole objects. In this way, only updated data will pass between the

mobile client and server during synchronization. Also, the client will save all downloaded data into the

local database. Therefore, there is no need to download the same data for each request time. Following

these rules, the MobiQ framework can save much consumption of bandwidth.

4.3.4 Local Data Security

Security is one of the most important aspects of developing applications. Users always expect the system

can keep their data safely. Due to the intermittent connectivity loss, the MobiQ questionnaire system has to

save data into the local system. The system proposed two different solutions to secure data.

• Hashing

Directly storing a password is a bad idea. There are lots of potential reasons to leak data from mobile

devices. For instance, if mobile devices are lost, attackers can easily get user’s password from the

local file system. Therefore, applications should never directly save password. In MobiQ framework,

each mobile client has an unique string that is a fixed-length number or string. And it will add to

any password string to enhance the security of the password. This new created string can prevent

dictionary attack where someone has a list of passwords and go through each one against the password.

37

After getting new created string, it will be computed by SHA256 which is a secure and one-way hash

algorithm so that the password should convert to random unreadable code. Later, this unreadable code

will save into the local storage and use to authenticate users during disconnected period.

• Encryption

Due to one-way hash algorithm, hashed data cannot be reversed. For some objects, they need to be

represented again. Therefore, hashing data cannot work for all situations. In MobiQ framework, it

provides encryption methods to secure data that should be reconverted.

e-Questionnaire System Example Reference

In the e-Questionnaire system, the students’s username and password will download into mobile devices.

When the application receives passwords from the backed server, the system will directly hash passwords

and store into the local file system. Later, if the connection breaks down and in the same students are

trying to login, MobiQ will hash users’ inputs with the same hashing algorithm. And only comparing

between two hashed password. Because of the same algorithm, the same input can get the same output.

Under this condition, if devices are stolen or lost, hackers only can get hashed password which is not

the plain value in the clear text. On the other hands, students has to answer questions with mobile

devices. The Answer object of this system will be encrypted by the SecurityManager because they

may contain private information. When the system prepares to pass Answer objects from the client to

server, the SecurityManager will decrypt data and then these data will pass to the cloud server.

4.3.5 Transmission Security

The client and server model application has to frequently pass data. However, the common protocol, HTTP,

will not provide security feature. All data is plain text during transferring. In MobiQ questionnaire system, it

will use a secure HTTPs protocol to communicate between clients and the cloud server. With this protocol, all

data will automatically encryption before entering the transmission channel and also automatically decryption

after exiting the channels. Therefore, even if someone can catch data, they are just unreadable strings.

4.4 Server Architecture

Similar with the client side, the server’s architecture also follows MVC design pattern.

Model

The model on the server is used to backup the client data.

View

In the MobiQ framework, there are two types of views. One is web interfaces where administrators can

create and manage data. Another one is Restful APIs that is exposed to mobile client to retrieve and

store data on the cloud server.

38

Controller

To decouple the relationship between Model and View, the controller will be a medium to notify any

change between them. Also, the controller will provide functionalities to increase the performance of

MobiQ server application.

4.4.1 Anytime Access

To satisfy the feature, anywhere and anytime accessibility, the server application of MobiQ will be hosted

on the cloud. According to Harris [6], “Google blogged this morning about a new no-planned downtime for

Google Apps, a promise it’s able to make because of its globally distributed infrastructure estimated at more

than 1 million servers. Google’s expansive infrastructure gives it multiple options for migrating workloads

during planned downtime.” Therefore, the MobiQ’s cloud server will be hosted on the Google app engine.

Also, the data store will use Google’s no SQL database, data store, to save data on the cloud.

39

Chapter 5

Implementation of the Mobile Questionnaire System

This section describes the implementation of the mobile questionnaire system. I will separately give

details of the client and server side of the mobile questionnaire system.

5.1 The mobile client of the mobile questionnaire system

On the client side,the mobile questionnaire system follows the classic Model-View-Controller(MVC) archi-

tecture. I proposed a client view component that facilities interaction with the system, a model component

which is driven by a local storage, and the controller coordinates the activities between the views and the

model. The upcoming details explain the various components.

5.1.1 Models of the mobile questionnaire system’s client

The model component is designed following the questionnaire standard. Generally, there are three basic

objects in the client such as Question, Answer and User objects.

Question object

pub l i c c l a s s Question

{

[PrimaryKey , AutoIncrement]

pub l i c i n t l o c a l I D { s e t ; get ;}

pub l i c i n t ob jec t ID { s e t ; get ;}

pub l i c DateTime createdAt { s e t ; get ;}

pub l i c DateTime updatedAt { s e t ; get ;}

pub l i c s t r i n g que s t i on con t ex t { s e t ; get ;}

pub l i c s t r i n g opt ion 1 { s e t ; get ;}

pub l i c s t r i n g opt ion 2 { s e t ; get ;}

pub l i c bool syncStatus { s e t ; get ;}

}

1. local ID, which is a unique id for each question object on the local database.

40

2. object ID, which is a unique id for each question object on the system.

3. createdAt, which is a timestamp to record the created time of the question object

4. updatedAt, which is a timestamp to record the latest update time of the question object

5. question context, which is a string variable to store the question context.

6. option 1, which is a string variable to store the fist option.

7. option 2,which is a string variable to store the second option

8. syncStatus, which is a flag status to determine if the current object has already synchronized

with the cloud server.

In the question object, the object ID, createdAt, updatedAt, question, option 1 and option 2 attributes

are created by the cloud server. The updatedAt attributes is updated when new modifications take

place. The syncStatus are created by mobile clients. The default value of the syncStatus attribute is

false and it will change to true after the first synchronization with the server.

Answer object

pub l i c c l a s s Answer

{

[PrimaryKey , AutoIncrement]

pub l i c i n t l o c a l I D { s e t ; get ;}

pub l i c i n t ob jec t ID { s e t ; get ;}

pub l i c i n t quest ion ID { s e t ; get ;}

pub l i c DateTime createdAt { s e t ; get ;}

pub l i c DateTime updatedAt { s e t ; get ;}

pub l i c s t r i n g answer { s e t ; get ;}

}

1. local ID, which is a unique id for each answer object on the local database.

2. object ID, which is a unique id for each answer object on the system.

3. createdAt, which is a timestamp to record the created time of the answer object.

4. updatedAt, which is a timestamp to record the latest update time of the answer object.

5. answer, which is a string variable to store answers.

6. question ID, which is a string variable to store the id of an answered question.

41

User object

pub l i c c l a s s User

{

[PrimaryKey , AutoIncrement]

pub l i c i n t Id { s e t ; get ;}

pub l i c s t r i n g username { s e t ; get ;}

pub l i c s t r i n g passwor ld hased { s e t ; get ;}

pub l i c bool l o g i n s t a t u s { s e t ; get ;}

}

1. Id, which is a unique id for each user object on the local database.

2. username, which is a string variable to store the user name of user.

3. password hased, which is a string variable to store the password of an user’s password.

4. login status, which is a bool variable to store the current user’s login status.

In the user object, the value of password hased attributed is created by the local security manager.

5.1.2 Controllers of the mobile questionnaire system’s client

There are four singleton controllers that are implemented on the client side of mobile questionnaire system.

These controllers are discussed as follows

Security manager

The security manager is used to protect data on the local database. There are three core functions.

1. The hash function

pub l i c s t r i n g SHA256 (s t r i n g password)

{

SHA256Managed crypt = new SHA256Managed () ;

s t r i n g hash = s t r i n g . Empty ;

byte [] crypto = crypt . ComputeHash (Encoding .UTF8. GetBytes (password) ,

s0 , Encoding .UTF8. GetByteCount (password)) ;

f o r each (byte b i t in crypto)

{

42

hash += b i t . ToString (” x2 ”) ;

}

re turn hash ;

}

The hash function will convert given plain texts into another unreadable texts. Also, the input cannot

be converted back to the original text. This function will be called when the client download User

objects from the server. Because the User object always contains the private password information.

Additionally, the same hash function will use to help the mobile questionnaire system to authenticate

user in the offline mode. Due to no connection, it is impossible to connect to the cloud server to

authenticate. The mobile client will take the user’s input to execute the same hash function which is

used in the User object. And compare the hashed string, if they are the same, the user can go to the

next page. Otherwise, the authentication is failed.

2. The encryption function

pub l i c s t r i n g Encrypt (s t r i n g pla inText)

{

i f (p la inText == n u l l)

{

throw new ArgumentNullException (” p l a i n text i s n u l l ”) ;

}

var data = Encoding . Unicode . GetBytes (p la inText) ;

t ry

{

byte [] encrpyted =

ProtectedData . Protect (data , key , DataProtect ionScope . CurrentUser) ;

r e turn encrpyted . ToString () ;

} catch (CryptographicExcept ion e)

{

Console . Out . WriteLine (e . ToString ()) ;

r e turn n u l l ;

}

}

3. The dencryption function

pub l i c s t r i n g Decrypt (s t r i n g pla inText)

43

{

i f (p la inText == n u l l)

{

throw new ArgumentNullException (” p l a i n text i s n u l l ”) ;

}

var data = Encoding . Unicode . GetBytes (p la inText) ;

t ry

{

byte [] encrpyted =

ProtectedData . Unprotect (data , key , DataProtect ionScope . CurrentUser) ;

r e turn encrpyted . ToString () ;

} catch (CryptographicExcept ion e)

{

Console . Out . WriteLine (e . ToString ()) ;

}

}

These two functions which are paired will use to protect other data such as answer and question object. Each

object encrypt before saving into the local database. And also decrypt before displaying on the mobile screen.

Localstorage manager

Due to compare the performance of NoSQL and SQL database in the mobile devices, I implement two different

types of databases, SQLite and CouchDB Lite to execute CRUD operations.

Sync manager

The sync manager ensures consistent data between the local storage and the server’s datastore, so it needs

to communicate with the local storage manager to load data and the web request manager to push and pull

data from the server. It follows the seven steps which is described in the chapter 4 to keep data consistent

between mobile clients and the cloud server.

Webrquest manager

The web request manager uses secured hypertext transfer protocol to provide the communication between

the client side and server side.

44

5.2 The cloud server of the mobile questionnaire system

In the mobile questionnaire system, the server is hosted on the Google App Engine (GAE) because of its

high availability and scalability. The Google High Replication Datastore, a NoSQL data store management

system, is used to manage the data store on the cloud. On the GAE, it provides four runtime environments

such as Python, Java, Go and PHP. Using the Python environment, I define objects that can be interacted

with based on the code snippet below:

c l a s s Quetion (db . Model) :

ques t i on = db . Str ingProperty ()

opt i on 1 = db . Str ingProperty ()

opt i on 2 = db . Str ingProperty ()

createdAt = db . DateTimeProperty (auto now add = true)

updatedAt = db . DateTimeProperty (auto now = true)

syncStatus = db . Str ingProperty ()

o b j e c t I d = db . IntegerProper ty ()

c l a s s Answer (db . Model) :

que s t i on Id = db . IntegerProper ty ()

answer = db . Str ingProperty ()

createdAt = db . DateTimeProperty (auto now add = true)

updatedAt = db . DateTimeProperty (auto now = true)

ob j e c t Id = db . IntegerProper ty ()

This codes creates the data on the GAE and because the auto now add is equal to the Boolean value true,

the createdAt property value is set to the first time the model is stored in the data store and it will not

be changed. Next, because the auto now is true, the updatedAt property value is set to the current time

whenever the model instance is stored in data store. It means the newest update time will be recorded in

this property. The format of the transferred data between the mobile clients and the cloud server is JSON.

When the cloud server receives requests to create a resource (e.g., questions) from the mobile clients, it will

get related data from JSON objects, create the resource and then save the resource to the data store. The

flowing code represents the details.

c l a s s CreateQuest ion (webapp2 . RequestHandler) :

de f get (s e l f) :

q = s e l f . r eque s t . get (’ quest ion ’)

o1 = s e l f . r eque s t . get (’ option1 ’)

o2 = s e l f . r eque s t . get (’ option2 ’)

s = ’YES’

45

ques t i on = Quetion (

opt i on 1 = o1 ,

opt i on 2 = o2 ,

ques i ton = q ,

syncStatus = s ,

o b j e c t I d = Q OBJ ID

)

quet ion . put ()

Q OBJ ID = Q OBJ ID +1

In this code, Q OBJ ID is a global variable which is used to create unique ids for the resources. And the

mobile questionnaire system will not manually set value for createdAt and updatedAt properties. When the

resource is created, the Google High Replication Datastore will automatically set values for them.

5.3 Conclusion

In this chapter, I explains specific model and controllers used in the mobile questionnaire system. Section

5.1, I introduces the core models and controllers in the mobile clients. The question and answer are core

object in the system. For the controllers, the security manager will secured data, the local storage manager

will persistently save data, the sync manager is keep the consistent data between mobile clients and the cloud

server and the web request manager help communication between two side. Section 5.2, I give the detail code

of the model in the Google App Engine with Python environment.

46

Chapter 6

Experiments

This chapter evaluates the functionalities and performance of the mobile questionnaire system in the

network volatile environment. In line with the research goal, the following factors are evaluated: offline

capability, the performance comparison of NoSQL and SQL database on mobile devices, data Synchronization

protocol(DS), performance of the Synchronization Protocol (SP), and Data Protection (DP).

6.1 Experiment Setup

As mentioned in the design chapter, the the mobile questionnaire system is a client-server application. The

following systems are used in the whole experiment process.

The Mobile Client

In order to test the system’s performance and functionalities, the mobile application runs on the iOS

system and various devices.

• iPhone 5s

Hardware Specification

Chips A7 chips with 64-bit architecture

Capacity 16GB

Wireless 802.11a/b/g/n Wi-Fi (802.11n 2.4GHz and 5GHz)

Model ME452CH/A

System iOS 7 (7.1.2)

Table 6.1: Hardware Specification of iPhone 5s

• iPod 5th Generation

47

Hardware Specification

Chips A5 chips

Capacity 32GB

Wireless 802.11a/b/g/n Wi-Fi (802.11n 2.4GHz and 5GHz)

Model MD720C/A

System iOS 7 (7.1.1)

Table 6.2: Hardware Specification of iPod 5th Generation

The Server Side

The server is implemented as a Python Web Application. And is host on the Google App Engine. Thus

the server application builds and runs on the Google’s infrastructure.

Runtimes Python (2.7)

Framework Webapp2

Database App Engine Datastore (schemaless NoSQL datastore)

Table 6.3: Runtime environment of the server application

6.2 Offline Capability

Description

Because mobile networks are not reliable, mobile clients may temporally lose connection. In a disconnection

period, the client of mobile questionnaire system should still access previously downloaded question objects

from its local storage. There are two Offline Mode (OM) experiments to test the offline capability.

Experiments

1. While being offline, the clients of mobile questionnaire system can still access previously downloaded

resources from the local storage.

2. While being offline, users can create response (e.g., answer objects) for downloaded question objects

and store the answer objects in the local storage.

Results

In the OM experiments, I evaluated the functionality of mobile questionnaire system in the disconnection

period. From the table 6.5, the client application can display previously downloaded objects on the device’s

screen. Also, the new answer objects also can be created and updated. Therefore, these results show that the

48

Read Write Update

Local questions (OM 1) Yes No No

Local answers (OM 2) Yes Yes Yes

Table 6.4: Results of offline capability experiments

client mobile application of the questionnaire system has the ability to work in offline mode with previously

download objects.

6.3 NoSQL and SQL database on mobile devices

Description

The MobiQ framework uses the local storage to save data and its performance depends on data availability.

In this experiment, I evaluate two types of data storage models on the mobile devices. SQLite is a relational

database and Couchbase Lite is a JSON Document NoSQL database. And I create all CRUD operations of

the database to evaluate performance on the mobile device.

Experiments

1. Insert Benchmark. In this experiment, I create arbitrate numbers of questions and then save them into

the local databases.

2. Update Benchmark. In this experiment, I modify the data which has already existed in the device’s

database. Firstly, I select them from the local database. Secondly, I sign the new value for them.

Finally, I save the data back to the local database.

3. Delete Benchmark. In this experiment, I give the specific ids to find the records and then delete the

objects in the local database.

49

Figure 6.1: Insert objects into the NoSQL and SQL database of the mobile devices

Figure 6.2: Update objects into the NoSQL and SQL database of the mobile devices

50

Figure 6.3: Delete objects into the NoSQL and SQL database of the mobile devices

Results

In this section, I set up necessary schemas and then run tests in the given inputs which are five, ten, twenty,

fifty and one hundred objects. And I record the time window for each set. In the figure 6.1, the results

show the insertion time for different sets of object. In the results, there is no difference among the given

number of inputs. The SQLite database can use half time of CouchDB Lite to finish the given task. Indeed,

for inserting five and ten objects, the SQLite only use one third time of CouchDB Lite. Thus, the SQLite

definitely has better performance in the insertion task. In the figure6.2, I also give the five different input

sets to test update performance between SQL and NoSQL database. To test update statement, I change one

of fields in the existed object. Thus, the two types of database need firstly find the right object, secondly

write new data to the object and thirdly save them back to the database. I record the time for all steps.

In the results, we can see CouchDB Lite has a little better performance than SQLite. In the figure 6.3, the

results show that deletion time for objects in the SQL and NoSQL database. In the results, the CouchDB

Lite has the better performance. All in all, the CouchDB Lite has better performance in the operation which

has to do the quires.

6.4 Data Synchronization (DS)

Description

The mobile questionnaire system should synchronize the local data with the cloud server and ensure the

consistency of data between the database on the cloud servers and the local storages of the mobile devices.

51

As already posited, the mobile devices can disconnect from the cloud servers for a while and modifications

can happen in that time. As a result, the data between the cloud servers and the mobile clients can be

inconsistent. To avoid this, the data synchronization is necessary. There are five DS experiments to evaluate

data consistency of the MobiQ framework that I outline below.

Experiments

1. In the disconnected period, the mobile clients can create answer objects (or response or queries). When

the connection is restored, the mobile clients will have to synchronize with the cloud servers.

2. While being offline, the cloud servers can create new questions. When connectivity is restored, the

mobile clients must get the newly created objects.

3. While being offline, the cloud servers can update their question objects. After connection is restored,

the mobile clients must update the new version data.

4. While being offline, the cloud servers can delete question objects from their databases. When the

connection is restored, the mobile clients should delete the same objects from their local storage.

5. The mobile clients should be able to delete local answer objects when related question objects are

modified by the cloud servers While being offline.

Results

In the DS experiments, I evaluate the synchronization capability of the mobile questionnaire system. In

these experiments, I simulate different modification scenarios in the mobile client and cloud server when

there is loss of connectivity. In the results, the mobile client and cloud server still have consistent data

after synchronizing. The results illustrate that the client-server system can update new modifications and

download unsynchronized changes from the server in synchronization process. This process can ensure the

consistent of data in the mobile client and cloud server in the mobile questionnaire system.

6.5 Performance of the Synchronization Protocol (SP)

Description

Because bandwidth is limited in wireless networks, the mobile questionnaire system should minimize band-

width usage when communicating with the cloud server. There are three SP experiments to evaluate the

performance of synchronization protocol in the mobile questionnaire system .

Experiments

1. While being offline, the mobile clients can synchronize with the server to get latest updates. Later,

the mobile clients can be disconnected from the server. During this time, the servers can create new

questions, and the mobile clients must synchronize with the servers to download only the new questions

so as to ensure consistent view with the servers.

52

2. The mobile questionnaire system will use unsynchronized data to check out answer objects. If the

related question of an answer objects is changed, this answer object will be deleted.

3. While being offline, the mobile client synchronizes with the servers to get the latest updates, and then

the mobile clients disconnect with the server. During this period, the servers can update new questions.

Next, the mobile clients must synchronize with the servers to only download new updates to maintain

consistency with servers.

Figure 6.4: Synchronization with 50 question objects

Results

In the SP experiments, I analyzed the bandwidth usage of the mobile questionnaire system’s synchronization

protocol. From the figure 6.4, there are 50 questions stored on the cloud server for evaluating. For the

basic strategy which is named Slow Sync, the application deletes all local records in the mobile devices and

downloads all questions from the cloud server. No matter how many changes happened on the cloud server,

this protocol downloads all 50 questions for every synchronization request. Thus, the Slow Sync consumes

13 kb for each synchronization process to download questions. On the other hand , the mobile questionnaire

system aims not to download all related data every time. It only updates new modifications after the last

syntonization. In this protocol, when only one updates happens in 50 questions, the mobile client of the

questionnaire system use 1.5 kb to download the new update. Even for the update on the twenty question

objects, the system only uses 5.2 kb for synchronization. The figure 6.5 presents the results for testing 100

questions for the performance of the synchronization protocol. In this test, there are 100 questions stored not

53

Figure 6.5: Synchronization with 100 question objects

the cloud server. Within the Slow Sync, it consumes 21.7 kb for each synchronization request. On the other

hand, the Fast Sync of the mobile questionnaire system only takes 1.6 kb space for updating one change, 2.3

kb for updating five changes, 3.1 kb for updating ten changes, 4kb for updating fifteen changes and 5.1 kb

for updating twenty changes. Comparing with Slow Sync, the mobile questionnaire system’s synchronization

protocol is more efficient.

6.6 Data Protection (DP)

Description

Since plain data in the mobile device is not secured, the mobile questionnaire system should secure sensitive

and private data while in use. There are three DP experiments to evaluate the security of the mobile

questionnaire system’s data.

Experiments

• Because of intermittent loss of connectivity, users’ name and password has to be stored into local storage

of each device to provide offline authentication. After downloading into the device, this sensitive and

private information should be hashed. When hacking tools are employed to look into these data, the

characters that are visible should be meaningless. Moreover, these characters cannot convert back to

the original data.

54

• Because of the intermittent loss of connectivity, private data such as users’ answer or results of check

list should not leak to other people. Hacking tools can be prevented from decoding the meaningless

data, but these characters should convert back to original data when they reach the backend servers.

• The mobile questionnaire system framework is a client-server model application. It means that there

are lots of communication between clients and servers. The data in the channel of transmission is also

designed to securely. When some people use hacking tool to monitor data in the transmission channel,

there is no clue to understand the transported message.

Encryption Hashing

Local questions Yes No

Local answers Yes Yes

Local password No Yes

Data in the transmission Yes No

Table 6.5: Results of data protection experiments

Results

In the DP experiments, I mock up different situations to test the data security in the mobile questionnaire

system. Since support offline authentication, this system need to save data in the local database. Thus I

push the user’s password to the mobile client and then use hash function to protect data. The figure 6.6 is

the screen shot of the database in the mobile device. I use hack tools to access local database files in the

device. And then I look into the private password data. To test the data security, I also show the password

in the plain text. After hashing, the password convert to unreadable string by the SHA256 hash algorithm.

When the connection is not available, the system authenticate in the offline. It compares the passwords which

have already hashed. For demonstrating, I insert the same User object two times to prove the same input

can have the same outputs. All the inputs are not be reversed after hashing. On the other hand, some data

need recreate when loading from the local database. So, I test the encryption functionality in the mobile

questionnaire system. All Question and Answer objects can encrypt before saving and then decrypt before

representing. Also, the secured hypertext transfer protocol use to transfer data between the mobile client and

cloud server. Therefore, the all data automatically encrypt before entering the transmission channel and also

Figure 6.6: User’s password in the local database

55

automatically decrypt after leaving from the transmission channel. In the results, the mobile questionnaire

system can protect data in the mobile device and transmission channel.

6.7 Conclusion

Experiments in this chapter evaluated the mobile questionnaire system from functionalities and performance.

The offline capability experiments prove the mobile questionnaire system can work in unstable wireless

network environment. While being offline, the system can work with local data. Additionally, it can add

newly created data into the system. In the second experiment, I compare the performance of two types of

databases, SQL and NoSQL. The result shows that the NoSQL database have better performance than SQL in

the operations which need to query existed data. And the SQL database has better performance for inserting

new data. In the data synchronization experiments, I mock up different scenarios to test the data consistent

after synchronization. The results show the mobile questionnaire system’s synchronization protocol can keep

data consistent between the mobile client and the cloud server. In the performance of the synchronization

protocol experiments, I compare the synchronization protocol used in the mobile questionnaire system to

the Slow Sync protocol. The results show the mobile questionnaire system’s synchronization protocol more

efficient than Slow Sync protocol. The last experiment focuses on data protection. I use hack tools to access

the data in the local database. All data is secured by the secure manager o f the mobile questionnaire

system. Therefore, these experiments prove that the mobile question system can work in the offline mode.

After suffering disconnection, the system can use its efficient synchronization protocol to keep consistent

data between the client and the cloud server. Also, all data is secured in the local database and transmission

channel.

56

Chapter 7

Summary and Contribution

With the mobile shifting, the mobile device is small and portable. And it can provide services to help

people to collect data from anywhere and anytime. However, the mobile device, which is different from the

desktop computer, has some limitations such as loss connectivity, small bandwidth and poor security. To

overcome these limitations, the research demonstrate a novel mobile architecture for the mobile questionnaire

system.

The proposed mobile questionnaire system is under a client-server architecture. The mobile client is an iOS

platform application. And the server is a Python web application hosting on the Google App Engine. The

proposed client is a mobile application. The mobile client can work in the online and offline modes. When

there is connection, the mobile client makes requests to the server to pull and push the newest data. On the

other hand, the mobile can work with the previous downloaded data which is stored in the local database.

During the disconnection period, the application still can read and write data with the local database. For

example, users still can be authenticated with the proposed mobile questionnaire system when the connection

breaks down. When the connection restores, all modifications will synchronize with the cloud server through

the efficient synchronization protocol of the designed mobile questionnaire system. Therefore, data can always

keep the consistency between the mobile clients and the cloud server. All steps of synchronization work with

the RESTful WS interfaces of the the server. Additionally, the system provide its own police to secure data.

The private and sensitive data will encrypt or hash before storing the local database. In this situation, if the

device lose, other people is still cannot access the data.

The proposed server side of this system is a Python Web application. And it has been implemented and hosted

on the Google App Engine. Google App Engine is the cloud platform provided by the Google. Therefore,

the application on the Google App Engine shares the Google’s infrastructures. The NoSQL database, data

store of Google APP Engine, is used on the server side of the proposed mobile questionnaire system and it

provides high scalability.

And the proposed mobile questionnaire system is evaluated by the following experiments.

• Offline capability

1. Read data when the mobile device is offline

2. Write data to the local storage when the mobile is offline

57

• Data synchronization

1. The mobile client creates new data during the offline

2. The cloud server creates new data during the offline

3. The cloud server updates existed data during the offline

4. The cloud server deletes existed data during the offline

5. The mobile client automatically deletes answer for non-existed questions

• Performance of the Synchronization Protocol

1. Only new data will be transferred

• Data Protection

1. Sensitive and private data cannot readable

Apart from these experiments, I also compare the performance of NoSQL and SQL on the mobile device.

This is the preparation for the future work.

In the conclusion, the proposed mobile questionnaire system ensures a questionnaire system can work in

an offline mode. Thus, the system is not only to read data during the disconnection period but also can

write data to the database. To keep the data consistence, the system also provides a high efficient two-tire

synchronization protocol.

58

Chapter 8

Future Works

To achieve the better usability, there are few other desirable features to add into the proposed mobile

questionnaire systems.

• Peer to peer synchronization

The current state of the proposed mobile questionnaire uses a two-tie synchronization protocol to pro-

vide data consistency. All synchronization requests must firstly go to the centralized server and then

the server pushes new data to the requested client. This synchronization process only works when

the connection is restored. As the questionnaire or exam system have unique characters, they often

happened in the same location or sharing the same wi-fi resource. If updates are created on the mobile

clients, other users who share the same wi-fi resource can directly update their database. The synchro-

nization can finish in the local area and also can be finished immediately. With this feature, only one

copy needs to send the server to update the server’s database. And other clients are not necessarily

push and pull data from the centre server. Therefore, it increases the data availability and decreases

the repeated work of the server.

• NoSQL datastore

The current state of the proposed mobile questionnaire system uses a SQL based database on the clients.

The format of data models which is structured before using. Therefore, the data schema is fixed and

is difficult to change. On the other hand, the NoSQL database is not required to predefined schema

before using. The NoSQL is using an unstructured approach to manage data model. For the mobile

questionnaire system, the data model is always depends on the different requirement. Therefore, this

system need a flexible way to manage uncertain data model.

• Multiple media

The proposed questionnaire system employs plain texts to represent questions and answers. To increase

the usability, the novel questionnaire system should add different data source to clearly represent ques-

tions and answers. For example, it can add videos to help users to understand the content of the

questionnaire. The format of video streaming is different from the plain text. Thus, it should incorpo-

59

rate new deign that is compatible with the model to store.

• Cross platform

In the proposed questionnaire system, the mobile client is only working with iOS platform on the mac’s

device. On the mobile market, there are many other operating systems. So, the client of the mobile

questionnaire system must be working in the different mobile platforms.

In conclusion, this research involves many different areas of other researches. And they could raise some

issues in the current work. Thus, this research, mobile questionnaire system, could still expand.

60

References

[1] Sachin Agarwal, David Starobinski, and Ari Trachtenberg. On the scalability of data synchronization
protocols for PDAs and mobile devices. IEEE Network, 16:22–28, 2002.

[2] Vijaya Anand. Creating a rest service using asp.net web api. http://www.prideparrot.com/blog/

archive/2012/3creating_a_rest_service_using_asp_net_web_api. Accessed Sept, 2013.

[3] Fatna Belqasmi, Jagdeep Singh, and R.Hs Suhib Younis Bani Melhemand Glitho. SOAP-Based vs.
RESTful Web Services: A Case Study for Multimedia Conferencing. IEEE Internet Computing, 2012.

[4] Eric A. Brewer. Towards robust distributed systems. Proceeding of the nineteenth annual ACM sympo-
sium on Principles of distributed computing, pages 7–10, 2000.

[5] Peter Brittenham. An overview of the web services inspection language. http://www.ibm.com/

developerworks/webservices/library/ws-wsilover/. Accessed Sept, 2013.

[6] Greg Burd. Nosql. https://www.usenix.org/legacy/publications/login/2011\-10/openpdfs/

Burd.pdf. Accessed Nov, 2013.

[7] Manish Chhabra. Rest and soap web services analogy. http://blog.manishchhabra.com/2013/04/

rest-and-soap-web-services-analogy/. Accessed Sept, 2013.

[8] Adam DuVander. The next wave enterprises moving soap to rest. http://blog.programmableweb.

com/2012/03/22/the-next-wave-enterprises-moving-soap-to-rest/. Accessed March, 2014.

[9] Joel Evans and Anil Mathur. The value of online surveys. Internet Research, 15:195–219, 2005.

[10] Seth Gilbert and Nancy A. Lynch. Perspectives on the cap theorem. http://groups.csail.mit.edu/
tds/papers/Gilbert/Brewer2.pdf.

[11] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The Dangers of Replication and a
Solution. Sigmod Record, 25:173–182, 1996.

[12] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. Energy Consumption of Hash Functions.
ELEKTRONIKA IR ELEKTROTECHNIK, 18, 2012.

[13] Web Services Architecture Working Group. Web services glossary. http://www.w3.org/TR/ws\-gloss/.
Accessed Sept, 2013.

[14] Derrick Harris. Infrastructure key to google’s no-downtime guarantee. http://gigaom.com/2011/01/

14/infrastructure-key-to-googles-no-downtime-guarantee/. Accessed Jan, 2014.

[15] Shomoyita Jamal and Ralph Deters. Using a Cloud-Hosted Proxy to support Mobile Consumers of
RESTful Services. Procedia Computer Science, 5:625–632, 2011.

[16] Panagiotis Kalagiakos and Panagiotis Karampelas. Cloud Computing Learning. 5th International Con-
ference on Application of Information and Communication Technology (AICT), pages 1–4, 2011.

[17] Dejan Kovachev, Yiwei Cao, and Ralf Klamma. Mobile Cloud Computing: A Comparison of Application
Models. 2011.

61

[18] Richard Kwadzo Lomotey. Enabling mobile devices to host consumers and providers of web services.
M.sc. thesis, University of Saskatchewan, March 2012.

[19] Richard Kwadzo Lomotey and R. Deters. Reliable Consumption of Web Services in a Mobile-Cloud
Ecosystem Using REST. IEEE First International Symposium on Service Oriented System Engineering
(SOSE), pages 13–24, 2013.

[20] Richard Kwadzo Lomotey and Ralph Deters. SOPHRA: A Mobile Web Services Hosting Infrastructure
in mHealth. IEEE First International Conference on Mobile Services, pages 88–95, 2012.

[21] Peter Mell and Timothy Grance. The nist definition of cloud computing recommendations of the national
institute of standards and technology. National Institute of Standards and Technology, Information
Technology Laboratory, 9 2011.

[22] Gay Helen Perkins. Will Libraries’ Web-based Survey Methods Replace Existing Non-Electronic Survey
Methods Information Technology and Libraries, pages pp. 123–126, Perkins, G. H.

[23] Pavan Kumar Potii. On the design of web services: Soap vs. rest. M.sc. thesis, University of North
Florida, August 2011.

[24] Dan Pritcheit. BASE: An Acid Alternative. ACM Queue, pages 105–114, May 2008.

[25] Shahryar Shafique Qureshi, Toufeeq Ahmad, Khalid Rafique, and Shuja ul islam. Mobile cloud computin-
gas future for mobile applications Implementatio methods and challenging issues. In IEEE International
Conference on Cloud Computing and Intelligence Systems, 2011.

[26] M.N.O. Sadiku. Cloud Computing: Opportunities and Challenges. IEEE Potentials, pages 34–36, 2014.

[27] Diaa Salama, Hatem Abdual-Kader, and Mohiy Hadhoud. Studying the Effects of Most Common
Encryption Algorithms. International Arab Journal of e-Technology, 2, 2001.

[28] Vatika Sharma and Meenu Dave. SQL and NoSQL Databases . International Journal of Advanced
Research in Computer Science and Software Engineering, 2:20–27, 2012.

[29] Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and Ellen W. Zegura. Serendipity: Enabling Remote
Computing among Intermittently Connected Mobile Devices. MobiHoc’12, pages 145–154, 2012.

[30] Google Developers Site. Google App Engine. https://cloud.google.com/products/app-engine.
Accessed Nov, 2013.

[31] Google Developers Site. Google Cloud Datastore. https://developers.google.com/datastore/docs/
overview. Accessed Nov, 2013.

[32] Google Developers Site. Google Cloud SQL. https://developers.google.com/cloud-sql/docs/

introduction. Accessed Nov, 2013.

[33] Google Developers Site. Google Cloud SQL. https://developers.google.com/cloud-sql/docs/

introduction. Accessed Nov, 2013.

[34] Google Developers Site. Google Compute Engine. https://developers.google.com/compute/docs/.
Accessed Nov, 2013.

[35] Google Developers Site. Memcache Python API. https://developers.google.com/appengine/docs/
python/memcache/. Accessed Nov, 2013.

[36] Alexander Stage. Synchronization and replication in the context of mobile applications. http://www14.
in.tum.de/konferenzen/Jass05/courses/6/Papers/11.pdf. Accessed Jan, 2013.

[37] Tutorialspoint. Mobile computing brief overview. http://www.tutorialspoint.com/mobile\

_computing/mobile_computing_overview.htm. Accessed Feb, 2013.

62

[38] Bipin Upadhyaya. Migration of SOAP-based Services to RESTful Services. 13th IEEE International
Symposium on Web System Evolution, pages 105–114, 2011.

[39] w3resource.com. Nosql. http://www.w3resource.com/mongodb/nosql.php. Accessed Sept, 2013.

[40] Qian Wang. Mobile cloud computing. M.sc. thesis, University of Saskatchewan, January 2011.

63

