
A Constraint Logic Programming Approach to

Predicting the Three-Dimensional Yeast Genome

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Kimberly MacKay

c©Kimberly MacKay, October 2016. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In order for all of a cell’s genetic information to fit inside its nucleus, the chromosomes must undergo

extensive folding and organization. Just like in origami where the same piece of paper folded in different

ways allows the paper to take on different forms and potential functions, it is possible that different genomic

organizations (or architectures) are related to various nuclear functions. Until recently, it has been impossi-

ble to comprehensively investigate this relationship due to the lack of high-resolution and high-throughput

techniques for identifying genomic architectures. The recent development of a technique called Hi-C, which

is a derivation of chromosome conformation capture, has made it possible to detect the complete set of in-

teractions occurring within (intra-interactions) and between (inter-interactions) chromosomes in the nucleus.

Many computational methods have been proposed that use these analytical results to infer the rough three-

dimensional (3D) architecture of the genome. However, the genomic architecture also impacts additional

types of nuclear interactions and techniques exist that are able to capture and measure these interactions.

Unfortunately, it is difficult to incorporate these additional datasets into the existing tools. To overcome

this, a novel application of constraint logic programming (CLP) was used to develop a new program for the

prediction of the 3D genomic architecture. The unique representation used in this program lends itself well

to the future incorporation of additional genomic datasets. This thesis investigates the most efficient way to

date to represent and optimally solve the constraint satisfaction problem of the 3D genome. The developed

program was used to predict a 3D logical model of the fission yeast genome and the results were visualized

using Cytoscape. This model was then biologically validated through literature search which verified that the

prediction was able to recapitulate key documented features of the yeast genome. Future work will utilize this

tool as a computational framework and extend it to incorporate additional genomic datasets and information

into the prediction and visualization of the 3D genomic architecture. The development of the CLP program

described here is a step towards a better understanding of the elusive relationship between the 3D structure

of the genome and various nuclear functions.

ii

Acknowledgements

I would like to thank my supervisor Dr. Anthony Kusalik and my biological collaborator Dr. Christopher

Eskiw for their continued patience, guidance and encouragement over the last two years. Additionally, I

would like to thank my external examiner Dr. Steve Robinson and my committee members (Dr. Anthony

Kusalik, Dr. Christopher Eskiw and Dr. Ian McQuillian) for their insight and participating in my thesis

defence. Funding for my Master’s Degree was provided by the Department of Computer Science, the College of

Graduate Studies and Research, the Government of Saskatchewan and the Natural Sciences and Engineering

Research Council of Canada.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Background 4
2.1 Genome Organization and Topology . 4
2.2 Biological Techniques for Detecting Genome Organization and Topology 7
2.3 Additional Biological Datasets . 12
2.4 Computational Techniques for Predicting Genome Organization 13
2.5 Constraint Logic Programming . 15

3 Research Objectives 17

4 Data and Methodology 19
4.1 Selecting a Constraint Logic Programming Paradigm . 19
4.2 Data Acquisition . 19

4.2.1 Synthetic Data . 19
4.2.2 Hi-C Data . 20

4.3 Initial N -Queens Knowledge Representation . 20
4.3.1 Automation . 24

4.4 Minimal N -Queens Knowledge Representation . 26
4.5 Improving the Program Runtime . 28

4.5.1 Divide and Conquer . 28
4.6 Minimal, Non-Redundant N -Queens Knowledge Representation 30
4.7 Visualization . 32
4.8 Evaluation and Validation . 33

4.8.1 Computational Evaluation . 33
4.8.2 Computational Feature Extraction . 33
4.8.3 Biological Validation . 33

5 Results and Discussion 34
5.1 Initial N -Queens Knowledge Representation . 34
5.2 Minimal N -Queens Knowledge Representation . 35
5.3 Minimal, Non-Redundant N -Queens Knowledge Representation 40
5.4 Evaluation of Various Heuristics . 43
5.5 Visualization . 44
5.6 Biological Validation . 46
5.7 Comparison to Existing Methods for Solving the 3D Genome Reconstruction Problem 46
5.8 Comparison to CLP Methods for 3D Protein Structure Prediction 49

iv

5.9 Future Work . 50

6 Conclusion 52

References 54

A CLP Knowledge Representations of the Three-Dimensional Genome Reconstruction
Problem 59
A.1 Overview of the Initial CLP Knowledge Representation . 59
A.2 Overview of the Minimal CLP Knowledge Representation . 61
A.3 Overview of the CLP knowledge Representation for a Intra-Interaction Subproblem 62
A.4 Overview of the CLP knowledge Representation for a Inter-Interaction Subproblem 64

B Perl Programs for the Automation of Portions of the Original CLP Program 69
B.1 compression of rows.pl . 69
B.2 compression of columns.pl . 71
B.3 generate bins.pl . 72
B.4 generate vars.pl . 73

C Perl Programs for the Automated Generation of the Minimal, Non-Redundant CLP
Program 75
C.1 generate minimal non redundant eclipse program intra.pl . 75
C.2 generate minimal non redundant eclipse program inter.pl . 79

D Perl Programs for the Automation of Cytoscape Input Based on the Minimal, Non-
Redundat CLP Program Results 84
D.1 generate cytoscape input for intra.pl . 84
D.2 generate cytoscape input for inter.pl . 85
D.3 generate linear cytoscape input.pl . 86

E Example Command Line Input for the Minimal CLP Program 89

F Synthetic Datasets Used for Initial Testing and Development 90
F.1 5 × 5 Matrix . 90
F.2 10 × 10 Matrix . 90
F.3 15 × 15 Matrix . 90
F.4 20 × 20 Matrix . 91
F.5 22 × 22 Matrix . 91
F.6 25 × 25 Matrix . 92
F.7 30 × 30 Matrix . 92

v

List of Tables

5.1 Features of the Initial N -Queens Knowledge Representation. 34
5.2 Features of the Minimal N -Queens Knowledge Representation. 38
5.3 Features of the Minimal, Non-Redundant Knowledge Representation. 42
5.4 The Effect of Different Variable Selection Methods on Average Program Runtime (Elapsed

Time) and Average Compile Time. 44

vi

List of Figures

2.1 A subset of the different levels of genomic structural organization. 5
2.2 Imaging of Chromosome Territories Using Fluorescence in situ Hybridization. 6
2.3 A Simplified Overview of the Chromosome Conformation Capture Protocol. 8
2.4 A Simplified Overview of the Hi-C Protocol. 9
2.5 A representation of the DNA-DNA interactions that can occur within the 3D genome structure. 10
2.6 An example of a small contact map. 12

4.1 An example of two possible solutions to the 3D genome reconstruction problem in haploid cells. 21
4.2 An example an empty N -Queens board. 22
4.3 The initial workflow for producing a logical model of the three-dimensional yeast genome. . . 25
4.4 An example an empty N -Queens board using a minimal knowledge representation. 27
4.5 A visualization of the N -Queens based, minimal knowledge representation for the 3D genome

reconstruction problem. 27
4.6 Identification of subproblems within the yeast contact map. 29
4.7 The workflow for producing a logical model of the three-dimensional yeast genome using a

minimal N -Queens representation. 31

5.1 The Relationship Between the Average Program Runtime (Elapsed Time) and Number of
Variables for the Minimal N -Queens Knowledge Representation. 36

5.2 Average Program Runtime (Elapsed Time) Using the Minimal N -Queens Knowledge Repre-
sentation. 37

5.3 Average Program Runtime (Elapsed Time) Using the Minimal, Non-Redundant Subproblem-
Based N -Queens Knowledge Representation. 41

5.4 Visualization of the 3D yeast logical model using Cytoscape. 45
5.5 Visualization of the Nuclear Localization of Telomeres and Centromeres in S. pombe 47
5.6 Hierarchy of existing computational methods for predicting 3D genomic structure. 48
5.7 Results of existing computational methods for predicting 3D genomic structure. 49
5.8 Comparison of known and predicted structures for the WW domain from Dal Pal et al.. . . . 50

E.1 An example of the command line input and output. 89

vii

List of Abbreviations

3C Chromosome Conformation Capture

3D Three-Dimensional

A Adenine

C Cytosine

CLP Constraint Logic Programming

CT-IC Chromosome Territory - Interchromatin Compartment

D coefficient Dynamics Coefficient

DNA Deoxyribonucleic Acid

FISH Fluorescence in situ Hybridization

GEO Gene Expression Omnibus

GFD Geocode Solver for Finite Domains

G Guanine

H. sapiens Homo sapiens

IC Interval Constraints

ICN Interchromatin Network

PCR Polymerase Chain Reaction

SNP Single Nucleotide Polymorphism

S. pombe Schizosaccharomyces pombe

T Thymine

TAD Topologically Associating Domain

viii

Chapter 1

Introduction

A prominent unanswered question in biology is how the three-dimensional (3D) structure of a cell’s genetic

information affects various nuclear functions. A variety of microscopy techniques have been used to infer the

architectural organization of the genome within the nucleus [63]. Unfortunately, these techniques have not

been able to capture the complete genomic structure since they are low-resolution and low-throughput.

Despite this, microscopy has provided interesting and invaluable insights into genome organization. For

instance, it has established that chromosomes preferentially compartmentalize into distinct territories within

the nucleus (known as chromosome territories), demonstrating a non-random spatial organization of the

genome [6].

It is currently unknown whether the 3D genomic organization drives various nuclear functions or vice

versa. Alterations in the 3D organization of chromosome territories have been demonstrated in a wide

variety of cellular processes, including differentiation [31], serum response [38], therapeutic response [39]

and response to DNA damage [40]. The unique spatial organization of the genome that is seen under

these different cellular conditions is hypothesized to be a crucial mechanism driving various nuclear and

cellular functions. It has been theorized that this dynamic organization of the genome may be driven by

the global regulation of gene expression [1]. This hypothesis suggests that groups of genes which share

common regulatory mechanisms for controlling gene expression, such as pools of transcription factors, will

come together in 3D space and physically interact [13, 54]. The interactions of actively transcribed genes are

mediated through their association with specialized structures called transcription factories [49, 51].

The recent development of a biological technique called Hi-C [36] has allowed for the genome-wide detec-

tion of DNA regions in close 3D proximity. This proximity is often referred to as an “interaction” between

the genomic regions. A multitude of computational methods have been developed that infer a crude 3D

1

structure of the genome using solely Hi-C results [4, 26, 34, 74]. Currently, none of these existing methods

utilize a constraint logic programming approach for modelling and predicting the 3D genomic architecture. It

is well known that constraints are a powerful tool for modelling many problems [28] and they have also been

successfully applied to the prediction of the 3D structure for other biological components [21, 22, 24, 48].

Additionally, CLP has many advantages for representing and solving biological problems including concise

programs, a close relationship between program specifications and expert knowledge and the ability to rapidly

infer biological meaning from successful results. This thesis utilizes a constraint logic programming paradigm

to develop an efficient 3D genome prediction program. The predicted models were biologically validated

through literature search.

The long range chromatin interactions detected by Hi-C are not the only type of interactions that occur

in the genome; experimental techniques exist that are able to capture additional types of nuclear interactions

and information such as transcription factor binding [5], DNA-lamin interactions [47] and genomic chemical

modifications (epigenetic modifications) [5, 41]. Unfortunately, these additional datasets are under-utilized

by the current methods for predicting the 3D genomic architecture and the existing tools cannot be easily

extended to allow for this integration. Combining these additional data sources into the prediction and

visualization of the 3D genome structure will allow researchers a more comprehensive look into the interplay of

various genomic factors and modifications in 3D space. Our hypothesis is that by combining these additional

data sources into the prediction of the 3D genome structure, a model that is more accurate, information rich

and biologically relevant can be produced.

The unique spatial organization of the genome seen under different cellular conditions is hypothesized

to be a crucial mechanism driving various nuclear functions such as transcription [20] and DNA-repair [42].

Currently, it is difficult to test this theory due to the lack of computational methods that can integrate and

visualize additional genomic datasets and information with the predicted 3D genome structures. The main

aim of this thesis was to determine the most effective way to represent and solve the constraint satisfaction

problem of the 3D genome using constraint logic programming. The structural models produced by this

method were verified through literature search to determine the biological accuracy of the predicted models.

Future work will focus on additional biological validation of the models (by our collaborators, Dr. Christopher

2

Eskiw and Dr. Troy Harkness) as well as extending the developed programs to accommodate multiple types

of input datasets into the prediction and visualization of 3D genomic architectures. Overall, the method

developed here is a step towards a better understanding of the relationship between 3D genomic structure

and nuclear functions.

3

Chapter 2

Background

2.1 Genome Organization and Topology

The genome is the complete set of an organism’s genetic information. It is a collection of cellular instructions

required for an organism’s development, growth and maintenance [8]. These instructions are encoded through

repeating units of the nucleotide bases: adenine, thymine, guanine and cytosine (A, T, G and C, respectively).

When these bases are covalently linked together, they form long molecular strands collectively known as

deoxyribonucleic acid (DNA) [46]. In general, genomic DNA can be categorized into two main components

which vary in their nuclear functions: genes (also known as coding regions) and non-coding regions. In

general, genes provide the instructions for (or code for) the construction of proteins, whereas non-coding

regions generally provide regulatory functions within the nucleus [46].

Different organisms can vary drastically in their genome size and the number of corresponding genomic

features (such as the number of genes, chromosomes and genomic copies) [8]. For instance, it is possible for

organisms to have more then one copy of their genome present in each cell. The number of genomic copies

a cell contains is referred to as the organism’s ploidy. Humans are considered diploid organisms since they

have two genomic copies in their non-reproductive cells, whereas fission yeast are usually considered haploid

organisms since they generally have only one genomic copy [8]. While the genome does include non-nuclear

DNA, such as mitochondrial and chloroplast DNA, for the purpose of this thesis, references to “the genome”

will only include nuclear (or nucleoid) DNA.

In bioinformatics, the genome is often abstracted as a set of strings using an alphabet of the four letters: A,

T, C and G (Figure 2.1A). This is often how the results of biological experiments, like sequencing, are encoded.

While informative, this type of genomic representation lacks crucial information about the natural structure

4

E F

D

A B

ATGCATGCATGC

TACGTACGTACG

C

Figure 2.1: A subset of the different levels of genomic structural organization. Panel A represents
the two linear DNA strands with the various nucleotides labeled as A, T, C and G (adenine, thymine,
cytosine and guanine, respectively). Panel B represents a naked double stranded DNA helix, where
the blue lines are the DNA backbones and the purple lines represent Watson-Crick complementary
base pairs. Panel C represents a single nucleosome (DNA complexed with histone proteins). Panel
D represents the “beads on a string” model of chromatin. Panel E represents a single chromosome.
Panel F is a representation of the genome within the nucleus/nucleoid. The grey outline represents
the nuclear boundary while the green, blue and orange lines represent individual chromosomes.

of DNA within the cell. In reality, the genome contains multiple levels of structural organization, from linear

DNA strands all the way up to the 3D genomic organization. A slightly more accurate representation of

cellular DNA structure is shown in Figure 2.1B. This panel depicts a simplified structure of a double helix,

where two strands of DNA are connected through the interactions between Watson-Crick complementary

base pairs to form a “twisted ladder”. Within the cell, this ladder is then wrapped around a set of proteins

called histones, forming a structure known as a nucleosome (Figure 2.1C) [70]. When multiple nucleosomes

are formed on a strand of DNA, the structure is collectively known as chromatin [8]. Within the nucleus,

chromatin can be found in either a relaxed structure known as euchromatin, which is typically associated

with genes undergoing active transcription, or in a compacted structure known as heterochromatin, which is

5

Figure 2.2: Imaging of Chromosome Territories Using Fluorescence in situ Hybridization. This figure
depicts the nuclear localization of chromosome 5 in different H. sapiens tissues from reference [50].
The blue areas in the image are cellular nuclei while the green areas are the two copies of chromosome
5. Within liver cells, chromosome 5 is preferentially located within the interior of the nuclear volume,
while in lymphocytes and lung cells it is found on the periphery of the nuclear volume. Specific
methodologies and more details can be found in reference [50].

generally associated with genes that are not being actively transcribed [70]. The relaxed chromatin structure

is often referred to as the “beads on a string” model (Figure 2.1D) while the compacted chromatin structure

is often referred to as a 30 nm fibre [70]. Chromatin can then be further condensed into a structure known

as the 300 nm fibre which is then packaged into chromosomes (Figure 2.1E). Many organisms have multiple

chromosomes within their genome, which will interact with each other within the nuclear volume (the area

within the nuclear membrane or nucleoid region — Figure 2.1F).

Recently, relatively new biological techniques have revealed key features of genomic structure and or-

ganization within and between chromosomes in the nuclear volume. These techniques have uncovered the

existence of genomic structures called topologically associating domains (TADs) and chromosome territories.

TADs are linear regions of DNA where intra-chromosomal interactions (DNA-DNA interactions that occur

between regions of a DNA strand) occur at a higher frequency when compared to the surrounding chromoso-

mal region [18]. They are loosely conserved structures [11] that are hypothesized to be a basic unit of genome

folding [11] and are associated with gene regulatory features and transcription factories [15]. Chromosome

territories are distinct, non-random areas within the nucleus that chromosomes will preferentially compart-

mentalize into (Figure 2.2) [6, 43, 50]. The location of chromosome territories within the nucleus is dynamic

and dependent on a the cell’s internal and external environment [6].

Investigations into the structure-function relationship of various macromolecules has been a fundamental

aspect of molecular biology research for many years. Mainly, this research has revolved around determining

the relationship between the 3D structure of proteins and their various functions. Recently, this research

6

area has been extended to include investigations into the structure-function relationship of the genome. The

3D structure and organization of the genome is known to be dynamic and complex. Research in this area has

led to multiple hypotheses about how the genome may be organized in 3D space including the chromosome

territory - interchromatin compartment (CT-IC) model [14], the lattice model [62] and the interchromatin

network (ICN) model [7]. Briefly, the CT-IC model suggests that large channels exist between chromosome

territories called inter-chromatin compartments. This model restricts gene transcription to occur exclusively

on the periphery of chromosome territories within the inter-chromatin compartments [14]. Alternatively, the

lattice model loosens this restriction by suggesting that transcription can occur both within a chromosome

territory as well as on the periphery [62]. Finally, the ICN model completely removes the separation between

chromosome territories and inter-chromatin compartments stating instead that the chromatin fibres can

intermingle and make both intra- (within) and inter- (between) chromosomal interactions within the nuclear

volume [7].

2.2 Biological Techniques for Detecting Genome Organization and

Topology

Recently, the development of a technique called chromosome conformation capture (3C) [16] has allowed

researchers to query if two genes (or DNA elements) are in close physical proximity. The close 3D spatial

proximity of two genomic regions is often referred to as an “interaction” between the two regions, or a long-

range chromatin interaction. 3C is a proximity-based ligation reaction, which uses chemical cross-linking

to preserve the genome architecture (Figure 2.3). Briefly, (1) cells are fixed with formaldehyde in order to

covalently cross-link genomic regions that are in close 3D proximity. (2) The cross-linked fragments are then

digested with a restriction enzyme to remove the potentially large non-interacting interconnecting segments

of DNA. (3) Digested fragments are ligated together. (4) The initial cross-linking is removed resulting in

DNA fragments that represent the two genomic regions that form an interaction. (5) DNA fragments are

purified and polymerase chain reaction (PCR) with region specific primers is used to detect interacting

genomic regions. Although elegant in its design, 3C requires a priori identification of candidate regions

7

GR 1
GR 2

(1) Cross-linking of
interacting genomic

regions

(2) Restriction digest
GR 1
GR 2

(3) Intra-molecular
ligation

GR 1
GR 2

(4) Cross-link reversal GR 1 GR 2

(5) PCR-based
detection and
quantification

GR 1 GR 2

Figure 2.3: A Simplified Overview of the Chromosome Conformation Capture Protocol adapted from
reference [12]. GR stands for “Genomic Region”. The blue lines represent the location of a restriction
enzyme cut site. The green boxes represent a pair of genomic regions being chemically cross-linked
together. The red arrows represent the location and direction of a theoretical set of primers that would
be required for detecting an interaction between GR 1 and GR 2.

suspected of interacting within the nucleus in order to design region specific primers that are able to identify

the interaction.

Hi-C [36] is a biological technique derived from 3C that utilizes next generation sequencing technologies

to identify all the DNA-DNA interactions occurring within the genome. An overview of the experimental

procedure is depicted in Figure 2.4. Briefly, steps (1), (2), (4) and (5) are similar to the 3C protocol described

above. Prior to step (3), the sticky ends generated through the restriction digest in step (2) are filled

with biotinylated nucleotides before blunt end ligation. The biotinylated products are then purified using

streptavidin beads allowing for the detection of fragments that were cut by restriction enzymes. Sequencing

primers are then ligated to the ends of the purified fragments prior to library amplification. Paired-end

8

GR 1
GR 2

(1) Cross-linking of
interacting genomic

regions

(2) Restriction digest
GR 1
GR 2

(4) Intra-molecular
ligation

GR 1
GR 2

(5) Cross-link reversal GR 1 GR 2

(7) Paired-end
Sequencing GR 1 GR 2

(3) Biotin labelling
GR 1
GR 2

(6) Biotin pull-down GR 1 GR 2

Figure 2.4: A Simplified Overview of the Hi-C Protocol adapted from reference [36]. GR stands
for “Genomic Region”. The blue lines represent the location of a restriction enzyme cut site. The
green boxes represent a pair of genomic regions being chemically cross-linked together. The orange
circles represent biotin. The purple symbol represents a streptavidin bead that can be used to purify
molecules with a biotin label. The red arrows represent the primers that would be required for paired-
end sequencing.

9

sequencing is then performed and the resultant reads are mapped to a reference genome using a Hi-C specific

read mapper [2]. Since the reads generated from Hi-C can be comprised of sequences from linearly distant

regions of the genome, these read mappers must be able to split and map reads to distal genomic locations.

Overall, Hi-C has enabled the high-resolution detection of a set of inter- and intra-chromosomal interactions

(outlined in Figure 2.5).

E

B C D

A

CHR K:

CHR L:

Figure 2.5: A representation of the DNA-DNA interactions that can occur within the 3D genome
structure. Panels give the following representations. A: the linear locations of the genes undergo-
ing an inter-chromosomal (trans) interaction between two hypothetical chromosomes, K and L. B: an
inter-chromosomal interaction. C: the nucleus with the coloured lines representing the separate chro-
mosomes. D: an intra-chromosomal (cis) interaction. These genes might be linearly “distant” but still
have a detectable interaction in 3D space. E: the linear locations of the genes that are undergoing a 3D
intra-chromosomal interaction. The orange and yellow regions in panels B, C, D and E are examples
of possible gene locations. The red circles in panels B and C represent the genomic regions involved
in an interaction.

Whole-genome contact maps are generated by mapping the raw sequence reads produced from Hi-C

experiments. A contact map is a matrix (A) of size N ×N where N is the number of genomic “bins” (linear

regions of genomic DNA) that the genome is separated into. For instance, a Hi-C experiment in yeast that

is able to attain 10 kB resolution will generate 1258 genomic bins, where each bin represents roughly 10

kB of linear DNA sequence. In general, the number of genomic bins is approximately equal to the total

10

genome size divided by the Hi-C experimental resolution. Each cell (Ai,j) of A records how many times the

genomic bin i was found to interact with the genomic bin j. This is often referred to as the frequency of

the interaction between Ai and Aj . Systematic biases within the whole-genome contact map are removed

by normalizing the interaction frequencies using a method similar to hicpipe [71]. In general, the normalized

interaction frequency for a cell of the whole-genome contact map (Ai,jnorm) is equal to the number of

observed interactions (Ai,jobserved) divided by the number of expected interactions (Ai,jexpected).

Whole-genome contact maps are characteristically sparse and symmetric along the diagonal. An example

of a small contact map is shown in Figure 2.6. Contact maps can be generated from a single-cell or a

population of cells. Population Hi-C experiments produce whole-genome contact maps that are composed of

a finite number of “interaction profiles”. Each interaction profile is a matrix (P) the same size as the whole-

genome contact map. Similarly to the whole-genome contact map, the individual cells of each interaction

profile (Pi,j) represent the frequency of an interaction between genomic region i and genomic region j.

These frequencies will be found in the whole-genome contact map such that A =
∑

k πkPk where πk is the

proportion of each interaction profile matrix within the population of cells. Interaction profiles are thought

to represent subpopulations of cells with unique genome conformations that potentially correspond to cells

in similar phases of the cell cycle or with similar gene expression profiles. [45]. Unfortunately, it is currently

impossible to deconvolute the exact set of interaction profiles that contribute to the whole-genome contact

map.

Hi-C datasets that are generated from a cellular population are inherently problematic since they represent

the ensemble of interactions occurring within a population of cells resulting in a heterogeneous dataset. While

single cell Hi-C methodologies exist [45], they are not commonly preformed. Hi-C datasets in polyploid

organisms present further difficulties since it is extremely difficult to determine which chromosome copy is

participating in a specific interaction. Researchers have developed a Mus musculus (mouse) model which

allows them to separate chromosome pairs due to unique single nucleotide polymorphisms (SNPs) found in

the individual chromosome copies [73]. Recently, the knowledge of parental SNPs and haplotype phasing data

from the GM12878 Homo sapiens (human) cell line has been used to separate chromosome pairs in human

Hi-C experiments [52]. Unfortunately, this technique is only applicable to samples where parental SNPs are

11

Bin1 Bin2 Bin3 Bin4 Bin5

Bin1 - 0.06 0.75 0.06 0.02

Bin2 0.06 - 0.55 0.45 0.15

Bin3 0.75 0.55 - 0.33 0.4

Bin4 0.06 0.45 0.33 - 0.08

Bin5 0.02 0.15 0.4 0.08 -

Figure 2.6: An example of a small contact map. The symmetric lower half of the contact map is
indicated in light grey. The diagonal that represents “self-self” interactions is indicated in green. The
genomic bin labels are shown in dark grey along both edges of the contact map. The numbers within
the cell are examples of the normalized interaction frequency count.

known and is therefore not widely applicable to all human Hi-C datasets. Additionally, the positions of similar

chromosome-specific SNPs have not been identified in other organisms and the process of identifying these

positions is time-consuming and costly. Therefore, it would be worthwhile to develop other computational

methods to deconvolute the interactions involving single cells or chromosome copies in Hi-C datasets.

2.3 Additional Biological Datasets

It is well known that long range chromatin interactions (DNA-DNA interactions) are not the only type of

interactions occurring within a genome. Additional types of nuclear interactions and information (such as

transcription factor binding [5], DNA-lamin interactions [47] and genomic chemical modifications (epigenetic

modifications) [5, 41] can be detected using other types of biological techniques. While these experiments do

not directly measure genomic interactions, they can indicate support for certain interactions from a whole-

genome contact map. Unfortunately, these additional datasets are under-utilized by the existing methods

for predicting the 3D structure of the genome. Because of this, current 3D genome models are incomplete

and limited in the amount of biological insight that can be extracted from them. Combining additional data

12

sources into the prediction and visualization of the 3D genome will allow researchers a more comprehensive

look into the interplay of various genomic factors and modifications in 3D space.

As mentioned previously, it has been hypothesized that genome organization may be controlled by global

mechanisms controlling gene expression [1, 13, 54]. There are many different biological techniques, such as

RNA-seq [65], that can detect which genes are being expressed within a population of cells. RNA-seq can

provide support to specific genomic interactions by detecting genomic regions with similar gene expression

states. Similarly, epigenetic datasets can be used to infer the transcriptional activity of certain genomic

regions since it is well known that epigenetic marks are correlated to gene expression [27]. There are a

multitude of existing biological techniques that are able to detect different types of epigenetic marks, such as:

methylated DNA immunoprecipitation with high-throughput sequencing (MeDiP-seq) [67], whole-genome

bisulfite sequencing [35] and chromatin immunoprecipitation with high-throughput sequencing (ChiP-seq)

[29]. Additionally, bioinformatics techniques, such as motif finding algorithms, can be used to determine which

regions of the genome share common docking sites for transcriptional machinery (specifically transcription

factors) [3]. If these regions are being actively transcribed they should be in close 3D spatial proximity if

the transcription factory hypothesis is correct. Furthermore, it has recently been suggested that codon usage

biases are strongly correlated to genome organization [17]. Because of this, the results from codon usage

algorithms could be incorporated into 3D genome predictions by providing support for interactions that have

common codon usage biases [30].

2.4 Computational Techniques for Predicting Genome Organiza-

tion

Many computational methods have been developed to infer crude 3D genomic organizations based solely

on the results produced from Hi-C experiments [4, 26, 34, 56, 61, 74]. To do this, the frequencies from a

whole-genome contact map are converted into a set of corresponding Euclidean distances (the straight-line

distance between two points). This is known as the 3D genome reconstruction problem [57]. In general it

is thought a pair of genomic regions with a higher interaction frequency will often be closer in 3D space

13

than a pair of genomic regions with a lower interaction frequency. Most programs then take their predicted

pairwise distances and produce a realistic visualization of the 3D genome by modelling the chromatin fibre

as a polymer [58].

The existing computational methods fall under two broad categories: consensus-based methods [4, 26, 74]

and ensemble-based methods [26, 34, 61]. These categories are distinguished by the number of genomic

models the program generates during one run. Consensus-based methods produce a single model that best

represents the whole-genome contact map. This makes them well suited to single-cell Hi-C experiments and

the resultant model is relatively easy to interpret [58]. But consensus-based methods lack biological accuracy

when they are used to predict the genomic organization from a population of cells. This is because their

predictions typically ignore the heterogenous nature of population Hi-C datasets [33]. Alternatively, ensemble-

based methods produce a large set of genomic models which represent the inherent heterogeneity of genome

organizations that exists within a population of cells. Although this type of technique may result in more

biologically accurate predictions, it is substantially more difficult to extract relevant and novel biological

information from the set of resultant models compared to the single model produced by consensus-based

methods [33].

None of the existing methods are able to provide an exact solution to the 3D genome reconstruction

problem. It has been suggested that all new potential solutions to this problem should encompass the

following features which are uncommon in the existing methodologies:

1. New methods should be scalable to a variety of genome sizes [2].

2. New methods should have the ability to integrate and visualize multiple types of genomic datasets in

addition to whole-genome contact maps [58].

3. Programs should make it easy for users to extract 3D clusters of genomic regions in order to facilitate

downstream analysis [2].

Currently, many of the existing programs do not take any supplementary biological datasets into account

when predicting genomic organizations. Because of this reason, the models generated from the existing meth-

ods are crude and lack crucial biological information that is required to understand the complex relationship

14

between the structure and function of the genome. None of the current methods utilize a constraint logic

programming approach for modelling and predicting the 3D genomic architecture. The constraint logic pro-

gramming tool developed here already satisfies characteristic (1). Additionally, it will be used as a framework

and extended during my subsequent Ph.D. research to incorporate characteristics (2) and (3).

2.5 Constraint Logic Programming

Constraint logic programming (CLP) is an extension of the logic programming paradigm in which programs

are written in the form of clauses expressing facts and rules with variables drawn from specific algebraic

domains. CLP builds on logic programming by incorporating the use of constraints to limit the state space

that needs to be searched to find a valid solution [48]. Additionally, the values for variable domains can be

drawn from a rich set of options. For instance, in CLP over the domain of integers (CLP(I)), variables with

integer domains have operations like addition and subtraction already implemented which are not available

in traditional logic programming languages like Prolog. In CLP, instantiation refers to bounding variables to

a set of non-variable values to define the specific domain of the variable [37]. Unlike imperative programming,

where programs are a built as a set of “steps” that the computer executes one after the other (similar to a

recipe), CLP programs build a knowledge representation of the problem which can then be queried [28]. CLP

allows for the direct codification of relationships and constraints relating to a specific problem by specifying

a set of clauses and literals which represent the problem [37].

Due to it’s declarative nature, CLP is well-suited to modelling real-world problems [28]. It has been

successfully used to predict other 3D biomolecular structures [24, 48] and for modelling complex molecular

functions [21, 22]. These applications have been shown to produce more biologically relevant results and

take less computational time when compared to competing methods [21, 22, 48]. The main advantage of this

approach is that it restricts the search space of possible solutions and ensures only models that agree with

the experimental data are retained [28]. It is expected that similar advantages will be achieved by applying

this approach to predicting 3D genomic structure.

Many different constraint logic programming development environments exist including the libraries of

SICStus Prolog [9], ECLiPSe [53] and SWI-Prolog [68]. ECLiPSe was chosen as the CLP paradigm for

15

this thesis because it is open source and has many attractive features (described in Section 4.1). This

thesis, utilizes the Interval Constraint (IC) and Geocode Solver for Finite Domains (GFD) libraries

implemented in ECLiPSe. Briefly, the GFD library is an interface to the Geocode constraint programming

toolkit [55] where variables are defined and constrained to a finite set of possible values [53]. The IC library

is a library which requires the variables within the program to be defined and constrained within a finite

integer range [53].

16

Chapter 3

Research Objectives

The main objective of this thesis was to develop a CLP based program that can predict a 3D structural

model of the Schizosaccharomyces pombe (S. pombe) genome. Specifically our hypothesis was that a CLP

knowledge representation exists that will provide a solution to the 3D genome reconstruction problem without

using exponential space or time. Specifically, the overall research question was: How can the heterogeneous

Hi-C datasets be leveraged to yield a biologically accurate 3D model of the genome? To answer this question

following sub-questions were addressed: (1) What is a scalable representation of the 3D genome reconstruction

problem in CLP? (2) Given the representation developed in (1) what is an efficient method of solving the 3D

genome constraint satisfaction problem? (3) What is an effective way of visualizing the models developed in

(1)? (4) Do the predicted genomic models retain documented biological features?

To answer these questions, (1) a method was developed that uses constraint logic programming to predict

the 3D structure of the genome from Hi-C experiments. To do this, the interaction frequencies obtained

from Hi-C were converted into a set of corresponding structural constraints in a computational, knowledge

representation formalism [64]. The constraints were then used as a framework to determine plausible struc-

tures using constraint satisfaction which has been successfully used to predict other 3D biological structures

[24, 48]. (2) A variety of search heuristics were evaluated to determine which one among them was the most

efficient at solving the 3D genome constraint satisfaction problem when using the final knowledge represen-

tation developed in (1). (3) Predicted models were transformed into a graph and visualized using Cytoscape

[59]. (4) The predicted models were verified through a literature search to ensure they were biologically

accurate. Further research during a subsequent Ph.D. will extend this framework to: include additional

genomic datasets and information in the prediction and visualization of the 3D genome model, predict the

3D genome organizations of higher level organisms and investigate whether the integrative models support

17

the hypothesis that the formation of transcription factories is driving genome organization.

18

Chapter 4

Data and Methodology

4.1 Selecting a Constraint Logic Programming Paradigm

Many different constraint logic programming paradigms exist including the libraries of SICStus Prolog [9],

ECLiPSe [53] and SWI-Prolog [68]. ECLiPSe was chosen as the CLP paradigm for this thesis primarily

because it is open source and because it has many attractive features including: an active support community,

the ability to be customized and a rich feature set including multiple types of constraint solvers, search

strategies and heuristics [53]. The majority of these features can be interchanged within the code and tested

to determine which set among them is the most efficient for a specific knowledge representation of a particular

problem.

4.2 Data Acquisition

4.2.1 Synthetic Data

Synthetic datasets were used for the initial testing and development of the various knowledge representations

described below. These datasets were not designed to model all of the inherent characteristics of real Hi-

C datasets. For instance, the interaction frequencies in a real Hi-C datasets follow a combination of the

following distributions: negative binomial, Poisson and gaussian, whereas the interaction frequencies for the

synthetic datasets follow a uniform distribution (using the numbers 1 to N where N is the size of the matrix).

The primary purpose of these synthetic matrices was to give an initial estimate of how a particular CLP

knowledge representation would scale with increasing sizes of N . All of the testing matrices used can be

found in Appendix F.

19

4.2.2 Hi-C Data

One Whole-genome contact map from a set of Hi-C experiments performed using S. pombe was downloaded

from Gene Expression Omnibus (accession number: GSE56849) [44]. This S. pombe whole-genome contact

map contained 1258 genomic bins since a 10 kB genome resolution was obtained with this Hi-C experiment.

S. pombe (also known as fission yeast) was selected as the initial organism for the development and testing

of the CLP program since it is a well studied haploid model organism [72]. It has genomic features that are

similar to higher level organisms such as genes with introns and exons, RNAi capabilities and large repetitive

centromeres [72]. Additionally, unlike Saccharomyces cerevisiae which has sixteen chromosomes, S. pombe

has a much smaller genome containing only three chromosomes making it an ideal size for the initial program

development.

4.3 Initial N-Queens Knowledge Representation

A general model of the 3D genome can be constructed from a whole-genome contact map by selecting a

subset of the interactions (based on the assumption described below) in order to maximize the sum of their

corresponding frequencies. Since the initial data was generated from a Hi-C experiment on haploid S. pombe

cells, it was assumed that each region of the genome can be actively forming a Hi-C mediated interaction with

only one other genomic region at any given time. Therefore, only one frequency value for each genomic bin

can be selected from a whole-genome contact map to be part of the final solution. Examples of two possible

solution sets are shown in Figure 4.1B (a non-optimal solution) and Figure 4.1C (the optimal solution).

There are many other possible solution sets that could be extracted from the whole-genome contact map but

only one optimal solution. Since each frequency corresponds to a pair of genomic regions, a model can be

reconstructed from the selected frequencies by constraining the corresponding genomic regions to be in close

3D spatial proximity with their interacting partners.

Naively, a greedy heuristic could be employed that would determine this subset of frequencies by sorting

and selecting the interactions with the largest frequency values. This processes would then be repeated,

rejecting any frequency that involves a region of the genome that has already been selected. But, this would

20

Sum of the Selected Interaction
Frequencies: 1.6

Sum of the Selected Interaction
Frequencies: 1.8

A.

B. C.

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6

Bin1 - 0.1 0.2 0.3 0.4 0.8

Bin2 0.1 - 0.3 0.2 0.5 0.1

Bin3 0.2 0.3 - 0.5 0.8 0.2

Bin4 0.3 0.4 0.5 - 0.2 0.9

Bin5 0.4 0.5 0.8 0.2 - 0.4

Bin6 0.8 0.1 0.2 0.9 0.4 -

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6

Bin1 - 0.1 0.2 0.3 0.4 0.8

Bin2 0.1 - 0.3 0.2 0.5 0.1

Bin3 0.2 0.3 - 0.5 0.8 0.2

Bin4 0.3 0.4 0.5 - 0.2 0.9

Bin5 0.4 0.5 0.8 0.2 - 0.4

Bin6 0.8 0.1 0.2 0.9 0.4 -

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6

Bin1 - 0.1 0.2 0.3 0.4 0.8

Bin2 0.1 - 0.3 0.2 0.5 0.1

Bin3 0.2 0.3 - 0.5 0.8 0.2

Bin4 0.3 0.4 0.5 - 0.2 0.9

Bin5 0.4 0.5 0.8 0.2 - 0.4

Bin6 0.8 0.1 0.2 0.9 0.4 -

Figure 4.1: An example of two possible solutions to the 3D genome reconstruction problem in haploid
cells. For all of the panels: the symmetric lower half of the contact map is indicated in light grey, the
diagonal that represents “self-self” interactions is indicated in green and the genomic bin labels are
represented in dark grey. For panels B and C: the blue boxes represent the subset of frequencies that
could be selected as possible solutions.

21

fail to take into account the situation when lower frequencies, which were rejected by selecting a higher

frequency interaction, would actually result in a greater maximum value for the sum of selected frequencies

within the solution matrix. An example of this can be seen in Figure 4.1 where panel A is the initial whole-

genome contact map and panels B and C represent two possible solution matrices with different overall

frequency sums. Specifically, Figure 4.1B follows the greedy heuristic described above which results in a

selected frequency sum of 1.6. The optimal solution is shown in Figure 4.1C results in a selected frequency

sum of 1.8. By definition the 3D genome reconstruction problem is an optimization problem because there

are multiple, possible correct solutions. However, what is desired is not just any solution, but a solution

that simultaneously maximizes the sum of the frequency values from the chosen interactions. These types of

problems have been shown to be well-suited for constraint logic programming.

Columns

Rows

1 2 3 4 5

1

2

3

4

5

Figure 4.2: An example an empty N -Queens board. Row and column labels are found on the outer
edge of the board. The white and grey squares within the board represent positions where queens
could be placed.

The 3D genome reconstruction problem can be loosely modelled after a canonical problem in computer

science known as the N -Queens problem. Briefly, the N -Queens problem asks how N queens can be placed

on an ordinary N × N chess board so that none of the queens can attack each other within one move. An

example of an empty N -Queens board is depicted in Figure 4.2. While this problem is computationally very

22

difficult, it is easy to represent and solve with CLP. By modelling the relationships and constraints in this

problem, CLP is able to efficiently determine the optimal solution for the N -Queens problem within a few

minutes, when N is less than or equal to 10,000 (data not shown). In this representation of the N-Queens

problem, each square on the board is represented by a logical variable that can be bound to a value like ‘Q’

if the queen is located in that square in the solution set. Similarly, a knowledge representation of the 3D

genome reconstruction problem can be produced where each logic variable represents a cell from the contact

map that can be bound to the corresponding frequency value if the interaction is selected to be a part of the

final solution set.

One of the main differences between the N -Queens problem and the 3D genome reconstruction problem

is that the latter has a cost associated with each possible solution which is related to the preference for

one solution over another. In this case, the cost is the sum of the selected interaction frequencies and the

optimal solution will have the maximum cost. Additionally, the 3D genome reconstruction problem does not

need to model the N -Queens “diagonal constraint”. The removal of this constraint makes the 3D genome

reconstruction problem a relaxed version of N -Queens, that could be deemed the “N -Rooks” problem. The

goal of the CLP program is to determine which subset of frequencies should be selected from the whole-genome

contact map in order to maximize the overall frequency summation of the solution set without violating any

of the defined relationships and constraints. The specific relationships and constraints for the 3D genome

reconstruction problem are defined below.

An ECLiPSe program was developed to represent and solve the 3D genome reconstruction problem with

CLP(IC) (A part of the complete program for a 5 × 5 sub-matrix of the yeast whole-genome contact map

is shown in Program A.1). The complete program can be found at https://github.com/kimmackay/msc_

research/tree/master/initial_clp. Initially, it was developed in a way that allowed users to hard-code

multiple genomes within the program source code. Each cell of the input whole-genome contact map was

represented by an individual variable within the program. The domains of the variables were defined to either

be zero, which represented the interaction not being selected, or the corresponding interaction frequency value

from the whole-genome contact map. Since the genomic bins can be easily mapped to their corresponding

chromosomes, this relationship was not explicitly represented within the program.

23

https://github.com/kimmackay/msc_research/tree/master/initial_clp
https://github.com/kimmackay/msc_research/tree/master/initial_clp

The relaxed N -Queens constraints were modelled through the use of the global atleast/3 constraint

from the ic global library. Specifically, the program’s logic stated that for every set of interaction cells

which correspond to a particular genomic bin there must be at least N − 1 variables bound to value of

zero. In order to find the optimal subset of interactions, minimize/2 from the branch and bound library

was used to maximize the sum of the selected frequencies in the solution set (this was done by minimizing

the negative sum of the frequencies since no maximize function was defined in this library — Program A.1

line 80). Finally, the selected interactions were displayed output as a text representation of a numeric-valued

matrix. The user can determine a solution to the 3D genome reconstruction problem by invoking the solve/1

predicate with the appropriate input parameter (for example: solve(1).). While this strategy was effective

and efficient (to be described in Section 5.1), it was unable to solve genome size problems due to limits on

the number of logical variables that the ECLiPSe internal dictionary can store. To overcome this, the S.

pombe whole-genome contact map had to be compressed by a factor of three in order to reduce the number

of variables required to represent and solve the problem while utilizing this knowledge representation. The

value of this compression was determined by trial and error and would have to be determined independently

for each new genome added to this representation.

4.3.1 Automation

A variety of Perl scripts (Appendix B) were developed to assist in the generation of the ECLiPSe program

based on a whole-genome contact map. The final workflow is depicted in Figure 4.3. Briefly, there are four

main sections:

A) Initial Inputs: these are the inputs that the developed Perl scripts expect to receive from the user.

The “normalized Hi-C interaction matrix” input can be generated by processing the raw sequence reads

obtained from a Hi-C experiment or public repository such as GEO with software similar to HiCUP

[69] (a pipeline used for normalizing and mapping the initial raw sequence reads) and HOMER [25] (a

program used for the generation of a whole-genome contact map). The “number of genomic bins to

compress” input is used to specify the number of adjacent genomic bins that need to be combined in

order to reduce the number of variables in the ECLiPSe program; in the case of S. pombe it is three. The

24

A. Initial Inputs

B. Pre-
Processing

C. CLP
Program

D. Output

Normalized Hi-C
Interaction Matrix

Number of
Genomic Bins to

Compress

Number of
Variables Needed

generate_bins.pl generate_vars.pl

compression_of_
rows.pl

genome_
representation

.ecl

Console
Output

compression_of
_columns.pl

Figure 4.3: The initial workflow for producing a logical model of the three-dimensional yeast genome.
Grey boxes represent required user input. Green circles represent the developed Perl programs. The
blue diamond represents the developed ECLiPSe program and the purple pentagon represents the
final output of the CLP program. The pink arrows represent expected user input. The black arrows
show the flow of program input/output within the workflow while the orange lines represent the manual
combination of the pre-processing outputs that are necessary to produce the custom ECLiPSe program.
The dashed red lines separate the programs into four general subsections.

25

“number of variables needed” input is used to specify the size of one edge of the interaction matrix (ie.

the user would enter 1258 for a 1258 × 1258 matrix). This value will be used to automatically generate

the large number of variables needed to represent the problem.

B) Pre-Processing Programs: these are the programs that will format the data to be the correct size and

syntax for use in the ECLiPSe program (Program B.1, Program B.2 and Program B.3). There is also

a method (Program B.4) that will generate a matrix of N by N (where N is specified through the

“number of variables needed” input) variables which are needed to represent the data. The output

of these programs must be manually combined by the user in order to generate the custom ECLiPSe

program.

C) The CLP Program: this is the program that determines the most probable interactions occurring in the

genome based on the defined relationships and constraints.

D) Output: this section represents the output given by the CLP program. Essentially, the CLP program

will print out a matrix of size N ×N that shows the interaction frequencies selected by the program.

4.4 Minimal N-Queens Knowledge Representation

In an attempt to overcome the size constraint of ECLiPSe’s internal dictionary, a new knowledge represen-

tation was implemented based on a minimal N -Queens solution. Essentially, this representation collapses

the N ×N chess board into a list of size N (Figure 4.4). In this representation the logic variables represent

queens in the solution set. The positioning of these queens is encoded through the list position and the value

each variable is bound to (for the row and column positions, respectively).

Ideally, the minimal N -Queens representation could be mapped to the 3D genome reconstruction problem

by having a list of size N where the logical variables represent the selected interaction frequencies in the

solution set. In practice, two lists of size N are required in order to completely represent and store the

relevant data associated with an interaction frequency (one list for frequency values and the other for the

corresponding column values — Figure 4.5). This representation reduced the required variable storage to

2N (as opposed to the N2 storage requirement in the initial N -Queens representation). The position of

26

Columns

Rows

1 2 3 4 5

Frequency

Figure 4.4: An example an empty N -Queens board using a minimal knowledge representation. Row
positions for queens in the solution set are found on the top of the list. The column position of a queen
in the solution will correspond to the value placed in the square.

the variable within either list was used to encode the corresponding row of the whole-genome contact map,

whereas the value of the variable in the “column list” was used to encode the corresponding column of

the whole-genome contact map for a particular selected frequency value. A partial implementation of this

program for a 5×5 sub-matrix of the yeast whole-genome contact map is shown in Program A.2. The complete

program can be found at https://github.com/kimmackay/msc_research/tree/master/minimal_clp.

Columns

Rows

1 2 3 4 5

Frequency

Figure 4.5: A visualization of the N -Queens based, minimal knowledge representation for the 3D
genome reconstruction problem. Row positions for the selected interactions are found on the top of
the list. The column position of a selected interaction will correspond to the value placed in the square
of the “Columns” list. The corresponding interaction frequency for a specific row, column pair will be
in the same square the column value was found in. This relationship between the squares from the
two lists are indicated with a dashed red line.

The relaxedN -Queens constraints were modelled through the use of a newly defined alldifferent except/1

constraint (lines 7 to 33) which was developed to ensure all of the variables within the column list are pairwise

different from each other, or zero. Additionally, the program uses constraint imposition (lines 64 to 98) with

27

https://github.com/kimmackay/msc_research/tree/master/minimal_clp

values from the whole-genome contact map to encode valid column, frequency pairs. In order to find the

optimal subset of interactions, minimize/2 from the branch and bound library was used in conjunction with

search/6 from the gfd library (line 109). Finally, the selected interactions are displayed in the form of two

numeric lists and can be extracted for downstream visualization. The user can determine a solution to the

3D genome reconstruction problem by invoking the maximize/2 predicate with output parameters that will

be bound to values that represent the selected interactions (i.e. maximize(R, F). A CLP program was gen-

erated and tested with a variety of synthetic whole-genome contact maps in order to determine the scalability

of this representation (to be described in Section 5.2). While this representation was able to overcome the

problem discovered in the initial N -Queens knowledge representation (as will be shown in the results section)

its runtime was exponential based on the the number of rows or columns (N) in the whole-genome contact

map.

4.5 Improving the Program Runtime

This section describes the divide and conquer approach that was used to improve the runtime for the minimal

N -Queens representation as well as the minimal, non-redundant N -Queens representation (described below

in Section 4.6).

4.5.1 Divide and Conquer

Division

In order to improve the efficiency and scalability of the program, the yeast whole-genome contact map was

divided into six subproblems that can be run in parallel. These subproblems represent a natural partition

of the whole-genome contact map. The location of these subproblems within the whole-genome contact map

are identified in Figure 4.6. Each subproblem corresponds either to interactions within a specific chromosome

(intra-interactions), or to a subset of the interactions between 2 of the 3 chromosomes (inter-interactions).

Since the set of genomic bins that correspond to a particular chromosome was known ahead of time, the

separation of these subproblems was provided as program input to generate the six CLP programs.

28

2

3

2 - 3

1 1 - 31 - 2

Figure 4.6: Identification of subproblems within the yeast contact map. The large grey triangle
represents the portion of the contact map that does not need to be processed since all contact maps
are mirrored along the diagonal. The blue triangles represent the subsections of the contact map that
correspond to intra-chromosomal interactions, while the green squares represent the subsections of the
contact map that correspond to the inter-chromosomal interactions. The labels on the blue and green
areas represent the chromosome(s) involved in the interactions within that subsection of the contact
map.

Local Conquer

In order to solve entire yeast 3D genome reconstruction problem, ECLiPSe programs that correspond

to the following subproblems were run independently: (1) chromosome 1 intra-interactions, (2) chromo-

some 2 intra-interactions, (3) chromosome 3 intra-interactions, (4) chromosome 1 - chromosome 2 inter-

interactions, (5) chromosome 1 - chromosome 3 inter-interactions and (6) chromosome 2 - chromosome 3

inter-interactions. Similarly to Section 4.4, the user can determine a solution to the 3D genome reconstruc-

tion problem by invoking the maximize/3 predicate with parameters that correspond to the desired output

file names (i.e. maximize(‘‘RowFileName" , ‘‘FreqFileName" , ‘‘NonZeroRowsFileName"). The com-

plete programs for the six subproblems using the minimal N -Queens knowledge representation can be found

at https://github.com/kimmackay/msc_research/tree/master/minimal_clp/subproblems.

29

https://github.com/kimmackay/msc_research/tree/master/minimal_clp/subproblems

Recombination/Merging

The results from each subproblem were then combined together to reconstruct the entire 3D logical model of

the S. pombe genomic architecture. Specifically, to help account for the instances when a single genomic region

is involved in more then one solution interaction a “dynamics coefficient” (abbreviated the D coefficient) was

defined. The D coefficient is calculated by scanning all of the result files and counting how many interactions

a specific region is making across the subproblem solution sets. The more interactions a genomic region is

involved in, the higher it’s corresponding D coefficient is. For instance, if genomic bin 1 was found to be

forming an interaction in subproblem (1) and subproblem (2) it would have a D coefficient of 2, whereas if it

was found to be only forming an interaction in subproblem (2) it would have an associated D coefficient of

1. This allows the program to encode some of the flexibility and dynamics of genome organization into the

logical model. Additionally, it allows the model to keep all the information associated with each subproblem’s

optimal solution instead of having to exclude interactions that involve genomic regions already selected as

part of the solution set.

4.6 Minimal, Non-Redundant N-Queens Knowledge Representa-

tion

In an attempt to further decrease the program’s runtime, redundant frequency and column values along

with zero value frequencies were removed from the variable domains resulting in the minimal, non-redundant

version of the knowledge representation. This knowledge representation utilizes the same structure described

in Section 4.4 . For the sake of brevity, two partial program’s are shown in Program A.3 (representative of

an intra-interaction CLP program) and Program A.4 (representative of an inter-interaction CLP program).

The complete programs for each of the six subproblems can be found at https://github.com/kimmackay/

msc_research/tree/master/minimal_nonredunant_clp). The user can determine a solution to the 3D

genome reconstruction problem by invoking the maximize/3 predicate with input parameters that corre-

spond to the desired names of the output files the selected interactions (i.e. maximize(‘‘RowFileName" ,

‘‘FreqFileName" , ‘‘NonZeroRowsFileName").

30

https://github.com/kimmackay/msc_research/tree/master/minimal_nonredunant_clp)
https://github.com/kimmackay/msc_research/tree/master/minimal_nonredunant_clp)

A.
Initial
Inputs

B.
Generation

of CLP
program

C. Post-
Processing

Chromosome
of Interest

Chromosome
Size (Number
of Genomic

Bins)

generate_minimial
_non_redundant_
eclipse_program_

intra.pl

genome_
representation_of_
intra_sub_problem_

x.ecl

Cytoscape

generate_cytoscape
_input_for_intra.pl

frequency_
results.txt

row_
results.txt

non_zero_
variables

.txt

Chromosome
2 of Interest

Chromosome
1 Size

(Number of
Genomic

Bins)

generate_minimal
_non_redunant_

eclipse_program_
inter.pl

genome_
representation_of_
inter_sub_problem_

x.ecl

generate_cytoscape
_input_for_inter.pl

frequency_
results.txt

row_
results.txt

non_zero_
variables

.txt

Chromosome
1 of Interest

Chromosome
2 Size

(Number of
Genomic

Bins)

generate_linear_
interactions.pl

Number of
Genomic

Bins

D.
Visualization

Normalized
Hi-C

Interaction
Matrix

Figure 4.7: The workflow for producing a logical model of the three-dimensional yeast genome using a minimal N -Queens representation. Grey
boxes represent program input and outputs. The green circles represent the developed Perl programs. Blue diamonds represent the ECLiPSe
programs produced by the Perl programs and the purple pentagon represents the visualization of the predicted model with Cytoscape. The pink
arrows represent expected user input. The black arrows show the flow of program input/output within the workflow while the orange arrows
represent the automatic generation of the custom ECLiPSe program. The dashed red lines separate the programs into 4 general sub-sections.
The light blue panels are areas of the workflow that will be repeated multiple times in order to accommodate all the intra- and inter-interaction
subproblems.

31

A variety of Perl scripts (Appendix C) were developed to automate the generation of a minimal non-

redundant ECLiPSe program based on a whole-genome contact map. The overall workflow is depicted in

Figure 4.7. Briefly, there are four main sections of the workflow:

A) Initial Inputs: these are the inputs that the developed Perl programs expect to receive from the user.

The “normalized Hi-C interaction matrix” input can be generated by processing the raw sequence reads

obtained from a Hi-C experiment or public repository such as GEO with software similar to HiCUP

[69] and HOMER [25]. Additionally, each program requires the user to specify which chromosome(s)

subproblem the program should generate and the size of the corresponding chromosome(s).

B) Generation of CLP Program: the Programs C.1 and C.2 generate the custom ECLiPSe program for a

specific subproblem and whole-genome contact map, as well as a text file that lists the non-zero genomic

bins which will be used to generate the network.

C) Post-Processing: the programs in this step (Program D.1, Program D.2 and Program D.3) utilize the

output generated by the programs in step B to generate a network file that can be used as input to

Cytoscape.

D) Visualization: this step visualizes the results of the CLP program in Cytoscape.

4.7 Visualization

The results from the CLP program were converted into a network using Program D.1 or Program D.2

(Appendix D) and visualized with Cytoscape. Each edge in the network was weighted using the novel relative

distance measure: the average D coefficient (defined above) between the two genomic regions divided by

their corresponding interaction frequency from the whole-genome contact map. It is commonly accepted that

the distance between two genomic regions in 3D space is inversely proportional to the associated interaction

frequency from the whole-genome contact map. For instance when genomic region a (assuming a D coefficient

of 1) is selected to be forming an interaction with genomic region b (assuming a D coefficient of 1) at a

frequency of 14, the relative distance measure will be 0.071 i.e. ((1+1)/2)
14), suggesting they have a very close

3D spatial proximity. On the contrary, if genomic region c (assuming a D coefficient of 7) is selected to be

32

forming an interaction with genomic region d (assuming a D coefficient of 5) at a frequency of 2, the relative

relative distance measure will be 4.75 i.e. ((7+5)/2)
2). An edge-weighted spring-embedded layout was then

applied to the network where the edge weight was the newly defined relative distance measure. The nodes

in the network were then coloured according to their chromosome number.

4.8 Evaluation and Validation

4.8.1 Computational Evaluation

Each CLP program that was generated in each knowledge representation (including the program’s generated

for the synthetic datasets) was compiled and run independently three times. Program runtimes were measured

in the form of elapsed runtime. The program runtimes (elapsed time) from each of the three runs were

averaged to produce the average program runtime for each of the programs described above as well as all of

the testing and heuristic optimization instances. Programs were run on a compute server which has 20TB

RAID external storage, a dual 8-core CPU (Intel Xeon E5-2670) and 384GB RAM. An example of the

command line input and output is shown in Appendix E.1.

4.8.2 Computational Feature Extraction

Program features (such as the number of variables, the number of values in a variable domain and the number

of constraint implications) were extracted using a bash command similar to grep -c ‘<feature specific

text>’ <input file>. The results from this command were then normalized based on the number of total

variables used in the <input file> knowledge representation.

4.8.3 Biological Validation

A literature search was performed to identify a set of documented genomic features (such as 3D centromere

and telomere clustering) that should be present in the predicted 3D yeast genome. Nodes in the Cytoscape

visualization were then coloured to quickly and easily identify whether or not the predicted model contained

these identified genomic features.

33

Chapter 5

Results and Discussion

5.1 Initial N-Queens Knowledge Representation

The initial CLP(IC) program was developed using the modified N -Queens knowledge representation described

in Section 4.3. As mentioned previously, the whole-genome contact map was represented as a N ×N matrix,

where N corresponds to the number of genomic bins along one edge of the contact map. Constraints were

defined using the atleast/3 constraint from the ic global library to ensure that each genomic bin could

participate in only one Hi-C mediated interaction within the final solution set. A subset of the program was

described in Appendix A.1 and the complete program can be found at https://github.com/kimmackay/msc_

research/tree/master/initial_clp. Various important representation features along with the average

program runtimes are listed in Table 5.1. The “Number of Frequency Values in the Variable Domains”

Table 5.1: Features of the Initial N -Queens Knowledge Representation. The top row lists the names
of the individual subproblems. The “Testing” problem corresponds to the 5× 5 synthetic contact map
from Appendix F.1. The “Condensed Genome” problem corresponds to the representation that was
developed by combining adjacent genomic bins. The “Complete Genome” problem corresponds to the
representation of the entire 1258× 1258 yeast whole-genome contact map. ‘-’ indicates that there was
no runtime information available.

Program Feature Testing
Condensed

Genome
Complete
Genome

Number of Genomic Bins 5 420 1258

Number of Variables 25 176400 1582564

Number of Frequency Values
in the Variable Domains

2 2 2

Average Program Runtime
(Elapsed Time — seconds)

0.3 0.43 –

34

https://github.com/kimmackay/msc_research/tree/master/initial_clp
https://github.com/kimmackay/msc_research/tree/master/initial_clp

row has a constant value of ‘2’ across all the problems since each variable domain is instantiated to a list

containing the corresponding frequency value from the whole-genome contact map and zero. These values

represent the corresponding interaction being either selected as a member of the solution set, or rejected from

the solution set (respectively). Using this knowledge representation, ECLiPSe was able to find the optimal

and correct solution for the initial testing matrix (Appendix F.1) in 0.30 seconds.

Once the initial testing and development with the synthetic data was completed, the same knowledge

representation was used to generate a CLP(IC) program for the entire S. pombe whole-genome contact map.

Unfortunately, this program would not compile because the number of variables required to represent the

contact map (1,582,564) exceeded the total memory of ECLiPSe’s internal dictionary. Since there was no

way of manually increasing the dictionary size, this was overcome by combining adjacent genomic bins into

larger regions to achieve a lower number of variables. For the yeast whole-genome contact map, every set

of three adjacent bins had to be combined into one larger genomic bin in order for the program to compile.

This genomic compression resulted in a smaller whole-genome contact map of 420 × 420, but it should be

noted that this process reduced the overall resolution of the data from 10 kB to 30 kB.

While computationally efficient, this knowledge representation is not scalable to higher order organisms

with larger genome sizes since the space utilization complexity is O(N2). Any attempts to use this knowledge

representation for the comprehensive prediction of larger genomic architectures would result in a drastic

decrease in the experimental resolution due to the size restrictions imposed by ECLiPSe’s internal dictionary.

However, since the average program runtimes achieved with this representation are remarkably low, this

program could still be utilized for organisms with small genomes. Alternatively, it could also be used to gain

a high-level overview of the genomic organization of a large genome (at a low resolution). Other prediction

programs (such as the method developed by Trieu and Cheng [61]) could then be used to predict the high-

resolution local genomic organization of specific regions within the genome.

5.2 Minimal N-Queens Knowledge Representation

In an attempt to maintain the experimental resolution and overcome the size restriction of ECLiPSe’s in-

ternal dictionary, a new CLP(GFD) program was developed based on the minimal N -Queens knowledge

35

representation described in Section 4.4. Briefly, instead of representing each cell of the whole-genome con-

tact map, two lists of size N were used which held only the frequency and column values selected to be

part of the final solution set. Constraints were defined using the alldifferent except/1 constraint (de-

veloped as a part of this thesis) on the column list to ensure that each genomic bin was involved in only

one Hi-C mediated interaction within the solution set. Specifically, the alldifferent except/1 constraint

ensured that the value of each variable within the parameter list was pairwise different from every other

variable or zero. A subset of the program is described in Appendix A.2 and the complete program can be

found at https://github.com/kimmackay/msc_research/tree/master/minimal_clp. Unfortunately, the

CLP(GFD) program that was generated for the entire yeast whole-genome contact map was not able to find

a “ground” solution after a week of continuous runtime and was therefore terminated. However when the

section of the program which imposes constraints to define the valid column, frequency pairs (the “constraint

imposition” section) was removed and the program only had to identify the row/column pairs that did not

violate the defined relationships, correct solutions were found in less then four seconds when N was less than

or equal to 1500. This suggests that the current method of constraint imposition causes a substantial increase

in program runtime.

0

500

1000

1500

2000

2500

5 10 15 20 22 25 30 50 100 250

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

Number of Variables

Relationship Between the Average Program Runtime
(Elapsed Time) and the Number of Variables in the Test

Cases Using the Minimal N-Queens Representation

Synthetic Data

Submatrices
(Based on Real
Data)

Figure 5.1: The relationship between the average program runtime (seconds) and the number of
variables is shown in green for the test data and blue for sub-matrices extracted from real data.

36

https://github.com/kimmackay/msc_research/tree/master/minimal_clp

To investigate the relationship between the number of variables (N) and the average program runtime

when using this representation, the corresponding CLP(GFD) programs for the seven synthetic matrices

listed in Appendix F were generated and run. In each instance, ECLiPSe was able to determine the optimal

and correct solution for the corresponding subproblem. Unfortunately, as the number of variables grew,

the average runtime of the corresponding program increased exponentially, suggesting that the runtime was

dependent on the size of N . However, when a subset of data from the S. pombe whole-genome contact map

was used, the corresponding average program runtime was no longer dependent on N (Figure 5.1). It is

possible that this disassociation of dependency on N is seen because representations based on Hi-C data

contain a handful of variables that are already ground to a zero value. This would result in a decreased

overall runtime by reducing the area of the solution space which would need to be searched in order to find

the optimal solution.

0

100

200

300

400

500

600

0

2000

4000

6000

8000

10000

12000

14000

CHR1 CHR2 CHR3 CHR1 - CHR2 CHR2 - CHR3

N
um

be
r

of
 V

ar
ia

bl
es

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

Subproblem

Average Program Runtime (Elapsed Time) and the
Number of Variables for the Six Subproblems Using a

Minimal N-Queens Knowledge Representation

Elapsed
Time

Number of
Variables

Figure 5.2: The average program runtime in seconds is shown in red and the values can be found
along the left y-axis. The number of variables for each subproblem is indicated with a blue triangle
and the values can be found along the right y-axis. Labels for the subproblems are listed along the
x-axis.

37

Table 5.2: Features of the Minimal N -Queens Knowledge Representation. The top row lists the names
of the individual subproblems. “CHR1” represents the chromosome 1 intra-interaction subproblem.
“CHR2” represents the chromosome 2 intra-interaction subproblem. “CHR3” represents the chromo-
some 3 intra-interaction subproblem. “CHR1 - CHR2” represents the subproblem for chromosome 1
and chromosome 2 inter-interactions. “CHR1 - CHR3” represents the subproblem for chromosome 1
and chromosome 3 inter-interactions. “CHR2 - CHR3” represents the subproblem for chromosome 2
and chromosome 3 inter-interactions.

Program Feature CHR1 CHR2 CHR3
CHR1

-
CHR2

CHR1
-

CHR3

CHR2
-

CHR3

Number of Variables 558 454 246 454 246 246

Number of Zero Variables 13 15 13 347 192 167

Total Number of Frequency
Values in the Variable

Domains
8803 6989 3697 771 363 359

Normalized Number of
Frequency Values in the

Variable Domains
15.78 15.39 15.03 1.70 1.48 1.46

Total Number of Column
Values in Variable Domains

156519 103739 30627 253332 137268 111,684

Normalized Number of
Column Values in the Variable

Domains
280.50 228.50 124.50 558 558 454

Total Number of Constraint
Impositions

156519 103739 30627 253786 137514 111930

Normalized Number of
Constraint Impositions(Based
on the Number of Variables)

280.50 228.50 124.50 599.00 559.01 455.00

Average Program Runtime
(Elapsed Time — seconds)

19.89 1889.7 6.63 13585.27 249.0 50.05

38

Once the initial testing and development was completed on the synthetic matricies and sub-matrices

based on real Hi-C data, the same knowledge representation was used to generate the six CLP(GFD) sub-

problems identified in Section 4.5.1. The complete program for each subproblem can be found at https:

//github.com/kimmackay/msc_research/tree/master/minimal_clp/subproblems. The various impor-

tant representation features along with the average program runtimes are listed in Table 5.2. Similarly to

the testing Hi-C sub-matrices described above, Figure 5.2 demonstrates that the average program runtimes

for the six subproblems are not dependent on N . However, it should be noted that the chromosome 1 -

chromosome 2 inter-interaction subproblem had a drastically larger runtime when compared to the rest of

the subproblems.

A number of program features were investigated to determine why the chromosome 1 - chromosome 2 inter-

interaction subproblem had a significantly larger average runtime compared to the rest of the subproblems.

These features included: the number of zero variables, the normalized number of values in the domain of the

column variables, the normalized number of values in the domain of the frequency variables and the normalized

number of constraint impositions within the program. In the case of these features, “normalization” refers

to the division of the total number of instances of a specific feature by the number of variables used in

the program. Specific values for each of these metrics can be found in Table 5.2. Unfortunately none of

these measures were directly related to the average runtimes of the subproblem programs. But, since this

representation without constraint imposition was able to correctly and efficiently solve problems for N up

to 1500, the current method of constraint imposition likely was responsible for the increased runtime seen

in certain subproblems. Specifically, it is possible that constraint impositions with duplicated frequency

values were responsible for the dramatic increase in runtime since the program would have to spend extra

time searching the solution space of potentially equivalent solutions (in terms of the summed frequency).

This is demonstrated in the following code snippet from the chromosome 1 - chromosome 2 inter-interaction

subproblem.

1 %% A Sub -Set of Constraint Impositions for Row559
((Chr1_Chr2_Row559 #= 0) and (Chr1_Chr2_Freq559 #= 0)) or

3 ((Chr1_Chr2_Row559 #= 1) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 2) and (Chr1_Chr2_Freq559 #= 0)) or

5 ((Chr1_Chr2_Row559 #= 3) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 4) and (Chr1_Chr2_Freq559 #= 0)) or

7 ((Chr1_Chr2_Row559 #= 5) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 6) and (Chr1_Chr2_Freq559 #= 0)) or

39

https://github.com/kimmackay/msc_research/tree/master/minimal_clp/subproblems
https://github.com/kimmackay/msc_research/tree/master/minimal_clp/subproblems

9 ((Chr1_Chr2_Row559 #= 7) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 8) and (Chr1_Chr2_Freq559 #= 0)) or

11 ((Chr1_Chr2_Row559 #= 9) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 10) and (Chr1_Chr2_Freq559 #= 0)) or

13 ((Chr1_Chr2_Row559 #= 11) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 12) and (Chr1_Chr2_Freq559 #= 0)) or

15 ((Chr1_Chr2_Row559 #= 13) and (Chr1_Chr2_Freq559 #= 0)) or
((Chr1_Chr2_Row559 #= 14) and (Chr1_Chr2_Freq559 #= 0)) or

17 ((Chr1_Chr2_Row559 #= 15) and (Chr1_Chr2_Freq559 #= 0)) or
...

5.3 Minimal, Non-Redundant N-Queens Knowledge Representa-

tion

In order to further improve the efficiency and scalability of the CLP(GFD) subprograms, zero-valued variables

and their corresponding constraint impositions were removed from the knowledge representation. Addition-

ally, redundant values from the remaining variable domains were removed. Each CLP(GFD) program was

developed based on the minimal, non-redundant N -Queens knowledge representation described in Section

4.5. As mentioned previously, this representation utilized a “divide and conquer” approach to efficiently solve

the entire yeast 3D genome reconstruction problem. The overall problem was divided into 6 subproblems

that represent either the intra-interactions of a specific chromosome or the inter-interactions between 2 of the

3 chromosomes. The results from each subproblem were then merged together using the method described

in Section 4.5.1. A novel term, referred to as the D coefficient (Section 4.5.1), was defined to account for

genomic regions that were part of the solution set for multiple subproblems. This allowed the program to

encode some of the flexibility and dynamics of genome organization into the logical model. The D coefficient

is similar to the B factor (also known as the temperature factor or the Debye-Waller factor) generated in

protein X-Ray Crystallography experiments [32]. Briefly, the B factor encodes the degree of uncertainty

associated with the computed atomic positions in 3D space [32].

Similarly to the minimal N -Queens knowledge representation described in the above section, the con-

straints were defined using the alldifferent except/1 constraint (developed as a part of thesis) to ensure

that each genomic bin can only be actively forming one Hi-C mediated interaction in the final solution set.

A subset of the program for an intra-interaction subproblem is described in Appendix A.3 and a subset of

the program for the an inter-interaction subproblem is described in Appendix A.4. The complete set of

40

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

800

900

CHR1 CHR2 CHR3 CHR1 - CHR2 CHR1 - CHR3 CHR2 - CHR3

N
um

be
r

of
 V

ar
ia

bl
es

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

Subproblem

Average Program Runtime (Elapsed Time) and the Number of
Variables for the Six Subproblems Using a Minimal, Non-

Redundant N-Queens Knowledge Representation

Elapsed Time

Number of
Variables

Figure 5.3: The relationship between the average program runtime and the number of variables
is shown in blue. Inter-interaction subproblems are indicated with a red dot while intra-interaction
subproblems are indicated with a green dot.

programs representing all of the six subproblems can be found at https://github.com/kimmackay/msc_

research/tree/master/minimal_nonredunant_clp. The various important representation features along

with the average program runtimes are listed in Table 5.3. In the case of these features, “normalization”

refers to the total number of times a specific feature was found throughout the program divided by the

number of variables used in the programs knowledge representation. Similarly to the minimal N -Queens

representation above, the average program runtime was not dependent on N . Additionally, the removal of

redundant and zero values from variable domains decreased the program runtime by an average of 84.73 %

when compared to the minimal N -Queens representation in Section 5.2. Figure 5.3 depicts the relationship

between average program runtime and the number of variables. The “divide and conquer” strategy applied

here enables the program to be scalable to much larger genomes, since the sub-programs generated with this

knowledge representation can be run in parallel.

Even though this representation was able to drastically reduce the average program runtime of the chro-

41

https://github.com/kimmackay/msc_research/tree/master/minimal_nonredunant_clp
https://github.com/kimmackay/msc_research/tree/master/minimal_nonredunant_clp

Table 5.3: Features of the Minimal, Non-Redundant Knowledge Representation. The column head-
ings are the same as the headings described in Table 5.2.

Program Feature CHR1 CHR2 CHR3
CHR1

-
CHR2

CHR1
-

CHR3

CHR2
-

CHR3

Number of Non-Zero Variables 545 439 233 107 54 79

Total Number of Frequency
Values in the Variable

Domains
8790 6974 3684 182 171 288

Normalized Number of
Frequency Values in the

Variable Domains
16.13 15.89 15.81 1.70 3.17 3.65

Total Number of Column
Values in Variable Domains

33090 26494 14246 856 1246 2053

Normalized Number of
Column Values in the Variable

Domains
60.72 60.35 61.14 8.00 23.07 26.99

Total Number of Constraint
Impositions

33090 26494 14246 856 1246 2053

Normalized Number of
Constraint Impositions (Based
on the Number of Variables)

60.72 60.35 61.14 8.00 23.07 25.99

Average Program Runtime
(Elapsed Time — seconds)

6.96 15.06 0.54 817.80 0.34 0.28

42

mosome 1 - chromosome 2 inter-interaction subproblem (compared to the minimal N -Queens representation

described above), it still had a significantly higher runtime when compared to the other subproblems with

this representation. A number of program features were investigated to determine why the chromosome 1 -

chromosome 2 inter-interaction subproblem still had a significantly larger average runtime compared to the

rest of the subproblems. These features included: the number of non-zero variables, the normalized number of

values in the domain of the column variables, the normalized number of values in the domain of the frequency

variables and the normalized number of constraint impositions within the program. Specific values for each

of these metrics can be found in Table 5.3. Unfortunately none of these measures were directly related to

the average program runtimes of the subproblems. It is possible that the relatively high runtime seen in the

chromosome 1 - chromosome 2 subproblem is due to the issues with constraint imposition described above.

Future work will focus on modifying the constraint imposition section to decrease the runtime in subproblems

similar to the chromosome 1 - chromosome 2 subproblem.

5.4 Evaluation of Various Heuristics

Testing was performed to determine which library and variable selection method strategy should be used in

the final knowledge representation. The GFD library was selected for the implementation of the knowledge

representations described in Section 4.4 and 4.5 because it gave ground solutions for problems with much

larger N values in the initial testing (data not shown). A subset of the available variable selection options

for search/6 from the GFD library were tested to determine which one produced the lowest runtime for

the 3D genome reconstruction problem (Table 5.4). A program using each option was complied and run

independently three times to produce an average program runtime. Specifically, the synthetic 22×22 contact

map was used for this testing.

The “anti occurence” strategy had the best performance in the subset of variable selection methods tested

and was selected as the variable selection method in the 3D genome reconstruction problem. Briefly, the

“anti occurence” strategy selects the variable with the lowest number of attached propagators. Future work

will be done to determine whether or not different variable selection methods could perform better in certain

subproblems (such as the chromosome 1 - chromosome 2 inter-interaction problem).

43

Table 5.4: The Effect of Different Variable Selection Methods on Average Program Runtime (Elapsed
Time) and Average Compile Time. ‘-’ indicates that there was no runtime information available.

Variable Selection
Method

Number of
Variables

Average
Compile Time

(seconds)

Average Runtime
(Elapsed Time —

seconds)

input order 22 0.72 11.39

first fail 22 0.72 11.14

occurence 22 0.71 –

anti first fail 22 0.72 –

smallest 22 0.73 11.98

largest 22 0.74 –

anti occurence 22 0.73 10.21

most constrained 22 0.73 12.11

random 22 0.76 –

5.5 Visualization

A Cytoscape network was generated based on the output from Program D.1, Program D.2 and Program

D.3. Once the network was constructed, the individual genomic bins were coloured either according to their

corresponding chromosome or in a way that highlighted a particular genomic feature. An edge-weighted spring

embedded layout (where the edge weight was defined as the novel distance metric developed in Subsection

4.7) was applied to the network which generated the images in Figure 5.4 and Figure 5.5B. Initial visual

inspection of the generated images suggests that the novel distance metric could have some biological merit

based on the distribution of the chromosomes and the overall shape of the predicted genome structure within

the images.

44

A

B

Figure 5.4: Visualization of the 3D yeast logical model using Cytoscape. In Panel A, the rectangles
representing the genomic bins are coloured in the following way: chromosome 1 is green, chromosome
2 is red, chromosome 3 is blue. Grey lines indicate an interaction between a pair of genomic regions.
In Panel B: the grey lines and coloured rectangles have the same meaning as in panel A. All of the
genomic bins are colours in a light blue. The orange circles indicate the location of two potential
clusters of transcription factories within the predicted model.

45

5.6 Biological Validation

One of the most well documented features of S. pombe genomic organization is the 3D clustering of cen-

tromeres and telomeres within the nuclear volume [10, 23, 66]. Specifically, fluorescence in situ hybridization

(FISH) experiments on haploid S. pombe cells were used by Chikashige et al. to determine the number (two

centromere clusters and one telomere cluster) and location of these clusters within the genome [10]. In order

to determine whether the predicted yeast model was able to recapitulate these features, the genomic bins

corresponding to centromeres and telomeres were coloured in the Cytoscape visualization. Figure 5.5 provides

a visual comparison of these these clusters from the FISH experiments [10] and the predicted genomic model.

The number and location of these clusters appears to be conserved in the predicted model suggesting that a

reasonable amount of biological accuracy was achieved using the minimal, non-redundant subproblem based

N -Queens representation described in Section 4.5.

Furthermore, the mapping and analysis of S. pombe Hi-C results has unveiled the presence of transcription

factories within the genomic organization of these organisms [60]. It is possible that the two clusters of highly

interacting regions within the logical model (Figure 5.4B — circled in orange) could represent clusters of

transcription factories within the predicted genomic structure. Unfortunately, the Hi-C dataset that this

model was built from does not have any associated gene expression data which would allow us to explicitly

confirm this. Future work will focus on further validating this model with gene expression datasets from

different studies in the same yeast strain. Additionally, genes located within the two clusters of transcription

factories will be extracted and motif-finding algorithms will be used in an attempt to separate these clusters

into their individual potential transcription factories.

5.7 Comparison to Existing Methods for Solving the 3D Genome

Reconstruction Problem

In general, the existing methods that can be used to predict the 3D genomic structure from Hi-C data can be

categorized according to the hierarchy depicted in Figure 5.6. Specifically the programs developed here can be

46

A

B

5 μM

Figure 5.5: Visualization of the Nuclear Localization of Telomeres and Centromeres in S. pombe. In
both panels: the telomeres are represented by red signals, the centromeres are represented by green
signals and the nuclear DNA is represented in blue. Panel A is the results of fluorescence in situ
hybridization performed on a haploid S. pombe cell [10]. Panel B is the Cytoscape visualization of
the logical model with the genomic bins coloured according to the scheme above. The green circles
encapsulate centromere clusters while the red circle encapsulates the telomere cluster.

47

classified as consensus-based, optimization solutions that utilize a complete search to find the optimal logical

model of the 3D genome. Currently, none of the existing methods have be used to predict the 3D genomic

organization of the S. pombe genome. Additionally, most of the existing methods are only able to predict the

3D structures for a portion of the genome (typically one chromosome or one region of a chromosome) whereas

the programs using the minimal, non-redundant N -queens based knowledge representation developed here

are able to predict a logical model for the entire S. pombe genome.

Solutions to 3D Genome
Reconstruction Problem

Consensus
Based

Ensemble
Based

Optimization
Approach

Probabilistic
Approach

Complete
Search

Heuristic
Search

Figure 5.6: Hierarchy of existing computational methods for predicting 3D genomic structure. Green
boxes represent the categories that the developed programs would fall under. Grey boxes indicate cat-
egories that do not apply to the developed programs. Black arrows indicate the hierarchal relationship
between the categories.

The programs developed here are the only consensus based methods that are able to find the optimal

solution to the 3D genome reconstruction problem. The method developed by Duan et. al is an example

of a consensus based, optimization approach that utilizes a heuristic search to converge on a 3D genomic

structure (Figure 5.7A) [19]. One of the main downfalls of this method is that it cannot be used in species

other then yeast because it hard codes telomere and centromere 3D clustering into the prediction process.

The method developed by Nagano et. al is an example of a consensus based, probabilistic approach that

uses simulated annealing to predict the structure of the X chromosome form single-cell Hi-C data (from male

mouse cells) [45]. An example of the X chromosome structure (for two of the single cells) is shown in Figure

48

5.7B. Finally, BACH is an example of an ensemble method that uses Markov Chain Monte Carlo sampling

to predict the structure of a TAD from Hi-C data [26]. Examples of two TAD structures from the solution

set are shown in Figure 5.7C.

A B

C

Figure 5.7: Results of existing computational methods for predicting 3D genomic structure. Panel A
shows the 3D Saccharomyces cerevisiae genomic model produced from the method developed by Duan
et. al [19]. Each individual chromosome is coloured differently based on the legend on the right hand
side of the image. Panel B shows the 3D X chromosome models produced from the method developed
by Nagano et. al [45]. The linear regions of the chromosome are coloured the same in each model to
highlight the differences in positioning between five arbitrary regions (grey, green, blue, yellow, red).
Panel B depicts the 3D visualization of two predicted TAD structures from the set of TAD structures
produced by the BACH method [26].

5.8 Comparison to CLP Methods for 3D Protein Structure Pre-

diction

Constraint logic programming has been used to predict the 3D genomic structure of other biomolecules such

as proteins. Dal Pal et al. formulated the protein structure prediction problem as an optimization problem

49

in CLP where the goal was to minimize the free energy of the predicted structure [48]. A logical model of

the predicted protein structure was built by using known secondary structures and the presence of disulphide

bridges as constraints [48]. The logical model was then converted into a realistic “all atoms” model and a

comparison of the predicted and known structure was preformed producing Figure 5.8 [48]. Overall, this

method developed by Dal Pal et al. was proven to work satisfactorily for small proteins.

Figure 5.8: Comparison of known and predicted structures for the WW domain from Dal Pal et al..
The known structure is shown in yellow and the ”all atom” model of the predicted structure is shown
in red.

5.9 Future Work

The set of prediction programs using the minimal, non-redundant N -Queens knowledge representation de-

veloped as a part of this thesis will be utilized as a computational framework which will be extended and

enhanced during my subsequent Ph.D. research. Specifically, these programs will be extended to incorporate

a variety of additional genomic datasets and information into the prediction process. The unique knowledge

representation utilized in this computational framework will allow these additional datasets to be naturally

incorporated into the prediction of the 3D genome. For instance, each genomic bin could have an associated

list of variables representing the genes found within that bin and their corresponding gene expression values.

Additionally, the large body of existing microscopy images will be investigated to determine if it can be

codified and incorporated into the prediction program. Biological and computational evaluation will be done

50

to determine if the integration of these additional datasets increases the biological accuracy of the predicted

models. New methods of concurrently visualizing the 3D genome structure along with the additional genomic

datasets will be investigated. It is hypothesized that the concurrent visualization of 3D genomic structures

along with additional genomic datasets would allow researchers a more comprehensive look into the interplay

of various genomic factors and modifications in 3D space. To ensure the developed programs are scalable to

a wide variety of organisms, they will be used to predict the 3D genomic structure of higher level polyploid

genomes. Machine-learning techniques will then be used in attempt to deconvolute the heterogenous Hi-C

interactions occurring on separate chromosome copies in polyploid organisms. Finally, the predicted models

will be evaluated to determine whether or not they support the transcription factory hypothesis of genome

structure formation.

51

Chapter 6

Conclusion

The unique spatial organization of the genome seen under different cellular conditions is hypothesized

to be a crucial mechanism driving various nuclear functions. Currently, it has been extremely difficult to

comprehensively investigate this relationship due to the lack of high-resolution and high-throughput tech-

niques for identifying the 3D genomic architecture. The recent development of the biological technique Hi-C

has made it possible to detect the complete set of interactions occurring within (intra-interactions) and be-

tween (inter-interactions) chromosomes in the nucleus. While a handful of computational methods have been

developed that utilize the results from Hi-C to predict a crude 3D structure of the genome, the existing

methods cannot be easily extended to incorporate additional types of genomic datasets and information that

might impact the overall 3D structure. Additionally, none of the existing methods utilize a constraint logic

programming approach to predict the 3D genomic structure. One of the main objectives of this thesis was

to determine an effective way of solving the constraint satisfaction problem of the 3D genome reconstruction

problem. The developed programs were used to predict a 3D logical model of the yeast genome and the

results were visualized using Cytoscape. The predicted yeast model was biologically verified through litera-

ture search to ensure the developed CLP prediction programs were able to recapitulate key features of the

yeast genome. Overall, the developed computational workflow was an effective method for predicting the

3D structure of the yeast genome from Hi-C data in a reasonable amount of time. This thesis presented a

way around the computational complexity problems encountered by using a minimal N -Queens knowledge

representation with a “divide and conquer” approach. Additionally, the solution strategy developed here

lends itself to additional speed improvements due to the potential for running the defined subproblems in

parallel. Furthermore, a novel distance metric was defined (the D coefficient) which allowed a level of posi-

tional uncertainty to be encoded into the genomic model for the first time. The CLP programs developed

52

in this thesis will be utilized as a computational framework and extended in my subsequent Ph.D. research

to allow for the incorporation of additional genomic datasets in the prediction and visualization of the 3D

genome. Overall, the method developed here will be a step towards a better understanding of how the 3D

structure of the genome impacts various nuclear functions.

53

References

[1] Ferhat Ay, Evelien M. Bunnik, Nelle Varoquaux, Sebastiaan M. Bol, Jacques Prudhomme, Jean-Philippe
Vert, William Stafford Noble, and Karine G. Le Roch. Three-dimensional modeling of the P. falciparum
genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene
expression. Genome Research, 24:974–988, March 2014.

[2] Ferhat Ay and William S. Noble. Analysis methods for studying the 3D architecture of the genome.
Genome Biology, 16(1):1–15, September 2015.

[3] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant, Luca Clementi,
Jingyuan Ren, Wilfred W Li, and William S Noble. MEME SUITE: tools for motif discovery and
searching. Nucleic Acids Research, 37:W202–W208, May 2009.

[4] Davide Baù and Marc A Marti-Renom. Genome structure determination via 3C-based data integration
by the integrative modeling platform. Methods, 58(3):300–306, November 2012.

[5] Ronnie Blecher-Gonen, Zohar Barnett-Itzhaki, Diego Jaitin, Daniela Amann-Zalcenstein, David Lara-
Astiaso, and Ido Amit. High-throughput chromatin immunoprecipitation for genome-wide mapping of
in vivo protein-DNA interactions and epigenomic states. Nature Protocols, 8:539–554, February 2013.

[6] Andreas Bolzer, Gregor Kreth, Irina Solovei, Daniela Koehler, Kaan Saracoglu, Christine Fauth, Stefan
Müller, Roland Eils, Christoph Cremer, Michael R Speicher, and Thomas Cremer. Three-Dimensional
maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biology,
3(5):e157, 2005.

[7] Miguel R Branco and Ana Pombo. Intermingling of chromosome territories in interphase suggests role
in translocations and transcription-dependent associations. PLoS Biology, 4(5):e138, May 2006.

[8] Robert J Brooker, Eric P Widmaier, Linda E Graham, and Peter D Stiling. Biology. McGraw-Hill, first
edition, 2008.

[9] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain constraint solver.
Programming Languages: Implementations, Logics, and Programs, 1292:191–206, 1997.

[10] Yuji Chikashige, DaQiao Ding, Yoshiyuki Imai, Masayuki Yamamoto, Tokuko Haraguchi, and Yasushi
Hiraoka. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the
fission yeast schizosaccharomyces pombe. The EMBO Journal, 16(1):193–202, 1997.

[11] Filippo Ciabrelli and Giacomo Cavalli. Chromatin-driven behavior of topologically associating domains.
Journal of Molecular Biology, 427(3):608–625, February 2015.

[12] Nathan F Cop and Peter Fraser. Chromosome conformation capture. Cold Spring Harbor Protocols,
2009(2):pdb.prot5137, 2009.

[13] Nathan F Cope, Peter Fraser, and Christopher H Eskiw. The yin and yang of chromatin spatial orga-
nization. Genome Biology, 11:204, 2010.

[14] T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, MR Speicher, U. Mathieu, A. Jauch,
P. Emmerich, H. Scherthan, T. Ried, C. Cremer, and P. Lichter. Role of chromosome territories in
the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symposia on Quantitative
Biology, 58:777–792, 1993.

54

[15] Job Dekker, Marc A Marti-Renom, and Leonid A Mirny. Exploring the three-dimensional organization
of genomes: interpreting chromatin interaction data. Nature Reviews Genetics, 14:390–403, 2013.

[16] Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing chromosome conformation.
Science, 295(5558):1306–1311, February 2002.

[17] Alon Diament and Ron Y. Pinterand Tamir Tuller. Three-dimensional eukaryotic genomic organization
is strongly correlated with codon usage expression and function. Nature Communications, 5(5876),
December 2014.

[18] Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, and
Bing Ren. Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Nature, 485(7398):376–380, 2012.

[19] Zhijun Duan, Mirela Andronescu, Kevin Schutz, Sean McIlwain, Yoo Jung Kim, Choli Lee, Jay Shendure,
Stanley Fields, C. Anthony Blau, and William S. Noble. A three-dimensional model of the yeast genome.
Nature, 465:363–367, 2010.

[20] Christopher H Eskiw, Nathan F Cope, Ieuan Clay, Stefan Schoenfelder, Takashi Nagano, and Peter
Fraser. Transcription factories and nuclear organization of the genome. Cold Spring Harbor Symposia
on Quantitative Biology, 75:501–506, April 2010.

[21] Damien Eveillard, Delphone Ropers, Hidde de Jong, Christiane Branlant, and Alexander Bockmayr.
A multi-scale constraint programming model of alternative splicing regulation. Computational Systems
Biology, 325(1):3–24, 2004.

[22] Eric Fanchon, Fabien Corblin, Laurent Trilling, Bastien Hermant, and Danielle Gulino. Modeling the
molecular network controlling adhesion between human endothelial cells: Inference and simulation using
constraint logic programming. In Vincent Danos and Vincent Schachter, editors, Computational Methods
in Systems Biology, volume 3082 of Lecture Notes in Computer Science, pages 104–118. Springer Berlin
Heidelberg, 2005.

[23] Hironori Funabiki, Iain Hagan, Satoru Uzawa, and Mitsuhiro Yanagida. Cell cycle-dependent specific
positioning and clustering of centromeres and telomeres in fission yeast. Journal of Cell Biology, 121:961–
976, June 1993.

[24] Juan Antonio Garcia-Martin, Ivan Dotu, Javier Fernandez-Chamorro, Gloria Lozano, Jorge Ramajo,
Encarnacion Martinez-Salas, and Peter Clote. RNAiFold2T: Constraint programming design of thermo-
IRES switches. Bioinformatics, 32(12):i360–i368, June 2016.

[25] Sven Heinz, Christopher Benner, Nathanael Spann, Eric Bertolino, Yin C Lin, Peter Laslo, Jason X
Cheng, Cornelis Murre, Harinder Singh, and Christopher K Glass. Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements required for macrophage and B cell
identities. Molecular Cell, 38(4):576–589, May 2010.

[26] Ming Hu, Ke Deng, Zhaohui Qin, Jesse Dixon, Siddarth Selvaraj, Jennifer Fang, Bing Ren, and
Jun S. Liu. Bayesian inference of spatial organizations of chromosomes. PLOS Computational Biol-
ogy, 9(1):e1002893, January 2013.

[27] Rudolf Jaenisch and Adrian Bird. Epigenetic regulation of gene expression: how the genome integrates
intrinsic and environmental signals. Nature Genetics, 33:245–254, 2003.

[28] Joxan Jaffar and Michael J Maher. Constraint logic programming: a survey. Journal of Logic Program-
ming, 19(20):503–581, 1994.

[29] David S Johnson, Ali Mortazavi, Richard M Myers, and Barbara Wold. Genome-wide mapping of in
vivo protein-DNA interactions. Science, 316(5830):1497–1502, 2007.

[30] Morten Kloster and Chao Tang. SCUMBLE: a method for systematic and accurate detection of codon
usage bias by maximum likelihood estimation. Nucleic Acids Research, 36(11):3819–3827, June 2008.

55

[31] Masahiko Kuroda, Hideyuki Tanabe, Keiichi Yoshida, Kosuke Oikawa, Akira Saito, Tomoharu Kiyuna,
Hiroshi Mizusawa, and Kiyoshi Mukai. Alteration of chromosome positioning during adipocyte differen-
tiation. Journal of Cell Science, 117:5897–5903, November 2004.

[32] Antonija Kuzmanic, Navraj S. Pannu, and Bojan Zagrovic. X-ray refinement significantly underestimates
the level of microscopic heterogeneity in biomolecular crystals. Nature Communications, 5(3220), 2014.

[33] Bryan R Lajoie, Job Dekker, and Noam Kaplan. The hitchhiker’s guide to Hi-C analysis: Practical
guidelines. Methods, 72:65–75, January 2015.

[34] Annick Lesne, Julien Riposo, Paul Roger, Axel Cournac, and Julien Mozziconacci. 3D genome recon-
struction from chromosomal contacts. Nature Methods, 11:1141–1143, March 2014.

[35] Yuanyuan Li and Trygve O Tollefsbol. DNA methylation detection: Bisulfite genomic sequencing anal-
ysis. Methods in Molecular Biology, 791:11–21, 2011.

[36] Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes
Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, Richard Sandstrom, Bradley
Bernstein, M A Bender, Mark Groudine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A Mirny,
Eric S Lander, and Job Dekker. Comprehensive mapping of long range interactions reveals folding
principles of the human genome. Science, 326(5950):289–293, October 2009.

[37] Kim Marriott and Peter J Stuckey. Programming with Constraints: An Introduction. The MIT Press,
1998.

[38] Ishita S Mehta, Manelle Amira, Amanda J Harvey, and Joanna M Bridger. Rapid chromosome territory
relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome
Biology, 11(1):R5, January 2010.

[39] Ishita S Mehta, Christopher H Eskiw, Halime D Arican, Ian R Kill, and Joanna M Bridger. Farnesyl-
transferase inhibitor treatment restores chromosome territory positions and active chromosome dynamics
in Hutchinson-Gilford progeria syndrome cells. Genome Biology, 12(8):R74, August 2011.

[40] Ishita S Mehta, Mugdha Kulashreshtha, Sandeep Chakraborty, Ullas Kolthur-Seetharam, and Ba-
suthkar J Rao. Chromosome territories reposition during DNA damage-repair response. Genome Biology,
14(12):R135, December 2013.

[41] Alexander Meissner, Tarjei S. Mikkelsen, Hongcang Gu, Marius Wernig, Jacob Hanna, Andrey
Sivachenko, Xiaolan Zhang, Bradley E Bernstein, Chad Nusbaum, David B Jaffe, Andreas Gnirke,
Rudolf Jaenisch, and Eric S Lander. Genome-scale DNA methylation maps of pluripotent and differen-
tiated cells. Nature, 454:766–770, August 2008.

[42] Tom Misteli. Beyond the sequence: Cellular organization of genome function. Cell, 128(4):787–800,
February 2007.

[43] Tom Misteli. Chromosome territories: The arrangement of chromosomes in the nucleus. Nature Educa-
tion, 1(1):167, 2008.

[44] Takeshi Mizuguchi, Geoffrey Fudenberg, Sameet Mehta, Jon-Matthew Belton, Nitika Taneja, Her-
nan Diego Folco, Peter FitzGerald, Job Dekker, Leonid Mirny, Jemima Barrowman, and Shiv IS Grewal.
Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature,
516(7531):432–435, December 2014.

[45] Takashi Nagano, Yaniv Lubling, Tim J Stevens, Stefan Schoenfelder, Eitan Yaffe, Wendy Dean, Ernest D
Laue, Amos Tanay, and Peter Fraser. Single-cell Hi-C reveals cell-to-cell variability in chromosome
structure. Nature, 502:59–64, October 2013.

[46] David L Nelson and Micheal M Cox. Lehninger Principles of Biochemistry. W.H. Freeman and Company,
fifth edition, 2008.

56

[47] Valerio Orlando. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin im-
munoprecipitation. Trends in Biochemical Sciences, 25(3):99–104, March 2000.

[48] Alessandro Dal Palù, Agostino Dovier, and Federico Fogolari. Constraint logic programming approach
to protein structure prediction. BMC Bioinformatics, 5(186), December 2004.

[49] Argyris Papantonis and Peter R Cook. Transcription factories: genome organization and gene regulation.
Chemical Reviews, 113(11):8683–8705, April 2013.

[50] Luis A Parada, Philip G McQueen, and Tom Misteli. Tissue-specific spatial organization of genomes.
Genome Biology, 5:R44, June 2004.

[51] Ana Pombo, Paula Cuello, Wouter Schul, JongBok Yoon, Robert G Roeder, Peter R Cook, and Shona
Murphy. Regional and temporal specialization in the nucleus: a transcriptionallyactive nuclear domain
rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. The
EMBO Journal, 17(6):1768–1778, 1998.

[52] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T
Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, and Erez Lieberman Aiden.
3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell,
159(7):1665–1680, 2014.

[53] Joachim Schimpf and Kish Shen. ECLiPSe - from LP to CLP. Theory and Practice of Logic Programming,
12:127–156, 2011.

[54] Stefan Schoenfelder, Tom Sexton, Lyubomira Chakalova, Nathan F Cope, Alice Horton, Simon Andrews,
Sreenivasulu Kurukuti, Jennifer A Mitchell, David Umlauf, Daniela S Dimitrova, Christopher H Eskiw,
Yanquan Luo, Chia-Lin Wei, Yijun Ruan, James J Bieker, and Peter Fraser. Preferential associations
between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genetics,
42(1):53–61, January 2010.

[55] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and Programming with Gecode, 2015.

[56] Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne Koller1, and Nir Fried-
man. Module networks: identifying regulatory modules and their condition-specific regulators from gene
expression data. Nature Genetics, 34:166–176, May 2003.

[57] Mark R Segal and Henrik L Bengtsson. Reconstruction of 3D genome architecture via a two-stage
algorithm. BMC Bioinformatics, 16(373), November 2015.

[58] François Serra, Marco Di Stefano andYannick G. Spill, Yasmina Cuartero, Michael Goodstadt, Davide
Baù, and Marc A. Marti-Renom. Restraint-based three-dimensional modeling of genomes and genomic
domains. FEBS Letters, 589(20):2987–2995, May 2015.

[59] Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, and Trey Ideker. Cytoscape
2.8: new features for data integration and network visualization. Bioinformatics, 27(3):431–432, Febru-
ary 2011.

[60] Hideki Tanizawa, Osamu Iwasaki, Atsunari Tanaka, Joseph R Capizzi, Priyankara Wickramasinghe,
Mihee Lee, Zhiyan Fu, and Ken ichi Noma. Mapping of long-range associations throughout the fission
yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids
Research, 38(22):8164–8177, October 2010.

[61] Tuan Trieu and Jianlin Cheng. Large-scale reconstruction of 3D structures of human chromosomes from
chromosomal contact data. Nucleic Acids Research, 42(7):e52, January 2014.

[62] A.E. Visser, R. Eils, A. Jauch, G. Little, P.J.M. Bakker, T. Cremer, and J.A. Aten. Spatial distributions
of early and late replicating chromatin in interphase chromosome territories. Experimental Cell Research,
243(2):398–407, September 1998.

57

[63] Susanne Voelter-Mahlknecht, Stephan Letzel, and Ulrich Mahlknecht. Fluorescence in situ hybridization
and chromosomal organization of the human sirtuin 7 gene. International Journal of Oncology, 28(4):899–
908, 2006.

[64] Mark Wallace. Practical applications of constraint programming. Constraints, 1:139–168, 1996.

[65] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary tool for transcriptomics.
Nature Reviews Genetics, 10(1):57–63, January 2009.

[66] Quan wen Jin, Edgar Trelles-Sticken, Harry Scherthan, and Josef Loidl. Yeast nuclei display prominent
centromere clustering that is reduced in nondividing cells and in meiotic prophase. Journal of Cell
Biology, 141(1):21–29, April 1998.

[67] Yu-I Weng, Tim H-M Huang, and Pearlly S Yan. Methylated DNA immunoprecipitation and microarray-
based analysis: detection of DNA methylation in breast cancer cell lines. Molecular Endocrinology,
590:165–176, 2009.

[68] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-prolog. Theory and Practice
of Logic Programming, 12(1-2):67–96, 2012.

[69] Steven Wingett, Philip Ewels, Mayra Furlan-Magaril, Takashi Nagano, Stefan Schoenfelder, Peter Fraser,
and Simon Andrews. HiCUP: pipeline for mapping and processing Hi-C data. F1000Research, 4:1310,
2015.

[70] Christopher L Woodcock and Rajarshi P Ghosh. Chromatin higher-order structure and dynamics. Cold
Spring Harbor Perspectives in Biology, 2(5):a000596, May 2010.

[71] Eitan Yaffe and Amos Tanay. Probabilistic modeling of Hi-C contact maps eliminates systematic biases
to characterize global chromosomal architecture. Nature Genetics, 43:1059–1065, 2011.

[72] Mitsuhiro Yanagida. The model unicellular eukaryote, Schizosaccharomyces pombe. Genome Biology,
3(3):comment2003.1 – comment2003.4, February 2002.

[73] Chih yu Chen, Quaid Morris, and Jennifer A Mitchell. Enhancer identification in mouse embryonic stem
cells using integrative modeling of chromatin and genomic features. BMC Genomics, 13:152, 2012.

[74] ZhiZhuo Zhang, Guoliang Li, Kim-Chuan Toh, and Wing-Kin Sung. 3D chromosome modeling with
semi-definite programming and Hi-C data. Journal of Computational Biology, 20(11):831–846, November
2013.

58

Appendix A

CLP Knowledge Representations of the Three-Dimensional

Genome Reconstruction Problem

A.1 Overview of the Initial CLP Knowledge Representation

Program A.1 A Subset of the Initial CLP Program with a Complete N-Queens Knowledge Representation

%%%
2 %% Load the relevant libraries

%%%
4 :- lib(ic).

:- lib(branch_and_bound).
6 :- import atleast /3 from ic_global.

:- import sumlist /2 from ic_global.
8

%%%
10 %% The clause that should be called within

%% eclipse to determine the interactions that
12 %% are most likely occurring

%%%
14 solve(GenomeName) :-

%% load the frequency values for a specific
16 %% genome

genome(GenomeName , Freqs),
18

%% select the interactions that maximize the
20 %% sum of the selected frequencies

maximize(Freqs).
22

%%%
24 %% A clause that will select the maximum sub -

%% set of frequencies which satisfy the constraints
26 %%%

maximize(Freqs) :-
28 %% get the size of the frequency matrix

dim(Freqs , [N,N]),
30

%% define the variables to represent a
32 %% complete N-Queens board (NxN)

%% generated by the perl programs
34 %% note: these are 2D "arrays"

Rows = [
36 [V1_1 , V1_2 , V1_3 , V1_4 , V1_5],

[V2_1 , V2_2 , V2_3 , V2_4 , V2_5],
38 [V3_1 , V3_2 , V3_3 , V3_4 , V3_5],

[V4_1 , V4_2 , V4_3 , V4_4 , V4_5],
40 [V5_1 , V5_2 , V5_3 , V5_4 , V5_5]

],
42

Cols = [
44 [V1_1 , V2_1 , V3_1 , V4_1 , V5_1],

[V1_2 , V2_2 , V3_2 , V4_2 , V5_2],
46 [V1_3 , V2_3 , V3_3 , V4_3 , V5_3],

[V1_4 , V2_4 , V3_4 , V4_4 , V5_4],
48 [V1_5 , V2_5 , V3_5 , V4_5 , V5_5]

],
50

%% a list of all the solution variables
52 SlnVars = [

V1_1 , V1_2 , V1_3 , V1_4 , V1_5 ,
54 V2_1 , V2_2 , V2_3 , V2_4 , V2_5 ,

V3_1 , V3_2 , V3_3 , V3_4 , V3_5 ,
56 V4_1 , V4_2 , V4_3 , V4_4 , V4_5 ,

V5_1 , V5_2 , V5_3 , V5_4 , V5_5
58],

60 %% define the variable domains , based on
%% the frequency matrix

59

62 (for(I,1,N), param(Freqs ,N,Rows) do
(for(J,1,N), param(Freqs ,I,Rows) do

64 Rows[I,J] :: [0, Freqs[I,J]]
)

66),

68 %% apply constraints
%% in this case , for each row and column

70 %% only 1 variable can have a non -zero
%% frequency value

72 Num is N-1,
(for(I,1,N), param(Rows ,Cols ,N,Num) do

74 atleast(Num , Rows[I, 1..N], 0),
atleast(Num , Cols[I,1..N], 0)

76),

78 %% search the solution space for the optimal
%% solution

80 Cost is -sum(SlnVars),
minimize(search(SlnVars , 0, smallest , indomain , complete , []), Cost),

82
%% display the results

84 printInteractions(Rows).

86 %%%
%% prints all the selected interactions

88 %% based on the input variable Rows
%%%

90 printInteractions(Rows) :-
%% get the dimensions of the frequency matrix

92 dim(Rows , [N,N]),

94 %% get the labels for the S. pombe bins
spombeBins(BinNames),

96
%% print out the value of each row and column

98 (for(I,1,N), param(Rows ,BinNames ,N) do
(for(J,1,N), param(Rows ,BinNames ,I) do

100 X is BinNames[I],
Y is BinNames[J],

102 Z is Rows[I,J],

104 %% if the value is zero: write an empty
%% string

106 (Z #= 0 -> write("");
%% else display the interaction

108 printf(" %s interacts %s\n", [X, Y]))
), nl

110), nl.

112 %%%
%% DATASET SPECIFIC INFORMATION - generated by

114 %% the perl programs
%%%

116
%%%

118 %% bin labels for: S. pombe
%%%

120 spombeBins ([bin1000000 , bin1000001 , bin1000002 ,
bin1000003 , bin1000004 , bin1000005]).

122
%%%

124 %% representation of a subset of the
%% whole -genome contact map for the S. pombe

126 %% 999a genome (GSM1379427) only the upper
%% triangle is explicitly defined since the

128 %% matrix is symmetrical along the diagonal
%%%

130 genome(1, [
[4748, 4100, 3383, 2104, 1979] ,

132 [_, 5872, 4293, 2330, 2039],
[_, _, 5378, 2352, 2275] ,

134 [_, _, _, 3202, 2814],
[_, _, _, _, 4121],

136].

60

A.2 Overview of the Minimal CLP Knowledge Representation

Program A.2 A Subset of the Initial CLP Program with a Minimal N-Queens Knowledge Representation

%%%
2 %% Load the relevant libraries

%%%
4 :- lib(gfd).

:- import minimize /2 from branch_and_bound.
6

%%%
8 %% Based on the alldifferent /1 global constraint -

%% ensures each variable is pairwise different
10 %% from each other or has a value of zero

%%%
12 alldifferent_except(Vars) :-

% get the length of the input list
14 length(Vars , N),

16 % loop through all pairs of elements to check
% if they are different

18 (for(I,1,N), param(Vars , N) do
(for(J, I, N), param(Vars , I) do

20
element(I, Vars , X),

22 element(J, Vars , Y),

24 % if it isn’t the same element , or an element
% with a 0 value

26 (I #\= J) ->
% constrain to be pairwise different or have

28 % one (or both) equal zero
X #\= Y or (X #= 0 or Y #= 0)

30 ;
true

32)
).

34
%%%

36 %% The clause that the user should invoke
%% to get the program to run. This clause will

38 %% determine the interactions that
%% are most likely occurring by selecting the maximum

40 %% subset of frequencies that satisfy the constraints
%%%

42 maximize(Rows , Freqs) :-
%% define N variables to represent a

44 %% complete N-Queens board (NxN)
Rows = [Row1 , Row2 , Row3 , Row4 , Row5],

46
Freqs = [Freq1 , Freq2 , Freq3 , Freq4 , Freq5],

48
%% define the row domains

50 Row1 :: [0..1] ,
Row2 :: [0..2] ,

52 Row3 :: [0..3] ,
Row4 :: [0..4] ,

54 Row5 :: [0..5] ,

56 %% define the variable domains , based on
%% the frequency matrix

58 Freq1 :: [0],
Freq2 :: [0],

60 Freq3 :: [0, 47],
Freq4 :: [0, 41, 58],

62 Freq5 :: [0, 33, 42, 53],

64 %% apply constraints to the data to ensure
%% they are valid 2-tuple pairs based on the

66 %% biological data. note: (0,0) is when we
%% choose to not select anything for that

68 %% column row pair

70 % Column1 Constraints
((Row1 #= 0) and (Freq1 #= 0)) or

72 ((Row1 #= 1) and (Freq1 #= 0)),

74 % Column2 Constraints
((Row2 #= 0) and (Freq2 #= 0)) or

61

76 ((Row2 #= 1) and (Freq2 #= 0)) or
((Row2 #= 2) and (Freq2 #= 0)),

78
% Column3 Constraints

80 ((Row3 #= 0) and (Freq3 #= 0)) or
((Row3 #= 1) and (Freq3 #= 0)) or

82 ((Row3 #= 2) and (Freq3 #= 47)) or
((Row3 #= 3) and (Freq3 #= 0)),

84
% Column4 Constraints

86 ((Row4 #= 0) and (Freq4 #= 0)) or
((Row4 #= 1) and (Freq4 #= 47)) or

88 ((Row4 #= 2) and (Freq4 #= 58)) or
((Row4 #= 3) and (Freq4 #= 0)) or

90 ((Row4 #= 4) and (Freq4 #= 0)),

92 % Column5 Constraints
((Row5 #= 0) and (Freq5 #= 0)) or

94 ((Row5 #= 1) and (Freq5 #= 33)) or
((Row5 #= 2) and (Freq5 #= 42)) or

96 ((Row5 #= 3) and (Freq5 #= 0)) or
((Row5 #= 4) and (Freq5 #= 0)) or

98 ((Row5 #= 5) and (Freq5 #= 53)),

100 %% additional constraints
%% all row domains should be different (or zero)

102 %% since we only want 1 region to make 1 interaction
%% with another region

104 alldifferent_except(Rows),

106 %% search the solution space for the optimal
%% solution

108 Cost #= -sum(Freqs),
minimize(search(Freqs , 0, input_order , indomain_max , complete , []), Cost).

A.3 Overview of the CLP knowledge Representation for a Intra-
Interaction Subproblem

Program A.3 A Subset of the Refined CLP Program with a Minimal N-Queens Knowledge Representation
for Detecting Intra-Interactions for a Subset of Chromosome 1.

1 %%
%% Load the relevant libraries

3 %%%
:- lib(gfd).

5 :- import minimize /2 from branch_and_bound.

7 %%%
%% Based on the alldifferent /1 global constraint -

9 %% ensures each variable is pairwise different
%% from each other or has a value of zero

11 %%
alldifferent_except(Vars) :-

13 % get the length of the input list
length(Vars , N),

15
% loop through all pairs of elements to check

17 % if they are different
(for(I,1,N), param(Vars , N) do

19 (for(J, I, N), param(Vars , I) do

21 element(I, Vars , X),
element(J, Vars , Y),

23
% if it isn’t the same element , or an element

25 % with a 0 value
(I #\= J) ->

27 % constrain to be pairwise different or have
% one (or both) equal zero

29 X #\= Y or (X #= 0 or Y #= 0)
;

31 true
)

33).

62

35 %%%
%% The clause that the user should invoke

37 %% to get the program to run. This clause will
%% determine the interactions that

39 %% are most likely occurring by selecting the maximum
%% subset of frequencies that satisfy the constraints

41 %%%
maximize(RowFile , FreqFile , Non_Zero_Rows) :-

43
%%%

45 %% Define
%%%

47
%% specify the Rows for the intra -interaction submatricies

49 Non_Zero_Rows = [Chr1_Row8 , Chr1_Row9 , Chr1_Row10 ,
Chr1_Row11 , Chr1_Row12 , Chr1_Row13],

51
%% specify the Frequency for the intra -interaction submatricies

53 Freqs = [Chr1_Freq8 , Chr1_Freq9 , Chr1_Freq10 ,
Chr1_Freq11 , Chr1_Freq12 , Chr1_Freq13],

55
%%%

57 %% Representation of the Genome
%%%

59
%% define the Row domains for the intra -interations

61 Chr1_Row8 :: [0, 6],
Chr1_Row9 :: [0, 6, 7],

63 Chr1_Row10 :: [0, 6, 7, 8],
Chr1_Row11 :: [0, 6, 7, 8, 9],

65 Chr1_Row12 :: [0, 6, 7, 8, 9, 10],
Chr1_Row13 :: [0, 6, 7, 8, 9, 10, 11],

67

69 %% define the Freq domains for the intra -interations
%% this is based on the Hi-C interaction matrix

71 Chr1_Freq8 :: [0, 47],
Chr1_Freq9 :: [0, 41, 58],

73 Chr1_Freq10 :: [0, 33, 42, 53],
Chr1_Freq11 :: [0, 21, 23, 32],

75 Chr1_Freq12 :: [0, 19, 20, 22, 28, 41],
Chr1_Freq13 :: [0, 19, 21, 24, 30, 37, 40],

77
%% apply constraints to the data to ensure they are

79 %% valid 2-tuple pairs based on the biological data.
%% note: (0,0) is when we choose to not select

81 %% anything for that Column -row pair
%% Column 8 Constraints

83 ((Chr1_Row8 #= 6) and (Chr1_Freq8 #= 47)) or
((Chr1_Row8 #= 0) and (Chr1_Freq8 #= 0)),

85
%% Column 9 Constraints

87 ((Chr1_Row9 #= 6) and (Chr1_Freq9 #= 41)) or
((Chr1_Row9 #= 7) and (Chr1_Freq9 #= 58)) or

89 ((Chr1_Row9 #= 0) and (Chr1_Freq9 #= 0)),

91 %% Column 10 Constraints
((Chr1_Row10 #= 6) and (Chr1_Freq10 #= 33)) or

93 ((Chr1_Row10 #= 7) and (Chr1_Freq10 #= 42)) or
((Chr1_Row10 #= 8) and (Chr1_Freq10 #= 53)) or

95 ((Chr1_Row10 #= 0) and (Chr1_Freq10 #= 0)),

97 %% Column 11 Constraints
((Chr1_Row11 #= 6) and (Chr1_Freq11 #= 21)) or

99 ((Chr1_Row11 #= 7) and (Chr1_Freq11 #= 23)) or
((Chr1_Row11 #= 8) and (Chr1_Freq11 #= 23)) or

101 ((Chr1_Row11 #= 9) and (Chr1_Freq11 #= 32)) or
((Chr1_Row11 #= 0) and (Chr1_Freq11 #= 0)),

103
%% Column 12 Constraints

105 ((Chr1_Row12 #= 10) and (Chr1_Freq12 #= 41)) or
((Chr1_Row12 #= 6) and (Chr1_Freq12 #= 19)) or

107 ((Chr1_Row12 #= 7) and (Chr1_Freq12 #= 20)) or
((Chr1_Row12 #= 8) and (Chr1_Freq12 #= 22)) or

109 ((Chr1_Row12 #= 9) and (Chr1_Freq12 #= 28)) or
((Chr1_Row12 #= 0) and (Chr1_Freq12 #= 0)),

111
%% Column 13 Constraints

113 ((Chr1_Row13 #= 10) and (Chr1_Freq13 #= 37)) or
((Chr1_Row13 #= 11) and (Chr1_Freq13 #= 40)) or

63

115 ((Chr1_Row13 #= 6) and (Chr1_Freq13 #= 19)) or
((Chr1_Row13 #= 7) and (Chr1_Freq13 #= 21)) or

117 ((Chr1_Row13 #= 8) and (Chr1_Freq13 #= 24)) or
((Chr1_Row13 #= 9) and (Chr1_Freq13 #= 30)) or

119 ((Chr1_Row13 #= 0) and (Chr1_Freq13 #= 0)),

121 %%%
%% Additional Constraints

123 %%%

125 %% all the Output values will be different -
%% want them to correspond to which Row

127 %% for each has a non -zero value , multiple zeros are allowed
alldifferent_except(Non_Zero_Rows),

129 atmost (543, Non_Zero_Rows , 0),

131 %%%
%% Optimize

133 %%%

135 % heuristics could be improved to make it faster
%% maximize the interaction frequency from the tuple

137 Cost #= -sum(Freqs),
minimize(search(Freqs , 0, input_order , indomain_max , complete , [])

139 , Cost),

141 %%%
%% Output the results

143 %%%
%% PRINT THE FREQUENCIES

145 open(FreqFile , ’write ’, FREQ_OUT),
%%list the frequencies

147 (foreach(X,Freqs),
param(FREQ_OUT) do

149 get_domain_as_list(X, DomList),
(foreach(Y,DomList),

151 param(FREQ_OUT) do
write(FREQ_OUT , Y),

153 write(FREQ_OUT , ’ ’)
),

155 write(FREQ_OUT , "\n")
),

157 close(FREQ_OUT),

159 %% PRINT THE ROWS
%% list the potential rows

161 open(RowFile , ’write’, ROW_OUT),
(foreach(X,Non_Zero_Rows),

163 param(ROW_OUT) do
get_domain_as_list(X, DomList),

165 (foreach(Y,DomList),
param(ROW_OUT) do

167 write(ROW_OUT , Y),
write(ROW_OUT , ’ ’)

169),
write(ROW_OUT , "\n")

171),
close(ROW_OUT).

A.4 Overview of the CLP knowledge Representation for a Inter-
Interaction Subproblem

Program A.4 A Subset of the Refined CLP Program with a Minimal N-Queens Knowledge Representation
for Detecting Inter-Interactions Between Chromosome 1 and Chromosome 2.

%%%
2 %% Load the relevant libraries

%%%
4 :- lib(gfd).

6 %%%
%% Based on the alldifferent /1 global constraint -

8 %% ensures each variable is pairwise different
%% from each other or has a value of zero

64

10 %%%
alldifferent_except(Vars) :-

12 % get the length of the input list
length(Vars , N),

14
% loop through all pairs of elements to check

16 % if they are different
(for(I,1,N), param(Vars , N) do

18 (for(J, I, N), param(Vars , I) do

20 element(I, Vars , X),
element(J, Vars , Y),

22
% if it isn’t the same element , or an element

24 % with a 0 value
(I #\= J) ->

26 % constrain to be pairwise different or have
% one (or both) equal zero

28 X #\= Y or (X #= 0 or Y #= 0)
;

30 true
)

32).

34 %%%
%% The clause that the user should invoke

36 %% to get the program to run. This clause will
%% determine the interactions that

38 %% are most likely occurring by selecting the maximum
%% subset of frequencies that satisfy the constraints

40 %%%
maximize(RowFile , FreqFile , Non_Zero_Rows) :-

42
%%%

44 %% Define
%%%

46
%% specify the Rows for the inter -interaction submatricies

48 Non_Zero_Rows = [Chr1_Chr2_Row562 , Chr1_Chr2_Row563 ,
Chr1_Chr2_Row564 , Chr1_Chr2_Row565 , Chr1_Chr2_Row566],

50
%% specify the Frequency for the inter -interaction submatricies

52 Freqs = [Chr1_Chr2_Freq562 , Chr1_Chr2_Freq563 ,
Chr1_Chr2_Freq564 , Chr1_Chr2_Freq565 , Chr1_Chr2_Freq566],

54
%%%

56 %% Representation of the Genome
%%%

58
%% define the Row domains for the inter -interations

60 %% these should be 0..N where N is the number of columns in the submatrix
%% chromosome1 - chromosome 2

62 Chr1_Chr2_Row562 :: [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 462,
545, 546, 547, 548, 549, 550, 551, 552, 553,

64 554, 555, 556, 557],
Chr1_Chr2_Row563 :: [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 543,

66 544, 545, 546, 547, 548, 549, 550, 551, 552,
553, 554, 555, 556, 557],

68 Chr1_Chr2_Row564 :: [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
544, 545, 546, 547, 548, 549, 550, 551, 552,

70 553, 554, 555, 556, 557],
Chr1_Chr2_Row565 :: [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

72 544, 545, 546, 547, 548, 549, 550, 551, 552,
553, 554, 555, 556, 557],

74 Chr1_Chr2_Row566 :: [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
545, 546, 547, 548, 549, 550, 551, 552, 553,

76 554, 555, 556, 557],

78 %% define the Freq domains for the inter -interations
%% this is based on the Hi-C interaction matrix

80 Chr1_Chr2_Freq562 :: [0, 3, 4, 6, 5, 1, 2],
Chr1_Chr2_Freq563 :: [0, 4, 5, 6, 3, 1, 2],

82 Chr1_Chr2_Freq564 :: [0, 4, 5, 2, 1, 3],
Chr1_Chr2_Freq565 :: [0, 4, 6, 5, 1, 2, 3],

84 Chr1_Chr2_Freq566 :: [0, 3, 4, 5, 1, 2],

86 %% apply constraints to the data to ensure they are
%% valid 2-tuple pairs based on the

88 %% biological data. note: (0,0) is when we choose
%% to not select anything for that

90 %% Column row pair

65

92 %% Column562 Constraints
((Chr1_Chr2_Row562 #= 10) and (Chr1_Chr2_Freq562 #= 3)) or

94 ((Chr1_Chr2_Row562 #= 11) and (Chr1_Chr2_Freq562 #= 1)) or
((Chr1_Chr2_Row562 #= 12) and (Chr1_Chr2_Freq562 #= 1)) or

96 ((Chr1_Chr2_Row562 #= 13) and (Chr1_Chr2_Freq562 #= 1)) or
((Chr1_Chr2_Row562 #= 14) and (Chr1_Chr2_Freq562 #= 1)) or

98 ((Chr1_Chr2_Row562 #= 15) and (Chr1_Chr2_Freq562 #= 1)) or
((Chr1_Chr2_Row562 #= 462) and (Chr1_Chr2_Freq562 #= 3)) or

100 ((Chr1_Chr2_Row562 #= 545) and (Chr1_Chr2_Freq562 #= 1)) or
((Chr1_Chr2_Row562 #= 546) and (Chr1_Chr2_Freq562 #= 1)) or

102 ((Chr1_Chr2_Row562 #= 547) and (Chr1_Chr2_Freq562 #= 1)) or
((Chr1_Chr2_Row562 #= 548) and (Chr1_Chr2_Freq562 #= 2)) or

104 ((Chr1_Chr2_Row562 #= 549) and (Chr1_Chr2_Freq562 #= 2)) or
((Chr1_Chr2_Row562 #= 550) and (Chr1_Chr2_Freq562 #= 3)) or

106 ((Chr1_Chr2_Row562 #= 551) and (Chr1_Chr2_Freq562 #= 4)) or
((Chr1_Chr2_Row562 #= 552) and (Chr1_Chr2_Freq562 #= 5)) or

108 ((Chr1_Chr2_Row562 #= 553) and (Chr1_Chr2_Freq562 #= 6)) or
((Chr1_Chr2_Row562 #= 554) and (Chr1_Chr2_Freq562 #= 5)) or

110 ((Chr1_Chr2_Row562 #= 555) and (Chr1_Chr2_Freq562 #= 3)) or
((Chr1_Chr2_Row562 #= 556) and (Chr1_Chr2_Freq562 #= 4)) or

112 ((Chr1_Chr2_Row562 #= 557) and (Chr1_Chr2_Freq562 #= 4)) or
((Chr1_Chr2_Row562 #= 6) and (Chr1_Chr2_Freq562 #= 3)) or

114 ((Chr1_Chr2_Row562 #= 7) and (Chr1_Chr2_Freq562 #= 4)) or
((Chr1_Chr2_Row562 #= 8) and (Chr1_Chr2_Freq562 #= 6)) or

116 ((Chr1_Chr2_Row562 #= 9) and (Chr1_Chr2_Freq562 #= 5)) or
((Chr1_Chr2_Freq562 #= 0) and (Chr1_Chr2_Row562 #= 0)),

118
%% Column563 Constraints

120 ((Chr1_Chr2_Row563 #= 10) and (Chr1_Chr2_Freq563 #= 3)) or
((Chr1_Chr2_Row563 #= 11) and (Chr1_Chr2_Freq563 #= 1)) or

122 ((Chr1_Chr2_Row563 #= 12) and (Chr1_Chr2_Freq563 #= 1)) or
((Chr1_Chr2_Row563 #= 13) and (Chr1_Chr2_Freq563 #= 1)) or

124 ((Chr1_Chr2_Row563 #= 14) and (Chr1_Chr2_Freq563 #= 1)) or
((Chr1_Chr2_Row563 #= 15) and (Chr1_Chr2_Freq563 #= 1)) or

126 ((Chr1_Chr2_Row563 #= 543) and (Chr1_Chr2_Freq563 #= 1)) or
((Chr1_Chr2_Row563 #= 544) and (Chr1_Chr2_Freq563 #= 1)) or

128 ((Chr1_Chr2_Row563 #= 545) and (Chr1_Chr2_Freq563 #= 1)) or
((Chr1_Chr2_Row563 #= 546) and (Chr1_Chr2_Freq563 #= 1)) or

130 ((Chr1_Chr2_Row563 #= 547) and (Chr1_Chr2_Freq563 #= 1)) or
((Chr1_Chr2_Row563 #= 548) and (Chr1_Chr2_Freq563 #= 2)) or

132 ((Chr1_Chr2_Row563 #= 549) and (Chr1_Chr2_Freq563 #= 2)) or
((Chr1_Chr2_Row563 #= 550) and (Chr1_Chr2_Freq563 #= 3)) or

134 ((Chr1_Chr2_Row563 #= 551) and (Chr1_Chr2_Freq563 #= 5)) or
((Chr1_Chr2_Row563 #= 552) and (Chr1_Chr2_Freq563 #= 5)) or

136 ((Chr1_Chr2_Row563 #= 553) and (Chr1_Chr2_Freq563 #= 6)) or
((Chr1_Chr2_Row563 #= 554) and (Chr1_Chr2_Freq563 #= 5)) or

138 ((Chr1_Chr2_Row563 #= 555) and (Chr1_Chr2_Freq563 #= 4)) or
((Chr1_Chr2_Row563 #= 556) and (Chr1_Chr2_Freq563 #= 4)) or

140 ((Chr1_Chr2_Row563 #= 557) and (Chr1_Chr2_Freq563 #= 3)) or
((Chr1_Chr2_Row563 #= 6) and (Chr1_Chr2_Freq563 #= 4)) or

142 ((Chr1_Chr2_Row563 #= 7) and (Chr1_Chr2_Freq563 #= 5)) or
((Chr1_Chr2_Row563 #= 8) and (Chr1_Chr2_Freq563 #= 6)) or

144 ((Chr1_Chr2_Row563 #= 9) and (Chr1_Chr2_Freq563 #= 6)) or
((Chr1_Chr2_Freq563 #= 0) and (Chr1_Chr2_Row563 #= 0)),

146
%% Column564 Constraints

148 ((Chr1_Chr2_Row564 #= 10) and (Chr1_Chr2_Freq564 #= 4)) or
((Chr1_Chr2_Row564 #= 11) and (Chr1_Chr2_Freq564 #= 2)) or

150 ((Chr1_Chr2_Row564 #= 12) and (Chr1_Chr2_Freq564 #= 2)) or
((Chr1_Chr2_Row564 #= 13) and (Chr1_Chr2_Freq564 #= 1)) or

152 ((Chr1_Chr2_Row564 #= 14) and (Chr1_Chr2_Freq564 #= 1)) or
((Chr1_Chr2_Row564 #= 15) and (Chr1_Chr2_Freq564 #= 1)) or

154 ((Chr1_Chr2_Row564 #= 16) and (Chr1_Chr2_Freq564 #= 1)) or
((Chr1_Chr2_Row564 #= 544) and (Chr1_Chr2_Freq564 #= 1)) or

156 ((Chr1_Chr2_Row564 #= 545) and (Chr1_Chr2_Freq564 #= 1)) or
((Chr1_Chr2_Row564 #= 546) and (Chr1_Chr2_Freq564 #= 1)) or

158 ((Chr1_Chr2_Row564 #= 547) and (Chr1_Chr2_Freq564 #= 2)) or
((Chr1_Chr2_Row564 #= 548) and (Chr1_Chr2_Freq564 #= 2)) or

160 ((Chr1_Chr2_Row564 #= 549) and (Chr1_Chr2_Freq564 #= 2)) or
((Chr1_Chr2_Row564 #= 550) and (Chr1_Chr2_Freq564 #= 3)) or

162 ((Chr1_Chr2_Row564 #= 551) and (Chr1_Chr2_Freq564 #= 4)) or
((Chr1_Chr2_Row564 #= 552) and (Chr1_Chr2_Freq564 #= 4)) or

164 ((Chr1_Chr2_Row564 #= 553) and (Chr1_Chr2_Freq564 #= 4)) or
((Chr1_Chr2_Row564 #= 554) and (Chr1_Chr2_Freq564 #= 3)) or

166 ((Chr1_Chr2_Row564 #= 555) and (Chr1_Chr2_Freq564 #= 3)) or
((Chr1_Chr2_Row564 #= 556) and (Chr1_Chr2_Freq564 #= 2)) or

168 ((Chr1_Chr2_Row564 #= 557) and (Chr1_Chr2_Freq564 #= 3)) or
((Chr1_Chr2_Row564 #= 6) and (Chr1_Chr2_Freq564 #= 4)) or

170 ((Chr1_Chr2_Row564 #= 7) and (Chr1_Chr2_Freq564 #= 4)) or
((Chr1_Chr2_Row564 #= 8) and (Chr1_Chr2_Freq564 #= 5)) or

66

172 ((Chr1_Chr2_Row564 #= 9) and (Chr1_Chr2_Freq564 #= 4)) or
((Chr1_Chr2_Freq564 #= 0) and (Chr1_Chr2_Row564 #= 0)),

174
%% Column565 Constraints

176 ((Chr1_Chr2_Row565 #= 10) and (Chr1_Chr2_Freq565 #= 4)) or
((Chr1_Chr2_Row565 #= 11) and (Chr1_Chr2_Freq565 #= 1)) or

178 ((Chr1_Chr2_Row565 #= 12) and (Chr1_Chr2_Freq565 #= 1)) or
((Chr1_Chr2_Row565 #= 13) and (Chr1_Chr2_Freq565 #= 1)) or

180 ((Chr1_Chr2_Row565 #= 14) and (Chr1_Chr2_Freq565 #= 1)) or
((Chr1_Chr2_Row565 #= 15) and (Chr1_Chr2_Freq565 #= 1)) or

182 ((Chr1_Chr2_Row565 #= 16) and (Chr1_Chr2_Freq565 #= 1)) or
((Chr1_Chr2_Row565 #= 544) and (Chr1_Chr2_Freq565 #= 1)) or

184 ((Chr1_Chr2_Row565 #= 545) and (Chr1_Chr2_Freq565 #= 1)) or
((Chr1_Chr2_Row565 #= 546) and (Chr1_Chr2_Freq565 #= 1)) or

186 ((Chr1_Chr2_Row565 #= 547) and (Chr1_Chr2_Freq565 #= 2)) or
((Chr1_Chr2_Row565 #= 548) and (Chr1_Chr2_Freq565 #= 2)) or

188 ((Chr1_Chr2_Row565 #= 549) and (Chr1_Chr2_Freq565 #= 2)) or
((Chr1_Chr2_Row565 #= 550) and (Chr1_Chr2_Freq565 #= 3)) or

190 ((Chr1_Chr2_Row565 #= 551) and (Chr1_Chr2_Freq565 #= 5)) or
((Chr1_Chr2_Row565 #= 552) and (Chr1_Chr2_Freq565 #= 5)) or

192 ((Chr1_Chr2_Row565 #= 553) and (Chr1_Chr2_Freq565 #= 4)) or
((Chr1_Chr2_Row565 #= 554) and (Chr1_Chr2_Freq565 #= 4)) or

194 ((Chr1_Chr2_Row565 #= 555) and (Chr1_Chr2_Freq565 #= 3)) or
((Chr1_Chr2_Row565 #= 556) and (Chr1_Chr2_Freq565 #= 3)) or

196 ((Chr1_Chr2_Row565 #= 557) and (Chr1_Chr2_Freq565 #= 2)) or
((Chr1_Chr2_Row565 #= 6) and (Chr1_Chr2_Freq565 #= 4)) or

198 ((Chr1_Chr2_Row565 #= 7) and (Chr1_Chr2_Freq565 #= 4)) or
((Chr1_Chr2_Row565 #= 8) and (Chr1_Chr2_Freq565 #= 6)) or

200 ((Chr1_Chr2_Row565 #= 9) and (Chr1_Chr2_Freq565 #= 5)) or
((Chr1_Chr2_Freq565 #= 0) and (Chr1_Chr2_Row565 #= 0)),

202
%% Column556 Constraints

204 ((Chr1_Chr2_Row566 #= 10) and (Chr1_Chr2_Freq566 #= 3)) or
((Chr1_Chr2_Row566 #= 11) and (Chr1_Chr2_Freq566 #= 1)) or

206 ((Chr1_Chr2_Row566 #= 12) and (Chr1_Chr2_Freq566 #= 1)) or
((Chr1_Chr2_Row566 #= 13) and (Chr1_Chr2_Freq566 #= 1)) or

208 ((Chr1_Chr2_Row566 #= 14) and (Chr1_Chr2_Freq566 #= 1)) or
((Chr1_Chr2_Row566 #= 15) and (Chr1_Chr2_Freq566 #= 1)) or

210 ((Chr1_Chr2_Row566 #= 16) and (Chr1_Chr2_Freq566 #= 1)) or
((Chr1_Chr2_Row566 #= 545) and (Chr1_Chr2_Freq566 #= 1)) or

212 ((Chr1_Chr2_Row566 #= 546) and (Chr1_Chr2_Freq566 #= 1)) or
((Chr1_Chr2_Row566 #= 547) and (Chr1_Chr2_Freq566 #= 1)) or

214 ((Chr1_Chr2_Row566 #= 548) and (Chr1_Chr2_Freq566 #= 2)) or
((Chr1_Chr2_Row566 #= 549) and (Chr1_Chr2_Freq566 #= 2)) or

216 ((Chr1_Chr2_Row566 #= 550) and (Chr1_Chr2_Freq566 #= 3)) or
((Chr1_Chr2_Row566 #= 551) and (Chr1_Chr2_Freq566 #= 4)) or

218 ((Chr1_Chr2_Row566 #= 552) and (Chr1_Chr2_Freq566 #= 4)) or
((Chr1_Chr2_Row566 #= 553) and (Chr1_Chr2_Freq566 #= 4)) or

220 ((Chr1_Chr2_Row566 #= 554) and (Chr1_Chr2_Freq566 #= 3)) or
((Chr1_Chr2_Row566 #= 555) and (Chr1_Chr2_Freq566 #= 2)) or

222 ((Chr1_Chr2_Row566 #= 556) and (Chr1_Chr2_Freq566 #= 2)) or
((Chr1_Chr2_Row566 #= 557) and (Chr1_Chr2_Freq566 #= 2)) or

224 ((Chr1_Chr2_Row566 #= 6) and (Chr1_Chr2_Freq566 #= 3)) or
((Chr1_Chr2_Row566 #= 7) and (Chr1_Chr2_Freq566 #= 4)) or

226 ((Chr1_Chr2_Row566 #= 8) and (Chr1_Chr2_Freq566 #= 5)) or
((Chr1_Chr2_Row566 #= 9) and (Chr1_Chr2_Freq566 #= 5)) or

228 ((Chr1_Chr2_Freq566 #= 0) and (Chr1_Chr2_Row566 #= 0)),

230 %%%
%% Additional Constraints

232 %%%

234 %% all the Output values will be different - want them to correspond
%% to which Row for each has a non -zero value , multiple zeros

236 %% are allowed
alldifferent_except(Non_Zero_Rows),

238 atmost (49, Non_Zero_Rows , 0),

240 %%%
%% Optimize

242 %%%
%% maximize the interaction frequency from the tuple

244 Cost #= -sum(Freqs),
minimize(search(Freqs , 0, input_order , indomain_max , complete , [])

246 , Cost),

248 %%%
%% Output the results

250 %%%
%% OUTPUT THE FREQUENCY VALUES

252 open(FreqFile , ’write ’, FREQ_OUT),

67

%%list the frequencies
254 (foreach(X,Freqs),

param(FREQ_OUT) do
256 get_domain_as_list(X, DomList),

%% for each value in the domain of
258 %% X: print it out

(foreach(Y,DomList),
260 param(FREQ_OUT) do

write(FREQ_OUT , Y),
262 write(FREQ_OUT , ’ ’)

),
264 write(FREQ_OUT , "\n")

),
266 close(FREQ_OUT),

268 %% OUTPUT THE ROW VALUES
open(RowFile , ’write’, ROW_OUT),

270 (foreach(X,Non_Zero_Rows),
param(ROW_OUT) do

272 get_domain_as_list(X, DomList),
%% for each value in the domain of

274 %% X: print it out
(foreach(Y,DomList),

276 param(ROW_OUT) do
write(ROW_OUT , Y),

278 write(ROW_OUT , ’ ’)
),

280 write(ROW_OUT , "\n")
),

282 close(ROW_OUT).

68

Appendix B

Perl Programs for the Automation of Portions of

the Original CLP Program

B.1 compression of rows.pl

#!/usr/bin/perl
2 ## generates the CLP representation of the interaction frequencies

argument 1: corrected HiC matrix file
4 ## argument 2: the number of bins you want to condense together

Kimberly MacKay April 21, 2015
6

use strict;
8 use warnings;

10 ## check to ensure two arguments was passed in
die "ERROR: must pass in two argumnets." if @ARGV != 2;

12
my $HiC_file = $ARGV [0];

14 my $combine_num = $ARGV [1];

16 ## open the files
open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";

18 chomp(my @matrix = <HIC >);
close HIC;

20
my @adjusted_line_chr1;

22 my @adjusted_line_chr2;
my @adjusted_line_chr3;

24
##print "genome(1, [](\n";

26
##for each line in the matrix

28 for(my $i = 1; $i <= $# matrix; $i++)
{

30 my @line = split /\t/, $matrix[$i];

32 ##for each other column , check to see if it is a NA (a non -interaction)
for(my $j = 1; $j <= $#line; $j++)

34 {
adjust the values and re-store it in the line

36 ## if it is in chr 1
if($j < 559)

38 {
if it corresponds to the interaction between the same bin

40 if($j == $i)
{

42 $adjusted_line_chr1[$j] = 0;
}

44 ## get rid of half the matrix (it is symmerical)
elsif($j < $i)

46 {
$adjusted_line_chr1[$j] = 0;

48 }
elsif(($line[$j] =~ /^NA$/) || ($line[$j] =~ /^0$/))

50 {
$adjusted_line_chr1[$j] = 0;

52 }
adjust the interaction value so it can be minimized with

54 ## interval constraints
else

56 {
my $temp = $line[$j] * -1000000000;

58 $adjusted_line_chr1[$j] = $temp;
}

60 }
if it is in chr 2

62 elsif($j < 1013)
{

64 ## if it corresponds to the interaction between the same bin

69

if($j == $i)
66 {

$adjusted_line_chr2[$j] = 0;
68 }

get rid of half the matrix (it is symmerical)
70 elsif($j < $i)

{
72 $adjusted_line_chr2[$j] = 0;

}
74 elsif(($line[$j] =~ /^NA$/) || ($line[$j] =~ /^0$/))

{
76 $adjusted_line_chr2[$j] = 0;

}
78 ## adjust the interaction value so it can be minimized with

interval constraints
80 else

{
82 my $temp = $line[$j] * -1000000000;

$adjusted_line_chr2[$j] = $temp;
84 }

}
86 ## if it is in chr 3

elsif($j < 1259)
88 {

if it corresponds to the interaction between the same bin
90 if($j == $i)

{
92 $adjusted_line_chr3[$j] = 0;

}
94 ## get rid of half the matrix (it is symmerical)

elsif($j < $i)
96 {

$adjusted_line_chr3[$j] = 0;
98 }

elsif(($line[$j] =~ /^NA$/) || ($line[$j] =~ /^0$/))
100 {

$adjusted_line_chr3[$j] = 0;
102 }

adjust the interaction value so it can be minimized with
104 ## interval constraints

else
106 {

my $temp = $line[$j] * -1000000000;
108 $adjusted_line_chr3[$j] = $temp;

}
110 }

}
112

loop through each of the chromosome arrays and print out the
114 ## average of the N adjacent elements

for(my $k = 1; $k <= $# adjusted_line_chr1; $k = $k + $combine_num)
116 {

my $avg = 0;
118 my $count = 0;

for(my $l = 0;
120 $l < $combine_num && defined($adjusted_line_chr1[$k+$l]);

$l++)
122 {

$avg = $avg + $adjusted_line_chr1[$k+$l];
124 $count ++;

}
126 $avg = $avg/$count;

128 print "$avg\t";
}

130
for(my $k = 559; $k <= $# adjusted_line_chr2; $k = $k + $combine_num)

132 {
my $avg = 0;

134 my $count = 0;
for(my $l = 0;

136 $l < $combine_num && defined($adjusted_line_chr2[$k+$l]);
$l++)

138 {
$avg = $avg + $adjusted_line_chr2[$k+$l];

140 $count ++;
}

142 $avg = $avg/$count;

144 print "$avg\t";
}

70

146
for(my $k = 1013; $k <= $# adjusted_line_chr3; $k = $k + $combine_num)

148 {
my $avg = 0;

150 my $count = 0;
for(my $l = 0;

152 $l < $combine_num && defined($adjusted_line_chr3[$k+$l]);
$l++)

154 {
$avg = $avg + $adjusted_line_chr3[$k+$l];

156 $count ++;
}

158 $avg = $avg/$count;

160 print "$avg\t";
}

162 print "\n";
}

B.2 compression of columns.pl

1 #!/usr/bin/perl
generates the CLP representation of the interaction frequencies

3 ## argument 1: corrected HiC matrix file
argument 2: the number of bins you want to condense together

5 ## Kimberly MacKay April 21, 2015

7 use strict;
use warnings;

9
check to ensure two arguments was passed in

11 die "ERROR: must pass in two argumnets." if @ARGV != 2;

13 my $HiC_file = $ARGV [0];
my $combine_num = $ARGV [1];

15
open the files

17 open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";
chomp(my @matrix = <HIC >);

19 close HIC;

21 my @adjusted_line_chr1;
my $avg = 0;

23 my $count = 0;
my @line = split /\t/, $matrix [1];

25
print "genome(1, [](";

27
for each line in the file

29 for(my $i = 1; $i <= $# matrix; $i=$i+$combine_num -1)
{

31 ## for each element in the line
for(my $l = 0; $l <= $#line; $l++)

33 {
$avg = 0;

35 $count = 0;

37 ## average 35 of the elements
for(my $j = $i; $j < $i + $combine_num ; $j++)

39 {
if(defined($matrix[$j]))

41 {
my @line1 = split /\t/, $matrix[$j];

43 $avg = $avg + $line1[$l];
$count ++;

45 }
}

47
$avg = $avg/$count;

49 $adjusted_line_chr1[$l] = $avg;

51 }
print out the new line

53 print "\n\t[](";
for(my $k = 0; $k <= $# adjusted_line_chr1; $k++)

55 {
if($k > 0 && $k <= $# adjusted_line_chr1)

71

57 {
print ", ";

59 }

61 printf("%d", $adjusted_line_chr1[$k]);
}

63 print "),";
}

65
print "\n)).";

B.3 generate bins.pl

1 #!/usr/bin/perl
Will generate the CLP representation of all the genomic bins from the HiC Data

3 ## argument 1: corrected HiC matrix file downloaded from GEO
argument 2: the number of bins you want to condense together

5 ## Kimberly MacKay April 22, 2015

7 use strict;
use warnings;

9
check to ensuretwo arguments was passed in

11 die "ERROR: must pass in two argumnets." if @ARGV != 2;

13 ## grab the command line arguments
my $HiC_file = $ARGV [0];

15 my $combine_num = $ARGV [1];

17 ## open the file
open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";

19 chomp(my @matrix = <HIC >);
close HIC;

21
my ($bin_name , $bin_chr , $bin_start , $bin_stop);

23
my @bins = split /\t/, $matrix [0];

25 my $num = 1;
my $combined_bin = "";

27 my $chr_prev = 1;

29 ## print out the beginning of the representation
print "spombeBins ([](";

31
for each of the bins combined the appropriate number and then

33 ## print out the representation
for(my $i = 0; $i <= $#bins; $i++)

35 {
check wether or not you have already accumulated

37 ## enough bins to condense them
if($num > $combine_num)

39 {
print "\"".$combined_bin."\", ";

41 $num = 1;
$combined_bin = "";

43 }
extract the relavent bin information

45 if($bins[$i] =~ /(bin\d+)\|.*\| chr(\d+):(\d+)-(\d+)/)
{

47 $bin_name = $1;
$bin_chr = $2;

49 $bin_start = $3;
$bin_stop = $4;

51 }
check to make sure subsequent bins you want to condense

53 ## together are on the same chromosome
if($bin_chr == $chr_prev)

55 {
if($num > 1)

57 {
$combined_bin = $combined_bin ."_". $bin_name;

59 }
else

61 {
$combined_bin = $bin_name;

63 }
$num ++;

72

65 }
if the subsequent bins are not on the same chromosome

67 ## if there are other bins that are currently stored
print out the other bins before accumulating bins on the new chromosome

69 elsif($num > 1)
{

71 print "\"".$combined_bin."\", ";
$num = 1;

73 print "\nspombeBins ([](";
$combined_bin = $bin_name;

75 $num ++;
}

77 ## if all the bins on the previous chromosome have already been printed out
just continue on accumulating bins

79 elsif($num == 1)
{

81 $num = 1;
$combined_bin = $bin_name;

83 $num ++;
}

85 $chr_prev = $bin_chr;
}

87
print the remainder of the representation

89 print "\"".$combined_bin."\"";

91
print ")).";

B.4 generate vars.pl

#!/usr/bin/perl
2 ## will generate the vars needed for the CLP eclispe program

argument 1: the N or a N by N matrix
4 ## Kimberly MacKay April 25, 2015

6 use strict;
use warnings;

8
check to ensure one argument was passed in

10 die "ERROR: must pass in one argumnet." if @ARGV != 1;

12 my $num = $ARGV [0];

14
print "Rows = [](\n";

16
for(my $i = 1; $i <= $num; $i++)

18 {
print "\t[](";

20 for(my $j = 1; $j <= $num; $j++)
{

22 if($j > 1)
{

24 print ", "
}

26 print "V".$i."_".$j;
}

28 print "),\n";
}

30
print "),\n";

32
print "Cols = [](\n";

34
for(my $i = 1; $i <= $num; $i++)

36 {
print "\t[](";

38 for(my $j = 1; $j <= $num; $j++)
{

40 if($j > 1)
{

42 print ", "
}

44 print "V".$j."_".$i;
}

46 print "),\n";

73

}
48

print "),\n";
50

print "SlnVars = [](\n";
52

for(my $i = 1; $i <= $num; $i++)
54 {

print "\t";
56 for(my $j = 1; $j <= $num; $j++)

{
58 print "V".$i."_".$j.", ";

}
60 print "\n";

}
62

print "),\n";

74

Appendix C

Perl Programs for the Automated Generation of the

Minimal, Non-Redundant CLP Program

C.1 generate minimal non redundant eclipse program intra.pl

1 #!/usr/bin/perl
will generate the vars needed for the CLP eclispe program

3 ## argument 1: the size of the matrix
argument 2: the interaction matrix

5 ## argument 3:the chromsome of interst
argument 4: chr start

7 ## argument 5: chr stop
argument 6: chr size

9
Kimberly MacKay June 10, 2016

11
use strict;

13 use warnings;
use List:: MoreUtils ’uniq’;

15
check to ensure five arguments was passed in

17 die "ERROR: must pass in six argumnets." if @ARGV != 6;

19 my $num_variables = $ARGV [0];
my $HiC_file = $ARGV [1];

21 my $chr = $ARGV [2];
my $chr_start = $ARGV [3];

23 my $chr_stop = $ARGV [4];
my $chr_size = $ARGV [5];

25
my $scale = 1000;

27
##

29 ## parse the interaction matrix
##

31
open the interaction matrix file

33 open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";
chomp(my @matrix_file = <HIC >);

35 close HIC;

37 my @frequencies;

39 ## for each line after the header line
for(my $row = 1; $row <= $# matrix_file; $row ++)

41 {
split the line

43 my @matrix_line = split /\t/, $matrix_file[$row];

45 ## loop through the entire file to extract the frequencies
note: we only have to extract one half of the matrix since it is symmetric

47 ## along the diagonal
for(my $col = 1; $col <= $row; $col ++)

49 {
adjusts NA’s to 0’s

51 if($matrix_line[$col] =~ "NA")
{

53 $frequencies[$row][$col] = 0;
}

55 else
{

57 ## trying a smaller integer size to see if it improves speed
$frequencies[$row][$col] = int($matrix_line[$col]* $scale);

59 }
}

61 }

63 ## loop through the submatrix to determine the non -zero rows
my %non_zero;

75

65 my @non_zero_row_index;
my %only_zero_rows;

67
for(my $row = $chr_start; $row <= $chr_stop; $row ++)

69 {
my $only_zero = 1;

71
for(my $col = $chr_start; $col <= $row; $col ++)

73 {
##check to see if it is non -zero

75 if($frequencies[$row][$col] != 0)
{

77 $only_zero = 0;
$non_zero{$row}{$col} = $col;

79 }
}

81
if($only_zero)

83 {
$only_zero_rows{$row} = $row;

85 }
}

87
@non_zero_row_index = (sort {$a <=> $b} keys %non_zero);

89
print out the non -zero rows

91 my $out_filename = "../ chr".$chr."_non_zero_bins.txt";
open OUT , ’>’, "$out_filename" or die "ERROR: $out_filename could not be opened.";

93
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

95 {
print OUT "$non_zero_row_index[$i]\n";

97 }

99 close OUT;

101 ##
printing the program

103 ##

105 print ":- lib(gfd).\n\n";
#print "import minimize /2 from lib(branch_and_bound).";

107
print "\t%%%\n";

109 print "%% maximize the interactions that are occurring based on\n";
print "%% resultant frequency table\n";

111 print "%% Output is the output paramater which will store the list of cells\n";
print "%% to keep for each Rowumn\n";

113 print "\t%%%\n\n";

115 print "maximize(File , Non_Zero_Rows) :-\n\n";

117 ###
Print the variables based on N

119 ###
print "\t%%%\n";

121 print "\t%% Define\n";
print "\t%%%\n\n";

123

125 ## print Row variables
print "\t%% specify the Rows for the intra -interaction submatricies";

127
print "\n\tNon_Zero_Rows = [";

129 for(my $i = 0; $i <= $# non_zero_row_index; $i++)
{

131 ## account for the last variable , it won’t have a comma
if($i == $# non_zero_row_index)

133 {
print "Chr".$chr."_Row".$non_zero_row_index[$i]."],";

135 }
else

137 {
print "Chr".$chr."_Row".$non_zero_row_index[$i].", ";

139 }
}

141
print "\n";

143

145

76

print frequency variables
147 print "\n\n\t%% specify the Frequency for the intra -interaction submatricies";

149 print "\n\tFreqs = [";
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

151 {
account for the last variable , it won’t have a comma

153 if($i == $# non_zero_row_index)
{

155 print "Chr".$chr."_Freq".$non_zero_row_index[$i]."],";
}

157 else
{

159 print "Chr".$chr."_Freq".$non_zero_row_index[$i].", ";
}

161 }
print "\n";

163
##

165 ## Print the genome representation
##

167
print "\t%%%\n";

169 print "\t%% Representation of the Genome\n";
print "\t%%%\n\n";

171
print Row domains

173 print "\t% define the Row domains for the intra -interations";

175 ## intra -interaction Row domains

177 print "\n\t% chromosome".$chr."\n";
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

179 {
if($i == $# non_zero_row_index)

181 {
print "\tChr".$chr."_Row".$non_zero_row_index[$i].

183 " :: [0,".$chr_start."..".$non_zero_row_index[$i]."],\n";
}

185 else
{

187 print "\tChr".$chr."_Row".$non_zero_row_index[$i].
" :: [0,".$chr_start."..".$non_zero_row_index[$i]."],\n";

189 }
}

191
############################

193 ## print frequency domains
print "\n\n\t% define the Freq domains for the intra -interations\n";

195 print "\t% this is based on the Hi-C interaction matrix";

197 print "\n\t% chromosome".$chr."\n";

199 #my %values

201
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

203 {
my @domain;

205 my @unique_values;

207 for(my $col = $chr_start; $col <= $non_zero_row_index[$i]; $col ++)
{

209
##check to see if it is non -zero

211 if($frequencies[$non_zero_row_index[$i]][$col] != 0)
{

213 push @domain , $frequencies[$non_zero_row_index[$i]][$col];
}

215 }

217 @unique_values = uniq @domain;

219 print "\tChr".$chr."_Freq".$non_zero_row_index[$i]." :: [0";

221 for(my $u = 0; $u <= $# unique_values; $u++)
{

223 print ", ".$unique_values[$u];
}

225 print "],\n";

77

227 }
print "\n";

229

231
#############################

233 ## print Row constraints
print "\t% apply constraints to the data to ensure they".

235 " are valid 2-tuple pairs based on the \n";
print "\t% biological data. note: (0,0) is when we choose".

237 " to not select anything for that\n";
print "\t% Column row pair\n";

239
print "\n\t% INTRA -INTERACTIONS\n";

241
print "\n\t% chromosome".$chr."\n";

243
for(my $row = $chr_start; $row <= $chr_stop; $row ++)

245 {
if non -zero values exist

247 if(defined $non_zero{$row})
{

249 print "\n\t% Column ".$row." Constraints\n";

251 ## first print the non -zero options
for my $nz_col (sort keys $non_zero{$row})

253 {

255 print "\t((Chr".$chr."_Row".$row." #= ".$nz_col.") and (Chr".
$chr."_Freq".$row." #= ".$frequencies[$row][$nz_col].")) or \n";

257 }
print the "0" case

259 print "\t((Chr".$chr."_Row".$row." #= 0) and (Chr".$chr."_Freq"
.$row." #= 0)),\n";

261 }
}

263 print "\n";

265

267 ##
Print the additional constraints

269 ##

271 print "\t%%%\n";
print "\t%% Additional Constraints\n";

273 print "\t%%%\n\n";

275 print "\t% all the Output values will be different - want them to ".
"correspond to which row\n";

277 print "\t% for each has a non -zero value , multiple zeros are allowed\n";

279
print "\talldifferent(Non_Zero_Rows),\n";

281 print "\tatmost(".($# non_zero_row_index -1).", Non_Zero_Rows , 0),\n";
print "\n";

283

285 ##
Print the optimization

287 ##

289 print "\t%%%\n";
print "\t%% Optimize\n";

291 print "\t%%%\n\n";

293 print "\t% heuristics could be improved to make it faster\n";
print "\t%% maximize the interaction frequency from the tuple\n";

295 print "\tCost #= -sum(Freqs),\n";
#print "\ tminimize (\n";

297 print "\t\tsearch(Freqs , 0, input_order , indomain_max , bb_min(Cost), []),\n";
#print "\t\tCost\n";

299 #print "\t).\n";

301 ##
Output the results

303 ##

305 print "\t%%%\n";
print "\t%% Output the results\n";

307 print "\t%%%\n\n";

78

309 print "\topen(File , ’write ’, OUT),\n";
print "\t(foreach(X,Non_Zero_Rows),\n";

311 print "\t\tparam(OUT) do\n";
print "\t\t\tget_domain_as_list(X, DomList),\n";

313 print "\t\t\t\t(foreach(Y,DomList),\n";
print "\t\t\t\t\tparam(OUT) do\n";

315 print "\t\t\t\t\t\twrite(OUT , Y),\n";
print "\t\t\t\t\t\twrite(OUT , ’ ’)\n";

317 print "\t\t\t\t),\n";
print "\t\t\t\twrite(OUT , \"\\n\")\n";

319 print "\t),\n";
print "\tclose(OUT).\n";

C.2 generate minimal non redundant eclipse program inter.pl

1 #!/usr/bin/perl
will generate the vars needed for the CLP eclispe program

3 ## argument 1: the size of the matrix
argument 2: the interaction matrix

5 ## argument 3: chr1
argument 4: chr1 start

7 ## argument 5: chr1 stop
argument 6: chr2

9 ## argument 7: chr2 start
argument 8: chr2 stop

11 ## argument 9: chr2 size

13 ## Kimberly MacKay June 13, 2016

15 use strict;
use warnings;

17 use List:: MoreUtils ’uniq’;

19 ## check to ensure two arguments was passed in
die "ERROR: must pass in nine argumnets." if @ARGV != 9;

21
my $num_variables = $ARGV [0];

23 my $HiC_file = $ARGV [1];

25 my $chr1 = $ARGV [2];
my $chr1_start = $ARGV [3];

27 my $chr1_stop = $ARGV [4];

29 my $chr2 = $ARGV [5];
my $chr2_start = $ARGV [6];

31 my $chr2_stop = $ARGV [7];
my $chr2_size = $ARGV [8];

33
my $scale = 500;

35

37 ##
parse the interaction matrix

39 ##

41 ## open the interaction matrix file
open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";

43 chomp(my @matrix_file = <HIC >);
close HIC;

45
my @frequencies;

47
for each line after the header line

49 for(my $row = 1; $row <= $# matrix_file; $row ++)
{

51 ## split the line
my @matrix_line = split /\t/, $matrix_file[$row];

53
loop through the entire file to extract the frequencies

55 ## note: we only have to extract one half of the matrix since it is symmetric
along the diagonal

57 for(my $col = 1; $col <= $row; $col ++)
{

59 ## adjusts NA’s to 0’s
if($matrix_line[$col] =~ "NA")

61 {

79

$frequencies[$row][$col] = 0;
63 }

else
65 {

trying a smaller integer size to see if it improves speed
67 $frequencies[$row][$col] = int($matrix_line[$col]* $scale);

}
69 }

}
71

73 ## loop through the submatrix to determine the non -zero rows
my %non_zero;

75 my @non_zero_row_index;
my %only_zero_rows;

77
for(my $row = $chr2_start; $row <= $chr2_stop; $row ++)

79 {
my $only_zero = 1;

81
for(my $col = $chr1_start; $col <= $chr1_stop; $col ++)

83 {
##check to see if it is non -zero

85 if($frequencies[$row][$col] != 0)
{

87 $only_zero = 0;
$non_zero{$row}{$col} = $col;

89 }
}

91
if($only_zero)

93 {
$only_zero_rows{$row} = $row;

95 }
}

97
@non_zero_row_index = (sort {$a <=> $b} keys %non_zero);

99
print out the non -zero rows

101 my $out_filename = "../ chr".$chr1."_chr".$chr2."_non_zero_bins.txt";
open OUT , ’>’, "$out_filename" or die "ERROR: $out_filename could not be opened.";

103
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

105 {
print OUT "$non_zero_row_index[$i]\n";

107 }

109 close OUT;

111
##

113 ## printing the program
##

115
print ":- lib(gfd).\n\n";

117
print "%%\n";

119 print "%% maximize the interactions that are occurring based on\n";
print "%% resultant frequency table\n";

121 print "%% Output is the output paramater which will store the list of cells\n";
print "%% to keep for each Rowumn\n";

123 print "%%\n";

125 print "maximize(File , Non_Zero_Rows) :-\n\n";

127 ##
Print the variables based on N

129 ##
print "\t%%\n";

131 print "\t%% Define\n";
print "\t%%\n\n";

133

135 ## print Row variables

137 print "\t%% specify the Rows for the inter -interaction submatricies";

139 print "\n\tNon_Zero_Rows = [";
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

141 {
if($i == $# non_zero_row_index)

80

143 {
print "Chr".$chr1."_Chr".$chr2."_Row".$non_zero_row_index[$i]."],";

145 }
else

147 {
print "Chr".$chr1."_Chr".$chr2."_Row".$non_zero_row_index[$i].", ";

149 }
}

151
print frequency variables

153 print "\n\n\t%% specify the Frequency for the inter -interaction submatricies";
print "\n\tFreqs = [";

155
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

157 {
if($i == $# non_zero_row_index)

159 {
print "Chr".$chr1."_Chr".$chr2."_Freq".$non_zero_row_index[$i]."],";

161 }
else

163 {
print "Chr".$chr1."_Chr".$chr2."_Freq".$non_zero_row_index[$i].", ";

165 }
}

167 print "\n";

169
##

171 ## Print the genome representation
##

173
print "\t%%\n";

175 print "\t%% Representation of the Genome\n";
print "\t%%\n\n";

177
inter -interaction Row domains

179 print "\t% define the Row domains for the inter -interations\n";
print "\t%these should be 0..N where N is the number of columns in the submatrix";

181
print "\n\t% chromosome".$chr1." - chromosome ".$chr2."\n";

183
for(my $i = 0; $i <= $# non_zero_row_index; $i++)

185 {
if($i == $# non_zero_row_index)

187 {
print "\tChr".$chr1."_Chr".$chr2."_Row".$non_zero_row_index[$i].

189 " :: [0,".$chr1_start."..".$chr1_stop."],\n";
}

191 else
{

193 print "\tChr".$chr1."_Chr".$chr2."_Row".$non_zero_row_index[$i].
" :: [0,".$chr1_start."..".$chr1_stop."],\n";

195 }
}

197 print "\n";

199
############################

201 ## print frequency domains

203 ## inter -interaction frequency domains
print "\t% define the Freq domains for the inter -interations\n";

205 print "\t% this is based on the Hi-C interaction matrix\n";

207 print "\n\t% chromosome".$chr1." - chromosome ".$chr2."\n";

209 for(my $i = 0; $i <= $# non_zero_row_index; $i++)
{

211 my @domain;
my @unique_values;

213
for(my $col = $chr1_start; $col <= $chr1_stop; $col ++)

215 {
##check to see if it is non -zero

217 if($frequencies[$non_zero_row_index[$i]][$col] != 0)
{

219 push @domain , $frequencies[$non_zero_row_index[$i]][$col];
}

221 }

223 @unique_values = uniq @domain;

81

225 print "\tChr".$chr1."_Chr".$chr2."_Freq".$non_zero_row_index[$i]." :: [0";
for(my $u = 0; $u <= $# unique_values; $u++)

227 {
print ", ".$unique_values[$u];

229 }
print "],\n";

231
}

233 print "\n";

235 ## print Row constraints
print "\t% apply constraints to the data to ensure they ".

237 "are valid 2-tuple pairs based on the \n";
print "\t% biological data. note: (0,0) is when we choose ".

239 "to not select anything for that\n";
print "\t% Column row pair\n";

241
print "\n\t% INTER -INTERACTIONS\n";

243 print "\n\t% chromosome".$chr1." - chromosome ".$chr2."\n";
my $vars = $chr1_start;

245 for(my $row = $chr2_start; $row <= $chr2_stop; $row ++)
{

247 ## if non -zero values exist
if(defined $non_zero{$row})

249 {
print "\n\t%Column".$vars." Constraints\n";

251
first print the non -zero options

253 for my $nz_col (sort keys $non_zero{$row})
{

255 print "\t((Chr".$chr1."_Chr".$chr2."_Row".$row." #= ".
$non_zero{$row}{ $nz_col }.") and (Chr".$chr1."_Chr".$chr2."_Freq".

257 $row." #= ".$frequencies[$row][$non_zero{$row}{ $nz_col }].")) or \n";

259 }

261
print the "0" case

263 print "\t((Chr".$chr1."_Chr".$chr2."_Freq".$row." #= 0) and (Chr".
$chr1."_Chr".$chr2."_Row".$row." #= 0)),\n";

265 }
}

267 print "\n";

269 ##
Print the additional constraints

271 ##

273 print "\t%%%\n";
print "\t%% Additional Constraints\n";

275 print "\t%%%\n\n";

277 print "\t% all the Output values will be different - "
."want them to correspond to which Rowumn\n";

279 print "\t% for each has a non -zero value , multiple zeros are allowed\n";

281 ## for each chromosome
print "\talldifferent(Non_Zero_Rows),\n";

283 print "\tatmost(".($# non_zero_row_index -1).", Non_Zero_Rows , 0),\n";

285 print "\n";

287
##

289 ## Print the optimization
##

291
print "\t%%%\n";

293 print "\t%% Optimize\n";
print "\t%%%\n\n";

295
print "\t% heuristics could be improved to make it faster\n";

297 print "\t%% maximize the interaction frequency from the tuple\n";
print "\tCost #= -sum(Freqs),\n";

299 #print "\ tminimize (\n";
print "\t\tsearch(Freqs , 0, input_order , indomain_max , bb_min(Cost), []).\n";

301 #print "\t\tCost\n";
#print "\t).\n";

303
##

82

305 ## Output the results
##

307
print "\t%%%\n";

309 print "\t%% Output the results\n";
print "\t%%%\n\n";

311
print "\topen(File , ’write ’, OUT),\n";

313 print "\t(foreach(X,Non_Zero_Rows),\n";
print "\t\tparam(OUT) do\n";

315 print "\t\t\tget_domain_as_list(X, DomList),\n";
print "\t\t\t\t(foreach(Y,DomList),\n";

317 print "\t\t\t\t\tparam(OUT) do\n";
print "\t\t\t\t\t\twrite(OUT , Y),\n";

319 print "\t\t\t\t\t\twrite(OUT , ’ ’)\n";
print "\t\t\t\t),\n";

321 print "\t\t\t\twrite(OUT , \"\\n\")\n";
print "\t),\n";

323 print "\tclose(OUT).\n";

83

Appendix D

Perl Programs for the Automation of Cytoscape In-

put Based on the Minimal, Non-Redundat CLP Pro-

gram Results

D.1 generate cytoscape input for intra.pl

1 #!/usr/bin/perl
will generate the input need for cytoscape analysis

3 ## argument 1: the file containing the row output from eclipse
argument 2: the file containing a list of non -zero variables

5 ## Kimberly MacKay June 22, 2016

7 use strict;
use warnings;

9
check to ensure four arguments were passed in

11 die "ERROR: must pass in four argumnets." if @ARGV != 4;

13 ## grab the input arguments
my $clp_row_results_file = $ARGV [0];

15 my $clp_freq_results_file = $ARGV [1];
my $non_zero_vars_file = $ARGV [2];

17 my $chr = $ARGV [3];

19 ##
parse the results file

21 ##
open the row results

23 open ROW_RESULTS , "$clp_row_results_file"
or die "ERROR: $clp_row_results_file could not be opened.";

25 chomp(my @clp_row_results = <ROW_RESULTS >);
close ROW_RESULTS;

27
open the freq results

29 open FREQ_RESULTS , "$clp_freq_results_file"
or die "ERROR: $clp_freq_results_file could not be opened.";

31 chomp(my @clp_freq_results = <FREQ_RESULTS >);
close FREQ_RESULTS;

33
open the file with non -zero bins

35 open VARS , "$non_zero_vars_file"
or die "ERROR: $non_zero_vars_file could not be opened.";

37 chomp(my @non_zero_vars = <VARS >);
close VARS;

39
my @node_names;

41 my @edge_names;

43 ## sanity check to make sure the files are the same length
if($# clp_row_results == $# non_zero_vars

45 && $# clp_row_results == $# clp_freq_results)
{

47 for(my $i = 0; $i <= $# non_zero_vars; $i++)
{

49 ## get node1
my $node1 = "bin".$non_zero_vars[$i];

51
push @node_names , $node1;

53
get node(s)2

55 ## split the line from the clp file
my @row_results = split /\s+/, $clp_row_results[$i];

57
my $noise = scalar @row_results;

59
get the corresponding frequency

84

61 my $freq = $clp_freq_results[$i];

63 for(my $j = 0; $j <= $# row_results; $j++)
{

65 if($row_results[$j] != 0)
{

67 my $node2 = "bin".$row_results[$j];

69 push @node_names , $node2;

71 ## print the edge
source target interaction_type

73 edge_attr source_attr target_attr
print $node1."\t".$node2."\t"."intra"."\t"

75 .($noise/$freq)."\t".$chr."\t".$chr."\n";
}

77 }
}

79 }
else

81 {
print "ERROR: files are not the same length and they should be.";

83 }

D.2 generate cytoscape input for inter.pl

1 #!/usr/bin/perl
will generate the input need for cytoscape analysis

3 ## argument 1: the file containing the row output from eclipse
argument 2: the file containing a list of non -zero variables

5 ## Kimberly MacKay June 22, 2016

7 use strict;
use warnings;

9
check to ensure nine arguments were passed in

11 die "ERROR: must pass in nine argumnets." if @ARGV != 9;

13 ## grab the command line arguments
my $clp_row_results_file = $ARGV [0];

15 my $clp_freq_results_file = $ARGV [1];
my $non_zero_vars_file = $ARGV [2];

17 my $start_node_1 = $ARGV [3];
my $stop_node_1 = $ARGV [4];

19 my $start_node_2 = $ARGV [5];
my $stop_node_2 = $ARGV [6];

21 my $chr1 = $ARGV [7];
my $chr2 = $ARGV [8];

23
##

25 ## parse the results file
##

27 ## open the row results
open ROW_RESULTS , "$clp_row_results_file"

29 or die "ERROR: $clp_row_results_file could not be opened.";
chomp(my @clp_row_results = <ROW_RESULTS >);

31 close ROW_RESULTS;

33 ## open the freq results
open FREQ_RESULTS , "$clp_freq_results_file"

35 or die "ERROR: $clp_freq_results_file could not be opened.";
chomp(my @clp_freq_results = <FREQ_RESULTS >);

37 close FREQ_RESULTS;

39 ## open the file with non -zero bins
open VARS , "$non_zero_vars_file"

41 or die "ERROR: $non_zero_vars_file could not be opened.";
chomp(my @non_zero_vars = <VARS >);

43 close VARS;

45 ## sanity check to make sure the files are the same length
if($# clp_row_results == $# non_zero_vars

47 && $# clp_row_results == $# clp_freq_results)
{

49 for(my $i = 0; $i <= $# non_zero_vars; $i++)
{

51 ## get node1

85

my $node1 = "bin".$non_zero_vars[$i];
53

get node(s)2
55 ## split the line from the clp file

my @row_results = split /\s+/, $clp_row_results[$i];
57

my $noise = scalar @row_results;
59

get the corresponding frequency
61 my $freq = $clp_freq_results[$i];

63 for(my $j = 0; $j <= $# row_results; $j++)
{

65 if($row_results[$j] != 0)
{

67 my $node2 = "bin".$row_results[$j];

69 if($non_zero_vars[$i] >= $start_node_1
&& $non_zero_vars[$i] <= $stop_node_1)

71 {
if($row_results[$j] >= $start_node_1

73 && $row_results[$j] <= $stop_node_1)
{

75 ## print the edge
source target interaction_type

77 edge_attr source_attr target_attr
print $node1."\t".$node2."\t"."inter"."\t"

79 .($noise/$freq)."\t".$chr1."\t".$chr1."\n";
}

81 else
{

83 print $node1."\t".$node2."\t"."inter"."\t"
.($noise/$freq)."\t".$chr1."\t".$chr2."\n";

85 }
}

87 else
{

89 if($row_results[$j] >= $start_node_1
&& $row_results[$j] <= $stop_node_1)

91 {
print $node1."\t".$node2."\t"."inter"."\t"

93 .($noise/$freq)."\t".$chr2."\t".$chr1."\n";
}

95 else
{

97 print $node1."\t".$node2."\t"."inter"."\t"
.($noise/$freq)."\t".$chr2."\t".$chr2."\n";

99 }
}

101 }
}

103 }
}

105 else
{

107 print "ERROR: files are not the same length and they should be.";
}

D.3 generate linear cytoscape input.pl

#!/usr/bin/perl
2 ## generates the linear interactions needed for input into cytoscape visualization

argument 1: the size of the matrix
4 ## argument 2: the interaction matrix

6 ## Kimberly MacKay July 4, 2016

8 use strict;
use warnings;

10 use List:: MoreUtils ’uniq’;

12 ## check to ensure two arguments were passed in
die "ERROR: must pass in two argumnets." if @ARGV != 2;

14
my $num_variables = $ARGV [0];

16 my $HiC_file = $ARGV [1];

86

18 my $scale = 1000;
my $chr1_stop = 558;

20 my $chr2_stop = 1012;
my $chr3_stop = 1258;

22
##

24 ## parse the interaction matrix
##

26 ## open the interaction matrix file
open HIC , "$HiC_file" or die "ERROR: $HiC_file could not be opened.";

28 chomp(my @matrix_file = <HIC >);
close HIC;

30
my @frequencies;

32
for each line after the header line

34 for(my $row = 1; $row <= $# matrix_file; $row ++)
{

36 ## split the line
my @matrix_line = split /\t/, $matrix_file[$row];

38
loop through the entire file to extract the frequencies

40 ## note: we only have to extract one half of the matrix since it is symmetric
along the diagonal

42 for(my $col = 1; $col <= 1258; $col ++)
{

44 ## adjusts NA’s to 0’s
if($matrix_line[$col] =~ "NA")

46 {
$frequencies[$row][$col] = 0;

48 }
else

50 {
trying a smaller integer size to see if it improves speed

52 $frequencies[$row][$col] = int($matrix_line[$col]* $scale);
}

54 }
}

56
##

58 ## make an array for the chromosomes and initialize it
##

60 my @chrs;

62 for(my $i = 1; $i <= $chr3_stop; $i++)
{

64 if($i <= $chr1_stop)
{

66 $chrs[$i] = 1;
}

68 elsif($i <= $chr2_stop)
{

70 $chrs[$i] = 2;
}

72 else
{

74 $chrs[$i] = 3;
}

76 }

78 ##
print out the linear interactions and their

80 ## "distances" according to my frequency value
##

82
for(my $row = 1; $row <= $# frequencies; $row ++)

84 {
my $col = $row;

86
if($row != $chr1_stop && $row != $chr2_stop && $row != $chr3_stop)

88 {
if($frequencies[$row][$col] != 0)

90 {
print "bin".$row."\tbin".($row +1)."\tlinear\t"

92 .(1/ $frequencies[$row][$col])."\t".$chrs[$row]."\t"
.$chrs[($row +1)]."\n";

94 }
else

96 {
print "bin".$row."\tbin".($row +1)."\tlinear\t"

98 .(0.001)."\t".$chrs[$row]."\t".$chrs[($row +1)]."\n";

87

}
100 }

}

88

Appendix E

Example Command Line Input for the Minimal CLP

Program

Start ECLiPSe
kam945@nugget:~$ eclipse -g 16G.
ECLiPSe Constraint Logic Programming System [kernel]
Kernel and basic libraries copyright Cisco Systems, Inc.
and subject to the Cisco-style Mozilla Public Licence 1.1
(see legal/cmpl.txt or http://eclipseclp.org/licence)
Source available at www.sourceforge.org/projects/eclipse-clp
GMP library copyright Free Software Foundation, see legal/lgpl.txt
For other libraries see their individual copyright notices
Version 6.1 #220 (x86_64_linux), Thu Apr 21 22:40 2016

Compile the CLP Program
[eclipse 1]: ['chr3_reduced_domain.ecl'].
source_processor.eco loaded in 0.01 seconds
hash.eco loaded in 0.01 seconds
compiler_common.eco loaded in 0.02 seconds
compiler_normalise.eco loaded in 0.01 seconds
compiler_map.eco loaded in 0.01 seconds
compiler_analysis.eco loaded in 0.01 seconds
compiler_peephole.eco loaded in 0.01 seconds
compiler_codegen.eco loaded in 0.02 seconds
compiler_varclass.eco loaded in 0.01 seconds
compiler_indexing.eco loaded in 0.01 seconds
compiler_regassign.eco loaded in 0.01 seconds
asm.eco loaded in 0.02 seconds
module_options.eco loaded in 0.01 seconds
ecl_compiler.eco loaded in 0.14 seconds
lists.eco loaded in 0.01 seconds
constraint_pools.eco loaded in 0.00 seconds
Loaded Gecode solver 4.4.0
/mnt2/birl/sw/linux/eclipse/lib/gfd.ecl compiled 614984 bytes in 0.77 seconds
chr3_reduced_domain.ecl compiled 3343280 bytes in 1.97 seconds

Yes (2.11s cpu)

Query the CLP program
[eclipse 2]: maximize("row_output.txt", "freq_output.txt", R).
Found a solution with cost -9612

R = [1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028,
1029, 1030, 1031, 1032, 1033, 1034, ...]

Delayed goals:
gfd : gfd_do_propagate(gfd_prob(nvars(467)))

Yes (0.53s cpu)

Figure E.1: An example of the command line input and output for running the CLP program which
will determine the optimal solution for the chromosome 3 intra-interaction sub-problem.

89

Appendix F

Synthetic Datasets Used for Initial Testing and De-

velopment

F.1 5 × 5 Matrix

bin1 bin2 bin3 bin4 bin5

bin1 1 2 3 4 5

bin2 2 3 4 5 1

bin3 3 4 5 1 2

bin4 4 5 1 2 3

bin5 5 1 2 3 4

F.2 10 × 10 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10

bin1 1 2 3 4 5 6 7 8 9 10

bin2 2 3 4 5 6 7 8 9 10 1

bin3 3 4 5 6 7 8 9 10 1 2

bin4 4 5 6 7 8 9 10 1 2 3

bin5 5 6 7 8 9 10 1 2 3 4

bin6 6 7 8 9 10 1 2 3 4 5

bin7 7 8 9 10 1 2 3 4 5 6

bin8 8 9 10 1 2 3 4 5 6 7

bin9 9 10 1 2 3 4 5 6 7 8

bin10 10 1 2 3 4 5 6 7 8 9

F.3 15 × 15 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11 bin12 bin13 bin14 bin15

bin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

bin3 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2

bin4 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3

bin5 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4

bin6 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5

bin7 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6

bin8 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7

bin9 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8

bin10 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9

bin11 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10

bin12 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11

bin13 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12

bin14 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13

bin15 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14

90

F.4 20 × 20 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11 bin12 bin13 bin14 bin15 bin16 bin17

bin18 bin19 bin20

bin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

bin2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1

bin3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2

bin4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3

bin5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4

bin6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5

bin7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6

bin8 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7

bin9 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8

bin10 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9

bin11 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10

bin12 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11

bin13 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12

bin14 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13

bin15 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bin16 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin17 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bin18 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

bin19 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

bin20 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F.5 22 × 22 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11 bin12 bin13 bin14 bin15 bin16 bin17

bin18 bin19 bin20 bin21 bin22

bin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

bin2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1

bin3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2

bin4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3

bin5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4

bin6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5

bin7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6

bin8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7

bin9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8

bin10 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9

bin11 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10

bin12 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11

bin13 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12

bin14 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13

bin15 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bin16 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin17 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bin18 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

bin19 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

bin20 20 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bin21 21 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

bin22 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

91

F.6 25 × 25 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11 bin12 bin13 bin14 bin15 bin16 bin17

bin18 bin19 bin20 bin21 bin22 bin23 bin24 bin25

bin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bin2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1

bin3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

bin4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3

bin5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4

bin6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5

bin7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6

bin8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7

bin9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8

bin10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9

bin11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10

bin12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11

bin13 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12

bin14 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13

bin15 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bin16 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin17 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bin18 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

bin19 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

bin20 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bin21 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

bin22 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bin23 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

bin24 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

bin25 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F.7 30 × 30 Matrix

bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11 bin12 bin13 bin14 bin15 bin16 bin17

bin18 bin19 bin20 bin21 bin22 bin23 bin24 bin25 bin26 bin27 bin28 bin29 bin30

bin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

bin2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1

bin3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2

bin4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3

bin5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4

bin6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5

bin7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6

bin8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7

bin9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8

bin10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9

bin11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10

bin12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11

bin13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12

bin14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13

bin15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bin16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bin18 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

bin19 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

bin20 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

92

bin21 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

bin22 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bin23 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

bin24 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

bin25 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

bin26 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bin27 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bin28 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

bin29 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

bin30 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

93

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Genome Organization and Topology
	Biological Techniques for Detecting Genome Organization and Topology
	Additional Biological Datasets
	Computational Techniques for Predicting Genome Organization
	Constraint Logic Programming

	Research Objectives
	Data and Methodology
	Selecting a Constraint Logic Programming Paradigm
	Data Acquisition
	Synthetic Data
	Hi-C Data

	Initial N-Queens Knowledge Representation
	Automation

	Minimal N-Queens Knowledge Representation
	Improving the Program Runtime
	Divide and Conquer

	Minimal, Non-Redundant N-Queens Knowledge Representation
	Visualization
	Evaluation and Validation
	Computational Evaluation
	Computational Feature Extraction
	Biological Validation

	Results and Discussion
	Initial N-Queens Knowledge Representation
	Minimal N-Queens Knowledge Representation
	Minimal, Non-Redundant N-Queens Knowledge Representation
	Evaluation of Various Heuristics
	Visualization
	Biological Validation
	Comparison to Existing Methods for Solving the 3D Genome Reconstruction Problem
	Comparison to CLP Methods for 3D Protein Structure Prediction
	Future Work

	Conclusion
	References
	CLP Knowledge Representations of the Three-Dimensional Genome Reconstruction Problem
	Overview of the Initial CLP Knowledge Representation
	Overview of the Minimal CLP Knowledge Representation
	Overview of the CLP knowledge Representation for a Intra-Interaction Subproblem
	Overview of the CLP knowledge Representation for a Inter-Interaction Subproblem

	Perl Programs for the Automation of Portions of the Original CLP Program
	compression_of_rows.pl
	compression_of_columns.pl
	generate_bins.pl
	generate_vars.pl

	Perl Programs for the Automated Generation of the Minimal, Non-Redundant CLP Program
	generate_minimal_non_redundant_eclipse_program_intra.pl
	generate_minimal_non_redundant_eclipse_program_inter.pl

	Perl Programs for the Automation of Cytoscape Input Based on the Minimal, Non-Redundat CLP Program Results
	generate_cytoscape_input_for_intra.pl
	generate_cytoscape_input_for_inter.pl
	generate_linear_cytoscape_input.pl

	Example Command Line Input for the Minimal CLP Program
	Synthetic Datasets Used for Initial Testing and Development
	5 5 Matrix
	10 10 Matrix
	15 15 Matrix
	20 20 Matrix
	22 22 Matrix
	25 25 Matrix
	30 30 Matrix

