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ABSTRACT

High performance microwave cavities for various circuits in the front-end of

transceivers such as filters, diplexers, and oscillators have conventionally been

built with rectangular or cylindrical metallic waveguides, which typically have low

loss, high quality (Q) factor, and higher power handling capability. However, such

waveguide cavity based circuits made by traditional metal machining techniques

tend to be costly, particularly for complex multiple cavity based circuits, and not

well suited to high volume commercial applications and integration with planar

microwave integrated circuits. As commercial transceiver applications progress

toward higher microwave and millimetre-wave frequencies, the use of waveguide

based circuits for compact, highly integrated transceivers is becoming feasible,

along with an increasing need for cost effective batch fabrication processes for

realizing complex metallic cavity circuits without sacrificing structural quality

and performance. It is expected that significant advancements in both microwave

performance and integration will be achieved through the development of novel

technologies for realizing vertically oriented three-dimensional (3-D) structures.

Although improvement has been made on increasing the resonator Q factor by

exploiting silicon micromachining and low-temperature cofired ceramics (LTCC)

techniques, there are some drawbacks inherent to silicon cavity micromachining

and LTCC technology, including non-vertical sidewalls, depth limitations, and

surface roughness for the silicon resonator, and dielectric and radiation loss for

LTCC resonator.

Polymer-based fabrication is a promising alternative to silicon etching and

LTCC technologies for the batch fabrication of ultra-deep microwave cavity struc-

tures. In particular, deep X-ray lithography (XRL), as part of the LIGA process,

is a microfabrication technology for precisely structuring polymers, and is increas-

ingly being applied to RF/microwave microstructures. In addition to precise pat-

terning capabilities, deep XRL is able to structure ultra-deep cavities due to the

penetration ability of hard X-rays. Cavities of several millimetres are possible in

a single lithographic exposure, and with excellent sidewall quality, including ver-

ticality near 90 degrees and surface roughness on the order of tens of nanometres.

These structured polymers are subsequently used as electroforming templates for

fabricating metal structures with correspondingly good sidewall quality.

This thesis investigates the possibility of realizing high-Q cavity resonators

and filters at microwave frequencies using the LIGA microfabrication process. Fi-
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nite element method (FEM) electromagnetic simulation results based on the cav-

ity models representing different fabrication conditions show that smooth LIGA

cavity structures result in promising Q improvement over silicon and LTCC struc-

tures. And the potential advantages of LIGA resonators are more dramatic with

cavity greater height and increasing operating frequency. Deep polymer cavity

structures (1.8 mm) fabricated using deep XRL demonstrate excellent sidewall

verticality in the PMMA structure, with only slight shrinkage at the top surface

of 8.5 ± 2.5 µm in either lateral dimensions. This corresponds to sidewalls with

verticality between 89.82o and 89.9o. The structured polymers are subsequently

used as templates for metal electroforming to produce cavity resonators. The per-

formance of the resonator is measured in a planar environment. A RT/duroidTM

6010 soft substrate patterned with coupling structures forms the sixth side, and

thus completes the cavity. Despite the rather crude test assembly for the sixth side

made by clamping, the measured resonator has a high unloaded Q of 2122.2±85

at the resonant frequency of 24 GHz, indicating that LIGA cavities are especially

promising for high performance applications.

The relatively simple, single-step lithographic exposure also facilitates exten-

sion to more structurally complicated waveguide and multiple cavity-based cir-

cuits. This research work also proposes a high performance “split-post” 3-pole

cylindrical post coupled Chebyshev bandpass filter suitable for LIGA fabrication.

In addition to potentially batch fabricating such a filter lithographically by expos-

ing the entire waveguide depth in a single exposure, the filter structures composed

of three cavities with metallic multi-post coupling would be extremely difficult to

fabricate using traditional machining techniques due to the extremely fine post

structure and high vertical aspect ratio required. However, these types of struc-

tures could be ideal for LIGA fabrication, which offers sub-micron features, aspect

ratios of 100:1 or higher, resist thicknesses of up to 3 mm, and almost vertical

and optically smooth sidewalls. Also, representative LIGA sidewall roughness is

used to predict very low loss and high performance, suggesting that complicated

structures with multiple resonator circuits and high internal components with

high aspect ratios are possible.
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Chapter 1

INTRODUCTION

1.1 Background

Communication systems at microwave and millimetre-wave frequency bands

grew rapidly in recently years as there is high bandwidth available at these fre-

quencies compared to the conventional spectrum. Because of the advantages of-

fered at high frequencies, many broadband wireless communication systems are

under development at microwave and millimetre-wave bands, such as Wireless

Metropolitan Area Networks (MANs) defined by IEEE Standard 802.16, in which

frequencies from 10 to 66 GHz are addressed for the physical layer specification [1].

With the increasing demands for high performance broadband services, the

need for low loss and compact size passive devices operating at microwave and

millimetre-wave frequencies becomes more critical. One of the most important

components for the broadband communication systems is the bandpass filter,

which is used in transceivers to reject the unwanted signals and provide isolation

between different channels. In order to achieve excellent performance required

by such communication systems, bandpass filters constructed with high quality

factor (high-Q) resonators are in high demand.

High performance microwave resonators are conventionally built with metal-

lic machined rectangular or cylindrical waveguides, which are characterized by a

high quality factor and excellent power handling capacities. However, structures

made by metal machining are large in size, and difficult to integrate with planar

Microwave Integrated Circuits (MICs). Moreover, with increasing frequency and

1
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as cavity size decreases, it is difficult to maintain small fabrication tolerances and

good structural and sidewall surface quality for cavities, particularly with batch

fabrication processes required for volume commercial applications. To meet the

reduced size and weight requirements for emerging mobile and satellite appli-

cations, new techniques for fabricating low loss microwave and millimetre-wave

components need to be developed.

1.2 Techniques for Batch Fabrication of Resonators

1.2.1 Silicon Micromachining

Micromachining techniques are often silicon-based manufacturing processes,

which include two main approaches: bulk micromachining and surface microma-

chining.

Bulk micromachining creates 3-D structures in the bulk of a substrate by

selective removal of the unwanted substrate material. Bulk micromachining is

enabled by the process called etching. Two types of etching approaches are used:

anisotropic etching and isotropic etching. Anisotropic etching removes the sub-

strate selectively in certain directions, while isotropic etching removes material in

all directions of the substrate. By exploiting one or a combination of etching pro-

cesses, a wide variety of three-dimensional structures can be sculpted within the

confines of the wafer. Furthermore, multiple wafers can be integrated by fusion

bonding to build up a stacked structure.

As opposed to the bulk micromachining techniques, which involves material

removal in the substrate, surface micromachining is performed by adding thin

film material layer by layer on a substrate. The thin film material, which is de-

posited on the substrate but is removed later to create void space in the depth,

is called the sacrificial layer. The material, which forms the free standing micro-

electromechanical systems (MEMS) structure, is called the structural layer. The

3-D structure is built up by adding and removing structural and sacrificial layers

in the right sequence.
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1.2.2 LTCC Technology

Multilayer LTCC [2] is one approach for fabricating 3-D circuits and modules

with compact size, reduced weight, and relatively high Q. LTCC is a glass-ceramic

composite that has low dielectric losses comparable to that of 99% pure alumina,

a common high performance microwave dielectric material. The typical metals

for LTCC are those with high conductivity, such as gold, copper, and silver. The

low loss characteristics of the dielectric and conductors make LTCC a promising

technology for high performance applications up to the millimetre-wave frequency

range.

The LTCC systems are developed using a dielectric tape provided in rolls and

shrinkage-matched metallization pastes. The tape is initially blank. Via holes for

conducting between layers are formed in the tape by punching or drilling, and the

conductive lines are screen-printed on the tape. Then the printed and punched

tape layers are stacked and laminated. By firing the dielectric and conductor to-

gether, a fully integrated multilayer component can be obtained. Each layer can

be inspected prior to stacking, resulting in high yields and cost effectiveness. Un-

like thick-film processes where sequential lamination and firing steps are required,

LTCC technology processes all the different layers in a single step, producing min-

imum distortion and line degradation. Furthermore, LTCC technology allows the

integration of all passive circuits without the need of a mechanical mechanism

to hold them together, and thus eliminating the air gaps or other discontinuities

caused by assembly.

1.2.3 LIGA

LIGA is one of the micro-fabrication techniques to produce miniature 3-D

structures. The term LIGA is an acronym for the German terms for Lithography,

Electroplating and Moulding. Combining X-ray lithography and electrodeposition

was first carried out at IBM in 1975. The modern LIGA process was developed at

Nuclear Research Center Karlsruhe in Germany in the 1980’s by adding moulding



4

to the lithography and electroplating [3].

This technique utilizes synchrotron X-ray radiation as the lithographic light

source. The extremely short X-ray wavelength, on the order of 0.1-1.0 nanometres

(nm), and the high penetration ability arising from transparency of most materi-

als in the X-ray region of the spectrum allows patterning of precise structures in

polymer photoresist with feature sizes from tenths of micrometres (µm) to cen-

timetres, and with optical quality sidewall surface roughness (typically 20 to 30

nm). One major advantage of synchrotron lithography over other techniques is

the ability to define high resolution images in thick materials up to several mil-

limetres and even centimetres in depth [4]. The resist structure after development

could be the end product of the fabrication process, or be used as a template

for deposition of metal structures. The pattern created on the resist can also be

used to electroplate a mould insert, and the mould insert structure used for mass

producing plastic devices by injection moulding or hot embossing.

1.3 Literature Review

As described in Section 1.1, low loss bandpass filters, which are constructed

with high Q resonators, are one of the most important components in a wireless

communication system. In this section, alternative techniques for implementing

high Q factor resonators and filters are investigated.

1.3.1 Membrane Supported Microstrip Transmission
Line Resonator

A simple method of resonator realization is to use microstrip structures [5].

However, for the resonators using microstrip lines on conventional substrates,

thinner substrates must be used to suppress the higher order substrate modes

with increasing frequency. This results in narrow line dimensions for a given

impedance, which greatly increases the conductor loss because of the greater sur-

face resistance of narrow microstrip lines [6]. Thus, the resonator Q factor is

dramatically reduced.
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One way to increase the Q of a resonator is to integrate the resonator using

micromachining techniques. Membrane supported microstrip structures can be

formed by etching the silicon substrate from beneath using a backside etching

process up to a thin dielectric membrane about 1 to 1.5 µm thick supporting the

microstrip structures [7]. The thin dielectric membrane has a dielectric constant

close to unity. For this membrane supported microstrip structure, the dielectric

loss is dramatically reduced by using the air dielectric, and conductor loss is

considerably reduced by the wider transmission line geometry. A drawback of

the structure is that there is no intrinsic ground plane. This can be overcome

by forming a ground plane by adding another micromachined substrate on the

top of circuit (see Figure 1.1 [8]). The radiation loss can be reduced by shielding

the structure on all sides using thick via grooves. By diminishing the dielectric

and conductor losses, a measured resonator unloaded Q factor around 600 at 60

gigahertz (GHz) was reported [8].

Nguyen, et al., “Micromachined devices for wireless 

communications,” in Proceedings of the IEEE, August 1998.

Figure 1.1 Transverse section of the suspended microstrip line
[8].
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1.3.2 Silicon Micromachined Cavity Resonator

Cavity resonators made by entirely enclosed metallic rectangular or cylindrical

waveguides can achieve unloaded Q values as high as thousands because little en-

ergy is lost over time [9]. However, conventional waveguide cavity resonators are

heavy in weight, large in size, and costly to fabricate. It is difficult to maintain

a good fabrication tolerance when the cavities are operating at upper microwave

bands due to the small physical dimensions at high frequency. Furthermore, they

have traditionally been difficult to integrate with planar microwave circuits preva-

lent in modern microwave circuit design, and are difficult to fabricate with litho-

graphic batch type processing.

The development of micromachining techniques makes it possible to fabricate

miniature cavity components with high precision.

slot slot

32.352

16.354 Unit: mm

Microstrip line Microstrip line

silicon

0.5

0.465

Papapolymerou, et al., “A micromachined high-Q X-band resonator,” 

IEEE Microwave and Guided Wave Letters, June 1997. 

Figure 1.2 X-band Micromachined cavity resonator [10].

A micromachined resonant cavity was first demonstrated for X-band (10.4

GHz) applications [10]. The structure of the resonator is shown in Figure 1.2 [10].

The cavity was coupled by two microstrip lines via slots in the ground plane of

the microstrip lines, which provided an easy way to integrate microwave inte-

grated circuit and monolithic microwave integrated circuit (MMIC) structures.

The cavity demonstrated an unloaded Q of 506 with dimensions of 16×32×0.465
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millimetres (mm). The cavity was fabricated on a single silicon wafer by using an

anisotropic etching process, which results in non-vertical sidewalls at 54.7o rela-

tive to the horizontal plane. This sidewall slope decreases the Q factor compared

with perfect rectangular cavities. To achieve higher Q factors, deeper cavities are

needed. However, due to the thickness limitation of standard silicon substrates,

which is typically 525 µm or 650 µm [11], the cavity fabricated on a single silicon

wafer by etching cannot easily be made deeper.

Brown, et al., “Microwave and millimetre-wave high-Q micromachined

resonators,” International Journal of RF and Microwave Computer-Aided 

Engineering, July 1999. 

Figure 1.3 Micromachined cavity resonator formed by a top
and a bottom cavities [12].

Several efforts were made to develop new approaches for obtaining higher Q

factors. A micromachined cavity structure formed by top and bottom cavities

bonded together as shown in Figure 1.3 [12] was presented. A coplanar waveguide

(CPW) line was defined on the bottom wafer to the edge of the cavity, and bond

wires were placed from the end of the CPW line to the base of the cavity to excite

the resonator. With this resonator topology, much higher unloaded quality factors
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of 1117 at 24 GHz and 1163 at 38 GHz were achieved due to the double depth of

the cavity. Another geometry for obtaining deeper cavities was presented by the

utilization of several stacked standard silicon wafers, as shown in Figure 1.4 [13]).

The cavity was constructed of five sections of wafers etched from both sides. The

five identical wafers were then bonded together using a sodium silicate paste and

electroplated with a thin layer of copper. The stacked cavity was fabricated at

30 GHz, and showed an unloaded Q factor of 2155. Although the performance

is quite good, this stacking technique presents fabrication challenges that could

be problematic, including precise alignment, gaps between wafers, and the “saw-

tooth” varying vertical cross section. All of these could lead to higher loss and

overall Q factor reduction, especially at higher frequencies and also in realizing

more complex multiple resonator based circuits.

Stickel, et al., “High-Q bulk micromachined silicon cavity resonator at Ka-band,” 

Electronics Letters, March 2001. 

Figure 1.4 Micromachined cavity formed by several stacked
silicon wafers [13].

A cavity structure with more vertical sidewalls was presented in [14] accom-

plished with the use of deep reactive ion etching (RIE) (Bosch process) technology

on a standard silicon wafer. However, this dry anisotropic plasma etching method

results in rough sidewall surfaces, which leads to high conductor loss, and there-

fore, reduced Q at high frequency applications.
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1.3.3 LTCC Cavity Resonator

Unlike cavity structures that have solid metal walls built by silicon micro-

machining process, the LTCC cavity resonators are implemented using rows of

metallized via holes as sidewalls. LTCC cavity resonators using rows of stacked

vias as sidewalls were realized at Q band [15] and V band [16], respectively. In

order to reduce the radiation loss, multiple layers of vias were employed, which

results in a larger overall resonator structure than an equivalent metallic cavity

resonator. Although the LTCC material has a low loss tangent, the dielectric loss

is still the major limiting factor for achieving higher Q. To maximize the Q factor

of a LTCC resonator, an enhanced resonator structure with an air cavity inside it

was proposed in [15]. With the total cavity height of 0.7 mm, which was formed

by seven LTCC layers of 100 µm each, an unloaded Q of 1200 was obtained at

19.8 GHz.

The LTCC technique was also employed to improve resonator compactness at

42.6 GHz, which was realized by adding a capacitive post in the middle of the

cavity [17]. Simulation results showed 52% size reduction by employing capaci-

tive loading techniques, at the expense of Q reduction by 20% compared to the

unloaded cavity operating at the same frequency.

1.3.4 Cavity Filter

As an extension of the planar integrated cavity resonator concept, bandpass

filters employing the silicon micromachined and LTCC cavities as the building

blocks were investigated.

A vertically integrated bandpass filter structure was presented in [18]. The 10

GHz filter consists of three 500 µm thick vertically integrated resonant cavities,

which are etched in silicon using wet chemical anisotropic etching, and are coupled

by thin slots etched in 100-µm silicon wafers. Another application of a silicon

micromachined resonant cavity was demonstrated in [14], which is a four-pole

linear phase filter operating at 27 GHz, consisted of four horizontally integrated
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resonators placed side by side and coupled by evanescent waveguide sections. In

order to achieve higher Q, a deep RIE etching process was used to provide more

vertical sidewalls, and two 500-µm wafers are stacked to create the 1-mm-high

micromachined cavities.

In addition to the silicon micromachining method, LTCC technique has also

been applied to produce 3-D cavity filters. Low-loss two-pole filters based on

capacitive loaded cavities were reported at Q band [17]. Narrow-band two-pole

filters, which can be embedded inside packaging, were implemented in LTCC by

employing capacitive loading techniques at X-band [19]. A three-pole bandpass

filter using LTCC technology was demonstrated in [16] for 60 GHz wireless local

area network narrow-band applications.

1.4 Research Objectives

Although improvement has been made on increasing the resonator Q factor

by exploiting silicon micromachining and LTCC techniques, there are some draw-

backs inherent to silicon cavity micromachining and LTCC technology, including

non-vertical sidewalls, depth limitations, and surface roughness for silicon res-

onators, and dielectric and radiation loss for LTCC resonators. These can poten-

tially be overcome by non-silicon based micro-fabrication techniques.

The LIGA fabrication process is different from the silicon and LTCC tech-

niques. Highly vertical cavities with solid metal sidewalls having verticality better

than 89.9o are possible. The sidewalls of the LIGA structures exhibit optical pla-

narity with surface roughness of about 20 to 30 nm. These low undulations on the

interior surface of the cavity walls are transferred to the conductor surface during

metallization. The current, concentrated in the metal surface on the inside cavity

walls due to the skin depth effect, follows the uneven surface of the cavity, which

increases the conductor loss compared to the case of a perfectly smooth surface [6].

As the surface roughness increases, the current encounters greater resistance, and

therefore, the conductor loss increases. The optical quality surface roughness of
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LIGA products minimizes the conductor loss effectively, and makes high quality

factor resonators possible. The materials of the final products are not confined to

silicon. LIGA offers the potential of manufacturing microstructures with a variety

of materials such as polymers and plastics, as well as metals. The most important

feature of the LIGA process is that deep rectangular cavities with height up to

several millimetres can be obtained, which increases the Q factor dramatically.

Furthermore, batch fabrication with potentially low cost could be realized using

LIGA replication techniques. A metal structure produced by the LIGA process

can serve as a mould insert. For mass production, moulding techniques such as

hot embossing and injection moulding are employed to produce plastic devices

without going back to the expensive lithography step.

The advantages that LIGA offers allow the development of new microwave and

millimetre-wave circuits. By exploiting the metal height, new 3-D planar trans-

mission line structures can be realized using LIGA fabrication techniques [20] [21].

LIGA - micromachined transmission lines offer several advantages over conven-

tional structures in microwave and millimetre-wave applications. The tall metal

transmission lines provide high power handing capacity when bonded by a good

thermal conductor due to the increased conduction interface. The high aspect

conductor sidewalls and nearly perfect slope results in very high coupling levels

that are impossible to obtain with conventional planar integrated transmission

lines. Employing the advantages of 3-D transmission line structures, microwave

and millimetre-wave circuits requiring very high coupling have been developed,

such as stepped-impedance low-pass filters [20] [21], coupled-line bandpass fil-

ters [20] [21] [22] [23], a 6-dB CPW coupler [23], and a 3-dB CPW coupler [24].

This research is aimed at the investigation of the feasibility of developing high

performance cavity resonators and filters using the LIGA fabrication process. The

main objectives of the research are summarized as follows:

1. Investigate the advantage of realizing high Q cavity resonators using the

LIGA technique over silicon micromachining and LTCC techniques.
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2. Design one-port rectangular cavity resonator structures suitable for LIGA

implementation at upper microwave and millimetre-wave frequencies, such as 24

GHz and 37 GHz.

3. Fabricate the resonators, which involves creating the suitable layout of the

mask for LIGA cavities, a top substrate, and the assembly of the resonators.

4. Test the resonators and determine the unloaded Q, and compare with the

simulation results.

5. Investigate the feasibility of realizing high performance filters as an exten-

sion of the LIGA cavity concept.

1.5 Thesis Organization

The thesis is organized into seven chapters.

In Chapter 2, resonator basics, which establishes the theoretical background

for the design are discussed. The characteristics of the resonators are presented

by the lumped RLC resonator models. The properties of rectangular waveguide

cavities, a form of implementation of resonator circuits at microwave frequencies,

are discussed. Also, typical coupling techniques used to excite the fields inside

the cavity are illustrated.

Chapter 3 presents the software and techniques used to design, model, and

evaluate the resonator and filter structures presented in this thesis work. A brief

introduction is given to the two commercially available simulation tools, Ansoft

High Frequency Structure Simulator (HFSS) and QZERO, employed to analyze

the performance of the resonator. The additional power dissipation in the con-

ductor due to the surface roughness is approximated by an equation assuming

equilateral triangular surface grooves, which will be used to analyze the surface

roughness effect on the performance of the circuit models presented in the later

designs.

Chapter 4 investigates the properties of the rectangular resonant cavity, in-

cluding both hollow cavity and dielectric-filled cavity. Cavity models representing
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available fabrication techniques, such as silicon machining, LTCC, and LIGA tech-

nologies, are simulated. Based on these results, a completed one-port resonator

suitable for LIGA fabrication is proposed and simulated using HFSS.

In Chapter 5, the steps taken in the fabrication of resonant cavities using the

LIGA technique are demonstrated. A 1800 µm deep metal cavity fabricated using

the LIGA process is presented. The cavity has an impressive structure, including

extremely vertical and smooth sidewalls, resulting in low conductor loss. A high

unloaded Q of 2122±85 is measured at the resonant frequency of 23.892 GHz.

Also, the possible reasons for the discrepancy between the HFSS simulated and

measured results are discussed.

Chapter 6 presents a narrow band microwave filter suitable for LIGA fabrica-

tion, as an extension of the LIGA cavity concept. The simulation results from the

HFSS model incorporating the practical fabrication tolerances measured from a

LIGA fabricated PMMA resonator structure suggest that LIGA fabrication intro-

duces only minor deterioration and high performance microwave filters with deep

cavities are possible in a single lithography exposure process.

In Chapter 7, conclusions of this research are presented and future research

directives are suggested.



Chapter 2

MICROWAVE RESONATORS

Resonators are circuits that allows the exchange of electric and magnetic en-

ergies with low loss. Resonators can be of either lumped or distributed. Lumped

elements such as resistors, inductors, and capacitors are usually employed for res-

onators at frequencies below 300 Megahertz (MHz) [25]. At higher frequencies,

the dimensions of the general lumped elements are comparable to the wavelength

in size. Smaller devices are possible to fabricate with the advantage of integrated

circuit (IC) technology. But small sizes result in poor power handling capacity.

Therefore, resonators consisting of distributed components are usually constructed

for applications in the microwave frequency range.

Distributed resonator circuits utilize the resonant properties of standing waves,

and thus are generally of a size comparable to wavelength. Microstrip and cavity

resonators are commonly used at microwave frequencies. Although lumped cir-

cuits are not generally applicable at high frequencies, they are good models to

present the basic operation of resonators.

2.1 Lumped Resonant Circuits

The circuit theory of distributed microwave resonators is similar to that of

the resistor (R), inductor (L), capacitor (C) lumped element resonators. At

frequencies near resonance, microwave resonators can be modelled by series or

parallel RLC resonators. A parallel RLC lumped element resonator circuit is

shown in Figure 2.1. In this configuration, lumped elements R, L, and C share a

14
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C

I

V RL

Figure 2.1 Parallel resonant circuit.

common voltage V . The magnetic energy, Wm, is stored in the inductor L. The

electric energy, We, is stored in the capacitor C. The only power absorptive device

is the resistor R, and the average dissipated power by R can be expressed as

Pl =
1

2

|V |2
R

. (2.1)

At resonance the input impedance is purely real and equal to R. From the

point of view of energy exchange, resonance occurs when the stored average mag-

netic and electric energies are equal, namely Wm = We. The frequency at which

the resonance appears is referred to as resonant frequency ω0, which is defined as

ω0 =
1√
LC

. (2.2)

An important parameter of a resonant circuit is its quality factor, Q. Q

is defined as the ratio of stored energy to dissipated energy per cycle. Q is a

dimensionless number. At resonance, Q can be expressed in terms of the energy

ratio for lumped element resonators as well as microwave resonators as [5]

Q = ω0
Wm + We

Pl

, (2.3)

where ω0 is the resonant frequency in radians. For the parallel resonant circuit,

Q can be evaluated in terms of the lumped element values as

Q = ω0RC =
R

ω0L
. (2.4)
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Q is a measurement of loss of a resonator circuit: higher Q implies lower loss.

The input impedance of the parallel resonant circuit is

Zin =

(
1

R
+

1

jωL
+ jωC

)−1

. (2.5)

Near resonance, the frequency can be represented by a small deviation from

ω0 as

ω = ω0 + ∆ω, (2.6)

where |∆ω| ¿ ω0. Using the Taylor expansion around ω0, the following expression

can be simplified as

1

ω0 + ∆ω
=

1

ω0

· 1

1 +
∆ω

ω0

=
1

ω0

(
1− ∆ω

ω0

)
. (2.7)

Then by using Equations 2.6 and 2.7 in Equation 2.5, the input impedance

can be written as

Zin =

(
1

R
+

1−∆ω/ω0

jω0L
+ jω0C + j∆ωC

)−1

'
(

1

R
+ j

∆ω

ω2
0L

+ j∆ωC

)−1

=

(
1

R
+ 2j∆ωC

)−1

=
R

1 + 2j∆ωRC

=
R

1 + 2jQ
∆ω

ω0

, (2.8)

since ω2
0 = 1

LC
and Q = ω0RC.
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The Q given by Equations 2.3 and 2.4 represents the resonant circuit itself, and

is called unloaded quality factor Qu. Qu involves the power loss by the resonant

circuit only. In practice, a resonant circuit is coupled to external circuitry, which

absorbs additional power denoted by Pext. The external Q factor, Qext, is defined

in terms of power dissipated in the external circuit as

Qext = ω0
Wm + We

Pext

. (2.9)

Similarly, the Q factor of the loaded resonator, Ql, associated with the total

loss can be expressed as

Ql = ω0
Wm + We

Pl + Pext

. (2.10)

In view of Equation 2.10, the effect of the external circuitry always lowers the

overall Q factor of a resonator.

The definitions of quality factors in Equations 2.3, 2.9, and 2.10 show the

relationship
1

Ql

=
1

Qu

+
1

Qext

. (2.11)

The degree of coupling between the external circuit and the resonant circuit

is measured by the coupling coefficient k. In general, k can be defined in terms of

the Q factor as [5]

k =
Qu

Qext

or k =
Qu −Ql

Ql

. (2.12)

The coupling coefficient k denotes the ratio of the power dissipated in the external

circuit to the power loss in the resonant circuit itself. The condition of k = 1 is

referred to as critical coupling. If k is greater than unity, the resonator is said to

be over coupled, while k < 1 is called under coupled.

2.2 Cavity Resonator

Cavity resonators are constructed from closed sections of waveguide. A rect-

angular cavity resonator is usually formed by a waveguide shorted at both ends
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by grounded conducting plates. The cavity can be air or dielectric filled volume

in three dimensions, which is totally enclosed by metallic walls. The electric and

magnetic energy is stored within the volume of the cavity. Power can be dissipated

in the metallic walls due to the finite conductivity, as well as in the dielectric fill-

ing material. Cavity resonators are attractive at frequencies beyond 3 GHz since

they are capable of providing Q values of 5000 or more [25].

2.2.1 Rectangular Waveguide

It is necessary to transfer electromagnetic signal power from one point to

another with low propagation loss. A variety of structures can guide the electro-

magnetic waves to propagate from place to place, such as two-wire lines, coaxial

cables, and waveguides.

At higher microwave frequencies, especially at wavelength below 10 cm, waveg-

uides are preferred for applications requiring very low power loss. Waveguides with

rectangular or circular cross sections are commonly used geometries. Rectangu-

lar waveguide is by far the most widely used type in comparison with circular

waveguide.
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Figure 2.2 Geometry of a rectangular waveguide.

The geometry of a rectangular waveguide is shown in Figure 2.2, with width a

and height b. It is assumed that the guide is filled with a material of permittivity ε

and permeability µ. The rectangular waveguide supports transverse electric (TE)

waves and transverse magnetic (TM) waves. In TE waves, the electric field is
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entirely transverse, but the magnetic field is not. In TM waves, the magnetic field

has no axial component, but the electric field has.

The field components of the TE modes, which are characterized by fields with

Ez = 0, can be found by solving the wave equations applicable to the longitudinal

magnetic field component Hz. The partial differential equation can be solved by

the method of separation of variables and applying the boundary conditions that

the electric field components tangential to the waveguide walls are zero, and the

solution for Hz is found to be [5]

Hz(x, y, z) = Amn cos
mπx

a
cos

nπy

b
e−jβz, (m,n = 0, 1, 2, ..., butnotboth0.)

(2.13)

where Amn is an arbitrary amplitude constant representing the maximum magni-

tude of the magnetic field intensity, and m and n are arbitrary integers.

Then the transverse field components can be derived as

Ex =
−jωµ

k2
c

∂Hz

∂y

=
jωµnπ

k2
cb

Amn cos
mπx

a
sin

nπy

b
e−jβz, (2.14a)

Ey =
jωµ

k2
c

∂Hz

∂x

=
−jωµmπ

k2
ca

Amn sin
mπx

a
cos

nπy

b
e−jβz, (2.14b)

Hx =
−jβ

k2
c

∂Hz

∂x

=
jβmπ

k2
ca

Amn sin
mπx

a
cos

nπy

b
e−jβz, (2.14c)

Hy =
−jβ

k2
c

∂Hz

∂y

=
jβnπ

k2
cb

Amn cos
mπx

a
sin

nπy

b
e−jβz. (2.14d)

The parameters k, kc, and β in the expression of the the field components can
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be calculated by

k = ω
√

µε , (2.15)

kc =

√(mπ

a

)2

+
(nπ

b

)2

, (2.16)

β =
√

k2 − k2
c . (2.17)

The description of the theoretical parameters used in the equations above is

summarized in Table 2.1.

Table 2.1 Description of theoretical parameters for TE mode.

Name Description

Ex x component of electric field

Ey y component of electric field

Hx x component of magnetic field

Hy y component of magnetic field

Hz z component of magnetic field

a, b Waveguide width, height

m,n Eigenvalues, corresponding to propagation modes

ω Operating frequency in rad/s

k Free-space wave number

β Propagation constant

kc Cutoff wave number

In view of Equations 2.13 and 2.14a to 2.14d, there are infinite possible so-

lutions for TE waves identified by the two integer subscripts m and n. Corre-

spondingly, infinite propagating modes TEmn defined by the combination of m

and n can exist in rectangular waveguide. Each mode has a cutoff frequency fcmn ,

above which the mode can propagate along the waveguide, and below which the

mode can not propagate. The mode with the lowest cutoff frequency is called the

dominant mode. Cutoff frequency is a geometrical dependent parameter. The

cutoff frequency associated with the cross section configuration a and b is where
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k = kc, or

fcmn =
1

2π
√

µε

√(mπ

a

)2

+
(nπ

b

)2

. (2.18)

The guide wavelength λg, which is defined as the distance between the equal

phase planes along the waveguide, is given by

λg =
2π

β
=

λ0√
1− (fc/f)2

, (2.19)

λg is bigger than λ0, which is the wavelength of the plane wave in free-space with

frequency f . The guide wavelength is also geometrically dependent, since it is

determined by the cutoff frequency in Equation 2.18.

Dominant TE10 Mode

Assuming a > b, the lowest cutoff frequency occurs for the TE10 mode with

m = 1 and n = 0. Thus the TE10 mode is the dominant mode of the rectangular

waveguide. The cutoff frequency fc10 and the guide wavelength λg are found,

according to Equations 2.18 and 2.19, to be

fc10 =
1

2a
√

µε
, (2.20)

λg =
λ0√

1− (λ0/2a)2
. (2.21)

The expressions of electric and magnetic field components for TE10 mode can

be derived by setting m = 1 and n = 0 in Equations from 2.13 to 2.14d. It is

noted that no field components vary in the y direction since n equals zero. Electric

and magnetic field patterns are sketched in Figure 2.3. The solid lines represent

the electric field, and the dashed lines represent magnetic fields. Field component

intensity variation along the x coordinate is shown in Figure 2.4. Component Ey

is the only electric field component for the TE10 propagation mode. Ey intensity

variation follows a half-sine curve, and reaches the maximum at the waveguide

center, and is zero at the conducting walls. The magnetic field lines form closed



22

circles in the horizonal planes of the guide. The transverse magnetic component

Hx shares the same intensity variation characteristic as Ey along the x direction,

with maximum at the center and zero at the side walls. The longitudinal magnetic

component Hz, on the contrary, is a maximum at the side walls and zero at the

center. The field pattern repeats itself every half guide wavelength (λg/2) along

the propagation direction in rectangular waveguide, but is reversed.
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2.2.2 Rectangular Resonant Cavity Basics

A resonant structure can be constructed by terminating a section of rectan-

gular waveguide in short circuits at z = 0 and z = d, as shown in Figure 2.5.

The incident and reflected travelling waves superpose on one another to produce

standing waves in the rectangular cavity. The length of the cavity is required to

be a multiple of a half guide wavelength at the resonant frequency in order to

satisfy the boundary conditions of Ex = Ey = 0 on the end walls at z = 0 and

z = d.

������������������

a

z

y

xd

b

Figure 2.5 A rectangular resonant cavity.

According to Equation 2.13, the general form of longitudinal magnetic field of

the TEmn rectangular waveguide mode can be expressed by the superposition of

forward and backward travelling waves as

Hz(x, y, z) = cos
mπx

a
cos

nπy

b
(C+e−jβz + C−ejβz), (2.22)

where C+ and C− are arbitrary amplitudes of the forward and backward travelling

waves. By applying the boundary conditions that Hz = 0 at z = 0 and z = d, the

solution of Hz is found to be

Hz(x, y, z) = H0 cos
mπx

a
cos

nπy

b
sin

lπz

d
, (2.23)

and the resonant frequency of TEmnl mode for the rectangular cavity shown in
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Figure 2.5 is given by [5]

fmnl =
c

2π
√

µrεr

√(mπ

a

)2

+
(nπ

b

)2

+

(
lπ

d

)2

(m,n = 0, 1, 2, ... ; l = 1, 2, 3, ...),

(2.24)

where µr and εr are the relative permeability and permittivity of the material

filling in the volume of the cavity; c is the velocity of light in free-space with

the value c = 3 × 108 m/s. The subscripts m, n, and l represent the number of

half-sine periods in the standing wave pattern along x, y and z axes, respectively.

An infinite number of resonant modes can exist in a cavity with fixed shape

and size corresponding to the different field distributions determined by the triple

combination of m, n, and l. For b ≤ a < d, the dominant resonant mode with

lowest resonant frequency is TE101 mode. The total fields for TE101 resonant mode

are found by substituting Equation 2.23 into Equations 2.14a to 2.14c, and can

be written as

Ey =
−jωµa

π
H0 sin

πx

a
sin

πz

d
, (2.25a)

Hx =
−a

d
H0 sin

πx

a
cos

πz

d
, (2.25b)

Hz = H0 cos
πx

a
sin

πz

d
. (2.25c)

The field distribution of TE101 resonant mode is similar to those shown in

Figure 2.3, if shorting plates are placed at z = 0 and z = λg/2, since TE101

resonant mode corresponds to TE10 waveguide mode in a shorted guide with

length of z = λg/2.

In general, the average stored electric and magnetic energies in a volume V

are given by [5]

We =
ε

4

∫

V

E · E∗
dv , (2.26a)

Wm =
µ

4

∫

V

H ·H∗
dv, (2.26b)
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where We is the energy stored in the electric field; Wm is energy stored in the

magnetic field.

Using Equations 2.25a to 2.25c in 2.26a and 2.26b, the stored electric and

magnetic energy in a rectangular cavity resonant at TE101 mode is

We =
µ

4

∫

V

EyE
∗
ydv

=
εabd

16
E2

0 (2.27a)

Wm =
µ

4

∫

V

(HxH
∗
x + HzH

∗
z )dv

=
µabd

16
E2

0

(
1

Z2
TE

+
π2

k2η2a2

)
, (2.27b)

where E0 is the maximum magnitude of Ey; η =
√

µ/ε is the intrinsic impedance;

ZTE = kη/β is the TE wave impedance; and β = β10 is the propagation constant

for TE10 mode.

The power lost in the conducting walls can be calculated in terms of surface

conductivity Rs and the tangential magnetic field Ht at the surface of the walls

as [5]

Pc =
Rs

2

∫

walls

|Ht|2ds. (2.28)

where Rs =
√

ωµ0/2σ is the surface resistivity of the metallic walls; µ0 is the free-

space permeability, which is a constant having the value of µ0 = 4π × 10−7 H/m;

and σ is the metal conductivity.

Using Equations 2.25b and 2.25c in Equation 2.28, the power dissipated in the

walls of the cavity operating at TE101 mode is derived as

Pc =
Rs

2

{
2

∫ b

y=0

∫ a

x=0

|Hx(z = 0)|2dxdy + 2

∫ d

z=0

∫ b

y=0

|Hz(x = 0)|2dydz

+2

∫ d

z=0

∫ a

x=0

[|Hx(y = 0)|2 + |Hz(y = 0)|2] dxdz

}

=
RsE

2
0λ

2

8η2

(
ab

d2
+

bd

a2
+

a

2d
+

d

2a

)
. (2.29)
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The unloaded Q factor at resonance is determined by evaluating the average

electric energy stored in the cavity and the loss by the finite conductivity of the

cavity walls. Using the fact that We = Wm at the resonant frequency, unloaded

Q factor of the cavity with lossy conducting walls but lossless dielectric for TE101

mode is found to be [5]

Qcond = ω0
Wm + We

Pc

,

=
2ω0We

Pc

,

=
(kad)3bη

2π2Rs

1

(2a3b + 2bd3 + a3d + ad3)
. (2.30)

For the dielectric-filled cavity, power is dissipated in both the filling material

and the conducting walls. A lossy dielectric can be characterized by its complex

permittivity, which is defined as

ε = ε′ − jε′′

= ε0εr(1− j tan δ). (2.31)

where tan δ is the loss tangent of the material.

The imaginary part of ε accounts for the loss in the material due to the damping

of the vibrating dipole moments. The loss of a dielectric material can be calculated

by defining an equivalent conductivity

σ = ωε′′

= ωε0εr tan δ. (2.32)

Then the power dissipated in the dielectric can be found by [5]
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Pdiel =
1

2

∫

V

J · E∗
dV

=
σ

2

∫

V

|E2|dV

=
adbωε′′|E0

2|
8

, (2.33)

where E is given by Equation 2.25a.

From the definition of Q in Equation 2.3, the Q of the cavity with a lossy

dielectric filling but with perfectly conducting walls is given by

Qdiel =
2ω0We

Pdiel

=
1

tan δ
, (2.34)

which applies for any resonant mode of a rectangular cavity.

For the rectangular cavity filled with dielectric material, both metal losses and

dielectric losses are present. The total loss Pl = Pcond + Pdiel. The total unloaded

Q thus can be derived as

Qu =

(
1

Qcond

+
1

Qdiel

)−1

. (2.35)

For the air-filled cavity, no dielectric loss exits. Therefore, the item Qdiel in

Equation 2.35 can be ignored, and the total Q factor equals to Qcond.

2.2.3 Coupling to Cavities

The electromagnetic fields discussed in Section 2.2.2 are inside the cavity that

is completely shielded from the outside by conducting walls. It is necessary to

excite the waves in the cavity by means of some source. The coupling can be via

either the electric or magnetic fields of a given mode. General mechanisms used to

couple, or excite, the fields by an external circuit include current loop, electrical

probe, and aperture coupling.
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A small loop can couple electromagnetic energy into or out of the resonator.

The resonant mode in the cavity that presents a magnetic field with field lines

through the loop can be excited by the loop. Thus, the plane of the loop should

be perpendicular to the direction of the magnetic field of the mode desired to be

excited. For efficient coupling of the desired mode, the loop should be placed at the

location where the magnetic field of the given mode is a maximum. Introduction

of a small probe that is parallel to the direction and at the maximum of the

electric field can also excite the waves in the cavity. In addition, a small aperture

on the cavity may be designed to couple electric and magnetic energy to and from

the cavity. For the case of strong coupling, the slot should be in a position and

orientation such that the slot intersects the current flow on the surface of the

cavity.

w

d

(a) Geometry of a microstrip line.

H

E

(b) Electric and magnetic field lines of a mi-
crostrip line.

Figure 2.6 Microstrip transmission line.

A method of microstrip-slot aperture coupling was first proposed in [26] as a

feeding technique for a patch antenna design. The coupling mechanism is sum-
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(a) Electric field lines fringing through
and around an aperture in the ground
plane.

(b) Field lines generated by electric po-
larization currents normal to a conduct-
ing plane.

(c) Magnetic field lines fringing through
and around an aperture in the ground
plane.

(d) Field lines generated by magnetic
polarization currents parallel to a con-
ducting plane.

Figure 2.7 Schematic illustrating of equivalent electric and
magnetic polarization currents at an aperture in
a conducting ground plane.
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marized briefly as follows. The geometry of a microstrip line is shown in Fig-

ure 2.6(a), with a piece of conductor printed on a dielectric material, which is

grounded by a thin ground plane. The electric and magnetic field lines between

the long microstrip line and the ground plane are shown in Figure 2.6(b). If a

small aperture is opened in the conducting ground plane, the electric and mag-

netic field lines will fringe through and around the slot as shown in Figure 2.7(a)

and Figure 2.7(c), respectively. Figure 2.7(b) shows the field lines generated by

infinitesimal electric polarization currents P e, which are both perpendicular to the

closed ground plane but with opposite directions. Compared with the field lines

of Figures 2.7(a) and 2.7(c), the similarity suggests that the electric field due

to the microstrip mode fringing through an aperture in a ground plane can be

represented by the electric polarization currents normal to the conducting plane

without the presence of the aperture. Similarly, the fringing of the magnetic mi-

crostrip mode field can be represented by two infinitesimal magnetic polarization

currents Pm, which are located parallel to the conducting ground with opposite

directions as shown in Figure 2.7(d). P e and Pm can be related to the electric and

magnetic current sources J and M , which are proportional to the normal electric

and parallel magnetic field density at the center of the slot, respectively. The

fields on both sides of the aperture can be computed using the equivalent currents

J by assuming that the aperture is closed by a conducting plane. Therefore, the

aperture in the ground plane is equivalent to a current source placed below the

ground plane that excites the fields in the cavity.

2.3 Summary

In this chapter the basic characteristics of the resonators, such as the defi-

nition of Q factor and coupling coefficient, are presented by the lumped RLC

resonator models. Then the properties of rectangular waveguide cavities, a form

of implementation of resonator circuits at microwave frequencies, are discussed.

Also, some typical coupling techniques used to excite the fields inside the cav-
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ity are illustrated. The resonator basics presented in this chapter establish the

theoretical background for the design procedures in the following chapters.



Chapter 3

EXPERIMENTAL TECHNIQUES

3.1 Simulation Techniques

The resonator model cannot be easily simulated using empirical methods, be-

cause of the lack of component models for structures with coupling slots. Numer-

ical techniques, such as the finite element method (FEM), need to be employed

to analyze the resonator.

FEM is one of the oldest numerical techniques applied to engineering problems.

The term finite element was first discussed by Clough in 1960 [27]. The first

textbook on FEM appeared in 1967 [28]. In the late 1960s and early 1970s, FEM

was applied by engineers to a wide variety of problems including stress analysis,

fluid flow, heat transfer, and other areas. Most of the commercial FEM softwares

originated in 1970s and 1980s.

FEM is a method for numerical solution of field problems by solving partial

differential equations and also integral equations. The advantage of FEM includes

its capacity of handling bodies composed of complex geometries (2-D and 3-D)

and materials (homogeneous and nonhomogeneous). The principle process steps

involved in FEM are briefly illustrated using Ansoft HFSS [29] as a demonstration

tool. More detailed and advanced references on the FEM applied to electromag-

netic problems can be found in [30] and [31]. Ansoft HFSS is a software package

specialized in solving electromagnetic field solutions using FEM, and is used to

model all of the cavity resonator circuits. In FEM, the full complex problem

model is divided into simple geometric sub-regions, which are called elements.

32
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The elements in 3D forms could take on different shapes such as bricks, prisms,

and tetrahedra. In Ansoft HFSS, the entire structure is divided into a large num-

ber of tetrahedra, which are essentially four-sided pyramids shown in Figure 3.1.

The process of model dividing is called meshing. Correspondingly, the collections

of the tetrahedra are referred to as the finite element mesh.

Field components tangential to 
the edge of the tetrahedron

Field component tangential 
to a face and normal to the edge

Figure 3.1 Geometry of a tetrahedral element in Ansoft
HFSS.

The vector quantities, such as the electric field and magnetic field, are solved

at the vertices and nodes that are the midpoints between each pair of vertices. At

each vertex, the program stores the field components that are tangential to the

edges of the tetrahedron. At each node, fields solutions that are tangential to a

face and normal to the edge are stored as well. The field solutions inside the tetra-

hedron are interpolated from these stored field components. Thus, the solutions

of Maxwell’s Equations derived by numerical method are stored as matrices.

The accuracy of the solutions depends on how dense the model is meshed. To

generate accurate field quantities, the volume of each tetrahedron must be small

enough so that fields can successfully interpolated from the values at vertices

and nodes. Generally, solutions obtained by finely meshed models containing

thousands of elements (tetrahedra) are more precise than those based on coarse

meshes using relatively small number of elements. But for meshes with a large
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number of elements, a significant number of matrices are generated to store the

field quantities, which will considerably affect the required computer memory and

simulation time. Therefore, a compromise must be made between the size of the

mesh and the level of accuracy.

To produce the optimal mesh, Ansoft HFSS first generates a solution based on

a coarse initial mesh. Then the mesh is automatically refined in a way that the

refinement is focused on the areas of high error density, which saves the computer

resource and simulation time. The simulation stops if the new solutions gener-

ated from the refined mesh meet the criteria of convergence governed by selected

parameters. Otherwise, the model will be meshed further until convergence to a

solution is obtained.

3.2 Q Factor Measurement

3.2.1 Impedance Measurement

As described in Section 2.1, the fundamental characteristics that define a res-

onator include resonant frequency f0, coupling coefficient k, and unloaded Q fac-

tor.

The Q value of a resonant cavity can be determined in many ways. Among

them, impedance measurement is based on the observation of the input impedance

of the resonator varying with frequency, and thus is suitable for the measurement

of a one-port resonator configuration. This method was first proposed by Gintzon

in [32], and is described briefly as follows.

Consider a coupling network that contains a cavity, a coupling system, and a

piece of transmission line connecting to a power source, as shown in Figure 3.2 [32].

The cavity resonance in a particular mode is represented by the parameters L,

C and Rs. The coupling mechanism is represented by its self-inductance L1 and

mutual inductance M between it and the cavity inductance L, while the resistive

losses in the coupling network are neglected. The circuit can be simplified by

transforming the effect of the coupling network into a coupled impedance in series
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Z 0

C

Rs
ab

ab l

L1 L

M

Figure 3.2 Equivalent circuit of a cavity coupled to a signal
source.

with the cavity parameters, as shown in Figure 3.3. The coupled impedance is

given by

Z =
(ωM)2

Z0 + jωL1

=
(ωM)2

Z0

[
1 +

(
ωL1

Z0

)2
]

(
1− j

ωL1

Z0

)
. (3.1)

Coupled Impedance

C

Rs

LjX
kRs(1− 1

Z 0
)

Figure 3.3 Equivalent circuit with the coupling network
transformed into a coupled impedance.
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To simplify the expression, a parameter k is defined as

k =
(ωM)2

Z0Rs

1

1 +
(

X1

Z0

)2

=
k1

1 +
(

X1

Z0

)2 , (3.2)

where

k1 =
(ωM)2

Z0Rs

. (3.3)

Using Equation 3.2 and X1 = ωL1, Equation 3.1 becomes

Z = kRs

(
1− jX1

Z0

)
. (3.4)

The loaded Q factor for a coupled series resonant circuit is defined by the ratio

of total reactance to the total series loss. For the circuit shown in Figure 3.3, the

loaded Q is

Ql =
ωL− kRs

X1

Z0

Rs(1 + k)

=
ωL

Rs

(
1− kRs

Z0

X1

ωL

)

1 + k
. (3.5)

Neglecting the second term in the numerator of Equation 3.5, representing the

ratio of coupled reactance to the cavity reactance which is usually small compared

to unity, Equation 3.5 becomes

Ql =
Qu

1 + k
, (3.6)

where

Qu =
ωL

Rs

, (3.7)

is the Q factor of the unloaded cavity circuit. Equation 3.6 is also the same
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relationship for coupling coefficient k defined in Equation 2.12.

a

Z 0

a
L1

Rs+j( L−ω )ωC
1

(ωΜ)2

Figure 3.4 Equivalent circuit with the cavity transformed into
a coupled impedance.

Figure 3.2 can be simplified further by transforming the cavity into a coupled

impedance in series with the inductance L1, as shown in Figure 3.4. The total

input impedance at the terminal of the coupling system, which is located at a

position a− a near the cavity in Figure 3.4, can be written as

Zaa = jX1 +
(ωM)2

Rs + j(ωL− 1
ωC

)
. (3.8)

With the similar approach used to derive Equation 2.8, the normalized input

impedance at reference plane a− a can be approximated as

Zaa

Z0

= j
X1

Z0

+
k1

1 + 2jQuδ
, (3.9)

where

δ =
ω − ω0

ω0

=
∆ω

ω0

, (3.10)

and is the frequency-tuning parameter; k1 is the ratio of the coupled resistance to

the cavity resistance Rs; Z0 is the characteristic impedance of the transmission

line, as well as the internal impedance of the signal source.

The second term of Equation 3.9 presents the impedance of an unloaded paral-

lel resonant circuit, which was described in Equation 2.8, with impedance k1Z0 at



38

resonant frequency of ω0, and describes a circle with diameter k1 on the normal-

ized complex impedance plane. The first term in the equation, which is introduced

by the self-reactance of the coupling system, causes the circle to displace along

the imaginary axis, as shown in Figure 3.5.

0

0 k 1

X

Z 0

ωL 1

Z 0

R
Z

Figure 3.5 Normalized input impedance of the resonant cav-
ity referred to an arbitrary position.

The effect of self-reactance of the coupling system can be removed by finding

special reference planes along the transmission line, which are called detuned-short

or detuned-open positions. At the detuned-short position, the impedance looking

into the cavity represents a simple parallel circuit. Similarly, at the detuned-

open position, which is λ/4 away from the detuned-short position, the impedance

appears as a series resonant circuit.

The detuned-short position can be found by tuning the frequency far off res-

onance. At this frequency, the second term in Equation 3.9 disappears, and the

impedance becomes the self-reactance of the coupling system. At the reference
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plane b − b, which is away from the plane a − a by a distance l, the impedance

looking into the cavity is

Zbb

Z0

=
Zaa + jZ0tanβl

Z0 + jZaatanβl
. (3.11)

The length l of the transmission line can be chosen so that the first term in

the Equation 3.9 disappears. When the cavity is detuned, making Zbb = 0 yields

βl = − tan−1

(
X1

Z0

)
. (3.12)

Substituting Equations 3.9 and 3.12 into Equation 3.11, the impedance at the

detuned short position is derived as

Zbb

Z0

=
k

1 + j2Qu(δ − δ0)
, (3.13)

where

δ0 =
k

2Qu

(
X1

Z0

)
, (3.14)

and k is expressed in Equation 3.2.

Similar to the second term in Equation 3.9, Equation 3.13 represents a par-

allel resonant circuit with an impedance kZ0 at resonance, and also corresponds

to a circle on the impedance plane, as shown in Figure 3.6. Compared to the

impedance circle described by Equation 3.9, the diameter of the transformed cir-

cle corresponding to the impedance at plane b − b given by Equation 3.13 is

different. Also, the resonant frequency of the circuit described by Equation 3.13

is altered from the resonant frequency ω0 of the cavity by the amount given by

Equation 3.14.

The resonator characteristics then can be determined based on the observation

of the variation of the input impedance of the resonator with frequency. With

the detuned short position as the reference plane, the measured impedance locus
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k
R
Z 0

X

Z 0

0

Figure 3.6 Normalized input impedance of the resonant cav-
ity referred to an arbitrary the detuned short po-
sition.
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as a function of frequency describes a circle. The values of Qu, Ql and Qext

can be obtained by interpreting the impedance data. Theoretically, the resonator

characteristics can be determined by measuring impedance at only three frequency

points, since a circle can be completely defined by three points. In order to improve

the accuracy, additional data can be taken to account for the random, systematic,

or accidental errors.

B=G+1

οοR=
R=1

δ1

δ2

δ3

δ4

δ5

δ6

R=0

R=X

B=1

Figure 3.7 Identification of the points from the Smith chart.

According to Equation 3.13, at certain frequencies the imaginary part of the

denominator equals ±1, and the input impedance becomes

Zbb

Z0

=
k

1± j
, (3.15)

which has equal resistive and reactive parts (R = X). The locus of these points

regardless of k is a circle on the Smith chart as shown in Figure 3.7, with center at

the ±90o point, and passing through 0 and 180o on the unit circle. The frequency
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points satisfying Equation 3.15 locate at the intersection of this circle with the

impedance circle. And the corresponding δ, called δ1 and δ2, satisfies

2Qu(δ1 − δ0) = 1, (3.16a)

2Qu(δ2 − δ0) = −1. (3.16b)

Hence, by rearranging Equations 3.16a and 3.16b Qu is found in terms of

frequency as as

Qu =
1

δ1 − δ2

=
f0

f1 − f2

. (3.17)

Thus, Qu can be graphically determined by finding the two frequencies on the

Smith chart, at which the impedance locus passes through the point R = X, as

indicated in Figure 3.7.

The loaded and external Q values can be determined in a similar way. Substi-

tuting Qu by Ql as in Equation 3.5, Equation 3.13 becomes

Zbb

Z0

=
k

1 + j2Ql(1 + k)(δ − δ0)
. (3.18)

Similarly, Equation 3.13 can be expressed in terms of Qext as

Zbb

Z0

=
k

1 + j2Qextk(δ − δ0)
. (3.19)

Frequency tuning parameters δ3 and δ4, which satisfy

2Ql(δ − δ0) = ±1 , (3.20)
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can be defined. At these frequency points, the impedance becomes

Zbb

Z0

=
k

1± j(1 + k)
. , (3.21)

Similarly, δ5 and δ6 are defined, which satisfy

2Qext(δ − δ0) = ±1. (3.22)

At these frequency points, the impedance becomes

Zbb

Z0

=
k

1± jk
. (3.23)

Then Ql and Qext can be derived in terms of specific frequency points as

Ql =
1

δ3 − δ4

, (3.24)

Qext =
1

δ5 − δ6

, (3.25)

where δ3 and δ4 can be found by the intersection of the B = G + 1 circle and

the impedance circle; δ5 and δ6 are located on the intersection of the B = 1 circle

and the impedance circle, as shown in Figure 3.7. Therefore, by locating these

frequency points as summarized in Figure 3.7, Qu, Ql, and Qext can be derived

according to Equations 3.17, 3.24, and 3.25, respectively.

3.2.2 Reflection Type Measurement

As described above, the method developed in [32] requires the definition of

special reference planes such as detuned open and detuned short positions. The

impedance data are interpreted with respect to one of these two reference points,

which implies the effect of the reactance of the external circuits must be neglected.

This measurement is complicated by the requirement to rearrange the measured

data relative to the reference point. Besides, this measurement method relies
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solely on the discrete data, and thus tends to give poor results when the practical

effects introduced by a real measurement system, such as noise, are presented.

Based on the procedure documented in [32], a reflection type measurement,

which is considered one of the most accurate and practical Q-factor measure-

ment [33], [34], is described in [35] with a few modifications. The reference plane

is assumed to be the end of a section of transmission line leading to the res-

onator, so that the data measured from a network analyzer can be used directly.

The coupling mechanism is taken into account in the method described in [35].

The measurement involves fitting the complex reflection coefficient data into the

impedance circle on the Smith chart. The data are processed using the linear

fractional curve-fitting algorithm, instead of the graphic procedure described by

Ginzton. Furthermore, this data-fitting procedure allows the calculation of the

random errors caused by imperfect data away from ideal circle, and thus makes the

measurement performed in a more systematic way. A program called QZERO [36]

was developed to assist determining the Q factor of a resonator using the reflection

type measurement described above. The method is described briefly in the fol-

lowing sections. Details about the principle of the reflection type of measurement

and the program QZERO can be found in [35], [37], [38], and [36].

Lossless Coupling

The equivalent circuit for the input impedance Zi of a reactance-coupled (ei-

ther inductance or capacitance) cavity resonator is represented by Figure 3.8. In

practice, an infinite number of resonant modes (resonant frequencies) exist in the

cavity. In the narrow range of frequencies around a certain resonant frequency ω0,

the term (Re+jXe) in Figure 3.8 can represent the equivalent external impedance,

including the effect of the coupling structures and off-resonance modes. The

transmission line with the characteristic impedance Rc represents the cable con-

necting the resonator to the measurement equipment. When the measurement

is performed in the narrow range of frequencies around the unloaded resonant
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frequency ω0, the mathematical expression for the input impedance measured by

the network analyzer is (Re is ignored for the sake of simplicity)

Zi = jXe +
R0

1 + 2jQ0
∆ω
ω0

, (3.26)

where Q0 is the unloaded Q factor of the resonator.

Re+jXe

R c

Zi

R

L

C

0

0

0

Figure 3.8 Equivalent circuit for a reactive-coupled cavity in
the vicinity of resonant frequency ω0.

The second term on the right hand side corresponds to an exact circle on the

complex rectangular impedance plane. The frequency dependence of reactance

Xe distorts the circular shape of the Q circle so that a “balloon” shape loop is

formed. However, for high Q factor systems, the bandwidth of measurement is

very small, and the reactance can be assumed to be constant in the narrow range

of frequencies around the resonance without any loss of measurement accuracy.

The reflection type of Q measurement is based on the observation of the circle

created by the reflection coefficient plotted on the Smith chart as a function of

the frequency.

Assuming that the loss introduced by the coupling mechanism can be ne-

glected, the analysis can be simplified by setting Re equal to zero in the equivalent

circuit for the coupled cavity shown in Figure 3.8.

The loaded resonant cavity can be represented by attaching an external re-

sistance Rc to port one, as shown in Figure 3.9. Rc is chosen to be equal to the

characteristic impedance of the transmission line leading to the cavity. Observing
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Port 1

Y0

Port 2

Rc LR0 0C0

jXs

Yex

Figure 3.9 Equivalent circuit for loaded resonant cavity.

at port 2, the external admittance Yex and unloaded admittance Y0 can be written

as

Yex = Gex + jBex =
1

Rc + jXs

, (3.27)

Y0 = G0

(
1 + jQ02

ω − ω0

ω0

)
, (3.28)

where the conductance Gex and susceptance Bex of the external circuit is

Gex =
Rc

R2
c + X2

s

, (3.29)

Bex = − Xs

R2
c + X2

s

. (3.30)

Since Xs is assumed to be constant within the narrow range of frequencies,

Gex and Bex also can also be treated as constant.

The observation at port 2, which is hidden inside the cavity, shows the effect of

the external circuit on the cavity. The existence of the external circuit, including

the coupling mechanism and a resistive loading, changes the resonant frequency

and lowers the Q value compared with the unloaded cavity.

From Figure 3.9, the total admittance of the loaded cavity is

YL = Y0 + Yex

= Gex + G0 + j

(
G0Q02

ω − ω0

ω0

+ Bex

)
, (3.31)
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where G0 = 1/R0. Hence the loaded resonant frequency is found, when the

imaginary part of the above equation equals zero, as

ωL = ω0

(
1− Bex

2Q0G0

)
. (3.32)

Substituting Bex in Equation 3.31, the loaded admittance can be expressed

alternatively as

YL = (Gex + G0)

(
1 + jQL2

ω − ω0

ω0

)
, (3.33)

where QL is the loaded Q factor, and is defined as

QL = Q0
G0

G0 + Gex

. (3.34)

The coupling coefficient, which is defined as the ratio of the power dissipated

in the external circuit to the power dissipated in the unloaded resonator, is then

expressed as

k =
Gex

G0

, (3.35)

and Equation 3.34 becomes

QL =
Q0

1 + k
, (3.36)

which is in agreement with the relationship between k and Q defined previously

in Equation 2.12.

By replacing Gex with Equation 3.29, k can be expressed in terms of the

elements in Figure 3.9 as

k =

R0
Rc

1 +

(
Xs

Rc

)2 . (3.37)

Substituting Equations 3.37 and 3.30 into 3.32, an alternative expression for

ωL is obtained as

ωL = ω0

(
1 +

kXs

2Q0Rc

)
. (3.38)
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Using this expression, ω0 can be calculated from the measured ωL. For a high

value of Q0 in the thousands, the difference between ω0 and ωL can be very little.

When plotted on the Smith chart, the measured impedances are transformed

into complex reflection coefficients, which fall into the unit circle. The expression

for the input reflection coefficient can be obtained from the equivalent circuit as

Γi =
Zi −Rc

Zi + Rc

,

=
jXs + 1

Y0
−Rc

jXs + 1
Y0

+ Rc

, (3.39)

where Zi is the input impedance observed at port 1 in Figure 3.9.

If the coupling coefficient k diminishes to zero, Y0 tends toward infinity. This

point is situated on the border of the Smith chart, and is referred to as detuned

reflection coefficient, which is expressed as

Γd =
jXs −Rc

jXs + Rc

,

= −Yex

Y ∗
ex

. (3.40)

Then Γi can be expressed in term of Γd as

Γi = Γd +

(
Yex

Y ∗
ex

)
2Gex

Y0 + Yex

. (3.41)

From Equations 3.31 and 3.35, Γi becomes

Γi = Γd


1− 2k

1 + k
· 1

1 + jQL2
ω − ωL

ω0


 . (3.42)

At a frequency far from the resonance, the second term of the Equation 3.42 in

the parenthesis is close to zero, so that the input reflection coefficient is approx-

imately the detuned reflection coefficient (Γi ' Γd), which resides on the border
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of the Smith chart as shown in the input impedance circle (Q circle) plotted in

Figure 3.10. In the vicinity of the loaded resonant frequency ωL, the second term

of the Equation 3.42 in the parenthesis describes a circle, with the diameter of

d =
2k

1 + k
, (3.43)

which is within the limit of 0 < d < 2. The stronger the coupling, the bigger is

the diameter of the Q circle. At ω = ωL, the amplitude of the reflection coefficient

is minimum, with the value

|Γi|min = |ΓL| = |1− d|, (3.44)

as shown in Figure 3.10.

Γ (    )i

Γi −Γd

ωL

Γ ijIm  ( )

Γi Re

d

d

+φ

Γ

−φ

Figure 3.10 Ideal Q circle of a microwave resonator.

For critical coupling (k = 1), the diameter of the Q circle is unity, and Γi is

located on the center of the Smith chart. When the resonator is undercoupled,

the diameter d is less than unity; when the resonator is overcoupled, the diameter

d is greater than unity.
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The vector of Γi − Γd is rotated with respect to −Γd, and the relative angle is

specified by Equation 3.42 as

φ = − tan−1

(
QL2

ω − ωL

ω0

)
, (3.45)

As frequency changes, the vector Γi − Γd moves on the Q circle, and its phase

with respect to −Γd is shown in Figure 3.10. At ω = ωL, Γi reaches its minimum,

no matter if the resonator is overcoupled or undercoupled.

At the specific frequency of f1, which is below the resonant frequency fL, the

corresponding angle of the vector Γi − Γd with respect to −Γd is

tan(φ1) = −QL2
f1 − fL

f0

, (3.46)

where tan(φ1) is positive.

Similarly, at frequency of f2, which is above the resonance, the corresponding

angle is

tan(φ2) = −QL2
f2 − fL

f0

, (3.47)

where tan(φ2) is negative.

The loaded Q can be obtained by subtracting Equation 3.47 from 3.46 as

QL =
1

2

fL

f2 − f1

(tan φ1 − tan φ2). (3.48)

For the case that φ1 = 45o and φ2 = −45o, Equation 3.48 is reduced to the

simple form

QL =
fL

f2 − f1

. (3.49)

Therefore, by observing the behavior of the Q circle, which is formed by the

input reflection coefficient as a function of frequency, the parameters of a resonator

can be determined graphically. The coupling coefficient can be found by the

diameter of the Q circle using Equation 3.43; quality factors QL and Q0 can be
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determined from Equation 3.48 and 3.36, respectively.

In order to perform accurate measurements using the multiple S-parameter

data points generated from a vector network analyzer, a convenient numerical

method to replace the traditional graphical data fitting procedure is required.

A numerical method of data fitting for a linear fractional transformation on the

complex plane is employed by the reflection type measurement to recover the Q

factors and coupling coefficient. The procedure is briefly described below. Details

can be found in [37] and [36].

For the lossless case, the magnitude of the detuned reflection coefficient |Γd| =
1, so that |Γd| can be represented by its phase angle only as

Γd = e−j2δ. (3.50)

Substituting the coupling coefficient k by the diameter of the Q circle as ex-

pressed in Equation 3.43, Equation 3.42 can be rewritten as

Γi =
jQLΓd2

ω − ωL

ω0

+ Γd + de−j2δ

jQL2
ω − ωL

ω0

+ 1
. (3.51)

This expression can be recognized as a linear fractional transformation

Γi =
a1t + a2

a3t + 1
, (3.52)

where t is a normalized frequency variable, and is defined as

t = 2
ω − ωL

ω0

= 2
f − fL

f0

. (3.53)

When normalized in such a manner, the fractional linear transformation is

defined in terms of the three complex coefficients a1 to a3, which are the transfor-
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mation constants written as

a1 = jQLΓd, (3.54a)

a2 = Γd + de−j2δ, (3.54b)

a3 = jQL. (3.54c)

The loaded Q factor and the diameter of the Q circle can be solved from the

three transformation coefficients by

QL = Im(a3), (3.55)

d =

∣∣∣∣a2 − a1

a3

∣∣∣∣ . (3.56)

The coupling coefficient and unloaded Q can be found from these two param-

eters by using Equations 3.43 and 3.36, respectively.

Three points of the reflection coefficient measured at different frequencies are

enough to solve for the unknown coefficients. In the case that the data points

chosen could be unreliable due to the effect of noise, it is safe to perform more

than three measurements and obtain an overdetermined system of equations.

In order to find the transformation coefficients, N measured points Γi are ap-

plied to Equation 3.52 at N frequency points, which forms an overdetermined

system of N equations with three unknown variables. The system is solved by the

least-square method for the three unknowns. Details of the curve fitting proce-

dure is described in [38]. The procedure of finding the transformation coefficients

consists of writing the Equation 3.52 as linear combination of a1, a2, and a3 as

a1tn + a2 − a3tnΓi,n = Γi,n n = 1, 2, 3, ..., N. (3.57)

The least-square result of the system provides the solutions for a1, a2, a3,

and their variances as well. In this procedure, the individual measurements are
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weighted in a way that the weights are inversely proportional to the variances of

individual measurements, which prevents less reliable data from have too much

undesired influence on the results, and improves the stability of solutions. The

circuit elements QL, Q0, and k can be specified by the three complex transfor-

mation coefficients a1, a2, and a3. The uncertainty (=standard deviation=square

root of variance) of the measured quantities can be determined from the variances

of the transformation coefficients.

The curve fitting procedure is performed iteratively. In the first iteration, nei-

ther the resonant frequencies, f0 and fL, nor the variances of the three transfor-

mation coefficients are precisely known. Therefore, unloaded and loaded resonant

frequencies f0 and fL in Equation 3.53 are estimated as the frequency of the mea-

sured point closest to the origin of the Smith Chart, and the weights are estimated

by assuming that all three variances to be equal to each other. In the later it-

eration steps, the resonant frequencies and weights are improved and determined

more accurately. When the iteration is finished, the three unknown coefficients

as well as their variances are obtained. In this measurement, the only source of

error is the random variations of data, the system errors of the equipment that

generates the data are not considered. For random errors, the standard uncer-

tainty means a 63% probability that the complex number will be situated within

the specified error circle.

Correction for Coupling Losses

For a coupling system with appreciable losses, the equivalent circuit can be

modified by adding a resistance Rs series with reactance Xs, as shown in Fig-

ure 3.11. A section of transmission line with characteristic impedance Rc is also

included in the equivalent circuit. The lossy coupling system is represented by

the circuit between ports 1′ and 2. The unloaded resonant cavity is modeled by

a parallel RLC lumped circuit.

When observed at port 2, the entire equivalent circuit in Figure 3.11 can be
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Rs

LR0 0C0

jXs 21 2’’1

Rc Rc

Γi’ Γi

Figure 3.11 Complete equivalent circuit including the effect
of coupling losses for a reactive-coupled cavity in
the vicinity of resonant frequency.

simplified to the one as shown in Figure 3.12. The external admittance added to

the unloaded cavity can be written as

Yex = Gex + jBex =
1

Rc + Rs + jXs

, (3.58)

where Gex is the sum of two parts

Gex = Ge1 + Ge2. (3.59)

L

2

e2e1exjB G G G

0YYex

0C 00

Figure 3.12 Equivalent circuit at port 2.

Ge1 corresponds to the effect of the characteristic impedance Rc, and Ge2
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exhibits the effect of coupling loss Rs as

Ge1 =
Rc

(Rc + Rs)2 + X2
s

, (3.60a)

Ge2 =
Rs

(Rc + Rs)2 + X2
s

. (3.60b)

The susceptance observed to the left of port 2 is

Bex = − Xs

(Rc + Rs)2 + X2
s

. (3.61)

Using a similar procedure as described in Section 3.2.2, the admittance of the

loaded resonator is found to be

YL = Y0 + Yex

= (Gex + G0)

(
1 + jQL2

ω − ω0

ω0

)
. (3.62)

The overall coupling coefficient is defined as

k =
Gex

G0

=
Ge1 + Ge2

G0

= k1 + k2, (3.63)

where k2 represents the ratio of the power dissipation in the coupling circuit to

that in the unloaded resonator.

The input reflection coefficient observed at port 1 is given by

Γi =
Rs + jXs + 1

Y0
−Rc

Rs + jXs + 1
Y0

+ Rc

. (3.64)

Equation 3.64 can be rearranged to a simpler form by multiplying the numer-
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ator and denominator by Yex and Y0

Γi =
Yex[Y0(Rs + jXs −Rc) + 1]

Y0 + Yex

. (3.65)

By setting Y0 to zero, the detuned reflection coefficient can be obtained as

Γd =
RsjXs −Rc

RsjXs + Rc

. (3.66)

It is noted that the magnitude |Γd| is less than unity due to the introduction

of coupling resistance Rs.

Then Γi can be expressed in terms of Γd as

Γi = Γd +
Yex(1− Γd)

YL

. (3.67)

Using Equation 3.62, Γi as a function of frequency is obtained as

Γi = Γd +
dejγ

1 + jQL2
ω − ωL

ω0

(3.68)

where d is the diameter of the Q circle, which is

d =
k1

1 + k1 + k2

, (3.69)

and γ is the rotation angle, which is

γ = −2 tan−1

(
Xs

Rc + Rs

)
. (3.70)

Compared with the Q circle for the lossless case described by Equation 3.42,

the presence of k2 leads to the reduction of the circle diameter. Since in general

the magnitude of k2 is small, which is on the order of 0.01, the diameter is reduced

by only about several percent. A graphical interpretation of this fact is that the
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Figure 3.13 Input reflection coefficient as a function of fre-
quency for lossy coupling.

Q circle (solid line circle) never touches the circumference of the Smith chart, as

shown in Figure 3.13. The dashed line circle is defined as the coupling loss circuit,

which is tangential to both the Q circle and the border of the Smith chart. Point

P , as marked in Figure 3.13, is the center of the coupling loss circle. Point O is the

center of the Smith chart. The diameter of the coupling loss circle is denoted d2,

which can be computed from the magnitude of the detuned reflection coefficient

|Γd| and the angle φ as

d2 =
1− |Γd|2

1− |Γd| cos φ
. (3.71)

The normalized impedance at point C on the constant resistance circle is

Rs/Rc. From the Smith chart basics [5], the diameter of the coupled loss circle

can be written as

d2 =
2

1 +
Rs

Rc

. (3.72)



58

Using Equations 3.60a, 3.60b, and 3.63, d2 then becomes

d2 =
2

1 +
k2

k1

. (3.73)

Solving the combination of Equations 3.71 and 3.73, k1 and k2 are obtained in

terms of d and d2 as

k1 =
1

2

(
1

d
− 1

d2

) , (3.74a)

k2 =

2

d2

− 1

2

(
1

d
− 1

d2

) . (3.74b)

According to Equation 3.63, the total coupling coefficient can be evaluated in

terms of d and d2 as

k =
1

d2

d
− 1

. (3.75)

Using the normalized variable from Equation 3.53, the input reflection coeffi-

cient in Equation 3.68 can be written in a form ready for the curve fitting

Γi =
jQLΓd2

ω − ωL

ω0

+ Γd + dejγ

jQL2
ω − ωL

ω0

+ 1
=

a1t + a2

a3t + 1
. (3.76)

QL is solved as

QL = Im(a3), (3.77)

the detuned reflection coefficient is

QL =
a1

a3

, (3.78)
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and the reflection coefficient at ωL is

ΓL = a2. (3.79)

The center of the Q circle can be computed by

Γc =
Γd + ΓL

2

=
a∗3a2 − a1

a∗3 − a3

. (3.80)

The diameter of the Q circle is then obtained by

d = 2|Γc − ΓL|
= 2

|a2a3 − a1|
|a∗3 − a3| . (3.81)

The diameter d of the coupling circle can be computed from Equation 3.71.

The angle φ in this equation is computed as

φ = φ1 − φ2, (3.82)

where

φ1 = tan−1

[
ImΓd

ReΓd

]
, (3.83a)

φ2 = tan−1

[
Im(Γc − Γd)

Re(Γc − Γd)

]
. (3.83b)

With d and d2 already known, the total k can be evaluated by Equation 3.75.

Then Q0 is computed by Equation 3.36.

3.3 Effect of Surface Roughness

The loss of the resonant cavity is caused by the flow of the induced currents in

the metal walls. The general formulas for the loss are derived with the assump-
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tion that the metal surfaces of the structure are perfectly smooth, and thus the

conductivity is independent of frequency and is equal to that of the bulk metal.

In reality, the presence of surface roughness introduces more power losses from

the conductor walls. The magnitude of the loss depends on the relationship be-

tween surface roughness dimensions and the skin depth of the field penetration

into the metal surface, which decreases as the frequency increases. As the oper-

ating frequency of the circuit pushes higher, the effect of the surface roughness

on conductor loss becomes more important. At low frequencies, the roughness

dimensions are small compared to the skin depth, and only a small fraction of the

total current is affected by the roughness, resulting in small additional power loss

compared to the ideal smooth conductor. However as the frequency increases, the

skin depth decreases and approaches the roughness dimensions. In this case, the

current and fields are concentrated near the surface of the conductor, and a larger

fraction of the total current is forced to follow the roughness profile, resulting in

more power loss.

A theoretical investigation of surface roughness on the current losses was made

in [39] at microwave frequencies. The approach in [39] is applicable to the case

where the roughness dimensions are small comparable to the free space wavelength

and all other physical dimensions of the structure.

z
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Figure 3.14 Cross section of semi-infinite conductors with
rectangular surface grooves.
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A part of the surface of a cavity resonator is modeled by a piece of semi-

infinite conducting metal in the z direction, as shown in Figure 3.14 [39], with

thickness extending from y = f(x) to y = −∞. The surface profile cross-section

in the x-y plane is represented by function f(x), which is typically irregular but

could be simplified as a periodic function, for instance as shown in Figure 3.14

with groove period p. Assume that an alternating magnetic field H = ẑHze
jωt

is impressed in the z direction at the surface of the periodic roughness profile,

so that the currents are induced parallel to the xy plane. With the assumption

that the groove is much smaller compared to the free space wavelength and the

other physical dimensions of the structure, the variation of Hz with z could be

neglected. For roughness features that are very small in height compared to the

dimensions of the apparatus, the impressed field variation along the roughness

surface profile could be neglected. Therefore, Hz can be treated as a constant H0

following the surface of the conductor.

The magnetic field in a source free region satisfies the differential equation

∇2H = −µεω2H. (3.84)

For a metal with finite conductivity σ, the effective dielectric constant is writ-

ten as

ε = ε′ − j
σ

ω
. (3.85)

Applying the effect that the conduction current is much greater than the dis-

placement current in a good conductor, which means σ À ωε′, Equation 3.84 can

be written as

∇2H = jωµσH. (3.86)

Most metals can be categorized as good conductors, including gold and copper,

where the approximation is valid.
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Since H is independent of z and has only a z-component, Equation 3.86 become

∂2Hz

∂x2
+

∂2Hz

∂y2
=

2j

δ2
Hz, (3.87)

where δ is the skin depth of the conductor, and is defined as

δ =

√
2

µωσ
. (3.88)

The numerical solution for Hz is derived using the relaxation method, which

is described briefly in the Appendix A with the boundary conditions Hz = H0 at

the surface y = f(x) of the metal, and Hz → 0 as y → −∞.

In the special case of the conductor with plane surface, where f(x) = 0, Hz is

independent of x, so that Equation 3.87 can be simplified as

∂2Hz

∂y2
=

2j

δ2
Hz. (3.89)

Solving this equation, Hz is given simply as

Hz = H0e
(− 1+j

δ
|y|) , (3.90)

which decays exponentially with the depth of penetration beneath the conductor

surface.

After Equation 3.87 is solved, the power dissipated in a given volume V of the

conducting metal can be calculated by

P =
σ

2

∫

V

|E|2dv

=
1

2σ

∫

V

J · J∗dv

=
1

2σ

∫

V

(∇×H)(∇×H∗)dv , (3.91)

where J represents the conduction current density, which is related to the electric
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field density as J = σE.

The integral on the right side of Equation 3.91 can be transformed into a format

more suitable for power loss calculation using the procedure proposed in [39]. The

transformation is performed on a cell with unit length in the z direction, with d

equal to the groove period in the x direction, and infinite depth in the y direction.

The transformed expression for power dissipation becomes

P = − 1

σδ2
Im

[
H∗

0

∫ p

0

∫ f(x)

−∞
Hzdxdy

]
, (3.92)

where the integration is performed over the shaded region of Figure 3.14.

For a conductor with a plane surface, the power dissipated in the same volume

cell can be derived by inserting Equation 3.90 into Equation 3.92, which gives the

solution

P0 = −|H0|2
σδ2

Im

[∫ f(x)

−∞

∫ p

0

e( 1+j
δ

y)dydx

]

=
|H0|2p
2σδ

. (3.93)

Based on Equation 3.92 and Equation 3.93, the ratio of power dissipated in

the conductor with the grooved surface to that in the same conductor with plane

surface is obtained as

P

P0

= − 2

|H0|2pδ Im

[
H∗

0

∫ p

0

∫ f(x)

−∞
Hzdydx

]
. (3.94)

Once Hz is derived using the relaxation method, the integral on the right side

of Equation 3.94 is carried out by first assigning an arbitrary value to H0, which

would be cancelled out in Equation 3.94 for the power ratio.

The relative power dissipation on two-dimensional (2-D) periodic triangular

and rectangular surface profiles is calculated in [39] from the Hz derived using

the relaxation method. Rigorous numerical mathematical treatments of specific
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profiles suggest that if roughness dimensions are comparable and not dramati-

cally larger than the skin depth, then reasonable approximations can be made

using root-mean-square (r.m.s) roughness deviation measurements from the mean

surface. The exact shape of the surface roughness is also not critical, as long as

the deviations are of approximately equal width and depth. The ratio of power

losses in rough surface with equilateral triangular grooves to that dissipated into

a smooth interface can be approximated by [6]

P

P0

= 1 +
2

π
tan−1{1.4(

4
δ

)2}. (3.95)

where 4 is the r.m.s surface roughness; δ is the skin depth. Equation 3.95 is

derived by fitting the data obtained in [39] into a curve. The relative power

dissipation as a function of the ratio ∆/δ of r.m.s roughness to skin depth is

represented graphically in Figure 3.15. According to this calculation, comparable

to the plane surface, the losses on the grooved surface are increased by about

60 percent when the r.m.s surface roughness is equal to one skin depth. At the

frequency of 24 GHz, the skin depth in gold is only 0.5 µm. Thus, the power loss

would be increased by 60 percent if the r.m.s roughness of the metal surface is

approximately 0.5 µm.

Recently, the effect of surface roughness on the power loss in a conductor [40]

was analyzed by applying a generalized impedance boundary condition for 2D

conducting rough interfaces [41] [42]. The equivalent boundary condition is de-

rived by applying the method of homogenization, which separates the microscopic

(fine) and macroscopic (global) features of the problem. In this way, the field is

represented by the combination of two functions, one carrying the information of

fine structure, and the other carrying that of global behavior. Due to the geometry

of the rough surface, the field exhibits variations with respect to the periodicity of

the roughness. The total field is a function of two spacial length scales, which cor-

respond to the incident wave and the microstructure of the roughness, respectively.
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Figure 3.15 Relative power dissipation vs. rms roughness for
triangular grooves transverse to the current flow.

Close to the rough surface, the total field is composed of both a boundary-layer

field and an effective field. The boundary-layer field, or the localized field, is close

to the surface, which is function of both small distances comparable to roughness

periods and a large distance comparable to the wavelength. The effective field is a

few periods away from the conductor surface, and changes significantly only over

distances of the order of a wavelength. By applying the technique of homogeniza-

tion to separate the boundary-layer field from the effective field, an equivalent

boundary condition is derived for the effective field. Hence, the actual periodic

rough surface can be replaced by an effective smooth surface applied with this

equivalent boundary condition, which incorporates all the effects of the roughness

profile. Then the impedance boundary condition is used to calculate the power

loss associated with conducting rough interfaces. The results implemented with

FEM are found to be in fair agreement with that analyzed in the classic paper [39].
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3.4 Summary

This chapter introduces the software and techniques used to design, model,

and evaluated the resonator and filter structures presented in this thesis work.

Two available simulation tools are employed to analyze the performance of the

resonator: Ansoft HFSS and QZERO. HFSS is a commercial FEM based simula-

tor used to extract the S-parameter of the resonator in simulation. The program

QZERO implements the methods discussed in this section to assist in the analysis

of the microwave resonator. It determines important parameters such as quality

factor and coupling coefficient by processing the data using a reflection type mea-

surement. The additional power dissipation in the conductor due to the surface

roughness is approximated in simulation by Equation 3.95, assuming equilateral

triangular surface grooves, which is used to analyze the surface roughness effect

on the performance of the circuit models presented in the later designs.



Chapter 4

RESONATOR DESIGN AND SIMULATION

4.1 Air-filled Resonant Cavity

The dimensions of the air-filled rectangular cavities operating at the dominant

TE101 mode can be calculated according to the theory described in Chapter 2.

The increase of the metal conductivity on the interior of the cavity walls re-

duces the conductor loss, and hence directly increases the quality factor. There-

fore, metals with high conductivity, such as copper and gold (assumed in this

case) with typical conductivity values of 5.7×107 and 4.1×107S/m respectively,

are preferred.

Q factor is optimized when the cavity is implemented with a square base.

The relationship between the unloaded Q factor and the cavity dimensions for

the air-filled resonant cavities operating at 18 GHz, 24 GHz, and 37 GHz are

first investigated based on the theoretical calculations, assuming gold with finite

conductivity but no roughness. Figure 4.1 shows the Q factor variation with the

size of the cavity base, while the cavity height is constant (2 mm). For all three

resonant cavities, the maximum Q is reached when the length and width of the

cavity are equal (square base), which is denoted by the markers on the plot.

The resonant frequency variation with increasing cavity width/length for a

2-mm-deep square-based cavity is illustrated graphically in Figure 4.2. As the

cavity dimension increases, the resonant frequency decreases. Q factor increases

with increasing resonant frequency (decreasing of cavity base dimension) at the

cavity height of 2 mm.

67
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Figure 4.1 Q variation with the size of the cavity base (2 mm
deep cavity).
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Increasing the height of the air-filled cavity can also contribute to improve-

ment of the Q factor. The Q factor versus cavity height for square-based cavities

resonant at 18 GHz, 24 GHz, and 37 GHz is examined (Figure 4.3), and Q factor

is shown to increase dramatically with increasing cavity height. The base dimen-

sions and the corresponding Q values for the 2 mm-deep cavities are summarized

in Table 4.1.

Table 4.1 Base dimensions and the corresponding Q values for
air-filled 2 mm-deep cavities resonant at 18 GHz, 24
GHz, and 37 GHz.

Resonant Cavity Q
frequency width/length factor

18 GHz 11.785 mm 2546.8

24 GHz 8.839 mm 2711.7

37 GHz 5.733 mm 2880.8

4.2 Dielectric-filled Resonant Cavity

A miniaturized cavity resonator with size reduction in the lateral dimensions

can be achieved by filling the cavity with a dielectric material.

The effects of dielectric filling on the resonant frequency and quality factor

are shown in Figures 4.4 and 4.5, respectively. The results are obtained based

on 2-mm-deep square-based cavities with base dimensions of 5.733 × 5.733 mm2,

8.839 × 8.839 mm2, and 11.785 × 11.785 mm2, which correspond to the resonant

frequencies of 18 GHz, 24 GHz, and 37 GHz, respectively, when the cavities are

filled with air. According to Figure 4.4, the resonant frequency decreases as the

dielectric constant of the filling material increases, which exhibits the effect of

miniaturization by filling the cavity with high dielectric constant materials. For

cavities with constant sizes, the quality factor decreases with increasing dielectric

permittivity, as can be seen in Figure 4.5, where the Q data are obtained assuming

that the dielectric material is lossless, and only the conductor loss contributes to
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the Q factor.

One dielectric material that is interesting to consider is PMMA, since it is

already present in the cavity during processing. A typical relative permittivity

for PMMA is εr = 2.57 [43]. According to Figure 4.4, the PMMA filler results

in frequency shifting from 18 GHz, 24 GHz, and 37 GHz down to 11.2 GHz, 15.0

GHz, and 23.1 GHz respectively, as listed in Table 4.2. The quality factor (Qcond)

due to only the conductor loss is also summarized in Table 4.2. PMMA material

has a relatively high loss factor of tan δ = 0.0032 [43]. When including the effect

of material loss, the total Q drops substantially (see Table 4.2), indicating that

the Q obtainable from PMMA-filled cavities is mainly limited by the high loss

tangent of the PMMA material. However, this may still be attractive to consider

in some situations since processing would be simplified considerably if the PMMA

was not removed. In addition, the PMMA could provide support for structures

with fine internal structure.

Table 4.2 Resonant frequency and Q values for PMMA-filled
2 mm-deep cavities.

Cavity Resonant Qcond Total
width/length frequency Q

11.785 mm 11.2 GHz 2011.4 270.5

8.839 mm 15.0 GHz 2141.7 272.7

5.733 mm 23.1 GHz 2275.3 274.8

4.3 One-port Cavity Resonator

Based on the theoretical dimensions presented in Section 4.1, a complete cavity

resonator with the external coupling circuit is designed. The proposed resonator

has only one port, which is determined by its potential application as a frequency

stabilizing component in an oscillator. Figure 4.6 shows the top view and the

cross section view of the one-port cavity resonator. The cavity is constructed of

a five-sided metal box at the bottom of the structure. A hollow cavity is chosen
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for this design in order to get optimal Q as any dielectric filling materials would

introduce extra loss (see Section 4.2). The top plane of the cavity is formed by

a separate metallized substrate positioned on top of the box, which is patterned

with the coupling circuit. The cavity is coupled to the outer circuit by a small

rectangular slot on the ground plane of the substrate. A 50 Ω microstrip feed line

connects to the source, and excites the desired TE101 mode in the cavity through

the slot.

Microstrip
feed line

4λ

Substrate

Air
Slot

Ground plane

Metal

Figure 4.6 Structure of the proposed rectangular cavity res-
onator.

Substrates are the dielectric material upon which the conductors and the hy-

brid elements are built to produce the required circuit. General characteristics

such as relative permittivity, loss factor, substrate surface roughness, thermal

conductivity, and cost are important considerations in choosing substrates. Two

basic types of substrate are used for hybrid MICs - “hard” substrates and “soft”

substrates.
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In the hard substrates category, aluminum-oxide ceramic (Al2O3), which is

also called “alumina”, is common in microwave technology. It is a moderately ex-

pensive substrate but still the least expensive of the hard substrates. Alumina has

a high relative permittivity, usually 9 to 10, which results in a smaller circuit size

and higher levels of circuit integration. Alumina also has low loss factor, which

decreases the dielectric losses of the MICs. The surface roughness of a finely pol-

ished alumina substrate is on the order of 40 nm, which results in low conductor

losses due to the current flow on the metal surface, and makes it an excellent

candidate for constructing the sixth side of the cavity resonator. The thermal

conductivity of alumina is relatively high, which allows larger heat dissipation

from components (e.g., power transistors). The disadvantage of using alumina

is the high cost of circuit fabrication. The conductors on the substrate are pro-

duced using expensive thin-film technology. This technology requires significant

investment in production equipment. Alumina is also very hard and brittle, and

is difficult to machine. Cuts can be made with a diamond saw or a laser; holes

can be drilled with a laser or a carbide tool.

Soft substrates are available in a wide range of relative permittivities depend-

ing on material. The substrate materials can be pure plastics or plastics loaded

with glass fibers or ceramic powder. Soft substrates usually use copper for their

conductors. The laminates are copper-coated on both sides. The copper layer is

usually fabricated either by rolling or electro-chemical deposition, which results

in relatively high surface roughness with typical values on the order of several

hundred nanometres. Soft substrates provide the simplest method of producing

MICs. All that is required is a high resolution photoetching system to permit

structure fabrication on the copper-clad laminates. Soft substrates are also easy

to machine. Except for relative permittivity, which can be made as high as that of

alumina, other characteristics such as loss factor, the substrate surface roughness

and thermal conductivity are worse than those of alumina, but still acceptable

for many applications. The advantage of using soft substrates is that the cost for
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MIC fabrication is very low, because the circuits can be made in the laboratory

without the need for complex processing equipment.

The electromagnetic fields propagating in microstrip lines should be Quasi-

TEM mode, for which the longitudinal field components are required to be small

compared with the transverse (to the direction of propagation) field components.

Thinner substrate has to be used for this design to guarantee the Quasi-TEM mode

transmission. Therefore, it is necessary to ensure that the cutoff frequency of the

non TEM mode is much higher than the operating frequency of the circuit [6].

The cutoff frequency of the first hybrid mode can be roughly calculated by [6]

fg = 0.4ZL/h; (4.1)

where ZL is the characteristic impedance of the microstrip line in Ω; h is the

substrate height in mm; fg is in GHz.

Above the cutoff frequency, hybrid modes, which have longitudinal components

of the same order as the transverse components for either electric or magnetic

fields, exist in the substrate. The field distribution driven by a microstrip line

higher mode is similar to the rectangular waveguide mode. Microstrip hybrid

higher modes have hardly any technical uses. The useful frequency range of

microstrip lines is the region where only the quasi-TEM mode propagates.

The properties of the one-port resonator are analyzed using a 24 GHz resonator

model as a demonstration tool. An HFSS model as shown in Figure 4.6 is con-

structed and simulated. It is assumed that the sixth side of the cavity is formed

by a 0.4 mm-thick alumina substrate with εr = 9.8 and tan δ = 0.0004, on which

the coupling mechanism is patterned. The coupling slot is placed at 1/4 of the

cavity length. The length of the open-ended microstrip feed line is λ/4 measured

from the center of the slot. The detailed dimensions of the 24 GHz resonator are

shown in Figure 4.7. In order to compensate for the frequency shifting caused

by the effect of the external loading circuit, the base size of the cavity is 8.829
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mm × 8.829 mm, which is slightly reduced compared with the dimension from

the theoretical calculation shown in Table 4.1. The conductor in the resonator,

including the interior walls of the cavity, the microstrip line and the ground plane

of the alumina substrate, are assumed to be gold, with conductivity of 4.1 ×107

S/m. The criteria of convergence of the HFSS simulation is specified by Maxi-

mum Delta S. It is the change in the magnitude of the S-parameters between two

consecutive passes. If the magnitude and phase of all S-parameters change by

an amount less than the Maximum Delta S per pass value from one iteration to

the next, the adaptive analysis stops. Otherwise, it continues until the requested

number of passes is completed. The Maximum Delta S for the resonator model

shown in Figure 4.7 is specified as 0.005. The number of tetrahedra for such a

structure is typically on the order of 21000.

8.829
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2.207

0.408

1.169

Unit: mm

Figure 4.7 Schematic of the 24 GHz cavity resonator.

The input S-parameter versus frequency is plotted on the cartesian plane and

the Smith Chart in Figures 4.8(a) and 4.8(b), respectively. As indicated in the
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previous chapter, the simulated input reflection coefficient, S11, describes an exact

circle when plotted on the Smith Chart as a function of frequency within the

vicinity of resonance (see Figure 4.8(b)). The resonance occurs where S11 reaches

its lowest value, which is 23.999 GHz in Figure 4.8(a). Using the measurement

method described in Section 3.2, the loaded Q of the resonator is found to be

Ql = 2416±26, and the unloaded Q, Qu, is equal to 2819±39. The slightly higher

Qu, compared with the value of 2711.7 as theoretically calculated in Table 4.1 for

a cavity height of 2 mm, is reasonable since the lateral dimensions of the cavity

are slightly smaller than that used to derive the calculated Qu.

Figure 4.9 shows the electric field plot in horizontal and vertical planes for the

dominant resonance mode (24 GHz). The field pattern also matches quite well

with that of the TE101 resonant mode of an ideal square cavity with a similar size

described in Section 2.2.2.

Figure 4.9 Simulated electric field density for the dominant
resonance mode (24 GHz).

The depth of the cavity is an important parameter of the cavity resonator,

which strongly affects the quality factor: the deeper the cavity, the greater the

quality factor. The resonator model is built and simulated using HFSS, and

the unloaded Q is extracted using the reflection type measurement described in

Chapter 3. The loaded and unloaded Q dependency on the cavity depth is plotted
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Figure 4.10 Simulated Q factor as a function of cavity depth
for 24 GHz resonator.

in Figure 4.10. Although the resonator model is simulated only up to 3 mm

cavity depth, which is an obtainable value for LIGA fabrication, the Q factor is

expected to increase until the cavity height reaches the value of its width/length.

The simulated unloaded Q matches well with the prediction of the theoretical

calculation shown in Figure 4.3, which verifies the validation of the Q factor

measurement method described in Section 3.2.

The degree of coupling of the electromagnetic energy between the external and

resonant circuit is controlled by the slot size on the ground plane. The simulation

is run for a slot with constant width of 0.15 mm, and varying the slot length. The

coupling coefficient k is plotted versus slot length in Figure 4.11. Second order

polynomial interpolation is used to fit the HFSS data to a curve. The coupling

coefficient k increases with increasing slot length. According to Equation 2.12,

the loaded Q factor, Ql, decreases with k increasing. This relationship between

the coupling coefficient and loaded Q is confirmed by the simulation shown in Fig-

ure 4.12. In addition, variation of the slot size results in changing the impedance

representing the coupling mechanism, and therefore affects the resonant frequency
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of the loaded resonator. The resonant frequency corresponding to slot length vari-

ation is given in Table 4.3. Comparing the results in Figure 4.11, Figure 4.12 and

Table 4.3, it can be concluded that the slot size has a stronger effect on the

loaded quality factor and coupling coefficient than on the resonant frequency of

the resonator.
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Figure 4.11 Coupling coefficient k as a function of slot length
for 24 GHz resonator, curve fit to HFSS simula-
tion result.

Table 4.3 Resonant frequency corresponding to slot length
variation for 24 GHz resonator.

Slot length (mm) fres (GHz)

0.8 24.0024

0.9 24.0023

1.0 24.0010

1.1 23.9994

1.2 23.9982

1.3 23.9969

The amount of coupling between the air cavity and the microstrip feed line is

also controlled by the position of the slot. The variation of the coupling coefficient



81

1000

1500

2000

2500

3000

3500

4000

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Slot length (mm)

L
o

a
d

e
d

 Q
u

a
lit

y
 f
a

c
to

r 

HFSS simulation
results
Curve fit

Figure 4.12 Loaded Q as a function of slot length for 24 GHz
resonator, curve fit to HFSS simulation result.

k with the position of the slot is shown in Figure 4.13. Zero on the x coordinate

corresponds to the position where the center of the slot is located at 1/4 of the

length of the cavity, which is also the spot where the slot is λ/4 relative to the

end of the microstrip feed line. Negative numbers indicate that the slot is moving

towards the input port, and positive numbers mean that the slot is moving away

from the input port. The coupling coefficient k increases until it reaches the

maximum at the location where the microstrip feed line is short circuited and

maximum current is provided. k then decreases when the slot is out of position of

the point, since the coupling of the electromagnetic field is decreased as the slot

position moves out of the λ/4 location relative to the end of the microstrip feed

line.

4.4 Silicon-based Cavity Models

The simulation results presented in Section 4.3 are derived on the assumption

that the metal surfaces are perfectly smooth, and bulk metal conductivity is used

in the HFSS models. In reality, surface roughness is a dominant factor and de-
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Figure 4.13 Coupling coefficient k as a function of slot posi-
tion for 24 GHz resonator.

pends on fabrication technology. In this section, cavity models incorporating the

effect of metal surface roughness are built and simulated.

To explore the effect of sidewall roughness on Qu with increasing frequency, 2

mm-deep gold resonant cavity models operating at 18 GHz, 24 GHz, and 37 GHz

without external coupling circuits are simulated. The effect of surface roughness is

considered in the models by a corresponding reduction in the metal conductivity

calculated using Equation 3.95. Triangular grooved surface profiles were assumed

on the sidewalls, and 40 nm surface roughness, which is a typical value for polished

Al2O3 substrates that would form the sixth side of the cavity, was assumed on the

top and bottom of the cavity. The simulated Qu versus r.m.s sidewall roughness

for cavity models resonant at the three frequencies is shown in Figure 4.14. For all

three frequencies, Qu decreases slightly when the r.m.s roughness is within 40 nm,

and then decreases rapidly with increasing surface roughness. Also Qu decreases

much more rapidly at the higher frequency of 37 GHz due to decreased skin depth

effects, suggesting that surface roughness is even more critical at higher microwave

and millimetre-wave frequencies.
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Figure 4.14 Qu versus r.m.s sidewall roughness for the reso-
nant cavity model with vertical sidewalls.
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Figure 4.15 Qu versus r.m.s sidewall roughness for anisotropic
wet etching model (2 mm depth).
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Figure 4.16 Qu versus r.m.s sidewall roughness for deep RIE
model (2 mm depth).
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Figure 4.17 Qu versus r.m.s sidewall roughness for LIGA
model (2 mm depth).
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In order to investigate the relative Qu that could be obtained using different

fabrication processes, several resonant cavity models representing different fabri-

cation techniques were studied. The r.m.s surface roughness resulting from silicon

etching varies with processing conditions. Typically, the r.m.s roughness after

anisotropic wet etched (111) silicon ranges from several tens of nanometres to

more than 100 nm [44]. The average sidewall roughness after deep RIE etching

for an etch depth of 500 µm is typically a few hundred nanometres [45]. The

models assume the underlying surface structure (silicon or PMMA) governs the

roughness of deposited surface metal and no additional roughness from the de-

position process is considered. The resulting Qu versus r.m.s roughness for the

anisotropic wet etching model, deep RIE model, and LIGA model resonant at

three frequencies is plotted over typical roughness ranges expected from these

processes in Figure 4.15, Figure 4.16, and Figure 4.17, respectively. Both the sili-

con wet etching model and the deep RIE model were assumed to be constructed by

four 500-µm-thick silicon wafers stacked together to provide a comparable cavity

depth to the LIGA model. The sidewall profiles for the cavity models represent-

ing different fabrication processes are sketched in Figure 4.18. The 54.7o sidewall

slope of each wafer and “sawtooth” cross section of the cavity were considered in

the anisotropic wet etching model. A sidewall undercut of 18.5 µm at 500 µm

depth [14], which results in a sidewall slope of 87.88o, was incorporated in the

deep RIE model. The profile of side walls for the LIGA model is slightly “well”

shaped, with larger dimensions at the bottom than at the top. The slope of side-

walls is typically 89.925o for a 2-mm-tall structure [46]. The base dimensions of

all these models were adjusted to make the cavities resonant at 18, 24, and 37

GHz, respectively. Compared with the result shown in Figure 4.14 from the cavity

models with perfectly vertical sidewalls, the Q drops by about 300 for the silicon

anisotropic wet etching model due to the effect of sloped sidewalls. For the deep

RIE model, the advantage of the relatively vertical sidewalls over anisotropic wet

etching model is diminished by the relatively high surface roughness, especially
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at 37 GHz, at which Qu becomes comparable while the skin depth effects begin

to dominate. The result from the LIGA model in Figure 4.17 shows considerably

better performance in Qu than the other models, due to the near vertical sidewalls

and low surface roughness.

54.74 o

(a) Anisotropic wet etch
profile.

(b) Deep RIE etch profile.

(c) LIGA profile.

Figure 4.18 Sketch of sidewall profiles for the cavity models
representing different fabrication processes.

As shown in Section 4.1, Q improves with increasing cavity height. To compare

the quality factor that could be obtained by the silicon etching and LIGA fabri-

cation methods, simulations are performed to explore the relationship between Q

factor and cavity height based on different cavity models.

The simulation results for the silicon wet etching model, deep RIE model, and

LIGA model at 37 GHz are plotted in Figures 4.19, 4.20, and 4.21, respectively.

In order to make it easy and convenient to compare, the results are also tabulated

in Table 4.4. For cavities made by silicon micromachining processes, the sloped

sidewalls from the wet etching process, and the relatively high sidewall roughness

from the deep RIE process result in almost the same degree of Q degradation,

which can be concluded from the close Q values at different cavity heights. Also,

the advantage of LIGA fabrication over silicon micromachining is not dramatic

at low cavity heights, such as below 1 mm. As the cavity height increases, the
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Figure 4.19 Q versus r.m.s. roughness for various cavity
heights for anisotropic wet etching model at 37
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heights for deep RIE model at 37 GHz.
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Figure 4.21 Q versus r.m.s. roughness for various cavity
heights for LIGA model at 37 GHz.

effect of sidewall profile and roughness dominates, and the improvement in Q by

adopting the LIGA technique becomes more significant.

Table 4.4 Q versus cavity height for different cavity models at
37 GHz.

Height Wet etching model Deep RIE model LIGA model

0.5 mm 980-998 963-990 1034-1035

1 mm 1512-1556 1587-1663 1780-1803

1.5 mm 2121-2207 2041-2186 2389-2396

2 mm 2331-2436 2366-2538 2858-2868

2.5 mm 2765-2915 2631-2846 3230-3252

3 mm 2844-3003 2828-3078 3556-3570

As observed from a fabricated LIGA cavity test structure, the top dimensions

of the PMMA structure after X-ray lithography shrink slightly, on the order of 12

µm in the x direction 16 µm in the y direction measured at the top of a 2-mm-thick

PMMA cavity structure. Also, the shrinkage is found to be somewhat independent

of the cavity size in the lateral dimensions. These shrinkage effects on resonant

frequency and Qu are examined using a 2-mm deep cavity resonant at 24 GHz as
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an example. Figure 4.22(a) shows the relationship for a square top cavity, with

equal cavity width and length variation. In other words, the cavity shrinks but the

top remains square. Figure 4.22(b) shows the relationship by keeping the cavity

width nominal while changing the cavity length. In this case, the bottom of the

cavity is assumed to be square, but the top after shrinkage becomes rectangular.

In both figures, the x-axis represents the percentage of shrinkage in the lateral

dimensions relative to nominal values. The resonant frequency in both cases

increases as expected with the dimension shrinkage due to a decrease in cavity

volume. At 0.2% shrinkage, which is comparable to that of the LIGA fabricated

PMMA cavity structure, the resonant frequency increases by about 0.086% for

even shrinkage case, and 0.042% for uneven shrinkage case. The shrinkage effect

on Qu is more complicated. The frequency increasing with cavity shrinkage results

in conductivity reduction, which tends to increase the power loss per unit area.

However, the total area of the cavity walls varies with the volume shrinkage. The

surface area of the sidewalls, assumed to have 30 nm roughness, gets slightly

bigger, while the top dimension, assumed to have 40 nm roughness, gets slightly

smaller, which leads to Q variation in opposite directions. The irregular shape of

the cavity other than the rectangular may also affect the electric and magnetic

field distribution inside the cavity, and thus the amount of total stored energy. As

the result of all the aspects mentioned above, Q presents very slight fluctuations

with the dimension shrinkage.

Three cavity resonator models incorporating the effect of surface roughness and

size shrinkage are simulated using HFSS. Qu is extracted from the loaded circuit

using a reflection type measurement based on the simulated S11. The resulting

resonant frequency and Qu are summarized in Table 4.5. The size shrinkage on

the top of the cavities, ranging from 0.1% to 0.3% relative to the nominal base

dimensions of the three models, results in a slight shift of resonant frequencies

towards higher values, and is also consistent with the unloaded simulations shown

in Figure 4.22(a) and 4.22(b). The simulated Qu extracted from the loaded circuit
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Figure 4.22 Qu and resonant frequency variation with the top
size of the cavity at 24 GHz (2-mm depth).
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are also close to those derived from theoretical calculation based on resonant

cavities with plain gold surfaces as plotted in Figure 4.3, which demonstrates the

potential of realizing high Q cavity resonators using the LIGA technique.

Table 4.5 Simulated LIGA cavity resonator parameters.

Shrinkage Resonant frequency Qu

x direction y direction (GHz)
0.102% 0.136% 18.0012 2536.3 ± 12.5
0.136% 0.181% 24.0026 2684.2 ± 7.2
0.210% 0.279% 37.0013 2783.4 ± 9.3

4.5 LTCC Cavity Models

During the last few years, many studies have proven that an electromagnetic

band-gap (EBG) structure can be employed to replace a fully conducting side-wall

structure to realize a cavity resonator [47] [48] [49] [50]. The periodic arrangements

of metallic-posts form a structure that stops the propagation of electromagnetic

waves for certain frequency regions, and thus can replace the solid metallic side-

walls.

LTCC is a technique to implement a low-cost EBG cavity resonator. Rows of

vias can be easily punched, and the metallized via posts construct the sidewalls of

the cavity. This structure introduces extra leakage loss, which is the energy that

escapes through the EBG lattice. The total unloaded Q, Qt, of an EBG resonator

is composed of three factors: conductor loss, dielectric loss, and leakage loss, and

can be determined by

Qt =

(
1

Qcond

+
1

Qdiel

+
1

Qrad

)−1

, (4.2)

where Qcond is the Q factor due solely to the current loss in the metal cavity walls;

Qdiel is associated with the power dissipation in the dielectric filling; and Qrad is

the effect of energy radiation through the EBG posts.

An EBG resonant cavity model, as shown in Figure 4.23 is simulated using
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Figure 4.23 EBG resonant cavity model.

Ceramic walls 

of air cavity 

Figure 4.24 LTCC resonant cavity model.
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HFSS to determine the effect of radiation loss on resonator Q. No dielectric

material is filled in the cavity, although it is not realistic for practical cavity

implementation. Therefore, only the conductor and radiation loss contributes to

the total Q factor. In order to minimize the leakage loss, three rows of vias are

used as sidewalls. For the same reason, minimum size of via posts (via diameter

= 130 µm) and spacing (via pitch = 390 µm) [16] allowed by LTCC design rules

are used. The dimension of the cavity is adjusted to resonate at 37 GHz. The

simulated Q at different cavity heights is given in Figure 4.25. A practical cavity

model that could be realized using LTCC technique is also simulated, as shown

in Figure 4.24. For LTCC resonator, the overall Q factor is mainly limited by

the loss in the ceramic material. In order to investigate the highest possible Q

that could be obtained by LTCC resonator, an air cavity is put inside the LTCC

resonator [15] (see Figure 4.24), which will reduce the dielectric loss dramatically.

The Ferro A6-S LTCC material, with εr = 6.2 and tan δ = 0.0013, which is one of

the lowest loss LTCC materials, is assumed in the model. The simulated results

are also presented in Figure 4.25. To compare with the traditional metallic wall

cavity, an HFSS cavity model constructed of fully conducting metals is simulated,

and the Q obtained corresponding to the cavity is plotted in Figure 4.25. The

metal (gold in this case) surface of all the three cavity models is assumed to be

perfectly smooth, with conductivity of 4.1×107 S/m.

Comparing the Q values resulting from different cavity models in Figure 4.25,

Qu of the EBG cavity is lower than that of the solid metallic wall cavity at all

cavity heights, due to the existence of the radiation loss through the via posts.

Also, the radiation loss becomes more important as the cavity height increases.

For example, the Q decreases by only 14 (or 3%) at cavity height of 0.2 mm;

however, when the cavity height increases to 2 mm, the Q drops by 485 (or 17%)

compared with that of the solid wall cavity. For the practical LTCC cavity model

with air cavity inside, extra loss dissipated in the LTCC material is introduced.

Although the majority of the cavity volume is still filled with air, the effect of
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the dielectric loss is significant, which is proved by the rapid decrease of Q as the

depth of the cavity becomes higher. Due to the limitation of the computational

resource, the LTCC cavity model (see Figure 4.24) is simulated only up to 1.4

mm cavity height.

Also the Q values from the LIGA model considering surface roughness and solid

metallic wall cavity at 37 GHz are found to be very close, by comparing Figure 4.21

and Figure 4.25. For example, at a cavity height of 2 mm, the unloaded Q of the

solid metallic wall cavity is 2883, while unloaded Q of LIGA cavity is 2858-2868

(see Table 4.4), which is only 0.9% lower than that of solid metallic wall cavity.
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Figure 4.25 Comparison of Qu derived from 37 GHz cavity
models with sidewalls constructed by solid metal
and via holes at different cavity height.

4.6 Summary

The properties of the rectangular resonant cavity, including both hollow cavity

and dielectric filled cavity, is investigated in this Chapter. Based on these results,

a completed one-port resonator suitable for LIGA fabrication is proposed and

simulated using HFSS.
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To explore the advantages of the LIGA resonator, cavity models representing

available fabrication techniques, such as silicon machining and LTCC technologies,

are simulated. In comparison to the silicon-based technique, the LIGA process

allows the fabrication of very deep cavities with highly vertical sidewalls having

optical quality roughness, suggesting that Q performance approaching the perfect

smooth cavity is potentially feasible. Also, the simulated LIGA Qu is found

quite promising compared to the simulated silicon structures assuming wafer-

stacking techniques. The potential advantages of smooth LIGA resonators are

more dramatic at higher frequencies with reduced skin depth. LTCC resonators

are realized by replacing solid metal sidewalls with rows of via holes, which results

in extra radiation loss through the posts. In order to constrain the fields with the

resonator and produce a negligible leakage loss, multiple rows of vias are usually

needed. Therefore, the overall structure of the LTCC resonator is larger than

an equivalent metallic cavity with solid walls. Although simulation results show

that the radiation loss of the LTCC resonator could be minimized by employing

multiple layers of vias, the dielectric loss is the major limitation in Q possibly

obtained by this technology, even for the extreme case that an air cavity is put

inside the LTCC resonator. Simulations also show that the potential advantages

of smooth LIGA resonators over silicon and LTCC structures are more dramatic

with increasing cavity height.



Chapter 5

RESONATOR FABRICATION AND

MEASUREMENT

5.1 Cavity Fabrication

The five-sided cavity structures are fabricated using the LIGA process at the

Institute for Microstructure Technology (IMT), Forschungszentrum Karlsruhe in

Germany. The first step in the fabrication procedure is to create a layout for the

X-ray mask, which contains the information to be transferred into a resist. A

picture of the overall mask layout for this application is shown in Figure 5.1. The

dimension of the mask are 20 mm × 60 mm, which is the size of the standard

masks used at IMT, and is indicated by the outer rectangular shown in Figure 5.1.

The resonant cavities accounts for approximately 60 % of the total mask area. The

rest of the mask region is assigned to another user.

Figure 5.1 Layout for the X-ray mask.

Within the confine of the allocated mask area, six resonant cavities with three

96
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different geometries are included in the layout. The cavities are designed to res-

onate at frequencies of 18, 24, and 37 GHz. The layout for the 18 GHz design

(biggest cavity) is on the right half of the mask. The 24 GHz designs (two identi-

cal middle sized cavities) are on the upper left of the mask. The 37 GHz designs

(three identical small sized cavities) reside on the bottom left of the mask.

The X-ray mask consists of a thin layer of membrane and an absorber pattered

onto the membrane. The membrane is made of low atomic number (Z) materials

with a low X-ray absorption coefficient, whose thickness must be carefully chosen

in order to be at least 80% transparent to hard X-rays with short wavelength

between 0.2 nm and 0.6 nm. Titanium (Ti) and beryllium (Be) are the most

commonly used membrane materials for LIGA application because of their radia-

tion transparency [51]. For titanium, the membrane thickness is limited to several

micrometres in order to get adequate transparency to X-ray exposure. Whereas,

with beryllium, a thicker film of several hundred micrometres can achieve the

same results, which makes processing and handing much easier. In addition, the

distortions of a beryllium membrane due to the absorber stress is much smaller.

The absorber must be made up of a material with high Z, which absorbs X-rays

and constitutes the opaque regions of the mask. Gold is the most commonly

used material for the absorber, but other metals, such as tungsten and tantalum,

are also used. As opposed to the thin membrane, the gold absorber must be at

least 10 µm thick to achieve appropriate absorption of X-ray radiation and good

contrast.

In order to avoid cracking at the corners of the PMMA structures during the

X-ray exposure, the sharp inner edges of the cavities in the layout are rounded

by 5 µm. The X-ray mask is fabricated at IMT with a 2.7-µm-thick titanium

membrane and a 20-µm-thick gold absorber.

The cavity fabrication steps are described in Figure 5.2. For simplicity, only

cavities on the left portion of the layout (see Figure 5.1) are demonstrated. With

the X-ray mask fabricated, the LIGA process starts with gluing a resist (PMMA)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2 LIGA fabrication steps for the resonant cavities.
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sheet onto the substrate, as shown in Figure 5.2(a). A variety of materials, such

as silicon, alumina, and quartz, can be used as substrate in the LIGA process.

Generally, prior to applying the resist, a thin film of conductor is required to be

coated on the insulating substrate as a plating base for further electroplating. But

this step is not a necessary in this cavity fabrication process. It is replaced by

another method, which will be explained later. For this application, a standard

525-µm-thick silicon wafer is used as a sacrificial substrate, and an 1800-µm-thick

PMMA sheet is glued on the substrate using a liquid PMMA-based glue.

The next step is to expose the thick PMMA resist to hard X-ray radiation

through the mask, as shown in Figure 5.2(b). After this step, the patterns on

the X-ray mask are exactly transferred to the PMMA resist. PMMA is a pos-

itive resist. X-ray exposure breaks the molecule chains of the resist in the ex-

posed region, which can be easily dissolved using a suitable developer, as shown

in 5.2(c). The high accuracy, vertical and smooth sidewalls are the result of the

short wavelength of the X-ray radiation, as well as no back scattering and for-

ward scattering effects. In this case, 1.8-mm-thick PMMA on a silicon substrate

was exposed to hard X-ray radiation at storage ring ANKA (Litho 3) operated

at 2.5-GeV synchrotron energy. The power of the white beam was reduced by

carbon (652µm) and aluminum (282 µm) preabsorbers to diminish the thermal

distortions of the 2.7-µm-thick titanium mask membrane. 500-µm-thick interme-

diate absorbers (polyimide) were applied between the mask and resist to reduce

the attack of the resist surface by fluorescence radiation generated in the titanium

mask membrane.

The irradiated sample was dip-developed in GG developers at room temper-

ature. The PMMA regions exposed to the X-ray radiation are dissolved, and

PMMA cavity structures are formed as shown in Figure 5.2(c). At least four lay-

ers of green tape are glued on top of the PMMA, as shown in Figure 5.2(d), to

assist in later separation of the cavity devices after metallization.

A scanning electron microscope (SEM) image of the 1800 µm tall PMMA
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structure after X-ray exposure and immersion development is shown in Figure 5.3.

Excellent sidewall verticality is obtained with the PMMA structure, with only

slight shrinkage at the top surface of 8.5 ± 2.5 µm in either lateral dimensions.

This corresponds to sidewalls with verticality between 89.820 and 89.90. Figure 5.4

demonstrates the sidewall surface quality of the PMMA structure, measured to

be on the order of 26 ± 12 nm for structures of similar height using the deep XRL

process at IMT [46].

Figure 5.3 SEM micrograph of the PMMA cavity structure
made with XRL.

The developed PMMA structure is then used as a template for metal electro-

forming, and to define the metallic cavity inside wall structure. Gold is chosen as

the metal to be deposited in contact with the PMMA resist and form the internal

walls of the cavities due to its high conductivity. A thin film of gold (approxi-

mately 900 nm) was first sputtered on the PMMA surface as a plating base, and

then was thickened to in excess of several skin depths (in this case, approximately

5 µm thick) by gold electroplating, ensuring that the electrical loss characteristics

of the cavity sidewall were governed by the gold layer, and not the subsequent
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Figure 5.4 SEM micrograph of the side surface of PMMA cav-
ity structure made with XRL.

nickel structural layer. Since almost all the electromagnetic fields are confined

within the 3-4 skin depth of the inside cavity walls, the 5 µm gold layer is thick

enough to provide good electrical performance. Then nickel (approximately 500

µm), the most widely used metal in electroplating LIGA due to its low internal

stress in the tall metal structures, is electroplated on top of the gold until the

gaps are fully filled to provide mechanical strength for the final metal cavities. As

seen in Figure 5.2(e), after the electroplating process, part of the green tape is

buried in the metal.

Then the silicon substrate is etched off in potassium hydroxide (KOH) solvent.

Finally, the remaining resist is removed by flood exposure and development. The

sequence of flood exposure and development is done three times, in order keep

the additional stress as low as possible. The metal cavity structures are separated

after the stripping, as shown in 5.2(f), in which the structure is flipped over to

obtain a better view. With this process, the cavity sidewall surface quality is

governed by the roughness of the sidewalls of the PMMA template.
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A SEM picture of the inside corner of the final metallized cavity structure

is shown in Figure 5.5. A SEM picture of the bottom surface of the metal cav-

ity is shown in Figure 5.6. Excellent surface quality is evident from Figure 5.5

and Figure 5.6, which suggests the potential of the LIGA process for fabricat-

ing cavities with high Q and low loss. The few slight scratches on the bottom

surface (Figure 5.6, corresponding to the top PMMA surface) are not a result of

X-ray exposure, but due to roughness of the PMMA sheet. This could possibly

be improved with better surface polishing of the PMMA sheet.

Figure 5.5 SEM micrograph of the inside corner of the gold
and nickel metallized cavity made using deep XRL
PMMA template.

5.2 Measurement Results and Discussion

5.2.1 24 GHz Resonator

To facilitate the testing of the 24 GHz five-sided metallic cavity, an available

RT/DuriodTM 6010 soft substrate was used to fabricate an open circuit microstrip

feed line and ground plane coupling slot, and forms the sixth side of the resonator.

The thickness of the substrate is 0.635 mm, which results in a cutoff frequency



103

Figure 5.6 SEM micrograph of gold and nickel metallized cav-
ity made using deep XRL PMMA template.

of approximately 31.5 GHz for a 50 Ω microstrip line. The dielectric loss of the

substrate is relatively high, with loss tangent of 0.0023 at 10 GHz. The substrate

is cladded with 1/2 oz. (17 µm) rolled copper, which has approximate 300 nm

surface roughness. The rectangular coupling slot of 1.3 mm in length and 0.5 mm

in width is milled into the copper ground plane.

The top wafer and the cavity were connected together through clamping, and

the performance of the resonator was measured using an Agilent 8722ES vec-

tor network analyzer (VNA) and a test jig with a coaxial APC 3.5 connector,

constructed to hold the assembly. A full SOL (short/open/load) 1-port calibra-

tion using a coaxial calibrated short, open, load, and sliding load was performed

around 24 GHz. The connector and microstrip feed line loss are not accounted

for in the calibration.

The nominal position between the cavity and the top substrate is found by

moving the cavity around slightly until a strong resonance occurs at around 24

GHz. The measured S11 response of the resonator around 24 GHz is plotted on the

Cartesian plane and also the Smith chart in Figures 5.7 and 5.8, respectively. Fig-
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ure 5.7 shows a very strong resonance at 23.892 GHz. Unloaded Q was extracted

from the loaded circuit using a reflection type measurement as in Section 3.2,

based on the measured value of S11 shown in Figure 5.8. As described in Sec-

tion 3.2, the input reflection coefficient in the vicinity of the resonant frequency

forms a circle on the Smith chart. At the frequencies far off the resonance, the

impedance representing the resonant cavity itself disappears, and the reflection

coefficient becomes that of the coupling system, which is the top substrate pat-

terned with the microstrip line and the slot on the ground plane. On the Smith

chart, the variation of the impedance of the top substrate with the frequency is

demonstrated by the curve outside the Q circle. A summary of modelled and

measured data is given in Table 5.1.

Table 5.1 Summary of modelled and measured results for the
24 GHz LIGA cavity resonator

Resonator fres (GHz) Qu Ql

HFSS 23.980 2274.3±53.4 1015.8±15.3

Measured 23.892 1742.3±56.4 908.0±23.4

The APC 3.5 connector inserted between the feed line of the resonator and the

test jig is not included in the HFSS model, which also leads to the difference in the

resonant frequency and Q factor between simulated and measured results. The

connector loss is measured separately, and found to be 1.0 dB around 24 GHz.

When the 1.0 dB of the uncalibrated loss in S11 is included in the calculation, the

Qu increases to a value of 1868.4 ± 66.7. The combined loss of connector and

microstrip feed line is measured to be 2.0 dB. Subtracting this from the measured

S11 gives a Qu of 2122.2 ± 85.0.

The differences between the simulated and measured results could also be ex-

plained by the inaccurate hand alignment between the substrate and the five-sided

cavity. The sensitivity of the resonator parameters to the alignment is simulated

using HFSS. The position of the cavity is varied from its nominal position, where
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the center of the coupling slot is located at 1/4 of the length of the cavity as

shown in Figure 4.6. The HFSS model is simulated with cavity position deviation

in both the x direction (direction along slot length) and the z direction (direc-

tion along the slot width). The simulated results for cavity position deviation in

the x direction are plotted in Figure 5.9, in which zero in the x axis indicates

the nominal position of the cavity, positive and negative numbers indicate that

the cavity is moving along the length of the slot, but towards the opposite direc-

tions. In Figure 5.9, the simulated data points are curve fitted to a second order

polynomial. As seen from Figure 5.9(a), the cavity position deviation in the x di-

rection has little effect on the resonant frequency of the resonator. The unloaded

Q tends to increase slightly with increasing the cavity position deviation, and is

symmetric about the nominal cavity position (See Figure 5.9(b)). The coupling

coefficient k decreases slightly with increasing the cavity position deviation, and

is also symmetric about the nominal cavity position (See Figure 5.9(c)).

The simulated results for cavity position deviation in the z direction are plot-

ted in Figure 5.10, in which the negative numbers indicate the cavity is moving

along the width of the slot towards the port, and the positive numbers mean that

the cavity is moving away from the input port. The resonant frequency variation

with the cavity position deviation is demonstrated in Figure 5.10(a), where the

frequency increases when the cavity moves away from the input port. The un-

loaded Q increases (see Figure 5.10(b)), while the coupling coefficient k decreases

(see Figure 5.10(c)) when the coupling slot is closer to the center of the cavity

(the cavity moves towards the port).

Comparing Figure 5.9 and Figure 5.10, the cavity position deviation in the

z direction has more effect on the resonant frequency, unloaded Q, and coupling

coefficient k than the cavity position deviation in the x direction, especially for

the coupling coefficient k, which varies from +25% to -29%. However, it can be

seen from Figure 5.9 and Figure 5.10, the cavity alignment has limited effect on

Qu. Compared with the results obtained at nominal cavity position, maximum
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Figure 5.9 Sensitivity of 24 GHz resonator parameters to the
cavity position deviation in the x direction.
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Figure 5.10 Sensitivity of 24 GHz resonator parameters to the
cavity position deviation in the z direction.
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Qu degradation is about 30 or 1.33%.

As described before, the degree of field coupled into the cavity is controlled by

the slot position. When the cavity moves, the relative position between the cou-

pling slot and the cavity varies accordingly, which changes the coupling coefficient

of the resonator, as shown in Figures 5.9(c)and 5.10(c). The magnitude of electric

and magnetic field intensity at the center of the slot as a function of the cavity

position deviation in the x direction and the z direction is plotted in Figure 5.11

and Figure 5.12, respectively. The amplitude of the field intensity is normalized

to the field intensity where the cavity is at its nominal position. When the cavity

position moves along the slot length, the electric and magnetic field intensity (see

Figure 5.11(a) and Figure 5.11(b)) at the center of the slot tends to vary in the

same direction. When the cavity position moves along the slot width, the electric

field intensity (see Figure 5.12(a)) increases with the cavity position deviation,

while the magnetic field intensity (see Figure 5.12(b)) decreases with the cavity

position deviation. The electric and magnetic field intensity at the center of the

slot tends to vary in the opposite direction. However, in both cases, the changing

of the coupling coefficient (see Figure 5.9(c) and Figure 5.10(c)) always coincides

with the variation of the magnetic field intensity, which denotes that magnetic

coupling is stronger than electric coupling and thus is the dominant coupling

mechanism.

The simulated Qu given in Table 5.1 is obtained based on 1.8 mm cavity height.

Although the height of the PMMA sheet is expected to be uniform, an accurate

measurement shows that the thickness of the PMMA sheet ranges from 1.765 mm

to 1.800 mm, measured at nine different locations of PMMA. Unfortunately, it is

difficult to determine the exact original positions of the cavities on the wafer, after

the metal cavities were separated during the last fabrication step. Simulations

are run for HFSS models with reduced cavity height. The results are shown in

Table 5.2. For the lowest possible cavity height measured to be 1.765 mm, the

resonant frequency decreases by 4 MHz, and the unloaded Q drops by 2.63%,
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Figure 5.11 Magnitude of electric and magnetic field intensity
at the center of the slot as a function of the cavity
position deviation in the x direction for a 24 GHz
resonant cavity.
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Figure 5.12 Magnitude of electric and magnetic field intensity
at the center of the slot as a function of the cavity
position deviation in the z direction for a 24 GHz
resonant cavity.
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compared with the HFSS simulation result based on the 1.8-mm cavity shown

in Table 5.1. By accounting for the effect of cavity height reduction, the tested

resonator results in Table 5.1 are in closer agreement with the simulation results.

Table 5.2 Simulation results for the 24 GHz LIGA cavity res-
onator with reduced cavity height

Cavity height fres (GHz) Qu

1.765 mm 23.976 2223.3 ±46.7

1.800 mm 23.980 2274.3 ±53.4

Another possible reason for the discrepancies between measured and simulated

results is that the top substrate and the cavity is connected through clamping,

which could possibly leave air gaps between the interface and result in Qu decreas-

ing. Although no such experiment has been done, it is reported that Qu could

increase by at least one hundred after the substrate and the cavity are completely

bonded through soldering [13], and also the resonant frequency could shift down

by about 50 MHz.

5.2.2 37 GHz Resonator

As evaluated using Equation 4.1, the cutoff frequency for a 50 Ω microstrip

line on a RT/DuroidTM 6010 soft substrate is 31.5 GHz. Although for 37 GHz

applications, which is above the cutoff frequency, the Quasi-TEM mode transmis-

sion is not maintained, and the longitudinal field components could be comparable

with the transverse field components, simulation results show that the fields in

the feed microstrip line are likely big enough to excite the 37 GHz metallic cavity.

The simulated S11 response of the 37 GHz resonator is plotted on the Cartesian

plane and also the Smith chart in Figure 5.13 and Figure 5.14, respectively. Similar

to the HFSS model for the 24 GHz resonator, the surface roughness (30 nm on the

interior walls of the five sided cavity and 300 nm on the ground plane of the soft

substrate) is accounted for by corresponding reduction in the metal conductivity.

Also, the cavity top shrinkage of 10 µm in lateral dimensions are incorporated in
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the model, as measured from the PMMA cavity structure after X-ray exposure and

development. The coupling slot opened in the ground plane of the soft substrate

has the dimension of 1.1 mm × 0.5 mm to give a result shown in Figures 5.13

and 5.14. The HFSS model resonates at 36.955 GHz, as indicated in Figure 5.13.

The unloaded Q is extracted to be 2124.8 ± 65 based on the simulated S11 in

Figure 5.14.

The same test procedure as described in Section 5.2.1 is applied to the 37 GHz

resonator. The measured S11 response is plotted in Figures 5.15 and 5.16, respec-

tively. According to Figure 5.15, the resonant frequency is found to be 36.960 GHz,

which is very close to the simulated results of 36.955 GHz. However, the unloaded

Q, which is extracted to be 308.7 ± 19.6, is much lower than the simulated value

of 2124.8 ± 65. In addition to the reasons discussed in Section 5.2.1, which cause

the performance degradation of the 24 GHz resonator, there is another possible

explanation for the 37 GHz resonator case. According to Equation 4.1, a 50 Ω

microstrip line on the RT/DuriodTM 6010 substrate (with thickness of 0.635 mm)

results in a cutoff frequency of 31.5 GHz. Therefore, at the frequency around 37

GHz, the fields in the substrate cannot be treated as a Quasi-TEM mode. As

a result, the microstrip-slot aperture coupling analysis described in Section 2.2.3

may not apply to the 37 GHz resonator case. This could be the primary reason

that the measured Q is significantly lower than expected. Another possible ex-

planation might be attributed to possible fabrication irregularities, for instance,

the gold layer at the internal cavity walls is not as thick as expected (several

skin depths), and is deposited unevenly on top of the nickel structure during the

electroplating process. Unfortunately, the thickness of the gold layer could not be

measured without damaging the cavity. It is expected that much higher Q could

be achieved with a proper top substrate and an improved test setup.
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Figure 5.13 Simulated S11 magnitude response of the 37 GHz
LIGA cavity resonator.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Re(S11)

Im
 (

S
11

)

36.96 GHz 

37.5 GHz 

36.5 GHz 

Figure 5.14 Simulated S11 response of the 37 GHz LIGA cav-
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Figure 5.15 Measured S11 magnitude response of the 37 GHz
LIGA cavity resonator.
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Figure 5.16 Measured S11 response of the 37 GHz LIGA cav-
ity resonator on the Smith chart.
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5.3 Summary

In this Chapter, the steps taken in the fabrication of resonant cavities using

the LIGA technique are demonstrated. An implementation of a 1800 µm deep,

24 GHz microwave cavity is presented. Despite the rather crude test assembly

for the sixth side made by clamping, the measured resonator has a high unloaded

Q of 2122.2±85, indicating that LIGA cavities are especially promising for high

performance, low-cost applications. Also, the possible reasons for the discrepancy

between the HFSS simulated and measured results are discussed.

A 37 GHz resonator is also simulated and tested. Although the resonant

frequency is as expected, the measured Q is much lower than the simulated Q

at the resonance frequency around 37 GHz. The exact cause for this decrease is

not well understood, but it is likely a combination of inappropriate top substrate

and inaccurate test setup, which is suggested in Chapter 7 as a subject for future

research.



Chapter 6

POST FILTER

6.1 General Filter Design

As an extension of the cavity resonator concept, the capability of realizing

high performance filters using the LIGA process is investigated in this Chapter.

A filter is a two-port circuit whose frequency response provides transmission at

desired frequencies and attenuation at other frequencies. An ideal filter should

perform this function without adding or generating new frequency components,

and would also have a linear phase response. The transmission loss should be

zero in the passband, and the transmission attenuation should be infinite in the

stopband. Network synthesis is a popular filter design technique. It usually starts

with finding the transfer function that satisfies the requirements of an application.

From the function, the input impedance and the complex zeros and poles are

found by various algebraic procedures, such as partial-fraction expansion. The

element values of the circuit are then derived from the expansion of the input

impedance. The lumped element filter constructed from these element values

gives the desired frequency response. Network synthesis begins with low-pass filter

prototypes normalized in terms of frequency and impedance. Then appropriate

transformations are applied to convert the low-pass design to the desired filter

type with the required operating frequency and impedance level.

The Chebyshev characteristic is a commonly used low-pass filter prototype and

is used to illustrate the filter realization in this section. This filter class employs

the Chebyshev polynomial and provides an equal ripple variation in the passband,

117
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and decreases outside the passband. The transfer function of the Chebyshev low-

pass prototype is defined as

|H(jω)|2 =
1

1 + ε2T 2
n(ω)

, (6.1)

where ε is a measure of the passband ripple and has the value 0 < ε < 1; Tn(ω)

is the Chebyshev polynomial of the nth order, which is defined as

Tn(ω) =





cos(n cos−1(ω)) |ω| ≤ 1

cosh(n cosh−1(ω)) |ω| > 1
. (6.2)

A low-pass filter prototype, which provides the Chebyshev transfer function,

can be constructed with the cascade of series inductances and shunt capacitances,

as indicated in Figure 6.1. The expressions for the element values g are found

by expanding of the Chebyshev polynomial by its recursion formulas. The filter

elements associated with the nth order Chebyshev functions can be found in a

variety of references. The final results are given by [52]

β = ln(coth
LAr

17.37
), (6.3a)

γ = sinh(
β

2n
), (6.3b)

ak = sin[
(2k − 1)π

2n
] k = 1, 2, ...n, (6.3c)

bk = γ2 + sin2(
kπ

n
) k = 1, 2, ...n, (6.3d)

g0 = 1, (6.3e)

g1 =
2a1

γ
, (6.3f)

gk =
4ak−1ak

bk−1gk−1

, (6.3g)

gn+1 =





1 n odd

coth2(β/4) n even
, (6.3h)
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where LAr is the passband ripple specified by the requirement of the application; n

is the order of the filter, which is the number of the reactive elements (resonators)

in the filter circuit.

R 0 = g0

L =2 g2

C =1 g1

L =i g i

C =i−1 gi−1 =i+1 g
i+1 R n+1 = gn+1nC =n gC

Figure 6.1 Low-pass filter prototype.

In the low-pass filter prototype, the source and load impedances and the cutoff

frequency are normalized to unity. This design can be transformed into a bandpass

filter by the frequency substitution

ω′ =
ω′1
∆

(
ω

ω0

− ω0

ω
), (6.4)

∆ =
ω2 − ω1

ω0

, (6.5)

ω0 =
√

ω1ω2, (6.6)

where ω′ is the frequency of the low-pass prototype to be replaced; ω′1 is the

ripple band edge of the low-pass prototype, which is normalized to unity; ω1 and

ω2 are the lower and upper band edge frequencies of the band-pass prototype

respectively; ∆ is the fractional bandwidth of the bandpass filter; ω0 is the center

frequency of the bandpass response.

The bandpass filter elements can be determined by the frequency transforma-

tion using Equation 6.4. Thus, the reactance X in the low-pass filter is trans-

formed as



120

jXn =
j

∆

(
ω

ω0

− ω0

ω

)
Ln

= j
ωLn

∆ω0

− j
ω0Ln

∆ω

= jωL′n − j
1

ωC ′
n

, (6.7)

which is a series LC circuit with element values

L′n =
Ln

∆ω0

, (6.8)

C ′
n =

∆

ω0Ln

. (6.9)

Using the same process, the susceptance B in the low-pass filter can be trans-

formed as

jBn =
j

∆

(
ω

ω0

− ω0

ω

)
Cn

= j
ωCn

∆ω0

− j
ω0Cn

∆ω

= jωC ′
n − j

1

ωL′n
, (6.10)

which represents a parallel LC circuit with element values

L′n =
∆

ω0Cn

, (6.11)

C ′
n =

Cn

∆ω0

. (6.12)

The corresponding bandpass filter structure transformed from the lumped-

element low-pass prototype is shown in Figure 6.2.

Lumped element filters are generally suitable for applications at low frequen-

cies and are difficult to implement for microwave applications. At microwave fre-

quencies, the filter elements are usually realized by using distributed components,
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Figure 6.2 Bandpass filter structure.

such as transmission line sections. In addition, it is desirable to use only series

or only shunt elements for practical microwave filter implementations. There-

fore, it is convenient to modify the low-pass lumped filter prototype by using

impedance inverters. Basically, an impedance inverter has the same function as a

quarter-wavelength transmission line with characteristic impedance of K but ide-

ally is independent of frequency. Therefore, the impedance inverter can be used to

convert elements between series and shunt forms, by transforming a terminating

impedance Zb into an impedance Za looking into the inverter as

Za =
K2

Zb

. (6.13)

Because of the property of the impedance inverter, a series inductance with

an inverter on one side is equivalent to a shunt capacitance looking into the in-

verter. Using the impedance inverter, the shunt capacitors in Figure 6.1 can be

transformed into series inductors, and the low-pass prototype can be represented

using only inductances, as shown in Figure 6.3.

K

LR L L

RK K

A

01

a1

K12 i,i+1

ai an

n,n+1 B

Figure 6.3 Modified low-pass filter prototype using
impedance inverters and series inductances.
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Z i
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Z i+1

C

i−2 =L i+2 i+2

Open Circuit

(a) Part of the low-pass prototype circuit with open end.

=i g
i =i+2 g

i+2

g i+1=i+1L

Short Circuit

C =i−2 gi−2

=i−1 i−1L

C C

g

(b) Dual of the low-pass circuit.

K i,i+1Ki−1,i K i+1,i+2

Z i’ ’Z i+1

aiL ai+1L ai+2Lai−1L

(c) Corresponding K-inverter form of the circuit.

Figure 6.4 Circuits used to derive the formula for internal K.
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The value of RA, RB, and Lan can be chosen arbitrarily, provided that the

desired K parameter is derived to give the identical frequency response to that of

the original prototype as in Figure 6.1. Open- and short-circuits are introduced in

order to simply the equations. The expression for K can be derived with the aid of

the circuits shown in Figure 6.4. Figure 6.4(a) is a part of the low-pass prototype

circuit (see Figure 6.1), which has an open end after the capacitor Ci+1. The dual

circuit of Figure 6.4(a) is shown in Figure 6.4(b), in which the shunt capacitors

become the series inductors, the series inductors become the shunt inductors, and

the open circuit becomes a short circuit. The corresponding circuit representing

by series inductors and K inverters is shown in Figure 6.4(c).

In the circuit shown in Figure 6.4(a), the impedance looking into inductor Li

is

Zi = jωLi +
1

jωCi+1

. (6.14)

In the circuit shown in Figure 6.4(c), the impedance looking into inductor Lai

is

Z ′
i = jωLai +

K2
i,i+1

jωLai+1

. (6.15)

Zi and Z ′
i must be the same except for an impedance scaling factor Lai/Li.

Using Equation 6.14, Z ′
i can be rewritten as

Z ′
i =

Lai

Li

Zi

=
Lai

Li

[
jωLi +

1

jωCi+1

]

= jωLai +
Lai

jωLiCi+1

. (6.16)

Hence, the impedance inverter can be derived in terms of Lai, Li, and the
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prototype elements gi and gi+1 as

Ki,i+1 =

√
LaiLai+1

LiCi+1

=

√
LaiLai+1

gigi+1

i = 1, 2, ..., n− 1. (6.17)

g n

Z n

n+1 = gn+1G

n

Z n+1

L =

(a) Output end of the low-pass prototype circuit.

RB
Kn,n+1

L an

nZ n+1Z’ ’

(b) Corresponding K-inverter form of the output
end part circuit.

Figure 6.5 Circuits used to derive the formula for K at the
end.

This formula is applicable to all the inverters except for those at the input
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and output ends shown in Figure 6.3. The expression of K at the output end of

the circuit can be determined, as shown in Figure 6.5, by considering the last two

elements in Figure 6.1. The corresponding circuit form of Figure 6.5(a) with a K

inverter is shown in Figure 6.5(b). Referring to the circuit in Figure 6.5(a), the

impedance looking into Ln is

Zn = jωLn +
1

Gn+1

. (6.18)

In Figure 6.5(b), the impedance is

Z ′
n = jωLan +

K2
n,n+1

RB

. (6.19)

Zn and Z ′
n must be equal except for an impedance factor Lan/Ln. This leads

to the result of K at the output end of the circuit in terms of Lan, load impedance,

and low-pass prototype elements as

Kn,n+1 =

√
LanRB

gngn+1

. (6.20)

Similarly, the impedance inverter at the input end in Figure 6.3 is derived as

K01 =

√
La1RA

g0g1

. (6.21)

Then the low-pass to bandpass transformation can be applied to achieve a

bandpass filter prototype. The series inductors Lai in Figure 6.3 are replaced

by series LC resonators with resonant frequency ω0 by performing the frequency

transformation with the aid of Equation 6.4. The reactance X of the series res-

onator can be written as

jXa = j
ω′1
∆

(
ω

ω0

− ω0

ω

)
Lai, (6.22)

where Lai is the series inductor in the low-pass prototype in Figure 6.3.
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In order to establish the properties of series resonators, it is convenient to

define a reactance slope parameter, which is independent of the forms of the

resonator structures, as

χ =
ω0

2

dX

dω

∣∣∣
ω=ω0

. (6.23)

Substituting from Equation 6.22, the reactance slope can be expressed in terms

of Lai as

χ =
ω0

2

d

dω

[
ω′1
∆

(
ω

ω0

− ω0

ω

)
Lai

] ∣∣∣
ω=ω0

=
ω′1
∆

Lai , (6.24)

which yields

La1 =
χ1∆

ω′1
, (6.25a)

Lai =
χi∆

ω′1
, (6.25b)

Lan =
χn∆

ω′1
. (6.25c)

Substitution of these results in Equations 6.17, 6.20, and 6.21 leads to the

representation of impedance inverters K in terms of slope parameters, terminating

impedances and fractional bandwidth as

K01 =

√
RAχ1∆

g0g1ω′1
, (6.26a)

Ki,i+1 =
∆

ω′1

√
χiχi+1

gigi+1

i = 1, 2, ..., n− 1, (6.26b)

Kn,n+1 =

√
RBχn∆

gngn+1ω′1
. (6.26c)

Therefore, the bandpass filter can be designed from the low-pass filter structure
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show in Figure 6.1, whose response is determined by the prototype parameters

g0, g1, ..., gn+1. The corresponding bandpass filter is characterized by the slope

parameters χ1, χ2, ..., χn, terminations RA and RB, and fractional bandwidth

∆. The terminations RA RB, and the fractional bandwidth ∆ can be specified

according to the design requirements. Then the desired filter response can be

obtained by specifying the impedance inverter parameters K01, K12, ..., Kn,n+1 as

presented in Equations 6.26a to 6.26c.

A generalized bandpass filter prototype using impedance inverters and series

resonators is shown in Figure 6.6. The resonator can be represented by the series

of inductor Lri and capacitor Cri. The reactance Xi(ω) of the resonator is

Xi(ω) = Lriω − 1

Criω
, (6.27)

where Lri and Cri can be derived from Equation 6.22 as

Lri =
ω′1Lai

∆ω0

, (6.28a)

Cri =
∆

ω′1Laiω0

. (6.28b)

ω)1X (
R

K

A

01 K12 n,n+1 RBK

ω)X (2 ω)X (n

Figure 6.6 Generalized bandpass filter prototype using
impedance inverters and series resonators.

For coupled cavity resonators, it is convenient to represent the resonant char-

acteristics by coupling coefficients ki,i+1 between adjacent resonators and external

Q factor Qext at both ends of the resonators.

For the interior resonators in Figure 6.6, the coupling between resonators can

be represented by a transformer with mutual inductance M , which replaces the
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L riC ri L ri+1 C ri+1
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(a) A section of the bandpass filter.
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(b) Equivalent transformer coupled
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Figure 6.7 Circuits used to derive the formula for coupling
coefficient k.
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ideal K inverter. Figure 6.7(a) shows a section of the bandpass filter consisting of

the ith and (i + 1)th resonators and the K inverter. Its equivalent circuit is the

transformer coupled form shown in Figure 6.7(b). From the property of a trans-

former, the mutual inductance Mi,i+1 is related to the K inverter in Figure 6.7(a)

as

Ki,i+1 = ω0Mi,i+1. (6.29)

The general definition of the coupling coefficients for the circuit shown in

Figure 6.7(b) is

ki,i+1 =
Mi,i+1√
LriLri+1

. (6.30)

By substituting Lri and M using Equations 6.28a and 6.29 respectively, and

then applying Equation 6.17, the coupling coefficients of the interior resonators

of the filter are given by

ki,i+1 =
Ki,i+1

ω0

√
LriLri+1

=
∆

ω′1
√

gigi+1

i = 1, 2, ..., n− 1. (6.31)

The slope parameter for the series LC resonators can be derived based on

Equations 6.23 and 6.27 as

χ = ω0Lri. (6.32)

Thus, the loaded Q, Ql, of any series type resonator with a reactance parameter

χ and a series resistance R can be expressed as

Ql =
χ

R
. (6.33)
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For the particular case in Figure 6.3, the impedance inverter K01 also reflects

an impedance of K2
01/RA to the resonator at the input end, which results in a Ql

represented by

Ql =
χ

K2
01/RA + R

. (6.34)

Assuming that the resonator is lossless (R = 0), then with Qu approaching

infinity, Ql becomes Qext

Qext =
χ

K2
01/RA

. (6.35)

Hence, the external Q at the input and output ends of the band pass filter are

QextA =
χ

K2
01/RA

=
g0g1ω

′
1

∆
, (6.36a)

QextB =
χ

K2
n,n+1/RB

=
gngn+1ω

′
1

∆
. (6.36b)

Therefore, a Chebyshev bandpass filter design, which is specified by the reso-

nant frequency f0, fractional bandwidth ∆, pass band ripple LAr, and filter order

n, can start with finding the element values gi for the low-pass filter prototype ac-

cording to the design requirement. Then the design parameters for the bandpass

filter prototype, including external Q, QextA and QextB that represent the degree

of coupling with the external circuits and the coupling coefficients ki,i+1 between

each internal resonator, can be derived. The filter simulation procedure is per-

formed based on the knowledge of QextA, QextB, and ki,i+1, which is described in

the next section.

For any practical resonators, loss exists due to finite conductivity of the metal,

which is equivalent to parasitic resistance. As a result of the dissipative elements,

pass band attenuation is introduced to the filter response. The effect of dissipation

can be calculated by introducing the resistive elements into the filter prototype and

computing the frequency transfer function with the dissipation included. From

the resulting filter response, the increase in the midband attenuation in dB for a
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bandpass filter can be estimated by

(∆LA)0 = 8.686
Cnω′1
∆Qu

dB, (6.37)

where Cn is coefficient related to the passband ripple and the number of poles of

the filter; Qu is the unloaded Q of the resonator, with the assumptions that the

Q’s of all the resonators are the same.

The coupling coefficients between adjacent resonators can be determined by

finding the resonant frequencies of the separate single resonators with electric and

magnetic walls [53]. The method is described briefly as follows.

The coupling structures between two single mode identical resonant cavities

can be modelled by the equivalent circuit shown in Figure 6.8(a). In this Figure,

the coupling between the adjacent resonators is represented by a mutual induc-

tance M , which is independent of the type of coupling mechanism. The coupling

coefficient k between the resonators is defined as

k =
M

L
. (6.38)

To illustrate the method conveniently, an alternative form of the equivalent

circuit is employed by dividing the coupling inductance into two parts along the

symmetry plane as shown in Figure 6.8(b). This structure leads to two separate

resonant states. A single resonant circuit is formed by replacing the symmetry

plane by a short circuit (electric wall), as shown in Figure 6.9(a). The resonant

frequency fe corresponding to the equivalent circuit is

fe =
1

2π
√

(L−M)C
. (6.39)

Similarly, the other resonant circuit is formed by replacing the symmetry plane

by an open circuit (magnetic wall), as shown in Figure 6.9(b). The resonant
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(a) Equivalent circuit.

2M 2M

−M −MC C LL

(b) Equivalent circuit by dividing the coupling inductance along
the symmetry plane.

Figure 6.8 Two forms of the equivalent circuit of the coupled
resonators.
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frequency fm is given by

fm =
1

2π
√

(L + M)C
. (6.40)

−MCL

(a) Equivalent circuit with
symmetry plane replaced by
electric wall.

2M

−MCL

(b) Equivalent circuit with
symmetry plane replaced by
magnetic wall.

Figure 6.9 Equivalent circuits of the two separate resonators.

Using Equations 6.38 to 6.40, the coupling coefficient k is solved in terms of

fe and fm as

k =
M

L
=

f 2
e − f 2

m

f 2
e + f 2

m

, (6.41)

and the resonant frequency is

f0 =
√

fefm. (6.42)

Therefore, the coupling coefficient can be decided by observing the splitting

frequencies of the two coupled resonators. An example of the insertion loss for two

identical waveguide resonators coupled by inductive posts is shown in Figure 6.10.
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The resonant frequency f0 of the individual resonator is 24 GHz. The frequency

response of the two coupled resonators splits into two resonant states identified as

fe and fm. fe shifts towards higher frequency with the value of 24.22 GHz, while

fm shifts towards lower frequency with the value of 23.82 GHz.

23 23.5 24 24.5 25
−50

−40

−30

−20

−10

0

Frequency (GHz)

S
21

 (
dB

)

fm fe 

Figure 6.10 Insertion loss curve for two inductive post-
coupled waveguide resonators.

6.2 Filter Simulation

The ideal impedance inverter K in the bandpass filter prototype can be realized

with lossless inductors as shown in Figure 6.11. The inductance is related to the

value of the K inverter by

K = ωL. (6.43)

L

L L

Figure 6.11 Inductor form of impedance inverter.
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Figure 6.12 ADS model of lumped Chebyshev 3rd bandpass
filter.

By replacing the K inverter with the lumped circuit, the third order lumped

Chebyshev filter model is simulated with the aid of Advanced Design System

(ADS). The complete ADS model of a third order Chebyshev bandpass filter is

shown in Figure 6.12. The resonator sections are represented by the RLC series

circuits, in which the inductor values are adjusted by subtracting the coupling

inductors values at both sides from the impedance inverters. The input and output

coupling in the ADS model is provided by ideal transformers, with the turns ratio

carefully adjusted to produce the best filter response with Ra = Rb = 50 Ω.

The passband filter is designed at the center frequency of 24 GHz, with 2%

bandwidth and 0.1 dB passband ripple. The component values in the ADS model

are derived according to the Equations in Section 6.1. The response of the band-

pass filter composed of lossless resonators is shown in Figure 6.13(a). To have a

close look at the passband ripple performance, an expansion of S21 is provided in

Figure 6.13(b). The simulation results from the ADS model satisfy completely the

design objectives, which verifies the calculation procedure presented in Section 6.1

for the bandpass filter prototype.

For a practical microwave filter, the resonator components always have finite

Q factors. This introduces loss to the filter model, and increases the pass-band

attenuation. The effect of the finite resonator Q on the filter response is simulated

by adding a series resistor to each resonator section in the ADS model shown in

Figure 6.12. For a series resonator, the unloaded Q is related to the dissipative

element R as



136

23 23.2 23.4 23.6 23.8 24 24.2 24.4 24.6 24.8 25
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

M
ag

ni
tu

de
 (

dB
)

S11
S21

(a) S-parameter.

23.7 23.8 23.9 24 24.1 24.2 24.3
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Frequency (GHz)

S
21

 (
dB

)

(b) Close-up of S21.

Figure 6.13 Response of the bandpass filter composed of loss-
less resonators.
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Q =
ω0L

R
. (6.44)

The values of the resistive elements associated with various sample Qs are

calculated using Equation 6.44, and the results are listed in Table 6.1. Also the

midband attenuation of the bandpass filter calculated using Equation 6.37 based

on the corresponding Q are included in the Table. The lossy ADS models repre-

senting filters with varying Q values are simulated, and the responses generated

from these models are shown in Figure 6.14. Figure 6.14(a) shows both the trans-

mission and reflection performances of the filters. The expansion of S21 is shown

in Figure 6.14(b). The out of band performances of these filters are similar, and

the major differences occur in the passband. The insertion loss in the passband

decreases with the increasing of Q. For example, the midband attenuation for the

filter with element Q of 500 is 1.385 dB (see Table 6.1). When expressed in terms

of power delivered to the load, such a filter transfers 72.7% of the available power

from the source to the load, and 27.3% of the power is dissipated by the filter in

the form of heat. In contrast, for a filter with element Q of 2000, the midband at-

tenuation is 0.348 dB, which means 92.3% of the available power from the source

is delivered to the load, and only 7.0% of the power is dissipated by the filter.

The difference between Q = 2000 and Q = 500 results in about 27.0% increase in

power delivered to the load by the filter at the center frequency. Also observed

from these results is the increasing of the passband ripple with the decrease of the

element Q, especially for filters with Q < 2000. In this case, the parameters for

the bandpass filter prototype design derived using equations in Section 6.1 need

to be modified to meet the original design specifications.

The lumped ADS models used to demonstrate the effect of finite element Q on

the filter performance does not incorporate other influencing factors, such as the

losses of the impedance converters and the loading systems. Thus, the insertion

loss of a practical filter would be worse than the result simulated using ADS
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Figure 6.14 Responses generated from the lossy ADS models
representing filters with varying Q values.
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Table 6.1 Values of the resistive elements and midband atten-
uation associated with the corresponding Qs.

Q 500 1000 2000 3000

R(Ω) 0.1 0.05 0.025 0.0167

Attenuation calculated (dB) 1.390 0.695 0.347 0.232

Attenuation simulated (dB) 1.385 0.695 0.348 0.232

lumped model shown in Figure 6.12.

Practical impedance inverters in waveguides can be realized by many struc-

tures. A simple form of realization is metal posts spaced along the broad wall of

the waveguide. A two-dimension top view of a post filter is shown in Figure 6.15.

The equivalent circuit for shunt posts [54] in the waveguide is shown in Figure 6.16.

This circuit configuration operates as an impedance inverter and a piece of trans-

mission line with the electrical length of φ/2 is connected to both ends of the

impedance inverter. The electrical length φ/2 is generally negative except for the

case of large posts. The transmission line with the positive or negative electrical

length can be added or subtracted from the adjacent λ/2-long transmission line

of the resonators of the same characteristic impedance. Therefore, the electrical

length θ of the resonator between the centers of the posts in Figure 6.15 is

θi = π +
1

2
(φi−1,i + φi,i+1). (6.45)

θ θ θi1 n

Z Z Z Z Z0 0 0 0 0

Figure 6.15 Top view of a post filter.

The configuration of the proposed waveguide filter is shown in Figure 6.17,
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Figure 6.16 Equivalent circuit for shunt posts.

where the cavities are couple by five metallic cylindrical posts, which provide

inductive couplings required between adjacent resonant cavities. Compared to

the structure employing a single post located at the center of the broad wall, a

symmetrically placed multiple post configuration provides better stop band per-

formance by cancelling out some higher order modes, thus reducing their inter-

action [55]. Similar to the coupling structure employed by the cavity resonator

shown in Figure 4.6, two coupling slots in the ground plane of the top Al2O3 sub-

strate couple the energy from the input and output microstrip feed lines into the

filter. The slots are located at approximately L1/4 from the end of the cavities

in order to get maximum coupling. The feed line length between the end of the

open-circuited stub and the center of the slot is λg/4, which provides an electric

short circuit at the slot and thus maximum current flow.

Coupling slots

Microstrip feed lines 

W
L1

L2

L1

Figure 6.17 3-pole multiple post filter structure.
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As demonstrated in Figure 6.14, for a 3-pole Chebyshev filter with resonator

element Q of about 2700, which is potentially achievable by a LIGA fabricated

resonator (see Section 4.3), the filter response only deteriorates slightly by the

introduction of the dissipative elements due to the corresponding finite element

Qs. Therefore, the parameters needed for the filter design can be calculated using

the equations provided by the filter theory in Section 6.1 without corrections.

Based on the desired filter characteristic, the element values for the low-pass filter

prototype are: g0 = g4 = 1, g1 = g3 = 1.032, g2 = 1.147. The coupling coefficients

between the adjacent resonator sections for the bandpass filter are calculated to

be k1,2 = k2,3 = 0.018. Since the filter geometry is symmetric, the input and

output external Q factors are equal and found to be QextA = QextB = 51.58.

The design of the filter is accomplished with the aid of HFSS. Due to the

symmetric property of the filter, a 2-pole filter HFSS model composed of two

identical resonators coupled by 5 equally-spaced posts along the broad wall of the

waveguide, as represented in Figure 6.18, is simulated to get the proper coupling

coefficient k1,2, k2,3, and the middle resonator length L2.

L0

L0L2
L2

Figure 6.18 HFSS model for internal coupling coefficient k.

As known from the equivalent circuit for the shunt inductive posts, this type of

impedance inverter implementation introduces a transmission line section, whose

length is associated with the physical dimensions of the metallic posts. The elec-

trical distance of the resonator between the centers of the posts is altered by
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subtracting the lengths introduced at each end of the resonator from π, which is

nominal for a waveguide resonator. Thus, while the diameters ra of the posts are

adjusted to provide the desired coupling coefficients between internal resonators,

the resonator length L2 has to be changed simultaneously. Based on the HFSS

model shown in Figure 6.18, simulations are run for different post diameters ra

and resonator length L2. The width W of the filter is chosen to be 8.829 mm,

the same as the cavity resonator presented in Chapter 4. The coupling coeffi-

cient (k1,2 = k2,3) and the center frequency (f0) as a function of the length of

the resonator (L2) are shown in Figure 6.19(a) and Figure 6.19(b) respectively, in

which the coupling coefficient and center frequency are obtained by locating fe and

fm from the filter response and then calculating using Equations 6.41 and 6.42,

respectively. Figure 6.19 demonstrates that reducing the multi-post diameter re-

sults in the increasing of the coupling coefficient k, while decreasing of the center

frequency f0. Based on the results in Figure 6.19, the post diameter ra = 0.12

mm and resonator length L2 = 8.57 mm are selected, which provide the desired

coupling coefficient and center frequency.

The next step is to find the proper external Q for the input and output res-

onator sections, which is performed by adjusting the dimension of the coupling

slot. The HFSS model used to extract Qext is shown in Figure 6.20. Qext can be

obtained from the phase response of S11 [32]. In this case, the feed line needs to

be de-embedded to the detuned-open position. The distance to the displacement

of the detuned-open is subtracted from each phase point. The detuned-open po-

sitions are half wavelength apart on the microstrip feed line. The detuned-open

position of the HFSS model can be found by observing the phase of S11. At res-

onance, the phase of de-embedded S11 curve passes 0o. As frequency increases,

the phase angle of the input impedance decreases from 0o to −180o. Likewise, as

the frequency decreases from the resonance along the impedance locus, the phase

increases from 0o to +180o. With the aid of the post processing function provided

by HFSS, the reference plane in the HFSS model can be rapidly de-embedded to
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Figure 6.19 Coupling coefficient (k1,2 = k2,3) and the cen-
ter frequency (f0) as a function of the length of
the resonator (L2) for different diameters of the
posts.
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any position. The correct de-embedded distance is found by moving the reference

plane along the feeding transmission line iteratively. An example of S11 phase

curve de-embedded to the detuned-open position is shown in Figure 6.21, with

both the original port location data and the de-embedded data displayed. At the

resonant frequency f0, the phase curve crosses 0o, and is symmetrical about the

0o point.

Figure 6.20 HFSS model for external Q Qe.

Qext can be solved using the information given by the phase plot. In the

overcoupled case (k > 1), the frequencies f1 and f2 corresponds to the points

where the curve passed through ±90o, as shown in Figure 6.21. For the coupling

coefficient k >> 1, Qext is given by

Qext =
f0

f2 − f1

. (6.46)

An HFSS model as shown in Figure 6.20 is simulated. The simulation is run

for slots of constant width (0.5 mm) but varying length. External Q is determined

from the phase response of S11 using Equation 6.46. The external coupling as a

function of slot length is shown in Figure 6.22. Nonlinear regression is used to

determine a curve fitted to the data, and a slot of 4.45 mm × 0.5 mm is chosen.

The length of resonators (L1) at the input and output ends of the filter is

determined through the simulation of two post coupled cavities fed by microstrip

lines via slots (see HFSS model in Figure 6.23). The dimension of the slots and di-
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ameter of the posts are fixed with the values of L2 = 8.571 mm and ra = 0.12 mm,

derived from the previous simulation, while the resonator length L1 is varied to

provide the desired center frequency. The center frequency, as determined by

Equation 6.42, is plotted versus the length of resonators (L1) in Figure 6.24. A

cavity length of L1 = 8.68 mm is chosen to provide the desired center frequency

of 24 GHz.

L1

L1

Figure 6.23 HFSS model for the length of resonators (L1) at
the input and output ends of the filter.

With the slot length and cavity size determined, the complete filter is modelled

in HFSS. The simulated results are shown in Figure 6.25. The HFSS modelled

filter is identical to Figure 6.17. The model consists of two parts. The top wafer

is 400 µm thick Al2O3 and has two sections of microstrip feed line on the top

side coupled to two slot apertures in the ground plane on the bottom side. The

bottom waveguide section, including three cavities and coupling posts between

adjacent cavities, could be fabricated using the LIGA process. Filter dimensions

and detailed properties are listed in Table 6.2.

The filter structures composed of three cavities with metallic multi-post cou-

pling proposed in this chapter would be extremely difficult to fabricate using tra-

ditional machining techniques, due to the extremely fine post structure and high

vertical aspect ratio required. However, these types of structures could be ideal
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Table 6.2 Summary of dimensions and detailed properties of
ideal filter model and process condition filter model

Parameter Ideal filter Process condition filter

Height of resonators (mm) 2 2

Length of input/output resonator L1 (mm) 8.68 8.68

Length of the second resonator L2 (mm) 8.571 8.571

Diameter of posts ra (mm) 0.12 0.12

Center Frequency fres(GHz) 24.013 24.026

Bandwidth (MHz) 424 434

Insertion loss (dB) 0.69 0.59

Ripple (dB) 0.1 0.1

Stop band attenuation (dB) (20% off fres) 48.38 47.6

for LIGA fabrication, which offers sub-micron features, aspect ratios of 100:1 or

higher, resist thicknesses of up to 3 mm, and almost vertical and optically smooth

sidewalls [56] [57]. To investigate the effect of the fabrication process on the per-

formance of the filter, a filter model based on a measured PMMA resonant cavity

structure fabricated using the LIGA technique [58] [59] is simulated. In this model,

r.m.s roughness of 30 nm is applied to the inside surface of the closed waveguide

as well as the post surface, and a size reduction at the top of the cavity body on

lateral dimensions by 16 µm in the x direction and 12 µm in the y direction is

also incorporated. The HFSS simulated response of the process condition model

is also shown in Figure 6.25, for ease of comparison. Compared with the ideal

model with 90o vertical sidewalls and smooth waveguide and post surfaces, the

center frequency of the process filter model is increased slightly due to slight poly-

mer shrinkage in the guide top dimensions. The insertion loss is actually slightly

better, at the expense of a broader bandwidth and lower stop band attenuation.

The close results from the two models suggest that the LIGA fabrication process

introduces minor deteriorations and high performance microwave filters with fine

structure are possible.
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6.3 Summary

A narrow band microwave filter suitable for LIGA fabrication was presented.

The filter consisted of three resonant cavities coupled by symmetrically placed

metallic posts. The simulation results from the HFSS model incorporating the

practical fabrication tolerances measured from a LIGA fabricated PMMA res-

onator structure suggest that high performance filters can be potentially realized

at microwave frequencies using the LIGA process. The performance of the fil-

ter can be further improved by employing even deeper cavities with higher Q

values, as LIGA is capable of realizing tall and fine structures with large aspect

ratios. Furthermore, inexpensive large-scale fabrication is possible by using LIGA

replication techniques, such as hot embossing or injection moulding, which uti-

lize a metal moulding tool formed by electroplating metal into X-ray patterned

photoresist, without going back to the lithographic step.



Chapter 7

CONCLUSIONS

7.1 Summary and Conclusions

High performance microwave cavities for various circuits in the front-end of

transceivers such as filters, diplexers, and oscillators have conventionally been

built with rectangular or cylindrical metallic waveguides, which typically have

low loss, high quality factor, and higher power handling capability. However such

waveguide cavity based circuits made by traditional metal machining techniques

tend to be costly, particularly for complex multiple cavity based circuits, and not

well suited to high volume commercial applications and integration with planar

microwave integrated circuits. As commercial transceiver applications progress

toward higher microwave and millimetre-wave frequencies, the use of waveguide

based circuits for compact, highly integrated transceivers is becoming feasible,

along with an increasing need for cost effective batch fabrication processes for

realizing complex metallic cavity circuits without sacrificing structural quality

and performance. It is expected that significant advancements in both microwave

performance and integration will be achieved through the development of novel

technologies for realizing vertically oriented 3-D structures [60].

Silicon bulk micromachining has become one popular approach for fabricating

microwave cavity resonators and filters using both anisotropic wet etching and

also deep RIE etching techniques. However, the anisotropic wet etching approach

does not produce rectangular cavities, but rather ones with non-vertical sidewalls,

typically at 54.7 degrees relative to the horizontal plane. Deep RIE technology

150
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can be used to realize cavities in silicon with better sidewall verticality, however

the sidewall quality (roughness) varies with processing conditions and can be rela-

tively rough, potentially leading to increased metal conductor loss and a decrease

in Q-factor performance. Q factor also increases as a function of increasing cavity

height. Unfortunately, due to the thickness limitation of standard silicon sub-

strates, which is typically 525 µm or 650 µm, cavities fabricated on silicon wafers

by etching cannot be easily made deeper, without resorting to stacking of multiple

wavers which could result in alignment and interface problems, as well as giving

“saw-tooth” varying sidewall profiles in the case of non-vertical anisotropic etched

wafers.

LTCC is another option for fabricating 3-D circuits and modules with compact

size and reduced weight. Realized by replacing solid metal sidewalls with rows of

via holes, LTCC resonators introduce extra power dissipation through the posts.

Multiple rows of vias are usually employed to produce a negligible leakage loss,

which leads to a larger overall structure than an equivalent metallic cavity with

solid walls. Although the radiation loss of the LTCC resonator could be minimized

by employing multiple layers of vias, the dielectric loss is the major limitation in

the Q possibly obtained by this technology, even for the extreme case that an air

cavity is put inside the LTCC resonator.

Polymer-based fabrication is a promising alternative to silicon etching and

LTCC technologies for the batch fabrication of ultra-deep microwave cavity struc-

tures. In particular, deep X-ray lithography, as part of the LIGA process, is a

microfabrication technology for precisely structuring polymers, and is increasingly

being applied to RF/microwave microstructures. In addition to precise patterning

capabilities, deep XRL is able to structure ultra-deep cavities due to the pene-

tration ability of hard X-rays. Cavities of several millimetres are possible in a

single lithographic exposure, and with excellent sidewall quality, including verti-

cality near 90 degrees and surface roughness on the order on tens of nanometres.

These structured polymers are subsequently used as electroforming templates for
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fabricating metal structures with correspondingly good sidewall quality.

The main objectives of the research were defined to be:

1. Investigate the advantage of realizing high Q cavity resonators using the

LIGA technique over silicon micromachining and LTCC techniques.

2. Design one-port rectangular cavity resonator structures suitable for LIGA

implementation at upper microwave and millimetre-wave frequencies, such as 24

GHz and 37 GHz.

3. Fabricate the resonators, which involves creating the suitable layout of the

mask for LIGA cavities, a top substrate, and the assembly of the resonators.

4. Test the resonators and determine the unloaded Q, and compare with the

simulation results.

5. Investigate the feasibility of realizing high performance filters as an exten-

sion of the LIGA cavity concept.

The first objective was satisfied by HFSS simulation of resonant cavity models

representing different fabrication techniques. The simulation results demonstrate

that smooth LIGA cavity structures result in promising Q improvement over

silicon and LTCC structures, and the potential advantages of LIGA resonators

are more dramatic with increasing cavity height and operating frequency.

A complete one-port cavity resonator structure with the external coupling cir-

cuit was designed and simulated. Sample 1.8 mm deep polymer cavity structures

were fabricated using deep XRL. Excellent sidewall verticality is obtained with

the PMMA structure, with only slight shrinkage at the top surface of 8.5 ± 2.5

µm in either lateral dimensions. This corresponds to sidewalls with verticality

between 89.82o and 89.9o. Also the PMMA structure shows excellent sidewall

surface quality, measured to be on the order of 26 ± 12 nm for structures of simi-

lar height using the deep XRL process at IMT [46]. The structured polymers are

subsequently used as templates for metal electroforming to produce cavity res-

onators. The performance of the resonator was measured using a RT/duroidTM

6010 soft substrate patterned with coupling structures to form the sixth side, thus
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completing the cavity. Despite the rather crude test assembly for the sixth side

made by clamping, the measured resonator has a high unloaded Q of 2122.2±85

at the resonant frequency of 24 GHz, indicating that LIGA cavities are especially

promising for high performance, low-cost applications.

The feasibility of extending such high performance cavity structures to more

complicated waveguide-based filter circuits at microwave frequencies was investi-

gated using an application example of a multi-post coupled third order Chebyshev

bandpass filter. The simulation results suggest that high performance filters can

be potentially realized at microwave frequencies using the LIGA process in a single

lithographic exposure.

This research has proved that LIGA is a promising technique for realizing

high performance cavity resonators and filters at microwave and millimetre-wave

frequencies.

Unlike the cavity structures made by other micromachining techniques, with

which the Q factor of the rectangular resonant cavities is limited by the surface

roughness of interior walls, cavity shape, or cavity height, tall cavity structures

made by deep XRL demonstrate almost 90 degree sidewall verticality and excellent

smoothness. As a result, the improved performance in Q factor can be achieved

for the resonator employing the LIGA resonant cavity.

The relatively simple, single-step lithographic exposure also facilitates exten-

sion to more structurally complicated waveguides and multiple cavity-based cir-

cuits, such as the post coupled Chebyshev bandpass filter proposed in this research

work. In addition to potentially batch fabricating such a filter lithographically

by exposing the entire waveguide depth in a single exposure, the filter structures

composed of three cavities with metallic multi-post coupling would be extremely

difficult to fabricate using traditional machining techniques, due to the extremely

fine post structure and high vertical aspect ratio required. However, these types of

structures could be ideal for LIGA fabrication, which offers sub-micron features,

aspect ratios of 100:1 or higher, resist thicknesses of up to 3 mm, and almost
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vertical and optically smooth sidewalls [56] [57]. Also, representative LIGA side-

wall roughness is used to predict very low loss and high performance, suggesting

that complicated structures with multiple resonator circuits and high internal

components with high aspect ratios are possible.

7.2 Future Work

7.2.1 Improving the Current Design

The resonator measured in this thesis employs a soft substrate as the sixth

side of the cavity structure. Although it is cost effective and easy for laboratory

fabrication, the substrate surface roughness and loss tangent are worse than those

of alumina which introduces more conductor and dielectric losses. The Qu per-

formance could be further improved by using a fine polished and low loss Al2O3

substrate.

In this thesis, the alignment between the substrate and the cavity is made

manually. Although simulation results show that the inaccurate alignment has

limited effect on Qu (for instance 1-2%), the issue could cause more impact on the

performance of the bandpass filter, since misalignment would cause filter structure

asymmetry. A more exact method of aligning can be accomplished with the aid

of equipment such as an infrared aligner.

The resonators in this thesis are measured under rather crude assembly for the

sixth side by clamping due to the equipment limitations. Better bonding between

the feed wafer and the cavity could be offered by using conductive epoxy cured at

a higher temperature, for example 80oC. However the silver epoxy bonding can

lead to an increase in the loss, since it can have conductivity values lower than

that of gold at high frequencies above 20 GHz [61]. Alternatively, the thermal

compression gold-to-gold bonding in a vacuum bond chamber is proved to be

capable of providing a quality bond for high Q microwave components [18] [14].

Also the reasons that lead to the unexpectedly low Q during the 37 GHz

resonator measurement need to be further investigated. It is expected that by
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employing a thinner top substrate that could support only a Quasi-TEM mode

at 37 GHz, a much higher Q close to the simulation result could be achieved.

7.2.2 Dual-mode Cavity Filters

Dual-mode filters employ coupling screws or square corner cuts in the cavity

to produce degenerate mode coupling [62] [63] [64], such as TE011 and TE101, in

a single resonator. The coupling between pairs of dual modes in adjacent cavities

provides an additional mechanism, producing full filter functions. Dual mode

filters offer the desired features of smaller sizes and less mass than conventional

single mode coupled filters. In order to generate the degenerate modes with the

same resonant frequency, the waveguide cavity is required to be square, which

means the height of the cavity, as well as the length of the cavity, has to be half

the guide wavelength. At 37 GHz, the cavities are required to be approximately

5.7 mm in height. This height can only be achieved by many wafers stacked

together if using silicon-based micromachining methods, however is potentially

realizable using one step X-ray lithography.
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Appendix A

Relaxation Method

An interesting use of the relaxation method is concentrated on the solving of

2-D systems that can be described by Poisson’s equation

∂2w

∂x2
+

∂2w

∂y2
+ W (x, y) = 0. (A.1)

The relaxational solution to a differential equation consists of evaluating the

wanted function w at a large number of chosen points within the specified region.

In two dimensions the area is subdivided by a uniform net, so that on straight

lines drawn in various directions, w is calculated equally spaced at the nodes of

the net. An area could be geometrically covered by the meshes having one of the

three different shapes, such as square, equilateral triangle or equiangular hexagon.

Figure A.1 shows the typical point of a relaxation net. In this figure, w0

denotes the value of w at an interior point of a square-mesh net, w1, w2, w3, and

w4 are the surrounding points, and h is the distance between two adjacent nodes.

The first step in solving Equation A.1 is to replace the derivatives by finite

difference approximations. The two partial derivatives in Equation A.1 can be

approximated by the combinations of the terms w0 to w4. The function w can be

expanded near x = x0 in a Taylor’s series as

w = w0 +

(
dw

dx

)

0

(x− x0) +
1

2!

(
d2w

dx2

)

0

(x− x0)
2 (A.2)

+
1

3!

(
d3w

dx3

)

0

(x− x0)
3 +

1

4!

(
d4w

dx4

)

0

(x− x0)
4 + · · · ,
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Figure A.1 Typical point of a relaxation net.

By substituting w1 = x + h and w3 = x− h, the Taylor expansions at node 1

and 3 are obtained as

w1 = w0 + h

(
dw

dx

)

0

+
h2

2

(
d2w

dx2

)

+
h3

6

(
d3w

dx3

)
+

h4

24

(
d4w

dx4

)

0

+ · · · , (A.3a)

w3 = w0 − h

(
dw

dx

)

0

+
h2

2

(
d2w

dx2

)

− h3

6

(
d3w

dx3

)
+

h4

24

(
d4w

dx4

)

0

+ · · · . (A.3b)

Adding these two equations together, the terms containing odd order of h are

cancelled out. The summation becomes

w1 + w3 = 2w0 + h2

(
d2w

dx2

)
+ O(h4) , (A.4)

where O(h4) is a term that containing the forth, sixth, and higher powers of h.

This term becomes small enough to be ignored for a suitable small h, which is the

distance between two adjacent nodes. By neglecting this quantity and rearranging
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the equation, the finite-difference approximation to (d2w/dx2)x0 is derived as

h2

(
d2w

dx2

)

x0

= w1 + w3 − 2w0 . (A.5)

Similarly, the approximation to the second derivative of w with respect to y is

h2

(
d2w

dy2

)

y0

= w2 + w4 − 2w0 . (A.6)

Substituting Equation A.5 and A.6 into A.1, the Poisson’s equation can be

approximated at a typical node 0 by

4∑
n=1

wn − 4w0 + h2W0 = 0 , (A.7)

in which there is an error of O(h4), and the effect of the error diminishes with the

mesh interval h. The values of w’s at each group of five nodes must satisfy Equa-

tion A.7 in order to get the solution to the corresponding differential equation.

Otherwise, there exists a non-zero residual R0, which is expressed as

R0 =
4∑

n=1

wn − 4w0 + h2W0 . (A.8)

When applied to the eddy current equation, the finite difference approximation

to Equation 3.87 is obtained as

4∑
n=1

wn − 4w0

(
1 +

jh2

2δ2

)
= 0 . (A.9)

The relaxation method of solving Equation 3.87 starts by superimposing a

square grid on the cross section of the desired region, as shown in Figure 3.14.

First, a solution is assumed at each node of the given net, which satisfies the

boundary conditions. Then the residual is calculated according to Equation A.8 at

each node, which has the value zero for the boundary nodes, and R0 for the internal

166



nodes. The node with the greatest residual value is found, and a modification is

made to the corresponding w0 to reduce this error. By doing this, the residuals at

the immediately adjacent points are simultaneously changed. The desired solution

would be obtained by successive corrections at the point where the residual is the

largest until the residuals at all points are less than a given quantity. Theoretically

there exists a set of w’s for which the residual reaches zero. But in most numerical

analysis algorithms, some limit of tolerance is adopted, and the analysis process

is regarded as finished when all the error is below that value.

As an example of solving the 2-D region in Figure 3.14, the mesh interval is

chosen to be h = 1
2
δ. Representing w by a complex number as w = u + iv, the

residual is found to be

R = (2
4∑

n=1

un − 8u0 + v0) + j(2
4∑

n=1

un − u0 − 8v0) (A.10)

which is obtained by multiplying the left side of Equation A.9 by 2 to clear out

the fractions.

The residual of the boundary nodes has the value of zero, and the error function

R for all the internal nodes follows Equation A.10. It is apparent that changing

the value w0 of an internal node will affect the error function of itself as well as

all adjacent internal nodes. Derived from the Equation A.10, the residuals are

altered with respect to w0 according to the following scheme

4w0 4R0 4R1,2,3,4

+1 −8− j +2

+j +1− j8 +2j

If w1 or w3 lies on one of the lateral boundaries of symmetry, then the corre-

sponding 4R is doubled, because the change in w0 os reflected on the other side

of the boundary.

The determination of when the computations are finished depends on the min-

imum correction accepted in w. For example, if w is regarded accepted with the
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error between ±0.5, then both the real and imaginary part of the residuals,defined

by Equation A.10, should not exceed ±4. By correction of the elements with the

greatest residual values repeatedly, a set of solution for the whole 2-D cross section

can be obtained.
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