
Using Timed Model Checking for Verifying Workflows

Volker Gruhn, Ralf Laue
{gruhn,laue}@ebus.informatik.uni-leipzig.de

Chair of Applied Telematics / e-Business∗

Computer Science Faculty, University of Leipzig, Germany
Klostergasse 3, 04109 Leipzig, Germany, fax: +49 341 973 23 39

Abstract

The correctness of a workflow specification is crit-
ical for the automation of business processes. For
this reason, errors in the specification should be de-
tected and corrected as early as possible - at spec-
ification time.

In this paper, we present a validation method
for workflow specifications using model-checking
techniques. A formalized workflow specification,
its properties and the correctness requirements are
translated into a timed state machine that can be
analyzed with the Uppaal model checker. The
main contribution of this paper is the use of timed
model checking for verifying time-related properties
of workflow specifications.

Using only one tool (the model checker) for veri-
fying these different kinds of properties gives an ad-
vantage over using different specialized algorithms
for verifying different kinds of properties.

Keywords: business process modeling, work-
flow, timed workflow specification, timed model
checking, verification

1 Introduction, Related Work

In recent years, interest in business process automa-
tion has raised. One reason for this is that the con-
cept of web services allows integrating web-based
applications using open standards.

Developing a large system using web services
starts with specifying the flow of control and infor-
mation between these services - the workflow. This

∗The Chair of Applied Telematics / e-Business is en-
dowed by Deutsche Telekom AG

task should be done by domain experts. Differ-
ent business process definition languages have been
developed for specifying workflows, the most im-
portant ones are BPML, BPEL4WS, XPDL and
UML2 activity diagrams. An increasing number
of software tools abstract from the syntax of the
business process definition language, allowing the
business process analysts who specify the workflow
to use a graphical notation (for example BPMN).

It should be possible to eliminate errors (like
deadlocks or missed deadline constraints) in a work-
flow specification at specification time. Model
checkers are sophisticated tools that are able to find
exactly this kind of errors for a given system. What
remains to do is to translate the workflow specifica-
tion and the requirement we are interested in into
the input language of a model checker.

Our paper shows how this ”translation” can be
done. Similar approaches were proposed by sev-
eral other authors: [1] starts with an informal de-
scription of a business process. This description
is being translated into the input language of the
NuSMV model checker which can check basic prop-
erties like liveness and reachability. [2] checks var-
ious properties of business process specifications
modelled in Testbed, a framework for business pro-
cess reengineering. The business process specifica-
tion can be defined by business process analysts
using the Testbed tool, while the model checking
must be done outside the tool by model check-
ing experts. A follow-up paper [3], identifies some
patterns of properties for business process specifi-
cations. Queries about these patterns are trans-
formed automatically into an LTL formula, allow-
ing people who are not familiar with the details
of model checking to test properties of the busi-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ness process specification based on these patterns.
[4] translates business process models defined in
the XPDL language into the input language of the
SPIN model checker in order to check their proper-
ties.

In all these publications, the properties than can
be checked by a model checker, depends on logi-
cal order between activities, not on their timing.
Other than these existing approaches, we take into
account time-related properties (deadlines etc.).

We give an example for checking very differ-
ent workflow properties: structural correctness, re-
source constraints, deadlines and dependences be-
tween different activities. In the overview below,
we will refer to algorithms that allow to check these
different classes of properties. The main contribu-
tion of this paper is to exploit only one tool for
checking the different properties instead of using
one algorithm to check the structural correctness,
a second one for verifying the deadlines and other
ones for reasoning about deadlocks, reachability or
resource conflicts.

Scheduling of activities under resource con-
straints is a well-studied problem in operations
research, known as Resource Constraint Project
Scheduling Problem (RCPSP). The general prob-
lem - finding a feasible schedule for a set of activ-
ities such that the time for completing the project
is minimized - has shown to be NP-hard [5], there-
fore different heuristic algorithms have been sug-
gested for solving it [6]. Finding resource conflicts
in a given workflow is much easier than solving the
RCSP. [7] presents an algorithm to find such con-
flicts. (Our example workflow is based on the ex-
ample used in this paper.) This is done by sim-
ply finding the earliest starting time and the latest
completion time of each activity. However, the de-
pendencies between the activities are not taken into
account which leads to many false positives. Our
model checking approach gives a more accurate re-
sult than [7].

[8] discusses the use of timed automata for solv-
ing the scheduling problem, which is also the key
idea for our model-checking approach. [9] has ex-
panded the net diagram technique PERT to ePERT
which can be used for workflow specifications.

Structural correctness can be verified using graph
analyzing techniques [10, 11], which require the use
of special-purpose nontrivial algorithms. Graph an-
alyzing techniques can also be used for answering

”basic questions” about reachability and depen-
dence between activities (”Will a receipt be sent
for every order?”, ”Is it guaranteed that no receipt
can be sent if the ordered item is out of stock?”
etc.)

With our model checking approach, such spe-
cialized algorithms for checking specialized require-
ments (resource constraints, structural correctness
etc.) can be substituted by using only one tool that
can be used for verifying different kinds of proper-
ties.

2 Definitions

2.1 Workflow Specification

The Workflow Managemant Coalition defines a
workflow as the computerized facilitation or au-
tomation of a business process, in whole or part[12].
A Workflow Management System (WfMS) is de-
fined as a system that completely defines, manages
and executes workflows through the execution of
software whose order of execution is driven by a
computer representation of the workflow logic.

In order to be processed by a WfMS, a work-
flow has to be specified in a formal language that
can be executed by computers. This language must
define the order of activation of activities and the
information flow between them.

Before we give a formal definition of a workflow,
we have to introduce the basic concepts:

An activity is a description of a piece of work that
forms one logical step within a process[12]. Activi-
ties are scheduled by a WfMS. Their execution or-
der is specified by transitions. In the simple case of
a (sequential) transition between activities, one ac-
tivity completes and the thread of control is passed
to another one, which starts. To be able to define
more complex business cases, we further need the
control structures AND-split, OR-split, AND-join
and OR-join, with the usual semantics [12].1

We define a workflow specification as follows:

Definition 1 A workflow specification is a 4-tuple
(N,n0, f, T), where:

1The name OR-split in [12] is a little bit misleading:
XOR-split would be a better name, because one and only
one transition to the next node is selected.

3

– N is a set of nodes which is defined as the union
N = A∪C, where A = {a1, . . . , an} is a finite
set of activities and C = {c1, . . . , cm} is a fi-
nite set of control nodes. Each control node
is either an AND-split, an OR-split, an AND
join or an OR-join, which is denoted by the
type function type : C → {as, os, aj, oj}.

– There are two distinguished nodes: The start
node n0 ∈ A and the end node f ∈ A.

– T ⊆ (N\{f})×(N\{n0}) is a set of transitions
between the nodes, where:

If (a ∈ A) ∨ (a ∈ C ∧ type(a) = as) ∨ (a ∈
C ∧ type(a) = os), then there exists one and
only one node b such that (b, a) ∈ T . (These
nodes have exactly one predecessor.)

If (a ∈ A) ∨ (a ∈ C ∧ type(a) = aj) ∨ (a ∈
C ∧ type(a) = oj), then there exists one and
only one node b such that (a, b) ∈ T . (These
nodes have exactly one successor.)

The usual semantics apply: The workflow starts
in its start node n0. During a workflow execution,
activities are executed with respect to the transi-
tions between them. Split nodes allow us to specify
concurrency and alternative and join nodes allow us
to specify synchronization between incoming flows.
Finally, the workflow execution stops when the final
node f is reached.

To illustrate a workflow, we use a simple graph-
ical representation with these symbols:

ORActivity 1 ANDAND OR

Activity Transition AND−Split OR−Split AND−Join OR−Join

Split nodes have at least two outgoing transitions
(arrows), while join nodes have at least two incom-
ing transitions. Outgoing arrows from an OR-split
node can be labeled with a short text describing a
decision being made in the OR-split that leads to
the selection of one of the outgoing arrows.

Figure 1 shows an example workflow taken from
[10] and [7]. It shows a business process model for
expense request payments with an option to differ
between payment in US-$ or in Australian $.

2.2 Structural Correctness

While def. 1 defines the syntax of a workflow spec-
ification, it does not say anything about its seman-
tics. Not every workflow specification that can be
constructed using definition 1 makes sense when the
semantics for splits and joins is considered. An ex-
ample is shown in Fig. 2: Only one of the activities
2 and 3 will be performed after the OR-split, but
the following AND-join would wait for both activi-
ties being completed. Even if the end node will be
reached anyway via activity 1, it is very unlikely
that this is the behavior intended by the person
who has specified the workflow. For this reason it
is reasonable to call such a workflow specification
structurally incorrect.

We will see later in this paper that structural
correctness of a workflow can be decided with our
model checking approach. In fact, this is even
possible without much reasoning about possible
sources of structural conflicts. We just have to
take into account that the result of structural in-
correctness is that either a possible execution exists
that does not reach the end node or there are still
”uncompleted things to do” when the end node is
reached. This leads us to:

Definition 2 A workflow specification w =
(N,n0, f, T) is structurally correct if

– every workflow execution reaches the end node
f after a finite number of transitions.

– when the end node is reached, all other activi-
ties that have been started before are completed
and there are no remaining join nodes waiting
for incoming transitions.

Because of the limited space in this paper, we omit
the formal definition of ”a workflow execution” and
”taking a transition”, but it should be intuitively
clear what those phrases stand for with respect to
transitions and the semantics of split- and join-
nodes2. Def. 2 simply requires that every se-
quence of nodes and transitions finally reaches the
end node f after a finite number of transitions, and

2The only point that needs some clarification is that ac-
tivities after an OR-join should not be activated more than
once if more than one incoming flow reaches the OR-join. In
this point, the semantics used in this paper differs from the
one used in [10]

4

Signature from

Manager

Payment
Request

OR

Prepare Check
for ANZ Bank

Approval
from Finance

Director
OR

Reject
Request

for CITIBANK
Prepare Check

AND

Signature from
Finance
Director

Transfer Funds
to US−Account

AND

AND

Check
Issue

AND

Account

Update

Request

File
Payment

OR

US−$

A$

Approved

Rejected

OR

done

Figure 1: Sample workflow: Payment Requests

OR

Activity 2

Activity 3

START NODE

Activity 1

AND

AND

END NODE

... (part after
the AND−join
omitted)

Figure 2: Semantically incorrect workflow

there are no remaining join nodes waiting for an in-
coming flow when the end node is reached. Infinite
loops, AND-joins waiting for an incoming flow in-
finitely long and similar problems must not occur.
Sadiq and Orlowska [13] have identified five types
of possible structural errors in a workflow specifi-
cation. For all five types of errors, the workflow
specification will be identified as not being correct
using def. 2 or it is already disallowed by the re-
quirements for unique predecessors and successors
in def. 1.

2.3 Timed Workflow Specifications
with Ressource Constraints

Activities can require human, material or machine
resources, for example a director who has to sign
a bill (human resource), a vehicle to transport
heavy goods (material resource) or write-access to
a database (machine resource).

Often, these resources cannot be shared between
different activities: When a workflow is executed,
only one activity can access a resource exclusively.

This leads us to another possible source of in-
correct workflow specifications: When one activ-
ity needs a resource that is occupied exclusively by
another activity, the workflow is deadlocked and

5

Payment
Request

OR

Approval
from Finance

Director

Reject
Request

for CITIBANK
Prepare Check

AND

OR

AND

Check
Issue

AND

Account

Update File
Payment
Request

Prepare Check
for ANZ Bank

Signature from

Manager

OR

Signature from
Finance
Director

AND

Transfer Funds
to US−Account

{r1, r7}

{r2, r7}

A$

US−$

Approved

Rejected

{r1, r3, r7}

{r6, r10} {r3, r7, r10}

{r3, r8}
[1,3] [1,2]

[4,6][4,8]

[2,3]

[1,2]

{r1, r3, r7}

{r4, r8}

[1,2]

[1,2]

[2,3]

done

OR{r5, r8}

[3,8]

{r8, r9}

[1,2]

Figure 3: Workflow with information about time and resources

cannot proceed. In real life, we can formulate the
previous sentence even more strictly: If the other
activity occupies the required resource exclusively
until some deadline is reached, the workflow cannot
be completed in time and hence does not fulfill its
purpose.

To find out whether such a situation can occur,
we need to know something about the usage of re-
sources by the activities and about the duration of
the execution of activities.

Definition 3 Let R = R1, . . . Rn be a set of re-
sources, which cannot be shared between different
activities. For each activity a ∈ A, r(a) is the set
of resources needed by this activity.

Definition 4 The minimum time (expressed in
some time unit like seconds, hours or days) that
will be needed to execute an activity a ∈ A is de-
noted by m(a), the maximum execution time will be
denoted by M(a).

We call a workflow specification with the infor-
mation about minimum and maximum execution
time of its activities a timed workflow specification.
This information about timing is rather simple, but
it has been shown to be sufficient for answering ba-
sic questions about deadlines and resource conflicts

(for example by applying the Critical Path Method
[14]). Additional elements like an interrupt con-
struct can be added if necessary.

In Fig. 3, we add information about timing and
resources to the graphical representation of the
sample workflow. For each activity a ∈ A, m(a)
and M(a) are given as an ordered pair [m(a),M(a)]
above the activity box, the set r(a) is given below
the box. Empty sets r(a) are omitted. We have
taken this example from [7], with small modifica-
tions.

3 Model Checking of Timed
Workflow Specifications

3.1 The Model Checker Uppaal

To verify properties of a workflow specification, we
use the real-time model checking tool Uppaal [15].
We show how to translate a workflow specification
into a timed automata specification that can be
processed by Uppaal.

An Uppaal model is a set of timed automata,
clocks, channels for handshake-synchronization,
variables and additional elements. Information

6

about the syntax for Uppaal models can be found
in [15]. Here we describe some elements only.

Each Uppaal model is a set of processes (timed
automata) which are depicted as states (circles)
and transitions (arrows) between them.3

For each automaton, one state is marked as ini-
tial state (two concentric circles). A graphic repre-
sentation of an Uppaal process can look like Fig.
4:

idle logging in transferring data abort connection

Figure 4: Simple graphic representation of a pro-
cess in Uppaal

States can have the attribute ”committed”, de-
picted by the letter C inside the circle. If a state
is marked as ”committed, no time may pass in this
state, and it must be left immediately (i.e. no in-
terleavings with non-committed states in other au-
tomata are allowed).

When a transition is taken, clocks can be reset.
(In Fig. 5 the clock named clock1 will be reset
to 0 when the transition from ”idle” to ”logging
in” is taken), and global or local variables can be
manipulated. (In Fig. 5, a variable named active
is changed when the transition from ”logging in” to
”transferring data” or from ”abort connection” to
”idle” is taken).

idle logging in transferring data abort connection

clock1:=0 active:=1

active:=0

Figure 5: clocks, variables and an urgent location

Synchronization between different processes can
take place using channels. When a transition
is taken, a channel can be written into (writ-
ten as channelname!). To achieve a handshake-

3Note that the meaning of an arrow in the Uppaal model
is different from the meaning of an arrow in the graphical
workflow representation. Also a circle in the Uppaal model
does not stand for an activity like the rectangle in the graphi-
cal workflow representation does. Instead, one Uppaal pro-
cess (depicted by some arrows and circles) stands for an
activity.

synchronization, the corresponding reading opera-
tion (written as channelname?) can serve as a so-
called guard of another transition which can not be
taken unless reading from the channel is actually
possible. If a channel is defined as urgent channel,
the reading operation must be performed as soon
as possible, i.e. immediately and without a delay.
Fig. 6 shows a synchronization between a server
process and a client process:

idle need new data accept upload

waiting uploading

listen!

listen?

Figure 6: Using channels for handshake-
synchronization

Conditions on clocks or variables can also be used
as guards for transitions. This means that a transi-
tion cannot be taken until some condition (for ex-
ample an equation for some variable) holds. Fi-
nally, invariants can be added to a state. We will
use invariants of the type "clock<=m" which means
that the system is not allowed to remain in this
state for more than m time units. In Fig. 7, the
transition will be taken when the clock named time
is in the interval [2,4] and the value of the variable
active fulfills the equation active == 1.

state 1

time <= 4

state 2time >=2,
active == 1

Figure 7: Guards and invariants

3.2 Workflow Elements in Uppaal

Using the elements introduced in the last section,
we can define templates for the different kinds of
nodes in a workflow specification (as defined in
def. 1). Urgent channels are used to model the
transitions between the nodes.

7

3.2.1 Start Node

The start node process does nothing else than writ-
ing into a channel letsstart and setting the vari-
able running (which stands for the number of cur-
rently running activities) to 0:

letsstart!

running := 0

Figure 8: Start Node

3.2.2 Activity Node

The Uppaal process for an activity node waits un-
til it becomes activated by being able to read from
a channel in channel. When it is activated, it
sets a local clock to 0 and increments the variable
resource. The variable running (the number of
currently running activities) is incremented. After
staying in the next state for at least mintime, but
not longer than maxtime, the process comes to and
end which it signalizes by writing to the channel
out channel. When the channel can be read by
another Uppaal process, the variable running (the
number of currently running activities) is decre-
mented.

3.2.3 AND-Split

When activated (by the ability to read from
in channel), the Uppaal process for an AND-
split writes repeatedly to the channel out channel,
thus being able to activate more than one following
node. For AND-splits with two incoming flows as
used in our definition, this happens twice.

in_channel?
out_channel!

Figure 10: AND Split Node

3.2.4 OR-Split

Other than the AND-split, an OR-split process
writes to the channel out channel only once, thus
only one following node can be activated by reading
from this channel.

in_channel? out_channel!

Figure 11: OR Split Node

3.2.5 AND-Join

An AND-join process tries to read from two chan-
nels, in channel1 and in channel2, and proceeds
if and only if both of them are readable. (Note that
it is not required that in channel1 is readable be-
fore in channel2. If in channel2 is the first of
the two channels being readable, it just ”waits”
and the reading operation can be performed after
in channel1 became readable as well.)

in_channel1? in_channel2? out_channel!

Figure 12: AND Join Node

3.2.6 OR-Join

An OR-join process tries to read from two channels,
in channel1 and in channel2. It proceeds if it
can read from one of them.

in_channel1?

in_channel2?

out_channel!

Figure 13: OR Join Node

3.2.7 end-node

The Uppaal process end stands for the end node.
This process will reach the status named finished
at the end of the model’s execution.

finished
in_channel?

Figure 14: End Node

8

working

processclock <= maxtime

finishedprocessclock >= mintime
ressource--

out_channel!
running--in_channel?

processclock := 0,
ressource++,
running++

Figure 9: Activity Node

3.3 Translating Timed Workflow
Specifications to Uppaal Models

In the previous section we have shown how the gen-
eral elements of a workflow specification can be ex-
pressed as Uppaal models. To ”translate” a spe-
cial workflow specification into an Uppaal model,
we make use of Uppaal templates. The Uppaal
models of workflow nodes given in the last section
are regarded as templates. This means that the
names for variables, clocks and channels in the Up-
paal model are placeholders (called parameters in
Uppaal). To define an instance of an activity, we
use this template with parameters as follows:
Activity(processclock, mintime, maxtime,

resource, in channel, out channel), where

– processclock is a placeholder for a local clock
variable,

– mintime and maxtime are placeholders for nu-
meric constants,

– ressource is the placeholder for a name of a
single resource (For the sake of simplicity, we
assume that each process uses at most one re-
source from the resource set R. By adding more
placeholders, we can easily expand our model
to the general case.)

– in channel and out channel are placeholders
for urgent channels,

To instantiate the model for an actual workflow ac-
tivity from the template, the placeholders are sub-
stituted by actual variables:

For example, the definition of the activity ”Issue
Check” from the example shown in Fig. 3 can be
done by defining an instance of the template Ac-
tivity as follows:
IssueCheck := Activity(clock9,4, 6, r8,

s6 channel, a10 channel); (compare Fig.15
with Fig.9). The activity ”File Payment Request”
can be defined as: FilePaymentRequest :=

Activity(clock11,1, 2, r10, a10 channel,
a11 channel); Note that synchronization be-
tween the both activities can take place using
channel a10 channel, which replaces the param-
eter out channel in the ”Issue Check” activity,
but in channel in the ”File Payment Request”
activity.

Instances of control nodes can be built from the
template in the same way. If a workflow specifica-
tion is given according to def. 1, the translation to
the Uppaal model can be done automatically. For
each node, an instance of an Uppaal template will
be generated. This means that in general, only one
line of code will be added to the Uppaal model
for each node in the workflow specification4. Split
nodes with n > 2 outgoing transitions or join nodes
with n > 2 incoming transitions can be transformed
into a sequence of n-1 split/join nodes with two out-
going/incoming transitions.

The complete Uppaal model of our ex-
ample workflow can be downloaded from
ebus.informatik.uni-leipzig.de/∼laue.

3.4 Checking the Correctness of
Timed Workflows

Having built the Uppaal model of the workflow,
we can use the model checker to verify the required
properties. The property specification language
used in Uppaal is a subset of Timed Computa-
tional Tree Logic (TCTL) ([16].) Properties that
could be checked include:

”The end node will always be reached” (part 1 of
def. 2):
A<> end.finished
(The state ”finished” in the process end will always
be reached). This property can be checked to be
true for our example workflow.

4plus declarations of used variables, channels and clocks
and the information about the fact that the instantiated
process is part of the system.

9

working

processclock <= maxtime

finishedclock9 >0 4
r8--

running--
a10_channel!

s6_channel?

clock9:=0,
r8++,
running++

Figure 15: ”Issue Check” - an instance of the Activity template

”When the end node is reached, no activities are
waiting for being finished” (part 2 of def. 2):
A[] end.finished imply running == 0
This property can be checked to be true for our
example workflow. (Note that running will not
be decremented until the outgoing channel can be
written into.)
”There are no resource conflicts for resource r10”
A[] r10<2
Can be checked to be true. Note that this re-
quires reasoning about time: There are no re-
source conflicts, because ”Update Account” is al-
ways finished when the activity ”File Payment Re-
quest” starts. (Using the knowledge that ”Up-
date Account” and ”File Payment Request” are
the only activities that use resource r10, we
will get the same verification result by check-
ing the property A[] UpdateAccount.working +
FilePaymentRequest.working <2. This makes
use of the trick that boolean values like UpdateAc-
count.working are converted to numbers (0 or 1).
We would not need the variables r1,...,r10, which
helps to reduce the state space of the model.)
”There are no resource conflicts for resource r8”
A[] r8<2
The model checker does not only finds out that the
property is violated, it also gives a counterexample:
a resource conflict between the activities ”Signa-
ture From Finance Director” and ”Transfer Funds
to US-Account”

”If a request has been rejected, no check will be
issued.”
RejectRequest.finished --> not
IssueCheck.finished
Can be checked to be true.

”The whole process will be completed in no more
than 30 time units”
A<> end.finished and clock1<30
To check this deadline constraint, we use clock1, the
local clock of the first activity ”Payment Request”.
It is started at the begin of the whole workflow.
This property can be checked to be true. If we

replace ”30” by a smaller value, a counterexample
of a process that needs 29 time units to complete
will be given.

3.5 Remarks

3.5.1 Resource Pools

The approach can not only be expanded to multi-
ple resources (if r(a) has more than one element,
the model just needs more placeholders for re-
sources used by activities), it can also be used for
checking the usage of resource pools, for example
a database that allows up to 10 parallel connec-
tions. We would have to check a property like
resourcecounter<=10.

3.5.2 Abstraction

The timed workflow specification can be trans-
formed automatically into an Uppaal model which
can be used as the input of the model checker. How-
ever, a complete translation of the workflow speci-
fication, preserving all its properties, does not nec-
essarily have to be what we really want: Too many
details in the model can lead to too many states the
model checker has to examine.5 Instead of trans-
lating a workflow specification while preserving all
its properties, it may be a good idea to do some
abstraction before by asking which parts of the sys-
tem are relevant with respect to the property being
checked. If we check for resource conflicts for r10
in the example workflow, information about other
resources can be ignored. In fact, even only the
model built from the very last part of the workflow
(”Issue Check”, ”Update Account” and ”File Pay-
ment Request”) is relevant. Often, this abstraction
can be done automatically.

5In general, models with a large number of clocks lead
to a state-space explosion in timed model checking. Please
note, however, that this is not the case in our model (where
each activity adds a clock): When an activity is completed,
its clock is not used actively in comparisons and cannot lead
to new states.

10

4 Conclusion

The use of only one tool for verifying different
kinds of properties (with or without timing infor-
mation) and the simplicity of translating workflow
specifications to Uppaal models are the main ben-
efits from the results presented in our paper.

We have highlighted reasoning about structural
correctness and resource constraints, but using the
given approach, various other properties of work-
flow specifications can be checked as well. This in-
cludes the patterns identified in [3] and [17], includ-
ing existence, absence, precedence and response
patterns. In our further research, we will inves-
tigate such patterns, including patterns for time-
related properties (see [18]). Another direction of
our work will be to enable the business architects
who are responsible for defining workflow specifi-
cations to specify such properties without a deeper
knowledge in model checking or temporal logics.

References

[1] Koehler, J., Tirenni, G., Kumaran, S.: From
business process model to consistent imple-
mentation: A case for formal verification
methods. In: EDOC. (2002) 96–

[2] Janssen, W., Mateescu, R., Mauw, S., Spring-
intveld, J.: Verifying business processes using
SPIN (1998)

[3] Janssen, W., Mateescu, R., Mauw, S., Fen-
nema, P., van der Stappen, P.: Model checking
for managers. In: 5th and 6th International
SPIN Workshops. (1999) 92–107

[4] Matousek, P.: Verification of Business Process
Models. PhD thesis (2003)

[5] Blazewicz, J., Lenstra, J., Kan, A.R.: Schedul-
ing subject to resource constraints. Discrete
Appl. Math. 5 (1983) 11–24

[6] Kolisch, R., Hartmann, S.: Heuristic al-
gorithms for solving the resource-constrained
project scheduling problem: Classification and
computational analysis (1999)

[7] Li, H., Yang, Y., Chen, T.Y.: Resource con-
straints analysis of workflow specifications. J.
Syst. Softw. 73 (2004) 271–285

[8] Norström, C., Wall, A., Yi, W.: Timed au-
tomata as task models for event-driven sys-
tems. In: Proceedings of the Sixth Interna-
tional Conference on Real-Time Computing
Systems and Applications. (1999) 182

[9] Pozewaunig, H., Eder, J., Liebhart, W.:
ePERT: Extending PERT for workflow man-
agement systems. In: First EastEuropean
Symposium on Advances in Database and In-
formation Systems ADBIS. (1997) 217–224

[10] Sadiq, W., Orlowska, M.E.: Analyzing pro-
cess models using graph reduction techniques.
Information Systems 25(2) (2000) 117–134

[11] Onoda, S., Ikkai, Y., Kobayashi, T., Komoda,
N.: Definition of deadlock patterns for busi-
ness processes workflow models. In: Pro-
ceedings of the 32nd Annual Hawaii Interna-
tional Conference on System Sciences-Volume
5, IEEE Computer Society (1999) 5065

[12] Workflow Management Coalition: Terminol-
ogy and glossary. Technical report, Workflow
Management Coalition (1999)

[13] Sadiq, W.: On correctness issues in conceptual
modeling of workflows (1997)

[14] Hillier, F.S., Lieberman, G.J.: Introduction to
operations research. Holden-Day, Inc. (1986)

[15] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal
in a Nutshell. Int. Journal on Software Tools
for Technology Transfer 1 (1997) 134–152

[16] Henzinger, T.A., Nicollin, X., Sifakis, J.,
Yovine, S.: Symbolic Model Checking for
Real-Time Systems. In: 7th. Symposium of
Logics in Computer Science, IEEE Computer
Scienty Press (1992) 394–406

[17] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.:
Property specification patterns for finite-state
verification. In: FMSP ’98: Proceedings of
the second workshop on Formal methods in
software practice, ACM Press (1998) 7–15

[18] Gruhn, V., Laue, R.: Patterns for timed
property specification. In: 3rd Int. Work-
shop on Quantitative Aspects of Programming
Languages (QAPL 05), Edinburgh, Scotland,
April 2005, to appear. (2005)

