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ABSTRACT 

Soil microorganisms are important facilitators of ecosystem functions including: crop and 

pesticide residue decomposition, carbon sequestration, Nitrogen (N) fixation and nutrient cycling.  

Therefore, the abundance and diversity of soil microorganisms may act as a buffer against stress 

and change, ensuring that soils remain productive.  The Rotation ABC Long term soil experiment 

(LTSE) at Lethbridge, Alberta provides an opportunity to use modern molecular tools to study 

microbial dynamics in response to over a century of agricultural land management.  My goals 

were to assess cumulative effects of N fertilizer and different cropping intensities (CI) on soil 

microbial community abundance and diversity, both in soils collected in 2012 and in the soils 

archived over 100 years of wheat production.  Soil microbial community abundance and diversity 

of soils collected in 2012 were influenced by N fertilization and CI.  Phospholipid fatty acid 

(PLFA) analysis of the 2012 soils revealed a positive relationship between N fertilizer application 

and CI on the total active biomass.  Quantitative PCR analysis showed that N functional gene 

abundances were affected by significant interactions between N fertilizer and CI, and the 

abundances of denitrifier genes (nosZ and nirK) were also strongly influenced by higher levels of 

CI in the 2012 soils.  A short term soil storage experiment indicated that storage time and 

fertilizer treatment (45 kg N ha
-1

, 20 kg P ha
-1

 vs. unfertilized) influenced the amount of DNA 

extracted.  In addition, the results suggested that N and P fertilized soils had greater bacterial 

diversity than unfertilized soils.  Through the use of 16S rRNA gene profiling with these soils the 

results suggested that bacterial diversity and richness was lowest in the oldest samples, implying 

a shift over decades of agricultural production.  Soils collected after the introduction of N 

fertilizer displayed an increase in N function gene abundances, indicating an increase in N 

cycling potential.  Overtime, the changes in agricultural land management led to increased plant 
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and soil productivity, resulting in a positive relationship between years under agricultural land 

management and soil bacterial diversity and abundance.  
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1.0 GENERAL INTRODUCTION 

1.1. Introduction 

Nitrogen (N) composes 78% of earth’s atmosphere and is an essential molecular 

component of amino and nucleic acids which are the building blocks of terrestrial life.  In 

agricultural soils, N is significant because it is a limiting factor to plant growth and is also the 

only essential plant nutrient that is not released from the weathering of soil minerals (Schulten 

and Schnitzer, 1997).  The addition of N is well known to increase crop productivity and in turn 

increase plant residues.  Soil microbial communities contribute to decompose proteins, peptides 

and amino acids from plant and animal residues (Sowden et al., 1977), and mediate the 

biogeochemical processes regulating C and N cycles, therefore influencing plant productivity and 

global climate (Griffiths and Philippot, 2013).  The biodiversity of soil microbial communities 

provides resilience to changes in agronomic and environmental conditions and prevents loss of 

important soil functions (Rousk et al., 2009).  

Crop rotation also has an influence on soil microbes, in part because of the influence of 

plant residue inputs (Phillips et al., 2015).  Through microbial decomposition, both above and 

below ground plant residues become C energy substrates that shape microbial community 

structure and diversity (Freschet et al., 2013).  Soils with reduced cropping intensity (CI) or 

fallow undergo changes in the abundance and structure of their soil microbial communities 

because of the lack of plant inputs during in this non-cropped time period (Acosta-Martínez et al., 

2007).  Traditionally the use of fallow in crop rotation is used to retain moisture and soil N 

(O’Dea et al., 2015), however these benefits do not outweigh the drawbacks with respect to plant 

inputs.  The reduction of plant inputs during fallow reduces the amount of C substrates available 

for microbial growth and drives change in the soil microbial community structure over time 
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(Paterson et al., 2011).  Carbon from growing plants has a different composition than older soil 

C, and therefore promotes the growth of different microbial groups (Kemmitt et al., 2008).  In 

addition, variability in litter inputs between different crop rotations is known to alter biological 

processes (O’Dea et al., 2015).  Different crops have different C:N ratios and the C:N ratio of 

everything on and in the soil can affect crop residue decomposition and nutrient cycling (USDA, 

2011).  The land use history of a soil impacts a soil microbial community’s ability to degrade 

other residues (Griffiths and Philippot, 2013).  In contrast to fallow, decreased tillage and 

fertilizer usage are practices associated with increased microbial biomass, which in turn improves 

soil quality and fertility (Mbuthia et al., 2015). 

Soils may take decades after a change in land management to resume a steady state 

(Janzen, 1995).  The Rotation ABC Long term soil experiment (LTSE) at Lethbridge, Alberta 

provides an opportunity to study microbial dynamics in response to 100 years of wheat crop 

production and 45 years of N fertilizer implementation.  Although many studies have 

characterized soil properties of Rotation ABC (Janzen, 1995; Smith et al., 2012), none have used 

modern biochemical and molecular biology tools to investigate the microbial response to long 

term land management.  Use of DNA and PLFA based methods provide culture independent 

means to study soil microbial diversity.  While culture based methods are valuable, they may not 

be as representative as culture independent approaches owing to the fact that only 1% of bacteria 

can be grown in culture (Kirk et al., 2004).   

The overall goal of this project was to characterize the active and total soil bacteria 

community of Rotations A and C, with the aim learning more about the role of microbial 

abundance and diversity in key biogeochemical processes affecting the productivity and 

sustainability of these agroecosystem soils. The step wise changes in soil microbial diversity and 
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community structure over decades of changing agronomic practices were studied through the 

nucleic acids extracted from soil archives. The cumulative changes to soil microbial communities 

evident after 100 years of wheat crop production were determined using fresh soils collected in 

2012. These goals were accomplished by optimizing DNA extraction from archived soils, 

performing 16S rRNA gene targeted amplicon sequencing, quantitative PCR (qPCR) to estimated 

genetic potential for nitrification and denitrification and PLFA extractions to determine 

differences in broad level community structure of living biomass in soils with different treatment 

histories.  

1.2. Organization of the Dissertation 

The research presented in this dissertation is organized in manuscript format. Following 

this introduction and the literature review presented in Chapter 2, three studies are presented in 

Chapters 3 and 4.  These research chapters are organized around the LTSE evolution, with 

Chapter 3 investigating the whole cumulative change over 100 years of wheat production, and 

Chapter 4 examining stepwise shifts in the soil microbial community over time in response to 

management changes using archived soils.  The goal of the research presented in Chapter 3 was 

to compare the microbial biomass of soil microbial communities under continuous wheat 

monocropping to the 2
nd

 year in a 3 year wheat-wheat-fallow (WWF) cycle, as measured with 

PLFA biomarkers.  In Chapter 3 the hypotheses were 1) that soil microbial communities under 

continuous cropping (100% CI) would have larger biomass than those with WWF management 

(67% CI) management, and 2) that soil bacteria and archaeal community structures and N 

functional groups will become more abundant and less diverse over time due to the influence of 

N fertilizer.  Chapter 4 furthers the work of the previous chapter with a similar objective of 

determining the relationship between soil bacterial and archaeal communities and N functional 
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group abundance with increased N fertilizer treatments and continuous wheat cropping over 

decades.  In Chapter 4, the hypotheses were 1) soil bacterial populations would lose genetic 

diversity over decades of wheat monocropping and 2) the DNA yield and quality would decrease 

over time in air dried soils stored at RT.   
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2.0 LITERATURE SURVEY 

2.1 Importance of biodiversity for agroecosystem sustainability 

 In agriculture, biodiversity contributes to the productive capacity and resilience of an 

agroecosystem (Kennedy and Smith, 1995; Giller et al., 1997; Torsvik and Øvreås, 2002).  It is 

important to increase the working knowledge of the relationships between agricultural 

management practices, biodiversity and ecosystem services in order to develop more sustainable 

farming practices to feed an ever increasing global population (Wood et al., 2015).  Biodiversity 

allows soil functions to occur even during periods of stress or changes to the ecosystem because 

multiple organisms are able to complete the same ecosystem tasks, and with different 

environmental tolerances (Bhatia, 2008; Rousk et al., 2009).  Biodiversity is influenced by 

quantity and quality of amendments, human activities, climate, plant host and soil types (Wu et 

al., 2008).  In addition to soil microbes, the biodiversity in an agroecosystem is comprised of the 

different types and cultivars of crops in rotation, the types and  breeds of animals raised, the 

weeds and the wildlife present (Jackson et al., 2007; Frison et al., 2011).  

Soil microorganisms are part of the biodiversity of an agroecosystem and perform a range 

of ecosystem services including decomposition of crop and pesticide residues, carbon 

sequestration, and N fixation, therefore regenerating minerals that limit plant productivity (Venter 

et al., 2016).  Furthermore, bacteria in agricultural soils are potential agents of bioremediation, 

biocontrol, and plant growth promotion (Fox, 2003; Lupwayi et al., 1998; Top, 2003).  The 

reduction of soil microbial diversity as a result of a land management change is a potential loss of 

these functional traits and biological products.  In addition, losses of biodiversity impact the 

sustainability of an agroecosystem because of the  potential for increased reliance on fertilizer 

inputs to increase crop yields (Giller, 1997; Wood et al., 2015; Trivedi et al., 2016).  Thi 
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increased reliance on inputs results in the intensification of agriculture which in turn increases 

costs to both the producer and the environment (Tilman et al., 2001). 

2.2 LTSEs and soil archives 

A long-term soil experiment (LTSE) becomes a historical record of microbial community 

adaptation in an evolving agroecosystem.  A time frame of greater than ten years is more suitable 

for observing microbial adaptation in soils under agricultural crop production (Janzen, 1995).  

When observations are made over a shorter term, functional redundancy can make up for changes 

to a soil microbial community caused by changes in soil environmental conditions (Rousk et al., 

2009).  In studies that compared contrasting treatments in similar soils, the full impacts on soil 

microbial community structure were best observed over a longer time frame (Clark and Hirsch, 

2008).  Due in part to the technology available at the start of many historical experiments, soil 

samples associated with LTSEs were stored air dried at room temperature (Clark and Hirsch, 

2008). 

 Many of the global LTSEs maintain collections of archived soil samples including TAGA 

in the Netherlands, Broadbalk Wheat Experiment in the U. K., Sanborn Field in the U.S. and 

Breton Plots and Rotation ABC in Canada.  The maintenance of soil archives allows samples 

previously collected to be re-investigated, and help answer questions about long term effects of 

land management changes on soil microbial communities (Dolfing et al., 2004; Cary and Fierer , 

2014).  Archived soils also provide the baseline for the assessment of events such as disease, 

pollution and climate change.  The TAGA long term study in the Netherlands has been used for 

public health purposes to monitor the levels of antibiotic resistance genes from 1940 to 2008 

(Knapp  et al., 2009).  Similarly, the Broadbalk Wheat Experiment is a LTSE in Rothamsted, UK 

that was founded in 1843 and used to study impacts of N application types and rates on the soil 
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microbial diversity (Clark and Hirsch, 2008).  Sanborn field was initiated in 1888 to study the 

impact of crop rotation and manure on grain crop production (Rasmussen et al., 1998).  The 

Breton Classical Plots were established in 1930, with the original intent to find a system of 

farming suitable for a wooded soil belt (Izaurralde et al., 1996).  Recent publications describing 

such historical experiments have demonstrated that by using DNA based methods, the effects of 

agricultural practices on total bacterial diversity can be studied in archived soils (Clark and 

Hirsch, 2008; Dolfing et al., 2004; Knapp et al., 2009).  Specifically, the DNA obtained from 

archived soils can be used to characterize molecular targets and N functional groups (Clark and 

Hirsch, 2008).  Rotation ABC at Lethbridge Research Center was established in 1911 to assess 

the effects of crop rotation on soil quality.  Like most LTSEs, Rotation ABC has evolved over 

time to reflect technological advances in crop production (Janzen, 1995; Smith et al., 2012) and 

has applied N and P fertilizer treatments since 1967 and 1972 respectively.   

2.3 Effect of crop production on soil microbial abundance and diversity 

 Crop production is a component of agriculture that involves the growth of plants for food 

and fiber.  Crop rotation is the agricultural management practice of growing a sequence of plant 

species on the same land (Yates, 1954).  In monoculture cropping, the same plant species is 

grown repeatedly on the same land (Power, 1990).  It was observed that above ground diversity 

influences below ground diversity (Giller, 1997) and this relationship was demonstrated in many 

recent studies where increased above ground diversity, such as crop rotations with alternating 

crop types, were reported to have increased soil microbial diversity, bacterial biomass (Acosta-

Martinez et al., 2008; Venter et al., 2016) and crop yield (Di Falco , 2012) over a low diversity 

system such as monoculture cropping.  Acosta-Martinez et al. (2008) showed that a rotation of 

cotton-wheat had a significantly greater bacterial biomass and was 37% more diverse than a 
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cotton monoculture in the same soil type.  Shifting from monoculture to a crop rotation of 

alternating crop types results in varied plant residues because of differences in root lengths, root 

exudates, plant litter  and N and P mineralization (Kennedy, 1999; Soon and Arshad, 2002; 

Wardle et al., 2004; Costa et al., 2006) which can impact the soil microbial community.  For 

example, Brassica sp. and C3 grasses such as Triticum sp. in a rotation were reported to promote 

disease-suppressive bacteria (Mazzola et al., 2004; Hollister et al., 2013).  In contrast, legumes, in 

addition to the significant effects on their N fixing symbiont partners Rhizobium sp., are 

associated with reduction in disease suppressive bacteria (Latz et al., 2012; Latz et al., 2015).   

Cropping intensity (CI) describes the amount of fallow in a cropping sequence, for 

example wheat-fallow is 50% CI, wheat-wheat-fallow 67% and 100% occurs when there is no 

fallow time and a crop is harvested each growing season.  Cropping intensity is a driver of 

microbial biomass, with higher microbial biomass reported at 100% cropping intensity (CI), as 

compared to 50% CI (Acosta Martinez et al., 2007).  Lower CI decreased soil microbial 

abundance and diversity because of a lack of C inputs during this non cropped time period (Zelles 

et al., 1992; Lupwayi et al., 1998).  Traditionally, the purpose of fallow was to conserve soil 

moisture; however the practice was also correlated with losses in C from soils (Janzen, 1995; 

Acosta Martinez et al., 2007).  It is likely that resource availability has more impact on soil 

microbial community structure than the type of fallow used (chemical or tillage) (Helgason et al., 

2010). 

2.4 Effect of N fertilizers on microbial communities 

2.4.1 Nitrifiers 

Nitrogen is a macronutrient that is pivotal to global biogeochemical cycles.  As a 

macronutrient, N is a growth limiting factor in crop production, and therefore the biodiversity of 
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soil organisms involved in the N cycle are important topics of study (Top, 2003).  Soil N pools 

are comprised of inorganic and organic forms.  A classic view point is that plants compete with 

soil microbes for inorganic N (NH4
+
, NO3

-
), and plants do not directly take up much organic N 

(Date, 1972).  Immobilization is the action of microbial uptake of inorganic N, and therefore 

makes N inaccessible to plants.  The inorganic N is resulting from microbial decomposition 

(mineralization) of organic N containing compounds such as amino acids, amino sugars, 

peptides, proteins, and chitin (Harmsen and van Schreven, 1955).  More recently, N cycling is 

viewed as driven by microbial and mycorrhizal extracellular enzyme depolymerisation of N 

containing polymers (Schimel and Bennet, 2004).  In low N environments, plants and microbes 

compete for available N (Hodge et al., 2000).  Nitrification can occur in high N environments 

with enough excess NH4
+
 to support both plant and microbial populations (Schimel and Bennet, 

2004). 

 The first step in the nitrification process is ammonia oxidation, catalyzed by ammonia 

monooxygenase (amoA) part of a diverse group of copper containing membrane associated 

monoxygenase enzymes (Hatzenpichler, 2012).  Ammonia oxidation is influenced by oxygen 

levels, and the availability of ammonium (Wang et al., 2009).  The amoA enzyme is produced by 

both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) though they are 

phylogenetically distant with different cell size and structure (Prosser and Nicol, 2008; Schauss et 

al., 2009).  Ammonia monooxygenase (AMO) converts NH4
+
 to hydroxylamine which is then 

converted by hydroxylamine oxidase to nitrite.  Ammonia oxidation is considered the rate 

limiting step in this two-step conversion of NH4
+
 to NO2

- 
because ammonia oxidizers lack 

ecological redundancy (Top, 2003).  Many studies have determined that AOA are more abundant 

while AOB are more active, because of higher rates of amoA per cell that are not correlated with 
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increased activity (Schauss et al., 2009; Nicol et al., 2008; Tourna et al., 2008).  For example, a 

study by Di et al. (2009) found that though AOA were abundant, an increase in ammonia 

substrate did not increase their activity.  The higher numbers of AOA may suggest that they are 

not associated with nitrification (Di et al., 2009) or possibly that AOA provide resilience under 

differing conditions (Schauss et al., 2009).   

Soil environmental conditions of temperature, pH and soil management practices 

influence ammonia oxidation (Braker and Conrad, 2010; Wang et al., 2009).  The pH has an 

impact because of speciation which changes the chemical form and availability of substrates.  

Prosser and Nicol (2008) found that increases in pH decreased AOA abundance, while lower pH 

decreased AOB abundance.  Differences in soil environments create habitat niches, as 

demonstrated by AOA which are adapted to low nutrient conditions and AOB which have 

adapted to be competitive in high nutrient conditions (Schleper and Nicol, 2010). 

 The second step in nitrification is nitrite oxidation.  Nitrite oxidizing bacteria produce 

Nitrite oxidoreductase to convert nitrite (NO2
-
) to nitrate (NO3

-
).  Nitrite oxidizing bacteria are 

more functionally redundant than ammonia oxidizers and their activity is linked to ammonia 

oxidizers as a source of substrate (Ward and Bouskill, 2011).  Nitrification has been linked to 

direct emissions of N2O (Bateman and Baggs, 2005).  In some nitrite oxidizers the reaction of 

NO2
-
 to NO3

-
 is reversible, causing denitrification and a loss of plant available N.  

2.4.2 Denitrifiers 

Denitrification is a part of the N cycle that allows for microbial respiration in low oxygen 

conditions (Clark et al., 2012) however this function has a cost, resulting in losses of N 

(Wallenstein, et al., 2006).  There are four steps during bacterial denitrification: nitrate reduction, 
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nitrite reduction, nitric oxide reduction and nitrous oxide reduction (Philippot et al., 2007).  

Abundance and diversity of the genes for nitrite reductase (nirK, nirS) and nitrous oxide 

reductase (nosZ) can be used to estimate denitrification potential of a soil (Hallin et al., 2009; 

Philippot et al., 2007; Enwall et al., 2010).  The reduction of nitrous oxide results in the 

production of N2 gas, instead of GHG N2O, a potent GHG.  Many identified denitrifier genomes 

do not have genes coding for nosZ (Throback et al., 2004) which has implications on GHG 

emissions.  Most denitrifiers do not produce all the required enzymes to complete the reaction 

making it a community process (Zumft, 1997). 

  The abundance and diversity of a denitrifier community allows functional redundancy 

which provides tolerance to environmental conditions and stress (Phillipot et al., 2007).  

Wallenstein et al. (2006) describes denitrification rates as controlled by distal and proximal soil 

conditions.  Distal soil conditions that affect microorganisms over the long term are: climate, land 

management, soil type and texture.  Proximal soil conditions have immediate impact on 

microorganisms and include: C and NO3
-
 substrate concentration, O2, soil H2O and temperature.  

The response of a denitrifier community to N inputs is dependent on how the N substrate impacts 

the proximal and distal controls.  Carbon substrates influence denitrification activity primarily 

because denitrification is carried out by heterotrophs.  Unlike autotrophs that synthesize their 

own food, heterotrophs depend on external C sources for energy.  The addition of C substrate has 

been observed to prevent NO3
-
 leaching by stimulating denitrification, when NO3

-
 is not limited 

(Greenan et al., 2006).  Soil microbial communities respond to different C substrates differently, 

as observed by Giles et al. (2017) where it was reported that there was a significant difference in 

N2O emissions from an agricultural soil treated with 3 different C substrates.  Carbon substrates 

can be used by denitrifiers for growth or respiration, depending on conditions.  Soil bacterial 
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populations that use the substrate more efficiently are likely to increase in abundance (Giles et al., 

2017).  In a study by Morley and Baggs (2010), a significant interaction between C substrate and 

O2 concentration was reported.  Plant derived C is known to increase both soil respiration and 

denitrification rates, and as soil respiration increases, O2 is consumed (Morley and Baggs, 2010).   



 

13 

 

3.0 IMPACT OF 100 YEARS OF LAND MANAGEMENT PRACTICES ON SOIL MICROBIAL 

COMMUNITY STRUCTURE AND NITROGEN FUNCTIONAL GENE ABUNDANCE IN A LONG 

TERM SOIL EXPERIMENT 

3.1 Preface 

Soil microbes are drivers of agroecosystem functions that perform biogeochemical cycling 

of nutrients relevant to crop production. The biodiversity of soil microbes acts to buffer against 

potentially detrimental changes in environmental conditions, consequently permitting ecosystem 

services to be maintained.  In order to better conserve soil microbial diversity, it is important to 

gain understanding of the impact that intensive agriculture practices such as nitrogen (N) 

fertilizer application and continuous cropping have on soil microbial community structure.  Long 

term soil experiments (LTSEs) provide us with unique sites to observe the cumulative changes in 

biodiversity as influenced by decades of soil management.  This study characterized the soil 

microbial communities in an LTSE in which N fertilizer (45 kg ha
-1

) had been applied for 45 

years on a >100 year old continuous wheat and wheat-wheat-fallow (WWF) rotations.  This site 

allows an opportunity to observe a system in a steady state, allowing study of a soil microbial 

community structure formed in response to long term agricultural management practices.  The 

first objective of my study was the evaluation of soil microbial biomass under continuous wheat 

monocropping in comparison to the WWF rotation, both with N fertilizer application and without 

it.  The second objective was to estimate soil bacterial and archaeal communities and N 

functional group abundance changes under long term N fertilizer treatments and continuous 

wheat cropping management. 

3.2 Abstract 

In Canada, N fertilizer and crop rotation are common practices used to increase crop yields, 

reduce crop pests, preserve soil moisture and also promote soil fertility.  The objective of my 
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study was to determine if the long term use of N fertilizer (45 kg ha
-1

 ammonium nitrate) and 

different cropping intensities (CI) impact soil microbial community structure and abundance.  

This study focused on the subplots check (N0P0) and N (N45P0) of Rotation ABC, a LTSE in 

Lethbridge, Alberta.  Soil samples were collected post-harvest along four transects, in September 

2012.  Soil microbial community abundance and structure was altered in response to N fertilizer 

and CI.  Phospholipid fatty acid (PLFA) data indicated a statistically significant interaction of N 

fertilizer application and CI on the total active microbial biomass.  The 100% CI soils with added 

N had levels of total biomass that were two times greater than the 67% CI soils with added N and 

three times greater than both the 100% and 67% CI soils without N.  Quantitative PCR analysis 

determined ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) N 

functional gene abundances were affected by significant interactions between N fertilizer and CI,.  

Abundances of denitrifier functional genes nirK and nirS were significantly impacted under by 

the effects of cropping intensity and N fertility management, whereas nosZ was not significantly 

influenced.  The broad level changes observed in this study indicated that variations in soil N 

amendment rate and cropping intensity did alter soil microbial community structure.  Continuous 

cropping and N fertilizer use resulted in increased potential for N cycling, including genes for 

both the production and consumption of N2O, an important greenhouse gas (GHG).  

3.3 Introduction 

The early 20
th

 century marked the beginning of mechanized agriculture on the Canadian 

prairies, and the establishment of Rotation ABC experiment in Lethbridge, Alberta.  For decades 

afterwards, farmers commonly relied on in the inherent fertility of soils to sustain their crops.  

Over time it became apparent that nutrient additions in the forms of crop residue return and N 

fertilizer were necessary to maintain or improve crop yield levels and soil fertility.  The 
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application of inorganic N fertilizer has been a land management practice since the 1960s, 

necessary to bolster crop growth and maintain soil productive capacity.  However, the application 

of N fertilizers alone does not ensure soil productivity.  Microbial transformations are important  

in the biochemical cycling of N and it is well established that microbial biodiversity facilitates 

important soil functions under changing environmental conditions (Fox, 2003). 

The biochemical cycling of N involves N fixation from the atmosphere via symbiotic and 

free living microbes. The second stage of the N cycle is termed assimilation or immobilization, 

which is the process of N incorporation from inorganic to organic forms (Booth et al., 2005).  

The pool of inorganic N in soils can be derived from microbial decomposition (mineralization) of 

organic compounds such as plant or animals residues or from anthropogenic sources such as N 

fertilizers (urea, ammonium nitrate).  Plants incorporate inorganic N as NH4
+
 or NO3

-
 and can 

also utilize organic N once it has undergone microbial mediated decomposition from polymers to 

monomers (Schimel and Bennett, 2004)  

Nitrification can occur once there is an excess NH4
  
available to support both plant and soil 

microbial populations (Schimel and Bennett, 2004).  The nitrification process transforms NH4
+
 to 

nitrite and nitrate, and begins with ammonia oxidation catalyzed by ammonia monooxygenase 

(amoA) and the process is dominantly influenced by oxygen levels, and ammonium availability 

(Wang et al., 2009).  Ammonia monooxygenase converts ammonia to hydroxylamine in a rate 

limiting step because ammonia oxidizers lack ecological redundancy(Topp, 2003).  The amoA 

enzyme is produced by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria 

(AOB) (Schauss et al., 2009; Zhang et al., 2012), which are phylogenetically distant and have 

different cell size and structure (Prosser and Nicol, 2008).  Soil environmental conditions of 
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temperature and pH, as well as soil management practices, all impact ammonia oxidation because 

these parameters control general microbial growth (Wang et al., 2009; Braker and Conrad, 2011). 

Denitrification is a part of the N cycle resulting in a loss of N with rates primarily 

controlled by nitrate, oxygen, pH and carbon (Wallenstein et al., 2006).  There are four steps 

during bacterial denitrification: nitrate reduction, nitrite reduction, nitric oxide reduction and 

nitrous oxide reduction (Philippot et al., 2007).  Abundance and diversity of the genes for nitrite 

reductase (nirK, nirS) (Coyne et al., 1989) and nitrous oxide reductase (nosZ) can be used to 

estimate denitrification potential of a soil (Philippot et al., 2007; Hallin et al., 2009).  Many 

denitrifier genomes identified do not have genes coding for nosZ (Throback et al., 2004; Clark et 

al., 2012), which has implications on GHG emissions because the reduction of nitrous oxide 

results in the production of N2 gas, instead of a GHG.  

Most denitrifiers do not produce all the required enzymes to complete the reaction, 

suggesting denitrification is a community scale process (Zumft, 1997).  Denitrifier communities 

are abundant and diverse with high functional redundancy that allows tolerance of environmental 

conditions and stress (Philippot et al., 2007).  The response of denitrifier communities to N inputs 

is dependent on how the N increase impacts the proximal and distal controls on soil conditions 

(Wallenstein et al., 2006).  Proximal controls include substrate concentration, O2, soil H2O and 

temperature have immediate impact on microorganisms.  Distal controls affect microorganisms 

over the long term and include climate, land management, soil type and texture.  

Soils with reduced cropping intensity (CI) or fallow undergo changes in the abundance and 

structure of their soil microbial communities because of the lack of plant residue inputs during 

this non-cropped time period (Acosta-Martínez et al., 2007).  Examples of cropping intensity (CI) 
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include a wheat-fallow rotation (50% CI), and wheat-wheat-fallow (67% CI).  A cropping 

intensity of 100% occurs when a crop is produced each growing season without any years in 

fallow.  In Acosta-Martinez et al. (2007), biomass was found to be greater in soils under 100% 

CI, as compared to 50% CI.  The reduction of plant residue inputs during fallow (non-cropped 

time period) reduces the C substrates available for microbial growth and gradually shifts the soil 

microbial community structure over time to those microorganisms that tolerate low energy 

conditions (Paterson et al., 2011).  Fresh organic C from growing plants has a different 

composition than older soil organic C, and therefore promotes the growth of different microbial 

groups (Kemmitt et al., 2008).   

It takes decades after a change in land management for a soil to resume a steady state 

(Janzen, 1995).  The Rotation ABC LTSE at Lethbridge, Alberta provides an opportunity to 

study microbial dynamics in response to 100 years of wheat rotation management and 45 years of 

N fertilizer implementation.  Although many studies have characterized soil properties of 

Rotation ABC (Smith et al., 2012) none have used modern biochemical and molecular biology 

tools to investigate the microbial response to long term land management.  The two hypotheses 

for this work are:ammonia oxidizer and denitrifier communities will become more abundant over 

time due to N fertilizer use and cropping intensity will cause changes in soil microbial 

community composition.  The objective was to characterize total populations of ammonia 

oxidizers and denitrifiers using NFGs.  This work aims to grow the understanding of the function 

of microbial abundance and diversity in key biogeochemical processes affecting the productivity 

and sustainability of an agroecosystem. 
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3.4 Materials and methods 

3.4.1 Soil sampling methodology 

Soils were collected from Rotation ABC, a historic Agriculture and Agri-Food Canada 

long term soil experiment (LTSE) established in 1911 at Lethbridge, Alberta to assess the effects 

of crop rotation on soil quality (Janzen, 1996).  The site is located on an Orthic Dark Brown 

Chernozem has a mean annual precipitation (MAP) of 386.0 mm and mean annual temperature 

(MAT) of 5.7°C.  Rotation ABC was divided into plots under different crop rotation management 

(Fig. 3.1) with rotations A and C being the focus of this study.  Rotation A had been continuously 

sown with wheat (W) for over 100 years (Table A.1, Cultivars of wheat grown on Rotation ABC, 

Appendix A) and Rotation C had been wheat-wheat-fallow rotation.  Rotation C is comprised of 

3 plots, C1, C2 and C3 to allow all phases of the rotation to exist in all years. For this study, the 

second year wheat phase was selected for sampling (C1 in 2012) to de-emphasize the short term 

effects of the fallow phase on microbial abundance.  

Land management of Rotation ABC evolved over time to reflect technological advances 

in crop production (Janzen, 1995; Clark and Hirsch, 2008).  The advent of combine harvesters 

resulted in crop residues remaining in the field after 1943 and the green revolution influenced the 

addition of N (as ammonium nitrate) and P treatments from 1967 and 1972 respectively.  

Fertilizer was applied to plots cropped to wheat, however not to fallow plots, as follows: N (34-0-

0) broadcast prior to seeding at a rate of 45 kg N ha
-1

 and P (0-45-0) applied with seed at a rate of 

22.5 kg P2O5 ha-
1
.   

This study focused on the subplots check (N0P0) and N (N45P0).  Samples were collected 

post-harvest in September 2012.  Each subplot was sampled along four transects that function as 

pseudoreplicates to compensate for an experimental design that pre-dates the application of 
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modern statistical methods with replication to field studies.  Prior to soil sampling, any large 

masses of crop residue present were removed.  Soil cores were collected with truck-mounted, 

hydraulic driven soil coring equipment (Giddings Machine Company, Fort Collins, CO) along 

transects 1 to 4 (Fig. 3.1) with four cores 3.75 cm in diameter and 0 to 10 cm depth for each 

replicate point.  Cores were bulked for each replicate and stored on ice in portable coolers during 

transport then processed within 48 h.  Soil cores were homogenized by sieving to 2.0 mm.  Soils 

that were subsampled for nucleic acid isolation were stored at -80.0 °C while subsamples for 

PLFA were first lyophilized then stored at -20.0°C.  Soils subsampled for general soil property 

analyses were stored at 4.0°C.
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Fig. 3.1 Rotation A (A) and C (all phases of WWF rotation, C_1, C_2, C_3) soil sampling locations, modified from Ellert, 2003. 

Sampling transects are denoted as 1 to 4. Each Rotation consists of 4 fertilizer subplots, with 0 kg ha
-1

 of N and P (N0P0), 

 0 N and 20 kg P ha
-1

(N0P20), 45 kg N and 20 kg P ha
-1

 (N45P20) and 45 kg N and 0 kg P ha
-1

 (N45P0).

C_1: Rotation C (WWF) 

C_2: Rotation C (WWF) 

C_3: Rotation C (WWF) 

A: Rotation A 

 

 

 
 2

0
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3.4.2 Characterization of soil properties 

The general soil characteristics such as soil pH and inorganic nutrients N, P, Potassium (K) and 

Sulfate (S) were determined by ALS Environmental Lab (Saskatoon, Saskatchewan).  The pH 

was measured with a 1:2 soil: water solution; S and available Nitrate via a CaCl2 extraction 

(Alberta Agriculture, 1988 p. 19, 28); Potassium and P with the modified Kelowna method (Qian 

and Schoenau, 1994) was CaCl2 extracted (Table B.1, Appendix B).   

3.4.3 Phospholipid fatty acid (PLFA) analysis    

Phospholipid fatty acid analysis was used to characterize changes in microbial abundance 

and community structure in the N0P0 (kg ha
-1

) and N45P0 (kg ha
-1

) of Rotation A and C (WWF).  

The modified PLFA extraction of White (1979), adapted from Bligh and Dyer (1959) was used to 

perform the extraction, as described in Helgason et al. (2010).  All solvents used were HPLC 

grade, and deionized water was used for all analyzes.  The N2 for sample evaporation was of 

ultra-high purity (Praxair Canada Inc., Mississauga, ON).  All glassware was prepared in a 4% 

(v/v) Extran 300 soap bath for 2h then scrubbed and tripled rinsed with dH2O.  To remove any 

remaining lipids, glassware was soaked in 10% HCl (4 h for glass, 2 h for Teflon lined vial caps).  

Vials and caps were again tripled rinsed with dH2O.  Dry glassware was then heated to 400°C for 

4h in a muffle furnace (Thermo Fisher Scientific Inc., Waltham, MA).  The extraction of fatty 

acids was from 4.0 g of freeze dried, ground whole soil in 50 mL glass vials with 15.0 mL of 

2:1:0.8 (v/v) of MeOH:CHCl3:P solution.  Samples were protected from light and shaken 

horizontally for 2 hours then centrifuged for 10 min at 1000 rpm (25°C).  Next, the supernatant 

was transferred to another 50mL screw cap glass tubes and 5.0 mL P buffer and 4.0 mL CHCl3 

were added prior to mixing the solution.  The lower non-polar phase was transferred to an 8.0 mL 

tube and concentrated with N2 at 30°C with 2 sample washes with 1.0 mL methanol.  Samples 
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were resuspended in 1.0 mL chloroform prior to lipid separation step.  Neutral, glycol and 

phospholipids were sequentially eluted from a solid phase extraction column (0.50 g Si; Varian 

Inc. Mississauga, ON) with 5.0 mL chloroform, 10.0 mL acetone and 5.0 mL methanol, 

respectively.  The samples were then evaporated with N2 and stored at -20°C. Samples then 

underwent base catalyzed methylation in an excess of methanol which converted the 

phospholipids to methyl esters.  Methyl esters were then analyzed with a Hewlett Packard 5890 

Series II gas chromatograph (Hewlett Packard, Palo Alto, CA) fitted with an Agilent Ultra 2 

cross-linked 5%-Phenyl-methylpolysiloxane column; 23.85 m x 0.2 mm ID x 0.33 µm film 

thickness (Thomas Scientific, Swedesboro, NJ).  The injector temperature was set at 250°C, and 

the flame ionization detector at 300°C. The temperature program began with an oven temperature 

of 170°C, ramping to 260°C at 5°C minute
-1

 and then to 310°C at 40°C minute
-1

 with a total run 

time of 20.75 minutes.  Sample peaks were identified with MIDI software using the TSBA 40 

library (version 4.1) and MIS Calibration Standard Mix 1200-A (MIDI Inc., Newark, DE).  

Microbial biomass was calculated as per Hedrick (2005), based on the addition of an internal 

standard, methyl nonadecanoate (Sigma-Aldrich, Oakville, ON).  Total bacterial biomass was 

determined with lipid biomarkers i14:0, i15:0, a15:0, i16:0, i17:0, a17:0 (Hedrick et al., 2005) 

and 16:1ω7t, 16:1ω9c, 16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, and cy19:0 (Macdonald et al., 2004).  

The Gram positive (Gr +) community was identified based on the detection of  i14:0, i15:0, 

a15:0, i16:0, i17:0, a17:0 (Hedrick et al., 2005), and Gram negative (Gr -) with 16:1ω7t, 16:1ω9c, 

16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, and cy19:0 (Macdonald et al., 2004).  Arbuscular 

mycorrhizal fungi (AMF) were measured with 16:1ω5c (Olsson, 1999).  The ratios of 

cy17:0/16:1ω7c represent the Stress 1 biomarker, and cy19:0/18:1ω7c the Stress 2 biomarker as 

described in Grogan and Cronan, (1997). 
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3.4.4 Nitrifier and denitrifier gene abundances 

DNA extraction.  DNA was extracted from four technical replicate samples of 0.25 g of fresh 

soil with Mo Bio Power Soil kits according to the manufacturer’s instructions (Mo Bio 

Laboratories, Carlsbad, CA).  DNA extracts were pooled and then the quantity of DNA was 

determined spectrophotometrically using a NanoDrop 2000 (Thermo Fisher Scientific Inc., 

Waltham, MA).   

Construction of quantitative PCR standard curves.  A set of 6 plasmids containing gene 

fragments of interest were used as standards for absolute quantification (Table 3.1).  DNA was 

extracted from source materials and insert DNA amplified using oligonucleotide primers and 

reaction conditions as found in literature references.  PCR products were agarose gel purified 

with a Qiagen QIAquick gel extraction kit (Qiagen Inc., Toronto, Ontario) then quantified with 

NanoDrop 2000, as described above.  Gene fragments of interest were ligated into plasmid 

vectors using Invitrogen TOPO TA Cloning Kit (Thermo Fisher Scientific Inc., Waltham, MA) 

according to the manufacturer’s instructions.  Recombinant Escherichia coli DH5αT1R strains 

carrying successful ligations were inoculated into 3.0 mL LB broth (16 h, 37.0°C, 150 rpm) with 

50.0 μg/mL selective antibiotic, kanamycin or ampicillin, depending on plasmid.  Plasmid DNA 

was extracted from 2.0 mL of culture with a Qiagen QIAprep Spin Miniprep kit following 

manufacturer’s instructions.  Plasmids were quantified and then linearized using the HindIII 

restriction enzyme (Thermo Fisher Scientific Inc.).  Following digestion, reactions were pooled, 

purified from the agarose gel and quantified as described above.  The linearized plasmid with 

target DNA insert was then utilized to create dilution series and used to derive standard curves. 

Quantitative PCR assays.  Quantitative real-time PCR (qPCR) was performed in triplicate using 

an ABI Step One Plus, and Platinum SYBR Green qPCR SuperMix, (Life Technologies, 
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Burlington, ON) to detect the abundances of 16S rRNA, bacterial and archaeal ammonia 

monooxygenase (amoA), nitrous oxide reductase (nosZ), cytochrome cd1 type nitrite reductase 

(nirS) and copper nitrite reductase (nirK) gene copies g
-1

 soil (Table 3.1).  Bovine serum albumin 

(Life Technologies, Burlington, ON) was included in the assays at a rate of 0.2 μg μL
-1

 to reduce 

potential PCR inhibition caused by residual humic acids in the DNA extractions.  The passive 

reference dye 5-carboxy-X-rhodamine (ROX) was added to the reactions to normalize for 

differences in fluorescent reported signal between wells at a concentration of 50 nM.  Melt curve 

analysis was performed after each assay to test for the presence of primer dimer formation and 

assess the specificity of the reaction.  
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Table 3.1 Quantitative PCR gene targets, primers and reaction parameters. 

Gene Source Primer Name Primer 

conc.(μM) 

PCR 

vol.(μL) 

DNA † 

vol.(μL) 

PCR conditions References 

16S Pseudomonas 

stutzei 

 

EUB338/518 

 

0.03 20.0 4.0 95°C 120s ,40 of  (95°C 60s, 

53°C 30s, 72°C 60s, 80°C 

60s), 1 of  (95°C 15s, 60°C 

60s,+0.3°C per min to 95°C 

15s) 

Fierer et al., 

2005 

 

Bacterial 

amoA 

Nitrosomonas 

europa 

amoA1F/2R 

 

0.60 25.0 4.0 95°C 120s, 46 of  (95°C 45s, 

55°C 45s, 72°C 45s, 80°C 

60s),1 of  (95°C 15s, 60°C 

30s,+0.3°C per min to 95°C 

15s) 

Hallin et al., 

2009; 

Rotthauwe et al., 

1997;Stephen et 

al., 1999 

Archaeal 

amoA 

Fosmid 54d9 

 

crenamo23F/ 

616R 

 

0.13 20.0 4.0 95°C 120s, 45 of (95°C 60s, 

55°C 60s, 72°C 60s, 80°C 

60s),1 of  (95°C 15s, 60°C 

60s, +0.5°C per min to 95°C 

15s) 

Shauss et al., 

2009; Tourna et 

al., 2008 

nosZ Pseudomonas 

stutzei 

 

nosZ 2F/2R 

 

0.60 25.0 3.0 95°C 120s, 6 of  (95°C 15s, 

65°C 30s [-1°C with each 

cycle], 72°C 30s, 80°C 15s) 

,40 of (95°C 15s, 60°C 30s, 

72°C 30s, 80°C 15s),and 1 of  

(95°C 15s, 60°C 15s, +1.0°C 

per min to 95°C 15s) 

 

Clark et al., 

2012; Henry et 

al., 2006 

 

2
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nirS Pseudomonas 

stutzei 

 

cd3aF/ 

R3cd-R 

 

1.00 25.0 5.0 95°C 120s, 6 of  (95°C 15s, 

65°C 30s [-1°C with each 

cycle], 72°C 30s, 80°C 15s) 

,40 of (95°C 15s, 60°C 30s, 

72°C 30s, 80°C 15s),and 1 of  

(95°C 15s, 60°C 15s, +0.5°C 

per min to 95°C 15s) 

 

Clark et al., 

2012; Thröback 

et al., 2004 

 

nirK Sinorhizobium 

meliloti 

 

nirKH1F, 

nirK1R/R3Cu 

0.60, 

0.80 

25.0 3.0 95°C 120s, 6 of  (95°C 15s, 

63°C 30s [-1°C with each 

cycle], 72°C 30s, 80°C 30s) 

,40 of (95°C 15s, 58°C 30s, 

72°C 30s, 80°C 30s),and 1 of  

(95°C 15s, 60°C 15s, +0.3°C 

per min to 95°C 15s) 

Dandie et al., 

2011 

†qPCR reaction sample template 10ng μL
-1
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3.4.5 Data analysis 

PLFA. The absolute concentration of PLFA was calculated from GC peak data using Equation 

3.1, adapted from Hedrick (2005).  

PLFA nmol g 
-1 

soil = PAPLFA • [IS] • (ISvol) • 1000 nmol μmol
-1

          

   Soildw • PAIS • MWPLFA  

Where PAPLFA is the peak area of the PLFA, [IS] is the concentration of methyl nonadecanoate 

(19:0), (ISvol) is the volume of 19:0 (μL), Soildw is the weight of soil extracted (g dry weight), 

PAIS is the peak area of 19:0, MWPLFA is the molecular weight of the target PLFA (μg mol
-1

).  

Microbial abundance data were analyzed using ANOVA in SPSS v.20 and community profiles 

were subjected to nonmetric multidimensional scaling (nMDS) ordination v.5.0 (Kruskal, 1978).  

Quantitative PCR assays.  Gene copy numbers were standardized by the mass of DNA and g 

dry soil analyzed for each sample, then log10 transformed. Statistics were performed using a one-

way ANOVA in SPSS v.20 to determine the significance of cropping intensity and N fertilizer 

additions on gene abundances.  

3.5 Results  

3.5.1 Impact of land management practices on soil microbial communities 

Phospholipid fatty acid data indicated total biomass in the soils increased with N fertilizer 

application at 45 kg ha
-1

 and CI at 100%.  Both treatments had a significant interaction effect 

together on total microbial biomass (p<0.02, Table 3.2).  When different treatment levels were 

compared, 100% CI soils with N fertilizer had 2-3 fold greater total microbial biomass than the 

other soils tested.  The bacterial biomass (nmol PLFA g
-1

 soil) was significantly increased in 

response to both N fertilizer and CI; however, fungal biomass was only significantly increased by 

N (Table 3.2).  The fertilized soils (45 kg N ha
-1

) soils had higher biomass than the unfertilized 
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soils (0 kg N ha
-1

) soils.  The abundance of both Gr- and Gr+ bacteria populations increased 

significantly in response to N fertilizer (Table 3.2).  The abundance of AMF was not significantly 

influenced by N or CI (Table 3.2) possibly due to the lack of P amendments in the soils studied 

(N0P0, N45P0).  The abundance of AMF was greatest in the continuous wheat N45P0 soil.   

Nonmetric multidimensional scaling (MDS) ordination analysis of PLFA profiles 

(expressed as log transformed mol %) grouped each soil PLFA profile according to similarity, 

with a final stress of 7.67 (Fig 3.2).  The soil microbial community structure of Rotation A N45P0 

and C N0P0 were distinctive, whereas A N0P0 and C N45P0 were more similar.  Cropping intensity 

and N fertilizer application (Table B.1) had a significant (p<0.01) effect on pH with the pH 

decreasing in response to increased cropping intensity (CI) and N45P0 (kg ha
-1

).  There was a 

significant interaction of CI and N fertilizer on NO3 availability (p<0.01, Table B.1). The results 

from average wheat yield from 1912 to 1967 for continuous wheat (A) and W-W-F(C) under N0 

(kg ha
-1

) and N45 (kg ha
-1

) treatment suggest that yield increased with N fertilizer additions 

(Table C.1).   
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Table 3.2 Quantities of Total Bacterial and Fungal biomass, Gram positive (Gr+), Gram negative (Gr-) bacteria, 

arbuscular mycorrhizal fungi (AMF) and Stress 1 and Stress 2 biomarkers as indicated from PLFA characterization 

of 2012 soil samples (n=16). Standard errors indicated in parenthesis, and means followed by different letters indicate a significant difference 

(p<0.05). 

Rotation N 

Fertilizer 

kg ha
-1

 

 Total 

biomass 

Bacterial  biomass Fungal 

biomass 

Gr+  Gr- AMF Stress 1 Stress 2 

   nmol PLFA g
-1

 soil 

 

    

A 0  12.9(1.1)b
 

6.6(1.9)b
 

0.5(0.2)b
 

1.67(0.2)b
 

 4.3(0.3)b
 

0.8(0.1)a
 

0.4(0.0)a
 

0.3(0.0)a
 

A 45  36.1(6.5)a
 

16.7(1.9)a
 

2.1(0.6)a
 

3.9(1.3)a
 

 12.0(3.0)a
 

3.8(2.3)a
 

0.4(0.1)a 0.3(0.0)a
 

C 0  12.5(1.3)d
 

6.2(0.5)d 0.4(0.1)b
 

1.6(0.1)b
 

 4.0(0.2)b
 

0.7(0.1)a
 

0.4(0.0)a
 

0.2(0.1)a
 

C 45  17.2(2.5)c
 

8.5(0.8)c
 

1.1(0.6)a
 

3.3(0.8)a
 

 5.6(0.9)a
 

1.0(0.1)a
 

0.4(0.0)a
 

0.3(0.0)a
 

      ANOVA 

p-values 

     

 CI  NS * NS NS  NS NS NS NS 

 N   * ** * *  ** NS NS NS 

 CIxN  * NS NS NS  NS NS NS NS 

*,**,*** Significant at p≤0.05,0.01,0.001 

 

2
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Fig 3.2 Nonmetric multidimensional scaling (MDS) analysis (Final stress=7.67) of N fertilizer and cropping intensity  

effects on PLFA profiles (log transformed mol% PLFA abundances) from Rotation A (continuous wheat) and C (WWF)  

from 2012 soils. Circles indicate PLFA profiles of similar composition: Rotation A plus 45 kg N ha
-1 

(dark blue), Rotation  

A at 0 kg N ha
-1

 (light blue), Rotation C plus 45 kg N ha
-1

(dark green) and Rotation C at 0 kg N ha
-1

 (light green).

Axis 1 (69%) 

Final stress =7.67 
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Rotation A 45 kg N ha
-1 

 

Rotation A 0 kg N ha
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-1 

 

Rotation C 0 kg N ha
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3.5.2 The effect of land management practices on N functional gene abundances 

Real time quantitative PCR was used to determine the abundance of both ammonia 

oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) N functional genes.  The gene 

copies per g
-1

 of dry soil of both AOA and AOB were affected by significant interactions 

between N fertilizer (0 and 45 kg ha
-1

 ammonium nitrate) and CI.  Ammonia oxidizing bacteria 

abundance ranged from 7.1 to 8.0 log gene copies g
-1

 dry soil and AOA abundance was measured 

at 7.6 to 8.1 log gene copies g
-1

 dry soil (Fig. 3.3).  Real time PCR was used to determine the 

abundance of three targeted denitrifier functional marker genes nosZ, nirK and nirS.  Cropping 

intensity and N fertilizer treatment had a significant (p<0.05) effect on nirK abundance, with 

7.35 to 7.90 log gene copies g
-1

 soil.  The cytochrome cd1 dependent Nir gene nirS was observed 

to be significantly influenced by cropping intensity and N fertilizer treatment (p<0.05), with 5.40 

to 5.90 log gene copies g
-1

 soil (Fig. 3.4). The abundance of nosZ ranged from 9.41 to 9.96 log 

gene copies g
-1

 soil, and was not significantly influenced by CI or N fertilizer treatment (Fig. 

3.4). 
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Fig. 3.3 Ammonia oxidizing archaea (a) and ammonia oxidizing bacteria (b) abundance as affected by 

cropping intensity and N fertilizer levels (kg N ha
-1

); bars denote standard error.  Means followed by 

different letters indicate a significant difference (p<0.05). 
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Fig. 3.4 Denitrifier abundance as estimated with log gene copies nosZ (a), nirK (b) and nirS (c) g
-1

 soil; bars denote standard error.  Means 

followed by different letters indicate a significant difference (p<0.05).  
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3.6 Discussion 

3.6.1 Impact of land management practices on soil microbial communities 

The abundance and diversity of the soil microbial community was altered in response to 

different land management practices, specifically to N fertilizer and CI rates.  Through the 

comparison of different treatment levels, it was observed that 100% CI soils with 45 kg N 

fertilizer ha
-1

 had 2-3 fold greater total biomass than the other soils studied.  The presence of a 

consecutive crop f for 100 years and N fertilizer for 45 years in Rotation A soils increased plant 

productivity and also the supply of C substrates available to soil microbes, and as a result these 

organisms were estimated as more abundant than those in the Rotation C soils. It has been 

reported that concentration of organic matter in Rotation A was higher than in Rotation C 

(Janzen, 1995) and that N fertilizer tends to increase plant productivity in both rotations (Janzen, 

1987). In addition, average grain yield data from Rotation A and C (1912-2011) indicated that N 

fertilizer tended to increase yields (Fig.C.1, Appendix C). Similar results were found by Zhang et 

al. (2012), where PLFA biomarkers were used to detect that both N fertilizer and straw residues 

were factors in total biomass and bacteria increases of a long term rice-wheat rotation.  Zhang 

and coworkers found significantly more biomass in the N-P-K plus straw residue soils than in the 

N-P-K without straw residue or unfertilized check soils.  The stimulating effect of C inputs on 

total biomass was also observed in a study by Shi et al. (2015) which linked an increase in corn 

stalk application rates to increased abundance of total biomass, as well as broad bacterial and 

fungal groups.  Bardgett  et al. (1999) found positive correlation between increased plant 

productivity and increased total PLFA, while Börjesson et al. (2012) demonstrated a link between 

additions of N and increases in total biomass in soils that were not C starved.  
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The abundance of bacteria significantly increased in response to both N fertilizer and CI 

and fungal biomass was significantly increased by N (Table 3.3).  In low N systems such as the 

N0P0 soils, plants compete with microbes for organic N, which limits the microbial growth 

(Schimel and Bennett, 2004).  The optimal C:N ratio for microbial growth is 25:1, and so with 

wheat residue at 80:1, an N deficit occurs that curtails microbial growth without the addition of 

more N.  Consequently, N fertilizer is a factor in the greater biomass of 100% CI over 67%CI, 

evident because the N45P0 soils have higher abundance than the N0P0 soils.  In contrast, many 

studies have found that the addition of N decreased bacterial abundance (Langer and Klimanek, 

2006; Rousk et al., 2011; Shi et al., 2015) or had no impact (Verdenelli et al., 2013; Zhao et al., 

2014b).  Increased fungal abundance has been linked to N fertilizer both by Zhao et al. (2014b) 

and Ngosong et al. (2010), while Börjesson et al. (2012) did not observe any differences between 

soils with and without N amendments.  Börjesson et al. (2012) didn’t specify if the soils were 

ground prior to extraction, as grinding increases the amount of fungal PLFA extracted (Allison et 

al., 2005). 

The abundance of both Gram negative (Gr-) and Gram positive (Gr+) bacteria populations 

increased significantly in response to N fertilizer, with Gr- in greater abundance overall than Gr+ 

(Table 3.3).  The link of N to abundance suggests that N is the more limiting growth factor than 

plant residue derived C for these groups of bacteria, either directly or indirectly.  Directly, the 

addition of fertilizer reduces N limitations, allowing microbial growth to occur, and indirectly the 

addition of N increases plant productivity and crop residue inputs resulting in greater C inputs.  

In a 10 year experiment, Verdenelli et al. (2013) evaluated the effects of six different fertilizer 

treatments on soil microbes.  Their results indicated that both Gr- and Gr+ bacteria were 
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stimulated with the addition of balanced fertilization with NPS and micronutrients (Verdenelli et 

al., 2013).   

Although the unfertilized check plots are lower in nutrients than the other soils studied, 

none of the soils differed significantly for stress markers measured (Table 3.3).  Stress markers 

are a measure of environmental pressures which can cause increased fluidity of cell membranes, 

and in order to compensate for these detrimental changes to molecule transport, changes in 

phospholipid composition occur (Kaur et al., 2005).  Neither the N fertilization treatment nor the 

fallow frequency led to detectable differences in stress markers, so the results suggest that N and 

C are not the most limiting factor for these soil bacterial populations.  Both stress marker ratios 

were low in comparison to values reported in a tillage study by Helgason et al. (2010), where 

ratios of 0.3 to 1.2 were observed in typical Canadian prairie agricultural soils.  Another potential 

explanation for the low stress markers is that soil fertility was partially augmented by 

atmospheric deposition of N.  Anthropogenic sources of N are found in the environment, 

including emission from fertilizers, manures, fossil fuel and biomass combustion.  The N2O 

remains in the atmosphere, but he remainder are deposited (Bobbink et al., 2010).   

The abundance of AMF was greatest in the continuous wheat N fertilized  soil, suggesting 

that plant residue C inputs and nitrate have some effect on their growth.  A recent study utilized a 

qPCR assay to measure AMF abundance with symbiosis (SYM) gene targets (Nouri et al., 2014) 

and observed that NO3
-
 enhanced the colonization of AMF species Rhizophagus irregularis on 

Petunia hybrida at lower concentrations and inhibited AMF at higher concentrations.   

Whole community analysis with PLFA profiles was used to determine soil microbial 

communities that are similar or different (Zelles et al., 1999).  The soil microbial community 
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structure of Rotation A N45P0 and C N0P0 were distinctive, while A N0P0 and C N45P0 were more 

similar.  The significant differences in growth conditions as determined by soil nutrient analysis 

(Table B.1, Appendix B) may be driving these distinct soil microbial communities suggested by 

the nonmetric MDS analysis (Fig. 3.2).  Cropping intensity and N fertilizer application (Table 

B.1, Appendix B) had a significant (p<0.01) effect on pH, with the pH decreasing in response to 

increased cropping intensity (CI) and N45P0 (kg ha
-1

).  There was a significant interaction of CI 

and N fertilizer on NO3
-
 availability (p<0.01, Table B.1, Appendix B).  These results indicate that 

important parameters of microbial growth (pH and N availability) were influenced by the 

agricultural management practices of N fertilization and 100% CI and provide evidence of 

divergence from a shared origin.  

Soil microbial communities perform key biological functions in agroecosystems including 

nutrient cycling and N fixation.  Therefore it is worthwhile to study the impact of N fertilizer and 

cropping intensity on soil microbial community structure.  Phospholipids are essential 

components of living cells, and therefore the measurement of total PLFA from soils are useful 

indicators of viable microbial biomass in environmental samples (Zelles, 1999; Frostegård et al., 

2011).  The use of mineral fertilizers is known to induce changes in microbial biomass 

(Verdenelli et al., 2013) and PLFA is a culture independent means to assess broad level changes 

coinciding with land use history (Schloter et al., 2003).  This work with PLFA provides a broad 

overview of the soil microbial response to the cumulative effects of 100 years of continuous 

wheat cropping and 45 years of N fertilizer.  

3.6.2 The effect of land management practices on N functional gene abundances 

The copy numbers of AOB have been adjusted as in Norton et al. (2002) to reflect that 

there are two to three ammonia monooxygenase gene copies per cell.  In terms of AOA:AOB, 
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unfertilized 100% CI soils were 13:1, fertilized 67% CI soils were 7:1, while unfertilized  67% CI 

and fertilized 100% CI were lower, with 1:1 and 1:2 respectively.  The results indicate that 

although continuous wheat cropping significantly increased bacterial abundance over the 67% CI 

soils (Fig. B.1, Appendix B); the distributions of AOB and AOA do not follow the same trend.  

 Until 10 years ago, the only known ammonia oxidizers were bacteria (Prosser and Nicol, 

2008) and it is only more recently that archaea have been identified with the ammonia 

monooxygenase gene (amoA) (Jia and Conrad, 2009).  Very few groups of organisms have the 

ability to oxidize ammonia to nitrate.  Rates of oxidization likely differ in AOA and AOB based 

on abundance and activity rates of amoA per cell.  The phylogenetic and physiological 

differences between AOA and AOB (Shauss et al., 2009) might provide a basis for the 

differential growth rates in response to the different growth conditions created by long term N 

and C gradients in these soils.  The presence of both types of ammonia oxidizers is an example of 

functional redundancy with two phylogenetically separate groups performing the same step in the 

cycling of N.  

 In my study, the soils differ in C and N substrate inputs.  Many other studies have 

documented responses of AOA and AOB to changes in soil conditions.  In Chu et al. (2007), long 

term mineral fertilizer (NPK) was reported to shift AOB DGGE patterns, implying genetic 

adaptations in response to changes in growth conditions.  In my work the abundances of AOB 

vary in response to a significant interaction of CI and N.  In a long term fertilizer experiment with 

a wheat and maize rotation, He et al. (2007) had similar results, where AOB abundance increased 

following additions of N fertilizer paired with organic matter versus N fertilizer alone.  The 

abundance of AOB  and AOA in the He et al. (2007) study were 6.0 to 8.0 and 6.6 to 8.0 log gene 

copies respectively, which is similar to the ranges observed in the 2012 fall Rotation A and C 
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soils.  In Leininger et al. (2006) the addition of N stimulated both AOA and AOB growth in N 

fertilized soils; however other studies have observed an AOA preference for low ammonia 

concentrations (Di et al., 2009; Hatzenpichler, 2012).  

Quantification of denitrifier gene abundance provides some insight into the influence of 

decades of N fertilizer and a century of variations in CI on these important soil organisms.  It is 

important to study the potential changes to the denitrifying bacteria community in agricultural 

systems because these processes may result in the both loss of N from plant production, and the 

release of the greenhouse gas (GHG) N2O.  Nitrite reductase genes (nirK, nirS) are the most 

commonly used molecular markers for denitrifier studies (Wallenstein, 2006) because nitrite 

reduction is the first step in the reaction that results in a loss of N as a gaseous product.  

Abundance and diversity of the genes for nitrite reductase (nirK, nirS) (Coyne et al., 1989) and 

nitrous oxide reductase (nosZ) can be used to estimate denitrification potential of a soil (Hallin et 

al., 2009; Philippot et al., 2009; Enwall et al., 2010).  The nirK gene was detected in greater 

abundance than nirS, implying that bacteria with nirK are more responsive to the growth 

conditions influenced by N and CI treatments.  Cropping intensity also has a significant 

(p<0.001) effect on nirK abundance, which was found to increase in response to CI, so was 

greater in the continuous wheat soils than the WWF soil.  The cytochrome cd1 dependent Nir 

gene nirS was observed to have similar abundance in all plots (Fig. 3.4) and remained unaffected 

by CI or N fertilizer treatment.  The nitrous oxide reductase gene nosZ expresses the enzyme 

responsible for the conversion of N2O to N2 and is not found in all denitrifying bacteria.  If a soil 

has lower nosZ abundance, it may have environmentally damaging consequences because 

without it, denitrification results in N2O emissions, instead of merely losing N as dinitrogen gas 

to the atmosphere (Clark et al., 2012; Throback et al., 2004).  In my study I observed that 
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continuous cropping resulted in greater abundance of nosZ, and so may be more environmentally 

beneficial than the use of fallow.  The abundance of nosZ was significantly influenced (p<0.02) 

by CI with 100% CI soils having significantly greater abundance than 67% CI soils.  In Hallin et 

al. (2009), an increase in nirK and nosZ gene abundances was reported with 100% CI (maize) 

when compared to 0% CI (bare fallow).  My results suggest that fertilizer application contributed 

to a slight change in pH (Table B.1), and Hallin et al. (2009) also found that the type of fertilizer 

used influences denitrifier abundances as a result of pH changes.  In Dandie et al. (2011), the 

denitrifier communities were studied in both riparian and agricultural soils (maize).  Nitrous 

oxide reductase abundance was observed to be greater in the riparian soils, so therefore the more 

influential factor was soil moisture rather than the amount of N.  Dandie et al. (2011) had similar 

findings because nirK abundance was greater than nirS, suggesting the nirK microbial 

community responded more positively to N fertilized maize production than those harbouring the 

nirS gene.  In Clark et al. (2012), the abundance of denitrifier communities was assessed in a 

LTSE experiment composed of five different treatments: an unfertilized plot, two levels of N 

(144 kg ha
-1

, 288 kg ha
-1

), a farm yard manure plot and woodland plot.  With the exception of the 

woodland plot, all soils were continuous wheat cropped.  Their results were similar to Rotation A 

and C, with the abundances of nosZ and nirK responding to changes in N rate and were greater 

than nirS.  

3.7 Conclusions 

Ecosystem services help to make agricultural crop production viable (Giller et al., 1997; 

Topp, 2003) and the size and composition of a soil microbial community determines the range 

ecosystem services.  The LTSE Rotations A and C (Lethbridge, AB) were studied to gain 

insight in to the impact of 100 years of agricultural management on nitrogen functional genes in 
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soil microbial communities.  These soils differed in terms of C returns and N input, and because 

of the tremendous buffering potential of soils, it often takes decades for soils to adjust to 

changes in treatments.  Decades of N fertilizer application combined with over a century of 

continuous wheat production resulted in increased total and bacterial biomass, as compared to 

unfertilized WWF.  The biomass of fungal, Gr – and Gr+ bacterial groups were significantly 

increased by N fertilizer.  Overall, the continuous presence of a crop every growing season 

combined with N fertilization  in Rotation A soils increased the supply of C substrates (from 

crop residues) available to soil microbes, and as a result these organisms grew more abundantly 

than those in the WWF soils.  Characterization of ammonia oxidizer and denitrifier populations 

studied suggested these N cycling microorganisms responded to differences in C and N inputs 

resulting from decades of differential soil amendments.  In my study, the ratio of archaeal 

ammonia oxidizers was much higher than bacterial ammonia oxidizers in unfertilized soils.  In 

contrast, the AOA and AOB populations were more equivalent in the fertilized soils indicating a 

tolerance for different soil environments.  Denitrifier abundance was positively influenced by 

CI, with significantly greater nosZ and nirK populations in the 100% CI soils.  These results 

indicate a potential for losses of N2 gas, given suitable anoxic soil conditions.  The changes 

observed in this study indicated that variation in soil amendments and crop production 

methodology did alter soil microbial community structure.  
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4.0 CHARACTERIZATION OF BACTERIAL DIVERSITY AND N FUNCTIONAL GENE ABUNDANCE 

BASED ON DNA EXTRACTED FROM ARCHIVED SOILS 

4.1 Preface 

In Chapter 3, the cumulative response to decades of nitrogen (N) fertilizer amendments and 

a century of varied cropping intensity (CI) on soil microbial community structure and N 

functional gene abundance were discussed.  The study of the relationship between N fertilizer and 

soil microbes was important because both are influential components of sustainable crop 

production.  In the following chapter, my work investigates the soil archives that accompany the 

Rotation ABC.  The following study helps to answer the questions: do soil bacterial and archaeal 

communities and N functional groups become more abundant over time with N fertilizer 

treatments; do soil bacterial populations lose genetic diversity during 100 years of wheat 

monocropping; and, does DNA yield and quality decrease over time in air dried archived soils?  

Since it has not been determined if viable DNA can be extracted and characterized in order to  

better understand the long term effects of CI and N on soil microbial communities at this 

location, my work fills a knowledge gap.   

4.2 Abstract 

The Rotation ABC LTSE at Lethbridge, Alberta was established in 1910 to study the effect 

of fallow and fertilizer in a spring wheat rotation. The associated soil archives provide a long-

term record of change in many common agricultural practices.  The storage conditions of 

archived soil collections (air dried and at room temperature) present challenges for the 

preservation of microbial diversity and for the extraction of DNA representative of microbial 

populations.  In a short term study, fresh soils were air dried, ground and then stored at room 

temperature with DNA extracted at 8 time points (T0 to T8) over 30 months.  Both storage time 

and N45P20 fertilizer treatment influenced the amount of DNA extracted.  The diversity of the soil 
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microbial community did not change from T0 to T8, with Inverse of Simpson scores higher in 

N45P20 fertilized soils than in unfertilized check.  Rotation ABC soil samples archived in 1910, 

1940, 1967, 1993 and 2011 were characterized using 16S rRNA gene profiling.  An increased 

relative abundance of several bacterial groups was observed in the soil samples including: 

Proteobacteria, Acidobacteria, Planctomycetes, Armatimonadetes, and Nitrospira.  The diversity 

of soil bacteria was estimated with Sobs and increased between soil samples from 1910 and 2011.  

Quantitative PCR (qPCR) results suggested 100% CI and N fertilizer treatments increased 

nitrogen functional gene (NFG) abundances more than 67% CI and check soils did, likely due to 

greater C and N substrate availability.  My results indicated the abundance of ammonia oxidizing 

archaea was more influenced by CI than N fertilizer, while ammonia oxidizing bacteria were 

more stimulated by N fertilizer additions than CI.  Denitrifiers with nosZ responded positively to 

both 100% CI and N fertilizer, while populations with nirK and nirS were more stimulated by 

100% CI than N fertilizer.  

4.3 Introduction 

Many research institutions exist globally that maintain collections of archived soils 

obtained through short and long term field experiments (Dolfing and Feng, 2015).  Soil archives 

function as references for assessing change to soil and environmental quality.  As new techniques 

become standard, soils collected before environmental disturbances are baselines that allow the 

assessment of effects to soil microbial communities to be more certain (Cary and Fierer, 2014).  

DNA based microbial studies of soil archives are advantageous compared to culture based 

investigations because bacterial DNA survives the archiving process much better than culturable 

bacteria (Clark and Hirsch 2008), and also because the unculturability of the majority of soil 

microbes leads to biased results (Martin-Laurent et al., 2001).  Although culture based studies of 
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archived soils have shown that spore forming bacteria are better adapted to survive the dry 

storage conditions, the DNA of the non-surviving  organisms can also persist for long periods of 

time, protected by clay particles and soil organic matter (Clark and Hirsch 2008; DeNobili et al., 

2006).  

In recent studies of soil archives, DNA based methods were utilized to uncover detailed 

information on the long term effects of agricultural practices on soil microbial communities, 

monitor the levels of antibiotic resistance genes over time, and changes to soil fertility (Clark and 

Hirsch, 2008; Feng et al., 2015; Hirsch et al, 2012; Knapp et al., 2009).  By using the soil 

microbial communities in archived soils as a baseline, alterations to soil microbial community 

diversity and abundance can be observed.  These observations are important to determine if 

certain land use practices are leading to decreased soil bacterial diversity.  Soil microbes are 

important to the biogeochemical cycling of nutrients, and when greater diversity is present, the 

ecosystem is better able to withstand environmental stress (Giller et al., 1997; Topp, 2003).  This 

increased microbial diversity permits functional redundancy which means that multiple 

organisms are able to perform the same ecosystem services under different conditions.  

The Rotation ABC LTSE is a Canadian prairie resource with a soil archive collection and 

an actively monitored field experiment.  The soil samples collected at various intervals over the 

last century were initially utilized to assess the effects of crop rotation on soil quality (Smith et 

al., 2012).  Through the use of modern molecular biology tools, these same soil archives provided 

the basis for examining change in soil microbial community abundance and diversity over 100 

years of agricultural land management.  In common with most historic field experiments, 

Rotation ABC has evolved over time to reflect technological advances in crop production (Clark 

and Hirsch, 2008; Janzen, 1995) and has applied N and P treatment since 1967 and 1972 
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respectively.  To date, none of the studies conducted in the Lethbridge long-term plots utilized 

modern molecular tools to examine microbial nucleic acids.  My work will begin to fill this 

knowledge gap with two studies.  The first study examines the viability of DNA in air dried soils, 

with the objective of determining the effects of long-term storage of soil samples on microbial 

DNA abundance and quality.  The second study was a survey of the bacterial DNA extracted 

from archived soils with the objective to assess changes in both the bacterial diversity and 

abundance of key N functional genes. 

4.4 Materials and methods 

4.4.1 Effect of soil storage conditions on soil bacterial community structure 

4.4.1.1 Soil sampling, grinding and storage 

The standard procedure for archiving soils for Rotation ABC involves air drying and 

grinding soils followed by storage in sealed glass vials at room temperature (RT).  In order to 

demonstrate putative changes in soil bacterial communities during the archiving process, fresh 

soils were processed in the same manner as the long-term soil archive, stored for 30 months and 

the microbial community analysed periodically with DNA profiling.  These fresh soil samples 

were collected prior to seeding in April 2012 from the N0P0 and N45P20 treatments of both 

Rotations A and C to examine soils with and without fertilizer inputs.  Soil cores were collected 

with truck-mounted, hydraulic driven soil coring equipment (Giddings Machine Company, Fort 

Collins, CO) along transects 1 to 4 with four 10 cm cores (3.75 cm diam.) for each replicate (Fig. 

3.1).  Soils were stored on ice in portable coolers during transport and processed within 48 h.  

Soil cores were homogenized prior to sieving to 4.0 mm and subsampling.  Soils were then air 

dried for 7 days at RT, ground, subsampled and stored at RT to mimic the conditions used to 

preserve soils for archival storage. 
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4.4.1.2 Soil DNA extraction and storage time course 

DNA was extracted from soils using a modified method for nucleic acid extraction (Clark 

and Hirsch, 2008; Knapp et al., 2010) using four technical replicates of 0.2 g each (n=4).  Prior to 

extraction, a rehydration step was performed in the Mo Bio Powersoil Bead tubes (Mo Bio 

Laboratories, Carlsbad, CA), modified from Clark & Hirsch, 2008.  The archived soils were 

rehydrated to 8.5% water with nuclease free PCR grade water (Life Technologies Inc., 

Burlington, ON), then incubated for 20 minutes at 4˚C (Clark and Hirsch, 2008).  The remainder 

of the DNA isolation protocol followed the Mo Bio Power Soil kit instructions (Mo Bio 

Laboratories, Carlsbad, CA).  A DNA elution pooling method was performed to increase DNA 

concentration, in which the four technical replicates were concentrated into 100 µL eluent per 

soil eluted (Fierer et al., 2012).  Specifically, the first replicate was eluted in 100 µL TE buffer.  

The eluent was then used to elute a second replicate column, followed by elution of a third and 

fourth replicate in the same manner.  DNA was quantified using a Qubit 2.0 Fluorometer (Life 

Technologies Inc., Burlington, ON) following the manufacturer’s instructions for dsDNA high 

sensitivity (HS) reagents (Table 3.1).  To establish a soil storage time course, DNA was extracted 

from the N0P0 and N45P20 soils at 8 sampling points from the instigation of the experiment.  The 

DNA extractions for time 1 to 7 were at 3 month intervals and from time 8 were performed 12 

months later for the total storage duration of 30 months. 

4.4.1.3 Illumina MiSeq next generation sequencing of 16S rRNA v4 region 

Following extraction and quantification, DNA was sent to Genome Quebec at McGill 

University for characterization using an Illumina MiSeq platform (Montreal, QC, Canada).  PCR 

was performed for each genomic DNA samples to amplify the V4 region of bacterial rRNA gene 

DNA using oligonucleotides 515F (GTGCCAGCMGCCGCGGTAA) and 806R 
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(GGACTACHVGGGTWTCTAAT) from Caporaso et al.(2012).  In the following step, PCR 

amplicons were purified with Ampure XP beads (Beckman Coulter, Canada) and ligated to index 

adapters, pooled in equal concentrations, denatured and sequenced according to Illumina 

guidelines (Illumina, San Diego CA, USA).  Bioinformatics were performed with Mothur 

v.1.35.1 and with the Schloss MiSeq protocol (accessed August 25, 2015).  The quality control 

parameters were to remove sequences > 310 bp, along with ambiguous base calls > 0 bp and 

homopolymers runs > 8 bp.  The operational taxonomic units (OTUs) were defined at 97% 

similarity and classified with the Silva and RDP databases, with specifications to omit non-

bacterial taxonomy.  A sequencing depth of 19,836 sequences was selected prior to further 

analysis.  Rarefaction curves and diversity measures of single observed species (SOBs), and 

Inverse Simpson were calculated using Mothur v. 1.35.1.  Operational taxonomic units were 

subjected to nonmetric multidimensional scaling (MDS) ordination (McCune and Grace, 2002) in 

PCOrd v.6.0., using the Slow and Thorough automated method with a distance metric of 

Sorensen (Bray-Curtis). 

4.4.2 Bacterial Diversity and N Functional Gene Abundance of DNA Extracted from 

Archived Soils  

4.4.2.1 Soil sampling for the soil archive and management history of the Rotation ABC 

experiment 

Soils were collected from Rotation ABC, an Agriculture and Agri-Food Canada long term 

soil experiment (LTSE) initiated in 1911.  The site is located on Orthic dark brown Chernozem 

soils, with a MAP 386.0 mm and a MAT 5.7°C.  The standard procedure for archiving soil 

samples was to take two 67 mm diameter cores from 0.0 to 30.0 cm with 5 replicate sites per 

treatment, cleaning the core with a wire brush between samples.  To homogenize the soils, stones 

and plant residues were removed prior to sieving to 2mm particle size.  Following sieving, soils 
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were air dried for a minimum of 72 hours at ambient temperatures (18-28°C), in unsterile field 

buildings, with precautions taken to minimize air born contaminants.  Soils samples were then 

ground and stored in glass vials at room temperature.  With the exception of soils sampled in 

2011, subsamples from each 5 replicates of the top 0 to 7.5 cm layer were combined and used to 

characterize microbial communities.  In 2011 the field soils were sampled 0 to 15cm so this 

subsample was used in place of a 0 to 7.5 cm subsample.  

In this LTSE, the soils were not sampled and archived every year, but rather periodically. 

Soil archived in 1910, 1940, 1967, 1993 and 2011 were chosen for this preliminary study because 

relatively large amounts of soil were collected in those years, however only one composite 

sample was available from each soil.  The 1910 soils were collected when relatively diverse 

native prairie was plowed for wheat crop production.  The 1940 soils represent 30 years of 

unfertilized wheat production.  Beginning in 1910, the harvesting practice was to export crop 

residues from the fields, to a central threshing location.  A change in harvesting method to 

combine harvesters occurred in 1943, and resulted in crop residues remaining in the field.  In 

1967 an N fertilizer treatment was overlaid on the LTSE: 45.0 kg nitrogen (N) ha
-1

 as ammonium 

nitrate (34.5-0-0), dividing each phase into a check (N0) or N fertilized (N45) subplot.  This 

practice continued as N broadcast prior to seeding to all phases until 1985, at which time it was 

adapted to include only the cropped phases.  In 1972, a second fertilizer treatment was imposed 

on the sub plots: triple superphosphate (0-46-0) fertilizer applied with the wheat seed, 45 kg ha
-1

, 

until 2010 when it was reduced to 22.5 kg ha
-1

 (Smith et al., 2012).  This addition of P resulted in 

two new sub plots of P only (N0P20) and also with N (N45P20) per rotation. 

4.4.2.2 DNA extraction 

DNA was extracted from the air dried soils as in section 4.4.1.2. 
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4.4.2.3 Illumina MiSeq DNA sequencing of 16S rRNA v4 region 

 

 DNA samples were sequenced and analyzed as in section 4.4.1.3 using the Schloss MiSeq 

protocol (accessed May 25, 2015). A sequencing depth of 5,702 sequences was selected prior to 

further analysis.  

4.4.1.4 Nitrifier and Denitrifier gene abundances  

The construction of quantitative PCR standard curves was detailed in section 3.4.3. 

Quantitative real-time PCR (qPCR) was performed in triplicate using an ABI Step One Plus, and 

Platinum SYBR Green qPCR SuperMix, (Life Technologies, Burlington, ON) to detect the 

abundances of 16S rRNA, bacterial and archaeal ammonia monooxygenase (amoA), nitrous oxide 

reductase (nosZ), cytochrome cd1 type nitrite reductase (nirS) and copper nitrite reductase (nirK) 

gene copies.  As in the previous chapter, optimized conditions for each target, including reaction 

mix components and genomic DNA concentrations used are listed in Table 3.1.  Bovine serum 

albumin (Life Technologies, Burlington, ON) was included in the assays at a rate of 0.2 μg μL
-1

 

to reduce potential PCR inhibition caused by residual humic acids in the DNA extractions.  The 

passive reference dye 5-carboxy-X-rhodamine (ROX) was added to the reactions to normalize for 

differences in fluorescent reported signal between wells at a concentration of 50 nM.  Melt curve 

analysis was performed after each assay to test for the presence of primer dimer formation and 

assess the specificity of the reaction.  Gene copy numbers were standardized by the dry weight (g
-

1
) of soil analyzed for each sample, then log10 transformed.  Statistics were performed using a 

one-way ANOVA in SPSS v.20 to determine the significance of cropping intensity and N 

fertilizer additions on gene abundances.  
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4.5 Results 

4.5.1 Soil bacterial community stability in soils under simulated archival conditions 

The amount of DNA extracted was affected by both storage time and fertility treatment.  

There was a significant interaction of time in storage and fertility treatment (p<.0001).  The 

highest amount of DNA was extracted at 18 months in N45P20 soils and the lowest at 3 months 

from N0P0 soils (Table 4.2).  

Table 4.2 DNA concentration (μg g
-1

soil) of air dried soils from Rotation A. Standard error indicated in 

parenthesis. 

Time 

(months) 
                                             DNA conc. 

                                              (μg g
-1

soil) 

                 N0P0 (kg ha
-1

)
 
                                     N45P20(kg ha

-1
)   

0 0.38(0.01) 5.76(0.88) 

3 0.85(0.07) 1.32(0.18) 

6 1.00(0.12) 1.54(0.30) 

9 1.45(0.13) 2.64(0.37) 

12 2.04(0.28) 2.70(0.31) 

15 2.15(0.48) 4.30(0.13) 

18 4.94(0.25) 8.97(0.51) 

30 3.07(0.18) 3.42(0.15) 

   
ANOVA 

p-value 
  

 Time                    0.0001**** 

Fertility               0.0001**** 

Time x Fertility  0.0001**** 
 

 
 

 

To eliminate biases due to uneven sequencing depths between sample libraries, high 

throughput sequencing of 16S rRNA genes were analysed at the same value of 19,836 sequences 

per sample.  There were bacteria from 16 phyla identified (Fig. 4.2).  Changes in the relative 

abundance of 10 phyla (Actinobacteria, Proteobacteria, Bacteriodetes, Acidobacteria, 

Planctomycetes, Firmicutes, Chloroflexi, Verrucomicrobia, Gemmatimonadetes, and 
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Armatimonadetes) accounted for most of the change in community structure amongst the 

samples.  

Storage time (to 30 months) did not significantly change the relative abundance of 

Actinobacteria, Proteobacteria, Bacteriodetes, Acidobacteria, Planctomycetes, Verrucomicrobia, 

Armatimonadetes or unclassified bacteria.  A significant increase (p<0.0001) in the relative 

abundance of Firmicutes (Fig. 4.1) occurred as time in storage increased, in both fertilized and 

unfertilized soils.  The N45P20 fertility treatment had significantly increased the relative 

abundance of Actinobacteria (p<0.0001), Proteobacteria (p=0.04), Bacteriodetes (p<0.0001), 

Acidobacteria (p<0.0001), Planctomycetes (p<0.0001), Verrucomicrobia (p<0.0001), 

Armatimonadetes (p=0.0014) and unclassified bacteria (p=0.0167).  A significant interaction 

between storage time and fertility treatment occurred in Chloroflexi (p=0.0245) and 

Gemmatimonadetes (p=0.0125). 

The diversity of the soil bacterial community during storage time was determined with the 

inverse of Simpson index (1/D) and it was relatively stable during the study (Fig. 4.2).  The 

bacterial diversity increase in the unfertilized soils (1713 to 1877 OTUs), in contrast, a decrease 

was shown in the fertilized soils (2234 to 2161 OTUs).  The total number of species observed in 

a sample (Sobs) results did not indicate loss of bacterial richness during storage time because 

almost double the Sobs value was observed in fertilized when compared to unfertilized soils, 

116.64 to 112.77 vs. 57.65 to 60.62, respectively.  The nonmetric MDS analysis of OTUs did not 

show a relationship between storage time and OTU profiles (Fig. 4.3).  Rather, field replicate was 

a strong influence shaping bacterial communities.  This result was further supported by Indicator 

Species Analysis (ISA) which found more OTUs to be significant indicators of fertilizer 

treatment (IV 60-100%, p<0.005) rather than storage time (IV 38-53%, p<0.05). 
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Fig. 4.1 Relative distribution of bacterial phyla (%) from DNA profiles of fertilized (N45P20  kg ha
-1

) and unfertilized 

(N0P0 kg ha
-1

) and Rotation A soils stored for 30 months. 
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Fig. 4.2 Bacterial diversity indices in fertilized soils (N45P20 kg ha
-1

) and unfertilized soils (N0P0 

kg ha
-1

) over 30 months of storage under archival conditions, estimated with (a) Sobs and (b) 

Inverse of Simpson (1/D). Error bars denote standard error. 

Time in Storage 

 (a) 

 (b) 
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Fig. 4.3 Nonmetric multidimensional scaling (MDS) ordination (stress= 13.27) analysis of 

   OTU profiles of unfertilized (N0P0, denoted in red) and fertilized (N45P20, denoted in blue) Rotation A  

                soil stored for 30 months. 
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4.5.2 Variations in phylogenetic groups over 100 years of soil archives 

This study assessed soil samples (non-replicated) from five time points in this archived 

collection spanning over 100 years.  The soil samples included native prairie soil from 1910 as 

well as fertilized split-plot treatments in 1993 and 2011.  These soils were characterized for the 

amount of genomic DNA recovered, 16S rRNA gene phylogenetic distribution and N functional 

gene abundances.  The results showed that at each time point, the amount of DNA recovered did 

not appear to be influenced by fertility treatment or cropping intensity (CI), (Table D.1, Appendix 

D).  The analysis of high throughput sequencing of 16S rRNA genes was performed on a 

sampling depth of 3293 sequences per sample.  A total of 18 bacterial phyla were detected and of 

these, 12 phyla accounted for most of the community structure detected within the DNA 

extracted from archived soils (Fig. 4.4).  Sample collection year was associated with changes to 

relative abundance in bacterial populations more so than N fertilizer treatment status or CI.  The 

relative abundance of Proteobacteria, Acidobacteria, Planctomycetes, Armatimonadetes and 

Nitrospira increased over time in the DNA extracted from soils collected 1910-2011.  The 

relative abundance of Gemmatimonadetes and Bacteriodetes were more abundant in the DNA 

extracted from soils collected in 1993 than other time points.  The relative abundance of 

Firmicutes decreased in the DNA extracted from soils collected 1910-2011.  The relative 

abundance of Actinobacteria was observed to decrease in the DNA extracted from soils collected 

1910-1993, then increase in 2011.   The relative abundance of Crenarchaeota and unclassified 

bacteria did not appear to change in the DNA extracted from soils collected 1910-2011.  

The diversity of soil bacteria detected in DNA extracted from soils collected in 1910-2011 

was estimated with Sobs and the inverse of Simpson index (Fig. 4.5).  Sampling year appeared to 

be the most influential factor on bacterial diversity, more so than N fertility or CI. Bacterial 
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diversity increased in DNA extracted from both Rotation A and C soils collected 1910-2011.  

The results of Sobs calculations indicated bacterial richness was similar for both CI levels and 

increased in a nearly linear manner over the time span studied (Fig. 4.5). 

Nonmetric multidimensional scaling (MDS) was completed on the OTU profiles of 

Rotation A and C soils collected 1910-2011 to observe relationships resulting from time, CI and 

fertilizer treatments (Fig 4.6).  The data points grouped together most strongly by sampling year, 

followed by CI and fertility treatment.  These results suggest greater similarity within a sampling 

year.  The community structures of the OTU profiles from 1910, 1940 and 1967 are more closely 

grouped than those of 1993 and 2011.  Differences in community structures could be attributed to 

changes influenced by the sample year and CI level.  
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Fig. 4.4 Relative abundance (%) of bacterial phyla in Rotation A and C (0 and 45 kg N ha
-1

) soils archived in 1910, 1940, 1967, 1993 and 

2011.                                   

C: Rotation C 0 kg N ha
-1

 

A: Rotation A 0 kg N ha
-1

 

CN: Rotation C 45 kg N ha
-1 

AN: Rotation A 45 kg N ha
-1
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Fig. 4.5 Estimations of bacterial diversity over time as estimated with (a) Sobs and (b) Inverse of Simpson diversity indices fertilizer  

treatments combined for each year.  
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Fig. 4.6 Nonmetric multidimensional scaling ordination of community structures of OTU profiles resulting from 

   16S rRNA gene profiles of Rotation A (blue) and C (green) soils archived in 1910 (red), 1940, 1967, 1993 and 2011. 
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4.5.3 N functional gene abundances over 100 years of soil archives 

The N functional genes including ammonia-oxidizing archaea (AOA), ammonia-oxidizing 

bacterial (AOB), nitrous oxide reductase (nosZ), copper nitrite reductase (nirK) and cytochrome 

cd1 type nitrite reductase (nirS) were estimated using DNA extracted from the archived soils.  

The qPCR efficiencies ranged from 80.2 to 99.5 %, with R
2
 values of .98 to .99.  The abundance 

of AOA increased 2.5 fold (7.5 to 7.9 log gene copies g
-1

) in DNA extracted from the archived 

soils of 1910-1967 with the exception of DNA extracted from the 1940 Rotation C soils which in 

contrast decreased 2.3 fold (7.5 to 7.1 log gene copies g
-1

) (Fig. 4.8).  A further 2.5 fold (7.9 to 

8.3 log gene copies g
-1

) increase in AOA abundance was observed in the DNA extracted from the 

1967-1993 soils.  The abundance of AOB detected in DNA extracted 1940 soils was 10 times 

greater than those of 1910, and was uninfluenced by CI levels.  In contrast, the AOB abundances 

in the DNA extracted from the archived soils of 1967 and 1993 demonstrated a difference 

between N levels, with increased AOB detected in 1993 soils with N fertilizer applied.   
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Fig. 4.7 Ammonia oxidizing archaea (AOA) (a) and ammonia oxidizing bacteria (AOB)  

(b) log gene copies g
-1

 soil; error bars denote standard error in technical replicates.  
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Fig. 4.8 Denitrifier gene abundance of nosZ (a), nirK (b), and nirS (c), g
-1

 soil; error bars denote standard 

error in technical replicates. 

nosZ 

nirK 

nirS 
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The estimated abundance of the bacterial denitrification genes nosZ, nirK and nirS decreased in 

DNA from 1910 and 1940 soils and then increased in the 1967, 1993 and 2011 soils (Fig. 4.8).  

The estimated abundance of nosZ gene copies in DNA extracted from 1910 and 1940 soil 

samples were greater at 100% than at 67% CI (Fig 4.8a).  The 1967 and 1993 soils show 

increased nosZ genes abundance for both levels of N and CI.  The estimated abundances of nirK 

gene copies in the 1940 soils were lower than in 1910 and 1967 soils (Fig 4.8b).  This suggested 

an influence of crop residue, because crop residue return was adopted as common practice in 

1943.  The estimated abundance of nirK gene copies in 1993 soils was greater than those in 1910 

and 1967 soils.  The estimated abundance of nirK gene copies in the 2011 soils was less abundant 

than of the 1993 soils.  The estimated abundance of nirS in 1910 soils was greater than in 1940 

soils under both 100% and 67% CI levels (Fig 4.8c).  In contrast, the estimated abundance of nirS 

gene copies in the DNA extracted in 1967 from 100% CI soils surpassed both those of 1910 and 

1940.  The distribution of the estimated abundances of nirS gene copies in 1993 and 2011 soils at 

100% CI were less influenced by N fertility treatments than soils at 67% CI.  The estimated 

abundances of nirS gene copies followed the same trend as observed with nosZ and nirK profiles, 

with an increase in estimates as time in storage decreased.   

4.6  Discussion 

 

4.6.1 Soil bacterial community stability in soils under simulated archival conditions 

 

This work demonstrated that modern molecular biology approaches can be applied to the 

investigation of DNA viability and bacterial community structure during the soil archiving 

process.  To better understand the potential influence that soil archive conditions have on 

bacterial community structure, fresh soils were air dried, then ground and stored at RT.  The soils 
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were subsampled for DNA extractions over 30 months.  The N and P fertility treatments and 

storage time had a combined significant effect on the amount of DNA extracted (Table 4.2).  The 

N and P fertilized soils had significantly greater quantities of DNA extracted than unfertilized 

soils.  In Hirsch et al. (2016), DNA extraction yields were used as a proxy for microbial biomass 

and they found DNA yield significantly increased with the addition of plant cover and  N 

fertilizer.  In Chapter 3, PLFA abundances were measured as indicators of active microbial 

biomass and the results were soils with N fertilization and 100% CI had significantly greater total 

PLFA than unfertilized soils.  In many agroecosystems, N fertilized soils have been found to 

have greater bacterial biomass than unfertilized soils (Mbuthia et al., 2015).  Fertilized soils have 

greater plant productivity (Olsson, 1999) which in turn increases the level of soil organic matter.  

N and P are considered limiting nutrients to plant growth in most ecosystems (Agren et al., 2012) 

and fertilized soils allow higher plant productivity (Spohn et al., 2016).  Increased plant 

productivity increases C substrates available to soil microbes, resulting from increased root 

exudates, and above and below ground residues (Geisseler and Scow, 2014). 

Soil organic matter content is positively associated with increased soil DNA recovery 

(Terrat et al., 2012) and is known to protect microbial biomass and DNA from degradation in 

desiccated soils (Denobili et al., 2006; Clark and Hirsch, 2008).  This positive association 

between SOM and DNA recovery may be in part because DNA is protected from degradation 

when bound by humic substances, as well as clay minerals, and sand particles (Burlage, 1998; 

Pietramellara et al., 2008).  In addition, the desiccated condition of air dried soil is thought to be 

beneficial to storage because of inhibited enzymatic and microbial degradation of  extracellular 

DNA (Levy-Booth et al., 2007).  However, the archiving process does result in some degradation 

of DNA (Clark and Hirsch, 2008) and currently frozen storage is recommended for soil samples 

to allow optimal recovery of microbial DNA (Lauber et al., 2010; Tatangelo et al., 2014).  
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Another factor to consider is the possibility that DNA extracted from soils also contains 

extracellular DNA from plant and microbial origin (Pietramellara et al., 2009) as well as DNA 

resulting from cell lysis during the extraction procedure.  The lysis of dead cells is thought to be 

the main source of extracellular DNA in soil (Levy-Booth et al., 2007) and the potential presence 

of extracellular DNA implies that the quantity of DNA isolated from a soil sample is not only a 

measure of living microbial biomass because it contains DNA from multiple origins and time 

periods.   

The bacterial community structure appeared stable over time as 16S rRNA gene profiles 

did not change significantly during time in storage (Fig. 4.1), with the exception of the 

Firmicutes.  The relative abundance of Firmicutes increased in the soils stored for longer periods 

of time, in part due to the ability produce endospores allowing resistance to desiccation.  The 

hardiness of endospores was noted in Clark and Hirsch (2008), when it was reported that 

archived soils had greater relative abundance of Firmicutes than fresh soils (Davidson and 

Janssens, 2006).  However, a recent study indicated that soil organic matter content increased the 

relative abundance of Firmicutes (Feng et al., 2015).  The soil microbial community did not 

appear to lose diversity over the course of the study suggesting that DNA was protected from 

degradation over time in storage (Fig. 4.2) which was supported by an Indicator Species Analysis 

(ISA).  This analysis at the OTU level suggested that time in storage had minimal impact on OTU 

profiles (Fig. 4.3).  During storage, there is potential for the initial desiccation of the soil caused 

cell lysis in many microbial cells.  These cell lysis events meant that DNA was released from the 

cells and this newly extracellular DNA might have been decomposed, or absorbed to clay 

minerals and humic substances (Nguyen and Chen, 2007; Pietramellara  et al., 2008; Morrissey et 

al., 2015).  Although the archiving process inhibited the enzymatic and microbial degradation of 

extracellular DNA, the DNA degradation rates of nucleic acids of different origin cannot be 
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assumed equivalent (Clark and Hirsch, 2008; Levy-Booth et al., 2007).  Soils fertilized with N 

and P were estimated to have greater bacterial diversity (Fig 4.2) than the unfertilized soils and 

these results suggested that soil fertility levels were associated with maintaining the stability of 

the soil microbial community structure.  The increased bacterial diversity in the N and P soils 

may also be a result of increased soil organic matter (SOM) due to increased plant productivity 

that in turn meant there were more humic acids available to bind DNA.  In other recent soil 

storage studies, duration and temperature of the storage did not significantly influence bacterial 

community structure, at least in the short term (Campbell et al., 2009; Lauber et al., 2010; 

Tatangelo et al., 2014).  In contrast, Rubin et al. (2013), storage time and temperature did cause 

changes in alpha diversity; however, this study found that a soil remained more similar to its 

original environment than to non-related habitats.  My results indicate that air dried storage of 

soils did not change the relative diversity of soil microbial communities, and therefore historic 

soils stored in this manner may be successfully studied with molecular biology methods.  

4.6.2 Variations in phylogenetic groups and N functional gene abundances over 100 years of 

soil archives 

With the evidence that DNA persisted under 30 months of archival storage conditions, 

DNA was isolated from select archived soils and characterized with 16S rRNA gene sequencing.  

Out of the 18 phyla identified in soils collected 1910-2011, Proteobacteria and Actinobacteria 

were most abundance (Fig. 4.4).  Proteobacteria are dominant phyla in terrestrial soils (Hirsch et 

al., 2016; Tardy et al., 2015; Jangid et al., 2011; Acosta-Martinez et al., 2008).  Actinobacteria 

are known to form endospores (Macagnan et al., 2006) and are drought tolerant (Yandigeri et al., 

2012) which is a potential explanation for the high relative abundance of Actinobacteria in 

archived soils vs. fresh (Ventura et al., 2007; Acosta-Martínez et al., 2010).  Other phyla 

identified included Acidobacteria, Verrucomicrobia, Planctomycetes, Firmicutes, Crenarchaeota, 
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Bacteriodetes, Gemmatimonadetes, Armatimonadetes and Nitrospira (Fig. 4.4), and these phyla 

were consistently found in typical agricultural soil DNA profiles (Buckley et al., 2006; Tian et 

al., 2015).  Acidobacteria relative abundance was greater in soils with N fertilizer additions, 

which may be related to the lower pH of these soils (Wessén et al., 2010) or indicate a faster 

growth rate (Ramirez et al., 2012).  Verrucomicrobia are found in both water and soil and have 

been reported to increase in relative abundance during succession from cropland to grassland 

(Fierer et al., 2009; Jangid et al., 2011).  Planctomycetes are related to Verrucomicrobia (Hou et 

al., 2008) and contain a lineage that is capable of anaerobically oxidizing ammonium (Strous et 

al., 1999).  Planctomycete abundance has been correlated with the soil characteristics of pH, C, 

NO3 concentration and N content (Buckley et al., 2006).  Bacteriodetes are Gr-, spore forming, 

anaerobic rod shaped bacteria that are widely distributed in soil, water and animals.  The relative 

abundance of Bacteriodetes in the archived soils was similar to fresh soils (Hirsch et al., 2016; 

Tardy et al., 2015; Jangid et al., 2011; Acosta-Martinez et al., 2008) and was greater in soils with 

N additions (Fig. 4.5).  Bacteriodetes are reported to be copiotrophic, and the increased relative 

abundance was potentially in response to the greater amount of C inputs resulting from increased 

plant productivity in the N fertilized soils (Ramirez et al., 2010).  Crenarchaeota are Gr- archaea 

which are morphologically diverse containing both thermophilic and cold dwelling prokaryotes 

(Goldman and Green, 2015).  The relative abundance of Firmicutes increased with “sample age”, 

potentially due to storage degradation effects, as discussed previously.    

Bacterial diversity and richness of archived soil was lowest in the samples with the 

longest storage time, increasing as length of storage time decreased (Fig. 4.5).  Contrary to my 

hypothesis, changes to N fertilizer and CI did not consistently impact diversity, a trend also 

observed in Zhao et al. (2014).  This observation is important to note because losses of microbial 
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richness and diversity can impact N cycling in soil (Philippot et al., 2013).  Although microbial 

community composition is sensitive to N fertilization (Allison  and Martiny, 2008), a recent study 

reported the influence of N on microbial diversity might only become significant at 

concentrations higher than used in our study (Fierer et al., 2013; Zhong et al., 2015).  As the 

amount of N fertilizer applied is increased, plant productivity is also increased (Spohn et al., 

2016), resulting in more plant residues for microbial decomposition (Geisseler and Scow, 2014) 

which can shift the bacterial community (Ramirez et al., 2010; Ramirez et al., 2012).  Bacterial 

diversity and richness in the soil archives were calculated based on the downsampled sequence 

number.  The observed number of OTUs (SOBs) is a richness measure which is reliable as an 

index of richness if coverage is sufficient (Hill et al., 2000) which was confirmed using 

rarefaction analysis.  The alpha (α) diversity was estimated with the Inverse Simpson index (1/D).  

In a recent study of grassland soil, results demonstrated that decreases in microbial richness and 

diversity can impact N cycling in soil (Philippot et al 2013).  This research studied microcosms 

based on a diversity gradient and observed that denitrification rates were significantly lower in 

the diluted biomass soils as compared to the undiluted soils.  A study of a wheat-rice rotation 

with several different N and P treatments observed an increase in overall microbial abundance 

with addition of N and P fertilizer with crop residue; however there was no significant effect on 

diversity (Zhao et al., 2014).  The influence of N on microbial diversity might only become 

significant at very high concentrations, as observed in a study of winter wheat with applications 

of 0 to 360 kg N ha-1 (Zhong et al., 2015).  When the amount of N fertilizer is increased by a 

moderate amount, plant growth and thus C availability can increase, which influences the 

bacterial community (Arcand  et al., 2017; Ramirez et al., 2010).  As land use intensity increases 

through the use of N fertilizers, there are significant effects on the richness and diversity of soil 

bacterial communities (Tardy et al., 2015). 
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The estimated abundances of both the archaeal (AOA) and bacterial (AOB) ammonia 

oxidizer genes were greater in the 1993 and 2011 soils as compared to the 1910, 1940 and 1967 

soils (Fig 4.7).  The agricultural land management following 1940 changed to harvesting 

completed in the field, which meant increased crop residue return.  Another change was adopted 

following 1967 with the incorporation of N fertilizer which also stimulated increased crop residue 

return.  In a broad sense, the AOA population detected in the soils were more abundant than the 

AOB.  These findings are consistent with many reports that AOA populations are more abundant 

than AOB in many environments (Leininger et al., 2006; Nicol et al., 2008; Munroe et al., 2016).  

In addition, the AOA and AOB seem to respond differently to changes in N availability.  The 

AOA populations appear more abundant in low N soils (i.e. unfertilized soils), suggesting an 

adaptation to low nutrient conditions (Schleper and Nicol, 2010).  In contrast, AOB were not as 

abundant in low N as in soils where N amendments were added (with the exception of Rotation C 

soils in 2011).  Current research has reported that AOA and AOB adapt to different habitats, with 

AOA demonstrating a preference for NH3 originating from mineralized organic material and 

AOB one for NH3 derived from NH4
+
 or urea fertilizer  (Hatzenpichler et al., 2012; Munroe et al., 

2016).  However there have also been studies that found that the addition of N increased both 

AOA and AOB populations (Glaser et al., 2010; Xue et al., 2016) or had no impact (Wessén et 

al., 2010).   

Long term studies such as Rotation ABC allow a system to reach a steady state (Janzen, 

1995) while shorter term studies may only capture the initial changes caused by a treatment.  

Another factor influencing AOA and AOB abundance is CI.  The 100% CI in Rotation A meant 

more competition for soil nutrients than in Rotation C because the fallow year in Rotation C 

allows for mineralization of soil organic matter, resulting in nutrient release (Cruz et al., 2008).  
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Crop residues have been reported to enhance AOB population size as compared to N additions 

alone (He et al., 2007; Xue et al., 2016).  This relationship between increased C inputs from crop 

residues and N may explain the similarity in AOB abundances at both CI levels, despite the fact 

Rotation C receives less fertilizer than Rotation A because ammonium nitrate is only applied in 

non-fallow years when a crop is sown.  

Both N amendments and crop residues are known to affect nitrogen functional gene 

abundances (Hallin et al., 2009; Wallenstein et al., 2006).  Gene abundances are part of a 

complex system of N transformations through an ecosystem, and conditions that suppress or 

enhance these abundances are important (Ning et al., 2015).  In this study, the relative 

abundances of denitrification genes differed between unfertilized native prairie and agricultural 

soils, regardless of N amendment status.  The total populations of denitrifiers followed a pattern 

of nosZ with similar abundances to nirK, and greater than nirS, which has also been observed in 

recent studies of agricultural soils (Dandie et al., 2011; Henry et al., 2006).  Although larger 

populations do not necessarily mean greater denitrification activity, a correlation between 

population size and function has been observed (Braker and Conrad, 2011; Hallin et al., 2009).  

The detection of nosZ in each soil is important because the gene product is responsible for the 

conversion of N2O to N2, and the gene is not found in all denitrifiers (Braker and Conrad, 2011; 

Clark et al., 2012; Throback et al., 2004). 

The Nir genes are commonly used for denitrifier studies (Wallenstein et al., 2006) and 

studying both populations helps to capture the range of diversity of denitrifiers (Butterbach-Bahl 

et al., 2016).  The larger population of nirK to nirS implies a niche differentiation to 

environmental conditions, also reported in recent work (Enwall et al., 2010; Jones and Hallin, 

2010; Su et al., 2010).  The sum of Nir genes as compared to nosZ gene abundance (as estimated 
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with primers nosZ2F/2R) has been used a proxy for total denitrification potential (Philippot et al., 

2007; Shrewsbury et al., 2016).  In these results, the denitrification potential does not appear to 

have increased over a century of wheat cropping with or without nitrogen fertilizer additions.  It 

is possible that the rates of N used in this study were sufficiently low as to avoid suppression of 

NFG abundances, which has been reported at higher levels of N (Philipot 2009 et al., 2015; 

Wallenstein et al., 2004). 

4.7 Conclusions 

This study utilized modern molecular techniques to investigate soil microbial 

communities preserved in soil archives.  These archives spanned a century of wheat crop 

production.  It was unknown if DNA could be extracted, and would be of sufficient quality for 

the evaluation of 16S rRNA genes profiles and N functional gene abundances.  The findings 

suggest that molecular biology studies can be conducted on DNA extracted from archived soils 

which have been air dried and stored at room temperature for years and even decades.  The short 

term soil storage study validated the use of the original Rotation ABC archived soils by 

demonstrating the persistence and stability of DNA profiles under the similar soil storage 

conditions.  These archived samples were from soils that originated from native prairie and shifts 

in soil microbial community were more likely due to fertilizer treatment and CI, than time in 

storage.  The exploration of the soil archives also indicated the presence of nitrifiers AOA and 

AOB, and of denitrifiers containing nosZ, nirK and nirS genes in all time points.  The ratio of Nir 

genes to nosZ gene abundance used a proxy for total denitrification potential does not appear to 

have increased over a century of wheat cropping with or without nitrogen fertilizer additions.  

This study has indicated that soil archives are valuable resources because they provide 
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opportunities to investigate soil bacterial communities of the past, providing a baseline for future 

studies. 

5.0 SUMMARY AND CONCLUSIONS 

 

Soil microbial communities mediate the biogeochemical processes regulating C and N 

cycles, and influence plant productivity (Griffiths and Philippot, 2013).  N is a limiting factor to 

plant growth because plants do not synthesize N, and the amount of N effects the C:N, an 

important control on the availability of nutrients released through microbial turnover of plant 

residues (Sowden et al., 1977).  Microbial decomposition transforms above and below ground 

plant residues into C energy substrates that shape microbial community structure and diversity 

(Freschet et al., 2013).  Crop rotation shapes soil microbes because of the influence of plant 

residue inputs on soil microbial community structure (Phillips et al., 2015).  Soil microbial 

communities in soils with reduced CI or fallow undergo changes in their abundance and structure 

in part from a reduction of plant inputs during in this non-cropped time period (Acosta-Martínez 

et al., 2007).   

LTSEs are a valuable resource for learning more about soil microbial communities 

because soils may take decades after a change in land management to resume a “steady state" 

(Janzen, 1995).  In short term studies, functional redundancy can make up for alterations in a soil 

microbial community structure resulting from changes in soil environmental conditions (Rousk et 

al., 2009).  The soil microbial communities in archived soils  serve as a baseline, permitting 

disturbances to soil microbial community diversity and abundance to be observed (Dolfing et al., 

2015).  These observations help determine if certain land use practices are sustainable or if they 

are creating conditions that decrease soil bacterial diversity.  The Rotation ABC LTSE provided 
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an opportunity to study soil microbial dynamics during 100 years of WWF management and 45 

years of N fertilizer implementation.  Many studies have characterized soil properties of Rotation 

ABC (Janzen, 1995; Smith et al., 2012); however none have employed modern biochemical and 

molecular biology tools to investigate the soil microbial response to this long term land 

management. 

The overall goal of my work was to characterize the active and total soil bacteria 

populations within Rotations A (100% CI) and C (67% CI), and discover more about soil 

microbial abundance and diversity in this agroecosystem. The first objective of my work was to 

compare the biomass of soil microbial communities under different CI.  PLFA results suggested a 

significant interaction of N fertilizer and CI on the total active microbial biomass.  The 100% CI 

soils with N had levels of total biomass that were twice that of 67% CI soils with N and three 

times the biomass of the 100% and 67% CI soils without N. Overall, the presence of spring wheat 

crop every growing season (since 1910) with N fertilizer (since 1967) in 100% CI soils increased 

the supply of C substrates available to soil microbes, and as a result these organisms grew more 

abundantly than those in the 67% CI soils.  The size and composition of a soil microbial 

community is important to ecosystem function which is integral to ecosystem services that help 

to make agricultural crop production viable (Giller et al., 1997; Topp, 2003).   

The second objective was to estimate the cumulative result of long term N fertilizer 

treatments and continuous wheat cropping on soil bacterial and archaeal communities and NFG 

abundance.  Quantitative PCR results suggested that AOA and AOB NFG abundances were 

driven by significant interactions of N and CI.  More specifically, as indicated by ammonia 

oxidizer and denitrifier groups studied, both were also shaped in response to differences in C and 

N inputs resulting from decades of differential soil amendments.  In this study, the ratio of AOA 
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was much higher than AOB in unfertilized soils while the populations were more even in the 

fertilized soils, indicating a tolerance for different soil environments.  The abundances of 

denitrifier functional genes nosZ and nirK were also significantly increased with 100% CI, while 

nirS was not.  These genetic abundances demonstrated functional redundancy in denitrification 

genes, and also indicated a potential for gaseous N losses given suitable anoxic soil conditions.   

The third objective was to assess the viability of DNA in air dried soils, and to 

characterize the impact that long-term storage of soil samples has on microbial DNA abundance 

and quality.  Using a short term study, fresh soils were air dried, ground and then stored at room 

temperature with DNA extracted at 8 time points (T0 to T8) over 30 months.  Results suggested 

that both storage time and N45P20 fertilizer treatment were influential on the amount of DNA 

extracted.  During storage, the initial desiccation of the soil potentially caused cell lysis in many 

microbial cells which released DNA that might have been decomposed, or absorbed to clay 

minerals and humic substances (Nguyen and Chen, 2007; Pietramellara  et al., 2008; Morrissey et 

al., 2015) . The results of 16S rRNA gene characterization alluded that the soil microbial 

community maintained diversity from T0 to T8, with diversity scores (Inverse of Simpson and 

Sobs) scores higher in N45P20 fertilized soils than in unfertilized soils.  The soil microbial 

community did not appear to lose diversity over the course of the study suggesting that DNA was 

protected from degradation over time in storage.  N and P fertilized soils were estimated to have 

greater bacterial diversity than the unfertilized soils and these results suggested that soil fertility 

levels were associated with maintaining the stability of the soil microbial community structure.  

The increased bacterial diversity in the N and P soils may also be a result of increased soil 

organic matter (SOM) due to increased plant productivity that in turn meant there were more 

humic acids available to bind DNA. Analysis at the OTU level did not suggested a strong 
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relationship between time in storage and OTU profiles.  These results suggested that storage 

duration of air dried soils did not greatly affect the relative diversity of soil microbial 

communities, therefore is an appropriate approach for investigating the soil archives associated 

with long term soil experiments.  

The fourth objective was to measure changes in soil bacterial diversity and abundance of 

NFGs in bacterial DNA extracted from archived soils in order to monitor any potential stepwise 

changes over 100 years of wheat production.  Soils archived in 1910, 1940, 1967, 1993 and 2011 

were investigated with 16S rRNA gene profiling.  The diversity of soil bacteria estimated with 

Sobs was observed to increase between samples from 1910 and 2011, although these values were 

much lower than in the 2012 soils.  The observed increased diversity over time might indicate 

storage related changes to the community profile, as is suggested by the OTU ordination 

grouping by year.  An alternative explanation could be that as observed in my short term storage 

study, the level of soil fertility is a driver of SOM, and as such, increases the binding sites for 

extracellular DNA and protects it from degradation in air dried soils.  Over time, the changes in 

agricultural land management may have increased plant and soil productivity, resulting in a 

positive linear relationship between time in crop production and bacterial diversity.  Quantitative 

PCR results suggested that a combination of 100% CI and N fertilizer treatments were more 

influential to NFG than were unfertilized soils at 67% CI.  The soil history may have resulted in 

greater C and N substrate availability in the 100% CI and N fertilizer treated soils from increased 

plant and microbial productivity.  The N fertilizer treatment was a stimulant to microbes by 

potentially lowering the C:N to be more favourable for decomposition of the increased plant 

residues made available resulting from increased crop productivity.  Estimates of AOA 

abundance suggested that CI was more influential than N fertilizer, while AOB abundance was 
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stimulated by N fertilizer additions than CI.  Denitrifiers with nosZ responded to both 100% CI 

and N fertilizer, while populations with nirK and nirS were more stimulated by 100% CI than N 

fertilizer.  The results suggest that molecular biology studies can successfully be conducted on 

DNA extracted from archived soils which have been air dried and stored at room temperature for 

years and even decades.   

These archived samples were from soils that originated from native prairie and shifts in 

soil microbial community are more likely due to fertilizer treatment and CI, than time in storage.  

The exploration of the soil archives also hinted at divergence from native prairie over time, with 

OTUs profiles grouping by year, and the relative differences in the abundance of nitrifiers AOA 

and AOB, and of denitrifiers containing nosZ, nirK and nirS genes in all time points.  Both N 

amendments and crop residues are known to affect nitrogen functional gene abundances (Hallin 

et al., 2009; Wallenstein et al., 2006) and gene abundances are part of a complex system of N 

transformations through an ecosystem, and conditions that suppress or enhance these abundances 

are important.  This study has indicated that soil archives are valuable resources because they 

provide opportunities to investigate soil bacterial communities of the past and the findings 

suggest that molecular biology studies can be conducted on DNA extracted from archived soils 

which have been air dried and stored at room temperature for years and even decades.   

5.1 Future Research Directions 

 

After this initial exploration of the Rotation ABC long term plots, questions remain 

regarding how imposing new treatments may alter the soil microbial community.  Many modern 

farming operations include a legume in the crop rotation, and the study has to reflected modern 

practices with the adoption of herbicides, fertilizers and reduced tillage.  The new treatments 
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could include a legume in to the crop rotation and also an increased level of nitrogen to better 

reflect modern practices.  Prior to implementation of any changes, a greenhouse study would 

offer a controlled environment in which to assess the changes caused by increasing the N 

treatment to reflect current recommendations for this soil zone, and also with legume residues 

incorporated prior to a growing cycle of wheat.  I propose that including a legume, or legume 

residue, the C: N would change to favour decomposition after over 100 years of wheat 

monocropping, which has a high C: N ratio that is known to favour N immobilization.  The 

impacts on the soil microbial community could be observed through use of PLFA, NFG 

abundances and 16s rRNA profiling.  In addition, I would propose that molecular biology tests 

such as PLFA, NFG abundances and 16s rRNA profiling be conducted at major soil archive 

sampling events of Rotation ABC, to record and survey the status of the soil microbial 

community.  This data could be included in the archive for future researchers to access, along 

with the soil archives.  
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Appendix A 

 

Table A.1 Cultivars of Spring Wheat grown on Rotation ABC 

Year Cultivar 

1912 Kharkov 

1913 - 1916 Red Fife 

1914 - 1950 Marquis 
1
 

1951 - 1954 Rescue 

1955 - 1969 Chinook 

1970 - 1973 Neepawa 

1974 - 1975 Cypress 

1976 Canuck 

1977 - 1984 Chester 

1985 - 1988 Leader 

1989 - 1993 Lancer 

1994 - 2004 Katepwa 

2005 - 2007 AC Abbey 

2008 - 2012 AC Lillian 

 
1
 Except for Garnet on Rotation A from 1926 - 1930. 
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Appendix B 

 

Table B.1 Summary of soil properties of Rotation A and C plots, Fall 2012 soil samples. Results are means of 4 replicates ± standard errors. 

 Fertilizer   pH   Nitrate P K S 

 (kg N ha
-1

)     (mg kg
-1

 soil) 

A N0P0   7.52(0.07)   4.2(0.7) 3.3(0.5) 476.3(25.5) 41.8(17.6) 

A N45P0   6.73(0.20)   11.3(1.7) 4.4(0.9) 677.3(80.5) 10.9(1.1) 

C N0P0   7.79(0.07)   4.8(0.4) 4.5(0.2) 420.0(15.2) 14.5(0.8) 

C N45P0   7.44(0.24)   4.7(0.4) 4.2(0.4) 501.8(30.8) 8.1(0.4) 

ANOVA CI   *   ** NS * NS 

 F   **   ** NS ** NS 

 CI x F   NS   ** NS NS NS 

  *,**,*** Significant at p≤0.05,0.01,0.001 
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Appendix C  

 

Figure C.1: Average wheat yield from 1912 to 2011 for Rotation A (continuous wheat) and Rotation C (WWF) under 0 kg N ha
-1

 and 45 kg N ha
-1

 

treatment. Bars denote +/- 1 standard deviation.  
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Appendix D 

Table D.1 Concentration of DNA (μg g
-1

soil) extracted from Rotation A and C archived 

     soils under different fertilizer treatments. 

Fertilizer  Code 1910 1940 1967 1993 2011 

   DNA conc. (µg g
-1

 soil) † 

Native prairie  1910 7.1     

0  A  3.9 8.6 5.8 4.4 

45 kg N ha
-1

  AN    8.9 3.7 

45 kg N, 20 kg P ha
-1

  ANP    3.6 4.5 

20 kg P ha
-1

  AP    6.1 7.7 

0  C  3.6 3.7 8.6 4.1 

45 kg N ha
-1

  CN    5.0 2.6 

45 kg N, 20 kg P ha
-1

  CNP    6.0 2.9 

20 kg P ha
-1

  CP    7.8 2.7 

†spaces without numerical data reflect time frames prior to fertilizer treatments 
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Appendix E 

     

Fig. E.1 Comparison of 16S rRNA abundance to AOA and AOB, as affected by cropping  

intensity (CI) and N fertilizer levels (kg ha
-1

); bars denote standard error. 


