
ALIGNING SYSTEM ARCHITECTURES ON REQUIREMENTS OF MOBILE
BUSINESS PROCESSES

ABSTRACT
The support of mobile workers with mobile IT solutions
can create tremendous improvements in mobile business
processes of a company. The main characteristic of such
a mobile system is the ability to connect via a (mobile) net-
work to a central server, e.g. in order to access customer
data. This paper presents a detailed description of the four
main software architectures for mobile client/server-based
systems and their main characteristics. Beyond, typical
business requirements in mobile environments like the lo-
cation of use, data topicality, interaction requirements, syn-
chronisation mechanisms and many more are mapped onto
each of these architectures. The presented results can be
used for discussing concurrent business needs as well as
for deriving a mobile system architecture based on these
needs.

KEY WORDS
mobile system architecture, business requirements, soft-
ware architecture

1 Introduction

Since the availability of mobile broadband networks and
the reduced costs for mobile devices the use of mobile ap-
plications has become an interesting opportunity in several
fields. Companies with large divisions of mobile employ-
ees (e.g. service technicians, sales representatives, health-
care services) can use mobile applications to gain access to
corporate applications and databases at the point of service
(POS). Therewith better coordination of mobile employees,
rapid task assignment, the avoidance of error-prone for-
mat conversion, instant access to customer data and many
more becomes feasible [6], [9]. The architecture of a mo-
bile system can range from always-online systems using
browser-based clients to fat client systems synchronizing
with a central server occasionally. Which software archi-
tecture fits best for a specific mobile task depends basi-
cally on business needs. The frequency of movement, the
probability of network availability, requirements for data
topicality, update mechanisms, synchronisation procedures
and many more play a crucial role. Beyond, the costs for
the development of a mobile system depend strongly from
the chosen type of architecture. As these issues are of par-
ticular relevance in the decision process of software archi-
tects and IT project managers, this paper explains the main
types of mobile system architectures with their advantages
and disadvantages, typical business requirements for mo-

bile systems and a matching scheme in order to identify
the suitable architecture for a given set of business require-
ments.

This paper is organized as follows: Section 2 gives
an overview about related work. Section 3 introduces four
main types of architectures for mobile systems, showing
their structure with component diagrams and explaining
their main characteristics as well as their advantages and
disadvantages. In section 4, typical business requirements
for mobile systems are given and interdependencies be-
tween the shown system architectures are described. Sec-
tion 5 draws a conclusion.

2 Related Work

The changes for the discipline of software engineering
when developing systems for mobile environments are dis-
cussed in [10]. The authors state that ”mobility represents
a total meltdown of all stability assumptions [...] associated
with distributed computing”. A comprehensive overview of
software engineering for mobile systems is given, regard-
ing issues like models, algorithms, applications and mid-
dleware to solve in the future. Our paper addresses the
some of these issues. In [11] an architectural model that
identifies the components representing the essential aspects
of a mobile agent system is described. The interaction de-
sign for mobile information systems is subject of [3]. The
authors developed a platform that supports the rapid proto-
typing of multi-channel, multi-modal, context-aware appli-
cations and describe how it was used to develop a tourist
information system. A lot of work has been done regarding
system architectures and other technical aspects of mobile
system. An example for this work is [5], where a three-
layer software architecture for distributed and mobile col-
laboration is presented. [12] presents an approach for the
modelling and performance evaluation of mobile multime-
dia systems using generalized stochastic petri nets. The au-
thor focuses on verifying the optimal performance achiev-
able under some QoS constraints in a given setting of de-
sign parameters. In [7] an approach for modelling soft-
ware architectures for mobile distributed computing is pre-
sented. The modelling method aims at the verification of
the correctness of both the functional and non-functional
properties of the resulting mobile system. The authors of
[2] report on a project that aims for providing a system
architecture simplifying the task of implementing mobile
applications with adaptive behaviour. Temporal, spatial
and personal mobility are considered in this approach. A

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data layerapplication layerpresentation layer

client

<<component>>
browser (GUI)

server

<<component>>
presentation logic

<<component>>
business logic

<<component>>
session handling

data

Figure 1. Web-based always-online architecture

comparison of different architectures for mobile systems is
given in [8], where the client/server model, the agent-based
client/server model and the mobile agent model is consid-
ered. In [13] is discussed, how the approach of service-
oriented architectures can be applied within the develop-
ment of mobile systems. It is shown, how to compose mo-
bile services and how to apply these services in the system
architecture. The work described in [4] is an essential ba-
sis for this paper. The authors give an overview about dif-
ferent types of software architectures for mobile systems,
based on an analysis of different types of user and device
mobility.

3 Types of Software Architectures
for Mobile Systems

When analyzing the communication behaviour of a mo-
bile application, its architecture is of particular relevance.
According to [4], mainly four different types of mobile
client/server-based systems can be distinguished. First, a
complete offline architecture could be used where (nearly)
no communication via a network occurs. As we focus
mainly on network issues, we do not consider this type of
architecture. Second, an offline architecture is conceivable,
where the mobile user synchronizes the mobile application
occasionally with a central server. Third, a hybrid archi-
tecture could combine the advantages of an offline and an
online architecture: If a network is available the mobile ap-
plication communicates online with a central server, if the
network is unavailable, the mobile application works of-
fline and can be synchronized later with the central server.
Fourth, with an always online architecture, the mobile ap-
plication would communicate with a central server exclu-
sively. This architecture is typical for web-based systems.
In the following, we present a component-based view onto
these architectures and explain their main characteristics.

3.1 Web-based Always-online Architecture

Within this architecture (see Fig. 1), the client works al-
ways online via a (mobile) network. The presentation
layer is completely realized at the client side, where only a
browser component is needed to realize the graphical user
interface (GUI). The application layer is located server-side
and contains a session handling component as well as com-
ponents for presentation and business logic. The data layer
contains the databases at the server side.

The main advantage of this architecture is that only
a browser is needed at the client side. Thus, the sys-
tems architecture allows the cooperation with a wide range
of client systems independently from the client’ operating
systems or other client-side conditions. Furthermore, as all
the data and the logic is located server-side, no update or
synchronization mechanisms are needed. All clients can
work on the same central data base, using the recent data
as well as the recent presentation and business logic. The
effort for the administration of such a systems is very small
compared to other system architectures.

The main disadvantage of this solution is that always
a (mobile) network is needed, otherwise the client is unus-
able. When using a mobile network, the coverage in certain
areas might not be given. Beyond, mobile networks usually
offer just a small bandwidth causing a probably unsatisfy-
ing performance of the client. Furthermore, browser-based
applications are limited in terms of user interface design to
the facilities of HTML, which is quite less than users know
from fat client applications. The simultaneous connection
of a large number of clients to the central server also causes
high requirements for the central server regarding its per-
formance as well as its operational availability.

3.2 Rich Client Always-online Architecture

Within this architecture (see Fig. 2), one disadvantage of
the web-based always-online architecture is addressed: Us-
ing a rich client at the client side, the limitations of the
user interface design to the facilities of HTML can be over-
come, as rich clients offer the full variety of interaction el-
ements for the interface design. Beyond, rich clients offer
the advantage of moving presentation logic to the client and
therewith offering performance and costs improvements
through a reduction of data traffic via the mobile network.
The presentation layer is completely realized on the client,
containing a GUI and a presentation logic component. Ad-
ditionally, the client contains some elements of the appli-
cation layer, i.e. an update component for the presentation
logic as well as a session handling component. Both com-
ponents have an equivalent at the server side, where also
a component for the business logic is located (application
layer). The data layer is completely realized at the server
side containing templates for the presentation logic as well
as other databases.

The main advantages of this solution are the full user
interface design capabilities and the reduced data traffic,

data layerapplication layerpresentation layer

Client

 <<component>>
 Rich Client

Server

<<component>>
presentation logic

<<component>>
business logic

<<component>>
update handling

<<component>>
GUI

<<component>>
update handling

<<component>>
session handling

<<component>>
session handling

presentation
logic template

data

Figure 2. Rich Client Always-online Architecture

still having a thin client. Furthermore, all clients can work
on the same central data base, using the recent data as well
as the recent presentation and business logic. The effort for
the administration of such a system is small compared to
other system architectures (except the web-based always-
online architecture). Furthermore, with rich clients partly
asynchronous communication becomes feasible, producing
an improved user interaction. Short-time network discon-
nection can be intercepted through the client-side session
component. The disadvantages are the same as in the Web-
based Always-online Architecture. Additionally, compo-
nents for the session and update handling need to be devel-
oped, update mechanisms are needed.

3.3 Rich Client Hybrid Architecture

The two architectures described before suffer from one
main disadvantage: If no mobile network is available, the
application is not usable for the mobile worker. The rich
client hybrid architecture addresses this issue (see Fig. 3).
The aim of this architecture is to keep the client as thin
as possible but to assure that the application works also in
the emergency when no mobile network is available. The
client consists of a GUI and a presentation logic compo-
nent (presentation layer). Additionally, a business logic
component as well as session handling, update handling
and data synchronization components are located at the
client side (application layer). Also a database is needed
at the client (data layer). The business logic, session han-
dling, update handling and synchronization components
are also needed at the server side. The server-side data layer
consists of templates for business and presentation logic
and other databases. In the normal case the application
works always-online, using business logic and data from
the server side (like in the rich client always-online sce-
nario). In case of loosing the network connection, the ap-
plication would use the equivalent components at the client.
Thus, a synchronization mechanism is needed.

The main advantage of this architecture is the abil-
ity to work always-online but having also the capability to
work offline when no network is available. Through the
use of a rich client, the full user interface design capabili-
ties are available and reduced data traffic can be achieved.

When establishing a network connection, all clients can
work on the same central data base, using the recent data as
well as the recent presentation and business logic. Further-
more, with rich clients partly asynchronous communica-
tion becomes feasible, producing an improved user interac-
tion. Short-time network disconnection can be intercepted
through the client-side session component. The disadvan-
tages of this solution are mainly the same as in the two
architectures described before. Additionally, when work-
ing offline, a synchronization mechanism needs to transfer
data stored at the client, resolving possible conflicts with
the server-side data base. In this architecture, the client is a
thick client as many components needed to realize different
functionality. All these components need to be developed
and updated regularly, which causes a high administration
effort.

3.4 Fat Client Offline Architecture

The fat client offline architecture is quite similar to the rich
client hybrid architecture except that no online connection
is provided (see Fig. 4). The mobile worker uses the ap-
plication always offline, the client represents the whole ap-
plication. The data stored on the client is occasionally syn-
chronized with a central server, e.g. via a stationary net-
work at the mobile workers office. At these points, also the
components for business and application logic need to be
synchronized. The main advantage of this architecture is,
that through the use of a fat client, the full user interface
design capabilities are available. As no network connec-
tion is needed, the application can be used very flexible in
nearly every environmental situation. No costs or perfor-
mance problems due to the restrictions of mobile networks
occur. The main disadvantage of this solution is, that com-
ponents for the update handling need to be developed and
deployed regularly. A synchronization mechanism needs
to transfer the data stored at the client, resolving possible
conflicts with the central server. The synchronization in-
tervals are completely influenced by the user, the data and
component topicality can not be assured.

pr
es

en
ta

tio
n

la
ye

r
ap

pl
ic

at
io

n
la

ye
r

da
ta

 la
ye

r

Client

Server

<<component>>
update handling

<<component>>
update handling

<<component>>
synchronisation

 <<component>>
 Rich Client

<<component>>
presentation logic

<<component>>
GUI

<<component>>
business logic

<<component>>
synchronisation

<<component>>
update handling

<<component>>
update handling

presentation
logic templatedata databusiness logic

template

<<component>>
business logic

<<component>>
session handling

<<component>>
session handling

Figure 3. Rich client hybrid architecture

3.5 Architecture Comparison

The web-based always-online architecture is obviously a
very small and light-weight architecture, causing relatively
small effort for its development and administration. But, it
has also some significant shortcomings in connectivity and
usability issues. The other three architectures aim on the
improvement of these shortcomings. But, as more as they
improve connectivity and usability, the effort for develop-
ment and administration grows rapidly. The main task for
IT project managers and software architects is, to decide
how much effort for the development and the administra-
tion of such a solution is justifiable for the given business
needs. The following section shows some of the typical
business requirements for mobile solutions and explains
how the appropriate system architecture can be deduced.

4 Architectural Implications
of Typical Business Requirements

In the following, typical business requirements for mobile
applications are described and evaluated regarding their ef-
fects on the system architecture. The results are shown in
Table 1. If an architecture is thoroughly suitable to fulfil
a given business requirement, it is marked with ‘+’, if it
is suitable with some restrictions it is marked with ‘0’. If
an architecture is not suitable for a given business require-
ment, this is indicated by ‘–’.

• Point of Service. The typical location of the POS
is of particular relevance for deriving a suitable sys-
tem architecture. If the application is used mostly in

a stationary environment, all kind of architectures are
conceivable. If the application is used mobile in ur-
ban environments, mobile networks will probably be
available most of the time. Thus, the web-based as
well as the rich client always-online architecture will
be suitable in most of the cases, the other two archi-
tectures will work of course in every situation. If the
mobile application is used in rural environments, the
availability of a mobile network can frequently not be
assured. In these cases, only the hybrid rich client ar-
chitecture as well as the fat client offline architecture
is conceivable.

• Data Topicality. The requirements for data topical-
ity have also a main influence on the system architec-
ture. If the mobile worker needs always real-time data
topicality, only the always-online architectures can be
considered. The rich client hybrid architecture can be
used, if the requirements for data topicality are not so
strict (e.g. data from the previous day are sufficiant).
The fat client offline architecture is only conceivable,
if the requirements for data topicality are not critical
(e.g. a couple of days or weeks).

• Source Code Redundancy. The architecture of a
mobile system influences also the source code redun-
dancy. If the business logic of an application is used
in different contexts (e.g. client and server side), the
business logic component often needs to be devel-
oped twice because of different system requirements.
Each later change in the business logic component
also needs to be implemented twice. If the complete
avoidance of source code redundancy is demanded

pr
es

en
ta

tio
n

la
ye

r
ap

pl
ic

at
io

n
la

ye
r

da
ta

 la
ye

r

Client

Server

<<component>>
update handling

<<component>>
update handling

<<component>>
synchronisation

 <<component>>
 Fat Client

<<component>>
presentation logic

<<component>>
GUI

<<component>>
business logic

<<component>>
synchronisation

<<component>>
update handling

<<component>>
update handling

presentation
logic template

data data business logic
template

Figure 4. Fat client offline architecture

(single source, single instance), only the web-based
always-online architecture is conceivable. If a small
source code redundancy is accepted (single source,
multiple instances), the always-online rich client ar-
chitecture should be chosen. If no restrictions regard-
ing the source code redundancy exists, the hybrid rich
client architecture and the fat client offline architec-
ture are feasible.

• Software Distribution. The distribution of new re-
leases for mobile applications often causes a high ef-
fort. To avoid this, the web-based always-online ar-
chitecture should be chosen, as within this architec-
ture the update process can be conducted for a single
server instance of an application. If an online update
process is accepted, the always-online and the hybrid
rich client architecture can be used. As the update
process for fat client offline systems usually requires
a high amount of data to be transferred, often only of-
fline updates (e.g. via CD, DVD) are possible, causing
very high costs and organizational effort.

• User Interface Design and Interaction Techniques.
Both the rich client and the fat client architecture
offer the full range of elements for designing the
user interface. If the application is not to complex
and only simple user interactions are needed (feasible
with HTML), the web-based always-online architec-
ture can be used.

• Security Issues. Within mobile applications often
confidential data is processes and transferred. Thus, a
couple of security mechanisms are needed. From the
administrator’s point of view, a centralized security
management would be desirable. This would be fea-

sible with both the always-online architectures. The
hybrid rich client architecture as well as the fat client
offline architecture requires also security effort at the
client side.

5 Conclusion

In this paper we presented the four basic software architec-
tures conceivable for mobile systems. The decision, which
architecture the most suitable in a given project situation
is, depends on the business requirements on the one hand
side as well as on the restrictions for the development and
administration effort on the other hand side. Both aspects
have strong interdependencies. The higher the business re-
quirements are, especially in terms of connectivity and us-
ability, the higher the costs for the development and the
administration of the solution are. Considering this, no
general recommendation for the system architecture of a
mobile system can be given. It is rather necessary to asses
single aspects of business requirements like the exact needs
for connectivity, redundancy and update preferences and
many more. For each single aspect the best system archi-
tecture can be derived, but often the result will vary over all
considered aspects. Then, a compromise need to be found
for the given situation. The above given business require-
ments and their relation to the developed system architec-
tures can help to support this process.

6 Acknowledgements

The Chair of Applied Telematics/e-Business is endowed by
Deutsche Telekom AG. The results presented in this paper

always-online always-online hybrid offline
web-based rich client rich client fat client

point of service
office + + + +
urban areas 0 0 + +
rurally areas – – + +

data topicality
real–time data required + + – –
relatively recent data required + + + –
other topicality required + + + +

source code redundancy
large redundancy accpeted + + + +
small redundancy accepted + + – –
no redundancy accepted + – – –

software distribution
offline distribution accepted + + + +
online distribution accepted + + + 0
distribution not accepted + – – –

user interface design and interaction techniques
should be extensive – + + +
can be restricted to HTML + + + +

security issues
decentral organisation accepted + + + +
central organisation demanded + + 0 –

Table 1. Business requirements and their architectural implications

were partly developed within a research project in cooper-
ation with the company inverso GmbH [1].

References

[1] http://www.inverso.de.
[2] I. Augustin, A. C. Yamin, J. L. V. Barbosa, and C. F. R.

Geyer. Isam, a software architecture for adaptive and dis-
tributed mobile applications. In Proceedings of ISCC ’02,
page 333, Washington, DC, USA, 2002. IEEE Computer
Society.

[3] R. Belotti, C. Decurtins, M. C. Norrie, B. Signer, and
L. Vukelja. Experimental platform for mobile information
systems. In Proceedings of MobiCom ’05, pages 258–269,
New York, NY, USA, 2005. ACM Press.

[4] M. Book, V. Gruhn, M. Hülder, and C. Schäfer. A method-
ology for deriving the architectural implications of different
degrees of mobility in information systems. In M. H. Fu-
jita, editor, New Trends in Software Methodologies, Tools
and Techniques, pages 281–292. IOS Press, 2005.

[5] S. Dustdar and H. Gall. Architectural concerns in distrib-
uted and mobile collaborative systems. Journal on System
Architecture, 49(10-11):457–473, 2003.

[6] V. Gruhn, A. Köhler, and R. Klawes. Modeling and analysis
of mobile service processes by example of the housing in-
dustry. In W. M. van der Aalst, B. Benatallah, F. Casati, and
F. Curbera, editors, Business Process Management, pages
1–16. Springer LNCS 3649, 2005.

[7] I. Issarny, F. Tartanoglu, J. Liu, and F. Sailhan. Software
architecture for mobile distributed computing. In Proceed-

ings of WICSA ’04, page 201, Washington, DC, USA, 2004.
IEEE Computer Society.

[8] Z. Kan, J. Luo, and J. Hu. The design of a software tech-
nology architecture for mobile computing. In Proceedings
of HPC ’00, page 762, Washington, DC, USA, 2000. IEEE
Computer Society.

[9] F. F.-H. Nah, K. Siau, and H. Sheng. The value of mobile
applications: a utility company study. Communications of
the ACM, 48(2):85–90, 2005.

[10] G.-C. Roman, G. P. Picco, and A. L. Murphy. Software en-
gineering for mobility: a roadmap. In Proceedings of ICSE
’00, pages 241–258, New York, NY, USA, 2000. ACM
Press.

[11] M. Schoeman and E. Cloete. Architectural components for
the efficient design of mobile agent systems. In Proceedings
of SAICSIT ’03, pages 48–58. South African Institute for
Computer Scientists and Information Technologists, 2003.

[12] T. Tsang. Modelling and performance evaluation of mobile
multimedia systems using qos-gspn. Wireless Networks,
9(6):575–584, 2003.

[13] D. van Thanh and I. Jorstad. A service-oriented architecture
framework for mobile services. In Proceedings of AICT-
SAPIR-ELETE ’05, pages 65–70, Washington, DC, USA,
2005. IEEE Computer Society.

