
 
 
 
 

MULTIVARIATE POISSON HIDDEN MARKOV MODELS 

FOR ANALYSIS OF SPATIAL COUNTS 
 
 
 
 

A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial 
Fulfillment of the Requirements for the Degree of 

 
Doctor of Philosophy 

 
in the Department of Mathematics and Statistics 

University of Saskatchewan, Saskatoon, 
SK, Canada 

 
 
 
 
 
 
 

by 
 

Chandima Piyadharshani Karunanayake 
 
 
 
 
 
 

@Copyright Chandima Piyadharshani Karunanayake, June 2007. All rights Reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226137537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 i

PERMISSION TO USE 
 

 
The author has agreed that the libraries of this University may provide the thesis freely 

available for inspection. Moreover, the author has agreed that permission for copying of 

the thesis in any manner, entirely or in part, for scholarly purposes may be granted by 

the Professor or Professors who supervised my thesis work or in their absence, by the 

Head of the Department of Mathematics and Statistics or the Dean of the College in 

which the thesis work was done. It is understood that any copying or publication or use 

of the thesis or parts thereof for finanancial gain shall not be allowed without my 

written permission. It is also understood that due recognition shall be given to the 

author and to the University of Saskatchewan in any scholarly use which may be made 

of any material in this thesis. 

 

Requests for permission to copy or to make other use of any material in the thesis 

should be addressed to: 

 

Head 

Department of Mathematics and Statistics 

University of Saskatchewan  

106, Wiggins Road 

Saskatoon, Saskatchewan 

Canada, S7N 5E6 

 
 
 



 ii

ABSTRACT 
 
Multivariate count data are found in a variety of fields. For modeling such data, one 

may consider the multivariate Poisson distribution. Overdispersion is a problem when 

modeling the data with the multivariate Poisson distribution. Therefore, in this thesis we 

propose a new multivariate Poisson hidden Markov model based on the extension of 

independent multivariate Poisson finite mixture models, as a solution to this problem. 

This model, which can take into account the spatial nature of weed counts, is applied to 

weed species counts in an agricultural field. The distribution of counts depends on the 

underlying sequence of states, which are unobserved or hidden. These hidden states 

represent the regions where weed counts are relatively homogeneous. Analysis of these 

data involves the estimation of the number of hidden states, Poisson means and 

covariances. Parameter estimation is done using a modified EM algorithm for maximum 

likelihood estimation.  

 

We extend the univariate Markov-dependent Poisson finite mixture model to the 

multivariate Poisson case (bivariate and trivariate) to model counts of two or three 

species. Also, we contribute to the hidden Markov model research area by developing 

Splus/R codes for the analysis of the multivariate Poisson hidden Markov model. 

Splus/R codes are written for the estimation of multivariate Poisson hidden Markov 

model using the EM algorithm and the forward-backward procedure and the bootstrap 

estimation of standard errors. The estimated parameters are used to calculate the 

goodness of fit measures of the models. 
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Results suggest that the multivariate Poisson hidden Markov model, with five states and 

an independent covariance structure, gives a reasonable fit to this dataset. Since this 

model deals with overdispersion and spatial information, it will help to get an insight 

about weed distribution for herbicide applications. This model may lead researchers to 

find other factors such as soil moisture, fertilizer level, etc., to determine the states, 

which govern the distribution of the weed counts.  

 

Keywords: Multivariate Poisson distribution, multivariate Poisson hidden Markov 

model, Weed species counts, EM algorithm. 
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CHAPTER 1 
 
 

GENERAL INTRODUCTION 
 
 
1.1 Introduction 
 
 

The analysis of multivariate count data (e.g. weed counts for different species in a field) 

that are overdispersed relative to the Poisson distribution (i.e. variance > mean) has 

recently received considerable attention (Karlis and Meligkotsidou, 2006; Chib and 

Winkelmann, 2001). Such data might arise in an agricultural field study where 

overdispersion is caused by the individual variability of experimental units, soil types or 

fertilizer levels. Therefore, these data (e.g. weed counts) are not homogenous within the 

field. The Poisson mixture model is a flexible alternative model which can represent the 

inhomogeneous population. Finite Poisson mixtures are very popular for clustering 

since they lead to a simple and natural interpretation, as models describing a population 

consisting of a finite number of subpopulations.  

 

These types of count data can be modelled using model-based clustering methods, such 

as multivariate Poisson finite mixture models (or independent finite mixture models) 

and multivariate Poisson hidden Markov models (or Markov-dependent finite mixture 

models). It is assumed that the counts follow independent Poisson distributions 
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conditional on rates, which are generated from an independent mixing distribution for 

finite mixture models. The counts for multivariate Poisson hidden Markov models are 

assumed to follow independent Poisson distributions, conditional on rates with Markov 

dependence. Finite mixture models can be particularly attractive because they provide 

plausible explanations for variation in the data (Leroux and Puterman, 1992). 

 

1.2 Literature review 

1.2.1 Introduction to finite mixture models 

 

The main question here is determining the structure of clustered data when no 

information other than the observed values is available. Finite mixture models have 

been proposed for quite sometime as a basis for studying the clustered data (Symons, 

1981; McLachan, 1982; McLachlan et al., 1988). In this approach, the data are viewed 

as coming from a mixture of probability distributions, each representing a different 

cluster. Recently, finite mixture model analysis have been used in several practical 

applications: character recognition (Murtagh and Raftery, 1984); tissue segmentation 

(Banfield and Raftery, 1993); minefield and seismic fault detection (Dasgupta and 

Raftery, 1998); identification of textile flaws from images (Campbell et al., 1997); and 

classification of astronomical data (Celeux et al., 1995). Most of these examples are 

based on Gaussian finite mixture models. There are some examples of Poisson finite 

mixtures. Leroux and Puterman (1992) describe a univariate Poisson finite mixture 

model for fetal movement data. The clustering of cases of a rare disease (sudden infant 

death syndrome), on the basis of the number of cases observed for various counties in 
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North Carolina, is modelled by Symons et al. (1983) using a mixture of two Poisson 

distributions, which describe the two groups of high and low risk counties. Very 

recently, a multivariate Poisson finite mixture model was used for a marketing 

application (Brijs et al., 2004). Brijs describes a multivariate Poisson finite mixture 

model for clustering supermarket shoppers based on their purchase frequency in a set of 

product categories.  

 

In this thesis, the multivariate Poisson finite mixture model is applied for the first time 

to weed species counts in an agricultural field. Also, we developed a multivariate 

Poisson hidden Markov model and applied it to analyze the weed species data. The 

goodness of fit measure of the model is also evaluated (Chapter 7).  Details about 

multivariate Poisson finite mixture models and multivariate Poisson hidden Markov 

models are given in Chapter 5. The history of hidden Markov models is presented in the 

next section. 

 

1.2.2 History of hidden Markov models 

 

Hidden Markov Models (HMMs) are statistical models that are widely used in many 

areas of probabilistic modeling. These models have received increasing attention 

(Rabiner and Juang, 1986, 1991 and Rabiner, 1989), partially because of their 

mathematical properties (they are rich in mathematical structure), but mostly because of 

their applications to many important areas in scientific research. 
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Hidden Markov Models have been found to be extremely useful for modeling stock 

market behavior. For example, the quarterly change in the exchange rate of the dollar 

can be modelled as an HMM with two states, which are unobservable and correspond to 

the up and down changes in exchange rate (Engel and Hamilton, 1990). HMM is also 

used in the area of speech recognition. Juang and Rabiner (1991) and Rabiner (1989) 

described how one could design a distinct hidden Markov model for each word in one’s 

vocabulary, in order to envision the physical meaning of the model states as distinct 

sounds (e.g. Phonemes, syllables). A hidden Markov model for ecology was introduced 

by Baum and Eagon (1967). Later, they introduced a procedure for the maximum 

likelihood estimation of the HMM parameters for the general case where the observed 

sequence is a sequence of random variables with log-concave densities (Baum et al., 

1970). In molecular biology, hidden Markov models are used to allow for unknown 

rates of evolution at different sites in a molecular sequence (Felsenstein and Churchill, 

1996). Similarly, in climatology, the occurrence or nonoccurrence of rainfall at different 

sites can be modelled as an HMM where the climate states are unobservable, accounting 

for different distributions of rainfall over the sites (Zucchini et al., 1991). 

 

The distinction between non-hidden Markov models and hidden Markov models is 

based on whether the output of the model is the actual state sequence of the Markov 

model, or if the output is an observation sequence generated from the state sequence. 

For hidden Markov models, the output is not the state sequence, but observations that 

are probabilistic function of the states. Thus in hidden Markov models, it extends the 
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concept of Markov models to include the case where the observation is a probabilistic 

function of the states.  

 

The concept of hidden Markov Model has been the object of considerable study since 

the basic theory of hidden Markov models was initially introduced and studied during 

the late 1960’s and early 1970’s by Baum and his colleagues (Baum et al., 1966, 1967 

and 1970). The primary concern in the hidden Markov modeling technique is the 

estimation of the model parameters from the observed sequences. One method of 

estimating the parameters of the hidden Markov models is to use the well-known Baum-

Welch re-estimation method (Baum and Petrie, 1966). Baum and Eagon first proposed 

the algorithm in 1967 for the estimation problem of hidden Markov models with 

discrete observation densities. Baum and others (1970) later extended this algorithm to 

continuous density hidden Markov models with some limitations.  

 

1.2.3 Hidden Markov model and hidden Markov random field model 

 
Hidden Markov models are well known models in modeling the unknown state 

sequence given the observation sequence. As mentioned in the previous section, this has 

been successfully applied in the fields of speech recognition, biological modeling 

(protein sequences and DNA sequences) and many other fields. The hidden Markov 

models presented in section 1.2.2 are one-dimensional models, and they cannot take 

spatial dependencies into account. To overcome this drawback, Markov random fields 

and hidden Markov random fields (HMRF) can be used in more than one dimension 

when considering the spatial dependencies. For example, when the state space or 
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locations have two coordinates, that state space can be considered as a two-dimensional 

nearest-neighbor Markov random field. These Markov random fields have been 

extensively applied in the field of image processing (Fjφrtoft et al., 2003; Pieczynski et 

al., 2002; Zhang et al., 2001; Fjφrtoft et al., 2001; Aas et al., 1999). 

 

In each case, there is a set of quantities, x , representing some unobservable 

phenomenon, and a supplementary set of observables, .y  In general, y  is a distorted 

version of .x  For example, in the context of speech recognition, x  represents a time 

sequence of configurations of an individual’s vocal tract; the y  represents the 

corresponding time sequence of projected sounds. Here, the Markovian assumption 

would be that the elements of x  come form a realization of a Markov chain. In the 

context of image analysis, x  represents the true scene, in terms of the true pixellated 

colouring, and y  denotes the corresponding observed image. Here, the Markovian 

assumption would be that the elements of x  would be assumed to come from a Markov 

random field. The elements of x  are indexed by a set, ,S  of sites, usually representing 

time-points or discrete points in space (Archer & Titterington, 2002).  

 

There is a very close relationship between Markov random fields and Markov chains. 

Estimation of Markov random field prior parameters can be done using Markov chain 

Monte Carlo Maximum likelihood estimation (Descombes et al., 1999). It is also 

demonstrated that a 2-D Markov random field can be easily transformed into a one-

dimensional Markov chain (Fjφrtoft et al., 2003). Fjφrtoft (2003) explains that in image 

analysis, hidden Markov random field (HMRF) models are often used to impose spatial 
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regularity constraints on the underlying classes of an observed image, which allow 

Bayesian optimization of the classification. However, the computing time is often 

prohibitive with this approach. A substantially quicker alternative is to use a hidden 

Markov model (HMM), which can be adapted to two-dimensional analysis through 

different types of scanning methods (e.g. Line Scan, Hilbert-Peano scan etc.). Markov 

random field models can only be used for small neighbourhoods in the image, due to the 

computational complexity and the modeling problems posed by large neighbourhoods 

(Aas et al., 1999). Leroux and Puterman (1992) used maximum–penalized likelihood 

estimation to estimate the independent and the Markov-dependent mixture model 

parameters. In their analysis, they focus on the use of Poisson mixture models assuming 

independent observations and Markov-dependent models (or hidden Markov Models) 

for a set of univariate fetal movement counts. Extending this idea, for a set of 

multivariate Poisson counts, a novel multivariate Poisson hidden Markov model 

(Markov-dependent multivariate Poisson finite mixture model) is introduced. These 

counts can be considered as a stochastic process, generated by a Markov chain whose 

state sequence cannot be observed directly but which can be indirectly estimated 

through observations. Zhang et al. (2001) described that the finite mixture model is a 

degenerate version of the hidden Markov random field model. Fjφrtoft (2003) explained 

that the classification accuracy of hidden Markov random fields and hidden Markov 

models were not differing very much. Hidden Markov models are much faster than the 

ones based on the Markov random fields (Fjφrtoft et al., 2003). The advantage of hidden 

Markov models compared to the Markov random field models is the ability to combine 
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the simplicity of local modeling with the strength of global dependence by considering 

one-dimensional neighbourhoods (Aas et al., 1999). 

 

1.3 Outline of the thesis 

 

Chapter 2 gives a review of the Markov process, and then gives examples of hidden 

Markov models to clarify and present the general definition of the HMM and the 

HMRF. Chapter 3 is about the prediction, the state identification and the estimation 

problem, the solution of the HMM for a univariate case. The question of interest in this 

thesis is presented in Chapter 4. Details about calculating multivariate Poisson 

probabilities, multivariate Poisson finite mixture models and multivariate Poisson 

hidden Markov models are discussed in Chapter 5. We extended the univariate Markov-

dependent Poisson mixture model to a multivariate Poisson case (bivariate and 

trivariate). Also, we contributed to the hidden Markov model research area by 

developing Splus/R codes for the analysis of the multivariate Poisson hidden Markov 

Model. Splus/R codes are written to estimate the multivariate Poisson hidden Markov 

Model using the EM algorithm and the forward-backward procedure and the bootstrap 

estimation of standard errors. Results are presented in Chapter 6. The properties of the 

finite mixture models and several applications are presented in Chapter 7. The 

Computational efficiency of the models is discussed in Chapter 8. The discussion, 

conclusion and the areas of further research are presented in Chapter 9. 
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CHAPTER 2 
 
 

HIDDEN MARKOV MODELS ( HMM’s) AND HIDDEN MARKOV RANDOM 

FIELDS(HMRF’s) 

 

2.1 Discrete time finite state Markov chain 

 

Let { , 0,1,2,....}tS t =  be a sequence of integer valued random variables that can assume 

only an integer value {1,2,...., }.K  Then { , 0,1,2,....}tS t =  is a K  state Markov chain if 

the probability that tS  equals some particular value (j), given the past, depends only on 

the most recent value of 1.tS −  In other words, 

1 2 1[ | , ,....] [ | ]t t t t t ijP S j S i S m P S j S i P− − −= = = = = = = , 

where { }
KjiijP

,...,2,1, =
 are the one-step transition probabilities (Srinivasan and Mehata, 

1978; Ross, 1996). The transition probability, ijP , is the probability of transitioning 

from state i  to state j  in one time step. Note that 
1

1, 0.
K

ij ij
j

P P
=

= ≥∑  

Here, the output of the process is the set of states at each instant of time, where each 

state corresponds to an observable event. The above stochastic process is called an 

observable discrete time finite state Markov model. 



 10

2.2 Examples of hidden Markov models 

 

In this section, we will give examples where the idea of the hidden Markov model 

(Rabiner, 1989; Elliott et al., 1995) is discussed and presented, in order to understand 

the concept of the HMM. 

 

Examples: 

1. A person is repeatedly rolling one of two dice picked at random, one of which is 

biased (unbalanced) and the other is unbiased (balanced). An observer records the 

results. If the dice are indistinguishable to the observer, then the two ‘states’ (i.e. 

biased dice or unbiased dice) in this model are hidden. 

2. Consider an example of coin tossing.  One person (person A) is in a room with a 

barrier (e.g., a curtain) through which he cannot see what is happening on the other 

side, where another person (person B) is performing a coin tossing experiment. 

Person B will tell person A the results of each coin flip. Person A only observes the 

results of the coin tosses, and he does not know anything about which coin gives the 

results. So the tossing experiment is hidden, providing a sequence of observations 

consisting of a series of heads and tails (T stands for tails and H stands for heads). 

For example : Y1 Y2 …YT 

  H  T … H. 
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Given the coin tossing experiment, the question of interest is how to build hidden 

Markov models that will explain the observation sequence. For example 2, we can 

consider several models: 1-coin model, 2-coins model and 3-coins model. 

 

1-coin model: 

Here, there are two states in the model, but each state is uniquely associated with either 

head (state 1) or tail (state 2); hence, this model is not hidden because the observation 

sequence uniquely defines the state.  

 

 

 

 

Y = H H T T H T H H T T H…… 

S = 1 1 2 2 1 2 1 1 2 2 1….. 

 

Figure 2.1: 1- coin model 

 

2-coins model: 

There are two states in this model corresponding to a different, biased, coin being 

tossed; neither state is uniquely associated with either head or tail. Each state is 

characterized by a probability distribution of heads and tails, and the state transition 

matrix characterizes the transitions between the states. This matrix can be selected by a 

set of independent coin tosses or some other probabilistic event. The observable output 

sequences of 2-coins model are independent of the state transitions. This model is 

1-P[H]

P[H] P[T]

P[H]1 2 

P[H]- The probability of observing a head 

P[T]- The probability of observing a tail 

1-P[H]- The probability of leaving state 1 
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hidden because we do not know exactly which coin (state) led to the head or tail of each 

observation. 

 

 

 

 

 

P11- The probability of staying in state 1 

P22- The probability of staying in state 2 

1-P11- The probability of leaving state 1 

1-P22- The probability of leaving state 2 

Y = H H T T H T H H T T H…… 

                                            S = 2 1 1 2 2 2 1 2 2 1 2….. 

                                          (1) P[H]=P1  (2) P(H)=P2 

              P[T]=1-P1                  P[T]=1-P2 , 

where (1) is the probability distribution of heads and tails in state 1 and (2) is the 
probability distribution of heads and tails in state 2. 
 

Figure 2.2: 2- coins model 

 

3-coins model: 

The third form of the HMM for explaining the observed sequence of coin tossing 

outcomes is given in Figure 2.3. This model corresponds to the example using three 

biased coins, and choosing from among the three based on some probabilistic event. 

 

 

 

1-P11 

P11 P22 

1-P22 1 2 
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P11- The probability of staying in state 1 

P22- The probability of staying in state 2 

P33- The probability of staying in state 3 

P12- The probability of leaving state 1 and reaching state 2 

P21- The probability of leaving state 2 and reaching state 1 

P13- The probability of leaving state1 and reaching state 3 

P31- The probability of leaving state 3 and reaching state 1 

P32- The probability of leaving state 3 and reaching state 2 

P23- The probability of leaving state 2 and reaching state 3 

Y = H H T T H T H H T T H…… 

         S = 3 1 2 3 3 1 1 2 3 1 3….. 

(1) P[H]=P1  (2) P[H]=P2  (3) P[H]=P3 

                             P[T]=1-P1                   P[T]=1-P2                   P[T]=1-P3,    
where (1) is the probability distribution of heads and tails in state 1, (2) is the 
probability distribution of heads and tails in state 2 and (3) is the probability distribution 
of heads and tails in state 3. 
 

Figure 2.3: 3- coins model 

 

3

P32

P11 P22

P21 

1 
2

P12

P33

P13

P31

P23
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Sample calculation of hidden Markov model (HMM) 

A hidden Markov model is defined by specifying following five things: 

Q = the set of states ={1,2,..., }.k  

V = the output observations = 1 2{ , ,..., },mv v v  where m is finite number. 

=)(iπ  Probability of being in state i at time 0t =  (i.e. in initial states). 

A  = transition probabilities = { },ijP  where  

ijP =P[entering state j  at time 1t + |in state i  at time t ] = P 1[ | ]t tS j S i+ = = . 

Note that the probability of going from state i to state j does not depend on the previous 

states at earlier times. This is called as Markov property. 

B = output probabilities ={ },)(mbj  

where { })(mbj =P[producing mv  at time t | in state j  at time t ]. 

The above definition of a HMM applies to the special case where one has discrete states 

and discrete observations (Elliott et al., 1995). 

 

Consider the case with the 2- biased coins model in Figure 2.4. Here, two biased coins 

were flipped, and an observer was seeing the results of the coin flip but not which coin 

was flipped. The states of the HMM are 1 and 2  (two coins), the output observation is 

{H, T}, and transition and output probabilities are as labeled. Let the initial state 

probabilities are 1)1( =π  and 0)2( =π . This model has two states corresponding to two 

different coins. In state 1, the coin is biased strongly towards heads and in state 2 ; the 

coin is biased strongly towards tails. The state transition probabilities are 0.8, 0.6, 0.2, 

and 0.4.  
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(1) P [H]=2/3  (2)  P [H]=1/6 

P [T]=1/3   P [T]=5/6 

Figure 2.4: 2-biased coins model 

 

0.8        0.8      0.2         0.6        0.4       0.8 

                                1    1        1      2       2     1        1 

  

H         H         T          T         T            T          H 

The probabilities for the following events can be calculated as follows: 

1. The probability of the above state transition sequence: 

P[1112211]= )1(π P11P11P12P22P21P11=1 0.8 0.8 0.2 0.6 0.4 0.8 0.025.× × × × × × =  

2.   The probabilities of the above output sequence given the above transition 

sequence: 

P[(HHTTTTH)|( 1112211)]= 2 2 1 5 5 1 2
3 3 3 6 6 3 3
× × × × × ×  =0.023. 

3. The probability of the above output sequence and the above transition sequence: 

P[(HHTTTTH)∩( 1112211)]= 40.025 0.023 5.7 10−× = × . 

 

0.8 0.6
0.2

1 
0.4

2 
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In this case, the results of the coin flips and which coins are being flipped are known. In 

general, which coins are being flipped is unknown. That is, the underlying model is 

known and the output sequence is observed, while the state sequence is “hidden.” In this 

case, the 2-biased-coins model is a hidden Markov model.   

 

In the above examples, the outcomes of the tossed coins are T or H and only two 

observations are possible. More general situation is explained below: considering a set 

of N urns and each urn consisting of several colored balls (M). 

 

The urn and ball model 

 

Consider the situation where there are N urns in a room, and within each urn there are 

M distinct colours of balls (Figure 2.5). The physical process for obtaining observations 

is as follows. A person is in a room, and using some random process, he (or she) 

chooses an initial urn. From this urn, a ball is chosen at random, and its color is 

recorded as the observation. The ball is then replaced in the urn from which it was 

selected. A new urn is then selected according to the random selection process 

associated with the current urn, and the ball selection process is repeated. This entire 

process generates a finite observation sequence of colours, which can be considered as 

the observational output of the HMM. Here, each state corresponds to a specific urn and 

the ball colour probability is defined for each state. The choice of urns is dictated by the 

state transition matrix of the HMM. 
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                                                                     …                     

        Urn 1  Urn 2          Urn N  

P[Red]= 1(1)b   P[Red]= 2 (1)b               P[Red]= (1)Nb  

P[Blue]= 1(2)b   P[Blue]= 2 (2)b             P[Blue]= (2)Nb  

P[Green]= 1(3)b  P[Green]= 2 (3)b                                 P[Green]= (3)Nb  

… 

P[Orange]= 1( )b M  P[Orange]= 2 ( )b M                  P[Orange]= ( )Nb M  

The observation sequence is 

Y= {Green, Green, Red, Yellow, Blue, …, Orange, Blue} 

 

Figure 2.5: The Urn and Ball Model 

 

2.3 Definition of the hidden Markov model 

 

A hidden Markov Model is a doubly stochastic process, with an underlying stochastic 

process that is not observable (hidden), and can only be observed through another set of 

stochastic processes that produced the sequence of observations. 

 

Simply stated, a hidden Markov model is a finite set of states, each of them being 

associated with a probability distribution, and the transition between the states being 

covered by the transition probability. In particular, the observation can be generated 

according to the associated probability distribution so it is only the outcome that is 
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observable, not the states; therefore, the states are “hidden” to the observer, hence the 

name “Hidden Markov Model” (Rabiner, 1989; Elliott et al., 1995). 

 

To define the hidden Markov model completely we need to define the elements of the 

HMM: 

1. The length of the observation sequence, T . So the states sequence can be 

written as },...,,{ 21 TSSS and the observation sequence would be }.,...,,{ 21 TYYY  

2. The number of states in the model, K . In the 2-coins model example, the states 

correspond to the choice of coins (i.e. two possible states). The state at time t  is 

denoted as tS  throughout the thesis. In the Urn model, the number of states 

corresponds to the number of urns. 

3. The number of distinct observation symbols per state, .M  For the coin-tossing 

example, the observation symbols are simply the “H” and the “T”. Considering 

the more general Urn model, the numbers of distinct observation symbols are 

M  distinct colours. 

4. A set of state transition probabilities { },ijA P=  

1[ | ],ij t tP P S j S i+= = =   Kji ≤≤ ,1 , 

where tS  denotes the state at time t  and ijP  denotes the transition probability 

which must satisfy the constraints   

0ijP ≥ , for all  Kji ≤≤ ,1  

∑
=

=
K

j
ijP

1

,1  for all  Ki ≤≤1 . 
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5. The probability distribution of the observation symbol in state j : B { })(nbj=  

( ) [j nb n P v=  at time  t  | ],tS j=   ,1 Kj ≤≤   Mn ≤≤1 , 

where nv  denotes the nth  observation symbol in a given state j . 

)(nbj  should also satisfy the stochastic constraints 

0)( ≥nb j  ,  ,1 Kj ≤≤   Mn ≤≤1    and  

∑
=

=
M

n
j nb

1

1)( ,  Kj ≤≤1 . 

6. The above probability distribution is the case when the observations are discrete. 

The initial state distribution { }iππ = , where 

1[ ]i P S iπ = =  ,  Kj ≤≤1 . 

From above definitions, it is clear that a complete specification of an HMM involves 

three model parameters ( , , )K M T  and three sets of probability parameters ( , , )A B π . 

Therefore, for convenience, we can use the compact notation ),,( πλ BA=  to denote 

the complete set of parameters of the model throughout the thesis. 

 

Before we go further, there are some assumptions that are made in the theory of hidden 

Markov models for mathematical and computational tractability. First, it is assumed that 

the next state is dependent only on the current state, which is called the Markov 

assumption. That is,  

1 1 1 0 0 1[ | , ,..., ] [ | ]t t t t t t t tP S j S i S i S i P S j S i+ − − += = = = = = = . 
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Second, there is the homogeneity assumption (i.e. state transition probabilities are 

independent of the actual time at which the transition takes place) 

 
1 1 2 21 1[ | ] [ | ].t t t tP S j S i P S j S i+ += = = = =  

 

Third, the statistical independence of observations, i.e. suppose we have a sequence of 

observations 1 2{ , ,..., },TY Y Y=Y  and the sequence of states },...,,{ 21 TSSS  then the 

probability distribution of generating the current observation depends only on the 

current state. That is, 

  1 1
1

[ | ,....., ; ] [ | ; ]
T

T T t t t t
t

P S i S i P Y y S iλ λ
=

= = = = = =∏Y y , 

and these assumptions are used to solve the problems associated with hidden Markov 

models.  

 

2.4 Definition of the hidden Markov random field model 

 
In this section, the Markov random field model is introduced, followed by the definition 

of the hidden Markov random model (Kunsch, 1995; Elliott et al., 1995 and 1996; 

Fishman, 1996). 

 

2.4.1 Markov random fields 

 
A random field is a stochastic process defined on a two-dimensional set, that is, a region 

of the plane, or a set of even higher dimension. The two-dimensional case will be the 
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focus of this section. Random fields, which possess a Markov property, are called 

Markov random fields (Elliott et al., 1995 and 1996).  

 

Let us generalize this idea in a two-dimensional setting. Let Z be the set of integers, and 

let 2ZS ⊂ be a finite rectangular two-dimensional lattice of integer points. Typically, it 

will take }1,...,1,0{}1,...,1,0{ −×−= mnS , for some n  and m . S  is a two-dimensional 

lattice containing mn ×  points. The points in S  are often called sites. To define a 

Markov structure on the set S , we define what is meant by two points being 

neighbours. Different definitions may suit different purposes, or applications. However, 

the following two general conditions should include in the definition. 

(i) A site must be a neighbour of itself. 

(ii) If  t  is neighbour of s , then s  is a neighbour of  t . 

The second condition is a symmetry requirement. It can be written ts ~  if the sites 

S∈ts , are neighbours. Two common neighbourhood structures are given in 

Figure 2.6. If s  is a site, the neighbourhood sΝ of s  can be defined as the set of all its 

neighbours; { : ~ }.t t s= ∈sΝ S  Hence, Figure 2.6 illustrates the neighbourhood of the 

middle site, for two different structures. In these structures, special care must be taken at 

the edge of the lattice S , since sites located there have smaller neighbourhoods. One 

way of defining the neighbourhood structure is “wrapping around” the lattice and define 

sites at the other end of the lattice as neighbours. 
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Concept of clique: 

Cliques are particular subsets of the sites in S , defined in the following way: 

(i) Any single site s is a clique. 

(ii) Any subset SC ⊂ of more than one site is a clique if all pairs of sites in 

C are neighbours. 

Hence, what the cliques look like depends on the neighbourhood system. Figure 2.6 

shows what cliques there are for the two neighbourhood systems displayed therein. Note 

that these schematic cliques should be moved around over the lattice to find out all the 

subsets of sites that fit with the given pattern.  

 

 

 

 

Figure 2.6: Two different neighbourhood structures and their corresponding cliques  

 

eight closest points are 
neighbours (top), 
corresponding cliques 
(bottom)  

four closest points are 
neighbours (top), 
corresponding cliques 
(bottom). 
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Now consider a random field { ( ) : }X ∈s s S  defined on S , that is, a collection )(sX of 

random variables indexed by sites in S . These random variables are assumed to take 

their values in a finite set χ , the state space. Some examples of χ  are }1,1{ +−=χ  and 

}.,...,2,1{ r=χ  The set Sχ is the set of elements of the form { ( ) : }x x= ∈s s S with 

χs ∈)(x for each s. An element of Sχ will often called as a configuration (of the random 

field). Also often we can simply write this as X  for { ( ) : }X ∈s s S  and think of X as a 

random variable with values in Sχ , the set of configurations. Letting || S  denote the 

number of elements of S and similarly for χ , the number of elements of the 

configuration space Sχ is |||| Sχ  and it is hence often extremely large. For example, if 

}1,1{ +−=χ  and S  is a lattice of size 128 128,×  its size is 
21282 . If A  is a subset of S , 

write ( )X A  for { ( ) : }X ∈s s A , that is the collection of random variables on A , and 

similarly for a particular configuration { ( ) : }x x= ∈s s S . The symbol \ denotes set-

difference; for example, }{\ sS is the set of sites in S  except s , and write this difference 

as sS \ . Now the random field { ( ) : }X ∈s s S is a Markov random field (MRF) on 

S (with respect to the given neighbourhood structure) if  

[ ( ) ( ) | ( \ ) ( \ )] [ ( ) ( ) | ( ) ( )]P X x X x P X x X x= = = = =s ss s S s S s s s Ν Ν  for all sites Ss∈  

and all configurations .Sχ∈x  In other words, the distribution of ( )X s , given all other 

sites, depends at the realized values in its neighbourhood only. These conditional 

distributions are often called the local specification of the MRF.  Two examples are 

presented to get an idea of different MRF: 
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The Ising model 

 
Assuming }1,1{ +−=χ  and the neighbourhood structure to the left in Figure 2.6, an 

often used local specification is 

exp( ( ) ( ))
[ ( ) ( ) | ( ) ( )]

exp( ( )) exp( ( ))

x x
P X x X x

x x

β

β β
∈

∈ ∈

= = =
− +

∑
∑ ∑

s

s s

t Ν
s s

t Ν t Ν

s t
s s Ν Ν

t t
 

for some real β ; note that the denominator does not depend on ( )x s  and is only a 

normalizing factor to make the right hand side a proper distribution, summing to unity. 

This model is called the Ising model (McCoy et al., 1973; Binder, 1979; Binder et al., 

1992), after German physicist Ising who invented it with the original purpose of using it 

as an idealized model of a ferromagnetic material. The sum in the exponent is positive if 

( )x s  has the same sign as the most of its neighbours. Hence, if β >0 the sites interact 

such that configurations x  with many neighbours of the same sign will have large 

probabilities. On the contrary, if β <0, configurations with many neighbours having 

opposite signs will have large probabilities. 

 

The Potts model 

 

If there is no particular assumption on χ , except it being finite, and any of the 

neighbourhood systems of Figure 2.6, or some other one, a possible local specification 

is  

exp( #{ : ( ) ( )})[ ( ) ( ) | ( ) ( )]
exp( #{ : ( ) })

i

x xP X x X x
x i

β
β

∈

∈ ≠
= = =

∈ ≠∑
s

s s
s

χ

t N t ss s Ν Ν
t N t
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for some real β . Again, the denominator does not depend on ( )x s  and is only a 

normalizing factor. This model is called the Potts model (Binder, 1979; Wu, 1982; 

Binder et al., 1992). Note that, #{ : ( ) ( )}x x∈ ≠st N t s  is the number of neighbours of s  

that have values different from ( )x s . Hence, if β >0 this model gives large probabilities 

to configurations x  in which there are many neighbours with different values. If β <0, 

the model works the opposite way, that is, configurations with many neighbours with 

equal values have large probabilities. 

 

So far the local specification of a MRF is discussed, and it is also interesting to find out 

a corresponding distribution on Sχ , that is, in the probabilities of various configurations 

x. This distribution can be denoted by π ; hence,  

( ) [ ] [ ( ) ( ), ]x P X x P X xπ = = = = ∀ ∈s s s S  

for any configuration Sχ∈x . Now assume for each clique C there is a function 

:V χ →S
C R . That is,  VC  maps a configuration x  into a real number. Moreover, VC  

must not depend on sites other than those in .C  This can be written as 

( ) ( ( )).V x V X=C C C  A probability mass function, or distribution, π on the configuration 

space Sχ  of the form 

1( ) exp ( )x Z V xπ −  
=  

 
∑ C

C
  

is called a Gibbs distribution. Here the sum runs over all cliques C. The energy function 

is defined as ( ) ( )U x V x=∑ C
C

 which is a sum of clique potentials ( )V xC  over all 

possible cliques C  and the normalizing constant (or partition function) Z  is given by  
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exp
x

Z V
∈

 
=  

 
∑ ∑

S
C

Cχ

 

and is generally infeasible to compute as the outer sum runs over a very large set. The 

importance of Gibbs distributions is made clear from the following facts: 

(i) Any random field with a distribution π  which is a Gibbs distribution is a 

Markov random field with respect to the neighbourhood system governing 

the cliques. 

(ii) Any random field which is Markov with respect to a give neighbourhood 

system has a distribution ,π  which is a Gibbs distribution generated by the 

corresponding cliques. 

Hence, according to the Hammersley-Clifford theorem (Fishman, 1996), an MRF 

can equivalently be characterized by a Gibbs distribution. For more details on the 

MRF and the Gibbs distribution, see Geman and Geman (1984). 

 

2.4.2 Hidden Markov random field (HMRF) model 

 

The concept of a hidden Markov random field model (Elliott et al., 1995 and 1996) 

is derived from the hidden Markov model, which is defined as stochastic processes 

generated by a Markov chain whose state sequence cannot be observed directly, 

only through a sequence of observations. Each observation is assumed to be a 

stochastic function of the state sequence. The underlying Markov chain changes its 

state according to a AA×  transition probability matrix, where A  is the number of 

states. 
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Since original HMMs were designed as one-dimensional Markov chains with first-

order neighborhood systems, it cannot directly be used in two-dimensional problems 

such as image segmentation. A special case of an HMM, in which the underlying 

stochastic process is an MRF instead of a Markov chain, is referred to as a hidden 

Markov random field model (Zhang et al., 2001). Mathematically, an HMRF model 

is characterized by the following:  

 

• Hidden Markov Random Field (HMRF) 

The random field }:)({ SssX ∈= X  is an underlying HMRF assuming values in 

a finite state space ),....,1( A=L  with probability distribution π . The state of X  

is unobservable. 

• Observable Random Field 

}:)({ SssY ∈= Y  is a random field with a finite state space ),...,1( dD = . Given 

any particular configuration χx∈ , every ( )Y s  follows a known conditional 

probability distribution ( ( ) | ( ))p y xs s  of the same functional form ( )( ( ); )xf y ss θ , 

where ( )x sθ  are the involved parameters. This distribution is called the emission 

probability function and Y  is also referred to as the emitted random field. 

• Conditional Independence 

For any χx∈ , the random variables ( )Y s  are conditional independent  

∑
∈

=
Ss

ssxy )).(|)(()|( xypp  

Based on the above, the joint probability of ),( YX  can be written as 

∑
∈

==
Ss

ssxxxyxy )).(|)(()()()|(),( xyppppp  
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According to the local characteristics of MRFs, the joint probability of any pair of 

( ( ), ( ))X Ys s , given ( )X s ’s neighborhood configuration  ( ),X sN  is  

( ( ), ( ) | ( )) ( ( ) | ( )) ( ( ) | ( ))p y x x p y x p x x=s ss s Ν s s s Ν . 

The marginal probability distribution of ( )Y s  dependent on the parameter set θ  and  

( )X sΝ  can be written as  

( ( ) | ( ), ) ( ( ), | ( ), )
L

p y x p y l x
∈

=∑s ss Ν θ s Ν θ
A

 

   ( ( ); ) ( | ( ))
L

f y p xθ
∈

=∑ ss ΝA
A

A  where { }: Lθ= ∈θ A A . 

This model is called the hidden Markov random field model. Note that the concept of an 

HMRF is different from that of an MRF in the sense that the former is defined with 

respect to a pair of random variable families, ),( YX  while the latter is only defined 

with respect to .X  
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CHAPTER 3 
 
 

INFERENCE IN HIDDEN MARKOV MODELS 

 
 

3.1 Introduction 

 

Given the HMM model in Chapter 2, there are three basic computational problems that 

are useful for solving real world problems. The three problems are as follows: 

 

Problem 1: Given the observation sequence 1 2{ , ,..., },TY Y Y=Y  and the model 

),,( πλ BA= , how do we compute [ ; ],P λ=Y y  the probability or likelihood of 

occurrence of the observation sequence 1 2{ , ,..., }TY Y Y=Y  given the parameter set λ  ? 

 

We can consider problem 1 as an evaluation problem, namely given a model and a 

sequence of observations, how do we compute the probability that the model produced 

the observed sequence. We can also view this problem as how well the given model 

matches a given observation sequence. For example, if we are trying to choose among 

several computing models, the solution to problem 1 allows us to choose the model 

which best matches the observations (Rabiner, 1989).  
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Problem 2: Given the observation sequence 1 2{ , ,..., },TY Y Y=Y  and the model 

),,( πλ BA= , how do we choose a state sequence 1 2{ , ,..., }TS S S=S  so that 

[ , ; ]P λ= =Y y S s , the joint probability of the observation sequence 

1 2{ , ,..., }TY Y Y=Y and the state sequence given the model is maximized. 

 

Problem 2 is the one in which we attempt to discover the hidden part of the model, that 

is, to find the “correct” state sequence. In practical situations, we usually use an 

optimality criterion to solve this problem as best as possible, since there is no “correct” 

state sequence to be found. 

 

Problem 3:  How do we estimate the hidden Markov model parameters ),,( πλ BA=  

so that [ ; ]P λ=Y y  (or [ , ; ]P λ= =Y y S s ) is maximized given the model? 

 

Problem 3 is to determine a method to adjust the models parameters to maximize the 

probability of the observation sequence given the model. The maximization of the 

probability function can be done using an iterative procedure or using gradient 

techniques. 

 

3.2 Solutions to three estimation problems: 

3.2.1 Problem 1 and its solution 

 

Problem 1 is the evaluation problem; that is, given the model and a sequence of 

observations, how we can compute the probability that the model produced the observed 
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sequence. If we have several competing models, a solution to problem 1 allows us to 

choose the model which best matches the observations. 

 

A most straightforward way to determine [ ; ]P λ=Y y  is to find out [ , ; ]P λ= =Y y S s  

for a fixed state sequence 1 2{ , ,..., }TS S S=S  then multiply it by [ ; ]P λ=S s  and then 

sum up over all possible states S . 

 

We have a model λ  and a sequence of observations 1 2{ , ,..., }TY Y Y=Y  where T  is the 

number of observations and we want to find the probability of the observation sequence 

[ ; ]P λ=Y y  given the model. One could calculate [ ; ]P λ=Y y  through enumerating 

every possible state sequence of length T . Hence 

[ ; ] [ | ; ] [ ; ],
S

P P Pλ λ λ
∀

= = = = =∑Y y Y y S s S s   where 1 2{ , ,..., }TS S S=S  

               
1 1 1 2 2 1

1 2

1 2
, ,...,

( ) ( )... ( ).
T T T

T

S S S S S S S S T
S S S

b y P b Y P b yπ
−

= ∑       (3.1) 

 

But this calculation for ( ; )P λ=Y y  according to (3.1), involves several operations of 

the order of ,2 TTK  which is very large even if the length of the sequence, T , is 

moderate. So another procedure must be applied to solve problem 1. Fortunately, this 

procedure, the forward procedure, exists and calculates this quantity in a moderate time 

(Baum et al., 1967; Rabiner, 1989). 
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The forward variable ( )t jα  is defined as the probability of )(tY , the partial observation 

sequence )(tY ={ tYYY ,...,, 21 }, when it terminates at state j given the hidden Markov 

model parameters λ . Thus, 

( ) ( )( ) [ , ; ],t t
t tj P S jα λ= = =Y y   1, 2,..., .j K=      (3.2) 

then  [ ; ]P λ=Y y ( ) ( )

1
[ , ; ]

K
t t

t
j

P S j λ
=

= = =∑ Y y ,    1 t T≤ ≤  

    
1

( ).
K

t
j

jα
=

=∑  

One can solve for ( )t jα  inductively, through the equation: 

( ) ( )( ) [ , ]t t
t tj P S jα = = =Y y  

( 1) ( 1)
1

1

[ , , , ]
K

t t
t t t j

i

P Y y S j S i− −
−

=

= = = = =∑ Y y .  

Using the Bayes law and the independence assumption one can obtain the following: 

∑
=

−
−−

−
−− =======

K

i
t

tt
tttt

tt iSjSyYPiSP
1

1
)1()1(

1
)1()1( ],|,[],[ yYyY  

 

∑
=

−
−−

−
−−

−
−− ==========

K

i
t

tt
tttt

tt
tt

tt iSjSyYPiSjSPiSP
1

1
)1()1(

1
)1()1(

1
)1()1( ],,|[],|[],[ yYyYyY  

∑
=

−−
−− =======

K

i
tttttt

tt jSyYPiSjSPiSP
1

11
)1()1( ]|[]|[],[ yY  

∑
=

−=
K

i
tjijt ybPi

1
1 ).(])([α  

 

Therefore, 

1
1

( ) ( ) ( ) ,
K

t j t t ij
i

j b y i Pα α −
=

= ∑   ,1 Tt ≤≤  ,1 Kj ≤≤     (3.3) 

with 

1 1 1 1( ) [ , ] ( )t j jj P Y y S j b yα π= = = = .        
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Using this equation we can calculate ( )T jα , 1 j K≤ ≤ , and then 

1
[ ; ] ( )

K

T
j

P jλ α
=

= =∑Y y .        (3.4) 

This method is called the forward method and requires a calculation of the order ,2TK  

rather than 2 TTK ,  as required by the direct calculation previously mentioned. 

 

As an alternative to the forward procedure, there exists a backward procedure (Baum et 

al., 1967; Rabiner, 1989), which is able to solve [ ; ]P λ=Y y . In a similar way, the 

backward variable )(itβ can be defined as  

*( ) *( )( ) [ | ; ]t t
t ti P S iβ λ= = =Y y ,    (3.5) 

where )*(tY  denotes },...,,{ 21 Ttt YYY ++  (i.e. the probability of the partial observation 

sequence from t+1 to T given the current state i and the model λ ). 

Note that 

*( 1) *( 1)
1 1( ) [ | ; ]T T

T Ti P S iβ λ− −
− −= = =Y y  

 1
1

[ ; ] ( )
K

T T T ij j T
i

P Y y S i P b y−
=

= = = =∑ .      (3.6) 

As for of )( jtα , one can solve for )(itβ inductively and can get the following recursive 

relationship. 

Now, 

first initialize ,1)( =iTβ .1 Ki ≤≤        (3.7) 

Then for 1,2,...,2,1 −−= TTt  and ,1 Ki ≤≤  

*( 1) *( 1)
1 1( ) [ | ]t t

t ti P S iβ − −
− −= = =Y y  
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 *( ) *( )
1[ , | ]t t

t t tP Y y S i−= = = =Y y  

 *( ) *( )
1

1

[ , , | ]
K

t t
t t t t

j

P Y y S j S i−
=

= = = = =∑ Y y  

 *( ) *( )
1

1

[ | ] [ | ] [ | ]
K

t t
t t t t t t

j

P S j P Y y S j P S j S i−
=

= = = = = = =∑ Y y  

 
1

( ) ( )
K

t j t ij
j

j b y Pβ
=

=∑  

1
1

( ) ( ) ( ),
K

t ij j t t
j

i P b y jβ β−
=

=∑   ,1 Ki ≤≤  1 1.t T≤ ≤ −                             (3.8) 

 

Finally it can be demonstrated that 

*(0) *(0)[ ; ] [ ; ]P Pλ λ= = =Y y Y y   

 
1 1 2 2

*(1) *(1)
1 1 1

1

[ , ,..., ]

[ , | ]

T T
K

i

P Y y Y y Y y

P Y y S i
=

= = = =

= = = =∑ Y y
 

 *(1) *(1)
1 1 1 1

1

[ | ] [ | ]
K

i

P S i P Y y S i
=

= = = = =∑ Y y   

 *(1) *(1)
1 1 1

1

[ | ] ( )
K

i
i

P S i b yπ
=

= = =∑ Y y    

1 1 1
1

[ ; ] ( ) ( )
K

i
i

P i b yλ β π
=

= =∑Y y .          (3.9) 
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3.2.2 Problem 2 and its solution 

 

Given a sequence of observations 1 2{ , ,..., }TY Y Y=Y  and the modelλ , we want to find 

the most likely state sequence associated with the given observation sequence. 

 

The solution to this problem depends on the way “the most likely state sequence” is 

defined. One method is to find the most likely state tS  at time t  and to concatenate all 

such tS ’s. However, sometimes this approach does not give a physically meaningful 

state sequence. The most widely used criterion is to maximize [ , ; ]P λ= =Y y S s . That is, 

to maximize the probability of observing observation sequence },...,,{ 21 TYYY=Y  and 

the state sequence 1{ ,..., }TS S=S  given their joint distribution ( , ).f y s   

 

Since the model ),,( πλ BA=  and the observation sequence is },...,,{ 21 TYYY=Y , the 

probability of the state path and observation sequence given the model would be: 

[ , ; ] [ | ; ] [ ; ]P P Pλ λ λ= = = = = =Y y S s Y y S s S s  

     
1 1 1 2 2 11 2( ) ( )... ( )

T T TS S S S S S S S Tb y P b y P b yπ
−

= .           (3.10) 

To write this in a form of summations, we define )(sU as 

]);,[ln()( λsSyYs ==−= PU  

         
1 1 11

2

[ln( ( )) ln( ( ))]
t t t

T

S S S S S t
t

b y P b yπ
−

=

= − +∑ .                  (3.11) 

Since ln() is monotonic function if ln( [ , ; ])P λ− = =Y y S s is minimum, then this will give 

us the state sequence for [ , ; ]P λ= =Y y S s  is maximum. Therefore, 
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)(min)(];,[max];,[ sssSyYsSyY
ss

UUPP optopt =⇔===== λλ . 

By starting at the unique point in time 0 and moving from a point in time t  to a point in 

time 1t +  in an optimal way, the distance between points in time t  and points in time 

1t +  are equal to 
1

ln( ( ))
t t tS S S tP b y
−

− for 1≥t . This distance is associated to the transition 

from state 1−tS  to tS . The problem of finding the most likely state sequence associated 

with the given observation sequence is then the shortest path in a following grid of 

points. 

 

Time 0 1 2  T-1 T 

   

 

 

 

 

 

 

 

In this graph, the vertex corresponds to the states and the length between two vertexes is 

proportional to the weight on the edge (not shown in the graph). Finding the shortest-

path problem is one of the most fundamental problems in graph theory and can be 

solved by dynamic programming approaches, such as the Viterbi Algorithm (Forney, 

1973). With the research paper written by A.J. Viterbi in 1967, the Viterbi Algorithm 

made its first appearance in the coding literature.  

1

2

K

States
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Letting 1 1 2 2( , ,..., )t t tU S i S i S i= = =  be the first t terms of )(sU  and ( )t tV i  be the minimal 

accumulated distance when we are in state i  at time t , 

1 1 11 1 2 2 1
2

( , , ..., ) [ln ( ( )) ln( ( ))]
i i

t

t t t S S S S i S i
i

U S i S i S i b y P b yπ
−

=

= = = = − + ∑  

1 2 1
1 1 2 2 1 1, ,... ,

( ) min ( , ,..., , )
t t t

t t t t t t tS S S S i
V i U S i S i S i S i

−
− −=

= = = = = . 

Viterbi algorithm can be carried out by following four steps: 

1. Initialize the 1 1( )V i for all 1 :i K≤ ≤  

11 1( ) ln( ( ))
i iS S iV i b yπ= − . 

2. Inductively calculate the ( )t tV i  for all 1 ti K≤ ≤ , from time 2t =   to t T= : 

1
1 11

( ) min [ ( ) ln( ( )]
j i i t

t
t t t t S S S ii K

V i V i P b y
−

− −≤ ≤
= − . 

3. Then we get the minimal value of :)(sU  

Ki
TTiii

TT

iVU
≤≤

=
1,...,,

)].(min[)(min
21

s  

4. Finally we trace back the calculation to find the optimal state path 

}.,...,,{ ,,2,1 optToptoptopt SSS=S  

 

3.2.3 Problem 3 and its solution 

 

This problem is concerned with how to determine a way to adjust the model parameters 

so that the probability of the observation sequence given the model is maximized. 

However, there is no known way to solve for the model analytically and maximize the 

probability of the observation sequence. The iterative procedures such as the Baum-

Welch Method (equivalently the EM (expectation-maximization) method (Dempster et 
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al., 1977) or gradient techniques can be used to estimate the model parameters. We will 

describe the solution for this problem based on the Baum-Welch method. 

 

Baum-Welch algorithm 

 

To describe the Baum-Welch algorithm (forward-backward algorithm) one needs to 

define two other variables in addition to the forward and backward variables defined 

previously. 

The first variable is defined as the probability of being in state i  at time t , and in state 

j  at time 1t + , given the model and the observation sequence 

 1( , ) [ , | ; ]t t ti j P S i S jξ λ+= = = =Y y .                            (3.12) 

Using Bayes law and the independency assumption, the equation (3.12) can be written 

as 

1[ , , ; ]( , )
[ ; ]

t t
t

P S i S ji j
P

λ
ξ

λ
+= = =

=
=

Y y
Y y

 

    

( ) ( ) *( ) *( )
1

( ) ( ) *( ) *( )
1 1

( ) ( ) *( 1) *( 1)
1 1 1 1

[ , ; ] [ , | ; ]
[ ; ]

[ , ; ] [ | ] [ | , ; ]
[ ; ]

[ , ; ] [ | ] [ | ; ] [ |

t t t t
t t t

t t t t
t t t t t

t t t t
t t t t t t

P S i P S j S i
P

P S i P S j S i P S j S i
P

P S i P S j S i P Y y S j P S

λ λ
λ

λ λ
λ

λ λ

+

+ +

+ +
+ + + +

= = = = =
=

=

= = = = = = =
=

=

= = = = = = =
=

Y y Y y
Y y

Y y Y y
Y y

Y y Y y 1 ; ]
[ ; ]

t j
P

λ
λ

+ =
=Y y

 (3.13) 

and by the way that forward and backward variables are defined, we can use them to 

write ),( jitξ in the form 
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 1 1

1 1
1 1

( ) ( ) ( )
( , )

( ) ( ) ( )

t ij t j t
t K K

t ij t j t
i j

i P j b y
i j

i P j b y

α β
ξ

α β

+ +

+ +
= =

=

∑∑
                           (3.14) 

where ( ) ( )( ) [ , ; ]t t
t ti P y S iα λ= = =Y               },....,{ 1

)(
t

t YY=Y , 

 *( ) *( )( ) [ | ; ]t t
t ti P S iβ λ= = =Y y     },...,{ 1

)*(
Tt

t YY +=Y . 

The second variable is defined as  

( ) [ | , ]t ti P S iγ λ= = =Y y  

[ , ; ]
[ ; ]

tP S i
P

λ
λ

= =
=

=
Y y

Y y
 

( ) ( ) *( ) *( )[ , ; ] [ | ; ]
[ ; ]

t t t t
t tP S i P S i

P
λ λ

λ
= = = =

=
=

Y y Y y
Y y

 ,            (3.15) 

which is the probability of being in state i  at time t  given the model and the 

observation sequence. This can be expressed in forward and backward variables by 

1

( ) ( ) ( ) ( )( )
[ ; ]

( ) ( )

t t t t
t K

t t
i

i i i ii
P

i i

α β α β
γ

λ
α β

=

= =
= ∑Y y

                (3.16) 

and one can see that the relationship between )(itγ  and ),( jitξ  is given by 

∑
=

=
K

j
tt jii

1

),,()( ξγ  ,1 Ki ≤≤  Tt ≤≤1 .             (3.17) 

If we sum )(itγ over the time index ,t  we get a quantity, which can be interpreted as the 

expected (over time) number of times that state iS  is visited, or equivalently, the 

expected number of transitions made from state iS  (if we exclude the time slot  t T=  

from the summation). Similarly, summation of ),( jitξ over t  (from 1t =  to 1t T= − ) 
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can be interpreted as the expected number of transitions from state iS  to state jS . That 

is 

∑
−

=

=
1

1

)(
T

t
t iγ Expected number of transition from iS   and 

∑
−

=

=
1

1

),(
T

t
t jiξ Expected number of transitions from iS  to jS .  

 

Now assuming a starting model ),,( πλ BA= , we use the model to calculate the 'α s, 

'β s using equations (3.3) to (3.8) then we use the 'α s and 'β s to calculate the 'ξ s and 

'γ s using equations (3.14) to (3.17). 

 

The next step is to define re-estimated model as )ˆ,ˆ,ˆ(ˆ πλ BA= . The re-estimation 

formulas for π̂,ˆ,ˆ BA  are  

=iπ̂ Expected frequency in state iS at time 1t =   

),(1 iγ= Ki ≤≤1 .                           (3.18) 

 

=ijP̂  

 

       ,
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),(
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1

1

1

∑

∑
−

=

−

== T

t
t

T

t
t

i

ji

γ

ξ
 Kji ≤≤ ,1 .                         (3.19) 

 

 

Expected Number of transitions from state iS to state jS  

Expected Number of transitions from state iS  



 41

 

=)(ˆ nb j  
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γ
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ν .                  (3.20) 

 

Equation (3.20) is in effect when the observations },...,,{ 21 TYYY are discrete. The details 

about the continuous case are not mentioned here. We consider the discrete case 

throughout the thesis. 

 

Suppose we have an initial guess of the parameters of the HMM ),,( 0000 πλ BA=  and 

several sequences of observations. We can use these formulas to obtain a new model λ̂  

(i.e. the re-estimation model )ˆ,ˆ,ˆ(ˆ πλ BA= ), and it proves to be either of the following: 

 

1. that the initial model λ  defines a critical point of the likelihood function, in 

which case .ˆ λλ =  

2. or, if ˆ[ ; ] [ ; ],P Pλ λ= > =Y y Y y  then it is the new model which best describes the 

observation sequence. 

 

If we repeat these processes by using λ̂  in place of λ , we can improve the probability 

of the observation sequence that is being produced by the model until the limiting point 

Expected Number of times in state j and observing symbol vn  
Expected Number of times in state j  
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is reached. The result of this procedure gives us the maximum likelihood estimator of 

the hidden Markov model (Baum et al., 1970). 

 

It should be noted that the Baum-Welch method leads to a local maximum of λ  only. In 

practice, to get a good solution, the initial guess 0λ  is very important. Usually several 

sets of starting guesses of 0λ  are used and one with the greatest likelihood value is 

chosen. Laird (1978) suggested a grid search method, which divides the searching 

domain into equally spaced small grids and starts from each of the intersections. Leroux 

and Puterman (1992) argue that the grid method would generate too many initial points 

when high dimensional spaces are involved and as such, they suggested a clustering 

algorithm.  
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CHAPTER 4 
 
 

HIDDEN MARKOV MODEL AND THEIR APPLICATIONS TO WEED 
COUNTS 

 
 
 
4.1 Introduction 

 

Weed management makes a significant contribution to the harvesting of crops. 

Controlling weeds can improve the crop yield. It is also interesting to determine the 

relationship among more common weeds in the field. Another main factor of weed 

management is to find out whether there are different patterns or distributions within the 

field due to physical factors such as soil types, soil moisture and other reasons. The 

importance of these findings leads to better weed control practices.  

 

In an agricultural survey conducted by Agriculture Canada, there were several fields 

considered without any treatments in Prairie Provinces. There were different kinds of 

weeds present in these fields, and some of the most common weeds found were 

Stinkweed, Wild Oats, Canada Thistle, Wild Buckwheat, Perennial Sow Thistle, Wild 

Mustard, Green Foxtail and Dandelion. In this thesis, one field has been selected 

(namely field #1; note that exact site location is not available), and the two most 

common weed types and one less frequent weed type are selected for analysis. The most 
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common species are Wild Oats (named as species 1509) and Wild Buckwheat (named 

as species 1097). Dandelion (named as species 1213) is less frequent. In the subsections 

of 4.2 give a description of each weed in the study. Figure 4.1, Figure 4.2, and Figure 

4.3 and facts given in these sections are obtained from the Weed Identification Library 

(University of Manitoba, Department of Plant Science, 2005). 

 
 
4.2 Weed species composition 
 

There are differences in the species composition (richness and abundance) of the weed 

community depending on the type of fallow that preceded the cultivation phase. Note 

that there are some dominant species as well as abundant weed species present in these 

fields (Ngobo et al., 2004; Akobundu, 1999; and de Rouw, 1995). This dominant and 

abundant behaviour can be due to several reasons, such as species composition in fields 

and soil parameters, as well as some other environmental factors. The variation in weed 

species composition and abundance during the cropping phase is related to the physical 

and chemical characteristics of the soil. The physical and chemical soil properties are 

significantly correlated to the weed species composition (Ngobo et al., 2004). 

Unfortunately for this research, the background information of the fields is not 

available.  
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4.2.1 Wild Oats 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Wild Oats is an annual weed. Seeds can reproduce new plants. The seedling has a 

counter-clockwise leaf that forms into a spiral shape. The weed has hairs on the leaf 

margins. In the mature plant, the stems are smooth and vertical in position. This plant 

grows up to 150 cm tall. The leaves are not differing from Tame Oats (Figure 4.1). The 

head is an open panicle and the spikelets usually contain 2-3 florets (up to 7). The 

panicle may contain up to 200-250 seeds, ranging from black, brown, gray, yellow, to 

white. 

 

4.2.1.1 Effects on crop quality 

Wild Oats in grain is a reason for crop yield losses. Wild Oats compete for moisture, 

light, and nutrients. Barley and Canola are strong competitors, Wheat is an intermediate, 

and Oats and Flax are weak competitors. 

 

Figure 4.1: Wild Oats  
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Yield loss will depend on the number of Wild Oats per square metre and the stage of the 

Wild Oats and the crop. Left unchecked, 10 Wild Oat plants per square metre can 

reduce Wheat, Barley and Canola yields by 10% and Flax yields by 20%.  

 

4.2.2 Wild Buckwheat 

 
 

 

 

 

 

 

 

 

 

 

 

Wild Buckwheat is an annual weed that reproduces by seed. The stems are slightly 

angular, 30-90 cm long and freely branching at the base. The leaves are heart-shaped, 

pointed, 13-75 mm long, alternate, and smooth (Figure 4.2). The flowers are greenish-

white and small. There are no petals but there are 5 sepals. Wild Buckwheat produces 

about 1,200 seeds per plant. It germinates under most soil conditions in cultivated fields 

and undeveloped areas. 

 

 

Figure 4.2: Wild Buckwheat  
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4.2.2.1 Effects on crop quality 

 

Wild Buckwheat makes swathing and combining difficult. With 5 plants per square 

metre, yield losses of 12% in Wheat can occur. With 30 plants per square metre, yield 

losses can jump to 22%. Yield losses of up to 10-20% have been reported in Flax with 

weed densities of 5-15 plants per square metre. The yield losses caused by this weed 

can be highly variable, depending on whether the weed emerges before, with, or after 

the crop. 

 

4.2.3 Dandelion 

 

Dandelions are present at all seasons of the year (perennials), and can be reproduced by 

seed. They are almost stemless and have deep thickset taproots. The leaves are in a 

rosette, 7.5-25 cm long and variable in shape (Figure 4.3). The flowers are bright yellow 

and are produced on a hollow, upright stem that is 30-45 cm in height. The seeds are 3 

mm long and attached to a hairy parachute. 

 
 
4.2.3.1 Effects on crop quality 

 

Dandelion usually has little effect on forage crop quality. Established Dandelion causes 

yield losses in annual and winter annual crops and perennial forage seed crops. 

Dandelions can shorten the productive life of perennial forage seed crops. Dandelions 

also reduce productivity in pastures and hay crops. 
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4.3 Problem of interest and proposed solution 

 

In an agricultural survey conducted by Agriculture Canada, there were several fields 

considered without any treatments in Prairie Provinces in Canada. There were different 

kinds of weeds present in these fields. The dataset used in this thesis was provided by 

Agriculture Canada to Prof. William H. Laverty, Mathematics and Statistics, University 

of Saskatchewan. As mentioned before (section 4.1), Wild Oats, Wild Buckwheat and 

Dandelion were selected for analysis. We assumed that these counts are multivariate 

Poisson variables which can be generated from multivariate Poisson distributions. The 

species counts are recorded from different fields and the fields are divided into an a x b 

grid. Weed species within 0.25m2 quadrates were identified and counted by species. For 

example, field #1 is divided into 10 x 15 grids (Figure 4.4). Four quadrats were assessed 

  

Figure 4.3: Dandelion  
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at each of the 150 grid locations (Figure 4.5), with one quadrat sampled at a distance 1 

meter north, south, east and west of the grid locations. Then take the total of the four 

quadrats as the weed count by species at that grid location. It is obvious that the 

observations recorded are spatially dependent. Also, one main goal of this study is to 

find out how many different clusters (states or distributions) are present in this field 

(Figure 4.6). The different clusters are formed due to factors such as the soil type, 

location and soil moisture or any other factor. Since only counts are recorded, the 

number of different clusters is unknown (i.e. hidden). Here, it can be assumed that this 

data structure follows a hidden Markov random field (HMRF). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Distribution of weed counts in field #1 
 

 

 

 

Column index Row index 
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Figure 4.5: Data collection locations from field #1 
 

 

 

 

 

 

 

 

 

 
Figure 4.6:  Distribution of weed counts and different states (clusters) in field #1 
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In the literature review (section 1.2.3), it is given that there is a very close relation with 

Markov random fields and Markov chains, and we explained that a 2-D (two-

dimensional) Markov random field can be easily transformed into a 1-D (one-

dimensional) Markov chain (Fjφrtoft et al., 2003 and Aas et al., 1999).  There are 

different types of scanning methods (Memon et al., 2000) available to transfer 2-D data 

into 1-D data (e.g. Line Scan, Hilbert-Peano scan etc.). The most common way is a scan 

line order, where the grid locations are traversed horizontally line by line (Figure 4.7). 

This method is called the line scan method (Memon et al., 2000; Bar-Joseph and Cohen-

or, 2003).  

 

 

 

 

 
   a x b grid 

 
 
 

   

Figure 4.7: Scanning method: Line Scan 
 

To illustrate how the line scan method can approximate spatial data, consider monthly 

(January-December) data across several years. This data can be arranged in a 

rectangular array (2-D) with rows representing years and columns representing months. 

Time series (1-D) periodic models exist where data from both neighbouring months in 

the same year and successive years in the same months are highly correlated. These 1-D 
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models would impose a spatial autocorrelation structure where both neighbouring E-W 

(East-West) and N-S (North-South) points would exhibit high correlation. A flaw in this 

approach is that the last point (December) in each row (year) is assumed to be highly 

correlated with the first point (January) in the consecutive row. This is not necessarily 

the case, however the effect of this assumption would be minimal. Thus the line scan 

method can transform the data into a 1-D sequence that is capable of approximating the 

spatial autocorrelation structure. If a periodic 1-D model is not used this would 

correspond to a spatial model where the neighbourhood system would only include E-W 

neighbours. 

 

The weed species counts in the agriculture field also spatially correlated. The two-

dimensional grid data can be transformed horizontally to a one-dimensional chain, by 

sweeping the  a x b grid line by line. There will be slight irregularities in region borders 

with this approach rather than with the corresponding scheme based on Markov random 

field. However, the line scan transformation has less effect on irregularities since the 

agricultural field has a large neighbourhood system. That is, the distance between the 

neighbourhood points or coordinates in the agricultural field is large. In the literature 

review (section 1.2.3), it is given that the classification accuracy of the hidden Markov 

random field and the hidden Markov model will provide similar results and the hidden 

Markov model is much faster and simpler than the one based on Markov random fields 

(Fjφrtoft et al., 2003 and Aas et al., 1999). Therefore, in this thesis, a novel multivariate 

Poisson hidden Markov model, which is a stochastic process, generated by a Markov 

chain whose state sequence cannot be observed directly but which can be indirectly 
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estimated through the observations is considered. As a comparison, finite mixture 

models are also discussed. The advantage of the multivariate Poisson hidden Markov 

model is that it takes serial correlation into account. Spatial information can be 

discovered by introducing a suitable covariance structure. To fit the multivariate 

Poisson hidden Markov model and the multivariate Poisson finite mixture model, the 

EM (expectation-maximization) algorithm is used. 

 

4.4 Goals of the thesis: 

 

1. Strategies for computation of multivariate Poisson probabilities: 

(i) Develop suitable recurrence relationships. 

(ii) Implement the recurrence relations using Splus/R software. 

2. Univariate analysis for each species to find out how many clusters (or states) 

using finite mixture models and hidden Markov models. 

3. Construct multivariate Poisson models with independent, common and restricted 

covariance structures and implement that in Splus/R software. 

4. Fit a set of loglinear models for multivariate counts to decide the covariance 

structure. 

5. Fit multivariate Poisson finite mixture models and multivariate Poisson hidden 

Markov models with independent, common and restricted covariance structures 

to determine the number of clusters. 

6. Estimate the parameters of the distributions of clusters and calculate the standard 

errors using the bootstrap method. 
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7. Find out which observations are representative for each cluster. 

8. Access the goodness of fit of the model using the entropy criterion, the 

unconditional covariance matrix and the information criterions. 

9. Compare the two different methods in terms of the computational efficiency and 

the goodness of fit. 

10. Usage of the model in the field of Agriculture. 

 

In Chapter 2 and 3 details about Hidden Markov models are provided, with examples 

for the univariate case. The multivariate Poisson distribution, the calculation of 

probabilities and the multivariate Poisson finite mixture and the multivariate Poisson 

hidden Markov model estimation are discussed in Chapter 5. 
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CHAPTER 5 
 
 

MULTIVARIATE POISSON DISTRIBUTION, MULTIVARIATE POISSON 
FINITE MIXTURE MODEL AND MULTIVARIATE POISSON HIDDEN 

MARKOV MODEL 
 
 
5.1 The multivariate Poisson distribution: general description 

 

Without loss of generality, the explanation in this thesis is restricted to three variables. 

Following the notation of Marshall and Olkin (1985), Johnson et al. (1997), Brijs (2002) 

and Brijs et al. (2004), the sets }3,2,1{1 =R , }23,13,12{2 =R , }123{3 =R  are defined. 

Let ∪
3

1=

=
i

iRR . Now consider the independent variables jX , which follow Poisson 

distributions with parameters jθ  with Rj∈  respectively. Furthermore, the observed 

variables of interest iY , with 3,2,1=i  are defined as ∑=
j

ji XY where Rj∈  and j 

contains the subscript i. For example, the general, fully saturated covariance model for 

the case with three observed variables, where ∪
3

1=

=
i

iRR , is written as: 

.123231333

123231222

123131211

XXXXY
XXXXY

XXXXY

+++=
+++=
+++=
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The parameters jθ  ( 3,2, =∈ mRj m ) correspond to a m-way covariance in a similar 

way to the m-way interactive terms, and thus, they impose structure on the data.  

 

Mardia (1970) introduced the multivariate reduction technique to create the multivariate 

Poisson distribution. This reduction technique has been used extensively for the 

construction of multivariate models. The idea of the method is to start with some 

independent random variables and to create new variables by considering some 

functions of the original variables. Then, since the new variables contain jointly some of 

the original ones, a kind of structure is imposed creating multivariate models 

(Tsiamyrtzis et al., 2004). 

 

We can represent this model using following matrix notations. Assume that iX , 

ki ,...,1=  are independent Poisson random variables and A is a n k×  matrix with zeros 

and ones. Then the vector ),...,,( 21 nYYY=Y  defined as AXY =  follows a n -variate 

Poisson distribution. The most general form assumes that A is a matrix of size 

(2 1)nn× −  of the form  

A=[A1, A2, A3,…,An] 

where iA , ni ,...,1=  are matrices with n rows and 







i
n

 columns. The matrix iA  

contains columns with exactly i  ones and n i−  zeros, with no duplicate columns, for 

ni ,...,1= . Thus nA  is the column vector of 1’s while 1A  becomes the identity matrix of 

size n n× . For example, the fully structured multivariate Poisson model for three 

variables can be represented as follows: 
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123231333

123231222

123131211

XXXXY
XXXXY
XXXXY

+++=
+++=
+++=

 

AXY =  

A=[A1, A2, A3] 

kn×















=

1
1
1

110
101
011

100
010
001

A  

where 

1

2

3

1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1

1
1 .
1

 
 =  
  
 
 =  
  
 
 =  
  

A

A

A

  

Also we can write AXY =  in more detailed as below. 

(1) (2) (3)
1 2 3= + +Y A X A X A X  where  

1

2

3

Y
Y
Y

 
 =  
  

Y ,  
1

(1)
2

3

X
X
X

 
 =  
  

X ,  
12

(2)
13

23

X
X
X

 
 =  
  

X ,  and [ ](3)
123X=X . 

 

Moreover, this model enables us to construct some interesting submodels by 

appropriately defining the set R .  

For example: 
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• If *
1R R=  then the model reduces to an independence model (referred to as the 

local independence model). 

• If *
1 3R R R= ∪ then the model reduces to a model with one common covariance 

term (referred to as the common covariance model). 

• If the model assumes that *
1 2R R R= ∪  then it allows only two-way covariances 

(referred to as the restricted covariance model). 

 

Note that omitting the set of parameters jθ  ( )mRj ∈ , is equivalent to setting 0=jθ . 

The submodels can be formed by assuming that the corresponding θ ’s equal zero. Now, 

denote the cardinality of R as J which, for a trivariate model, equals J =7. Then, using 

the above notation, and considering the most general model with all the covariance 

terms (though it imposes unnecessarily large structure), the joint probability density of 

the corresponding multivariate Poisson distribution is given as 

1 1 2 2 3 3( | ) [ , , | , ]jp P Y y Y y Y y j Rθ= = = = ∈y θ  

               .... ( | )
J

j j
j R

Po x θ
∈

=∑ ∑∏ , 

where the summation is extended over all the combinations of jx  such that ∑≥
k

ki xy ,  

Rk ∈  and k  contains the subscript i . The fully-structured covariance model which is 

illustrated in section 5.1.1 needs four summations for the trivariate case, which 

obviously implies a large computational burden. The major problem of the use of the 

probability distribution in its general form is the calculation difficulty of the probability 

mass function. Kano and Kawamura (1991) described recursive schemes (section 5.2) to 



 59

reduce the computational burden; however the calculation remains computationally 

time-consuming for large dimensions. 

 

This computational burden problem brings out the idea to create multivariate 

distributions with selected covariances, that is, not to include all the possible covariance 

terms, but only to select the covariance terms that are useful. In reality, using all the m-

fold covariance terms imposes too much structure, while complicating the whole 

procedure without adding any further insight into the data. For this reason, after a 

preliminary assessment, one may identify interesting covariance terms that may be 

included into the model. This selection corresponds to fixing the value of the Poisson 

parameters, that is, the corresponding θ ’s. 

 

Based on this general description of the multivariate Poisson distribution and the 

relationship with more suitable submodels, a detailed description of each model is 

provided in the next few sections.  

 

 

5.1.1 The fully- structured multivariate Poisson model 

 

The theoretical development of the fully structured multivariate Poisson model will be 

illustrated by weed species: Wild Buckwheat, Dandelion and Wild Oats. Suppose the 

objective is to cluster weed count data based on the mean counts in a set of three weed 

species, that is, Wild Buckwheat ( 1Y ), Dandelion ( 2Y ), Wild Oats ( 3Y ). Following the 
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notation of Marshall and Olkin (1985), and Johnson et al. (1997), Brijs (2002) and Brijs 

et al. (2004), and based on the discussion in section 5.1, a trivariate Poisson random 

variable ),,( 321 YYY  with parameters 1 2 3 12 13 23 123( , , , , , , )θ θ θ θ θ θ θ  can then be constructed 

from a number of independent univariate Poisson distributions as follows: 

123231333

123231222

123131211

XXXXY
XXXXY

XXXXY

+++=
+++=
+++=

 

with all X ’s are independent univariate Poisson distributions with their respective 

means ,1θ  ,2θ  ,3θ  ,12θ  ,13θ  ,23θ  123θ . The calculation of the probability distribution of 

1 1 2 2 3 3[ , , ]P Y y Y y Y y= = =  is not easy. The solution is based on the observation that  

1 1 2 2 3 3[ , , ]P Y y Y y Y y= = =  is the marginal distribution from 

1 1 2 2 3 3 12 12 13 13 23 23 123 123[ , , , , , , ]P Y y Y y Y y X x X x X x X x= = = = = = =  and can be obtained 

by summing out over all X ’s, i.e., 

31 2 4

12 13 23 123

1 1 2 2 3 3

1 1 2 2 3 3 12 12 13 13 23 23 123 123
0 0 0 0

[ , , ]

[ , , , , , , ]
LL L L

x x x x

P Y y Y y Y y

P Y y Y y Y y X x X x X x X x
= = = =

= = = =

= = = = = = =∑ ∑ ∑ ∑
          (5.1) 

with  ),,min( 211 yyL =  

 ),,min( 31212 yxyL −=  

 3 2 12 3 13

4 1 12 13 2 12 23 3 13 23

min( , ),
min( , , ).

L y x y x
L y x x y x x y x x

= − −
= − − − − − −

           

The above expression (5.1) demonstrates that the x’s are summed out over all possible 

values of the respective X’s. It is known that the X’s should take only positive integer 

values or zero, since the X’s are Poisson distributed variables. However, the upper 

bounds (L’s) of the different X’s are unknown and will depend on the values of ,1y  2y , 
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and 3y  as illustrated above.  Again, to rewrite equation 5.1 in compact form, we can 

define the following notations: 

1
(2)

2

3

L
L
L

 
 =  
  

L , [ ](3)
4L=L  and (1) (2) (3)

2 2 2 2( )R R R R= ∪ ∪  where (1)
2 {12,13},R =  

(2)
2 {12,23},R =  (3)

2 {13,23}.R =  

 In fact, substituting the X ’s for the Y ’s in (5.1) result in: 

(2) (3)

(2) (3)
1 1 2 2 3 3 1 1 2 2 3 3 12 12 13 13 23 23 123 123

0 0

[ , , ] [ , , , , , , ]P Y y Y y Y y P X x X x X x X x X x X x X x
= =

= = = = = = = = = = =∑ ∑
L L

x x

 

and since the X ’s are independent univariate Poisson variables, the joint distribution 

reduces to the product of the univariate distributions: 

(2) (3)

(2) (3) ( )
31 2 32

1 1 2 2 3 3
0 0

[ , , ] [ ( )] [ ]
j

j j k l i i
l Rj R i R Rk R

P Y y Y y Y y P X y x x P X x
∈∈ ∈ ∪= = ∈

= = = = = − − =∑ ∑ ∑ ∑∏ ∏
L L

x x

. 

Now, the following three conditions on ,1X ,2X  and 3X  must be satisfied, since the 

X ’s are univariate Poisson distributions, and since the Poisson distribution is only 

defined for positive integer values and zero: 

1 12 13 123

2 12 23 123

3 13 23 123

0
0
0.

y x x x
y x x x
y x x x

− − − ≥
− − − ≥
− − − ≥

     (5.2) 

These conditions imply that all x ’s cannot just be any integer value, but depend on the 

values of ,1y  2y , and 3y .  Accordingly, the distribution for 1 1 2 2 3 3[ , , ]P Y y Y y Y y= = =  

by summing up all the x ’s is: 
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( ) 32
(2) (3)

1 2 3

(2) (3)

( )
31 2 32

( )

1 1 2 2 3 3
0 0

[ , , ]
( )! !

j k l
j l Rk R i

j

y x x
x

j i
j R i R R

j k l i
l Rj R i R Rk R

PY y Y y Y y e
y x x x

θ

θ θ∈∈

− −

∈ ∈ ∪−

= =
∈∈ ∈ ∪∈

∑ ∑

= = = =
− −

∏ ∏
∑ ∑ ∑ ∑∏ ∏
L L

x x
 

with  1 2 3 12 13 23 123.θ θ θ θ θ θ θ θ= + + + + + +  

 

To see why 1L  must be equal to ),min( 21 yy , one must look at the first two of the three 

conditions on ,1X ,2X  and 3X  specified in (5.2). Indeed, it is known that all x ’s should 

be zero or a positive integer. For that reason, if all x ’s except for 12x  would be zero, 

then the maximum acceptable value for the 12x  can be ),min( 21 yy  to facilitate the first 

two conditions. Similarly, the values for the other x ’s can be computed, based on the 

preceding values (Mahamunulu, 1967), resulting in the admissible ranges for all L’s. 

 

The above formulated trivariate Poisson model incorporates all possible interactions 

(that is, two-way and three-way) that can exist between the counts of the three weed 

species considered. In other words, this model can take into account for all possible 

covariances between the weed counts. 

 

The mixture variant of the multivariate Poisson model (details are given in section 5.3) 

simply extends the multivariate Poisson model by assuming that k groups of species 

have different parameter values for the θ ’s. Clearly, the number of parameters to be 

optimized rapidly increase with the specification of different groups in the data.  
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In general, the number of parameters to be estimated is equal to )12()1( −×+− qkk , 

for q  varaites k -component mixture model. The number of parameters to be estimated 

increases linearly in the number of components ( k ) and exponentially in the number of 

the variables ( q ) being considered.  

 

5.1.2 The multivariate Poisson model with common covariance structure 

 

The fully structured multivariate Poisson model (section 5.1.1) has a large number of 

parameters that need to be estimated. Therefore, an alternative approach has been 

proposed in the literature to make a simpler version of the model by representing 

variance/covariance by means of one common term (Johnson and Kotz, 1969, Li et al., 

1999 and Karlis, 2003). 

 

In this approach, following the explanation in section 5.1, the trivariate Poisson variable 

),,( 321 YYY with one common covariance term, is defined as the following:  

12333

12322

12311

XXY
XXY
XXY

+=
+=
+=

 

with all X ’s independent univariate Poisson distribution with respective parameters ,1θ  

,2θ  ,3θ  and 123θ . 

 

In a matrix notation, this model can be presented as: 

AXY =  
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A=[A1, A3] 

1 0 0 1
0 1 0 1
0 0 1 1

 
 =  
  

A  

where 

1

3

1 0 0
0 1 0
0 0 1

1
1 .
1

 
 =  
  
 
 =  
  

A

A

 

Although the covariance structure is limited compared to the general definition of the 

multivariate Poisson, there are a convenient number of parameters to deal with. 

Moreover, trivariate Poisson distribution 1 1 2 2 3 3[ , , ]P Y y Y y Y y= = =  can now be 

obtained as the marginal distribution from 1 1 2 2 3 2 123 123[ , , , ]P Y y Y y Y y X x= = = =  as follows: 

 

1 2 3

(3)

min( , , )

1 1 2 2 3 3 1 1 2 2 3 3 123 123
0

[ , , ] [ , , , ]
y y y

P Y y Y y Y y P Y y Y y Y y X x
=

= = = = = = = =∑
x

.  (5.3) 

Substituting the X’s for the Y’s in (5.3) results in: 

(4)

(3)
1 1 2 2 3 3 1 1 2 2 3 3 123 123

0

[ , , ] [ , , , ]P Y y Y y Y y P X x X x X x X x
=

= = = = = = = =∑
L

x

 with all X ’s 

independent univariate Poisson distributions and [ ](4)
5L=L  where 5 1 2 3min( , , )L y y y= , 

thus: 
 

(4)

(3)
31 3

1 1 2 2 3 3
0

[ , , ] [ ( )] [ ]j j l i i
l Rj R i R

P Y y Y y Y y P X y x P X x
∈∈ ∈=

= = = = = − =∑ ∑∏ ∏
L

x

 

                 

3
( 4 )

1 31 2 3 123

( 3)

31 3

( )

( )

0

.
( )! !

j l
l R i

y x
x

j i
j R i R

j l i
l Rj R i R

e
y x x

θ θ θ θ

θ θ∈

−

∈ ∈− + + +

=
∈∈ ∈

∑

=
−

∏ ∏
∑ ∑∏ ∏
L

x
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Similar to the fully structured model presented in the previous section, the general k-

components q-variate Poisson mixture model requires the estimation of )1()1( +×+− qkk  

parameters. The number of parameters increases linearly both with the number of the 

variables and components being considered. 

 

5.1.3 The multivariate Poisson model with local independence 

 

In the previous sections, it was revealed that in the case of three weed species, the joint 

probability of observing multiple outcomes 1 1 2 2 3 3[ , , ]i i i i i iP Y y Y y Y y= = =  for an ‘ i ’th 

location is distributed according to the multivariate Poisson distribution. On the other 

hand, under the assumption of local independence of the weed count rates within each 

mixture component, this joint probability reduces to the product of the weed species- 

specific densities, that is, 

1 1 2 2 3 3 1 1 2 2 3 3[ , , ] [ ] [ ] [ ].i i i i i i i i i i i iP Y y Y y Y y P Y y P Y y P Y y= = = = = × = × =  

This means that the following representation is obtained for the iY ’s: 

1 1

2 2

3 3.

Y X
Y X
Y X

=
=
=

 

 

In matrix notations, this model can be presented as: 

AXY =  

A=[A1] 
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1 0 0
0 1 0
0 0 1

 
 =  
  

A  

where 1

1 0 0
0 1 0 .
0 0 1

 
 =  
  

A  

 

In this situation, the likelihood function for the general k  component mixture model for 

q  weed species takes a very simple form: 

11 1 1

( ) exp( )
( ; ) ( | ) ,

!

ilyqn n k
lj lj

li li j
ji i l li

L y f y p
y== = =

−
Θ = Θ = ∑∏ ∏ ∏

θ θ
 where jp  are mixing 

proportions. 

Moreover, for the general k  component mixture model for q  weed species, we have 

1k −  different p ’s, and k  different θ ’s per weed species. The number of parameters 

need to be estimated is qkk ×+− )1( . Details of the multivariate Poisson finite mixture 

model is given in section 5.3.  The loglikelihood is then expressed as: 

1 1 1

( ) exp( )
( , | ) ln

!

liyqn k
lj lj

j
i j l li

LL p data p
y= = =

 −
∀ =  

  
∑ ∑ ∏

θ θ
θ . 

 

5.1.4 The multivariate Poisson model with restricted covariance 
 
 

The multivariate Poisson models presented in section 5.1.1 and 5.1.2 represent two 

extreme approaches to model the interdependent count rates. From a theoretical aspect, 

the fully structured model is preferable to the model with common covariance structure 
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because the former captures more of the existing variance in the data. However, from a 

practical aspect, the model with common covariance structure is preferable to the fully 

structured model because it requires fewer parameters to be estimated. 

 

Therefore, the important question is whether a model somewhere in between the two 

presented extreme models can be found, that is, both a) theoretically good enough to 

describe most of the existing covariances, and b) practically suitable in terms of the 

number of parameters to be estimated. 

 

The model introduced in this section was tried to address the above mentioned problem. 

The main idea is to simplify the variance/covariance structure as much as possible by 

including only statistically significant m-fold interactions. For this trivariate model, the 

statistical significance of the weed count interactions between Wild Buckwheat ( 1Y ), 

Dandelion ( 2Y ) and Wild Oats ( 3Y ) will study by using of loglinear analysis (see section 

5.7 and section 6.3). The loglinear analysis is particularly appropriate for the 

development of a simpler multivariate Poisson mixture model for clustering since it 

facilitates to discover, which interaction terms in the variance/covariance matrix can be 

set equal to zero. We will show that (section 6.3) the p values of the goodness of fit 

statistics of the models with some of the two-fold interactions and without any 

interaction do not differ very much. Therefore, the two-fold interactions were kept in 

the model. The latent variables, ),,,,,( 231312321 XXXXXXX =  and the vector of 

parameters, 1 2 3 12 13 23( , , , , , )θ θ θ θ θ θ=θ , are used to present the model and thus the 

restricted covariance model can be defined as:  



 68

1 1 12 13

2 2 12 23

3 3 13 23.

Y X X X
Y X X X
Y X X X

= + +
= + +
= + +

 

The joint probability function of an observation ),,( 321 YYY=Y is given (Karlis, 2004) 

as  

( )
2

(2)
1 2

(3)
( )

1 22

( )

1 1 2 2 3 3
exp( )( ; ) [ , , ] ( )! !

j k
jk R i

j

y x
x

j i
j R i R

m
m j k i

j R i Rk R

p P Y y Y y Y y y x x

θ θ
θ

∈

−

∈ ∈

∈
∈ ∈∈

∑

−= = = = = −

∏ ∏
∑∑ ∑∏ ∏

L

Ax

y θ   ,  

where {1,2,3,12,13,23}=A . The unconditional probability mass function is given 

under a mixture with k -components model by 1 2 3
1 1

( ; ) ( , , ; ).
k k

j j j j
j j

p p p p y y y
= =

=∑ ∑y θ θ   

 

As a result, the model assumes covariance between all the variables since it is imposed 

by the mixing distribution.  For a model with k  components the number of parameters 

equals to 7 k -1 (that is, 6 theta’s per component plus the mixing proportions), which, 

compared to the fully saturated model that contains )12()1( −×+− qkk  parameters, 

increases linearly instead of exponentially with the number of components considered. 

 

5.2 Computation of multivariate Poisson probabilities 
 
 

The multivariate Poisson distribution is one of the well-known and important 

multivariate discrete distributions. Nevertheless this distribution has not found a lot of 

practical applications except the special case of the bivariate Poisson distribution 
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(Tsiamyrtzis and Karlis, 2004). The main reason for this is the unmanageable 

probability function, which causes inferential procedures to be somewhat problematic 

and difficult. For example, consider the estimation of maximum likelihood (ML) 

estimates. To estimate the likelihood, one has to calculate the probability function at all 

the observations. The probability function can be calculated via recurrence 

relationships, otherwise exhausting summations are needed (Tsiamyrtzis and Karlis, 

2004). The efficient algorithm must be used to do the calculation of probabilities 

(especially for higher dimensions) to save time. Applying purely the recurrence 

relationships without trying to use them in an optimal way can be difficult and time-

consuming (Tsiamyrtzis and Karlis, 2004). For further motivation, consider a problem 

with, say three-dimensional data. For example, the data may represent the three 

different weed species counts in a field. If the number of locations is not very large, this 

implies that it will result many cells with zero frequency, so the calculation of the entire 

three-dimensional space of all combinations for the number of count (plants) of the 

three weed species is a very bad approach. For instance, if the maximum number of 

counts for each species is denoted as ia , then to create the entire probability table, one 

has to calculate 
3

1

( 1)i
i

a
=

+∏  different probabilities using normal strategy. Clearly, the 

calculation of these probabilities is awkward and time-consuming. It is especially usual 

if one can only calculate the non-zero frequency cells, which contribute to the 

likelihood. Tsiamyrtzis and Karlis (2004) proposed efficient strategies for calculating 

the multivariate Poisson probabilities based on the existing recurrence relationships. 
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5.2.1 The multivariate Poisson distribution with common covariance   
 

Suppose that iX  are independent Poisson random variables with mean iθ , for 

ni ,...,1,0=  and let niXXY ii ,...,1,0 =+= . Then the random vector ),...,,( 21 nYYY=Y  

follows a n-variate Poisson distribution, where n denotes the dimension of the 

distribution. The joint probability function (Karlis, 2003) is given by 

 

( ; )p y θ  = 1 1 2 2[ , ,..., ]n nP Y y Y y Y y= = =  

 0

1 01 1

1

exp !
!

i

i

yn nn s
ji

i n
i ii ji

k
k

y
i

y i
θ θθ

θ= == =

=

  
       = −           

   

∑ ∑∏ ∏
∏

,   (5.4) 

where },...,,min{ 21 nyyys = . Marginally each iY  follows a Poisson distribution with 

parameter iθθ +0 . The parameter 0θ  (common covariance) is the covariance between 

all the pairs of random variables ( , )i jY Y  where , {1,..., }i j n∈  and  i j≠ . If 00 =θ  then 

the variables are independent and the multivariate Poisson distribution reduces to the 

product of independent Poisson distributions.  The recurrence relations can be applied to 

compute the above probabilities. A general scheme for constructing recurrence relations 

for multivariate Poisson distributions was provided by Kano and Kawamura (1991). 

Details are given below. 

 

Some notations are introduced first to make it easy to explain the distributions. Let 0  

and 1  denote the vector with all elements equal to 0 and 1 respectively and ie  the unit 

vector with all elements 0 except from the i th element which is equal to 1. Using this 
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notation, the following recursive scheme is proved for the multivariate Poisson 

distribution presented in (5.4): 

0( ) ( ) ( ),i iy p p pθ θ= − + −iy y e y 1  ni ,...,1=                   (5.5) 

1 1 1
1 1

[ ,..., , 0,..., 0]
kk

i
k k k n

ii i

P Y y Y y Y Y p
y
θ

+
= =

 
= = = = = − 

 
∑ ∏iy e , for 1,..., 1k n= − ,  (5.6) 

where the order of iY ’s and 0’s can be interchanged to cover all possible cases, while 

0

( ) exp( ).
n

i
i

p θ
=

= −∑0  The recurrence equation (5.6) holds for arbitary permutations of Yi’s. 

It can be seen that since at every case at least one of the iy ’s equals 0, i.e. 0,s =  the 

sum appearing in the joint probability function has just one term and hence the joint 

probability function takes the useful form 0
1

[ ] exp( ) ( ; ),
n

i i
i

P Po yθ θ
=

= = − ∏Y y  where 

!
)exp();(

y
yPo

yθθθ −=  denotes the probability function of the simple Poisson 

distribution with a parameter .θ  Then equation (5.6) arises by using the recurrence 

relation for the univariate Poisson distribution (Tsiamyrtzis and Karlis, 2004). 

 

Two examples of recurrence relations for the common covariance multivariate Poisson 

distribution are given below. The θ  in all recurrence relations is suppressed for 

simplicity of the notation. 

The bivariate Poisson distribution has joint probability function given by: 

1 2
0 1 2 1 2( ) 01 2

1 2 1 1 2 2
1 2 1 20

( , ) [ , ] ! ,
! !

iy y s
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y y
p y y P Y y Y y e i
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θ θ
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where }.,min{ 21 yys =  According to the general recurrence in (5.5) the following 

recurrence are found: 

1 1 2 1 1 2 0 1 2

2 1 2 2 1 2 0 1 2

( , ) ( 1, ) ( 1, 1)
( , ) ( , 1) ( 1, 1),

y p y y p y y p y y
y p y y p y y p y y

θ θ
θ θ

= − + − −
= − + − −

 

with the convention that 1 2( , ) 0,p y y =  if 0.s <  Using these two recurrence relationships 

interchangeably, one can get the entire probability table with 
2

1

( 1)i
i

y
=

+∏ probabilities. 

The trivariate Poisson distribution has joint probability function given by following: 

31 2
0 1 2 3 31 2( ) 3 01 2

1 2 3 1 1 2 2 3 3
1 2 3 1 2 30

( , , ) [ , , ] ! ,
! ! !

iyy y s

i

yy y
p y y y P Y y Y y Y y e i

i iy y y i
θ θ θ θ θ θθ θ

θθ θ
− + + +

=

    
= = = = =     

     
∑  

where }.,,min{ 321 yyys =  Using the general recurrence in (5.5) the following 

recurrence are found: 

1 1 2 3 1 1 2 3 0 1 2 3

2 1 2 3 2 1 2 3 0 1 2 3

3 1 2 3 3 1 2 3 0 1 2 3

( , , ) ( 1, , ) ( 1, 1, 1)
( , , ) ( , 1, ) ( 1, 1, 1)
( , , ) ( , , 1) ( 1, 1, 1)

y p y y y p y y y p y y y
y p y y y p y y y p y y y
y p y y y p y y y p y y y

θ θ
θ θ
θ θ

= − + − − −

= − + − − −

= − + − − −

 

with the convention that 1 2 3( , , ) 0,p y y y =  if 0.s <  

 

Tsiamyrtzis and Karlis (2004) demonstrated that how to use these existing recurrence 

relationships efficiently to calculate probabilities using two algorithms called the Flat 

and Full algorithms. This proposed algorithm can be extended to a more general 

multivariate Poisson distribution that allows full structure with terms for all the pairwise 

covariances, covariance among three variables and so on (Mahamunulu, 1967). 
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5.2.2 The multivariate Poisson distribution with restricted covariance   
 

The fully structured multivariate Poisson model has not found any real data applications 

because of the complicated form of the probability function and the excessive structure 

of the model. In this thesis, the restricted covariance structure, which explains only 

pairwise covariances, is considered. The restricted covariance multivariate Poisson 

model can be presented as follows: 

231333
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XXXY
XXXY
XXXY

++=
++=
++=
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  
 
 =  
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A

 

 

Details about the multivariate Poisson model with two-way covariance structure can 

also be found in Karlis and Meligkotsidou (2005). 
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Marginal distributions are Poisson:  

)(~ ikijii PoissonY θθθ ++ , 
1,...,

, 2,...,
,
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The joint probability function is given by 
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The calculation of above joint probability function is not easy. Here, we used recurrence 

relations involving densities to compute the probability function. In 1967, Mahamunulu 

presented some important notes regarding p  variate Poisson distributions. According to 

him the following recurrence relations are obtained for the trivariate two-way 

covariance model: 

1 1 2 3 1 1 2 3 12 1 2 3 13 1 2 3( , , ) ( 1, , ) ( 1, 1, ) ( 1, , 1)y p y y y p y y y p y y y p y y yθ θ θ= − + − − + − −                   (5.7) 

2 1 2 3 2 1 2 3 12 1 2 3 23 1 2 3( , , ) ( , 1, ) ( 1, 1, ) ( , 1, 1)y p y y y p y y y p y y y p y y yθ θ θ= − + − − + − −        (5.8) 

3 1 2 3 3 1 2 3 13 1 2 3 23 1 2 3( , , ) ( , , 1) ( 1, , 1) ( , 1, 1)y p y y y p y y y p y y y p y y yθ θ θ= − + − − + − − ,       (5.9) 

with 1 2 3( , , ) 0p y y y =  if 1 2 3min{ , , } 0.y y y <  

 

It also gives the following relations: 

1 1 2 1 1 2 12 1 2( , ,0) ( 1, ,0) ( 1, 1,0)y p y y p y y p y yθ θ= − + − −     1 2, 1y y ≥  

2 2 3 2 2 3 23 2 3(0, , ) (0, 1, ) (0, 1, 1)y p y y p y y p y yθ θ= − + − −    2 3, 1y y ≥                                    (5.10) 

3 1 3 3 1 3 13 1 3( ,0, ) ( ,0, 1) ( 1,0, 1)y p y y p y y p y yθ θ= − + − −    1 3, 1y y ≥  
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1 1 1 1( ,0,0) ( 1,0,0)y p y p yθ= −      1 1y ≥  

2 2 2 2(0, ,0) (0, 1,0)y p y p yθ= −      2 1y ≥                                                                           (5.11) 

3 3 3 3(0,0, ) (0,0, 1)y p y p yθ= −      3 1y ≥  

 

1 2 3 12 13 23(0,0,0) exp( ( ))p θ θ θ θ θ θ= − + + + + + .                                                           (5.12) 

 

The above mentioned recurrence relations and the Flat algorithm (Tsiamyrtzis and 

Karlis, 2004) are used to calculate the probabilities of the restricted covariance trivariate 

Poisson model. 

 

5.2.3 The Flat algorithm 

 

Using the Flat Algorithm the calculation of 1 2 3( , , )p y y y  can be done in two stages. In 

the first stage, one can move from 1 2 3( , , )y y y  to the closest hyperplane using only one 

of the recurrence relationships (5.7), and in the second stage, he can move down to the 0 

point by the simplified recurrence relationships (5.10) and (5.11). Thus, starting from 

1 2 3( , , )y y y  and applying the recurrence relationship, we get three new points 

1 2 3( 1, , )y y y− , 1 2 3( 1, 1, )y y y− −  and 1 2 3( 1, 1, 1)y y y− − − . Applying the same recurrence 

relationship to these three points we get another six new points: 1 2 3( 2, , )y y y− , 

1 2 3( 2, 1, )y y y− − , 1 2 3( 2, , 1)y y y− − , 1 2 3( 2, 2, )y y y− − , 1 2 3( 2, 1, 1)y y y− − −  and 

1 2 3( 2, , 2)y y y− − . Figure 5.1 illustrates how coordinates can move to the closer plane 

using the recurrence relationship (5.7) for the case 1 2 3y y y≤ ≤ . 
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1 2 3( , , )y y y  

 

 

1 2 3( 1, , )y y y−                  1 2 3( 1, 1, )y y y− −      1 2 3( 1, , 1)y y y− −  

 

 

1 2 3( 2, , )y y y−    1 2 3( 2, 1, )y y y− −    1 2 3( 2, , 1)y y y− −     
1 2 3( 2, 2, )y y y− −     1 2 3( 2, 1, 1)y y y− − −    1 2 3( 2, , 2)y y y− −  

Figure 5.1: Flat algorithm (stage 1) 

 

Using the Flat algorithm, one can move along a plane until the minimum coordinate 

equal to zero (stage 2). For example, consider the calculation of probability (2, 2,2).p  

Figure 5.2 and Figure 5.4 illustrate how the Flat algorithm works. 

 
 

(2,2,2) 
        
 
 
     (1,2,2)   (1,1,2)   (1,2,1)  
 
 
 
              (0,2,2)    (0,1,2)         (0,2,1)          (0,0,2)           (0,1,1)        (0,2,0) 
 
 
Figure 5.2: Calculating (2,2,2)p  using the Flat algorithm 
 
 
 

When you come to this stage, you can use the Flat algorithm for 1 2( , )p y y  or 1 3( , )p y y  

or 2 3( , )p y y  according to Figure 5.3. Thus, starting from 1 2 3( , , )y y y  and applying the 
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recurrence relationship 1 1 2 1 1 2 12 1 2( , ,0) ( 1, ,0) ( 1, 1,0)y p y y p y y p y yθ θ= − + − −  we get two 

new points 1 2( 1, )y y−  and 1 2( 1, 1)y y− − . Applying the same recurrence relationship to 

these two points, we get another three new points: 1 2( 2, )y y− , 1 2( 2, 1)y y− −  and 

1 2( 2, 2)y y− − . 

1 2( , )y y  
 
 
                                        1 2( 1, )y y−          1 2( 1, 1)y y− −  
 
 
  1 2( 2, )y y−    1 2( 2, 1)y y− −     1 2( 2, 2)y y− −  
 

Figure 5.3: Flat algorithm (stage 2) 

 
(2,2) 

 
 
                                        (1,2)                (1,1) 
 
 
   (0,2)           (0,1)                  (0,0) 

 
 
Figure 5.4: Calculating (2,2)p  using the Flat algorithm 
 
 
 
Detail description of the Flat algorithm for n-variate common covariance structure can 

be found in Tsiamyrtzis and Karlis (2004). We wrote SPLUS/R functions to calculate 

the probability function of a trivariate Poisson distribution and a bivariate Poisson 

distribution using the Flat algorithm and the recurrence relationships. 
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5.3 Multivariate Poisson finite mixture models 
 

The main idea (Vermunt et al., 2002 and McLachlan et al., 1988) in model-based 

clustering, also known as latent class clustering or finite mixture models, is that the 

observations (in our case weed counts) are assumed to be coming from a mixture of 

density distributions for which the parameters of the distribution and the mixing 

proportions and the number of the components are unknown. Therefore, the objective of 

model-based clustering is to unmix the distributions and to find the most favorable 

parameters of the distributions, and the number and the mixing proportions of the 

components, given the underlying data (Fraley and Raftery, 1998). 

 

The history of finite mixture models dates back to the late 19th century (Pearson, 1894). 

With the arrival of high-speed computers, the finite mixture models inventions began, 

turning the attention to likelihood estimation of the parameters in a mixture distribution 

(McLachlan et al., 1988). In particular, the explanation of the EM algorithm 

(expectation_maximization) by Dempster et al., (1977) has given a new motivation to 

the research of finite mixture models. Since then, a wide range of literature has been 

published on this topic, even though most of publications date from 1985 and onwards 

(Brijs, 2002). 

 

Finite mixture models have demonstrated clustering in several practical applications, 

including character recognition (Murtagh and Raftery, 1984); tissue segmentation 

(Banfield and Raftery, 1993); minefield and seismic fault detection (Dasgupta and 
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Raftery, 1998); identification of textile flaws from images (Campbell et al., 1997); 

classification of astronomical data (Celeux and Govaert, 1995); and classification of 

radar images (Fjørtoft et al., 2003). 

 

The next section will provide an overview of the general formulation of the finite 

mixture model and is mainly drawn from books and review articles (McLachlan and 

Basford, 1988; McLachlan and Peel, 2000; Titterington et al., 1985 and Titterington, 

1990). 

 

5.3.1 Description of model-based clustering 

 

In general, in model-based clustering, the observed data are assumed to come from 

several unknown components (segments, components, latent classes or clusters are 

synonyms and will sometimes be used interchangeably) that are mixed in unknown 

proportions. The objective is then to ‘unmix’ the observations and to estimate the 

parameters of the underlying density distributions within each component. The idea is 

the observations belong to the same class are alike with respect to the observed 

variables in the sense that their observed values are considered as coming from a 

mixture of the same density distributions, whose parameters are unknown quantities to 

be estimated (McLachlan and Basford, 1988). The density distribution is used to 

estimate the probability of the observed values of the component variables, conditional 

on knowing the mixture component from which those values were drawn. 
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The population of interest thus consists of k  subpopulations and the density (or 

probability function) of the q -dimensional observation y  from the j th ( 1,...,j k= ) 

subpopulation is )|( jf θy  for some unknown vector of parameters jθ . The interest lies 

in finding the values of the non-observable vector ),...,,( 21 nφφφϕ =  which contains the 

component labels for each observation ),....,1( ni =  and ji =φ  if the i th observation 

belongs to the j th subpopulation.  

 

Since the component labels are not observed, the conditional density of the vector y  is 

a mixture of density of the form  

                                                      ∑
=

=
k

j
jiji yfpyf

1
)|()( θ ,                                   (5.13) 

where 10 << jp , ∑
=

=
k

j
jp

1

1and jp  are the mixing proportions. Note that the mixing 

proportion is the probability that a randomly selected observation belongs to the j -th 

component. This is the classical mixture model (McLachlan and Peel, 2000). The 

purpose of model-based clustering is to estimate the parameters ),...,,,...,( 111 kkpp θθ− . 

The maximum likelihood (ML) estimation approach, estimates the parameters 

maximizing the loglikelihood: 

                                        ∑ ∑
= =









=

n

i

k

j
jij yfppyL

1 1

)|(ln),;( θθ .                                (5.14) 

But this is not easy since there is often not a closed-form solution for calculating these 

parameters. Fortunately, due to the finite mixture representation, an expectation-
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maximization (EM) algorithm is applicable (McLachlan and Peel, 2000 and Fraley and 

Raftery, 1998).  

 

For a multivariate finite mixture model, to avoid the computational difficulties, it is 

often assumed that the observed variables are mutually independent within components 

(Vermunt et al., 2002). If there are no restrictions on the dependency of variables, the 

model with multivariate probability density functions is applicable. Sometimes the 

model-based clustering problem involves estimating a separate set of means, variances, 

and covariances for each mixture component, which quickly becomes computationally 

burdensome (Brijs, 2002).  

 

Several types of restrictions can be imposed on the variance-covariance matrix to create 

the models in between the local independence model and the full covariance model. In 

some situations, this may be necessary for practical reasons since the unrestricted model 

may be inadequate. The reason for this inadequacy is that the number of free parameters 

in the variance-covariance matrix for the full covariance model increases rapidly with 

the number of mixture components and the number of indicator variables. Therefore, 

more restricted models are defined by assuming certain pairs of y ’s to be mutually 

independent within mixture components by fixing some but not all covariances to zero 

(Karlis, 2003; Li et al., 1999).  
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5.3.2 Model-based cluster estimation 

 

The purpose of model-based clustering, described in previous section, is to estimate the 

parameter vector Φ. The maximum likelihood (ML) and the maximum a posterior 

(MAP) estimation (Vermunt et al., 2002) are the two popular methods to estimate this 

parameter vector. Of these two, maximum likelihood estimation is used in this thesis. 

 

5.3.3 ML estimation with the EM algorithm 

 

One purpose of model-based clustering approach is to estimate the parameters 

),...,,,...,( 111 kkpp θθ− . Following the maximum likelihood (ML) estimation approach, 

the estimation involves maximizing the loglikelihood (5.14), as stated earlier. In other 

words, the idea is to find the optimal values for the parameter vector, say Φopt, such that 

the observations iy  ),...,1( ni =  are more likely came from |( iyf  Φopt) than from 

|( iyf  Φ) for any other value of Φ (McLachlan and Peel, 2000).  

 

To maximize this loglikelihood, different approaches such as Newton-Raphson 

algorithm (McHugh, 1956), expectation-maximization (EM) (Dempster et al., 1977; 

McLachlan and Krishnan, 1997) algorithm etc. can be used. Most of software either 

uses Newton-Raphson algorithm or expectation-maximization (EM) algorithm, or a 

combination of both. Most recent techniques increasing in popularity are the stochastic 

EM method (Diebolt, 1996) and MCMC (Markov Chain Monte Carlo) (Robert, 1996). 

Moreover, since the EM is relatively slow, recent research efforts focus on modifying 
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the EM algorithms for use on very large data sets (McLachlan and Peel, 2000). Newton-

Raphson algorithm requires fewer iterations than the EM algorithm (McLachlan and 

Basford, 1988). Quadratic convergence is regarded as the major strength of the Newton-

Raphson method. Furthermore, because of its computational straightforwardness, the 

EM algorithm is the most extensively used (Titterington, 1990). Later in this chapter, a 

detailed version of the EM for the multivariate Poisson finite mixture models and the 

multivariate Poisson hidden Markov model is provided. At this moment, the EM can be 

described as an iterative algorithm that sequentially improves on the sets of starting 

values of the parameters, and facilitate simultaneous estimation of all model parameters 

(Dempster et al., 1977; Hasselblad, 1969). More specifically, the observed data iy  is 

augmented with the unobserved segment membership of subjects ijz , which greatly 

simplifies the computation of the likelihood instead of maximizing the likelihood over 

the entire parameter space. More facts about the EM computation can be found in 

Dempster et al. (1977) and McLachlan et al. (1988).  The estimates of the posterior 

probability ijw , i.e. the posterior probability for subject  i  belongs to the component j , 

can be obtained for each observation vector iy  according to Bayes’ rule after the 

estimation of the optimal value of Φ. In fact, after estimation the density distribution 

)|( jiyf θ  within each mixture component j  and the component size jp  of each 

component such that the posterior probability can be calculated as  

                                              
∑
=

= k
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jij

jij
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yfp
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θ

θ
 .                                                (5.15) 
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5.3.3.1 Properties of the EM algorithm 

 

The EM algorithm is certainly one of the most accepted algorithms to estimate finite 

mixture models due to some of its attractive properties listed below: 

• The most important advantage of the EM algorithm is surely its convergence 

towards the optimum parameter values. This means that, given the recent 

mixture model parameters, a single EM iteration provides new parameter 

estimates, which are proven to increase the loglikelihood of the model 

(Dempster et al., 1977; McLachlan et al., 1997). The convergence of the EM 

algorithm is proven by Meilijson (1989) and Wu (1983). 

• The EM algorithm ensured that the estimated parameters are within the required 

range (admissible range). This means that, for example for the Poisson 

distribution, the parameter values are zero or positive and cannot take negative 

values. 

• The EM algorithm is fairly easy to program. 

 

However, apart from these appealing properties of the EM algorithm, some limitations 

have been identified as well: 

• The setback with the EM estimation is that the procedure may converge to a 

local but not a global optimum (McLachlan et al., 1988; Titterington et al., 

1985). It is generally accepted that the best way to avoid a local solution is to 

use multiple sets of starting values for the EM algorithm and to observe the 

evolution of final likelihood for the different restarts of the EM algorithm. 
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Another alternative is to use the partitioning of a k-means clustering as the initial 

starting values (McLachlan et al., 1988). 

• The EM algorithm generally converges very slowly when compared to other 

iterative algorithm, such as Newton-Raphson algorithm. The EM converges 

linearly towards the optimum, while Newton-Raphson converges with quadratic 

speed towards optimum (Aitkin and Aitkin, 1996).  

• Non-convergence to global optimum sometimes is another problem of the EM 

algorithm. Convergence and the properties of convergence depend heavily on 

the starting values. 

• An important problem, but somewhat ignored in the literature, is the stopping 

rule for the number of iterations. In fact, the EM is rather sensitive in the sense 

that different stopping rules can lead to different estimates (Seidel et al., 2000). 

According to Karlis and Xekalaki (1998), this is caused because at every 

iteration, the loglikelihood increases by a very small amount and at the same 

time the estimates can change a lot. 

• Even though the EM is more popular, its general principles are well understood 

and extensively used algorithm, in every problem one has to build the algorithm 

in a different way. 

 

5.3.4 Determining the number of components or states 

 

In some applications of model-based clustering, there is enough information about the 

number of components k in the mixture model to be specified with sufficient certainty. 
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For example, where the components correspond to externally existing groups is such 

situation. Though, often the number of components has to be determined from the data, 

along with the parameters in the component densities (McLachlan et al., 2000). 

Regrettably, this crucial problem of finding the optimal number of components in a 

mixture model has not yet been completely solved (Mackay, 2002). However, a more 

suitable viewpoint to determine the number of components is based on the use of so 

called information criteria. The most well-known examples include the AIC (Akaike 

information criterion) (Akaike, 1974) and the BIC (Bayesian information criterion or 

Schwarz information criterion) (Schwarz, 1978). The formulas are: 

kk dLAIC −=  

2
)ln( k

k
d

nLBIC −= ,  

where kL  - the value of maximized loglikelihood for a model with k  components and 

kd - the number of free parameters in the model with k  components and n is the number 

of observations. 

 

Information criteria are goodness of fit measures, which consider model parsimony. The 

main idea is that the increase of the loglikelihood of the mixture model kL  on a 

particular dataset of size n , penalized by the increased number of parameters kd  

needed to create this increase of fit. A larger criterion indicates a better model in 

comparison with another. In spite of this, it should be noted that several other criteria 

exists.  AIC and BIC criterions have been used to determine the number of states in a 

hidden Markov model (Leroux and Puterman, 1992). 
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5.3.5 Estimation for the multivariate Poisson finite mixture models 

5.3.5.1 The EM algorithm 

 

The EM algorithm is a popular algorithm for the ML estimation in statistical 

applications (Dempster et al., 1977; McLachlan and Krishnan, 1997). It is appropriate to 

the problems with missing values or problems that can be seen as containing missing 

values. Suppose that there are observed data obsY  and unobservable/missing data misY , 

which are perhaps missing values or even non-observable latent variables. The idea is to 

augment the observed and the unobserved data, taking the complete data 

).,( misobscom YYY =  The key idea of this algorithm is to iterate between two steps. The 

first step, the E-step, computes the conditional expectation of the complete data 

loglikelihood with respect to the missing data, while the second step, the M-step, 

maximizes the complete data likelihood. 

 

Consider the multivariate reduction proposed earlier (section 5.1) in this thesis. The 

observed data are the q -dimensional vectors ),,( 321 iiii YYYY = . The standard data 

argumentation is used for finite mixture models by introducing as latent variables the 

vectors ),...,,( 21 ikiii ZZZZ =  that correspond to the component memberships with 

1=ijZ  if the i -th observation belongs to the j th component, and 0 otherwise. 

Furthermore, some more latent variables are introduced as follows: The component 

specific latent variables, i.e. for the j th component are introduced using the 

unobservable vectors ),,,,,( 231312321
j

i
j

i
j

i
j
i

j
i

j
i

j
i XXXXXXX = , where the superscript 
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indicates the component, and the variables are the latent variables used to construct the 

model in section 5.1. Thus, the complete data are the vectors ),,( iii ZXY . The vector of 

parameters is defined by Φ, and then the complete loglikelihood takes the following 

form: 

1 1
( ) (log log ( | ))

n k
j

ij j ti tj
i j t

L Z p f X θ
= = ∈Ω

= +∑∑ ∏Φ  

 
1 1 1 1

log ( log log !)
n k n k

j j
ij j ij tj ti tj ti

i j i j t
Z p Z X Xθ θ

= = = = ∈Ω

= + − + −∑∑ ∑∑ ∑ ,                         (5.16) 

where }23,13,12,3,2,1{=Ω . The relevant part of the complete likelihood is give by 

1 1
( log )

n k
j

ij tj ij ti tj
i j

Z Z Xθ θ
= =

− +∑∑  and hence, one needs the expectations )( ijZE  and 

)( ij
j

ti ZXE . However for the latter, since ijZ  is a binary random variable, when j
tiX  is 0 

if the observation does not belong to the j th component and takes the value j
tiX  if 

ijZ =1. Thus ]1|[)(][ == ij
j

tiijij
j

ti ZXEZpZXE . 

 

The ]1|[ =ij
j

ti ZXE  is the expectation of the latent variable j
tiX  given that it belongs to 

the j th component. Thus, at the E-step one needs the expectations ],|[ Φiij YZE  for 

ni ,...,1= , kj ,...,1=  and ],1,|[ Φ=iji
j

ti ZYXE  for ni ,...,1= , kj ,...,1=  and .Ω∈t  

 

More formally, the procedure can be described as follows: 

E-step: Using the current values of the parameters calculate  

( | )
[ | , ] ,

( )
i j

ij ij i j
i

p y
w E Z Y p

p y
θ

= =Φ  1,...,i n= , kj ,...,1= .             (5.17) 
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j
iiji

j
i dZYXE 1212 ],1,|[ == Φ  

   
1 2min( , )

12 1 2
0

P[ | , , 1, ]
i iy y

j
i i i ij

r

r X r y y Z
=

= = =∑ Φ  

   
1 2min( , )

12 1 2

1 20

P[ , , | 1, ]
P[ , | 1, ]

i i jy y
i i i ij

i i ijr

r X r y y Z
y y Z=

= =
=

=∑
Φ

Φ
  

 
1 2min( , )

1 1 2 2 12

0

( | ) ( | ) ( | )
( | )

i iy y
i j i j j

r i j

rPo y r Po y r Po r
p y

θ θ θ
θ=

− −
= ∑ .                                 (5.18) 

The corresponding expressions for j
iiji

j
i dZYXE 1313 ],1,|[ == Φ  and 

j
iiji

j
i dZYXE 2323 ],1,|[ == Φ  follow by analogy. Then  

1 1 1 12 13[ | , 1, ]j j j j
i i ij i i i iE X Y Z d y d d= = = − −Φ  

2 2 2 12 23[ | , 1, ]j j j j
i i ij i i i iE X Y Z d y d d= = = − −Φ  

3 3 3 13 23[ | , 1, ]j j j j
i i ij i i i iE X Y Z d y d d= = = − −Φ . 

 

M-step: Update the parameters  

n

w
p

n

i
ij

j

∑
== 1  and 1

1

n
j

ij ti
i

tj n

ij
i

w d

w
θ =

=

=
∑

∑
, for ,,...,1 kj =  Ω∈t .                                            (5.19) 

If some convergence criterion is satisfied, stop iterating; otherwise go back to the E-

step. Here the following stopping criterion is used. 1210
)(

)()1( −<
−+

kL
kLkL , where 

)(kL  is the loglikelihood at the k th iteration. The similarities with the standard EM 

algorithm for the finite mixture are straightforward. The quantities ijw  at the 

termination of the algorithm are the posterior probabilities that the i th observation 
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belongs to the j th cluster, and thus, they can be used to assign the observations to the 

cluster with higher posterior probability. 

 

This clustering model is also suitable for databases with large amounts of records (Brijs 

et al., 2004). In fact, even with a very large database, the clustering is done without any 

additional effort. In general, to examine the suitability of this algorithm, two issues 

should be taken into account. These issues are the dimensions of the problem and the 

covariance structure. In fact, it is well known that the speed of the EM algorithm 

depends on the ‘missing’ information. One could measure the missing information as 

the ratio of the observed information to the missing information, which is related to the 

number of latent variables introduced. Adding more latent variables leads to more 

‘missing’ information and thus adds more computing time. 

 

The above fact is true as far as the number of dimensions is concerned (Brijs et al., 

2004). More dimensions lead to more latent variables. If the structure is not 

complicated, the algorithm will perform relatively the same, but if the structure is more 

complicated, then more computational effort is needed. In this thesis, the EM algorithm 

is fully described for the case of two-way interactions (section 5.3.5.1).  
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5.4 Multivariate Poisson hidden Markov models  

 

Hidden Markov models (or Markov dependent finite mixture models) take a broad view 

of mixture distributions by introducing serial correlation through the sequence of unseen 

parameter values jλ . In particular, this sequence is assumed to follow a Markov chain 

with stationary transition probabilities. Formally, let { }iS  be a Markov chain with states 

denoted 1,…,m and stationary transition probabilities. Then iy  are assumed to be 

conditionally independent given iS , with conditional densities );(
iSif λy . To fit such a 

model, the transition probabilities must be estimated along with the component 

parameters jλ . Details about the univariate hidden Markov model (or Markov 

dependent finite mixture models) were described in Chapter 2 and 3. 

 

5.4.1 Notations and description of multivariate setting 

 

The following notations are used through out this section and do not refer to the 

notations in other sections. 

 

=ijy Measurement of the i th variable on the j th item. 

 

11 12 1 1

21 22 2 2

31 32 3 3

... ...

... ...

... ...

j n

j n

j n

y y y y
y y y y
y y y y

 
 =  
  

Y . 
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The observation sequences of three variables are denoted by 1 2 3, ,Y Y Y  row vectors 

(with uppercase letters) 

 

1 11 12 1 1... ...j ny y y y =  Y . 

 

2 21 22 2 2... ...j ny y y y =  Y . 

 

3 31 32 3 3... ...j ny y y y =  Y . 

 

To denote the observation sets we will use column vectors nyyy ,...,, 21 (with lowercase 

letters) 

 

 















=

31

21

11

1

y
y
y

y  















=

32

22

12

2

y
y
y

y  … 















=

n

n

n

n

y
y
y

3

2

1

y . 

Then 1 2 ... ...j n =  Y y y y y  where ny is a trivariate observation. 

 

5.4.2 Estimation for the multivariate Poisson hidden Markov models (Extension of 

the univariate Markov-dependent mixture model by Leroux and Puterman, 1992) 

 

Let 1 2 . . . . . .j n =  Y y y y y  be the realization of a hidden Markov model 

with original m state Markov Chain }{ iS .  Define Φ  by ( )mmmPPP λλλ ,...,,,,...,, 211211  
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where ),|Pr( 1 jSkSP iijk === −  mkj ≤≤ ,1  denote the stationary transition 

probabilities of }{ iS  and [ ]11 12 13 22 23 33j i i i i i iλ λ λ λ λ λ=λ , where mj ,...,1= . 

The likelihood for Φ  is  

∏∑ ∑
== =

−
=

n

i
SiSSS

m

S

m

S
sn iii

n

fPfPL
21 1

1
)1(

,21 ))(;()())(;(...)....,,|(
11

1

1
ΦλyΦΦλyyyyΦ ,             (5.20) 

where )Pr( 1
)1( jSPj ==  denote the initial probabilities of }{ iS . Leroux and Puterman 

(1992) discussed in their paper that )....,,|( ,21 nL yyyΦ  is a convex mixture of 

likelihood values obtained with a fixed initial state (i.e. with 1)1( =jP for some j), 

concurrently maximization of )....,,|( ,21 nL yyyΦ  over Φ  and ),...,( )1()1(
1 mPP  can be 

accomplished by maximization over Φ  with a fixed initial state. Thus, it follows that 

the )1(
jP  are known. Cappé (2001) explained that with a single training sequence, the 

initial distribution is a parameter that has not much effect and the initial distribution 

cannot be estimates consistently. Taking the above reason into account, it is assumed 

that the initial distribution is uniform (equal probabilities for all states of the model). In 

this thesis, initial Uniform distribution is assumed.  

 

 

5.4.2.1 The EM algorithm 

 

The EM algorithm can be applied to determine the likelihood maximization for the 

multivariate Poisson hidden Markov model, almost as simply as for the independent 



 94

mixture model. The loglikelihood function for ),( iis y , ni ,...,1=  (called the complete-

data loglikelihood) is ),,....,,|(log 11 nn
c ssL yyΦ  

∑∑∑ ∑∑
= = = = =

++=
n

i

m

j

m

k

n

i

m

j
jijjkjks fiuPivP

2 1 1 1 1

)1( );(log)(log)(log
1

λy ,              (5.21) 

where 1)( =iu j if jSi = and 0 otherwise, and 

1)( =iv jk , if a transition from j  to k  occurred at i  (i.e; ),1 kSjS ii ==−  and 0 

otherwise. (Φ  is suppressed for simplicity of notation). 

 

This loglikelihood function consists of two parts, the loglikelihood for a Markov chain, 

depending merely on the transition probabilities jkP , and the loglikelihood for 

independent observations, depending only on the parameters .,...,1 mλλ  Note that when 

jkP  is independent of j , (5.21) gives the complete-data likelihood for the independent 

case, so that the independent model is nested in the hidden Markov model.  

 

The M-step requires maximization of 1[log ( ) | ,...., ]c
nE L Φ y y , which is obtained by 

replacing the components of the missing data by their conditional means. 

1 1 1ˆ ( ) [ ( ) | ,..., ] P[ , | ,..., ]jk jk n i i nv i E v i S j S k−= = = =y y y y                          (5.22) 

and  

1 1ˆ ( ) [ ( ) | ,..., ] P[ | ,..., ]j j n i nu i E u i S j= = =y y y y .                         (5.23) 

 

The transition probabilities are obtained using following formula: 
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∑∑

∑

= =

== n

i

m

l
jl

n

i
jk

jk

iv

iv
P

2 1

2

)(ˆ

)(ˆ
 .                                                                                                  (5.24) 

These equations, similar to the equations 5.17 for the mixing proportions in a mixture 

distribution, can be thought of as weighted empirical relative frequencies. The 

maximizing values of jλ  are obtained exactly as for independent observations. The 

algorithm is terminated when the changes in parameter estimates are small. 

 

5.4.2.2 The forward-backward algorithm 

 

The forward-backward algorithm is again an extension of univariate case (Chapter 2 

and 3) to a multivariate case. The forward-backward algorithm is used to calculate the 

conditional probabilities )(ˆ iu j  and )(ˆ iv jk . It is based on simple recursive formulae for 

the forward variable  

1 2( ) [ , ,..., , ]j n ii P S jα = =y y y  and the backward variable 

1( ) [ ,..., | ]j i n ii P S jβ += =y y                (5.25) 

which yield the quantities of interest by 

1

( ) ( ) ( ) ( )
ˆ ( )

( ) ( ) ( )

j j j j
j m

l
j jl

j

i i i i
u i

n i i

α β α β
α α β

=

= =
∑ ∑

    and 

∑
−

=

l
l

kjkijk
jk n

iifP
iv

)(
)()1();(

)(ˆ
α

βαλy
.                (5.26) 

The )(ijα  and )(ijβ are calculated recursively in i using following formulae: 
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∑
=

−=
m

k
jikjkj fPii

1
);()1()( λyαα               (5.27) 

[ ],...,1),;()1( 1
)1( mjfP jjj == λyα , and 

∑
=

+ +=
m

k
kkijkj ifPi

1
1 )1();()( ββ λy                (5.28)

 ],...,1,1)([ mjnj ==β . 

 

Note that the 'α s are computed by a forward pass through the observations and the 'β s 

by a backward pass after evaluating the 'α s. The likelihood is then simply calculated by 

the expression
1

( )
m

j
j

nα
=
∑ . 

The calculations of ,1X ,2X ,3X  ,12X ,13X  and 23X  can be carried out using the same 

formulas explained in section 5.2.2. The multivariate Poisson model is defined as 

.

= + +
= + +
= + +

1 1 12 13

2 2 12 23

3 3 13 23

Y X X X
Y X X X
Y X X X

                             (5.29) 

 

E-step: Using the current values of the parameters calculate  

12 12[ | , ( ) 1, ]j j
i j iE u i d= =X Y Φ  

   
1 2min( , )

1 1 2 2 12

0

( | ) ( | ) ( | )
( | )

i iy y
i j i j j

i jr

rPo y r Po y r Po r
f

λ λ λ

=

− −
= ∑ y λ

.              (5.30) 

The corresponding expressions for 13 13[ | , ( ) 1, ]j j
i j iE u i d= =X Y Φ  and 

23 23[ | , ( ) 1, ]j j
i j iE u i d= =X Y Φ  follow by analogy. Then  
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1 1 1 12 13[ | , ( ) 1, ]j j j j
i j i i i iE u i d y d d= = = − −X Y Φ  

2 2 2 12 23[ | , ( ) 1, ]j j j j
i j i i i iE u i d y d d= = = − −X Y Φ  

3 3 3 13 23[ | , ( ) 1, ]j j j j
i j i i i iE u i d y d d= = = − −X Y Φ . 

Let denote 1 2 3 12 13 23( ),j j j j j j j
i i i i i i id ,d ,d ,d ,d ,d=d  1,..., ,i n= 1,..., .j m=  

Then M-step computes the posteriori probabilities using the following equation. 

1 1

( ) ( ) ( ) ( )
( ) [ | ]

( ) ( ) ( )

j j j j
j i m m

l j j
l j

i i i i
u i P S j

n i i

α β α β

α α β
= =

= = = = =

∑ ∑
Y y�                                               (5.31) 

and then re-estimate the rates as follows: 

1

1

( )
ˆ ,

( )

n
j

j i
i

j n

j
i

u i

u i

=

=

=
∑

∑

d
λ

�

�
  1,..., .j m=                             (5.32) 

 

The M-step will give the parameter estimates mλλ ,...,1  for the k th iteration and then go 

back, and repeat the algorithm until the convergence criterion is met. 

 

We extended the univariate Markov-dependent Poisson mixture model to a multivariate 

Poisson model (bivariate and trivariate). We carried out Splus/R codes for the analysis 

of the multivariate Poisson hidden Markov model according to sections 5.4.2, 5.4.2.1 

and 5.4.2.2. 
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5.5 Bootstrap approach to standard error approximation  

 

The standard error of the parameter estimates in a mixture model can be obtained by 

approximating the covariance matrix of Φ̂  using the inverse of the information matrix. 

It is important to mention that these estimates of the covariance matrix of the maximum 

likelihood estimation based on the expected or observed information matrices are 

guaranteed to be valid inferentially only asymptotically (McLachlan and Peel, 2000). In 

particular, for mixture models, it is recognized that the sample size n has to be very 

large before the asymptotic theory of maximum likelihood applies (McLachlan and 

Peel, 2000). Since our sample size is not too large, we can use a resampling approach to 

this problem, the bootstrap method. Basford et al., (1997) and Peel (1998) compared the 

bootstrap and information-based approaches for some normal mixture models. They 

found that unless the sample size was very large, the standard errors found by the 

information-based approach were too unstable to be recommended. In such situations 

the bootstrap approach is recommended and we use this approach in this thesis. 

  

The bootstrap approach of calculating the standard error is explained by McLachlan and 

Peel (2000). Tthe bootstrap method was first introduced by Efron (1979). Thereafter the 

series of articles and books by Efron (1982), Efron and Tibshirani (1993), Davison and 

Hinkley (1997), Chernick (1999) were published. Over the past twenty-five years, the 

bootstrap method has become one of the most admired developments in statistics. 
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The bootstrap method is a powerful and important technique permits the variability in a 

random quantity to be assessed using just the data at hand (McLachlan and Peel, 2000). 

An estimate F̂  of the underlying distribution is formed from the observed data .Y  

Conditional on the latter, the sampling distribution of the random quantity of interest 

with F  replaced by F̂  defines its so-called bootstrap distribution, which provides an 

approximation to its true distribution. It is assumed that F̂  has been so formed that the 

stochastic structure of the model has been preserved. Usually, it is impossible to express 

the bootstrap distribution in a simple form, and it must be approximated by Monte Carlo 

methods whereby pseudo-random samples (bootstrap samples) are drawn from F̂ . If a 

parametric form is adopted for the distribution function of ,Y  where Φ  denotes the 

vector of unknown parameters, and then the parametric bootstrap uses an estimate Φ̂  

formed from y  in place of Φ . That is, if we write F  as ΦF  to signify its dependence 

on Φ , then the bootstrap data are generated from 
Φ

= ˆ
ˆ FF .  

 

McLachlan and Peel (2000) explained that the standard error estimation of Φ̂  could be 

stated using the bootstrap method by the following steps: 

 

Step 1: The new data, *Y , called the bootstrap sample, is generated according to F̂ , an 

estimate of the distribution formed from the original observed data Y. That is, in the 

case where Y  contains the observed values of a random sample of size n, *Y consists of 

the observed values of the random sample  

. . .
~ ,

i i d
F* * *

1 2 nY , Y , ..., Y
�
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where the estimate F̂  (now denoting the distribution function of a single observation 

jY ) is held fixed at its observed value. 

 

Step 2: The EM algorithm is applied to the bootstrap observed data *Y to compute the 

maximum likelihood estimates for this dataset, *Φ̂ . 

 

Step 3: The bootstrap covariance matrix of *Φ̂ is given by  

],)}ˆ(ˆ)}{ˆ(ˆ[{)ˆ(cov ****** TEEE ΦΦΦΦΦ* −−=                          (5.33) 

where *E denotes expectation over the bootstrap distribution specified by F̂ . 

 

The bootstrap covariance matrix can be approximated by Monte Carlo methods. Steps 

(1) and (2) are repeated independently several times (say, B) to give B independent 

realizations of *Φ̂ , denoted by **
1

ˆ,....,ˆ
BΦΦ . Then (5.33) can be approximated by the 

sample covariance matrix of these B bootstrap replications to give 

 

)1(

)ˆˆ)(ˆˆ(
)ˆ(cov

***

1

*

**

−

−−∑
≈ =

B

T
b

B

b
b ΦΦΦΦ

Φ                                     (5.34) 

where 
B

B

b
∑

= =1

*ˆ
ˆ

Φ
Φ* . 

The standard error of the i th element of Φ
�

 can be estimated by the positive square toot 

of the i th diagonal element of (5.34). It has been demonstrated that 50 to 100 bootstrap 
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replications are generally sufficient for the standard error estimation (Efron and 

Tibshirani, 1993).  

 

On the identifiability of a mixture model, if the component densities of the mixture 

belong to the same parametric family, then the likelihood does not change under a 

permutation of the component labels in the parameter Φ  and hence neither does its 

maximum likelihood estimate Φ
�

. This raises the question of whether the so-called 

label-switching problem (for example, what you have as the first cluster now will be the 

second cluster in the next sample and so on) occurs in the generation of the bootstrap 

replications of the maximum likelihood estimation, as in Monte Carlo Markov chain 

computations involving mixture models. McLachlan and Peel (2000) explained that 

according to their experience it has not arisen, as they always take the maximum 

likelihood estimate Φ
�

  calculated from the original data to be the initial value of 

parameter in applying the EM algorithm to each bootstrap sample. 

  

The following steps were used to calculate the bootstrapped standard errors for both 

models:  

(a) Multivariate Poisson finite mixture model and 

(b) Multivariate Poisson hidden Markov model. 

 

Step 1: Using estimated means and transition probabilities/or mixing proportions from 

different states/or components simulate the mixture distribution of data. 
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Step 2: Then take a bootstrap sample (with replacement) of size equal to the original 

sample size and estimate the parameters using the EM algorithm. 

Step 3: Take at least 100 bootstrap samples and estimate the parameters. 

Step 4: Finally using these 100 bootstrap parameters calculates the standard errors of the 

estimates. 

 

5.6 Splus/R codes for the multivariate Poisson hidden Markov model 
 
 
 
We contributed to the hidden Markov model research area by developing Splus/R codes 

for the analysis of the multivariate Poisson hidden Markov model. Splus/R codes are 

written to estimate the multivariate Poisson hidden Markov model using the EM 

algorithm and the forward-backward procedure and the estimation of bootstrapped 

standard errors. The estimated parameters were used to calculate the goodness of fit 

measures mention in this thesis: the entropy criterion (section 6.5) and the estimated 

unconditional variance-covariance matrix (section 7.3). Splus/R programs (see 

Appendix) of this thesis are available on request from the author. 

 

5.7 Loglinear analysis 

 

Loglinear models were used to identify the covariance structure in this thesis. The 

loglinear model is a special case of generalized linear model (GLM) for count-type 

response variables modelled as Poisson data (Agresti, 2002). All generalized linear 

models have three components. The random component identifies the response variable 
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Y  and assumes a probability distribution for it. The systematic component specifies the 

explanatory variables used as predictors in the model. The link function describes the 

functional relationship between the systematic component and the expected value 

(mean) of the random component. The generalized linear model relates a function of 

that mean to the explanatory variables through a prediction equation having linear form 

(Agresti, 2002). More details of the GLM and the loglinear analysis can be found in 

Agresti (2002). 

 

A generalized linear model using the log link function with a Poisson response is called 

a loglinear model. The general use is modelling cell counts in contingency tables. The 

models specify how the expected count depends on levels of the categorical variables 

for that cell as well as associations and interactions among those variables. To calculate 

the level of interdependence between two species and higher-order associations, 

loglinear analysis provides a good statistical background to directly examine the higher-

order associations. Loglinear models methodology is mainly applicable when there is no 

clear distinction between response and explanatory variables, for example, when all the 

variables are observed simultaneously (Stokes et al., 2000). The loglinear model point 

of view treats all variables as response variables, and the focus is on statistical 

independence and dependence. Loglinear modelling of multi-way categorical data is 

analogous to correlation analysis for normally distributed response variables and is 

useful in assessing patterns of statistical dependence among the subsets of variables. 
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The loglinear model is one special case of Generalized Linear Models (GLM) for 

Poisson distributed data (Agresti, 2002 and Brijs, 2002). Further, loglinear analysis can 

be considered as an extension of the two-way contingency table to where the 

conditional relationship between two or more discrete categorical variables is analyzed 

by taking the natural logarithm of the cell frequencies within the contingency table. 

Loglinear models are generally used to summarize multi-way contingency tables that 

involve three or more variables. Therefore, loglinear models are very useful to evaluate 

the association between variables. PROC CATMOD procedure in SAS software 

(SAS/STAT, 2003) can be used to fit the models. 

 

The fundamental strategy in loglinear analysis involves fitting models to the observed 

frequencies in the cross-tabulation of categorical variables. The models can then be 

represented by a set of expected frequencies that may or may not look like the observed 

frequencies. Different models can be described in terms of marginal models that they fit 

and in terms of the constraints they impose on the associations that are present in the 

data. Using expected frequencies, different models can be fitted and compared that are 

hierarchical to one another. The idea of modelling is then to choose a preferred model, 

which is the most suitable model that fits the data. The choice of the preferred model is 

based on a formal comparison of goodness-of-fit statistics (likelihood ratio test) 

associated with models that are related hierarchically (i.e. models containing higher 

order terms also implicitly include all lower order terms). 
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For the case of two categorical variables, each with two levels ( 2 2×  table with present 

and absent of the species), to evaluate if an association exists between the variables the 

following model can be used: 

                                        ln( ) A B AB
ij i j ijF µ γ γ γ= + + +  .             (5.35) 

)ln( ijF  is the log of the expected cell frequency of the cases for cell ,i j  in the 

contingency table. 

µ   is the overall mean of the natural log of the expected frequencies 

γ   represent the ‘effects’, which the variables have on the cell frequencies 

A and B are two categorical variables 

i  and  j   refer to the categories within the variables 

Therefore: 

A
iγ = the main effect for variable A 

B
jγ = the main effect for variable B  

AB
ijγ = the interaction effect for variables A and B. 

 

The model presented by equation (5.35) is called the saturated model. It includes all 

possible one-way and two-way effects. Given that the saturated model has the same 

number of effects as there are cells in the contingency table, the expected cell 

frequencies will always exactly match the observed frequencies, with no degrees of 

freedom remaining (Agresti, 2002). To find a more parsimonious model that will isolate 

the effects best explaining the data, a non-saturated model must be discovered. This 

model could be achieved by setting some of the effect parameters to zero. For instance, 
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if the effects parameter AB
ijγ  is set to zero (i.e. assume that variable A has no effect on 

variable B, or vice versa), the unsaturated model is obtained: 

                                                 ln( ) A B
ij i jF µ γ γ= + + .                          (5.36) 

Furthermore, it can be said that the models presented above are hierarchically related to 

each other, i.e. they are nested. In other words, the unsaturated model is nested within 

the saturated model. 

 

From the collection of unsaturated models that have been fitted, it is required to decide 

which of the unsaturated models provides the best fit. The likelihood ratio test ( 2G ) can 

be carried out to find out the best-fitted model, since the models are nested within each 

other. If ijF  represents the fitted frequency and ijf  the observed frequency, then the 

likelihood ratio test statistic (Agresti, 2002) is denoted by: 

                                               ∑∑ 









=

i j ij

ij
ij F

f
fG log22 .           (5.37) 

The 2G  test is distributed chi-square with degrees of freedom (df) equal to the number 

of cells minus the number of non-redundant parameters (number of model parameters) 

in the model. In other words, the df equals the number of γ  parameters set equal to 

zero. When the models get more complex, the df value decreases, with the df=0 for the 

saturated model. As a result, the 2G  tests the residual frequency not accounted for by 

the effects in the model. (i.e. the γ  parameters set equal to zero). Therefore, larger 2G  

values indicate that the model does not fit the data well, and thus the model should be 
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rejected. In this situation, the 2G  test can be used to compare the saturated model with a 

(smaller) nested model: 

                                                overallnesteddifference GGG 222 −= .                                   (5.38) 

The degrees of freedom (df) equal the df of the nested model minus the df of the 

saturated model. If the differenceG 2  is not significant, it means that the more parsimonious 

nested model is not significantly worse than the saturated model. Then, one should 

choose the nested model since it is simpler. 

 

This could be easily extended to three variables model each with two levels (with 

present and absent of the species). The general loglinear model for a three-way table is   

                       ln( ) A B C AB AC BC ABC
ijk i j k ij ik jk ijkF µ γ γ γ γ γ γ γ= + + + + + + + .                          (5.39) 

The total number of non-redundant parameters is the total number of cell counts, which 

is 2 2 2 8.× × =  

 

 

 

 

 

 

 

 

 

 



 108

 

 

 

 

CHAPTER 6 
 
 

RESULTS OF MULTIVARIATE POISSON FINITE MIXTURE MODELS AND 
MULTIVARIATE POISSON HIDDEN MARKOV MODELS  

 
 
6.1 Introduction 
 

In this chapter, the results of the multivariate Poisson finite mixture (independent) and 

the multivariate Poisson hidden Markov models are discussed. The preliminary analysis 

is presented in sections 6.2 and 6.3. The methodology explained in Chapter 5 is used to 

calculate the posterior probabilities and to estimate the corresponding parameters. The 

results of the empirical analysis are presented in section 6.4. A comparison of different 

model specifications is given in section 6.5. 

 

6.2 Exploratory data analysis 
 

The histogram of species counts for each of the variable and the basic statistics, 

including the mean and the variance per variable, are illustrated in Figure 6.1 and Table 

6.1 respectively. In fact, several important conclusions can be made from these 

histograms and the basic statistics. First of all, it can be seen from the histograms that 

the data were discrete integer values (i.e. count data) that can be assumed to model by a 

Poisson distribution. It is generally accepted in the literature (Johnson et al., 2005) that 
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the Poisson distribution is well suited to model this kind of data. However, the basic 

statistics also demonstrate that the data is clearly overdispersed (Table 6.1), i.e. the 

variance is clearly bigger than the mean and this is a problem when modelling the data 

with the Poisson distribution. The mean of the Poisson distribution is equal to its 

variance, can be denoted by single parameter λ, which is not really accurate for the data. 

The solution to the problem of overdispersion (Leroux and Puterman, 1992) is to 

assume that the data came from a finite mixture of Poisson distributions, that is, an 

unknown number of components with different unknown mean species rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1: Histograms of the species counts: (a) Wild Buckwheat, (b) Dandelion and 
(c) Wild Oats  
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Table 6.1: Mean, variance and variance/mean ratio for the three species 
 

 
 
 
Table 6.2: Univariate Poisson mixture models 
 

Univariate Poisson finite 
mixture models 

Univariate Poisson  Hidden 
Markov models 

Number of clusters or 
states 

AIC BIC AIC BIC 
Wild buckwheat 
(species 1097) 

2 2 3 2 

Dandelian  
(species 1213) 

1 1 1 1 

Wild Oats  
(species 1509) 

5 4 3 3 

 
 

The univariate analysis was carried out for each species separately to determine how 

many clusters or states are in each count distribution. The univariate Poisson finite 

mixture models and univariate hidden Markov models (Leroux and Puterman, 1992) 

were fitted for each species and AIC and BIC criterions were used to select the number 

of components of the model. There were different numbers of clusters or states for three 

species distributions (Table 6.2). The AIC selection was the same compared to the BIC 

selection method for the most of the models except for two situations. This table gives 

us an indication that there was more than one cluster or state in species distributions. It 

is interested to see how many clusters or states were present at the multivariate case. 

 

Species Mean Variance Variance/Mean 
Wild Buckwheat 
(Species 1097) 

1.2867 2.8099 2.1838 

Dandelion 
(Species 1213) 

0.2467 0.3481 1.4110 

Wild Oats 
(Species 1509) 

2.8200 27.7325 9.8342 
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Figure 6.2: Scatter plot matrix for three species  

 
 
 
The bivariate correlation analysis (Table 6.3 and Figure 6.2) revealed that there was no 

statistically significant interaction between variables (all p values >0.05). However, 

since there may be more complex structure of interactions (i.e., multivariate), the 

loglinear analysis was carried out on these data to analyze the existence of potentially 

higher-order interactions between variables. 
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Table 6.3: Correlation matrix of three species 

Correlation 
 

Wild Buckwheat 
(Species 1097) 

Dandelion 
(Species 1213) 

Wild Oats 
(Species 1509) 

Wild Buckwheat (Species 1097) 1 0.0162  
(p = 0.844) 

0.0119  
(p =0.884) 

Dandelion (Species 1213)  1 -0.0331  
(p = 0.687) 

Wild Oats  (Species 1509)   1 
 
 
 
6.3 Loglinear analysis 

 

The contingency table of the frequency of occurrence (present/absent) of all species 

combinations of Wild buckwheat, Dandelion and Wild Oats for 150 locations in field #1 

is given in Table 6.4. The symbol “0” indicates species was not present at any particular 

location and the symbol “1” indicates species was present at that location. Table 6.4 

illustrates that, out of 150 locations, 34 locations do not contain any of three species, 

whereas 12 locations contain all of them. Performing a loglinear analysis (SAS/STAT, 

2003) on these data described in section 5.7 demonstrates that the saturated model can 

be significantly reduced to obtain a more suitable, unsaturated model containing less m-

way interactions. This section has made an attempt to introduce such a model. 
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Table 6.4: The frequency of occurrence (present/ absent) of the Wild Buckwheat, 
Dandelion and Wild Oats 
 

Wild buckwheat 
(Species 1097) 

Dandelion  
(Species 1213)  

Wild Oats  
(Species 1509) 

Count 

0 0 0 34 
1 0 0 28 
0 1 0 5 
0 0 1 22 
1 1 0 7 
1 0 1 37 
0 1 1 5 
1 1 1 12 

 

The likelihood ratio ( 2G ) test has demonstrated the most suitable model that fits the 

data only consists of the main effects (Table 6.5). 

 

Table 6.5: The likelihood ratio ( 2G ) test for the different models of the Wild 
Buckwheat, Dandelion and Wild Oats counts 
 
Field #1-Effects 2G  df P value 
Y1+Y2+Y3+Y1Y2+Y2Y3+Y1Y3+Y1Y2Y3 0 0 - 
Y1+Y2+Y3+Y1Y2+Y2Y3+Y1Y3 0.04 1 0.8414 
Y1+Y2+Y3+Y1Y2+Y2Y3 4.23 2 0.1205 
Y1+Y2+Y3+ Y2Y3 5.58 3 0.1341 
Y1+Y2+Y3 6.49 4 0.1654 
Y1+ Y3 67.13 5 <0.0001 

 

For this three-variate model, the statistical significance of the weed counts interactions 

between Wild Buckwheat ( 1Y ), Dandelion ( 2Y ) and Wild Oats ( 3Y ) was already studied 

by means of the loglinear analysis and demonstrated that there were no significant 2-

fold interactions. The loglinear analysis is particularly relevant for the development of a 

simpler multivariate Poisson mixture model for clustering since it helps to discover 

which interaction terms in the variance/covariance matrix can be set equal to zero. The 
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p values of the goodness of fit of the models with some two-fold interactions and 

without any interaction do not differ very much. Therefore, the latent variables 

),,,,,( 231312321 XXXXXXX =  are decided to keep in the model (i.e. use all two-fold 

interaction terms). The vector of parameters is now 1 2 3 12 13 23( , , , , , )θ θ θ θ θ θ=θ  and thus 

the following restricted covariance model can be formulated: 

.231333

231222

131211

XXXY
XXXY
XXXY

++=
++=
++=

 

 

6.4 Data analysis  

 

In this section, the computational results of the multivariate Poisson finite mixture 

model and the multivariate Poisson hidden Markov model with the restricted covariance 

structure is discussed and compared with the results of the local independence model 

and the common covariance structure. The computational results of the fully saturated 

multivariate Poisson finite mixture model and the fully saturated multivariate Poisson 

hidden Markov model will not be discussed since there is no available method to 

estimate the parameters of the fully saturated multivariate Poisson model in a reliable 

way. As mentioned in section 5.1, the computation of the fully saturated model involves 

a great number of summations and parameters to be estimated and this remains a 

difficulty for calculation of the probability function. As a result, a comparison with the 

fully saturated covariance model cannot be made. 

 



 115

6.4.1 Results for the different multivariate Poisson finite mixture models 

 

All three models, i.e. the local independence model, the common covariance model, and 

the model with the restricted covariance structure, were fitted sequentially for 1 to 7 

components ( k =1,…,7). Furthermore, in order to overcome the famous shortcomings of 

the EM algorithm, i.e. the dependence on the initial starting values for the model 

parameters, 10 different sets of starting values were chosen at random. In fact, the 

mixing proportions ( p ) were uniform random numbers. These proportions were 

rescaled so that the summation of all p ’s is equal to 1. The λ ’s were generated from a 

uniform distribution over the range of the data points. For each set of initial values, the 

algorithm was run for 150 iterations without considering any convergence criterion. 

Then, the set of initial starting values with the largest loglikelihood was selected. The 

EM iterations were continued with these selected initial values until the convergence 

criterion is satisfied, i.e., until the relative change of the loglikelihood between two 

successive iterations was smaller than 1210− . This procedure is repeated 7 times for each 

value of k . The number of cluster selection was based on the most well-known 

information criterion (section 5.3.4), i.e., the Akaike Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC). For the restricted covariance, the independent 

and the common covariance models kd  is 7 1kd k= − , 4 1kd k= −  and 5 1kd k= −  

respectively. The AIC and BIC criterions serve as a guide for the researcher to select the 

optimal number of components in the data.  

 



 116

Figure 6.3 illustrates the evolution of the loglikelihood, the AIC and the BIC for 

different components ( k =1,…,7) of the local independence multivariate Poisson model. 

This figure demonstrates that the AIC selects 6 components whereas the BIC selects 5 

components. Therefore, in this case, the model with fewer components is selected for 

interpretation. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3: Loglikelihood, AIC and BIC against the number of components for the 
local independence multivariate Poisson finite mixture model 
 
 

Figure 6.4 illustrates the optimal value of the mixing proportions for the range of 

models used (values of k  from 2 to 7). It can be seen that there is one large component 

and the rest are small components in all models. In fact, the mixing proportions tend to 

fluctuate over the different component solutions.  
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Figure 6.4: The mixing proportions for model solutions with k =2 to 7 components for 
the local independence multivariate Poisson finite mixture model  
 

 

Table 6.6 contains the parameter estimates and the bootstrapped standard errors for the 

model with 5 components. Here the bootstrap standard errors were considered because 

of small sample size (McLachlan et al., 2000), and therefore, the asymptotic standard 

errors were not valid. Special care was taken to avoid the label switching (Brijs et al., 

2004). This problem can be avoided by adding the relevant constraints, 
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Table 6.6: Parameter estimates (bootstrap standard errors) of the five components 
independence covariance model 
 

Component 1θ  2θ  3θ  jp  
1 0.2232 

(0.0976) 
0.0000 

(0.0000) 
25.0084 
(0.5254) 

0.0252 

2 1.9591 
(0.1523) 

0.1883 
(0.0334) 

8.9511 
(0.5148) 

0.1600 

3 2.7836 
(0.0471) 

0.3614 
(0.0159) 

0.4916 
(0.0175) 

0.2342 

4 0.7413 
(0.0412) 

0.4949 
(0.0098) 

2.4109 
(0.0699) 

0.2649 

5 0.3781 
(0.1096) 

0.0000 
(0.0000) 

0.0085 
(0.0138) 

0.3156 

 

 

Figure 6.5 illustrates the evolution of the loglikelihood for different components 

( k =1,…,7) of the common covariance multivariate Poisson model. Furthermore, the 

figure demonstrates that both the AIC and the BIC select five components solution. 

Figure 6.6 illustrates the optimal value of the mixing proportions for the entire range of 

models used (values of k  from 2 to 7). Again, it can be seen that there is one large 

component and the rest are small components in all models, except the seven-

component model. The mixing proportions tend to fluctuate over the different 

component solutions.  

 

Table 6.7 contains the parameter estimates for the model with five components. The 

components with small mixing proportions got the larger estimated standard errors 

compared to relatively large other components. The parameters with zero estimated 

values were not differing significantly from zero. 
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Figure 6.5: Loglikelihood, AIC and BIC against the number of components for the 
common covariance multivariate Poisson finite mixture model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1000

-950

-900

-850

-800

-750

-700

-650

-600

1 2 3 4 5 6 7

k  (the number of Components)

Lo
gl

ik
el

ih
oo

d

Loglikelihood AIC BIC
 



 120

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6: The mixing proportions for model solutions with k =2 to 7 components for 
the common covariance multivariate Poisson finite mixture model  
 

Table 6.7: Parameter estimates (bootstrapped standard errors) of the five components 
common covariance model 

 

Component 1θ  2θ  3θ  123θ  jp  
1 0.1974 

(0.0610) 
0.0000 

(0.0385) 
25.2688 
(0.6622) 

0.0000 
(0.0263) 

0.0242 

2 2.0218 
(0.1441) 

0.1619 
(0.0191) 

9.3893 
(0.1937) 

0.0000 
(0.0000) 

0.1451 

3 3.2147 
(0.0784) 
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0.0369 
(0.0051) 

0.1850 

4 0.8218 
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0.4365 
(0.0056) 

2.9303 
(0.0037) 

0.0278 
(0.0039) 

0.2424 

5 0.4487 
(0.0272) 

0.1307 
(0.0056) 

0.0494 
(0.0037) 

0.0000 
(0.0000) 

0.4032 

  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7

Number of Components -k

pr
op

or
tio

n

 



 121

Figure 6.7 illustrates the evolution of the loglikelihood for different componets 

( k =1,…,7) of the restricted  covariance multivariate Poisson finite mixture model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7: Loglikelihood, AIC and BIC against the number of components for the 
restricted covariance multivariate Poisson finite mixture model  
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Figure 6.8 illustrates the optimal value of the mixing proportions for the entire range of 

models used (values of k  from 2 to 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: The mixing proportions for model solutions with k =2 to 7 components for 
the restricted covariance multivariate Poisson finite mixture model  
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Table 6.8: Parameter estimates (bootstrapped standard errors) of the four component 
restricted covariance model 

 
Component 

1θ  2θ  3θ  12θ  13θ  23θ  jp  
1 6.4384 

(0.3673) 
0.0152 

(0.0318) 
8.5477 

(0.3180)
0.0000 

(0.0000)
0.0000 

(0.0000) 
2.4015 

(0.1516)
0.0143

2 0.8485 
(0.0277) 

0.1696 
(0.0070) 

13.5921 
(0.0778)

0.0000 
(0.0000)

0.0000 
(0.0000) 

0.0000 
(0.0000)

0.1213

3 1.9083 
(0.0376) 

0.4127 
(0.0055) 

2.8167 
(0.0285)

0.0000 
(0.0000)

0.0000 
(0.0000) 

0.0000 
(0.0000)

0.3575

4 0.8075 
(0.0249) 

0.1545 
(0.0045) 

0.0819 
(0.0049)

0.0000 
(0.0000)

0.0000 
(0.0000) 

0.0000 
(0.0000)

0.5069

 

 

For the restricted covariance model it is also observed that the components of the model 

with small mixing proportions have the large standard errors.  

 

 

6.4.2 Results for the different multivariate Poisson hidden Markov models 

 

Similar to the multivariate Poisson finite mixture models, for the multivariate Poisson 

hidden Markov models all three models, that is, the local independence model, the 

common covariance model, and the model with restricted covariance structure were 

fitted sequentially for 1 to 7 components ( k =1,…,7). Furthermore, in order to overcome 

the well-known drawback of the EM algorithm, i.e. the dependence on the initial 

starting values for the model parameters, 10 different sets of starting values were chosen 

at random. In fact, the transition probabilities ( ijP ) were uniform random numbers with 

constraint  ∑
=

=
m

j
ijP

1
,1  mi ≤≤1 . Theλ ’s were generated from a uniform distribution 
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over the range of the data points. For each set of starting values, the algorithm was run 

for 200 iterations without caring about any convergence criterion. Then, the set of initial 

starting values with the largest loglikelihood was selected. The EM iteration were 

continued with these selected initial values until the convergence criterion is satisfied, 

i.e. until the relative change of the loglikelihood between two successive iterations was 

smaller than 1210− . This procedure is repeated 7 times for each value of k .  

 

The selection of number of clusters were based on the most well-known information 

criterions (section 5.3.4), i.e. the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). The AIC is given as AIC= k kL d−   and the BIC is given as 

BIC= ln( ) / 2k kL n d−   where kL  is the value of the maximized loglikelihood for a model 

with k  components and kd   is the number of free parameters of the model. For the 

restricted covariance, the independent and the common covariance models kd  is 

kkkdk −+= 26 , kkkdk −+= 23  and kkkdk −+= 24  respectively. 

 

Figure 6.9 illustrates the evolution of the loglikelihood for the different components 

(k=1,…,7) of the local independence multivariate Poisson hidden Markov model. This 

figure illustrates that the AIC and the BIC selects five states as the optimal number of 

states. 

 

Similarly, Figure 6.10 and Figure 6.11 illustrate the evolution of the loglikelihood for 

the different components of the common covariance and the restricted covariance 

models respectively. Based on the AIC and the BIC criterion, the five states for the 
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common covariance and the four states for the restricted covariance model were 

selected as optimal number of states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Loglikelihood, AIC and BIC against the number of states for the local 
independent multivariate Poisson hidden Markov model 
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Figure 6.10: Loglikelihood, AIC and BIC against the number of states for the common 
covariance multivariate Poisson hidden Markov model 
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Figure 6.11: Loglikelihood, AIC and BIC against the number of states for the restricted 
covariance multivariate Poisson hidden Markov model 
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state). Parameters with zero estimated values and zero standard errors can be interpreted 

as zero (Brijs et al., 2004). 

 
 
Table 6.9: Parameter estimates (bootstrapped standard errors) of the five states hidden 
Markov independence covariance model 
 

State 1λ  2λ  3λ  
1 0.2439  

(0.1376) 
0.0000  

(0.0000) 
24.4691  
(0.5506) 

2 1.9495  
(0.0417) 

0.2176  
(0.0169) 

8.2134  
(0.2339) 

3 0.4734  
(0.0573) 

0.5681  
(0.0194) 

2.5843  
(0.1480) 

4 2.4682  
(0.0314) 

0.3464  
(0.0117) 

0.5381 
(0.0318) 

5 0.3438  
(0.0624) 

0.0000  
(0.0000) 

0.1149  
(0.0415) 

 

Table 6.10: Transition probability matrix of the hidden Markov independence 
covariance model 























4264.00000.02036.01512.02187.0
0000.00000.00000.00000.00000.1
2552.00455.06173.00819.00000.0
5003.00736.00000.04260.00000.0
0000.00000.03406.01843.04751.0

 

 

Table 6.10 gives the estimated transition probability matrix for the independent model. 

The ( , )i j th element of the transition matrix is the estimated probability ijP
�

 of transition 

from state state i  to state .j  It can be seen that some distributions have no chance with 

probability zero to move to other states. The highest probability of one when moving 

from state four to state one indicating that the distribution of state four almost surely 

moved to state one. The next highest probability was 0.5003 when moving from state 

two to state five. 
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Table 6.11: Parameter estimates (bootstrapped standard errors) of the five states hidden 
Markov common covariance model 
 

State 1λ  2λ  3λ  123λ  
1 0.2459  

(0.1125) 
0.0000  

(0.0194) 
24.5967  
(0.8797) 

0.0000  
(0.0000) 

2 1.9775  
(0.0343) 

0.2086  
(0.0089) 

8.5108  
(0.1715) 

0.0000  
(0.0000) 

3 0.5796  
(0.0726) 

0.4304  
(0.0124) 

2.4925  
(0.1229) 

0.0908  
(0.0045) 

4 2.0558  
(0.0309) 

0.1685  
(0.0066) 

0.3295  
(0.0206) 

0.0349  
(0.0014) 

5 0.0323  
(0.0180) 

0.1043  
(0.0116) 

0.0718  
(0.0231) 

0.0036  
(0.0006) 

 

 
 
Table 6.12: Transition probability matrix of the hidden Markov common covariance 
model 























5822.01583.01223.00000.01372.0
2186.06119.00000.00668.01027.0
2292.00802.05334.00000.01572.0
0000.00000.00000.10000.00000.0
3767.00151.01539.00778.03765.0

 

 

Table 6.11 and Table 6.13 contain the parameter estimates and the bootstrapped 

standard errors for the common covariance and the restricted covariance model with 

five and four states respectively. Table 6.12 contains the estimated transition probability 

matrix for the common covariance model. The ( , )i j th element of the transition matrix is 

the estimated probability ijP
�

 of transition from state state i  to state .j  This model had 

the highest probability of 1 when moving from state two to state three indicating that 

the distribution of state two almost surely moved to state three.  The next highest 

probability was 0.3767 when moving from state one to state five. Table 6.14 contains 
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the estimated transition probability matrix for the restricted covariance model. This 

model had the highest probability of 1 when moving from state four to state three 

indicating that the distribution of state four almost surely moved to state three.  The next 

highest probability was 0.5383 when moving from state two to state three. It can be seen 

that the average rates of weed distributions were different in different states. In the 

restricted covariance model, there is only one important covariance term between 

Dandelion ( 2Y ) and Wild Oats ( 3Y ). Also we see that the distribution of state one only 

consist of Wild Oats with very high rate ( 3λ =41.8286). The state three and state four do 

not have any correlation between species.  The interpretation of other parameters was 

the same as for the independence case. 

 

Table 6.13: Parameter estimates (bootstrapped standard errors) of the four states hidden 
Markov restricted covariance model 
 

State 1λ  2λ  3λ  12λ  13λ  23λ  
1 0.0000 

(0.0549) 
0.0000 

(0.0000) 
41.8286 
(1.5246) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

2 1.6504 
(0.1101) 

0.2749 
(0.0473) 

9.6423 
(1.6981) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.7309 
(0.1452) 

3 1.8772 
(0.0284) 

0.4052 
(0.0204) 

1.8312 
(0.3436) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

4 0.6173 
(0.0188) 

0.0941 
(0.0115) 

0.0689 
(0.0221) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

 

 

Table 6.14: Transition probability matrix of the hidden Markov restricted covariance 
model 
 



















0000.00000.10000.00000.0
0000.05573.01544.02883.0
0000.05383.03179.01438.0
0160.01663.01444.06733.0
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6.5 Comparison of the different models 

 

Looking at the empirical results of the different model formulations in the previous 

sections, the following conclusions can be drawn with regard to the fit of the different 

cluster solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Loglikelihood against the number of components ( k ) for the multivariate 
Poisson finite mixture models 
 

With regard to the fit of the different models, it was clear from Figure 6.12 for the 

multivariate Poisson finite mixture models and from Figure 6.13 for the multivariate 

Poisson hidden Markov models that by adding additional components the fit of the 
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model, as indicated by the loglikelihood values, increases significantly. Figure 6.12 

indeed illustrates that the loglikelihood of the independence and the common covariance 

models is higher than the loglikelihoods of the restricted covariance model over the 

range of component solutions ( k =1 to 7). Figure 6.13 illustrates that the loglikelihood 

of the independence model is higher than the loglikelihoods of the restricted and the 

common covariance model over the range of component solutions ( k =1 to 7) for the 

hidden Markov models.  
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Figure 6.13: Loglikelihood against the number of components ( k ) for the multivariate 
Poisson hidden Markov models 
 

From the viewpoint of model fit, Figure 6.13 this partly justifies the use of the model 

with the independent covariance structure since the comparison of maximized 
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loglikelihood providing at least a rough indication of the relative goodness of fit. The 

same conclusion was gained after the primarily loglinear analysis and the correlation 

matrix of the data. 

 

In order to assess the quality of clustering, the entropy criterion was calculated based on 

the posterior probabilities (McLachlan et al., 2000 and Brijs et al., 2004). A measure of 

the strength of clustering is implied by the maximum likelihood estimates in terms of 

the fitted posterior probabilities of component membership ijw  for the finite mixture 

models and ( )ju i  for the hidden Markov models. For example, if the maximum of ijw  

or ( )ju i  is near to 1 for most of the observations, then it suggests that the clusters or 

states were well separated (McLachlan et al., 2000). The overall measure of strength 

can be assessed by the average of the maximum of the component-posterior 

probabilities over the data. The average measure can be represented by the entropy 

criterion given as  

)/1ln(

)ln(
1)( 1 1

kn

ww
kI

n

i

k

j
ijij∑∑

= =−=  

 for the finite mixture model with the convention that 0)ln( =ijij ww  if 0=ijw  and 

1 1
( ) ln( ( ))

( ) 1
ln(1/ )

n m

j j
i j

u i u i
I m

n m
= == −
∑∑

  

for the hidden Markov model with the convention that ( )ln( ( )) 0j ju i u i =  if ( ) 0ju i = . In 

the case of perfect classification, for each i there is only one ( ) 1ju i =  and all the rest are 

0 for the hidden Markov model: therefore, the values near to 1 indicate a good 
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clustering. For our data (5)I =0.7686 for the independent model, (5)I =0.7837 for the 

common covariance model and (4)I =0.8568 for the restricted covariance model for 

class of finite mixture models. In a similar manner, for the hidden Markov models, the 

entropy criterions were (5)I =0.8425 for the independent model, (5)I =0.8119 for the 

common covariance model and (4)I =0.8441 for the restricted covariance model. Both 

classes of models indicate that the restricted covariance model had a very good 

separation between components or states. Among these six models for the finite mixture 

and the hidden Markov models, the entropy statistic is between 76%-85%. All models 

can be considered, as “well separated” and the hidden Markov models had a very good 

separation compared to the finite mixture models.  

 

In the case of the multivariate finite mixture model, each multivariate observation can 

be allocated to the clusters using the posterior probabilities. The multivariate obser-

vation with the highest posterior probability in the k th cluster will be allocated to the 

k th cluster. Figure 6.14 illustrates the contour plots of clusters for the independent, the 

common and the restricted covariance multivariate finite mixture models. 

 

Given the sequence of observations Y  and the model with the transition probability 

matrix, the most likely state sequence associated with the given observation sequence 

can be found. This can be achieved by maximizing the probability of observing 

observation sequence and the state sequence given their joint distribution. This can be 

achieved using the so-called Viterbi Algorithm (Viterbi, 1967). After allocating each 

observation to the corresponding states the optimal state path can be found. Figure 6.15 
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illustrates the contour plot of the independent, the common and the restricted covariance 

hidden Markov models, which visualized the pattern of the weed distributions. 

 

Comparing Figure 6.14 and Figure 6.15 it can be seen that there were similarities in the 

weed distributions from the finite mixture model allocation and the hidden Markov 

model allocation for the three covariance structures. For the restricted covariance 

model, the allocation of observations to the clusters or states was very similar for both 

models. But for the independent and the common covariance structures the allocation of 

some of the observations to clusters or states was not the same. 

 

The choice of a best model is still questionable. In the next chapter, properties of the 

finite mixture models and a criterion for goodness of fit index are discussed.  
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Figure 6.14: Contour plots of clusters for the (a) independent, (b) common and (c) 
restricted covariance multivariate finite mixture models. 
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Figure 6.15: Contour plots of clusters for the (a) independent, (b) common and (c) 
restricted covariance multivariate Poisson hidden Markov models 
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CHAPTER 7 
 
 

PROPERTIES OF MULTIVARIATE POISSON FINITE MIXTURE MODELS 
AND APPLICATIONS 

 
 
7.1 Introduction 
 

In this chapter, the properties of the multivariate Poisson finite mixture models are 

discussed. The importance of exploring the properties of the finite mixtures, the 

extension of these properties to the hidden Markov model and the application to other 

data sets are presented in the next sections. 

 

Even though there was more literature available on the analysis of count data, still only 

small portions of it deal with correlated counts. Holgate (1964) discussed the estimation 

problems of the bivariate Poisson distribution which does not support negative 

correlation between the two count variables. With the availability of powerful 

computing facilities Aitchison and Ho (1989) described how the multivariate lognormal 

mixture of the independent Poisson distributions could take into account the positive 

and negative correlation between the variables. A class of models proposed by Chib and 

Winkelmann (2001) can take into account the correlation among the counts. They 

developed an efficient Markov Chain Monte Carlo algorithm to estimate the model 

parameters. However, for these models, the computational burden was quite large. 



 139

Karlis and Meligkotsidou (2006) discussed the correlation structure of the multivariate 

Poisson mixture models. These mixture models allow for both negative correlations and 

overdispersion in addition to being computationally feasible. 

 

The multivariate Poisson distribution is discussed again in section 7.2, followed by the 

properties of the finite mixture models. In section 7.5, these properties were applied to 

both multivariate Poisson finite mixture models and multivariate Poisson hidden 

Markov models for several applications. 

 

7.2 The multivariate Poisson distribution  
 

Consider a vector 1 2( , ,..., )kX X X=X  where iX ’s are independent and each follows a 

Poisson distribution with parameter kjj ,...,1, =λ . Suppose that matrix A  has 

dimensions kn×  with zeros and ones. Then the vector ),...,,( 21 nYYY=Y defined as the 

AXY =  follows a n-variate Poisson distribution. The most general form of a n-variate 

Poisson distribution assumes that A is a matrix of size (2 1)nn× −  of the form  

A=[A1, A2, A3,…,An] 

where iA , ni ,...,1=  are matrices with n  rows and 







i
n

columns. The matrix iA  

contains columns with exactly i  ones and ( )n i−  zeros, with no duplicate columns, for 

ni ,...,1= . Thus nA   is the column vector of 1’s, while 1A  becomes the identity matrix 

of size nn× . For example, the fully structured multivariate Poisson model for three 

variables can be represented as follows: 
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123231333

123231222

123131211

XXXXY
XXXXY
XXXXY

+++=
+++=
+++=

 

AXY =  

A=[A1, A2, A3] 
















=

1
1
1

110
101
011

100
010
001

A  

where 1 2 3

1 0 0 1 1 0 1
0 1 0 , 1 0 1 , 1
0 0 1 0 1 1 1

     
     = = =     
          

A A A  

and ),,,,,,( 123231312321 XXXXXXX=X . 

 

The reduced models for n variables can be derived from selecting the A  matrix. The 

restricted covariance trivariate Poisson model can be presented as follows: 

 

231333

231222

131211

XXXY
XXXY
XXXY

++=
++=
++=

 

A=[A1, A2] 
















=

110
101
011

100
010
001

A      

 

where   
1 2

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

   
   = =   
      

A A . 
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The mean vector and the covariance matrix of the vector Y are given as: 

                                AMY =)(E  and TAΣY AVar =)( ,                                             (7.1) 

where M is the mean vector of  X  and is given as:  TE )()( k21 λ,..,λ,λXM ==  and 

Σ is the variance and covariance matrix of X  and is given as: 

( ) ( , ,..., )Var diag= = 1 2 kΣ X λ λ λ . Since X ’s are independent, Σ  is diagonal matrix. 

More details and references for the multivariate Poisson model can be found in Karlis 

and Xekalaki (2005). The identifiability and the consistency of finite mixtures of the 

multivariate Poisson distribution with two-way covariance structure are proved in Karlis 

and Meligkotsidou (2006). 

 

In general notation, let )();( λλ
λ

gyf ∧  be a general mixture of the density ;.)(yf with 

respect to its parameter λ , where Θλλ ∈),(g is the mixing distribution. The density of 

the mixing distribution is given by ),();()( λλ
Θ

dGyfyf ∫= where )(λG is the 

cumulative function of the mixing distribution. 

 

7.3 The properties of finite mixture models 

 

The joint probability function of Y is ( ; )p y λ , and then the finite multivariate Poisson 

mixture distribution can be given as: 

                                        
1

( ) ( ; )
k

j j
j

f p p
=

=∑y y λ                                                        (7.2) 
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where jp ’s are mixing proportions and the marginal distributions are finite mixtures. 

Then the expectation of the finite multivariate Poisson mixture is given as: 

                                      ∑
=

=
k

j
jjpE

1
)( AMY  ,                                                           (7.3) 

where }23,13,12,3,2,1{,; =∈= ΩΩλM tT
tjj  

for the reduced model. 

 

Different covariance structures can be formed for the different subpopulations by 

changing the matrix A for each subpopulation.   

 

Recalling that the covariance of X conditional on the vector λ  (Karlis and 

Meligkotsidou, 2006) 

                                



















==

t

Var

λ

λ
λ

........0
0........0
0...0
0...0

)|( 2

1

λXΣ ,                                      (7.4) 

where X denotes the vector of the latent variables used to construct the multivariate 

Poisson distribution. The second moment of Y conditional on λ  is given by 

TT EEVarE )]|()[|()|()|( λYλYλYλYY +=  

                                                   
( )

[ ]

T T

T T T

T T

= +

= +

= +

AΣA AM AM
AΣA AMM A
A Σ MM A

                                         (7.5) 

Let TMMΣλB +=)(  and )(λB  has the following form:  

                                          

2
1 1 1 2 1

2
1 2 2 2 2

2
1

...

...
( )

... ... ... ...
... ...

t

t

t t t

λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ

 +
 + =
 
 

+  

B λ .                    (7.6) 
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The simple moments of B  are polynomial with respect to the parameters 

},23,13,12,3,2,1{, ∈ttλ  and thus, the moments of the mixture can be obtained as 

functions of the moments of the mixing distribution G using the standard expectation 

argument given below. 

                                                    )()|()( λλ dGYYEYYE s
j

r
i

s
j

r
i ∫= ,                          (7.7) 

where r,s = 0,1,…. The element-wise expectations of a matrix  )(λB  can be represented 

as: 

2
1 1 1 2 1

2
1 2 2 2 2

2
1

( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( )

( )
...

( ) ... ( ) ( )

t

t

t t t

E E E E
E E E E

E

E E E

λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ

 +
 + =
 
 

+  

B ,                           (7.8) 

 

then the unconditional variance of the vector Y  (Karlis and Meligkotsidou, 2006), that 

is the variance covariance matrix of the mixture is  

TT EEEVar )]()[()()( YYYYY −= , where TT EE ABAYY )()( = .                           (7.9) 

The moments of the multivariate Poisson distribution are simple polynomials with 

respect to the mixing parameters. Comparing the estimated unconditional covariance 

matrix to its observed covariance matrix can be used as a goodness of fit index. 
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For example, consider the three components trivariate finite mixture model with 

following restricted covariance structure. 

231333

231222

131211

XXXY
XXXY
XXXY

++=
++=
++=

 
















=

110
101
011

100
010
001

A  and 

1p ,
2p  and 3p  are mixing proportions. The element wise expectation of matrix )(λB  

are )( 1BE , )( 2BE and )( 3BE  respectively. Then  

)()()()( 332211 BBBB EpEpEpE ++=  

 

2
11 11 11 21 11 1

2
11 21 21 21 21 1

1

2
11 1 1 1

( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( )

( )
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( ) ... ( ) ( )

t

t

t t t

E E E E
E E E E

E

E E E

λ λ λ λ λ λ
λ λ λ λ λ λ

λ λ λ λ

 +
 + =
 
 

+  
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 
 

+  

B  
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 
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+  
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and AMY =)(E  where 



















=

tλ

λ
λ

...
2

1

M . 

 

Details of the proof of the unconditional variance of vector Y  are given in Karlis and 

Meligkotsidou (2006). A brief description of the multivariate Poisson-log normal 

distribution is given in the next section, and these models were compared with the finite 

mixture models in section 7.5. 

 

7.4 Multivariate Poisson-log Normal distribution 

 

The multivariate Poisson-log normal distribution (Aitchison and Ho, 1989) is a natural 

extension of the univariate Poisson-log normal distribution. Here the mixing of d 

independent Poisson distributions )( iPo λ  is achieved by placing a d-dimensional 

lognormal distribution on the d-dimensional vector λ . The multivariate Poisson-log 

normal distribution supports negative and positive correlation between the count 

variables. 

 

7.4.1 Definition and the properties 

 

Let ),|( Σµλg denote the probability density function of the d-dimensional log normal 

distribution ),( ΣµΛ d , so that  
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)}(log)(log
2
1exp{||),...,()2(),|( 112

1
1

1
2
1

µλµλλλπ −Σ−−Σ= −−−−−

d

d
g Σµλ         (7.10) 

The multivariate Poisson-log normal distribution denoted by )( Σµ,PΛ d is the 

),( ΣµΛ d mixture of independent )( iPo λ distributions (i =1,…, d ) with probability 

density function 

                       ∫∏
+

=

=
dR

d

i
ii dgfp

1

)|()|()|( λΣµ,λλyΣµ,y ; ,...)1,0,...,( 1 =dyy         (7.11) 

where dR+  denotes the positive orthant of d-dimensional real space dR . 

 

It is not easy to simplify the multiple integral (7.11), but its moments can be easily 

obtained through conditional expectation results and standard properties of the Poisson 

and log normal distributions. The expectation, variance, covariance, and correlation for 

the multivariate Poisson-log normal model are given below (Aitchison and Ho, 1989). 

 

Let ijσ  denotes the (i, j) element of Σ . Then 

iiiiiYE ασµ =+= )
2
1exp()( .                                                                                    (7.12) 

}1){exp()( 2 −+= iiiiiYVar σαα .                                                                               (7.13) 
}1){exp(),( −= iijiji YYCov σαα .                                                                              (7.14) 

2
1

11 }]1)}{exp(1)[{exp(

1)exp(
),(

−− +−+−

−
=

jjjiii

ij
ji YYCorr

ασασ

σ
.                                      (7.15) 
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7.5 Applications 

 

In addition to weed species data, two other data sets (The lens faults dataset p.649 and 

the bacterial count data set p.651) presented in Aitchison and Ho (1989) were used to 

compare the models among the multivariate Poisson-log normal distribution, the 

multivariate Poisson finite mixture and the hidden Markov model (Markov-dependent 

finite mixture model). Calculations were carried out for the hidden Markov model, 

replacing the mixing proportions in finite mixtures by posterior means of each state. 

These posterior means were used to assess the goodness of fit of the hidden Markov 

model (HMM). Results are presented and discussed in the next section. 

 

7.5.1 The lens faults data 

Table 7.1: Counts ( 1 2,x x ) of surface and interior faults in 100 lenses 

2x  

1x  0 1 2 3 4 5 6 7 9 10 12 14 

0 1 1 4         1 

1 3 2 6 2 5  2      

2 1 2 4 3 2 1 1 1 1  1  

3  5 1 2 2 3 2      

4 1 2 2 5 3 1 1      

5 1 2 1 2 1 2    1   

6 2 2  1 1   1     

7 1 3  1         

8  2           

11  1           

12  1           
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Table 7.1 gives the counts of surface and interior faults in 100 lenses presented in 

Aitchison and Ho (1989). The observed covariance matrix and the correlation between 

surface ( 1x ) and interior ( 2x ) counts are given below:  









−

−
2072.60227.1
0227.12227.5

  r = - 0.1796.  

The correlation coefficient indicates that data have a negative correlation. Table 7.2 

gives the loglikelihood, the AIC and the BIC together with the number of components 

for the bivariate common covariance Poisson finite mixture model (7.16).  
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According to the AIC and the BIC criterion (section 5.3.4), the larger the criterion, the 

better the model in comparison with another. Therefore, the three-component model 

with loglikelihood –420.6121 was selected as the best model (Table 7.2). The 

covariance matrix and the correlation between 1x  and 2x   were estimated. 

 
Table 7.2:  Loglikelihood, AIC and BIC together with the number of components for 
the common covariance multivariate Poisson finite mixture Model  
 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC BIC 

1 3 -450.6038 -453.6038 -457.5115 
2 7 -432.6901 -439.6901 -448.8082 
3 11 -420.6121 -431.6121 -445.9405 
4 15 -419.8284 -434.8284 -454.3672 
5 19 -419.7168 -438.7168 -463.4659 
6 23 -419.3221 -442.3221 -472.2815 
7 27 -419.3221 -446.3221 -481.4919 
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The estimated covariance matrix and correlation coefficient are given below: 









−

−
1084.69564.0
9564.03742.5

  r = - 0.1669. 

Table 7.3 gives the logliklihood, the AIC and the BIC together with the number of 

components for the bivariate independent Poisson finite mixture model (7.17). 
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In this case, the AIC and the BIC criterion select different component models: the AIC 

selects the four-component model and the BIC selects the three-component model. The 

method described in section 7.2 is used to calculate the covariance matrices. 

 
Table 7.3:  Loglikelihood, AIC and BIC together with the number of components for 
the local independence multivariate Poisson finite mixture Model  
 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC BIC 

1 2 -450.6038 -452.6038 -455.2089 
2 5 -433.5880 -438.5881 -445.1009 
3 8 -423.6535 -431.6536 -442.0742 
4 11 -420.2611 -431.2615 -445.5895 
5 14 -419.2967 -433.2967 -451.5329 
6 17 -419.2967 -436.2967 -458.4406 

 
The estimated covariance matrix (AIC selection) and the correlation coefficient are 









−

−
3774.60169.1
0169.17531.5

  and r = - 0.1679 respectively. 

The estimated covariance matrix (BIC selection) and the correlation coefficient are 









−

−
0806.63547.1
3547.12607.5

 and r = - 0.2395 respectively. 
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Table 7.4:  Loglikelihood, AIC and BIC together with the number of components for 
the common covariance multivariate Poisson hidden Markov Model  
 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC BIC 

1 3 -450.6038 -453.6038 -457.5115 
2 8 -398.6838 -406.6838 -417.1045 
3 15 -377.4649 -392.4649 -412.0036 
4 24 -361.7565 -385.7565 -417.0185 
5 35 -348.8014 -383.8014 -429.3918 
6 48 -340.3936 -388.3936 -450.9177 

 

Similarly, the loglikelihood, the AIC and the BIC values for the common covariance 

and the independent model for the Markov-dependent bivariate Poisson finite mixture 

models are given in Table 7.4 and Table 7.5, respectively. The corresponding estimated 

covariance matrices and the correlation coefficients between x1 and x2 are also 

presented.  

The estimated covariance matrix (AIC selection) and the correlation coefficient are 









−

−
4713.63909.0
3909.07930.6

 and r = -0.0590 respectively. 

The estimated covariance matrix (BIC selection) and the correlation coefficient are 









−

−
0389.56649.0
6649.06645.6

 and r = -0.1147 respectively. 

 
Table 7.5:  Loglikelihood, AIC and BIC together with the number of components for 
the local independence multivariate Poisson hidden Markov Model  
 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC BIC 

1 2 -450.6038 -452.6038 -455.2089 
2 6 -398.7847 -404.7847 -412.6002 
3 12 -377.4630 -389.4630 -405.0940 
4 20 -368.0097 -388.0097 -414.0614 
5 30 -359.2484 -389.2484 -428.3259 
6 42 -350.8904 -392.8904 -447.5989 
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The estimated covariance matrix (AIC selection) and the correlation coefficient are 









−

−
6561.51433.1
1433.13839.7

   and r = -0.1769 respectively. 

The estimated covariance matrix (BIC selection) and the correlation coefficient are 









−

−
0389.56649.0
6649.06645.6

  and r = -0.1147 respectively. 

Comparing all these models for the bivariate Poisson finite mixture and the hidden 

Markov models, this goodness of fit criterion suggest that the local independence 

bivariate Poisson finite mixture model is the best fitted model with respect to the 

estimated covariance and the correlation parameters. 

 

The observed correlation for lenses count data given in Table 7.1 was -0.1796. Using 

the multivariate Poisson-log normal distribution Aitchison and Ho (1989) found that the 

best model with loglikelihood –426.40 and the estimated count correlation between x1 

and x2 was –0.21. Multivariate Poisson finite mixtures provide a better fit compared to 

Aitchison and Ho models, having larger loglikelihoods (-420.6121, -420.2611, and -

423.6535). It also demonstrates that estimated correlation coefficient is very much close 

to the observed correlations (AIC selections) except the hidden Markov common 

covariance model, compared to Aitchison and Ho models. Note that the maximum 

likelihood estimation of the parameters of the multivariate Poisson-log normal model 

was obtained by the combination of the Newton-Raphson and the steepest ascent 

method (Aitchison and Ho, 1989).  
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7.5.2 The bacterial count data 

 

In the study of relative effectiveness of three different air samplers 1, 2, and 3 to detect 

pathogenic bacteria in ‘sterile’ rooms, a microbiologist obtained triplets of bacterial 

colony counts X1, X2, and X3 from samplers 1, 2, and 3 in each of 50 different sterile 

locations. Since the bacterial infestation can vary from location to location, extra-

Poisson variations can be expected in the counts from any particular sampler, with 

correlation between the three counts from a particular location. Aitchison and Ho (1989) 

considered )(3 Σµ,ΛP  model seems a reasonable framework for these data. They 

observed maximum loglikelihood –397.8 for )(3 Σµ,ΛP  model. 
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Table 7.6 Bacterial counts by 3 samplers in 50 sterile locations 

1X  2X  3X  1X  2X  3X 1X 2X 3X 1X 2X 3X  1X  2X  3X

1 2 11 3 6 6 3 8 2 7 10 5 22 9 6 

8 6 0 3 9 14 1 1 30 2 2 8 5 2 4 

2 13 5 4 2 25 4 5 15 3 15 3 2 0 6 

2 8 1 9 7 3 7 6 3 1 8 2 2 1 1 

5 6 5 5 4 8 8 10 4 4 6 0 4 6 4 

14 1 7 4 4 7 3 2 10 8 7 3 4 9 2 

3 9 2 7 3 2 6 8 5 6 6 6 8 4 6 

7 6 8 1 14 6 2 3 10 4 14 7 3 10 6 

3 4 12 2 13 0 1 7 3 3 3 14 4 7 10 

1 9 7 14 9 5 2 9 12 6 8 3 2 4 6 

 

 

The observed covariance matrix and the observed correlation matrix are given below: 

















−−
−
−

6122.327347.76939.3
7347.76428.132755.0
6939.32755.00714.15

          















−
−

1
3667.01
1666.00192.01

. 

Since the correlations were not very high, only the independence covariance structure is 

considered and the loglikelihood and the AIC values are recorded. According to the 

AIC criterion (Table 7.7), the model with the highest AIC value is selected 

(loglikelihood of –382.2335). This model, the seven-component local independence 

multivariate Poisson finite mixture model, gives a reasonable fit with respect to the 

loglikelihood. 
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Table 7.7:  Loglikelihood and AIC together with the number of components for the 
local independence multivariate Poisson finite mixture Model  
 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC 

1 3 -472.8759 -475.8759 
2 7 -422.3424 -429.3424 
3 11 -409.9689 -420.9689 
4 15 -402.9517 -417.9517 
5 19 -395.5478 -414.5478 
6 23 -390.3447 -413.3447 
7 27 -382.2335 -409.2335 
8 31 -381.3817 -412.3817 
9 35 -381.3717 -416.3817 

 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−−
−−
−−

4182.339948.73550.3
9948.73753.132698.0
3550.32698.09583.15

          















−
−−

1
3781.01
1453.00185.01

. 

 

The covariance between 1X  and 2X  samplers does not seem to be in the right direction; 

however, other parameters are close to the observed covariance matrix. 

 

Similar analyses were carried out with our proposed model (local independence 

multivariate Poisson hidden Markov model) and the results are given in Table 7.8. 

According to the AIC criterion, the model with five components (loglikelihood –

382.9375) gives a better fit compared to other component models. 
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Table 7.8:  Loglikelihood and AIC together with the number of components for the 
local independence multivariate Poisson hidden Markov Model  
 

 
 
 
 
 
 
 
 
 
 

 

The estimated covariance matrix and the estimated correlation matrix are given below:  

















−−
−
−

9665.322055.81730.3
2055.85828.114131.1
1730.34131.10247.14

          















−
−

1
4199.01
1476.01109.01

. 

 

The coefficients of covariance matrix demonstrate that all the pairs of covariance are in 

the correct direction and some estimates seem to be underestimated and some are 

overestimated.  

 

Since the correlations between ( 1X , 2X ) and ( 1X , 3X ) were not significantly different 

from zero, these parameter estimates were reasonable for both models and give a better 

fit as compared to the Poisson-log normal model (loglikelihood –397.8; Aitchison and 

Ho, 1989). 

 

 

 

Number of 
components ( k ) 

Number of free 
parameters 

Loglikelihood AIC 

1 3 -472.8759 -475.8759 
2 8 -421.5801 -429.5801 
3 15 -406.6949 -421.6949 
4 24 -395.4245 -419.4245 
5 35 -382.9375 -417.9375 
6 48 -375.2770 -423.2770 
7 63 -372.5788 -435.5788 
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7.5.3 Weed species data 

 

The observed covariance matrix and the observed correlation matrix for the weed 

species data (Chapter 6) are given below: 

 

















−
−

7325.271029.01056.0
1029.03481.00161.0

1056.00161.08099.2
          
















−

1
0331.01

0119.00162.01
. 

 

As mentioned in Table 6.3 (section 6.2), all the pairs of the correlation coefficients were 

not significantly different from zero. The covariance and the correlation matrices for the 

different models presented in Chapter 6 are listed below. 

 

(a) Finite mixture with the four components restricted model (AIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















6737.213123.06911.0
3123.03620.02232.0
6911.02232.09440.1

          
















1
1115.01
1065.02661.01

. 

 

(b) Finite mixture with the five components restricted model (BIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 
















−

−

2162.255485.05754.0
5485.07315.00293.0
5754.00293.07512.1

          














 −

1
1277.01
0866.00259.01

. 
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(c) Finite mixture with the five components common model (AIC and BIC 

selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−

3294.250922.02293.0
0922.02669.00512.0

2293.00512.04377.2
          
















−

1
0355.01

0292.00635.01
. 

 

(d) Finite mixture with the five components independent model (BIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−

0697.250662.01133.0
0662.02878.00750.0

1133.00750.02517.2
          
















−

1
0246.01

0151.00932.01
. 

 

(e) Finite mixture with the six components independent model (AIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−

3373.250659.02162.0
0659.03562.00563.0

2162.00563.04517.2
          
















−

1
0219.01

0274.00602.01
. 

 

From the set of models (a)-(e) for the multivariate Poisson finite mixtures, the model 

with the five components and the local independence which select by the BIC criterion 

seem to be the best model compared to all the parameters estimates in the observed and 

the estimated covariance and correlation matrices. 
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(f) Hidden Markov model with the five components independent model (AIC and 

BIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−

6595.240476.00590.0
0476.02893.00629.0

0590.00629.02087.2
          
















−

1
0178.01

0080.00787.01
. 

 

(g) Hidden Markov model with the four components restricted model (AIC and 

BIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















7686.261935.17095.0
1935.14815.01311.0
7095.01311.06483.1

          
















1
3324.01
1068.01471.01

. 

 

(h) Hidden Markov model with the four components common model (BIC 

selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−−

−

2568.210053.00904.0
0053.02740.00550.0

0904.00550.01514.2
          
















−

−

1
0022.01

0134.00716.01
. 
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(i) Hidden Markov model with the five components common model (AIC selection) 

The estimated covariance matrix and the estimated correlation matrix are given below: 

















−
−

6784.240267.01455.0
0267.02739.00821.0

1455.00821.02982.2
          
















−

1
0103.01

0193.01035.01
. 

 

From the set of models (f)-(i) for the multivariate Poisson hidden Markov models, the 

model with the five components local independence (according to the AIC and the BIC 

selection) seem to be the best model. 

 

In both sets of models, (a) the multivariate Poisson finite mixture model and (b) the 

multivariate Poisson hidden Markov model, restricted covariance structure does not 

seem to be a good indication of the data, even though those models have well separated 

components (Chapter 6, section 6.5).  

 

All the information of goodness of fit criteria  

• Selection of number of components/ states 

• Separation of components/states 

• Estimated covariance and correlation matrices, 

 

taken into account, the following conclusions can be made for weed count data. The 

multivariate Poisson hidden Markov model with the independent covariance structure 

and the five state model was the best representation of data, since this model had a 

higher entropy criterion value compared to the finite mixture model and the estimated 
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parameters in the covariance matrices were close to the observed one. This multivariate 

Poisson hidden Markov model also supports the loglinear analysis results. In addition to 

that hidden Markov models provide the probability of transition from one state to 

another. 
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CHAPTER 8 
 
 

COMPUTATIONAL EFFICIENCY OF MULTIVARIATE POISSON FINITE 
MIXTURE MODELS AND MULTIVARIATE POISSON HIDDEN MARKOV 

MODELS 
 
 
8.1 Introduction 
 

In this chapter, the computational efficiency of the multivariate Poisson finite mixture 

models and the multivariate Poissin hidden Markov models is discussed. Since the two 

sets of models: (a) the multivariate Poisson finite mixture model and (b) the multivariate 

Poisson hidden Markov model are working well in the setting of finding the unknown 

number of components or states, it is interested to study about the computational 

efficiency of the models. Karlis and Xekalaki (1999) discussed the computational 

efficiency of the finite Poisson mixture models with two components for the maximum 

likelihood estimation via the EM algorithm. 

 

8.2 Calculation of computer time 

 

Five sets of the multivariate data are simulated with different sample sizes, namely n = 

50, 100, 200, 500 and 1000. As we discussed before in Chapter 6, 10 different sets of 

parameter starting values were randomly selected over the range of data values and the 
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mixing proportions and the transition probabilities were selected according to uniform 

random numbers and rescaled them to sum up to 1. First for each set of initial values, 

the algorithm was run for 100 iterations without any convergence criterion. Then, the 

model parameters with the largest likelihood were selected for the further analysis. For 

all five sets, once the suitable initial values have been selected the computer time (CPU 

time-central processing unit time) was recorded after running the algorithm 200 

iterations. The time spent for simulating the samples was not included in this 

calculation. All the calculations were carried with a PC with a Pentium microprocessor, 

which has 2 GB of random access memory (RAM). CPU time severely depends on the 

RAM of the computer. The results of the two models, (a) the multivariate finite mixture 

model (MFM) and (b) the multivariate hidden Markov model (HMM) were reported for 

the different components and for the different covariance structures. The CPU times 

were recorded to the order of 1/100 second.  

 

8.3 Results of computational efficiency 

 

Table 8.1- Table 8.3 and Figure 8.1-Figure 8.3 illustrate the independent, the common, 

and the restricted covariance structure results, respectively, for the models (a) and (b). It 

is clear that when the sample size increases, the CPU time (in 1/100 second) also 

increases exponentially for all models. For small sample sizes ( n = 50, 100 and 200) 

models (a) and (b) have similar CPU times (some cases hidden Markov model take 

more time) regardless of the number of parameters to be estimated. However, when 

sample sizes increased ( n = 500, 1000) it revealed that the hidden Markov model takes 
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less time compared to the multivariate finite mixture model even though hidden Markov 

models have more parameters to be estimated. This is due to the computational 

procedures involved in these two models. 

 

Therefore, in terms of computational efficiency it can be concluded that for small 

sample sizes, two models, (a) and (b) have same computational efficiency and for large 

sample sizes, the multivariate Poisson hidden Markov model is more efficient compared 

to the multivariate Poisson  finite mixture model. 

 

Table 8.1: Independent covariance structure –CPU time (of the order of 1/100 second) 

k =1(components/states) k =2 (components/states) k =3 (components/states)  

n  MFM HMM MFM HMM MFM HMM 

50 22.64 23.72 43.63 45.37 67.61 67.34 

100 39.63 43.98 76.58 80.58 115.55 118.20 

200 85.17 87.98 164.14 168.22 247.35 260.56 

500 216.70 212.46 419.98 416.37 599.51 601.13 

1000 470.78 427.33 855.31 843.81 1268.11 1212.84 
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Table 8.2: Common covariance structure –CPU time (of the order of 1/100 second) 

k =1 (components/states) k =2 (components/states) k =3 (components/states)  

n  MFM HMM MFM HMM MFM HMM 

50 2.81 3.42 5.00 5.56 7.19 7.94 

100 5.78 6.53 10.01 10.72 14.25 15.33 

200 13.10 13.13 21.87 21.64 30.15 30.64 

500 43.30 32.09 66.22 53.23 85.33 75.36 

1000 123.11 64.22 165.64 106.90 207.79 153.12 

 

 

Table 8.3: Restricted covariance structure –CPU time (of the order of 1/100 second) 

k =1 (components/states) k =2 (components/states) k =3 (components/states)  

n  MFM HMM MFM HMM MFM HMM 

50 22.43 23.30 45.38 45.25 65.02 69.52 

100 39.91 41.28 80.37 79.11 114.08 117.61 

200 85.61 90.84 165.52 168.31 247.29 252.14 

500 216.04 210.74 408.54 403.72 593.96 600.56 

1000 480.50 421.51 850.26 807.11 1276.52 1207.58 

 

 

 

 

 



 165

0

200

400

600

800

1000

1200

1400

50 100 200 500 1000
Sample Size

C
PU

 ti
m

e 
(1

/1
00

 s
ec

on
d)

MFM1 HMM1 MFM2 HMM2 MFM3 HMM3
 

 
 
Figure 8.1: Sample Size vs CPU time for the different models of the independent 
covariance structure 
 
Note:  

MFMn represents the multivariate Poisson finite mixture model with  n   components 

HMMn represents the multivariate Poisson hidden Markov model with  n   components 
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Figure 8.2: Sample Size vs CPU time for the different models of the common 
covariance structure 
 
Note:  

MFMn represents the multivariate Poisson finite mixture model with  n   components 

HMMn represents the multivariate Poisson hidden Markov model with  n   components 
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Figure 8.3: Sample Size vs CPU time for different models of restricted covariance 
structure 
 
Note:  

MFMn represents the multivariate Poisson finite mixture model with  n   components 

HMMn represents the multivariate Poisson hidden Markov model with  n   components 
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CHAPTER 9 
 
 

DISCUSSION AND CONCLUSION 
 

 

9 .1 General summary 

 

Multivariate count data occur in different areas of science. Examples of count data can 

be found in agriculture (weed species counts in a field), in epidemiology (death count 

from a disease), in marketing (purchases of different products), in production (different 

types of faults in a production system), in criminology (different type of crimes in 

different areas), in accident analysis (different types or different time periods of 

accidents), and many others. There are a variety of methods available to model the 

multivariate normal data and the multivariate categorical data. Multivariate count data 

has small counts with many zeros. Therefore, a normal approximation may not be 

adequate. The different approaches can be used to handle the multivariate count data. In 

this study, several more attractive types of models, multivariate Poisson models, were 

used to overcome the above mentioned problem.  
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In this thesis, three species counts from an agriculture field were selected for analysis. 

The main objective was to determine the model for the distribution of these multivariate 

counts. The estimation involves finding out the mean and covariance structures of the 

distribution. The data are recorded in a grid, and this data can be considered as a two-

dimensional Markov random field. At the same time, an agricultural field has a large 

neighbourhood system compared to an image. That is, the distance between the 

neighbouring points or coordinates in an agricultural field is large compared to the 

distance between the neighbouring points or coordinates in an image. A drawback of the 

models based on a Markov random field is that they can only be used for small 

neighbourhoods in an image, due to the computational complexity and the modeling 

problems posed by large neighbourhoods (Aas et al., 1999). These data can be 

transformed into a one-dimensional chain. Therefore, as a first step, the grid data were 

converted into a sequence or a one-dimensional chain using line scan (Chapter 4).  

 

The analysis of these data involves two methods, (a) the multivariate Poisson finite 

mixture model and (b) the multivariate Poisson hidden Markov model. The multivariate 

Poisson finite mixture model has been used in many other applications (e.g. marketing 

Brijs et al., 2004).  However, the multivariate Poisson hidden Markov model is a new 

application to this kind of data (agricultural field data) with Poisson counts. 

 

For both models, the computation of the multivariate Poisson probabilities was studied 

according to Mahamunulu’s recurrence relations (see section 5.2.2). The preliminary 

loglinear analysis suggests that there were no significant two-way interactions. It can be 
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seen that p values of the goodness of fit statistic of the models with some two-fold 

interactions and without any interactions do not differ very much. We decided to 

include all two-way interactions (section 6.2).  Besides, two other interesting covariance 

structures (common and independent structures which described in section 5.1.2. and 

5.1.3) were considered. 

 

9.2 Parameter estimation 

 

Multivariate Poisson hidden Markov model is a special case of the hidden Markov 

model. The estimation of the parameters of a hidden Markov model most efficiently has 

done using the likelihood maximization. Baum and Eagon (1967) applied the EM 

algorithm for locating a local maximum of the likelihood function for a probabilistic 

function of a Markov chain. Baum et al. (1970) developed the EM algorithm, and 

applied it to general hidden Markov model. The large-sample behaviour of a sequence 

of maximum likelihood estimators for a probabilistic function of a Markov chain was 

studied in Baum and Petrie (1966) and in Petrie (1969). Lindgren (1978) proved a 

consistency property of maximum likelihood estimators obtained for the model, which 

assumes that { }iY  is an independent sequence from a finite mixture distribution. 

Properties of the general ergodic hidden Markov models have been proven: the 

consistency of the maximum likelihood estimators was proven by Leroux (1992a), and 

the asymptotic normality of the maximum likelihood estimators was proven by Bickel 

et al. (1998). Details of the maximum likelihood estimation of the hidden Markov 

model are found in Leroux (1992 b). 



 171

In the applications of the HMMs, likelihood functions and estimates of the model 

parameters have been routinely computed. However, not much attention has been paid 

to the computation of standard errors and confidence intervals for parameter estimates 

of the HMMs (Aittokallio et al., 2000 and Visser et al., 2000). In this thesis, parametric 

bootstrap samples were generated according to Efron et al., (1993) and McLachlan et 

al., (2000) and the standard errors of parameter estimates were computed (section 5.5, 

section 6.3.1 and 6.3.2). These standard errors will be useful for further inferences.  

 

In Chapter 7, we can see that the EM algorithm was performing well for the given 

dataset (weed counts), for the lens faults dataset (Aitchison and Ho (1989), p.649) and 

for the bacterial count dataset (Aitchison and Ho (1989), p.651) even though it has some 

disadvantages (section 5.3.3.1). This analysis also could be done using other 

optimization techniques such as simulated annealing. However, there is no guarantee 

that this method is suitable for all kinds of data (Brooks and Morgan, 1995). The EM 

algorithm has some appealing properties, such as improvement in every iteration and 

the parameters are in the ‘admissible range,’ and easy to program (section 5.3.3.1). 

 

9.3 Comparison of different models 

 

There are different ways to handle differences of the fit of the two models. The most 

well known test is the likelihood ratio test (LRT). Under the null hypothesis (i.e. the fit 

of both models is equal), the LRT is asymptotically distributed as chi-square with 

degrees of freedom equal to the difference in the number of parameters if one model is 
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nested in the other. Since, for instance, local independence model is nested in the 

common covariance model by deleting the common interaction parameter; this therefore 

seems like a reasonable test. However regularity conditions needed to use the LRT are 

not satisfied, because the parameters that allow going from one model to the other take 

a value at the boundary of the parameter space. Recall that the parameters of any 

multivariate Poisson model are positive, so the value 0 is at the boundary. This makes 

the use of the LRT statistic impossible. The same problem arises when testing for the 

model fit between different component solutions and is well documented in the 

literature (McLachlan and Peel, 2000). 

 

Another solution for the goodness of fit of the model might be constructing some type 

of information criterion, like the AIC and the BIC to test the difference between the 

models. However, these information criterias compare point estimates and not the 

difference between entire curves, so this does not seem to be applicable either. 

Therefore, the one way of comparing the different solutions is by visually inspecting 

loglikelihoods. Figure 6.12 indeed illustrates that the loglikelihood of the independence 

and the common covariance models clearly dominate the loglikelihoods of the restricted 

covariance model over the range of component solutions ( k =1 to 7). Figure 6.13 

illustrates that the loglikelihood of the independence model clearly dominates the 

loglikelihoods of the restricted and the common covariance model over the range of 

component solutions ( k =1 to 7) for the Markov-dependent models. Viewpoints of the 

model fit this partially justifies the use of the model with the independent covariance 

structure since the comparison of maximized loglikelihood providing at least a rough 
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indication of the relative goodness of fit.  The same conclusion was gained after the 

primarily loglinear analysis and the correlation matrix of the data. 

 

Besides the loglikelihood, when comparing the models, all information about different 

goodness of fit criterions used in the analysis is listed below:  

• Selection of number of components/ states 

• Separation of components/states 

• Estimated covariance and correlation matrices. 

Taking all this information into account, the following conclusion can be made for weed 

count data. The multivariate Poisson hidden Markov model with the independent 

covariance structure and the five states is the best representation of the data. This model 

has the higher entropy index (section 6.5) compared to the finite mixture model and the 

estimated parameters in the covariance matrix are close to the observed covariance 

matrix. This model also supports the loglinear analysis results. In addition to that, the 

hidden Markov model provides the probability of transition from one state to another. 

 

In addition, in terms of the computational efficiency, for the small sample sizes two 

models, (a) the hidden Markov model and (b) the finite mixture model had similar 

computational efficiency with respect to the time and for the large sample sizes the 

hidden Markov model is more computationally efficient compared to the multivariate 

finite mixture model. 
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The multivariate Poisson hidden Markov model has some improvements over the 

existing the multivariate finite mixture model. The computation time of the model is 

less in the hidden Markov model compared to the finite mixture model for large sample 

sizes (section 8.3). Another feature of the multivariate Poisson hidden Markov model is 

that it can take into account the serial correlation among observations and provide the 

transition probabilities from one state to another. 

 

9.4 Model application to different datasets 

 

The multivariate Poisson finite mixture and the multivariate Poisson hidden Markov 

models provided a better fit than the multivariate Poisson-log normal model of 

Aitchison and Ho (1989). The Newton-Raphson method is used to calculate the 

parameters of the multivariate Poisson-log normal model (section 7.5).  

 

9.5 Real world applications 

 

In general, the multivariate count data occur in different fields of study. In this thesis, 

we focused on counts for three weed species found in an agricultural field. Even though 

we selected: Wild Buckwheat, Dandelion and Wild Oats as examples, we can generalize 

this method to other weed counts as well. The main objective was to find out the 

distribution of these species. The multivariate Poisson finite mixture models and the 

multivariate Poisson hidden Markov models are two clustering methods to unmix the 

distribution and to find parameters and the number of components or states given the 
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underlying data. The advantage of the hidden Markov model is that it takes serial 

correlation into account and by introducing suitable covariance structure the idea of the 

spatial information can be found. Although I have applied this model to “weed counts” 

it could easily be applied to other datasets. For example, consider an outbreak of a viral 

infection from a health dataset. A health region is covered by a grid and one can observe 

the number of cases infecting within a small neighbourhood of each grid point in the 

health region. The data could also be multivariate if there were several viral infections 

occurring across the region. 

 

The model suggested in this thesis, the multivariate Poisson hidden Markov model, 

provides the pattern of the weed distribution. It also gives rates and positive covariance 

or relationships for weed species within the state. Unconditional covariance matrix for 

the independent covariance structure shows that there is a negative correlation between 

Dandelion and Wild Oats. Also, the independent model provides the probability of 

moving from state i to state j, called transition probabilities. This model could 

demonstrate how species switch from one component to another, that is, move from one 

position to another over time.  

 

Our model, the multivariate Poisson hidden Markov model, can deal with both the 

overdispersion and the spatial information of the data. Therefore this model together 

with the GIS (geographic information systems) generated weed density maps, will help 

researchers and farmers to get an insight of weed distributions for herbicide 

applications. The benefits of this technology include a reduction in spray volume and 
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consequently lower herbicide costs, timesaving because of fewer stops to refill, less 

non-target spraying, which reduces potential environmental risks. Further, this model 

may lead researchers to find other factors, such as soil moisture and fertilizer levels, to 

determine the states. 

 

The modified EM algorithm for the multivariate Poisson distribution was used to 

estimate the parameters. There are some problems with the EM algorithm for this 

model, such as the non-convergence to global optimum and slow convergence. 

Convergence and the properties of convergence depend heavily on the starting values. 

Therefore, further studies can be focused on the different optimization techniques for 

the multivariate Poisson hidden Markov model. 

 

Another disadvantage of the proposed modeling is the lack of availability of software. 

The modelling of this multivariate Poisson hidden Markov model cannot be done in a 

user friendly way and one has to write their own code to solve the problem. However, 

now on, the public can use our Splus/R codes for the analysis of the multivariate 

Poisson hidden Markov model. Also for the small datasets, this model may not provide 

the better estimates, since the most of the hidden Markov model properties proved 

under the assumption of asymptotic behavior.  
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9.6 Further research 

 

We can present a guideline for the analysis of the multivariate count data (bivariate and 

trivariate) in different research areas, where the finding the patterns of count data is 

needed. 

Step 1:  Exploratory data analysis using histograms, correlations, means and standard 

deviation of the variables gives the view of the data set you have on your hands. 

 

Step 2: Run the univariate Poisson hidden Markov models for each count variable to see 

how many mixtures exist. 

 

Step 3: Carry out the loglinear analysis to find out what is the best-described covariance 

structure for the dataset (restricted, common, or independent). 

 

Step 4: Then fit the multivariate Poisson hidden Markov models for the selected 

covariance structure. 

Step 5: The best-fitted model for the data set can be selected accordingly to the entropy 

criterion of separation of states and the goodness of fit index of the estimated 

covariance and the correlation matrix. 

 

As further research, one can map the means and the covariances of the distributions as a 

layer of a GIS map if the longitude and the latitude coordinates are available. These 

maps can be applied to the more effective weed control in agricultural fields. 
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Also the calculations of the multivariate Poisson probabilities of higher dimensions 

(four or more) can be carefully studied and programmed for further research of the 

hidden Markov model. 

 

Even though our model provides overall positive and negative correlation of the 

variables (in this case, species) it is not able to provide the negative interdependence 

within the components. Therefore, one can study further about this area for Poisson 

count variables. 

 

The models presented in this thesis do not include any other covariates. The covariates 

may help us to explain the differences between the distributions of the component. The 

above issue is high on the list of topics for further research.  
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APPENDIX 
 
A. Splus/R code for Multivaraite Poisson Hidden Markov Model- Common 
Covariance Structure (This is an example for three components) 
###Markov dependent+ 3 components+ common covariance### 
 
##NOTE: Before you start implementing the code please read the Chapter 5## 
 
data<-read.table("j://data1.txt",header=T) # Read the data from the text file 
 attach(data) 
 y1<-data[,1] 
 y2<-data[,2] 
 y3<-data[,3] 
  
######Function to calculate trivariate Poisson probabilities for common covariance 
##structure  
##[Refer to Section 5.1.2, Section 5.2.1 and equation (5.4)] 
 
# ( ; )p y θ  = 1 1 2 2[ , ,..., ]n nP Y y Y y Y y= = =  
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#where },...,,min{ 21 nyyys = . 
 
 
 
ptrivpois<-function(x, y, z, lambda = c(1, 1, 1, 1), log=FALSE) { 
# ------------------------------------------------------------------------------ 
# # EM algorithms for trivariate Poisson Models 
# ------------------------------------------------------------------------------ 
# x      : 1st count variable 
# y      : 2nd count variable 
# z      : 3nd count variable 
# lambda : parameters of the trivariate poisson distribution 
# log    : argument controlling the calculation of the log-probability or the  
#          probability function.  
# ------------------------------------------------------------------------------ 
 n <- length(x) 
 
 x0<-x[1] 
 y0<-y[1] 
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 z0<-z[1] 
 xyzmin<-min( x0,y0,z0 ) 
 lambdaratio<-lambda[4]/(lambda[1]*lambda[2]*lambda[3]) 
 
 i<-0:xyzmin 
 sums<- -lgamma(x-i+1)-2*lgamma(i+1)-lgamma(y-i+1)-lgamma(z-
i+1)+i*log(lambdaratio) 
 maxsums <- max(sums) 
 sums<- sums - maxsums 
 logsummation<- log( sum(exp(sums)) ) + maxsums  
 logtp<- -sum(lambda) + x * log( lambda[1] ) + y * log( lambda[2] )+ z * log( 
lambda[3] ) + logsummation  
 logtp 
 if (log) { result<-    logtp } 
 else     { result<-exp(logtp)  } 
 result 
# end of function trivpois 
} 
 
##------------------------------------ 
 
theta11 <-1.28 # initialize parameter values for component 1 
theta21 <-0.25 
theta31 <-3  
theta41<-0.01 
 
theta12 <-0.5 # initialize parameter values for component 1 
theta22 <-0.15 
theta32 <-3 
theta42<-1 
 
theta13 <-0.15 # initialize parameter values for component 1 
theta23 <-1 
theta33 <-2.5 
theta43<-0.1 
 
##constants## 
N<-3       # number of components 
T<-150   # number of observations 
Nit<-100  # number of  Iterations 
 
 
#Initial Transition matrix## 
TRANS<-matrix(c(0.25,0.5,0.25,0.1,0.5,0.4,0.3,0.2,0.5),nrow=N,ncol=N,byrow=T) 
 
loglike<-rep(0,Nit) 
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#Main loop of the EM algorithm### 
 
for (nit in 1:Nit){ 
 
#initialize matrices to store probabilities in different stages 
result1<-matrix(NA,nrow=T,ncol=1) 
d1231<-matrix(NA,nrow=T,ncol=1) 
d1231old<-matrix(NA,nrow=T,ncol=1) 
x1231<-matrix(NA,nrow=T,ncol=1) 
d1232<-matrix(NA,nrow=T,ncol=1) 
d1232old<-matrix(NA,nrow=T,ncol=1) 
x1232<-matrix(NA,nrow=T,ncol=1) 
d1233<-matrix(NA,nrow=T,ncol=1) 
d1233old<-matrix(NA,nrow=T,ncol=1) 
x1233<-matrix(NA,nrow=T,ncol=1) 
 
 
#initialize matrices to store probabilities from three components 
threep1<-matrix(NA,nrow=T,ncol=1)  
threep2<-matrix(NA,nrow=T,ncol=1)  
threep3<-matrix(NA,nrow=T,ncol=1)  
py<-matrix(NA,nrow=T,ncol=1) # Store final probability function here 
w1<-matrix(NA,nrow=T,ncol=1) #Store posterior probabilities for component 1 
w2<-matrix(NA,nrow=T,ncol=1) # Store posterior probabilities for component 2 
w3<-matrix(NA,nrow=T,ncol=1) #Store posterior probabilities for component 3 
 
#Initilize matrices to store values of X’s 
x11<-matrix(NA,nrow=T,ncol=1) 
x21<-matrix(NA,nrow=T,ncol=1) 
x31<-matrix(NA,nrow=T,ncol=1) 
x141<-matrix(NA,nrow=T,ncol=1) 
x12<-matrix(NA,nrow=T,ncol=1) 
x22<-matrix(NA,nrow=T,ncol=1) 
x32<-matrix(NA,nrow=T,ncol=1) 
x142<-matrix(NA,nrow=T,ncol=1) 
x13<-matrix(NA,nrow=T,ncol=1) 
x23<-matrix(NA,nrow=T,ncol=1) 
x33<-matrix(NA,nrow=T,ncol=1) 
x143<-matrix(NA,nrow=T,ncol=1) 
 
 
# Start the EM algorithm 
for (i in 1:T){ 
threep1[i]<-
(ptrivpois(y1[i],y2[i],y3[i],lambda=c(theta11,theta21,theta31,theta41),log=FALSE)) 
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threep2[i]<-
(ptrivpois(y1[i],y2[i],y3[i],lambda=c(theta12,theta22,theta32,theta42),log=FALSE)) 
threep3[i]<-
(ptrivpois(y1[i],y2[i],y3[i],lambda=c(theta13,theta23,theta33,theta43),log=FALSE)) 
 
d1231[i]<-0 
d1232[i]<-0 
d1233[i]<-0 
result1[i]<-min(y1[i],y2[i],y3[i]) 
for (r in 0:result1[i]){ 
d1231old[i]<-r*dpois(y1[i]-r,theta11)*dpois(y2[i]-r,theta21)*dpois(y3[i]-
r,theta31)*dpois(r,theta41) 
d1231[i]<-d1231old[i]+d1231[i] 
d1232old[i]<-r*dpois(y1[i]-r,theta12)*dpois(y2[i]-r,theta22)*dpois(y3[i]-
r,theta32)*dpois(r,theta42) 
d1232[i]<-d1232old[i]+d1232[i] 
d1233old[i]<-r*dpois(y1[i]-r,theta13)*dpois(y2[i]-r,theta23)*dpois(y3[i]-
r,theta33)*dpois(r,theta43) 
d1233[i]<-d1233old[i]+d1233[i]} 
 
 
 
# check the condition for Poisson random variables [Refer to equation (5.2)] 

1 12 13 123

2 12 23 123

3 13 23 123

0
0
0.

y x x x
y x x x
y x x x

− − − ≥
− − − ≥
− − − ≥

     (5.2) 

 
if (threep1[i]==0) {x141[i]<-0} else {x141[i]<-d1231[i]/threep1[i]} 
if (threep2[i]==0) {x142[i]<-0} else {x142[i]<-d1232[i]/threep2[i]} 
if (threep3[i]==0) {x143[i]<-0} else {x143[i]<-d1233[i]/threep3[i]} 
 
 
if ((y1[i]-x141[i])>0) {x11[i]<-(y1[i]-x141[i])} else {x11[i]<-y1[i]} 
 
if ((y2[i]-x141[i])>0) {x21[i]<-(y2[i]-x141[i])} else {x21[i]<-y2[i]} 
 
if ((y3[i]-x141[i])>0) {x31[i]<-(y3[i]-x141[i])} else {x31[i]<-y3[i]} 
 
if ((y1[i]-x142[i])>0) {x12[i]<-(y1[i]-x142[i])} else {x12[i]<-y1[i]} 
 
if ((y2[i]-x142[i])>0) {x22[i]<-(y2[i]-x142[i])} else {x22[i]<-y2[i]} 
 
if ((y3[i]-x142[i])>0) {x32[i]<-(y3[i]-x142[i])} else {x32[i]<-y3[i]} 
 
if ((y1[i]-x143[i])>0) {x13[i]<-(y1[i]-x143[i])} else {x13[i]<-y1[i]} 
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if ((y2[i]-x143[i])>0) {x23[i]<-(y2[i]-x143[i])} else {x23[i]<-y2[i]} 
 
if ((y3[i]-x143[i])>0) {x33[i]<-(y3[i]-x143[i])} else {x33[i]<-y3[i]}} 
 
 
#Initilize forward and backward variables and place to store loglikelihood 
logl=matrix(0,nrow=1,ncol=Nit) 
dens=matrix(0,nrow=T,ncol=N) 
alpha=matrix(0,nrow=T,ncol=N) 
beta=matrix(0,nrow=T,ncol=N) 
scale=matrix(c(1,rep(0,T-1)),nrow=1,ncol=T) 
ones=matrix(1,nrow=T,ncol=1) 
 
 
####E-step, compute density values 
 dens=cbind(threep1,threep2,threep3) 
 
####E-step, forward recursion and likelihood computation 
##Use a uniform a priori probability for the initial state 
#[Refer to equation (5.25) and (5.26)] 
#The forward and backward variables 

# 1 2( ) [ , ,..., , ]j n ii P S jα = =y y y  and 

# 1( ) [ ,..., | ]j i n ii P S jβ += =y y                (5.25) 

#which yield the quantities of interest by 
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 alpha[1,]=dens[1,]/N 
 for (t in 2:T){ 
  alpha[t,]=(alpha[t-1,]%*%TRANS)*dens[t,] 
 #####Systematic scaling 
  scale[,t]=sum(alpha[t,]) 
  alpha[t,]=alpha[t,]/scale[,t] 
 } 
 
###compute likelihood 
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loglike[nit]<-sum(log(scale)) 
 
 
####E-step, backward recursion 
###Scale the backward variable with the forward scale factors 
###(this ensures that the reestmation of the transition matrix below is correct) 
#[Refer to equation (5.25) and (5.26)] 
 
 
beta[T,]=matrix(1,nrow=1,ncol=N) 
for (t in (T-1):1){ 
 beta[t,]=(beta[t+1,]*dens[t+1,])%*%t(TRANS) 
 beta[t,]=beta[t,]/scale[,t] 
} 
 
####M-step, reestmation of the transition matrix 
##compute unnormalized transition probabilities (this is indeed still the end of the E-
#step, which explains that TRANS appears on the right-hand side below) 
#[Refer to equation (5.24)] 
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 .                                                                                                  (5.24) 

 
 
TRANS=TRANS*(t(alpha[1:(T-1),])%*%(dens[2:T,]*beta[2:T,])) 
 
###Normalization of the transition matrix 
 
oness=matrix(1,nrow=1,ncol=N) 
sumtrans=matrix(0,nrow=N,ncol=1,byrow=T) 
for (n in 1:N){ 
sumtrans[n,]=sum(TRANS[n,]) 
} 
sumtrans=sumtrans%*%oness 
TRANS=TRANS/sumtrans 
 
####M-step, reestimation of the rates 
###Compute a posteriori probabilities and store them in matrix beta to save space 
#[Refer to equation (5.31) and (5.32)] 
#Then M-step computes the posteriori probabilities using the following equation. 
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#and then re-estimate the rates as follows: 
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beta=alpha*beta 
sumbeta=matrix(0,nrow=T,ncol=1,byrow=T) 
for (r in 1:T){ 
sumbeta[r,]=sum(beta[r,]) 
} 
sumbeta=sumbeta%*%oness 
beta=beta/sumbeta 
 
##Reestmate rates 
#component 1 
newdata1=cbind(x11,x21,x31,x141) 
rate1=(t(beta[,1])%*%newdata1)/sum(beta[,1]) 
#component 2 
newdata2=cbind(x12,x22,x32,x142) 
rate2=(t(beta[,2])%*%newdata2)/sum(beta[,2]) 
#component 3 
newdata3=cbind(x13,x23,x33,x143) 
rate3=(t(beta[,3])%*%newdata3)/sum(beta[,3]) 
 
 
#Assign estimated parameters new variables 
theta11 <-rate1[,1] # component 1 estimates 
theta21 <-rate1[,2]  
theta31 <-rate1[,3] 
theta141<-rate1[,4] 
 
theta12 <-rate2[,1] # component 2 estimates 
theta22 <-rate2[,2]  
theta32 <-rate2[,3] 
theta142<-rate2[,4] 
 
theta13 <-rate3[,1] # component 3 estimates 
theta23 <-rate3[,2]  
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theta33 <-rate3[,3] 
theta143<-rate3[,4] 
} 
####RESULTS#### 
loglike 
rate1 
rate2 
rate3 
TRANS 
 
#####end of program###### 
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B. Splus/R code for Multivaraite Poisson Hidden Markov Model- Restricted and 
Independent Covariance Structure (This is an example for three components) 
 
####Markov-dependent+ 3 components+ restricted### 
##NOTE: Before you start implementing the code please read the Chapter 5## 
 
 
data<-read.table("j://data1.txt",header=T) # Read the data from a text file 
 attach(data) 
 y1<-data[,1] 
 y2<-data[,2] 
 y3<-data[,3] 
  
 
##Function to calculate bivariate Poisson probabilities  
#[Refer to Section 5.2.1 and equation (5.4)] 
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where },...,,min{ 21 nyyys = . 
 
 
 
bivpois<-function(g1, g2, thetapar = c(1, 1, 1)) 
# calculates the probability function of a bivariate Poisson distribution 
#with parameters thetapar = (theta1, theta2, theta3). The arguments g1 and g2 are 
#the values of the two variables 
{ 
# g1,g2 the two variables 
        n <- length(g1) 
        maxs <- c(max(g1), max(g2))        #Set initial values for parameters 
            mins<-min(g1,g2) 
        theta1 <- thetapar[1] 
        theta2 <- thetapar[2] 
        theta3 <- thetapar[3] 
        thetasum<-sum(thetapar) 
        prob <- matrix(NA, nrow = maxs[1] + 1, ncol = maxs[2] + 1, byrow =T) 
        prob[1,1]<-exp( - thetasum) 
        if((g1 == 0) | (g2 == 0)) { 
                prob <- matrix(NA, nrow = maxs[1] + 1, ncol = maxs[2] + 1, byrow = T) 
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                prob[g1+1, g2 + 1] <- exp( - theta3) * dpois(g1, theta1) * dpois(g2,theta2) 
        } 
        else 
        { 
        k <- 1 
        m <- 1 
                for(i in 2:(maxs[1] + 1)) { 
                        prob[i, 1] <- (prob[i - 1, 1] * theta1)/(i - 1) 
                } 
                for(j in 2:(maxs[2] + 1)) { 
                        prob[1, j] <- (prob[1, j - 1] * theta2)/(j - 1) 
                } 
                for(j in 2:(maxs[2] + 1)) { 
                        for(i in 2:(maxs[1] + 1)) { 
                                prob[i, j] <- (theta1 * prob[i - 1, j] + 
                                  theta3 * prob[i - 1, j - 1])/(i - 1) 
                        } 
                } 
        } 
        result <- prob 
        result 
} 
 
##end of bivariate probability calculation 
 
##Function to calculate trivariate Poisson probabilities  
#[Refer to Section 5.2.2 ] 
 
The joint probability function is given by 
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threepois<-function(g1, g2, g3, thetapar = c(1, 1, 1, 1, 1, 1)) 
{ 
# calculates the probability function of a 3-variate Poisson distribution 
#with parameters thetapar = (theta1, theta2, theta3,theta12,theta13,theta23). The 
#arguments g1,  g2, g3 are the values of the two variables 
        maxs <- c(max(g1), max(g2),max(g3))        #Set initial values for parameters 
        mins<-min(g1,g2,g3) 
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        theta1 <- thetapar[1] 
        theta2 <- thetapar[2] 
        theta3 <- thetapar[3] 
        theta12<-thetapar[4] 
        theta13<-thetapar[5] 
        theta23<-thetapar[6] 
        thetasum<-sum(thetapar) 
            prob <- array(0, dim=c(maxs[1]+1,maxs[2]+1,maxs[3]+1)) 
            tempor<-matrix(0,max(g1,g2,g3)+1,max(g1,g2,g3)+1) 
            prob[1,1,1]<-exp( - thetasum) 
tempor<-bivpois( maxs[2]+1, maxs[3]+1, c(theta2, theta3, theta23)) 
                 for (k in 1:(maxs[3] + 1)) { 
                              for (j in 1:(maxs[2] + 1)) { 
prob[1, j, k]<-exp(-theta12-theta13)*dpois(0, theta1)*tempor[j,k]} 
} 
tempor<-bivpois( maxs[1]+1, maxs[2]+1, c(theta1, theta2, theta12)) 
#[Refer to Recurrence relationship equation (5.7)] 
                for (i in 1:(maxs[1] + 1)) { 
                              for (j in 1:(maxs[2] + 1)) { 
prob[i,j,1]<-exp(-theta23-theta13)*dpois(0,theta3)*tempor[i,j]}} 
tempor<-bivpois(maxs[1]+1, maxs[3]+1, c(theta1, theta3, theta13)) 
                for (i in 1:(maxs[1] + 1)) { 
                              for (k in 1:(maxs[3] + 1)) { 
prob[i,1,k]<-exp(-theta12-theta23)*dpois(0,theta2)*tempor[i, k]}} 
                 for (k in 1:(maxs[3] + 1)) { 
                              for (j in 1:(maxs[2] + 1)) { 
                                  for (i in 1:(maxs[1] + 1)) { 
                                if ((i-1)>0)  prob[i,j,k]<-prob[i-1,j,k]*theta1 
                                if (((i-1)>0)&((j-1)>0))   prob[i,j,k]<-prob[i,j,k]+prob[i-1, j-
1,k]*theta12 
                                if (((i-1)>0)&((k-1)>0))   prob[i,j,k]<-prob[i,j,k]+prob[i-1, j,k-
1]*theta13 
                                       if ((i-1)>0)  prob[i,j,k]<-prob[i,j,k]/(i-1)                } 
                } 
        } 
        result <- prob 
        result 
} 
##end of trivariate probability function 
 
# initialize parameter values for component 1, 2, and 3. For the independent covariance 
#model initial parameters for the covariance terms assign to zero. 
theta11 <-1  
theta21 <-2  
theta31 <-1 
theta121<-0 
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theta131<-0 
theta231<-0 
 
theta12 <-1.5 
theta22 <-3  
theta32 <-2 
theta122<-0.1 
theta132<-0 
theta232<-0 
 
theta13 <-0.5 
theta23 <-2.5  
theta33 <-1.2 
theta123<-0 
theta133<-0 
theta233<-0 
 
#constants# 
N=3       # Number of states 
T=150   #Number of observations 
Nit=200 # number of  Iterations 
 
#Initial Transition matrix## 
TRANS=matrix(c(0.9,0.05,0.05,0.1,0.8,0.1,0.75,0.05,0.2),nrow=N,ncol=N,byrow=T) 
 
loglike<-rep(0,Nit) 
 
#Main loop of the EM algorithm 
for (nit in 1:Nit){ 
 
#Initialize matrices to store the probabilities in different stages 
result1<-matrix(NA,nrow=T,ncol=1) 
d131<-matrix(NA,nrow=T,ncol=1) 
d131old<-matrix(NA,nrow=T,ncol=1) 
x131<-matrix(NA,nrow=T,ncol=1) 
d132<-matrix(NA,nrow=T,ncol=1) 
d132old<-matrix(NA,nrow=T,ncol=1) 
x132<-matrix(NA,nrow=T,ncol=1) 
d133<-matrix(NA,nrow=T,ncol=1) 
d133old<-matrix(NA,nrow=T,ncol=1) 
x133<-matrix(NA,nrow=T,ncol=1) 
 
result2<-matrix(NA,nrow=T,ncol=1) 
d121<-matrix(NA,nrow=T,ncol=1) 
d121old<-matrix(NA,nrow=T,ncol=1) 
x121<-matrix(NA,nrow=T,ncol=1) 
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d122<-matrix(NA,nrow=T,ncol=1) 
d122old<-matrix(NA,nrow=T,ncol=1) 
x122<-matrix(NA,nrow=T,ncol=1) 
d123<-matrix(NA,nrow=T,ncol=1) 
d123old<-matrix(NA,nrow=T,ncol=1) 
x123<-matrix(NA,nrow=T,ncol=1) 
 
result3<-matrix(NA,nrow=T,ncol=1) 
d231<-matrix(NA,nrow=T,ncol=1) 
d231old<-matrix(NA,nrow=T,ncol=1) 
x231<-matrix(NA,nrow=T,ncol=1) 
d232<-matrix(NA,nrow=T,ncol=1) 
d232old<-matrix(NA,nrow=T,ncol=1) 
x232<-matrix(NA,nrow=T,ncol=1) 
d233<-matrix(NA,nrow=T,ncol=1) 
d233old<-matrix(NA,nrow=T,ncol=1) 
x233<-matrix(NA,nrow=T,ncol=1) 
 
#Initialize matrices to store probabilities from three states 
threep11<-matrix(NA,nrow=T,ncol=1) 
threep22<-matrix(NA,nrow=T,ncol=1) 
threep33<-matrix(NA,nrow=T,ncol=1) 
 
# Initialize matrices to store values of X’s 
x11<-matrix(NA,nrow=T,ncol=1) 
x21<-matrix(NA,nrow=T,ncol=1) 
x31<-matrix(NA,nrow=T,ncol=1) 
x12<-matrix(NA,nrow=T,ncol=1) 
x22<-matrix(NA,nrow=T,ncol=1) 
x32<-matrix(NA,nrow=T,ncol=1) 
x13<-matrix(NA,nrow=T,ncol=1) 
x23<-matrix(NA,nrow=T,ncol=1) 
x33<-matrix(NA,nrow=T,ncol=1) 
 
maxs<-c(max(y1),max(y2),max(y3)) 
threep1<-array(0,dim=c(maxs[1]+1,maxs[2]+1,maxs[3]+1)) 
threep2<-array(0,dim=c(maxs[1]+1,maxs[2]+1,maxs[3]+1)) 
threep3<-array(0,dim=c(maxs[1]+1,maxs[2]+1,maxs[3]+1)) 
 
# start EM algorithm 
for (i in 1:T){ 
threep1<-(threepois(y1[i],y2[i],y3[i], 
thetapar=c(theta11,theta21,theta31,theta121,theta131,theta231))) 
threep11[i]<-threep1[y1[i]+1,y2[i]+1,y3[i]+1] 
threep2<-(threepois(y1[i],y2[i],y3[i], 
thetapar=c(theta12,theta22,theta32,theta122,theta132,theta232))) 
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threep22[i]<-threep2[y1[i]+1,y2[i]+1,y3[i]+1] 
threep3<-(threepois(y1[i],y2[i],y3[i], 
thetapar=c(theta13,theta23,theta33,theta123,theta133,theta233))) 
threep33[i]<-threep3[y1[i]+1,y2[i]+1,y3[i]+1] 
 
d131[i]<-0 
d132[i]<-0 
d133[i]<-0 
result1[i]<-min(y1[i],y3[i]) 
for (r in 0:result1[i]){ 
d131old[i]<-r*dpois(y1[i]-r,theta11)*dpois(y3[i]-r,theta31)*dpois(r,theta131) 
d131[i]<-d131old[i]+d131[i] 
d132old[i]<-r*dpois(y1[i]-r,theta12)*dpois(y3[i]-r,theta32)*dpois(r,theta132) 
d132[i]<-d132old[i]+d132[i] 
d133old[i]<-r*dpois(y1[i]-r,theta13)*dpois(y3[i]-r,theta33)*dpois(r,theta133) 
d133[i]<-d133old[i]+d133[i]} 
 
 
d121[i]<-0 
d122[i]<-0 
d123[i]<-0 
result2[i]<-min(y1[i],y2[i]) 
for (r in 0:result2[i]){ 
d121old[i]<-r*dpois(y1[i]-r,theta11)*dpois(y2[i]-r,theta21)*dpois(r,theta121) 
d121[i]<-d121old[i]+d121[i] 
d122old[i]<-r*dpois(y1[i]-r,theta12)*dpois(y2[i]-r,theta22)*dpois(r,theta122) 
d122[i]<-d122old[i]+d122[i] 
d123old[i]<-r*dpois(y1[i]-r,theta13)*dpois(y2[i]-r,theta23)*dpois(r,theta123) 
d123[i]<-d123old[i]+d123[i]} 
 
 
d231[i]<-0 
d232[i]<-0 
d233[i]<-0 
result3[i]<-min(y2[i],y3[i]) 
for (r in 0:result3[i]){ 
d231old[i]<-r*dpois(y2[i]-r,theta21)*dpois(y3[i]-r,theta31)*dpois(r,theta231) 
d231[i]<-d231old[i]+d231[i] 
d232old[i]<-r*dpois(y2[i]-r,theta22)*dpois(y3[i]-r,theta32)*dpois(r,theta232) 
d232[i]<-d232old[i]+d232[i] 
d233old[i]<-r*dpois(y2[i]-r,theta23)*dpois(y3[i]-r,theta33)*dpois(r,theta233) 
d233[i]<-d233old[i]+d233[i]} 
 
# Check the condition for Poisson random variables 
#[Refer to equation (5.2)] 
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1 12 13 123

2 12 23 123

3 13 23 123

0
0
0.

y x x x
y x x x
y x x x

− − − ≥
− − − ≥
− − − ≥

     (5.2) 

 
if (threep11[i]==0) {x131[i]<-0} else {x131[i]<-d131[i]/threep11[i]} 
 
if (threep11[i]==0) {x121[i]<-0} else {x121[i]<-d121[i]/threep11[i]} 
 
if (threep11[i]==0) {x231[i]<-0} else {x231[i]<-d231[i]/threep11[i]} 
 
 
if (threep22[i]==0) {x132[i]<-0} else {x132[i]<-d132[i]/threep22[i]} 
 
if (threep22[i]==0) {x122[i]<-0} else {x122[i]<-d122[i]/threep22[i]} 
 
if (threep22[i]==0) {x232[i]<-0} else {x232[i]<-d232[i]/threep22[i]} 
 
 
if (threep33[i]==0) {x133[i]<-0} else {x133[i]<-d133[i]/threep33[i]} 
 
if (threep33[i]==0) {x123[i]<-0} else {x123[i]<-d123[i]/threep33[i]} 
 
if (threep33[i]==0) {x233[i]<-0} else {x233[i]<-d233[i]/threep33[i]} 
 
 
if ((y1[i]-x131[i]-x121[i])>0) {x11[i]<-(y1[i]-x131[i]-x121[i])} else {x11[i]<-y1[i]} 
 
if ((y2[i]-x121[i]-x231[i])>0) {x21[i]<-(y2[i]-x121[i]-x231[i])} else {x21[i]<-y1[i]} 
 
if ((y3[i]-x131[i]-x231[i])>0) {x31[i]<-(y3[i]-x131[i]-x231[i])} else {x31[i]<-y1[i]} 
 
if ((y1[i]-x132[i]-x122[i])>0) {x12[i]<-(y1[i]-x132[i]-x122[i])} else {x12[i]<-y2[i]} 
 
if ((y2[i]-x122[i]-x232[i])>0) {x22[i]<-(y2[i]-x122[i]-x232[i])} else {x22[i]<-y2[i]} 
 
if ((y3[i]-x132[i]-x232[i])>0) {x32[i]<-(y3[i]-x132[i]-x232[i])} else {x32[i]<-y2[i]} 
 
if ((y1[i]-x133[i]-x123[i])>0) {x13[i]<-(y1[i]-x133[i]-x123[i])} else {x13[i]<-y3[i]} 
 
if ((y2[i]-x123[i]-x233[i])>0) {x23[i]<-(y2[i]-x123[i]-x233[i])} else {x23[i]<-y3[i]} 
 
if ((y3[i]-x133[i]-x233[i])>0) {x33[i]<-(y3[i]-x133[i]-x233[i])} else {x33[i]<-y3[i]}} 
 
#Initialize forward and backward variables and place to store loglikelihood# 
logl=matrix(0,nrow=1,ncol=Nit) 
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dens=matrix(0,nrow=T,ncol=N) 
alpha=matrix(0,nrow=T,ncol=N) 
beta=matrix(0,nrow=T,ncol=N) 
scale=matrix(c(1,rep(0,T-1)),nrow=1,ncol=T) 
ones=matrix(1,nrow=T,ncol=1) 
 
####E-step, compute density values 
 dens=cbind(threep11,threep22,threep33) 
 
####E-step, forward recursion and likelihood computation 
##Use a uniform a priori probability for the initial state 
#[Refer to equation (5.25) and (5.26)] 
#The forward and backward variables 

# 1 2( ) [ , ,..., , ]j n ii P S jα = =y y y  and 

# 1( ) [ ,..., | ]j i n ii P S jβ += =y y                (5.25) 

#which yield the quantities of interest by 
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 alpha[1,]=dens[1,]/N 
 for (t in 2:T){ 
  alpha[t,]=(alpha[t-1,]%*%TRANS)*dens[t,] 
 #####Systematic scaling 
  scale[,t]=sum(alpha[t,]) 
  alpha[t,]=alpha[t,]/scale[,t] 
 } 
 
###compute likelihood 
loglike[nit]<-sum(log(scale)) 
 
####E-step, backward recursion 
###Scale the backward variable with the forward scale factors  
###(this ensures that the reestmation of the transition matrix below is correct) 
#[Refer to equation (5.25) and (5.26)] 
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beta[T,]=matrix(1,nrow=1,ncol=N) 
for (t in (T-1):1){ 
 beta[t,]=(beta[t+1,]*dens[t+1,])%*%t(TRANS) 
 beta[t,]=beta[t,]/scale[,t] 
} 
 
 
####M-step, reestmation of the transition matrix 
##compute unnormalized transition probabilities (this is indeed still the end of the E-
#step, which explains that TRANS appears on the right-hand side below) 
#[Refer to equation (5.24)] 
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TRANS=TRANS*(t(alpha[1:(T-1),])%*%(dens[2:T,]*beta[2:T,])) 
 
###Normalization of the transition matrix 
 
oness=matrix(1,nrow=1,ncol=N) 
sumtrans=matrix(0,nrow=N,ncol=1,byrow=T) 
for (n in 1:N){ 
sumtrans[n,]=sum(TRANS[n,]) 
} 
sumtrans=sumtrans%*%oness 
TRANS=TRANS/sumtrans 
 
####M-step, reestimation of the rates 
###Compute a posteriori probabilities and store them in matrix beta to save space 
#[Refer to equation (5.25) and (5.26)] 
#The forward and backward variables 

# 1 2( ) [ , ,..., , ]j n ii P S jα = =y y y  and 

# 1( ) [ ,..., | ]j i n ii P S jβ += =y y                (5.25) 

#which yield the quantities of interest by 

#
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beta=alpha*beta 
sumbeta=matrix(0,nrow=T,ncol=1,byrow=T) 
for (r in 1:T){ 
sumbeta[r,]=sum(beta[r,]) 
} 
sumbeta=sumbeta%*%oness 
beta=beta/sumbeta 
 
##Reestmate rates 
#component 1 
newdata1=cbind(x11,x21,x31,x131,x121,x231) 
rate1=(t(beta[,1])%*%newdata1)/sum(beta[,1]) 
#component 2 
newdata2=cbind(x12,x22,x32,x132,x122,x232) 
rate2=(t(beta[,2])%*%newdata2)/sum(beta[,2]) 
#component 3 
newdata3=cbind(x13,x23,x33,x133,x123,x233) 
rate3=(t(beta[,3])%*%newdata3)/sum(beta[,3]) 
 
 
#Assign estimated parameters to new variables 
theta11 <-rate1[,1] #component 1 estimates 
theta21 <-rate1[,2]  
theta31 <-rate1[,3] 
theta121<-rate1[,4] 
theta131<-rate1[,5] 
theta231<-rate1[,6] 
 
theta12 <-rate2[,1] #component 2 estimates 
theta22 <-rate2[,2]  
theta32 <-rate2[,3] 
theta122<-rate2[,4] 
theta132<-rate2[,5] 
theta232<-rate2[,6] 
 
theta13 <-rate3[,1] #component 3 estimates 
theta23 <-rate3[,2]  
theta33 <-rate3[,3] 
theta123<-rate3[,4] 
theta133<-rate3[,5] 
theta233<-rate3[,6] 
} 
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####RESULTS#### 
loglike 
rate1 
rate2 
rate3 
TRANS 
######end of program######## 
 
 
For any further questions:  
Email:cpk646@mail.usask.ca 

 

 


