The Partition into Hypercontexts Problem for
Hyperreconfigurable Architectures

Sebastian Lange and Martin Middendorf

Parallel Computing and Complex Systems Group
Department of Computer Science, University of Leipzig
Augustusplatz 10/11, D-04109 Leipzig, Germany

{langes,middendoff@informatik.uni-leipzig.de

Abstract. Hyperreconfigurable architectures adapt their reconfiguration abilities
during run time in order to achieve fast dynamic reconfiguration. Mddeksuch
architectures have been proposed that change their ability for reaoatfign
during hyperreconfiguration steps and in ordinary reconfiguratiqus stecon-
figure the actual contexts for a computation within the limits that have been set
by the last hyperreconfiguration step. In this paper we study algorithspiects

of how to optimally decide what hyperreconfiguration steps should be don

ing a computation in order to minimize the total time necessary for hyperreco
figuration and ordinary reconfiguration. It is shown that the genedlpm is
NP-hard but fast polynomial time algorithms are given to solve this proloe
different types of hyperreconfigurable architectures. These inahasvly intro-
duced architectures that use a cache to store hypercontexts. Weatedixaemple
hyperreconfigurable architecture and illustrate the introduced conepteee
application problems.

1 Introduction

The increasingly higher integration and flexibility of dyn@ally reconfigurable hard-

ware lead to a large amount of information which has to besfeared onto the hard-
ware for reconfiguration to define the new state of the sysidus.large amount of data
transfer makes run time reconfigurations time critical afiens, especially, for com-
putations which exploit the full capacity of dynamicallycomfigurable architectures by
frequent reconfigurations. Different approaches have pegposed in the literature to
cope with this problem, e.g., compression methods for tleast of reconfiguration bits

([4,6]), multi-context architectures [1,12]), self-redmurability ([8,15,17]) and hyper-

reconfiguration ([9]) which means that the reconfiguratioteptial of an architecture

itself is reconfigurable.

In this paper we study algorithmic aspects of single taskehygzonfigurable ar-
chitectures as they have been proposed in [9] (algorithspeets of multi-task hyper-
reconfigurable architectures are studied in [10]). Suchitactures use two types of
reconfiguration steps: i) reconfiguration steps where tbenféguration potential of the
architecture is defined ii) standard reconfiguration stefpislware used to reconfigure
the actual contexts which are used by the algorithm. Thetfips of reconfiguration

steps are called hyperreconfiguration steps. Moreoverxteme hyperreconfigurable
architectures by introducing a cache for storing hypeexist

A central problem that emerges on hyperreconfigurable tethres is to deter-
mine when hyperreconfiguration steps should be taken andtheweconfiguration
potential should be defined in these steps in order to migirhie total time necessary
for (hyper)reconfiguration of a computation. We call thistdem Partition into Hyper-
contexts (PHC) problem and show that it is NP-hard. We alsoritee polynomial time
algorithms for several variants of PHC on the so called Switmdel of hyperrecon-
figurable architectures ([9]). Unfortunately, it is alsa®im that the introduction of a
cache for hypercontexts makes the PHC problem NP-hard evehd Switch model.
To illustrate the ideas in this paper we present an examplinéoPHC problem on the
Switch model. An optimal solution for the PHC problem is pd®d when the example
architecture has no cache and a heuristic solution whenledac hypercontexts is
used.

The paper is organized as follows. In the next Section 2 werishyperrecon-
figurable architectures and introduce the Partition int@étgontexts (PHC) problem.
In Section 4 we discuss polynomial time solvable cases oPtHE problem. A vari-
ant of the PHC problem with changeover costs is studied iti&eb. In section 6 we
introduce hyperreconfigurable architectures with a cachéypercontexts and study
PHC for these architectures. Experimental results for atehitecture are presented
in Section 7. The paper ends with a conclusion in Section 8.

2 The Partition into Hypercontexts Problem

Hyperreconfigurable architectures allow to alter the réigonation potential during run

time and use two types of reconfiguration steps ([9]). Th&arg reconfiguration steps
are used to actually define a new configuration of the systdra.attual state of the
system that can be changed by reconfiguration is called tiexioof a computation.

Hyperreconfiguration steps are used for defining the act@nfiguration potential

of the architecture that is activated for reconfiguratiothi@ ordinary reconfiguration

steps. Thus, a hyperreconfiguration step defines the sentdxs that can potentially
be reconfigured in (ordinary) reconfiguration steps. Sucbtakpossible contexts is
called a hypercontext. A reconfiguration into a new conteighinbe dependent on ex-
ternal and internal parameters of the computation and carhéeacterized by the set
of all possible contexts that it defines depending on the. d#gace, a reconfiguration
can in general only be executed during run time when the madhiin a hypercontext

that contains this set of possible contexts. A set of possibhtexts is called a con-
text requirement and a hypercontexts that contaigatisfieghe corresponding context
requirement. It is assumed that a reconfiguration step megjteconfiguration informa-

tion for all activated resources (even when the informaisahat an activated resource
is not used in the corresponding context). Formal modelyperreconfigurable ar-

chitectures where the cost (e.g., the time or the amounttefriigicessary to be loaded
onto the architecture) of a reconfiguration step dependseadtual hypercontext have
been given in [9] and are described in the following.

Let C be the set of possible context requirements for a reconfifgiraachine and
C=c1...Cm G € C be the sequence of context requirements that charactenizak
gorithm/computation. Aypercontexts a state of the machine which is characterized
by the subset of® context requirements that are satisfied when the machimetigs
state. At any time exactly one hypercontext is realized enntlachine. LetH be the
set of possible hypercontexts. For a hyperconttext# let h(C) C C be the subset of
context requirements that are satisfiedbirhe seth(() is called thecontext sebf h.

For a sequence . .. ¢, of context requirements and a hyperconteldtc; ... cx C h(C)
denote the fact that for each context requirenenit < [1: k] ¢ € h(C) holds. In or-
der to change the machine’s current hypercontelxy@erreconfiguration stejs nec-
essary. For each hypercontéxte # two cost measures are definedinijt (h) is the
cost of performing a hyperreconfiguration that brings themrae into hypercontext

i) cost(h) denotes the cost of an ordinary reconfiguration step whemtwhine is in
hypercontexh. Then a computation is characterized by a partitio@ @fto substrings
S,...,S (i.e.C=5...S) and hypercontexts;, ..., h;, r > 1 such tha§ c hj(C) and
yi_1(init(hi) +costh;) - |S|) are the costs whet&| is the length of5, i.e., the number
of context requirements i§. When the algorithm/computation is executed the ma-
chine performs the following reconfiguration operationss; ...h'S where§ stands
for a sequence d§| reconfigurations which use only those parts of the machirielwh
are available within the hypercontelxt It is assumed that a hyperreconfiguration is
always performed before the first reconfiguration step.

An important problem that emerges for a hyperreconfigurataehine and a given
algorithm (i.e. a sequence of context requirements) is fioel@rhen hyperreconfigura-
tions are done and how corresponding hypercontexts areedefiinch that the context
requirements of the algorithm are satisfied and the totabdosthe hyperreconfigura-
tion steps and the ordinary reconfiguration steps are maaichiFormally we define,

Partition into HypercontextéPHC) problem : Given a hyperreconfigurable machine
(as described above) and a sequédbeec; . .. ¢y, of context requirements. Find a parti-
tion of Cinto substrings,,...,S (i.e.C=S5...S) and hypercontexts;,...,h,r > 1
swith§ C h;j(C) and minimal total (hyper)reconfiguration.

Two variants of the model for hyperreconfigurable architeet have been intro-
duced in [9]. TheDAG models for coarse grained reconfigurable machines where dif-
ferent reconfigurable submachines (hypercontexts) carefieed that can be ordered
with respect to their computational power (this model is camisidered in this paper
due to space limitations). The second variant ca@dtch models for fine grained
machines where a set of small (similar) reconfigurable it called switches) ex-
ists. The reconfigurable machine that is available duringpefcontext is defined by
the subset of available units. For reconfiguration the sthéach available switch has
to be defined. Thus the cost for reconfiguration is the numbewailable units plus
some overhead cost. Formally, lét= {x1,...,X,} be a set of switches and define
C =H = 2%, i.e., the set of possible context requiremegtsand the set of possi-
ble hypercontext${ equal the set of all subsets ¥f For contextx € X the relation
x € h(C) holds, wherx C h. Let cost(h) = |h|, where|h] is the size oh, i.e., the num-
ber of switches available in Letinit (h) = nfor h € #, which reflects the fact that for
each switch it has to be defined during hyperreconfiguratibetker it is available in

the new hypercontext. A computation is characterized byrtitioa of C into substrings
S,..,S,r>1(.e.C=5...S) and hypercontexts,, ..., h; such tha§ c hj(C) and
the total (hyper)reconfiguration costs are+ S_, |hi| - |S|.

PHC-Switch problem: Given a hyperreconfigurable machindéSwitch model
with the set of switcheX = {x1,...,X,} and a sequence of context requirements
C1...Cm. Find a partition ofC into substringss;,....S,r>1(i.e.C=5...5) and
hypercontexts, ..., h; such that§ C h;(C) and the total (hyper)reconfiguration costs
are minimal. Note that for the PHC-Switch problem there teishypercontexts but
this number is not part of the size of the problem instancekwlsn+ m.

3 NP-Hardness

In this section we show that the general PHC problem is NE-kadnich means it is
unlikely that the problem can be solved in polynomial time.

Theorem 1. The PHC problem is NP-complete.

We only give the proof idea. For a proof one can encode anrinstaf an NP-hard
problem, say 3-SAT, in a sequence of contetsThen a cost function and a set of
hypercontexts can be defined such that there exists a che#@panto hypercontexts
of C if and only if the partition consists of a single hypercontard the contexts i€
encode an instance of 3-SAT that is solvable such that théstseno partition oC into
substrings which can be covered by hypercontexts in a chegp w

4 Polynomial Time Algorithm for PHC-Switch

In this section we describe a dynamic programming solutiorttfe PHC-Switch prob-
lem. The algorithm computes a tae= (M j)ke[1m] je[k:m WhereMy j are the min-
imal costs for the prefix of length of the sequence of context requiremeats. . ¢y,
when usind hypercontexts. The optimal solution for PHC-Switch camthe derived
from this matrix. This algorithm is designed such that eamh of the matrix can be
determined in tim@(n- m) so that the total run time i®(n- n?).

In the following leth;; be a cheapest hypercontext that satisfies the contextseequi
mentsg;, ..., ¢j. First, we need some facts and definitions. It is not hard davgbr each
k € [1:m:i) the value ofMy , is monotone decreasing m ii) for j € [k: m| the value
of cost(h; j) is monotone decreasinginLet j € [k: m|. It follows from the stated facts
that there exists a partitiofy, ..., Ty of the sequence of context requiremeais. . c;
such that...cj = T1... Ty and for each string of contex, s < [1 : h] holds: For all
contextsc € Ts the hypercontexts, j and therefor the costost(h ;) are the same. Re-
call, thath; ; for the PHC-Switch problem is defined as the hypercontextdbasists
of all switches that are element of at least one of the comagirementsy, ..., cj,
e h ;= U{zt ¢i. We call the partitiorTy, ..., T, theequal cost partitiorof [k : j]. The
corresponding intervals of indices of the contextsdhaal cost intervals

Let [s: t] be an equal cost interval. For inde¢ [s: t] the valuesd € [1: n| are
determined for whicleM x_1+6- (t — (x—1)) = min{Myy_1+90-(t—(y— 1)) |y [s:

t]} holds. Clearly, for each indexe [s: t] the corresponding values form a subinterval
of [1:n]. This interval is called theninimum cost interval of index(xwithin the equal
cost intervals: t]) and is denoted bl. It is not hard to show thdt, ..., |; is a partition
of [1:n] where all elements i are smaller than all elementslins fori € [s:t—1].

In the following we describe the computation of a single imatement in the main
step of the algorithm. We assume that all elements in row Mof and all elements
My =k-w+ 5K ;|ci|, ke [1:m] have been computed during initialization. Itis enough
to consider the computation of an elembft;, 1 for k> 1 andj € [1 : m— 1] assuming
that elements in rok — 1 and elemeniy ; have already been computed.

In order to search efficiently for possible good places tooiiice thekth hyper-
reconfiguration we introduce a pointer structure over pafrthe sequence of context
requirements; . .. Cm. First we describe the pointer structure over the sequencec;
for the computation oy ; and then show how it can be extended to a pointer structure
over the sequenag. ..cj, 1 for the computation oMy ;1.

The first context requirements in each of the sequences daéxtorequirements
Th,..., T1 are linked by so calleéqual cost pointersi.e. there is a pointer to the first
context requirement ifi,, from there to the first context requirementTif_1; and so
forth. Moreover, within each equal cost interval the indisewith a minimal cost
interval that is empty or contains only values that are senahan the actual costs
cost(hy j+1) are linked in order of increasing value by so calleshimum cost pointers
In addition, there is a pointer from the first context requoieait of the interval to the
last useful index in the interval. This pointer is called &m&l pointerof the equal cost
interval. All indices with an equal cost interval that amkiéd by minimal cost pointers
are calleduseful All other indices are calledselessand will be marked as useless by
the algorithm. The following two facts which are not hard how are used for run time
analysis and to show the correctness of the algorithm (ethdtie to space limitations).

Fact 1: It is easy to obtain from the equal cost partifien .., Ty of [k: j] and its
corresponding pointers the equal cost partitiin. .Ug of c...cj;1 of [k: j+1] and
the corresponding pointers in tin@n).

To see that this is true observe that each stringlin..,Ug can be obtained by
merging (or copying) neighbored strings frdm.. ., Ty andUg contains in addition the
context requirement; 1.

Fact 2: Consider an elemefiof the equal cost partitiofy, ..., T, of [k: j]. Letcy
(cy) be the context iffs (respectively from the element of the equal cost partitibfko
j +1] that contaings) for whichMy x_1 +cost(hy ;) (respectivelyMy_1+cost(hyj 1))
is minimal. Then it follows thak <'y.

To computeMy j+1 the algorithm performs the following steps:

i) Extend the equal cost partition ¥: j] by appending the (preliminary) equal cost
intervalcj, 1 and let[1 : n] be the (preliminary) minimal cost interval fgr+ 1.

ii) Compute the equal cost partition §: j + 1] from the extended equal cost par-
tition of [k : j] by merging neighbored intervals when they have the samevaitist
respect toj + 1.

iii) For each index within a merged interval the new equaltéoterval is deter-
mined together with its minimal cost pointers and its enchfmi During this process
all indices that have become useless are marked.

Clearly step (i) can be done in tim@(1). The determination of the intervals that
have the same costs in step (ii) is done in ti®@) by following pointers that con-
nect the intervals. To determine the time for step (iii) ¢dasan equal cost interval
[s0:sn), k< s < < j+1 that was merged from < nold intervals[sy : s1],[s1+ 1 :
S),- .. [sh-1+ 1 :). We now show that the computation of new pointers and the mark
ing of useless indices takes tim¥h+ q) whereq is the number of marked indices.

a) For each of thé intervals consider the minimum cost interval of the index to
which the first minimum cost pointer points. If the minimumstdnterval does not
contain a value that is at least as large@st(hs j. 1) then the index is marked as useless
and the first pointer is merged with the next pointer. Thi<pes proceeds until every
first minimum cost pointer points to a useful index.

b) Now it remains to update the minimum cost intervals byeig for each cost
value only the best index from the merged intervals. This can be done in a left to
right manner starting with the smaller cost values. Thewrdbrays comparing the cor-
responding minimum cost intervals of indices between twighteored of theh merged
intervals, say{s—1+1:s] and[s+1:s41], i € [1:h—1]. For ease of description
we assume here that all values in one minimal cost inteneabatter than all values
in the other interval. If this is not the case both minimumtdogervals are split so
that each contains only the values for which it is better. €dlas that the split value
can be computed in constant time. When the minimum cost iatémthe left interval
[s_1+1:s] is better the corresponding index in the right interval igked useless
and the next minimum cost intervals are compared. When thirmain cost interval in
the right intervalls + 1 : 511] is better the index in the left interval is marked useless.
Then the minimum cost interval in the old right interval (ntve new left interval) is
compared with the corresponding minimum cost interval ®fight neighbor interval
[S+1+1:s2]. During the search for the corresponding minimum cost vatesl in-
dices that are passed are marked useless. The process $i@pshg best minimum
cost interval with valua is found. During the search a pointer is set from the rightmos
useful index of an interval to the first useful index in itsrigieighbor. Thereby it might
be necessary to jump over intervals that have no useful itefexThe end pointer of
the first interval is set to point to the last useful index @& therged intervals.

Since the total number of intervals in the equal cost partitor [k : j + 1] is at most
n minus the number of merged intervals the time to compitg; 1 is at mostO(n+q)
whereq is the total number of indices that are marked useless. Sihogostm— k
indices exist in rowk of matrix M it follows that the computation sum of all steps (iii)
for computing the elements in this row@{n- m+m).

Theorem 2. The PHC-Switch problem can be solved in tim@Qr?).

5 PHC with Changeover Costs

In this section we study a variant of the PHC problem wherectist for a hyperrecon-
figuration depends not only on the new hypercontext but atsitsopreceding hyper-
context. Parts of the hyperreconfiguration costs can thesobsidered as changeover
costs and therefore we call this problem the PHC problem ghitmgeover costs. This

problem is used to model architectures where during hypenféguration it is not nec-
essary to specify the new hypercontext from scratch but etiés possible to define
the new hypercontext through its difference to the old hgpetext. In the following we
consider the problem only for the Switch-Model. For thislpem the changeover costs
between two hypercontexts are defined as the number of ®agitich which the state
has to be changed for the new hypercontext (i.e., the stateisged from available to
not available or vice versa). Formally, the problem can beestas follows.

PHC-Switch problem with changeover costs: Given an ingarfithe PHC-Switch
problem, wherénit (h) =wfor he #, w> 0, the cost functioshangeoveon # x # is
defined bychangeovethy, hy) := |hy A hy| whereA denotes the symmetric difference,
and an initial hypercontexty € #. Find a partition ofC into substringss,,...,S,
r>1(.e.C=5...S) and hypercontexthy,...,h such thatS C hj(C) andr -w—+
Si_a(|hi Ahiga| + [hi] -|S]) is minimized.

The next result shows that PHC-Switch with changeover éestslynomially solv-
able (the algorithm is too involved for the available spaoe amitted).

Theorem 3. The PHC-Switch problem with changeover costs can be solvéitne
o(mt-n).

6 Caches for Hypercontext and PHC

Multi-context devices allow to store the reconfiguratiotedhat are necessary to spec-
ify a set of contexts. Such context caching on the deviceaahto a significant speedup
compared to single context devices where the reconfigurdtits have to be loaded
onto the device from a host computer for every reconfigunatio this section we in-
troduce multi-hypercontext hyperreconfigurable arclitess, which have a cache for
hypercontexts so that they can switch between hypercantexy rapidly. The con-
cept of reconfigurable devices with context switching hantietroduced a decade ago
(e.g. the dynamically configurable gate array (DPGA) [1] ¢kSMII [12]). In [14] the
reconfigurable computing module board (RCM) has been imgasd which contains
two context-switching FPGASs, called CSRC, where the cardesitching device can
store four contexts.

A typical cache problem for many reconfigurable architextus that the sequence
of contexts for a computation is known in advance and thelprmolis then to find the
best replacement strategies for the contexts that aredsitotbe cache. On a run time
reconfigurable machine the problem is that the actual ctstaight not be known in
advance because they can depend on the actual results opatetion. But what might
be known in advance are general requirements on the corgextsvhether few or many
routing resources are needed. The actual context, e.gxdleereuting, is then defined at
a reconfiguration step. Therefore, it seems a promisingeagarfor hyperreconfigurable
architectures to introduce a cache for storing hypercastex

What makes the problem of using a cache for hypercontexteplay interesting
on a hyperreconfigurable machine is that different sequeoftbBypercontexts are pos-
sible which can satisfy the sequence of context requiresnafred computation. Hence,
the algorithm that computes the best sequence of hypersdsrgieould take the use of

the cache into account. In general, it can be advantageausetéewer but more com-
prehensive hypercontexts in order to increase the chahe¢sthypercontext which
is to be used already exists in the cache and can thereformaded very fast. Thus,
there is a trade-off between the increasing reconfiguratomts when fewer but more
comprehensive hypercontexts are used and the shrinking fovdoading these hyper-
reconfigurations.

Here we consider a hyperreconfigurable machine with a camhkypercontexts
that can store a fixed maximal number of hypercontexts. Issumed that a hyper-
context has to be loaded from the host only when the hypeggbig not stored in the
cache. Hence, the cost for loading a hypercontegepends on whether it is in the
cache or not. The value d@fit (h) is smaller when the hypercontext is in the cache. For
a machine with cache we define the PHC-Switch problem asasllo

PHC-Switch problem (for hyperreconfigurable machines witlache for hypercon-
texts): Given a cache capacity, 2 set of switcheX = {xi,...,%n}, a set of context re-
quirements” and a set of hypercontex# defined ag” = H = 2X,i.e.,C and# equal
the set of all subsets of. For a given sequence of context requiremé&hts c; ...Cn
find a partition ofC into substringsy,...,S,r>1(i.e.C=S...5) and hypercontexts
ha,...,h; such tha§ C hi(C) andri-n+r2-c+ Si_4 |hi| - |S| is minimized where is
the number of hypercontexts that can be loaded from the caghe r —r4, andc the
cost to load a hypercontext from the cache.

We can show the following theorem by a reduction from 3-SAE (proof is some-
what technical and therefore omitted).

Theorem 4. The PHC-Switch problem is NP-hard on a hyperreconfiguratdehime
with a cache for hypercontexts.

7 Experiments and Results

We define a Simple HYperReconfigurable Architecture (SHyR#&)gan example of a
minimalistic model of a rapidly reconfiguring machine in erdo illustrate our con-
cepts. As depicted in Figure 1 it features 18 reconfigurablekkUp Tables each with
three inputs and one output. For storing signals a file of g&ters is used. The regis-
ters are reconfigurably connected to the LUTs by a 73:54 plekér and 18:73 demul-
tiplexer. The inability of the architecture to directly éghahe LUTs for computation
poses a bottle neck for the test applications we run on SHyR¥arces them to make
extensive use of reconfigurations. The test applicatioesetbre naturally lend them-
selves to profit from the use of hyperreconfigurations. Thasyever, does not limit the
general validity of the experimental results, becauseoatth SHyRA implicitly im-
poses reconfiguration every reconfigurable applicatiolovic the same basic design,
i.e. having a calculation phase (LUTS), transferring tHerimation to some registers
(DeMUX) and then have it reinjected into the next calculaptase (MUX). In order to
evaluate the caching model, each reconfigurable comporenéquipped with a cache
of up to 14 cache lines. Two sample applications (a 4 bit adddra primitive ALU)
were mapped to the modified SHyRA.

Hyper-
reconfiguration

LA
E :vLUT1/
: J DeMUX|

0%z %5, %)

_LUT18[—

Xz
Xs

MUX

Fig. 1. Simple HYperReconfigurable Architecture: Principal Systeesign

After mapping the design onto the reconfigurable resoulced (contents, MUX
switching information) a heuristic was employed to det@enappropriate hypercon-
texts using the same costs as in the Switch model. For theafasat using caches
the optimal hypercontexts were determined with the alporitescribed in Section 4.
For the case with caches for hypercontexts we used a greedggst which takes the
optimal solution for the PHC-Switch problem without cachssstarting point and sub-
sequently improves this solution by randomly applying ohtaee operations:

M Traditional Reconfiguration
O Optimal Solution w/o Cache
B 1 cache line

H 2 cache lines

B3 cache lines

E14 cache lines

B5 cache lines

M6 cache lines

7 cache lines

8 cache lines

B9 cache lines

B 10 cache lines

B 11 cache lines

M 12 cache lines

E13 cache lines

14 cache lines

100% 1

90%

80%
70%

60%
50%
40%
30%
20% 1
10% A

0% -

Costs Relative to Ordinary
Reconfiguration

IR
———

Multiple Counters

+MUX+DeMUX)

Test Cases

Fig. 2. Relative Costs of the Test Case Designs With Cache Size Fiiom4 Lines

1. Two randomly chosen hypercontexts are merged. 2. Tworbgptexts are cho-
sen randomly. For each contexf a penalty costdost(c;j) = Yke(on)cj=1(/{Cili #
j,Cik = 0}|)) is determined and the most expensive context is exchartgedig re-
peated as long as the total costs become smaller). 3. Oneméyndhosen hypercontext
is split into two hypercontexts and the same exchange puveesb in (2) is applied.

Figure 2 shows the resulting total hyperreconfigurationscésr the test designs
without cache and with caches of sizes from one two 14 caaoks.liFor the test appli-
cations it can be observed that small caches for hyperctantar significantly decrease
the total hyperreconfiguration costs.

8 Conclusion

We have investigated a central algorithmic problem for ggmonfigurable architec-
tures, namely the Partition into Hypercontexts (PHC) probl It was shown that the
problem in NP-hard in general but can be solved in polynonimaé for the Switch
model under different cost measures. We have also intradageerreconfigurable ar-
chitectures that use a cache to store hypercontexts andshawe that PHC becomes
NP-hard even for the Switch model for this architecturespligations of the PHC
problem on an example architecture have been given. Forabe when caches for
hypercontexts are used a heuristic for solving the PHC probbas introduced.

References

1. M. Bolotski, A. DeHon, and Jr. T.F. Knight: Unifying FPGAs and SIMrays. Proc. FPGA
'94 — 2nd International ACM/SIGDA Workshop on FPGAs, 1-10, (1994

2. K. Bondalapati, V.K. Prasanna: Reconfigurable Computing: Archites, Models and Algo-
rithms. In Proc. Reconfigurable Architectures Workshop, IPPQTL9

3. K. Compton, S. Hauck: Configurable Computing: A Survey of Systand Software. ACM
Computing Surveys, 34(2): 171-210, (2002).

4. A.Dandalis and V. K. Prasanna: Configuration Compression f@4Based Embedded Sys-
tems. In Proc. ACM Int. Symposium on Field-Programmable Gate ArfBg3-182, (2001).

5. C. Haubelt, J. Teich, K. Richter, and R. Ernst: System Design foiilfligx In Proc. 2002
Design, Automation and Test in Europe, 854-861, (2002).

6. S. Hauck, Z. Li, and J.D.P. Rolim: Configuration Compression feidiinx XC6200 FPGA.
IEEE Trans. on CAD of Integrated Circuits and Systems, 8:1107-112909).

7. P. Kannan, S. Balachandran, D. Bhatia: On Metrics for Comparmga®ility Estimation
Methods for FPGAs. In Proc. 39th Design Automation Conferencef502002).

8. M. Koester and J. Teich: (Self-)reconfigurable Finite State Machifte=ory and Implemen-
tation. In Proc. 2002 Design, Automation and Test in Europe, 55942662).

9. S. Lange and M. Middendorf: Hyperreconfigurable Architectfmefast Runtime Reconfig-
uration. To appear in Proceedings of 2004 IEEE Symposium on Fielgréémmable Custom
Computing Machines (FCCMO04), Napa Valley, USA, 2004.

10. S. Lange and M. Middendorf: Models and Reconfiguration PrabfemMulti Task Hyper-
reconfigurable Architectures. To appear in Proc. RAW 2004, Santatod.

11. K.K. Lee and D.F. Wong: Incremental Reconfiguration of MultEAPSystems. In Proc.
Tenth ACM International Symposium on Field Programmable Gate Arg®6-;213 , (2002).

12. X. P. Ling, and H. Amano: WASMII: a Data Driven Computer on adét Hardware. Proc.
of the IEEE Workshop on FPGAs for Custom Computing Machines, 3314®3).

13. T.-M. Lee, and J. Henkel, W. Wolf: Dynamic Runtime Re-Scheduhtigwing Multiple
Implementations of a Task for Platform-Based Designs. In Proc. 2@2gn, Automation
and Test in Europe, 296-301, (2002).

14. K. Puttegowda, D.I. Lehn, J.H. Park, P. Athanas, and M. J@m#ext Switching in a Run-
Time Reconfigurable System. The Journal of Supercomputing, :2285§9)257,(2003).

15. R.P.S. Sidhu, S. Wadhwa, A. Mei, V.K. Prasanna: A Self-Régorable Gate Array Archi-
tecture. Proc. FPL (2000) 106-120.

16. M. Teich, S. Fekete, and J. Schepers: Compile-Time Optimizatiornyo&iic Hardware
Reconfigurations. Proc. Int. Conf. on Parallel and Distributed Psimgdechniques and Ap-
plications (PDPTA99), Las Vegas, U.S.A., 1999.

17. S. Wadhwa, A. Dandalis: Efficient Self-Reconfigurable Implesatéons Using On-chip
Memory. Proc. FPL, (2000) 443-448.

