
Hyperreconfigurable Architectures for Fast Run Time Reconfiguration∗

Sebastian LangeandMartin Middendorf
Department of Computer Science, University of Leipzig,

Augustusplatz 10-11, D-04109 Leipzig, Germany
{langes, middendorf}@informatik.uni-leipzig.de

Abstract

Dynamically reconfigurable architectures or systems are
able to reconfigure their function and/or structure to suit
changing needs of a computation during run time. The in-
creasing flexibility of modern dynamically reconfigurable
systems improves their adaptability but also makes fast re-
configuration difficult because of the large amount of nec-
essary reconfiguration information. However, even when a
computation uses this flexibility it will not use it all the time.
Therefore, we propose to make the potential for reconfig-
uration itself reconfigurable. This allows for speeding up
reconfiguration operations during phases where only parts
of the total flexibility are required. Such architectures are
called hyperreconfigurable and use two types of reconfigu-
ration operations: hyperreconfigurations for changing the
reconfiguration potential and ordinary reconfigurations for
actually configuring a new context for a computation.

1 Hyperreconfigurable Architectures

Dynamically reconfigurable architectures can adapt their
function and/or structure to suit the changing needs of a
computation during run time (e.g., [1,2]). A problem is the
tradeoff between flexibility and the amount of information
needed for reconfiguration to define the new state of the
system. Moreover, the increasingly higher integration of
reconfigurable hardware requires increased bandwidths for
transferring the reconfiguration information. Modern FP-
GAs for example need several megabytes of reconfiguration
data for a single reconfiguration step. This large amount
of data transfer makes run time reconfigurations time crit-
ical operations, especially, for computations which exploit
the full capacity of these architectures by frequent recon-
figurations. Different approaches have been proposed in
the literature to cope with this problem, e.g., compression
methods for the stream of reconfiguration bits ([3,4]) and
self-reconfigurability (see [5,6,7].

∗Financial support by the German Research Foundation (DFG) through
project ”Models and Algorithms for Hyperreconfigurable Architectures”

In this paper we propose a new approach to make run
time reconfiguration faster by defining a new type of re-
configurable architectures. We use the fact that algorithms
or computations typically consist of different phases where
during each phase only a fraction of the reconfiguration po-
tential of the underlying architecture is needed. The idea is
to make the reconfiguration potential itself reconfigurable.
The smaller the actual reconfiguration potential of an ar-
chitecture is the smaller will the amount of reconfiguration
information be that has to be transferred during reconfigu-
ration and the faster will a reconfiguration step be. Due to
space limitations this paper focuses on the introduction of
the concept of hyperreconfigurable architectures.

We call dynamically reconfigurable architectures and
systems which allow to alter the reconfiguration potential
during run timehyperreconfigurable architectures. Hyper-
reconfigurable architectures have two types of reconfigu-
ration steps: (ordinary) reconfiguration stepsare used to
actually define a new configuration of the system andHy-
perreconfiguration stepsare used for defining the actual re-
configuration potential that is available for the ordinary re-
configuration steps. The actual state of the system that can
be changed by reconfiguration is calledcontext. Thus, a
hyperreconfiguration step defines the set of contexts that is
available for the (ordinary) reconfiguration steps. Such a set
of available contexts is called ahypercontext. With ”avail-
able” we assign those reconfigurable resources that are ac-
tivated by the hypercontext and therefore are available for
reconfiguration. If a reconfiguration needs resources that
are not included in the hypercontext they have to be acti-
vated/included by a hyperreconfiguration. We assume here
that a reconfiguration step requires reconfiguration infor-
mation for all activated resources (even when it says that
the resource is not used in the context). Examples for hy-
percontexts are the set of activated reconfigurable units that
are available for reconfiguration or the available routing re-
sources. Often the context requirements might be an esti-
mated upper bound on the requirements that will actually
be needed during run time. Formal models for hyperrecon-
figurable architectures will be discussed in the next section.

http://pacosy.informatik.uni-leipzig.de/pv/Personen/lange/sla.engl.html
http://pacosy.informatik.uni-leipzig.de/middendorf/mmi-Leipzig.engl.html
http://www.informatik.uni-leipzig.de/idxeng.html
mailto:langes@informatik.uni-leipzig.de
mailto:middendorf@informatik.uni-leipzig.de

2 Formal Models for Hyperreconfiguration

We introduce ideal models that allow us to con-
sider algorithmic aspects for hyperreconfigurable architec-
tures. These models can be made more specific to de-
scribe concrete architectures. We assume that an algo-
rithm/computation is characterized by a sequence ofcontext
requirementseach describing the resource requirements that
it needs for a corresponding reconfiguration step. Hence the
number of context requirements equals the number of re-
configuration steps. Since the actual reconfiguration steps
might depend on data that are only available at run time a
context requirement specifies the (estimated) maximal set of
resources that could possibly be needed. When the mean-
ing is clear we call a context requirement simply context.
A reconfiguration into a new context can in general only
be realized during run time when the machine is in a hy-
percontext that contains all contexts possible according to
the corresponding context requirement, i.e., the hypercon-
textsatisfiesthe corresponding context requirement.

In the following we describe cost models to count the
(hyper)reconfiguration time. LetC be the set of possi-
ble context requirements for a reconfigurable machine and
C = c1 . . . cm, ci ∈ C be the sequence of context require-
ments that characterizes an algorithm/computation. Ahy-
percontextis a state of the machine which is characterized
by the subset ofC context requirements that are satisfied
when the machine is in this state. At any time exactly one
hypercontext is realized on the machine. LetH be the set
of possible hypercontexts. For a hypercontexth ∈ H let
h(C) ⊂ C be the subset of context requirements that are sat-
isfied byh. The seth(C) is called thecontext setof h. For
a sequencec1 . . . ck of context requirements and a hyper-
contexth let c1 . . . ck ⊂ h(C) denote the fact that for each
context requirementci, i ∈ [1 : k] ci ∈ h(C) holds. In order
change the machine’s current hypercontext ahyperrecon-
figuration stepis necessary. For each hypercontexth ∈ H
two cost measures are defined: i)init(h) is the cost of per-
forming a hyperreconfiguration that brings the machine into
hypercontexth ii) cost(h) denotes the cost of an ordinary
reconfiguration step when the machine is in hypercontexth.

Then a computation is characterized by a partition ofC
into substringsS1, . . . , Sr (i.e. C = S1 . . . Sr) and hy-
percontextsh1, . . . , hr, r ≥ 1 such thatSi ⊂ hi(C) and∑r

i=1(init(hi) + cost(hi) · |Si|) are the costs where|Si| is
the length ofSi, i.e., the number of context requirements in
Si. During the run of the algorithm/computation that is ex-
ecuted the machine performs the following reconfiguration
operations:h1S1 . . . hrSr whereSi stands for a sequence of
|Si| reconfigurations which use only those parts of the ma-
chine which are available within the hypercontexthi. We
assume that a hyperreconfiguration is always performed be-
fore the first reconfiguration step.

We define two variants of the model — the first variant

calledDAG-modelis for coarse grained reconfigurable ma-
chines where the set of possible hypercontexts is not too
large and where different reconfigurable submachines (hy-
percontexts) can be defined that can be ordered with re-
spect to their computational power by a precedence rela-
tion. A directed acyclic graph (DAG) where each node is
a hypercontext is used to describes the precedence relation
between the hypercontexts. We assume that a hypercon-
texth exists that satisfies all possible context requirements,
i.e. h(C) = C. Formally, given a DAGG = (V,E) with
V = H and for eachh ∈ H a seth(C) such that for each
edge in(h1, h2) ∈ E the relationh1(C) ⊂ h2(C) holds. In
addition letcost(h) > 0 andinit(h) = w for eachh ∈ H
and a constantk ≥ 0 such that for each edge(h1, h2) ∈ E
cost(h1) ≤ cost(h2). Then a computation is character-
ized by a partition ofC into substringsS1, . . . , Sr, r ≥ 1
(i.e. C = S1 . . . Sr) and hypercontextsh1, . . . , hr such that
Si ⊂ hi(C) and the total (hyper)reconfiguration costs are
r · w +

∑r
i=1 cost(hi) · |Si|.

The second variant calledSwitch-modelis for fine
grained machines. We assume that there exists a set of small
(similar) reconfigurable units and every subset can be used
to define the reconfigurable machine that is available during
a hypercontext. For example each unit might be a switch in
a switch box on an FPGAs and the more routing require-
ments an algorithm has for a context, the more switches
should be available in the hypercontext for reconfiguration
during run time. For reconfiguration the state of each avail-
able switch has to be defined. Thus the cost for reconfigu-
ration is the number of available units plus overhead cost.
Formally, letX = {x1, . . . , xn} a set of switches and de-
fineC = H = 2X , i.e.,C andH equal the set of all subsets
of X. For contextx ∈ X the relationx ∈ h(C) holds, when
x ⊂ h. Let cost(h) = |h|, where|h| is the size ofh, i.e.,
the number of switches available inh andinit(h) = n for
h ∈ H. A computation is characterized by a partition ofC
into substringsS1, . . . , Sr, r ≥ 1 (i.e. C = S1 . . . Sr) and
hypercontextsh1, . . . , hr such thatSi ⊂ hi(C) and the total
(hyper)reconfiguration costs arer · n +

∑r
i=1 |hi| · |Si|.

Future work: Multi task hyperreconfigurable machines
and algorithmic aspects will be discussed elsewhere.

References
[1] K. Bondalapati, V.K. Prasanna. Proc. RAW, 1997
[2] K. Compton, S. Hauck, ACM Computing Surveys,
34(2): 171–210, 2002
[3] A. Dandalis, V. K. Prasanna: Proc. ACM International
Symposium on FPGAs, 173–182, 2001
[4] S. Hauck, Z. Li, J.D.P. Rolim, IEEE Trans. on CAD of
Integrated Circuits and Systems, 8:1107–1113, 1999
[5] M. Koester, J. Teich, Proc. DAC Europe, 559–566, 2002
[6] R.P.S. Sidhu, S. Wadhwa, A. Mei, V.K. Prasanna, Proc.
FPL, 106–120, 2000
[7] S. Wadhwa, A. Dandalis, Proc. FPL, 443–448, 2000

	Hyperreconfigurable Architectures
	Formal Models for Hyperreconfiguration

