
 

 

Biochemical Profiling of Phenolic Compounds in 
Lentil Seeds 

 

 
 
 
 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Plant Sciences 

University of Saskatchewan 

Saskatoon 

By 

Mahla Mirali 

 

 

 

© Copyright Mahla Mirali, July, 2016. All rights reserved. 

 



i 
 
 

 

PERMISSION TO USE 
 

In presenting this thesis in partial fulfilment of the requirements for a postgraduate 

degree from the University of Saskatchewan, I agree that the libraries of this University 

may make it freely available for inspection. I further agree that permission for copying of 

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by 

the professors who supervised my thesis work or, in their absence, by the Head of the 

Department or the Dean of the College in which my thesis work was done. It is 

understood that any copying or publication or use of this thesis or parts thereof for 

financial gain shall not be allowed without my written permission. It is also understood 

that due recognition shall be given to me and to the University of Saskatchewan in any 

scholarly use which may be made of any material in my thesis.  

Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to:  

 

Head of the Department of Plant Sciences  

51 Campus Dr. 

University of Saskatchewan  

Saskatoon, Saskatchewan (S7N 5A8) 

 

 

 

 

 

 

 



ii 
 
 

ABSTRACT 
 

Lentil (Lens culinaris Medikus) is an annual cool-season legume with a variety of seed 

coat colours. Seed coat colour is an important grading factor that affects the market 

value of lentils. In lentil, two independent loci gray ground colour (Ggc) and tan ground 

colour (Tgc) determine the four basic seed coat background colours; brown (Ggc Tgc), 

gray (Ggc tgc), tan (ggc Tgc) and green (ggc tgc). The zero tannin locus (tan) is 

epistatic to the tgc locus, producing clear seed coats. Lentil is a good source of protein, 

carbohydrates, dietary fiber components, minerals, vitamins, and secondary metabolites 

that include phenolic compounds. Phenolic compounds produce different pigments in 

plants and bring health benefits to humans. The overall objective of this study was to 

determine the relationship between seed coat colour and phenolic compounds in lentil. 

In the first study, comparison of the phenolic profiles of four seed coat background 

colours in lentil (i.e., brown, gray, tan, and green) was performed using an optimized 

liquid chromatography-mass spectrometry (LC-MS) method. The results showed that for 

the levels of various phenolic compounds in lentil seeds varied with the seed coat 

colour. Specifically, seed coats of lentil genotypes carrying the homozygous recessive 

tgc allele (green and gray seed coats) had higher amounts of flavan-3-ols, 

proanthocyanidins, and some flavonols.  

In the second study, a comparison was made between the phenolic profiles of lentil 

seed coats that do not express the Tgc phenotype (genotype Tgc tan) and those that 

express Tgc (genotype Tgc Tan). The LC-MS analysis detected several compounds 
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that were not influenced by tan, notably the phenolic acids, flavones, some flavonols, 

and some of dihydroflavonols. In contrast, myricetin, dihydromyricetin, and flavan-3-ols, 

and proanthocyanidin oligomers were detected only in Ggc Tgc Tan lines and therefore 

appear to be controlled by tan. The molecular analysis showed that tan is a basic-helix-

loop-helix (bHLH) transcription factor that could interact with the regulatory genes in the 

phenylpropanoid pathway for the enzymes flavonoid-3’,5’-hydroxylase (F3’5’H) and 

dihydroflavonol reductase (DFR).  

The third study measured the effect of long term storage on specific changes in 

phenolic compounds in lentil seeds. Increases in phenolic acids and flavones occur in 

green lentil seeds during storage, possibly because of the breakdown of more complex 

species into smaller subunits. More interestingly, a significant decrease in 27 flavan-3-

ols and proanthocyanidins also occurs. Polymerization of flavan-3-ols and 

proanthocyanidins and their conjugation to cellular constituents could reduce their 

extractability and produce dark pigments in long stored lentil seeds.  

In conclusion, these studies determined that there is a relationship between phenolic 

compounds, specifically flavan-3-ols and proanthocyanidins, and seed coat colour 

genes tgc and tan in lentil. The findings of this study will help to develop future breeding 

strategies for lentil cultivars with aesthetic properties and nutritional benefits that appeal 

to consumers.  
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CHAPTER 1 - INTRODUCTION   

Lentil is an increasingly important pulse crop in the prairie regions of North America 

where it is grown in rotation with cereals and oilseeds. Canada, India, Australia, the 

USA and Turkey are the main producers of lentil and world production of lentil in 2013 

was 4.95 Mt (FAOSTAT, 2015). Lentils are a good source of protein, carbohydrates, 

dietary fiber components, minerals, vitamins, and secondary metabolites that include 

phenolic compounds (Xu and Chang, 2009). Phenolic compounds (also known as 

polyphenols) exert adverse effects such as reducing iron bioavailability and growth-

related enzymatic activity (Champ, 2002; Martin and Appel, 2010). However, several 

human health benefits have been linked with phenolic compounds such as anti-oxidant, 

anti-tumour, and anti-heart disease properties (Martin and Appel, 2010). Several sub-

classes of phenolic compounds are found in lentil seeds such as phenolic acids, 

stilbenes, and different types of flavonoids (Aguilera et al., 2010; Amarowicz et al., 

2009; Amarowicz et al., 2010; Bartolomé et al., 1997; Dueñas et al., 2002; Dueñas et 

al., 2003; Escarpa et al., 2002; Takeoka et al., 2005; Tsopmo and Muir, 2010; Xu and 

Chang, 2009, 2010; Zhang et al., 2015; Zou et al., 2011). 

Lentil seed coats exhibit a wide variation in colour and pattern. Two independent loci 

gray ground colour (Ggc) and tan ground colour (Tgc) determine the basic seed coat 

colours, brown, gray, tan and green (Vandenberg and Slinkard, 1990). The combined 

expression of the two alleles at both loci determines the four basic seed coat 

background colours. Phenolic compounds are natural pigments (Andersen and 

Jordheim, 2010), and coloured legumes contain high levels of phenolic compounds 
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(Elias et al., 1979; Kovinich et al., 2011; Segev et al., 2010; Trosyńska and Ciska, 

2002). There is no information on how Ggc and Tgc alleles are related to the 

concentration of the phenolic compounds in lentil seeds. 

There is a seed coat phenotype known as ‘zero-tannin’ which is characterized by thin 

seed coats, the result of the phenotypic expression of a single recessive gene (tan). 

Pleiotropic effects of the gene include green stems and white flower tissues. In contrast, 

most other lentil genotypes have reddish stems, purple/blue veins on flower petals, pink 

to blue floral tissue, as well as thicker and pigmented seed coats (Vaillancourt et al., 

1986). The set of traits in zero-tannin phenotype is similar to Mendel’s A gene in pea 

(Mendel, 1865), which is controlled by a basic-helix-loop-helix (bHLH) transcription 

factor in the phenylpropanoid pathway (Hellens et al., 2010). Zero-tannin lines should 

be a good tool for studying seed coat pigmentation in lentil as they naturally prevent 

formation of some pigments but not others.   

The visual characteristics of lentils have an important role in their marketability, 

especially for the green market classes, which are distinguished by yellow cotyledons 

and green seed coats. Uniformly green seeds are valued more in the market place 

(Davey, 2007). However, green colour is not stable, and in response to environmental 

and temporal changes, seed coat colour may change over to yellow, yellow-brown, 

medium brown, and dark brown depending upon the storage situation and duration 

(Nozzolillo and Bezada, 1984). Darkening of the seed will decrease the grade of the 

sample and as a result the offered price will be reduced (Davey, 2007). Knowing the 

type of phenolic compounds associated with seed longevity during long-term storage 

(LTS) may provide strategies for use in breeding of lentil so that the commercial crop 
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can be stored for a longer time with less colour change in the seed coat. Longer term 

storage without seed coat colour change could preserve the market value of lentils.  

This research aims to analyze the phenolic compound profiles of the seeds of a series 

of lentil genotypes with defined seed coat background colour based on genetic analysis. 

It includes an investigation of differences in the phenolic profile between tannin 

containing and zero-tannin phenotypes of lentil. It will also determine what changes 

occur in the phenolic profile of lentil seed coats during storage.   

There were three hypotheses in this body of research, 

1. Specific phenolic profiles are associated with the corresponding specific genetic 

combinations of the alleles of the Ggc and Tgc loci that determine the green, 

gray, tan, and brown seed coat phenotypes in lentil.  

2. The Ggc Tgc tan and the Ggc Tgc Tan genotypes will have unique and 

detectable profiles of phenolic compounds, as the tan genotype blocks the 

expression of the Tgc seed coat genotypes in lentil seed coats. 

3. Fresh and aged lentil samples will have specifically different phenolic profiles, as 

storage will cause both visual, and biochemical changes to lentil seed coats. 

Globally, most lentils are consumed after removal of the seed coat by an abrasive 

dehulling process. Understanding the underlying genetics of seed coat biochemistry is 

an important step in determining the potential economic value of lentil seed coats that 

are a by-product of the dehulling process. The overall objective of this study was to 

define the relationship between seed coat colour and phenolic compounds in lentil. 

The specific objectives of this study were as follows: 
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1) To determine if specific phenolic profiles of different lentil seed coat colours are 

characteristic of the four specific genetic combinations of alleles of the Ggc and 

Tgc loci;  

2) To compare the phenolic profiles of lentil seed coats that do not express the Tgc 

gene (genotype Tgc tan) with those that express Tgc (genotype Tgc Tan);  

3) To determine the effect of long-term storage on the specific changes in phenolic 

compounds in lentil seeds 
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CHAPTER 2 - LITERATURE REVIEW 

2.1. Lentil 

2.1.1. Origin of Lentil and Production 

Lentil (Lens culinaris Medikus) is a self-pollinating annual cool season grain legume, 

which originated in agricultural systems in the Near East. Domestication of lentil started 

around 7000-8000 BC, the same period in which emmer and einkorn wheat, barley, 

pea, chickpea, bitter vetch, and flax were domesticated (Erskine and Sarker, 2004). 

Lentil is consumed in many countries as a nutritious food, usually served in stews, 

soups, and its consumption is especially common in vegetarian diets (McVicar et al., 

2010). 

Lentil is cultivated in West and South Asia, Ethiopia, North Africa, southern Europe, 

South and North America, and in Oceania (Erskine and Sarker, 2004). The world 

production of lentil in 2013 was 4.95 Mt, of which Canada, India, and Turkey were the 

main producers (FAOSTAT, 2015). Canada is the major lentil producing and exporting 

country, whereas India is the major lentil importer. 

Research on adaptation of lentil in Western Canada started in the 1970s and today lentil 

is an important pulse crop in this region (McVicar et al., 2010). Lentil is grown in prairie 

regions to enhance economic values for producers, vary crop rotations and increase the 

amount of nitrogen in the soil (McVicar et al., 2010). In 1970, approximately 600 ha of 

lentil were cultivated in Western Canada (McVicar et al., 2010). Lentil production is 

predicted to be more than 2 million ha in Canada in 2016. 
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2.1.2. Genetics of Lentil Seed Coat Colour and Pattern  

Lentil is a diploid (2n = 2X = 14) plant with a genome size of 4000 Mbp (Arumuganathan 

and Earle, 1991).  Two independent loci (Ggc and Tgc) determine the four basic seed 

coat background colours; brown (Ggc Tgc), gray (Ggc tgc), tan (ggc Tgc) and green 

(ggc tgc) (Vandenberg and Slinkard, 1990).  A series of five alleles at the Scp locus 

(Ladizinsky, 1979) determine seed coat patterns. These include marbled-1, marbled-2, 

spotted, dotted, and absent (Vandenberg and Slinkard, 1990). The zero-tannin locus 

(tan) (Vaillancourt et al., 1986) is epistatic to the tgc locus, but not to the Ggc locus of 

lentil  (Vandenberg and Slinkard, 1990). It is also assumed that genes for black seed 

coat are possibly epistatic to ground colour genes (Vandenberg and Slinkard, 1990). 

The underlying cotyledon colour can affect the perception of seed coat colour because 

many seed coat types are translucent to some extent. Cotyledon colour is controlled by 

a two-gene system.  The expression of the gene Yc results in dominant (red cotyledon) 

and recessive (yellow cotyledon) phenotypes. A second gene,  i-yc,  inhibits the main 

cotyledon colour alleles and produces green cotyledon colour (Slinkard, 1978). 

2.1.3. Market Characteristics of Lentil Seeds 

There are two major market classes of lentil, known as red and green. Red lentil 

represents the majority of lentil production worldwide. Red cotyledon lentils of various 

sizes are dehulled and marketed as “football” type (unsplit) or in split form. Green lentil 

types (typically yellow cotyledon), are marketed as whole seed of various sizes, and on 

the basis of seed coat colour  (McVicar et al., 2010).  Many minor market classes are 

produced in smaller quantities, including French green (yellow cotyledon, green seed 

coat, marbled seed coat pattern), Spanish brown (yellow cotyledon, gray seed coat with 
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dotted pattern), and Beluga (yellow cotyledon with black seed coat).  Depending on the 

mass and diameter of seeds, lentils are classified in some markets as Chilean (seeds 

greater than 50 mg) and Persian or small-seeded (45 mg per seed or less) (McVicar et 

al., 2010). 

Seed coat colour is an important grading factor that affects the market value of lentils, 

especially green lentil. According to the Canadian Grain Commission, green lentils 

exhibiting a good natural colour are graded as No. 1  (Canadian Grain Commission, 

2014). An increase in seed coat colour variability, or darkening of the seed coat, will 

decrease the grade of the sample, thereby reducing the offered price (Davey, 2007). 

For No. 3 grade green lentil (severe discolouration, i.e., dark brown (Canadian Grain 

Commission, 2014)), the average price is approximately half that of No. 1 grade large 

green lentil (e.g., see http://www.statpub.com/stat/prices/spotbid.html(2015)). Therefore, 

long-term storage without seed coat colour change could serve as a strategy to 

preserve market value of lentil crops.  

2.1.4. Nutritional Value of Lentils  

Whole lentil seeds are a good source of protein, with an average protein content of 

28.3% of total dry weight (Erskine et al., 2011). This valuable pulse crop has high 

concentrations of macro- and micronutrients (e.g., P, K, Ca, Fe, and Zn), vitamins 

(including niacin, vitamin A, and ascorbic acid), dietary fibre, carbohydrates, and 

essential amino acids such as lysine (Erskine et al., 2011). Lentil seeds are also a good 

source of secondary metabolites such as phenolic compounds (Xu and Chang, 2009). 

To date, the market value of lentil is not determined by nutritional profile. However, as 

the lentil industry evolves and the value of various seed components is determined, 
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there will be an increased demand for information about the nutritional value of those 

components in food processing applications. 

2.2. Phenolic Compounds 

Humans require various types of nutritional compounds or natural products to maintain 

health.  Carbohydrates, proteins, lipids and nucleic acids play a major role in primary 

nutrition and human health. Some secondary metabolites are also important for human 

health. Secondary metabolites include alkaloids, steroids, vitamins, hormones, and 

phenolic substances. Phenolic substances consist of a large group of metabolites that 

contain an aromatic ring with an attached OH group (Vermeris and Nicholson, 2006). 

There are different terms and types of classification for these compounds; phenolics, 

polyphenols, phenolic substances, and phenolic compounds. Various categorizing 

systems exist for polyphenols, largely based on number of carbon atoms in the 

molecule (Harborne and Simmonds, 1964).  

2.2.1. Sub-classes of Phenolic Compounds 

Sub-classes of phenolic compounds detected in lentil seeds include phenolic acids 

(Amarowicz et al., 2009; Bartolomé et al., 1997; Xu and Chang, 2009; Zhang et al., 

2015), flavan-3-ols and proanthocyanidins (Amarowicz et al., 2009; Amarowicz et al., 

2010; Bartolomé et al., 1997; Dueñas et al., 2002; Dueñas et al., 2003; Escarpa et al., 

2002; Zhang et al., 2015; Zou et al., 2011), anthocyanidins (Takeoka et al., 2005; Xu 

and Chang, 2010), flavonols (Aguilera et al., 2010; Amarowicz et al., 2009; Amarowicz 

et al., 2010; Dueñas et al., 2002; Escarpa et al., 2002; Tsopmo and Muir, 2010; Xu and 

Chang, 2009; Zhang et al., 2015; Zou et al., 2011), stilbenes (Dueñas et al., 2002), 

flavones (Amarowicz et al., 2009; Dueñas et al., 2002; Xu and Chang, 2009, 2010), and 
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flavanones (Aguilera et al., 2010). Descriptions for the detected phenolic compounds in 

lentils and some of the precursors are given in the following section.  

2.2.1.1. Phenolic Acids 

Phenolic acids include hydroxybenzoic acids and hydroxycinnamic acids. 

2.2.1.1.1. Hydroxybenzoic Acids  

As shown in Figure 2.1, hydroxybenzoic acids consist of a C6-C1 skeleton (Green, 

2007). The alcohol group is substituted by a carboxyl group (-COOH) on a phenol ring 

(Vermeris and Nicholson, 2006). 4-Hydroxybenzoic acid, gallic acid, protocathechuic 

acid, and vanillic acid are all hydroxybenzoic acids occurring in lentil seeds (Amarowicz 

et al., 2009; Bartolomé et al., 1997; Xu and Chang, 2009; Zhang et al., 2015). 

 
Figure 2.1. Hydroxybenzoic acids’ structure and examples  
 

2.2.1.1.2. Hydroxycinnamic Acids 

Figure 2.2 shows the basic structure of hydroxycinnamic acids with a common C6-C3 

skeleton (Green, 2007). Cinnamic acid, p-coumaric acid, and ferulic acid are some of 

the examples of hydroxycinnamic acids that have been detected in lentil seeds 

(Amarowicz et al., 2009; Bartolomé et al., 1997; Xu and Chang, 2009).  
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Figure 2.2. Hydroxycinnamic acids’ structure and examples 
 

2.2.1.2. Stilbenes 

Stilbenes are characterized by a C6-C2-C6 skeleton and contain 1, 2-diphenylethylene 

as a functional group (Vermeris and Nicholson, 2006). Resveratrol-3-β-mono-D-

glucoside is an example of a stilbene that can be found in lentil seeds (Figure 2.3) 

(Dueñas et al., 2002).  

             
Figure 2.3. Structure of resveratrol-3-β-mono-D-glucoside 
 

2.2.1.3. Chalcones  

Chalcones have a C6-C3-C6 structure (Figure 2.4) with a linear unsaturated C3-chain 

which is connecting two rings (Vermeris and Nicholson, 2006). Because of their 

precursory role, chalcones are of great importance (Green, 2007). Chalcones can 

produce flavanones, which in turn serve as precursors for flavones and 

dihydroflavonols. 
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Figure 2.6. Flavanones structure with some examples 
 
2.2.1.4.2. Isoflavones 

Isoflavones are structural isomers of flavanones that occur in sprouts and roots of 

pulses. In these compounds, the B-ring is attached to the C-ring at C-3 (Figure 2.7). The 

aglycones diadzein, genistein, glycitein and their glycosides are the most common 

plants’ isoflavones (Green, 2007). 

 
Figure 2.7. Structures of some common isoflavones 
 

2.2.1.4.3. Flavones 

The structures of flavones are similar to flavanones, but they are unsaturated between 

C-2 and C-3 of C-ring (Figure 2.8). Apigenin and luteolin are two important examples of 

flavones that have been detected in lentil seeds (Amarowicz et al., 2009; Dueñas et al., 

2002; Xu and Chang, 2009, 2010) 
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Figure 2.8. Structures and two examples of flavones 
 

2.2.1.4.4. Dihydroflavonols 

Dihydroflavonols are also called flavanonols with a basic structure as represented in 

Figure 2.9. Dihydrokaempferol, dihydroquercetin, and dihydromyricetin are some 

examples of flavanonols (Vermeris and Nicholson, 2006).  

 
Figure 2.9. Structures of some common dihydroflavonols 
 

2.2.1.4.5. Flavonols 

Flavonols are the most common plant flavonoids. The C-3 position in these substances 

tends to be hydroxylated or glycosylated (Green, 2007). Kaempferol, myricetin and 

quercetin are some examples of flavonols that have been found in lentil seeds (Figure 

2.10) (Aguilera et al., 2010; Amarowicz et al., 2009; Amarowicz et al., 2010; Dueñas et 

al., 2002; Escarpa et al., 2002; Tsopmo and Muir, 2010; Xu and Chang, 2009; Zhang et 

al., 2015; Zou et al., 2011).  
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Figure 2.10. Structures of some flavonols 
 

2.2.1.4.6. Leucoanthocyanidins 

Leucoanthocyanidins, also called flavan-3,4-cis-diols, are colourless substances that 

are made from flavanonols (Vermeris and Nicholson, 2006). They are important 

precursors to flavan-3-ols and anthocyanidins. Leucocyanidin, leucodelphinidin, and 

leucopelargonidin are some examples of this group (Figure 2.11). 

 
Figure 2.11. Structures of some common leucoanthocyanidins  
 

2.2.1.4.7. Anthocyanidins 

The C-ring in anthocyanidins is a pyrilium cation (Figure 2.12) (Vermeris and Nicholson, 

2006). Water-soluble glycosides of anthocyanidins are called anthocyanins; such as 

cyanindin-3-glucoside, delphinidin-3-glucoside, and malvidin-3-glucoside. Delphinidin 3-

O-(2-O-β-D-glucopyranosyl-α-L-arabinopyranoside has been detected in black lentil 

(Takeoka et al., 2005). 
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Figure 2.12. Structures of major anthocyanidins 
 

2.2.1.4.8. Flavan-3-ols 

Flavan-3-ols have a completely saturated heterocycle (Figure 2.13). They contain a 

hydroxyl or galloyl group that is attached to C-3 which is a chiral center. Trans and cis 

diastereoisomers such as (+)-catechin and (-)-epicatechin are examples of flavan-3-ols. 

Flavan-3-ols can be found in lentil seeds in large amounts (Amarowicz et al., 2009; 

Amarowicz et al., 2010; Bartolomé et al., 1997; Dueñas et al., 2002; Dueñas et al., 

2003; Escarpa et al., 2002; Zhang et al., 2015; Zou et al., 2011).                                                            

 
 Figure 2.13. Structures of flavan-3-ols 
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2.2.1.4.9. Proanthocyanidins 

Proanthocyanidins, also referred to as condensed tannins, are oligomeric or polymeric 

tannins (beside hydrolysable and complex tannins) that consist of flavan-3-ol subunits. 

Polymers are formed by enzymatic activities and can form complexes of more than 50 

flavan-3-ol units (Vermeris and Nicholson, 2006). Procyanidins, which are oligomers of 

(epi)catechin and prodelphinidins which are oligomers of epi(catechin) and 

epi(gallocatechin) are two major groups of proanthocyanidins that occur in lentil seeds 

in large amounts (Amarowicz et al., 2009; Amarowicz et al., 2010; Bartolomé et al., 

1997; Dueñas et al., 2002; Dueñas et al., 2003; Escarpa et al., 2002; Zhang et al., 

2015; Zou et al., 2011). Figure 2.14 shows an example of a procyanidin dimer.  

 
Figure 2.14. Structure of procyanidin B2 ((−)-epicatechin-(4β→8)-(−)-epicatechin)  
 

2.2.2. Phenolic Compounds in Plants 

Phenolic compounds control different physiological processes of the plants including 

pigmentation and protection against biotic and abiotic stresses.  
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2.2.2.1. Phenolic Compounds as Pigments  

Phenolic compounds are part of the spectrum of pigmentation processes in plants. 

These processes include colours influenced by chlorophyll, carotenoids, betalains, and 

phenolic compounds. Chlorophylls are characterized by the green colour spectrum, 

while carotenoids give deep yellow to orange-red colours to plants. Phenolic 

compounds such as flavones and flavonols are white to pale yellow (Andersen and 

Jordheim, 2010). Proanthocyanins are colourless compounds, but will produce dark 

colours after oxidation (Appelhagen et al., 2011). Anthocyanidins are responsible for 

red, purple, and blue colours of flowers and fruits (Andersen and Jordheim, 2010). 

2.2.2.2. Phenolic Compounds and Stresses 

Biotic and abiotic stresses can affect the production of phenolic compounds in plants. 

The amounts of vanillic and syringic acids in soybean (Glycine max) radicles increased 

under long-term and continuous cold/osmotic stress (Swigonska et al., 2014). Under 

sudden and short-term stress, however, the content of ferulic and p-coumaric acids 

increases. The action of these phenolic acids might be related to free radical 

scavenging potential and their antioxidant activity (Swigonska et al., 2014). Germination 

of Vitis riparia seeds under cold stress is accompanied by the increase in phenolic 

compounds such as gallic acid (Wróbel et al., 2005). Kaempferol derivatives, 

isoflavonoids and anthocyanins can protect plants against UV radiation (Solecka, 1997). 

Biotic stresses (i.e., fungi, bacteria, viruses, nematodes) can induce phenolic 

compounds such as stilbenes and flavonols. Plants with higher resistance to pathogens 

showed higher activity of both phenolic-related enzymes, such as phenylalanine 

ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) and had higher 
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accumulation of phenolic compounds (Solecka, 1997). Flavonoids such as tannins can 

act as astringents that protect plants by deterring overgrazing by herbivores (Solecka, 

1997). 

2.2.3. Phenolic Compounds and Human Beings 

In the past, some phenolic substances were only thought of as anti-nutritional factors. 

For example, tannins can make complexes with iron and reduce bioavailability of iron-

containing substances (Martin and Appel, 2010). Phenolics can interact with growth 

related proteins in humans and inhibit their enzymatic activity (Champ, 2002; Martin and 

Appel, 2010). More recently, phenolic compounds  are considered as a “double-edged 

sword” (Martin and Appel, 2010). Scientists now pay attention to the health benefits of 

phenolics, for example their anti-oxidant, anti-tumour, and anti-heart disease properties 

(Martin and Appel, 2010). 

2.2.3.1. Anti-oxidant Properties of Phenolic Compounds 

Several classes of phenolic substances including phenolic acids have antioxidant 

activity. Phenolic acids donate a hydrogen atom to radicals and form a phenoxyl radical. 

This will terminate radical chain reactions and the formation of new radicals. 

Hydrophobic properties of benzene rings, the hydrogen donating potential of the 

hydroxyl group and the ability of phenolics to chelate metals will increase their anti-

oxidant ability (Hon NG, 2011).  

2.2.3.2. Anti-tumour Properties 

Quercetin, trans-resveratrol, and flavan-3-ols from tea contain cancer preventative 

properties. Phenolic compounds in green tea transcriptionally activated a signaling 

cascade for the elimination of chemical carcinogens by detoxifying enzymes (Vermeris 
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and Nicholson, 2006). Treatment of  colon carcinoma cell lines with phenolic acids such 

as gallic acid inhibited the growth of  these cancer related cells (Hon NG, 2011). 

2.2.3.3. Anti-heart Disease Properties  

The phenolics (+)-catechin, quercetin, and resveratrol showed protective effects against 

coronary heart disease, atherosclerosis, and heart attack. These properties may relate 

to the effect of reactive oxygen species (ROS) on low-density lipoproteins and on 

maturation of lesions in coronary veins (Vermeris and Nicholson, 2006). 

2.2.4. Biosynthesis of Phenolic Compounds 

The general phenylpropanoid pathway generates substrates common to a number of 

phenylpropanoid substances such as phenolic acids, stilbenes, and flavonoids 

(Vermeris and Nicholson, 2006). However, the shikimate and acetate pathways might 

also act in the biosynthesis of some of the phenolic substances. The general 

phenylpropanoid pathway begins with deamination of phenylalanine, which is catalyzed 

by PAL, yielding in cinnamic acid (Figure 2.15). Cinnamic acid is hydroxylated by 

cinnamic acid 4-hydroxylase (C4H) to produce p-coumaric acid (Vermeris and 

Nicholson, 2006). Cinnamic acid and p-coumaric acid can be substrates for the other 

hydroxybenzoic and hydroxycinnamic acids (Green, 2007). P-coumaric acid is 

converted to p-coumaroyl Coenzyme A (p-coumaroyl CoA) by the enzyme 4-coumaric 

acid:CoA ligase (4CL) (Vermeris and Nicholson, 2006). P-coumaroyl CoA with three 

malonyl-CoAs will either produce stilbenes by the action of stilbene synthase (STS) or 

produce chalcone, which is catalyzed by chalcone synthase (CHS). Chalcone produces 

flavanones such as naringenin that is catalyzed by chalcone isomerase (CHI) (Vermeris 

and Nicholson, 2006). Flavones and isoflavones are produced from flavanones by 
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flavonoid-3’-hydroxylase (F3’H), flavone synthase (FS), and isoflavone synthase (IFS) 

(Reinprecht et al., 2013). Flavanone-3-hydroxylase (F3H) can convert flavanones to 

dihydroflavonols such as dihydrokaempferol. Other dihydroflavonols such as 

dihydroquercetin and dihydromyricetin can be produced from dihydrokaempferol by 

F3’H and flavonoid-3’,5’-hydroxylase (F3’5’H) (Albert et al., 2014). Flavonols (e.g., 

kaempferol, quercetin, and myricetin) are produced  from dihydroflavonols by the action 

of flavonol synthase (FLS) (Albert et al., 2014).  

Dihydroflavonols are reduced to leucoanthocyanidins by dihydroflavonol reductase 

(DFR); for example leucocyanidin and lecudelphinidin are produced from 

dihydroquercetin and dihydromyricetin, respectively (Albert et al., 2014). 

Leucoanthocyanidin dioxygenase/anthocyanidin synthase (LDOX/ANS) dehydrates 

leucoanthocyanidins (Vermeris and Nicholson, 2006) and yields anthocyanidins such as 

cyanidin and delphinidin. Flavan-3-ols are produced via an enzymatic reduction; the cis 

configurations of flavan-3-ols (e.g., epicatechin, epigallocatechin) are made from 

anthocyanidins (e.g., cyanidin, delphinidin) by anthocyanidin reductase (ANR), while the 

trans configurations (e.g., catechin, gallocatechin) are produced by leucoanthocyanidin 

reductase (LAR) from leucoanthocyanidins (e.g., leucocyanidin, leucodelphinidin). In the 

next step, flavan-3-ols will be condensed to oligomers and polymers of 

proanthocyanidins by condensing enzyme (CE) in the vacuole (Koes et al., 2005). 

Beside these regulatory genes, a number of transcription factors (TFs) influence gene 

expression in this pathway. R2R3-MYB, WD-repeat (WDR), and basic-helix-loop-helix 

(bHLH) are the conserved TFs of the phenylpropanoid pathway in most plants. Together 
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2.3. Prologue to Chapter 3 

The following research chapter describes a study to determine the phenolic profiles of 

lentil genotypes with four seed coat background colours, specifically green, gray, tan, 

and brown. 

A series of optimization tests were conducted to achieve a fast separation with sufficient 

resolution for analysis of the phenolic profiles of lentil seeds. This series of related 

optimization tests was published in 2014 as a manuscript in J. Chromatogr. B and is 

provided in Appendix 1: 

Mirali, M., Ambrose, S.J., Wood, S.A., Vandenberg, A., Purves, R.W., (2014). 

Development of a fast extraction method and optimization of liquid chromatography–

mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J. 

Chromatogr. B 969, 149–161. 

http://dx.doi.org/10.1016/j.jchromb.2014.08.007 

Copyright for use of this manuscript (# 1) in the thesis was obtained and is reported in 

Appendix 8 of the thesis. 

Chapter 3 was submitted as a manuscript to the J. Nat. Prod. in June 2016 and is under 

review at this time.  
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CHAPTER 3 - PROFILING THE PHENOLIC 

COMPOUNDS OF THE FOUR MAJOR SEED COAT 

TYPES IN LENTIL 

3.1. Abstract  

Phenolic compounds can provide antioxidant health benefits for humans, and foods 

such as lentil can be valuable dietary sources of different sub-classes of these 

secondary metabolites. This study used liquid chromatography-mass spectrometry (LC-

MS) analyses to compare the phenolic profiles of lentil genotypes with four seed coat 

background colours (green, gray, tan, and brown) and two cotyledon colours (red and 

yellow) grown at two locations. The values of various phenolic compounds in lentil 

seeds varied with the different seed coat colours conferred by specific genotypes. Seed 

coats of lentil genotypes with the homozygous recessive tgc allele (green and gray seed 

coats) had higher values of flavan-3-ols, proanthocyanidins, and some flavonols.  

3.2. Introduction 

Lentil seed coats have a wide range of background colour and patterns. The seed coat 

ground colour of lentils is mainly determined by two independent genes: Ggc and Tgc 

(Vandenberg and Slinkard, 1990). The dominant and recessive combinations of two 

alleles at each locus determines the four basic seed coat ground colours known as 

brown (Ggc Tgc), gray (Ggc tgc), tan (ggc Tgc), and green (ggc tgc) (Vandenberg and 

Slinkard, 1990). Furthermore, a single gene controls the inheritance of red vs. yellow 
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cotyledon colour in lentil; the dominant Yc allele will produce a red cotyledon while the 

recessive yc allele produces a yellow cotyledon (Slinkard, 1978).  

Information about the relationship between lentil seed coat colour genes and their 

associated phenolic compound profiles is unknown. Therefore, in this study the phenolic 

compound profile generated by liquid chromatography-mass spectrometry (LC-MS) for 

green, gray, tan, and brown seed coat ground colour phenotypes of lentil with either red 

or yellow cotyledons were compared. The objective was to determine if they are 

characteristic of specific genetic combinations of the alleles of the Ggc and Tgc loci.  

3.3. Materials and Methods 

3.3.1. Plant Material 

Seeds of a lentil recombinant inbred line (RIL) population LR-18 (Fedoruk et al., 2013) 

were obtained from fresh seed lots grown in 2013 at the Crop Development Centre 

(University of Saskatchewan) at the Sutherland (STH) and Saskatchewan Pulse 

Growers (SPG) farms near Saskatoon, Canada. The parents of LR-18 are CDC Robin 

(brown seed coat with red cotyledon) and 964a-46 (pale green seed coat with yellow 

cotyledon). The population segregated independently for both alleles of Ggc, Tgc, and 

Yc genes producing brown, gray, tan, and green seed coat colours and red and yellow 

cotyledon colours. For each seed coat colour combination, seed samples of a subset of 

eight RILs (four yellow and four red cotyledons) from the LR-18 population were 

randomly selected (Table 3.1). Seeds of three replications of each genotype grown at 

both locations were analyzed. Seeds were homogeneous for plumpness and diameter 

(Fedoruk et al., 2013) and had no evidence of seed coat pattern. Furthermore, the 

football fractions (entire decorticated seeds) of two RILs with green seed coat/yellow 
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cotyledon and two RILs with green seed coat/red cotyledon (obtained in three biological 

replicates) were compared. 

Table 3.1. Genotypes and phenotypes of the lentil seed coat samples analyzed.  
LR-18 

RIL 
Number 

of 
Genotype 

at 
Genotype 

at 
Seed Coat 

Colour  
Genotype 

at 
Cotyledon 

Colour 
Group RILs Ggc locus Tgc locus Phenotype Yc locus Phenotype 

1 4 Ggc Tgc Brown Yc red 
2 4 Ggc Tgc Brown Yc yellow 

3 4 Ggc Tgc Gray Yc red 
4 4 Ggc Tgc Gray Yc yellow 

5 4 Ggc Tgc Tan Yc red 
6 4 Ggc Tgc Tan Yc yellow 

7 4 Ggc Tgc Green Yc red 
8 4 Ggc Tgc Green Yc yellow 

 

3.3.2. HPLC-MS 

In this experiment, previously optimized chromatographic conditions (Mirali et al., 2014) 

were applied using reversed phase HPLC on an Alliance 2695 (Waters, UK) with a 996 

PDA UV/VIS detector coupled to a Quattro Ultima (Waters, UK) triple quadrupole MS 

equipped with an electrospray ionization (ESI) interface. The peak area of each analyte 

was integrated with Waters’ MassLynx 4.1 software, and normalized to the peak area of 

a related internal standard (IS). All the flavan-3-ols and proanthocyanidins were 

normalized to the peak area of ±-catechin-2,3,4-13C3. For the rests of phenolic 

compounds, the type of IS was based on the retention time (Rt). Therefore, the peak 

area of salicin/ 4-aminosalicylic acid, 3-hydroxy-4-methoxy-cinnamic acid, resveratrol-

(4-hydroxyphenyl-13C6)/ 4-hydroxy-6-methylcoumarin were applied for the compounds 

with retention time ranges of 0-9, 9.1-13.6, and 13.7-30 min, respectively. The 

chromatographic column was a Core-shell Kinetex pentafluorophenyl (PFP), 100 × 2.1 
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mm id, 2.6 μm particle size (Phenomenex, Torrance, CA). H2O: formic acid (FA) (99:1, 

v/v) as solvent A and H2O: acetonitrile (ACN): FA (9:90:1, v/v/v) as solvent B were used 

for mobile phases at a flow rate of 0.35 mL/min using a gradient detailed in Table 3.2. 

The column oven temperature was 40 °C and the injection volume was 2 µL. 

Quantification of phenolic compounds was done using multiple reaction monitoring 

(MRM) and single ion recording (SIR) in negative or positive modes. For the MRM, 

several functions were defined with various time ranges in the mass spectrometry 

software, while for the SIR, one function with several transitions was used.  

Table 3.2. Mobile phase gradient used in this experiment, where solvent A and B were 
H2O:FA (99;1, v/v) and H2O:ACN:FA (9:90:1, v/v/v), respectively. 

Time (min) A% B% Flow (mL/min) 
0 99 1 0.35 
1 99 1 0.35 
21 59 41 0.35 
24 40 60 0.35 

24.1 20 80 0.35 
26 20 80 0.35 

26.1 99 1 0.35 
30 99 1 0.35 

 

To ensure good reproducibility of the LC-MS method, one of the samples was repeated 

at the start, middle, and the end of a run. In addition, a combination of standards plus 

reconstitution solvent (MeOH: H2O, 10:90, (v/v)) was used as a quality control. Solvent 

blanks and method blanks (solvent plus IS) were also included to ensure that 

contamination was not present (Mirali et al., 2014). 

3.3.3. Reagents and Standards 

Since the optimization method was published (Mirali et al., 2014), some additional 

compounds incorporated into our analysis, an in this study more than 70 compounds 

were included. The related information (including sub-class, retention time, molecular 
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ion, fragment ion, mode of action, and the company of origin) for the total phenolic 

compounds analyzed in the thesis is provided in Tables 3.3 and 3.4. Table 3.3 contains 

phenolic commercially available standards. However, catechin-3-glucoside and 

kaempferol dirutinoside were quantified using MRM based upon previous reports 

(Aguilera et al., 2010; Dueñas et al., 2003). Note that the type of sugar for kaempferol 

dirutinoside was determined based on previous literature, yet the exact bond location 

could not be confirmed. In addition, Table 3.4 presents the retention time and molecular 

ion in positive mode on several oligomers of proanthocyanidins that were detected in 

the lentil seed matrix but were not available commercially. For these oligomers that 

were analyzed based upon previous reports (Dueñas et al., 2003; Mirali et al., 2014), 

the order of C’s (catechin or epicatechin) and G’s (gallocatechin or epigallocatechin) 

given in Table 3.4 was arbitrary.  

 

 

 

 

 

 

 

 

 

 



28 
 

Table 3.3. Characteristics of the phenolic compounds including sub-class, retention 
time, optimum molecular and fragment ions in multiple reaction monitoring (MRM) and 
positive or negative mode 
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Salicin IS 3.5 Neg 285 123 Sigma  
Protocatechuic acid Phenolic acids 3.8 Neg 153 109 Sigma  
4-Aminosalicylic acid IS 3.9 Neg 152 108 Sigma  
Vanillic acid-4-β-D-glucoside Phenolic acids 4.2 Neg 329 167 Sigma  
(−)-Gallocatechin Flavan-3-ols 4.7 Neg 305 125 Sigma  
4-Hydroxybenzoic acid Phenolic acids 5 Neg 137 93 Sigma  
Procyanidin B1 Proanthocyanidins 5.9 Neg 577 289 Extrasy
Cyanidin-3,5-di-O-glucoside  Anthocyanidins 6.1 Neg 609 447 Extrasy
(-)-Epigallocatechin Flavan-3-ols 6.5 Neg 305 125 Extrasy
Catechin-3-glucoside* Flavan-3-ols 6.5 Neg 451 137 
(+)-Catechin Flavan-3-ols 6.6 Neg 289 203 Extrasy
±-Catechin-2,3,4-13C3 IS 6.6 Neg 292 206 Sigma  
Chlorogenic acid Phenolic acids 6.9 Neg 353 191 Sigma  
Delphinidin-3-β-D-glucoside Anthocyanidins 6.9 Neg 463 300 Santa  
Procyanidin B2 Proanthocyanidins 7.1 Neg 577 289 Extrasy
(-)-Epicatechin Flavan-3-ols 8 Neg 289 203 Extrasy
Dihydromyricetin Dihydroflavonols 8.2 Neg 319 193 Sigma  
Kaempferol dirutinoside* Flavonols 8.6 Neg 901 755 
Cyanidin-3-O-rhamnoside Anthocyanidins 8.7 Neg 431 285 Extrasy
Malvidin-3-O-galactoside Anthocyanidins 8.7 Neg 491 313 Sigma  
trans-p-Coumaric acid Phenolic acids 8.7 Neg 163 119 Sigma  
(-)-Epigallocatechin gallate Flavan-3-ols 8.8 Neg 457 169 Extrasy
3-Hydroxy-4-methoxy-
cinnamic acid 

IS 9 Neg 193 134 Sigma  

Quercetin-3,4'-di-O-glucoside Flavonols 9.7 Neg 625 463 Extrasy
trans-Ferulic acid Phenolic acids 9.9 Neg 193 134 Sigma  
Dihydroquercetin Dihydroflavonols 10.2 Neg 303 125 Sigma  
Kaempferol-3-O-robinoside-7-
O-rhamnoside  

Flavonols 10.2 Neg 739 593 Sigma  

Luteolin-3',7-di-O-glucoside Flavones 10.5 Neg 609 285 Extrasy
Procyanidin A2 Proanthocyanidins 10.5 Neg 575 285 Extrasy
Resveratrol-3-β-mono-D-
glucoside  

Stilbenes 10.5 Neg 389 227 Santa  
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Table 3.3. Continued 
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(-)-Epicatechin gallate Flavan-3-ols 10.6 Neg 441 169 Extrasy 
Myricetin-3-O-rhamnoside Flavonols 10.8 Neg 463 316 Extrasy 
Quercetin-3-O-rutinoside Flavonols 10.8 Neg 609 300 Extrasy 
Quercetin-3-O-galactoside  Flavonols 11 Neg 463 300 Extrasy 
Quercetin-3-O-glucoside  Flavonols 11.2 Neg 463 300 Extrasy 
Luteolin-7-O-glucoside Flavones 11.6 Neg 447 285 Extrasy 
Kaempferol-3-O-rutinoside Flavonols 11.8 Neg 593 285 Sigma  

Dihydrokaempferol 
Dihydroflavo
nols 

12 Neg 287 125 Sigma  

Kaempferol-3-O-glucoside Flavonols 12.1 Neg 447 285 Extrasy 
Quercetin-3-O-rhamnoside  Flavonols 12.2 Neg 447 300 Extrasy 
Kaempferol-7-O-neohesperidoside Flavonols 12.3 Neg 593 285 Extrasy 
Apigenin-7-O-glucoside Flavones 12.8 Neg 431 268 Sigma  
Quercetin-4′-O-glucoside  Flavonols 13 Neg 463 301 Sigma  
Myricetin Flavonols 13.3 Neg 317 151 Sigma  
Luteolin-4'-O-glucoside Flavones 13.4 Neg 447 285 Extrasy 
Resveratrol Stilbenes 13.6 Neg 227 143 Sigma  
Resveratrol-(4-hydroxyphenyl-13C6) IS 13.6 Neg 233 149 Sigma  
4-Hydroxy-6-methylcoumarin IS 14 Neg 175 131 Sigma  
Quercetin Flavonols 15.5 Neg 301 151 Extrasy 
Luteolin Flavones 15.9 Neg 285 133 Extrasy 
Naringenin Flavanones 16.8 Neg 271 151 Extrasy 
Kaempferol Flavonols 17.6 Neg 285 187 Sigma  
Apigenin Flavones 17.7 Neg 269 117 Extrasy 
Flavone Flavones 20.2 Pos 223 77 Sigma  
Flavanone Flavanones 22 Pos 225 121 Sigma  

IS is an abbreviation for internal standard, * indicates a phenolic compound for which no 
authentic standard was available Procyanidins B1, B2, and A2 are epicatechin-(4β→8)-
catechin, epicatechin-(4β→8)-epicatechin, and epicatechin-(2β→7,4β→8)-epicatechin, 
respectively.  
Compounds were purchased from Sigma-Aldrich (Missouri, USA), Santa Cruz 
Biotechnology, Inc. (California, USA), and Extrasynthese (Genay, France).  
A Core-shell Kinetex pentafluorophenyl (PFP) column was used with a flow rate of 0.35 
mL/min. The solvent composition was A (H2O: FA (99:1, v/v)) and solvent B (H2O: 
ACN: FA (9:90:1, v/v/v)) with the gradients as shown in Table 3.2.  
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Table 3.4. Characteristics of the proanthocyanidins including, retention time, and  
optimum molecular ion wave length in single ion recording (SIR) and  
positive mode 
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GGC_I Proanthocyanidins 4.7 Pos 899.7 
GC_I Proanthocyanidins 4.9 Pos 595.6 
GGGC_I Proanthocyanidins 5 Pos 1204.8 
GGG Proanthocyanidins 5.3 Pos 915.6 
GGC_II Proanthocyanidins 5.4 Pos 899.7 
GCC_I Proanthocyanidins 5.5 Pos 883.7 
CC-gallate Proanthocyanidins 5.5 Pos 731.7 
GGGC_II Proanthocyanidins 5.6 Pos 1204.8 
GGCC_I Proanthocyanidins 5.6 Pos 1187.8 
GGC_III Proanthocyanidins 5.7 Pos 899.7 
GGGCC_I Proanthocyanidins 5.7 Pos 1492.2 
GC_II Proanthocyanidins 5.9 Pos 595.6 
GGCC_II Proanthocyanidins 6.2 Pos 1187.8 
GCCC_I Proanthocyanidins 6.3 Pos 1171.8 
GGGC_III Proanthocyanidins 6.3 Pos 1204.8 
GCC_II Proanthocyanidins 6.4 Pos 883.7 
GCC_III Proanthocyanidins 6.5 Pos 883.7 
±-Catechin-2,3,4-
13C3 

IS 6.6 Pos 294.2 

GGGCC_II Proanthocyanidins 6.9 Pos 1492.2 
GCCCC_I Proanthocyanidins 6.9 Pos 1460.1 
CCCC_I Proanthocyanidins 7.3 Pos 1155.9 
GCCC_II Proanthocyanidins 7.3 Pos 1171.8 
CCCCC Proanthocyanidins 7.9 Pos 1444.1 
GCCCC_II Proanthocyanidins 7.9 Pos 1460.1 
CCCC_II Proanthocyanidins 8.5 Pos 1155.9 

IS, C, and G stand for internal standard, catechin/epicatechin, 
and gallocatechin/epigallocatechin, respectively.  
The chromatographic conditions were the same as those described in Table 3.2. 
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3.3.4. Sample Preparation 

Phenolic compounds were extracted from lentil seeds as described previously (Mirali et 

al., 2014) with some minor modifications.. Briefly, for each biological replicate 1 mL of 

the extraction solvent (acetone: water (70:30 v/v)) was added to a ~250 mg freeze-dried 

lentil sample in a micro centrifuge tube. Thereafter, two ¼ inch ceramic sphere beads 

were added to the micro centrifuge tube, and samples were crushed to a fine paste with 

a Fast Prep®FP120 (Qbiogene, Inc., Canada) for a maximum of seven consecutive 

times of 45 s each at a speed setting of 4.0. Samples were shaken for 1 h on a rocking 

platform at a speed of 1400 rpm. The tubes were centrifuged twice (12,000 rpm for 5 

min each with the maximum relative centrifugal force rcf of 15300) and 100 µL aliquot of 

the supernatant was dried with a Speed Vac (LABCONCO, Kansas City, USA). Dried 

samples were then reconstituted in 100 µL methanol: water (10:90, v/v) solution. 

3.3.5. Data Analyses 

The analysis of lentil seeds in this research is based upon relative quantification (i.e., 

area ratio of a phenolic compound to an internal standard). Relative quantification is 

commonly used for comparative analyses, especially in metabolomics applications (Lei 

et al., 2011), whenever a quantitative measure of the relative amount but not the 

absolute amount is required, as is the case here in examining changes in phenolic 

compounds. Thus, with relative quantification, the analyte signal intensity is normalized 

to that of an internal standard by dividing the integrated area of each phenolic 

compound to the integrated area of a related IS and reported as area ratio for a given 

analyte. The area ratio was described per mg of dry weight of each seed sample variety 
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and the average of three replicates was reported as mean area ratio per mg sample 

(MARS).   

Data of this chapter were analyzed with a linear mixed model using the lmerTest 

package (Kuznetsova et al., 2016) in R (v. 3.2.4) (R Core Team, 2016). For the best 

model fit, location was considered as a random effect, whereas seed coat colour, 

cotyledon colour, and their interaction were considered as fixed effects. Appendices 2-4 

show the P-values from mixed model ANOVA F-test for the response variables. 

Location showed significant effect on resveratrol-3-ß-mono-D-glucoside, catechin, 

gallocatechin, procyanidin B1, GGC_I, GGC_II, GGG, GGCCs, GGGCs, GCCCC_I and 

GGGCCs. Therefore, these compounds were analyzed separately for SPG (Appendix 

2) and STH (Appendix 3) locations. For the rest of phenolic compounds, data from two 

locations were combined (Appendix 4). 

3.4. Results  

The retention time and the optimized molecular and fragment ions of the standards and 

the potential compounds from different sub-classes of phenolic compounds are 

provided in Tables 3.3 and 3.4. In these studies, several phenolic compounds were not 

detected, which included 4-hydroxybenzoic acid, chlorogenic acid, and trans-ferulic acid 

(phenolic acids sub-class), resveratrol aglycone (stilbenes sub-class), naringenin and 

flavanone aglycones (flavanones sub-class), apigenin, flavone, and luteolin-3',7-di-O-

glucoside (flavones sub-class), kaempferol-3-O-glucoside, kaempferol-7-O-

neohesperidoside, quercetin, quercetin-3-O-glucoside, quercetin-3-O-galactoside, 

quercetin-4'-O-glucoside, quercetin-3,4'-di-O-glucoside (flavonols sub-class), 
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epigallocatechin gallate and epicatechin gallate (flavan-3-ols sub-class), procyanidin A2 

and B2 (proanthocyanidin sub-class), and the anthocyanidins.   

Appendices 2-4 show the P-values from the ANOVA F-test for the effect of cotyledon 

and seed coat colour on MARS of phenolic compounds in lentil seeds from SPG, STH 

or the combination of these two locations. Resveratrol-3-ß-mono-D-glucoside and 

procyanidin B1 at STH location (Appendix 3) and vanillic acid-4-ß-D-glucoside and 

kaempferol dirutinoside in combination at two locations (Appendix 4) were not 

significantly different among seed coat colours, cotyledon colours or their interactions. 

Significant differences among MARS were observed for the remaining phenolic 

compounds in case of seed coat colours, cotyledon colours or their interactions.  

Figures 3.1.a-c show mean comparisons for the main effect of seed coat colour at SPG, 

STH or the combination of both locations. The levels of  procyanidin B1 (at SPG 

location; Figure 3.1.a) and GGGCC_I (at STH location; Figure 3.1.b), were similar in 

lentils with gray and green seed coat colour, and greater than those apparent in seeds 

with brown and tan seed coat colour.. Similar phenomena were apparent for GGGC_I, 

GCCCC_I, and GGGCC_II (at both SPG and STH locations) and quercetin-3-O-

rhamnoside, myricetin-3-O-rhamnoside, and GCCCC_II (Figure 3.1.c). Green seed coat 

lentils contained the highest levels of  flavan-3-ols including catechin (at both SPG and 

STH locations; Figures 3.1.a-b), gallocatechin (at STH location; Figure 3.1.b), and 

catechin-3-glucoside (Figure 3.1.c). In contrast,  resveratrol-3-ß-mono-D-glucoside 

(SPG location) was similar between tan and green seed coat samples; both of these 

had higher levels than lentils with brown and gray seed coats. 
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seed coats with either red and yellow cotyledon had significantly higher levels as 

compared to brown, gray, and tan seed coats (Figure 3.2.a). The levels of GGC_I, 

GGC_II, GGG, GGCCs, GGGC_II, GGGC_III, GGGCC_I were greater in gray and 

green seed coats than brown and tan seed coats, especially for yellow cotyledon 

containing seeds from the SPG location. A similar trend is observed for luteolin-4’-O-

glucoside, CC-gallate, CCCCs, CCCCC, GCs, GCCs, GGC_III, and GCCCs (Figure 

3.2.c). For kaempferol-3-O-robinoside-7-O-rhamnoside, lentils with a green seed coat 

and red cotyledon had higher levels relative to all other genotypes. 
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3-O-rhamnoside and quercetin-3-O-rhamnoside (flavonol sub-class), and 

proanthocyanidin dimers, trimers, tetramers, and pentamers.  Specifically, the levels 

were higher for gray (Ggc tgc) and green (ggc tgc) lentil seed coats than in brown (Ggc 

Tgc) and tan (ggc Tgc) seed coats. Gray and green seed coats have the recessive tgc 

in common, whereas brown and tan seed coats both have the dominant allele (Tgc). 

This indicates that the production of some phenolic compounds, specifically the 

proanthocyanidins, is controlled by the Tgc seed coat colour gene. QTLs for tannins are 

located at the seed coat pattern gene Z (zonal) and seed coat colour V gene (violet 

factor) of common bean (Phaseolus vulgaris) (Caldas and Blair, 2009). Z and V genes 

of common bean map close to the phenylpropanoid pathway genes of 4-coumarate:CoA 

ligase (4CL1) and flavonoid-3’,5’-hydroxylase (F3’5’H), respectively (Reinprecht et al., 

2013). The T locus of soybean (Glycine max), which produces brown (iRT) vs. gray (iRt) 

seed coats, is associated with flavonoid-3’-hydroxylase (F3’H) (Toda et al., 2002). 

Anthocyanidins accumulate in the black (iRT) seed coat of soybean, but are 

undetectable in the brown (irT) seed coat. The genes that affect anthocyanidin 

production are up-regulated in black seeded soybean (Kovinich et al., 2011). 

Proanthocyanidins are basically colourless, but changes by polyphenol oxidase (PPO) 

could oxidize them and cause a change from yellow to brown (Lepiniec et al., 2006; 

Marles et al., 2003). This might be similar to the origin of tan and brown colours in lentil. 

The lower levels of phenolic compounds in tan and brown lentil seed genotypes could 

be due to oxidative events. Therefore, Tgc might be linked to, or associated with, an 

oxidizing enzyme such as PPO, while tgc could be a recessive form that results in less 

oxidation. 
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Although the types of phenolic compounds are consistent for different seed coat 

colours, the MARS value is affected by location and genotype. The random effect of 

location shows significant effect on some phenolic compounds (resveratrol-3-ß-mono-D-

glucoside, catechin, gallocatechin and several of the proanthocyanidins), while the rest 

were not affected by location (including vanillic acid-4-ß-D-glucoside, luteolin-4'-O-

glucoside, catechin-3-glucoside, flavonols, and some proanthocyanidins). Within each 

location, and specifically SPG, the MARS values for gray and green seed coats were 

similar and higher than for tan and brown seed coats. The interaction of seed coat and 

cotyledon colour shows higher MARS values for green and gray seed coat colours, 

specifically for yellow cotyledon containing seeds cultivated at the SPG location.  

Vaillancourt et al. (1986) report a significant genotype × location interaction for total 

tannin content in lentil seed coat; however, the ranking of lentil lines was similar for 

different locations. 

The main effect of seed coat colour or its interaction with cotyledon colour on the levels 

of catechin-3-glucoside, catechin, and gallocatechin indicate the highest values for the 

green seed coat. Catechin and its glycone were detected in both red and yellow 

dehulled samples. There could be an interaction from cotyledons for these that affect 

the values of the analyzed flavan-3-ols in whole seed.  

Most of the phenolic compounds detected in the whole seed were not detected in the 

cotyledons, which is in agreement with (Dueñas et al., 2002). Kaempferol dirutinoside, 

catechin, and catechin-3-glucoside were not significantly different between red and 

yellow cotyledons. However, red cotyledons had higher levels for vanillic acid-4-ß-D-

glucoside and kaempferol-3-O-robinoside-7-O-rhamnoside compared to yellow 
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cotyledons. The red cotyledon is controlled by a dominant allele of Yc, while the 

homozygous recessive form (yc)will produce the yellow cotyledon (Slinkard, 1978). 

Cotyledon colour in lentil is associated with the amount of carotenoids (Thomas, 2016). 

Investigation using a wide range of samples could help determine if compounds within 

the phenolic acid and flavonol sub-classes could affect cotyledon colour in lentil.  

Higher antioxidant activity in lentil might be related to the presence of phenolic acids, 

flavonols, flavan-3-ols, and proanthocyanidins (Fratianni et al., 2014; Xu and Chang, 

2010; Zou et al., 2011).  

As part of the diet, lentils might contribute to the control of blood glucose levels and 

obesity because they contain flavonols (Zhang et al., 2015). Considering the greater 

amounts of flavan-3-ols, proanthocyanidin oligomers, and some flavonols found in 

green and gray seed coats, these types might possess greater antioxidative and health 

promoting properties.  

3.6. Conclusion 

The levels of various phenolic compounds in lentil seeds varied with the different seed 

coat colours conferred by specific genotypes. Specifically, seed coats of lentil 

genotypes with the homozygous recessive tgc allele (green and gray seed coats) had 

higher amounts of flavan-3-ols, proanthocyanidins, and some flavonols. This suggests 

lentils with green and gray seed coats might be more promising as health-promoting 

foods.    

3.7. Prologue to Chapter 4 

The aim of the following study was to develop a better understanding of the phenolic 

compound profiles of seed coats in the zero-tannin (tan) compared with normal (Tan) 
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genotypes of lentil. This work was submitted as a manuscript to PLOS One in May 

2016. The manuscript and this chapter included complementary molecular results that 

were carried out by Dr. Kirstin Bett, Rob Stonehouse, and Rui Song. 
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CHAPTER 4 - BIOCHEMISTRY AND GENETICS OF 

ZERO-TANNIN LENTILS 

4.1. Abstract 

The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in 

a phenotype that is characterized by green stems, white flowers, and thin, transparent 

or translucent seed coats. In this study, one of the major groups of plant pigments, 

phenolic compounds, was compared among zero-tannin and normal phenotypes and 

genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass 

spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for 

the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, 

flavan-3-ols, and proanthocyanidins were only detected in normal lentil phenotypes, but 

not in zero-tannin types. The molecular analysis showed that the tan gene encodes a 

bHLH transcription factor, homologous to the A gene in pea. The results of this study 

suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the 

biochemical pathway of phenolic compounds starting from flavonoid-3’,5’-hydroxylase 

(F3’5’H) and dihydroflavonol reductase (DFR).  

4.2. Introduction 

Phenolics are associated with health benefits including antioxidant activity and 

protection against diseases such as cardiovascular disorders, cancer, HIV, and 

diabetes (Calderón-Montaño et al., 2011; Delgado-Vargas et al., 2000; Manach et al., 

2004; Spilioti et al., 2014; Xiao et al., 2014).  Physical removal of the seed coat of lentils 
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leads to improved iron bioavailability (DellaValle et al., 2013), likely due to the removal 

of phenolic compounds, implying that these compounds interfere with iron nutrition.  

The phenylpropanoid pathway plays an important role in the biosynthesis of different 

groups of phenolic compounds (Vermeris and Nicholson, 2006). The enzymes and 

related genes for branches of the pathway have been defined extensively in model 

plants (Grignon-Dubois and Rezzonico, 2012; Kaushik et al., 2015; Welcha et al., 2008; 

Winkel-Shirley, 2001). Among the numerous phenotypic traits controlled by this 

pathway, pigmentation has been well characterized in several plant species. Generally, 

variability in black, purple, red, pink, brown, and yellow colouration in many tissues is 

the result of different combinations of the end products of this pathway (Andersen and 

Jordheim, 2010). A number of transcription factors (TFs) and modifying enzymes that 

influence gene expression have been identified in this pathway.  The conserved TFs 

R2R3-MYB, WD-repeat (WDR), and basic-helix-loop-helix (bHLH) form an activation 

complex called the MYB-bHLH-WD (MBW) repeat complex (Albert et al., 2014) that 

controls the phenylpropanoid pathway in most plants. 

The lentil market class known as ‘zero-tannin’ is determined by expression of a single 

recessive gene, tan (Vaillancourt et al., 1986). Homozygous recessive tan is epistatic to 

Tgc, but not to Ggc (Vandenberg and Slinkard, 1990). In tan genotypes, the expression 

of the dominant Ggc produces a gray translucent seed coat, while the recessive ggc 

results in a transparent seed coat. The colour of seed coats in tan genotypes does not 

change during storage (Matus et al., 1993) or cooking, and imbibition occurs more 

rapidly. The thinner seed coat results in faster cooking, easier dehulling, and rounder 

seed shape. These characteristics are desirable for processors and consumers, 
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creating opportunities for breeding lentils with higher value. Zero-tannin seeds also 

imbibe water more quickly leading to imbibitional injury at the time of germination 

(Matus et al., 1993; Smýkal et al., 2014), which is a negative agronomic characteristic 

that can be overcome using modified agronomic techniques.   

The tan gene also influences pigmentation of stems and flowers. Wild type lentil plants 

have reddish stems, purple veins on floral tissues, and thicker, pigmented seed coats 

(Vaillancourt et al., 1986). The tan phenotype is characterized by green stems and white 

flowers.  This set of traits is similar to Mendel’s A gene in pea (Pisum sativum) (Mendel, 

1865) which encodes a bHLH TF that has a regulatory function with pleiotropic effects 

(Hellens et al., 2010). The absence of pigmentation in pea is the result of a mutation in 

this bHLH with mis-spliced mRNA caused by a premature stop codon (Hellens et al., 

2010).  The striking similarities between the two sets of phenotypes suggest that the 

lentil homologue of the pea A gene could be the same as the lentil tan gene.  

The objective of this study was to compare the phenolic compound profiles obtained by 

LC-MS of seed coats in the zero-tannin (tan) and normal (Tan) genotypes of lentil along 

with the corresponding genotypic data. This information will help determine what exactly 

tan is and which segments of the phenylpropanoid pathway this gene influences.   

4.3. Materials and Methods 

4.3.1. Plant Material 

The lentil recombinant inbred line (RIL) population LR-30, which consists of 138 lines, 

was derived from a cross between the brown seed coat cultivar CDC Robin (genotype 

Ggc Tgc Tan) and a zero-tannin plant from the breeding line 2670b (genotype Ggc Tgc 

tan).  Both genotypes are homozygous for Tgc and the RILs of this population have 
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either normal brown or gray zero-tannin seed coats based on segregation of the 

dominant or recessive alleles at the Tan locus. Seed coats of RILS were phenotyped 

visually and classified as brown opaque (Ggc Tgc Tan) or zero-tannin gray translucent 

(Ggc Tgc tan). 

In a preliminary test, two subsets of 10 RILs of each phenotype were randomly selected 

for analysis of the phenolic profile of the lentil seeds. Whole seeds of these 20 RILs 

were obtained from three biological replicates that were grown in a randomized 

complete block design in the field in 2013 at Saskatoon, SK, Canada.  

In a second preliminary test, one available gray seed coat normal genotype, CDC 

Maxim (Ggc tgc Tan), was decorticated and seed coats were separated from cotyledons 

and embryos (Mirali et al., 2014). All three seed fractions were similarly analyzed with 

three technical replicates. 

Based on the preliminary analyses, one representative RIL from the Ggc Tgc Tan 

genotype group (LR-30-76) and one representative from the Ggc Tgc tan genotype 

group (LR-30-98) were compared with seed coats of a ggc tan genotype (CDC Gold) 

(Figure 4.1). CDC Gold has a transparent seed coat which allowing its cotyledon colour 

to be easily observed. Seeds of CDC Gold were also produced in the field in 2013 at 

Saskatoon.   
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4.3.3. Sample Preparation 

Sample preparation was conducted similar to that described under §3.3.4 of this thesis. 

For each replicate of whole lentil seeds, 1000 µL of the extraction solvent was added to 

250 mg of freeze-dried sample in micro-centrifuge tubes. When separate seed fractions 

(cotyledons, embryos, and seed coats) were analyzed, the extraction solvent and the 

freeze-dried samples were reduced to 250 µL and 50 mg, respectively.  

4.3.4. Statistical Analysis  

Analysis of variance and means comparisons of area ratio per mg of sample were done 

using R software (v. 3.2.4) (R Core Team, 2016). Duncan’s multiple range test was 

used for comparing the means of area ratio per mg samples (95% confidence level).   

4.3.5. Molecular Markers 

To initially test if the lentil homologue of the A-gene of pea segregated with tan, the 

nucleotide sequence for the pea gene [GU132941] was used to tBLASTx an in-house 

collection of 3’ transcript sequences of lentil from which SNPs had been identified 

(Sharpe et al., 2013). A number of sequences from various lentil lines matched the pea 

sequence. An alignment of these sequences, using BioEdit alignment software (Hall, 

1999), revealed a SNP (LcC01900p336) located 52 nucleotides downstream of the 

STOP codon. A KASP assay (LGC Genomics, Hoddesdon, UK) was designed to assay 

genotypes at this SNP. The allele specific primers were 

A1=GAAGGTGACCAAGTTCATGCTGACAAAATCACGTGATGTTGTGACTC and 

A2=GAAGGTCGGAGTCAACGGATTGACAAAATCACGTGATGTTGTGACTT. The 

conserved primer was C1=AAGCCAATGTGTACCAATGATGTATCATTA. DNA was 

extracted from a single individual of each LR-30 RIL using a modified CTAB extraction 
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(Doyle and Doyle, 1990). The reaction volume was 10 µL and consisted of 50 ng/µL 

DNA, 2X KASP Reaction Mix and 0.17 µM KASP Assay Mix (allele-specific primers, A1 

and A2, and common primer, C1). PCR amplification was carried out in a 

StepOnePlusTm Real-Time PCR System (Applied Biosystems, California, US) and 

fluorescence was analyzed using StepOne Software version 2.1 (Applied Biosystems, 

California, US).  

To identify the putative causal mutation in the gene, the pea sequence was compared to 

a preliminary assembly of the lentil genome (CDC Redberry v0.3) using tBLASTx to 

identify the full lentil homologue.  Nested primers were designed to span the introns 

across the full gene and to amplify fragments from several Tan and tan lines. Amplified 

fragments were electrophoresed on a 1% agarose gel, excised bands were purified with 

a Qiagen gel extraction kit (cat.no. 28706), and the resulting DNA was sequenced using 

the Sanger method.  Sequences were aligned to the reference genome (CDC Redberry 

v0.3) and SNPs identified using BioEdit alignment software.  

A KASP assay, LcZT-Exon6p343, 

 A1 = GAAGGTGACCAAGTTCATGCTGCCCGATGATATTCGGATCGGA, 

 A2 = GAAGGTCGGAGTCAACGGATTGCCCGATGATATTCGGATCGGT, 

 C = GGCCAACAAATGAAAATCTGAGTCCAAAT) was designed for a candidate SNP 

and used to survey a panel of 96 lentil genotypes  representative of a wide range of 

seed coat colours and patterns and the zero-tannin cultivars Cedar, Shasta, CDC Zt-4 

and CDC Gold. 
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4.4. Results  

4.4.1. Biochemical Analysis   

In a preliminary experiment, the analysis of variance showed no significant differences 

between the RILs within either of the same phenotypic groups of normal brown opaque 

seed coats (genotype Ggc Tgc Tan) or gray translucent zero-tannin seed coats 

(genotype Ggc tan) for most of the analyzed phenolic compounds (Appendix 5). In a 

second preliminary experiment, the phenolic profiles of the three seed fractions 

(cotyledon, seed coat, and embryo) of CDC Maxim (gray seed coat) were significantly 

different (Figure 4.2.a,b). Vanillic acid-4-ß-D-glucoside, luteolin, kaempferol glycones 

and aglycone, and flavan-3-ols (including catechin, gallocatechin, and catechin-3-

glucoside) were detected in all three seed fractions. Resveratrol-3-ß-mono-D-glucoside, 

luteolin-4'-O-glucoside, quercetins, myricetins, and oligomers of proanthocyanidins (i.e., 

dimers, trimers, tetramers, and pentamers) were detected only in the seed coat fraction. 
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Based on the results of the two preliminary tests, a deeper investigation of the phenolic 

profile for seed coats that were normal brown opaque (Ggc Tgc Tan), gray translucent 

zero-tannin (Ggc tan), and transparent zero-tannin (ggc tan) was conducted. Among the 

phenolic acids, trans-p-coumaric acid, protocatechuic acid, and vanillic acid-4-β-D-

glucoside were detected in all three phenotypes (Figure 4.3.a). Resveratrol-3-β-mono-

D-glucoside and flavones, including apigenin-7-O-glucoside and luteolin aglycone and 

glycones, were found in all three seed coat types. Among the dihydroflavonols, 

dihydrokaempferol was found in all three seed coat phenotypes, while dihydroquercetin 

was predominantly found in brown opaque and to a lesser amount in the gray 

translucent seed coats. Dihydromyricetin was detected only in the brown opaque 

phenotype. Kaempferol glycones occured in all three seed coat phenotypes. Quercetin-

3-O-rutinoside was detected at a low level in gray phenotypes, whereas quercetin-3-O-

rhamnoside was at a very low level in transparent zero-tannin. Myricetin-3-O-

rhamnoside, however, was found in the brown opaque phenotype, but absent in other 

phenotypes. Similarly, flavan-3-ols including catechin, epicatechin, gallocatechin, 

epigallocatechin, and catechin-3-glucoside were detected in brown opaque seed coats. 

Similar results were observed for proanthocyanidin dimers, trimers, tetramers, and 

pentamers (Figures 4.3.a, b). 
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4.4.2. Molecular Analysis 

The SNP marker LcC01900p336 was identified in a contig that was homologous to the 

3’ end of the A gene of pea.  It was polymorphic between the parents of LR-30 and it co-

segregated with the seed coat phenotype in the segregating RILs. However, when 

tested on a panel of 96 lines, the genotyping results were not correlated with the 

phenotypes (data not shown), suggesting it is not the causative mutation and is simply 

genetically linked in the LR-30 population. Sequencing the exonic regions of this gene in 

multiple tan and Tan lines revealed a common SNP in all three tan lines that was not 

apparent in the Tan lines (Figure 4.4).  The gene consisted of seven exons and this 

SNP, at position 343 in exon 6, introduces a premature STOP codon, which would 

result in a truncated protein and a non-functioning enzyme. Note that the mutation in 

pea that causes the white flower character is caused by a SNP in the splice site at the 

end of Exon 6, and approximately 165 bp after this deletion. The KASP assay LcZT-

Exon6p343, designed to test for this SNP, consistently identified all tan lines and 

demonstrated that none of the Tan lines have the variant allele in the mapping 

population LR-30 and in the diversity panel.  
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Figure 4.4. Structure of LcubHLH highlighting the region of the variant related to tan. 
The tan lines (Cedar, Shasta and CDC Gold) all have a deletion relative to the Tan lines 
(964a-46, CDC Redberry, and CDC Robin). The gene structure and the sequence 
alignment were obtained by FancyGene (Rambaldi and Ciccarelli, 2009) tool and 
BioEdit (Hall, 1999) alignment software, respectively. 
 

4.5. Discussion 

Phenolic compounds are produced through the actions of numerous regulatory genes 

and TFs in the phenylpropanoid pathway. These compounds fulfill different roles 

including seed pigmentation for plants, and health benefits for humans who eat the 

seeds. A combination of biochemical and genetic approaches was used to investigate 

whether a restriction in the phenylpropanoid pathway is responsible for the lack of seed 

coat pigmentation in zero-tannin (tan) lentil phenotypes. To accomplish this, seed coats 

from brown opaque (Ggc Tgc Tan), gray translucent zero-tannin (Ggc tan) were 

compared transparent zero-tannin (ggc tan) phenotypes. 

The most obvious differences between the Tan and tan genotypes were the presence of 

dihydromyricetin, myricetin-3-O-rhamnoside, flavan-3-ols, and proanthocyanidin 

oligomers in the brown lines, and the absence of these in the zero-tannin phenotypes 

(Figures 4.3.a, b). Phenolic compound profile results were superimposed on structural 

steps of the pathway (Grignon-Dubois and Rezzonico, 2012; Kaushik et al., 2015; 

Welcha et al., 2008; Winkel-Shirley, 2001) and is presented as a putative biochemical 



55 
 

pathway in Figure 4.5. Dihydromyricetin can be produced by F3’5’H from 

dihydroquercetin and/or dihydrokaempferol (Figure 4.5). Thereafter, myricetin, 

gallocatechin/epigallocatechin (from flavan-3-ols) and several proanthocyanidins are 

produced from dihydromyricetin at the next steps. None of these phenolic compounds 

were detected in the zero-tannin phenotypes. This shows that the phenylpropanoid 

pathway in these phenotypes is being blocked at the point where F3’5’H acts. 

Catechin/epicatechin requires dihydroquercetin as a precursor; therefore, the 

phenylpropanoid pathway should also be blocked at the location of DFR activity. In 

Brassica carinata seeds, dihydrokaempferol, dihydroquercetin and trace amounts of 

dihydromyricetin accumulate in yellow-seeded (i.e. transparent seed coat) phenotypes, 

while proanthocyanidins occured in brown-seeded phenotypes (Marles et al., 2003). 

The level of mRNA for flavanone-3-hydroxylase (F3H) and flavonoid-3’-hydroxylase 

(F3’H) was similar between dark and transparent seed coats of B. rapa. However, the 

amounts of mRNA for DFR, anthocyanidin synthase (ANS), and anthocyanidin 

reductase (ANR) were similar in transparent seed coat phenotypes (Li et al., 2012). 

Arabidopsis thaliana tt3 mutant seeds have transparent seed coats, and visible 

anthocyanidins or proanthocyanidins are absent in the tt3 mutant, because it lacks DFR 

mRNA (Shirley et al., 1995). Strong down-regulation of ANR and ANS lead to reduced 

amounts of proanthocyanidins and anthocyanidins and a transparent seed coat in 

Medicago truncatula (Li et al., 2016).  
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ggc Tgc tan genotypes. The gene MtTT8 in M. truncatula (which is a homologous 

bHLH) controls proanthocyanidin- and anthocyanidin-related genes such as ANR and 

ANS (Li et al., 2016). A large insertion mutation in BrTT8 results in transparent 

phenotype in B. rapa. This bHLH controls the expression of ANS and ANR (Li et al., 

2012). The allele tt3 (DFR) in A. thaliana seeds with transparent seed coat is controlled 

by a group of TFs including bHLHs such as TT8 (Appelhagen et al., 2011). TT2 (R2R3-

MYB protein) and TTG1 (WDR protein) control DFR, and thus also interact to control 

the phenylpropanoid pathway genes. A ternary MBW complex has been proposed for 

controlling the downstream sections of the phenylpropanoid pathway (Appelhagen et 

al., 2011). Therefore tan, as the bHLH component of this MBW complex, interacts with 

the regulatory genes in the phenylpropanoid pathway for F3’5’H and DFR, as well as 

downstream processes.   

All the analyzed phenolic acids were found in all three lentil seed coat types (Figure 

3a). Among the flavonols, kaempferols were found in all three seed coat phenotypes 

tested. The aglycone and glycones of kaempferol were detected in the embryo, 

cotyledon, and seed coat fractions (Figure 4.2.a). However, the remaining flavonols, 

including quercetins and myricetins, were detected in the seed coat, but not other 

fractions (Figure 4.2.a). The analysis did not detect dihydroquercetin in the transparent 

phenotype, however quercetin glycones were found in all three lentil seed coat colours. 

This suggests that dihydroquercetin should be present in the transparent seed coat.  

Since the signal intensity of the dihydroquercetin peak in brown seed coat extracts was 

observable but weak, it appears this compound is in low abundance.   
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The phenylpropanoid pathway affects characteristics of plants besides pigmentation, 

including protection of the plant against stresses. Although seed coat phenolics can 

provide a good barrier against pathogens, newly germinated seeds also need to be 

protected by chemical defense materials such as phenolic compounds (Gallery et al., 

2010). Dueñas et al. (2002) reported that catechin and various phenolic acids were 

present in lentil cotyledons (Dueñas et al., 2002) but they did not report flavonoids in 

cotyledons of lentils. My study detected a diversity of phenolic compounds, including 

phenolic acids, flavones, flavonols, and different flavan-3-ols in the cotyledon and 

embryo fractions. All or some of these compounds could play a role in the protection of 

the embryo and cotyledons. 

Zero-tannin lentils do not change seed coat colour during storage (Matus et al., 1993), 

which could be due to the lack of flavan-3-ols and proanthocyanidins. However, 

phenolic compounds improve seed establishment (Randhir and Shetty, 2003), and as a 

result seeds harbouring lower levels could be more prone to damage caused by rapid 

water imbibition during germination (Matus et al., 1993; Smýkal et al., 2014). Zero-

tannin lentils are more susceptible to soil- and seed-borne diseases, a problem that is 

circumvented by application of seed-applied fungicides (Matus and Slinkard, 1993).  

Flavan-3-ols such as catechin and gallocatechin show anti-inflammatory and anti-

oxidative activity and have been associated with the reduction of some cardiovascular 

diseases (Gonza´ Lez et al., 2011; Toh et al., 2013) and proanthocyanidins are the 

major antioxidants entering the colon (Manach et al., 2004). These compounds reduce 

cholesterol (Toh et al., 2013), inhibit the growth of breast cancer cells (Ramljak et al., 

2005), and protect the prostate (Lei et al., 2014). Zero-tannin lentils cannot provide the 
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health benefits associated with flavan-3-ols and proanthocyanidins. However, some 

health advantages could be associated with zero-tannin phenotypes.  Phenolic acids, 

flavones, and flavonols showed anti-oxidative (Calderón-Montaño et al., 2011; Delgado-

Vargas et al., 2000; Spilioti et al., 2014 ), anti-cardiovascular disease (Calderón-

Montaño et al., 2011), anti-cancer (Calderón-Montaño et al., 2011; Manach et al., 2004; 

Spilioti et al., 2014; Xiao et al., 2014), anti-diabetic (Calderón-Montaño et al., 2011; Xiao 

et al., 2014), and anti-HIV (Calderón-Montaño et al., 2011; Xiao et al., 2014) effects. 

They also increase the bioavailability of iron (Hart et al., 2015), and represent better 

candidates for iron biofortification programs in lentil (Tako et al., 2014).  

4.6. Conclusion 

Using lentil RILs, the biochemical seed coat phenotype determined by the gene Tgc in 

RILs was found to be altered by the epistasis resulting from the expression of tan. The 

LC-MS analysis detected several phenolic compounds that were not influenced by tan, 

notably the phenolic acids, flavones, some flavonols, and some of dihydroflavonols. 

Myricetin, dihydromyricetin, and all the analyzed flavan-3-ols, and proanthocyanidin 

oligomers were detected only in Ggc Tgc Tan lines and therefore can be controlled by 

tan. Molecular analysis showed that tan is a bHLH transcription factor, and is the same 

as the A gene in pea. In other plant species, this transcription factor interacts with the 

regulatory genes in the phenylpropanoid pathway, including those controlling the 

expression of F3’5’H and DFR and downstream steps. This new knowledge of the 

underlying basis of the genotypes and phenotypes of zero-tannin lentil seed coats will 

be useful in designing breeding strategies for the development of lentil cultivars with 

improved nutritional profiles. 
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4.6. Prologue to Chapter 5 

The goal of the following research chapter was to compare phenolic compound profiles 

of fresh lentils with those stored for long periods. This chapter was published in Eur. 

Food Res. Technol. in June 2016.  

Mirali, M., Purves, R.W., Vandenberg, A. (2016). Phenolic profiling of green lentil (Lens 

culinaris Medic.) seeds subjected to long-term storage. Eur. Food Res. Technol. DOI 

10.1007/s00217-016-2713-1 

Copyright for use of this manuscript (# 2) in the thesis was obtained and is reported in 

Appendix 9 of the thesis. 
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CHAPTER 5 - PHENOLIC PROFILING OF GREEN 

LENTIL SEEDS SUBJECTED TO LONG-TERM 

STORAGE 

5.1. Abstract 

Lentils have several desirable properties that make them a healthy and nutritious food 

option. The visual characteristics of the seed coat are important factors that determine 

the marketability and, ultimately, the sale price of whole lentils. However, the seed coat 

colour is not stable and green lentil in particular changes colour over time. While total 

phenolic content significantly affects darkening of lentil seeds, this study investigated 

the effect of specific phenolic compounds in the seed darkening process in detail. The 

phenolic compound profiles of six green lentil cultivars were analysed using liquid 

chromatography-mass spectrometry. To maximize the potential amount of change, the 

oldest seeds available were compared with fresh seeds. Some increases in amounts 

were noted for some phenolic acids and flavones. The most notable result was a 

decrease in the amount of all 27 flavan-3-ols and proanthocyanidin oligomers. 

Polymerization of these oligomers (the major phenolic compounds in green lentil seed 

coat tissue) results in their cross-linking with the cell wall. The consequence will be seed 

darkening and reduction in the extractability of these oligomers. 

5.2. Introduction 

The range of background colours and patterns of lentil seed coats determines the 

market classes for whole lentil seeds. Approximately 25% of the lentil crop in Canada, 
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biochemicals involved in seed coat darkening will inform breeding strategies aimed at 

overcoming this process, thereby preserving economic value.  

Different pigments such as chlorophylls and phenolic compounds form the variety of 

pigments occurring in plants. While chlorophylls are characterized by a green colour, 

phenolic compounds such as flavan-3-ols, proanthocyanidins, flavones, and flavonols, 

are colourless, white, and pale yellow (Andersen and Jordheim, 2010). Anthocyanidins 

make intense colours from orange and red to blue (Andersen and Jordheim, 2010). 

Greener lentil seeds have higher amounts of chlorophyll a and b (Davey, 2007). 

Chlorophyll breaks down with age and is converted to colourless compounds in 

chloroplasts. These colourless compounds will change to differently structured 

compounds that are finally stored in vacuoles (Christ and Hörtensteiner, 2014; H¨ 

ortensteiner, 2006). Seed coat darkening is a phenomenon that can significantly affect 

the greenness of the seed coat and phenolic compounds play an important role. The 

effect of storage on the total amount of phenolics (as detected by spectrophotometric 

methods) or sub-classes of phenolic compounds (applying chromatographic methods) 

has been studied in various plant tissues (Appendix 6). Spectrophotometric analysis of 

total phenolics and total proanthocyanidins in lentil seed reveals a decrease is possible 

during storage (Nozzolillo and Bezada, 1984; Pirhayati et al., 2011). To date no studies 

have examined the impact of storage on the profiles of  phenolic compounds in lentil 

seed coats.  

The objective of the current study was to use an optimized LC-MS method to compare 

phenolic compound profiles of fresh green seeds with those that have experienced long-

term storage (LTS).   



64 
 

 

5.3. Materials and Methods 

5.3.1. Plant Material 

A preliminary study analyzed seeds of the recombinant inbred line (RIL) LR-18-183 from 

the LR-18 (CDC Robin × 964a-46) (Fedoruk et al., 2013) population harvested in 2009 

and 2014. Seeds were obtained from the Crop Development Centre, University of 

Saskatchewan, Saskatoon, Canada. Breeder seeds of six green lentil cultivars (Table 

5.1) were also obtained from the same source. Fresh seeds of these cultivars were 

harvested in 2014 and, for comparison, older seeds (harvested in 2000-2007) were 

obtained from the long-term storage facility. The storage facility was a routine type that 

is commonly used for seed storage; as a result, the temperature and humidity were not 

controlled and subject to seasonal fluctuations. Both fresh and LTS seeds were 

analyzed four months after harvest of the 2014 seeds in three replicates for each 

cultivar as described below.  

Table 5.1. Genotype names and storage duration of green lentils used in this 
experiment 

Sample number Variety Year 

1 
CDC Imigreen 

2007 

2 2014 

3 
CDC Impower 

2007 

4 2014 

5 
CDC Greenland 

2006 

6 2014 

7 
CDC Improve 

2006 

8 2014 

9 
CDC Meteor 

2005 

10 2014 

11 
CDC Plato 

2000 

12 2014 
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5.3.2. HPLC-MS 

Previously optimized chromatographic conditions (Mirali et al., 2014) were applied using 

an Agilent 1100 (Agilent, Germany) high-performance liquid chromatograph (HPLC) 

with G1315 PDA UV/VIS detector coupled to a Thermo Finnigan TSQ Quantum Ultra 

(Thermo Fisher Scientific Inc., UK) triple quadrupole MS equipped with a heated 

electrospray ionization (HESI) interface. Peak areas were obtained with Thermo 

Xcalibur 2.1 software. The chromatographic column, mobile phases, flow rate, and the 

gradient were the same as what described in §3.3.2.  

Relative quantification of phenolic compounds was done using SRM in positive or 

negative mode and SIM in positive mode. The values are reported as the area ratio per 

mg weight as described in §3.3.5. Also, to ensure that the targeted method was not 

missing any significant changes in the phenolic compound profiles, full scan LC-MS 

spectra (m/z 140-1500) with UV-VIS detection (250-600 nm) were also acquired in both 

positive and negative modes (Figure 5.2). 
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5.3.3. Sample Preparation 

Sample preparation was conducted similar to that described under §3.3.4 with minor 

modifications. Samples were pulverized with a Mini-Beadbeater-16 (BioSpec Products 

Inc., OK, USA) for 5.5 min. In addition, samples were shaken for 1 h on a Thermomixer 

(Eppendorf, Germany) at a speed of 1400 rpm at room temperature. Thereafter, an 

aliquot of the final supernatant was diluted 10 times with Milli-Q water and transferred to 

glass vials for analysis.   

5.3.4. Statistical Analysis 

A comparison among means was done using R software (v. 3.2.4).(R Core Team, 

2016). The experimental design was based on completely randomized design. 

5.4. Results  

Samples of LR-18-183 lentils used in the preliminary test were harvested in 2009 and 

2014 and compared using LC-MS/MS (Mirali et al., 2014) to investigate changes in the 

phenolic profile that occurred during storage (Appendix 7). The study was used to 

assess whether the changes in the levels of phenolic compounds were sufficient to 

warrant a more rigorous test of the rest of the population. Minimal differences between 

the samples were apparent over a period of 5 years. Note that during the course of the 

year, the daily average temperature varies between -14 C and +19 C in Saskatoon 

(Goverment-of-Canada, 2016). Thus, a plausible explanation for the minimal change is 

the influence of the very low temperatures (below 0 °C) experienced during winter 

storage in Saskatoon (6 months); that is, during the winter months little to no change is 

expected to occur. Because the available RILs that were less than 5 years old showed 
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only small changes, it was therefore decided to investigate further using older seed of 

several cultivars with green seed coats.  This was done in order to maximize the 

amount of time for change to occur, which in turn, should help to simplify data 

interpretation.  Consequently, the oldest breeder seed available was used and the 

storage durations varied from 7 to 14 years (Table 5.1).  

Signal responses were found for all phenolic compounds analyzed using SRM and SIM 

methods and in both fresh and LTS seeds for all six genotypes including phenolic acids, 

stilbenes, flavones, flavonols, and flavan-3-ols. Moreover, dimers, trimers, tetramers, 

and pentamers of proanthocyanidins were observed in lentil samples.  

Figures 5.3.a-f show mean area ratio of phenolic compounds per mg of fresh and old 

samples of CDC Imigreen, CDC Impower, CDC Greenland, CDC Improve, CDC Meteor, 

and CDC Plato genotypes. Vanillic acid-4-ß-D-glucoside (phenolic acids sub-class) and 

luteolins (flavones sub-class) were elevated in LTS seeds compared to fresh seeds of 

most of the genotypes. Mean area ratio of the flavonols sub-class per mg of different 

genotypes remained mostly unchanged between fresh and LTS samples; though 

kaempferol-3-O-robinoside-7-O-rhamnoside and kaempferol dirutinoside showed lower 

values in some of the long-term stored genotypes (e.g., CDC Impower, CDC Greenland, 

and CDC Plato), while quercetin-3-O-rhamnoside showed higher values (e.g., CDC 

Meteor and CDC Plato). A significant reduction after storage in mean area ratio of 

flavan-3-ols (including catechin, gallocatechin, and catechin-3-glucoside) per mg of all 

six genotypes observed. A similar reduction was noticed in the 24 detected 

proanthocyanidins (including dimers, trimers, tetramers, and pentamers of 

catechin/epicatechin and gallocatechin/epigallocatechin) for all the genotypes.  
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phenolic compounds profile from species that were not targeted by the SRM and SIM 

methods was ruled out.   

5.5. Discussion 

Marketability of green lentil depends largely on a stable green colour of the seed coats, 

and storage can dramatically affect the greenness and marketability of this crop. 

Phenolic compounds are involved with seed darkening (Aaby et al., 2007; Beninger et 

al., 2005; Cakmak et al., 2010; Carbone et al., 2011; Howard et al., 2010; Mareuardt et 

al., 1978; Martín-Cabrejas et al., 1997; Nasar-Abbas et al., 2009; Nozzolillo and 

Bezada, 1984; Srisuma et al., 1989; Zhou et al., 2010). Using LC-MS, the phenolic 

profiles of fresh seeds and the oldest available breeder seed samples were compared 

(to maximize the aging time). The type of phenolic compounds observed in the samples 

is consistent with previous analyses of lentil seeds (Aguilera et al., 2010; Bartolomé et 

al., 1997; Dueñas et al., 2002; Dueñas et al., 2003; López-Amorós et al., 2006; Zou et 

al., 2011). 

Storage increased the amount of vanillic acid-4-ß-D-glucoside, luteolin, and luteolin-4’-

O-glucoside. Srisuma et al. (2007) and Aaby et al. (1989) reported the rise of phenolic 

acids, such as ferulic, sinapic, and ellagic acids, in other plant materials. These 

increases could be related to the degradation of more complex phenolic compounds 

such as those with several sugar conjugates (Rothwell et al., 2015).  

Although some increases (e.g., quercetin-3-O-rhamnoside) and decreases (e.g., 

kaempferol-3-O-robinoside-7-O-rhamnoside and kaempferol dirutinoside) observed in 

flavonols when comparing fresh and LTS samples, these compounds, on average, 

remained essentially unchanged during LTS conditions. This is similar to reports for 
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pinto bean, for which the levels of analyzed flavonols in non-aged and aged seeds was 

not significantly different (Beninger et al., 2005). The pattern for the changes in mean 

area ratio per mg sample indicated that flavonols with a largest number of sugars 

decrease slightly whereas those with only one sugar increase slightly. These data 

support the hypothesis that more complex phenolic compounds (e.g., those with a 

larger number of sugars) may be breaking down to produce more compounds with a 

smaller number of sugars.  

The LC-MS analysis of the lentil samples showed a significantly declining trend for all 

27 flavan-3-ols and oligomers of proanthocyanidins after LTS. Some of the variations in 

the degree of change among the different genotypes may have to do other variables 

(e.g., environmental factors), but since all six genotypes showed the same decreasing 

trend after storage, it is extremely likely that these changes are attributed to storage 

effects. In other plant materials, flavan-3-ols and oligomers of proanthocyanidins 

analyzed separately by chromatography (Carbone et al., 2011; Howard et al., 2010; 

Zhou et al., 2010) and/or combined with MS methods (Aaby et al., 2007) as well as total 

proanthocyanidins analyzed by spectrophotometric methods (Beninger et al., 2005; 

Mareuardt et al., 1978; Nasar-Abbas et al., 2009; Nozzolillo and Bezada, 1984) also 

declined after storage.  

Green lentil seed coats darken over time during storage to dark brown, and this results 

in leakage of different soluble materials into the imbibition medium (Nozzolillo and 

Bezada, 1984). Nevertheless, phenolic compounds were not found in large quantities 

among the leaked materials. The authors proposed polymerization of low molecular 

weight flavan-3-ols and oligomers of proanthocyanidins as the possible reason 
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(Nozzolillo and Bezada, 1984). Different models have been introduced for the 

biosynthesis of proanthocyanidins, including conversion of flavan-3-ols to quinone 

methides or their protonated carbocation, which results in polymerization into colourless 

proanthocyanidins (He et al., 2008). Proanthocyanidins can be produced either through 

the endoplasmic reticulum or via plastids such as chloroplasts (Zhao, 2015). Re-

differentiation of chloroplasts, occurs under stress or ageing processes (Kaewubon et 

al., 2015), and causes swelling of chloroplasts and formation of tannosomes, which are 

structures that contain thylakoids and tannins (Brillouet, 2015). This could explain why 

the green colour is replaced by a darker colour. Proanthocyanidins produced in the 

endoplasmic reticulum and tannosomes from chloroplasts are mostly stored in vacuoles 

with a minor percentage in cell walls (Toivonen and Brummell, 2008). 

Proanthocyanidins have oxidizable OH groups (OH groups that are adjacent to each 

other), which make them good substrates for oxidative enzymes such as polyphenol 

oxidase (PPO) and peroxidase (POD) (Madinez and Whitaker, 1995). Note that PPO is 

located in plastids, whereas POD occurs in plastids, mitochondria, and cytosol 

(Toivonen and Brummell, 2008). Stress or ageing could increase reactive oxygen 

species (ROS) in the stored plant materials. ROS could react with cell membrane lipids 

and cause breakdown of membranes and decompartmentalization of organelles 

(Lattanzio, 2003). This will intermix oxidative enzymes with their potential substrates, 

i.e., proanthocyanidins (Toivonen and Brummell, 2008), a process that will produce 

short-lived highly reactive intermediates, such as semiquinones and quinones (Pourcel 

et al., 2006; Toivonen and Brummell, 2008). As a result, some non-enzymatic reactions 

with other phenolic compounds in particular, but also with proteins and polysaccharides 
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in the cell wall, could be expected to occur (Pourcel et al., 2006). Cross-linking of 

proanthocyanidins with other phenolic compounds and especially with the cell wall has 

been proposed as the source of the brownish compounds that give the seed coat colour 

(Pourcel et al., 2005; Zhao, 2015). Some quinone products have been observed in vitro 

(Guyot et al., 1996; Tanaka et al., 2002), but an LC-UV-MS analysis did not provide any 

evidence for this in the lentil samples. A comparison of chromatograms obtained using 

total ion current and UV-VIS detection of fresh and LTS samples of green lentil seeds 

did not show significant differences. The possibility remains that lower abundance 

species were also affected because not all peaks were large enough to be separated 

from the baseline signal in these chromatograms. More likely, numerous possible new 

quinone species could form from ROS, but these species are highly reactive and could 

react with several different phenolic compounds thereby producing many possible 

products. Thus the overall signal would be diluted into many small signals that would 

become indistinguishable from the baseline. This is in contrast to in vitro experiments in 

which only a small number of compounds were present and therefore specific favored 

pathways could produce identifiable peaks.   

Proanthocyanidins make up the largest proportion of phenolic compounds in lentil seed 

coat tissue (Dueñas et al., 2002). The bursting of vacuoles caused by cell death might 

transport proanthocyanidins from the vacuole to the cell wall (Hörtensteiner, 2006). 

Pang et al. (2007) suggest that the proanthocyanidins are initially soluble when they are 

in vacuoles and then become insolubilized after attaching to the cell wall. 

Proanthocyanidins are good H-donors and can easily make hydrogen-bonds (Cheynier 

et al., 2013). Having several reactive sites, oligomers and polymers of 
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proanthocyanidins can be encapsulated within the gel structure of cell wall 

polysaccharides. Proanthocyanidins and cell wall polysaccharides bind through H-

bonding and hydrophobic interactions (Renard et al., 2001). All of these will result in 

stronger binding of proanthocyanidins with cell wall materials and make them extremely 

hard to extract (Hanlin et al., 2010), which is the reason for the significant reduction in 

their storage ratio in the lentil samples.  

5.6. Conclusion 

Overall, this work addresses the fact that LTS darkens the green colour in lentil seeds; 

this reduces marketability and affects the economic value of green lentil, which is based 

on the visual characteristics of the seed coat. Increases in phenolic acids and flavones 

occur in green lentil seeds after storage, possibly because of the breakdown of more 

complex phenolic species into smaller subunits. A significant decrease in 27 flavan-3-

ols and proanthocyanidins also occurs. During storage, enzymatic and non-enzymatic 

reactions will polymerize proanthocyanidins and result in cross-linking of these major 

phenolic compounds with cell wall materials. This will produce dark pigments and 

reduce their extractability. The findings of this study help to narrow down the genes of 

interest responsible for lentil seed darkening. Enzymatic analysis could be used as a 

more explicit indicator of how phenolic compounds in lentil seed coats change over 

time. 
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CHAPTER 6 - GENERAL DISCUSSION 

6.1. Discussion 

Lentil has a diverse range of seed coat colours including clear, green, tan, gray, brown, 

and black. Seed coat colour is an important grading factor that affects the market value 

of lentils. In lentil, two independent loci (Ggc and Tgc) determine the four basic seed 

coat background colours; brown (Ggc Tgc), gray (Ggc tgc), tan (ggc Tgc) and green 

(ggc tgc). The zero-tannin locus (tan) is epistatic to the tgc locus, resulting in clear seed 

coats. Lentil is a good source of macronutrients and secondary metabolites including 

phenolic compounds. Phenolic compounds are responsible for different colours in plants 

from yellow and red to blue. Phenolic compounds have been associated with human 

health benefits such as anti-oxidant, anti-tumour, and anti-heart disease properties. The 

purpose of this research was to analyze the phenolic compound profiles of the seed 

coats of a series of lentil genotypes with defined seed coat background colour based on 

genetic analysis. It included an investigation of differences in the phenolic profile 

between tannin containing and zero-tannin phenotypes of lentil. It also determined what 

changes occur in the phenolic profile of lentil seed coats during storage.   

The first objective of this research was to determine if specific phenolic profiles of 

different lentil seed coat colours are characteristic of the four specific genetic 

combinations of alleles for the Ggc and Tgc loci. The results showed that the levels of 

various phenolic compounds in lentil seeds varied among the green, gray, tan, and 

brown seed coat colours. Specifically, seed coats of lentil genotypes with the 

homozygous recessive tgc allele (green and gray seed coats) had higher amounts of 

flavan-3-ols, proanthocyanidins, and some flavonols. This indicated that the production 
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of some phenolic compounds in lentil, specifically the flavan-3-ols and 

proanthocyanidins, is controlled by the Tgc seed coat colour gene. 

The phenolic profiles of lentil seed coats that do not express the Tgc gene (genotype 

Tgc tan) were compared with those that express Tgc (genotype Tgc Tan). The LC-MS 

analysis detected several compounds that were not influenced by tan, notably the 

phenolic acids, flavones, some flavonols, and some dihydroflavonols. Myricetin, 

dihydromyricetin, and all the analyzed flavan-3-ols, and proanthocyanidin oligomers 

were detected only in Ggc Tgc Tan lines and therefore can be controlled by tan.  

Molecular analysis revealed that tan is a bHLH transcription factor, and is the same as 

the A gene in pea. The LcZT-Exon6p343 allele found in tan lentil genotypes, introduces 

a premature STOP codon that prevents the expression of a full copy of bHLH. As tan is 

epistatic to Tgc, the tan ground colour is not observed in Ggc Tgc tan or ggc Tgc tan 

genotypes. This transcription factor interacts with the regulatory genes in the 

phenylpropanoid pathway starting at the point F3’5’H and DFR act.  

The last objective of this research was to determine the effect of LTS on the specific 

changes in phenolic compounds in lentil seeds. Increases in phenolic acids and 

flavones occur in green lentil seeds after storage. In addition, a significant decrease in 

27 flavan-3-ols and proanthocyanidins also occurs, possibly because of the 

polymerization of these sub-classes during storage.  

Two major market classes determine lentil value. The green market class has green 

seed coat colour and is consumed as whole seed, while the red market class has gray, 

tan or brown seed coat and is consumed as dehulled football or split. There are some 

niche market classes such as French green, Spanish brown, Beluga, and zero-tannin. 
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Results of this research add more value for consuming whole green lentil seeds 

specifically with green and gray seed coat colours. Flavonols and procyanidin trimers 

showed the most antioxidant capacity in lentil seed coat (Dueñas et al., 2006), whereas 

in whole lentil seeds, the tannin fraction (i.e., proanthocyanidins) showed higher 

antiradical activity and higher reducing power (Amarowicz et al., 2009; Amarowicz et al., 

2010).  

Typically, seed coats of dehulled lentils are fed to livestock. Since the seed coats are a 

good source of phenolic compounds, more profit could be obtained from lentil seed 

coats. Considering each ton of lentil produces 80-110 Kg seed coats (Dueñas et al., 

2002), and 9-22 % seed coat-methanol-water extract can be yielded out of it (i.e., 7-24 

Kg extract) (Ronzio et al., 1998); Out of this amount of extract, 700-2400 g phenolic 

compounds may be obtained (Ronzio et al., 1998). Therefore, lentil seed coat extract 

can be a potential plant-based antioxidant in producing supplements. Also, protecting 

ground meat against oxidation by using lentil seed coat flour (Der, 2010) is an 

innovative idea. More uses for this source of natural antioxidant could be developed for 

lentil seed coats in biofortifing foods and nutraceutical purposes. 

Zero-tannin lentils and specifically their transparent phenotype may increase the 

bioavailability of iron. While normal lentil seed coats decreased the iron uptake in Caco-

2 cells experiment, gray zero-tannin extracts with up to 50 µg/mL extract concentration 

increased the iron uptake (Hart et al., 2016. Unpublished data).  Interestingly, the iron 

uptake for zero-tannin transparent lentil showed an increase of eight times higher 

concentration (400 µg/mL) (Hart et al., 2016. Unpublished data); this could be due to the 

lack of phenolic compounds such as myricetin in zero-tannin lentils (Hart et al., 2015). 
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Increasing the iron uptake will make zero-tannin lentils more suitable candidates for iron 

biofortification (Tako et al., 2014), as they should have less inhibitors of iron uptake. The 

seeds of zero-tannin lentils are rounder or plumper compared to normal lentil 

genotypes. This might be due to alteration of the seed coat structure caused by lack of 

proanthocyanidins. Seed plumpness may also increase dehulling efficiency by 

increasing dehulling recovery after decortication because of seed coat structural change 

(Fedoruk, 2013). Plumpness of dehulled lentils may also change the perceived colour of 

the product. Plumper seeds appear to be richer in cotyledon colour and they may also 

cook faster, which will increase consumer appeal. Zero-tannin lentils also do not darken 

during storage. All of these characteristics make zero-tannin lentil a good candidate for 

diversification of breeding programs and development of potential new markets for lentil.   

The flavan-3-ols and proanthocyanidins are controlled by tgc, while tan, a bHLH 

transcription factor, can affect their production. The major reason for changes in seed 

coat colour during long-term storage is the polymerization of these two sub-classes of 

phenolic compounds, which will reduce their extractability and probably their 

bioavailability. Optimizing storage condition of lentil seeds might decrease the benefit 

loss after storage. It may also be possible to develop genotypes that exhibit reduced 

rate of polymerization by investigating the factors that influence the activity and 

concentration of key enzymes. Findings of these studies will be helpful to design lentil 

cultivars with improved nutritional profiles and better marketability.   

6.2. Future work 

Our optimized LC-MS method analyzed several compounds from various sub-classes of 

phenolics. 49 Phenolic compounds were detected including phenolic acids, stilbenes, 
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flavones, flavonols, flavan-3-ols, and proanthocyanidins from 73 analyzed chemicals. 

These types of optimization tests should be extended and more phenolic standards 

should be added for building a larger database. Such a database provides an 

opportunity for a more specific profiling of phenolic compounds for wider range of lentils, 

which can also be extended to seed coats of other pulse crops.  

In this set of studies, phenolic compounds were analyzed based on relative 

quantification. The major goal was comparing the phenolic profiles among lentils with 

different seed coat colours, which makes the relative quantification an appropriate 

option. However, it will be necessary in the future to analyze the phenolic compounds 

based on absolute quantification in order to estimate the exact amount of phenolic 

compounds that can be extracted from lentil seed coats of different colours.  

Future studies could focus on the quantification of the phenolic compounds in the major 

seed coat types. The seed coat represents approximately 10 % of the weight of dry 

seeds. Since 80% of Canadian lentil production will at some point be dehulled, the seed 

coat fraction of the total production represents several hundred thousand tonnes of 

biological materials that contain phenolic compounds. A deeper understanding of the 

specific amounts of the compounds, and their potential antioxidant activity would 

provide a baseline for determining the potential economic value of the lentil seed coat 

fraction.    

Our optimized analysis method had a short 30-min running time using HPLC equipment. 

It would be worth modifying the optimized method for shorter analysis duration by using 

UPLC equipment. In Chapters 3 and 4, we were forced to analyze sub-set of RIL 

populations because of limitations of the total duration analysis. Using UPLC, analysis 
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of all the RILs of a population might become much easier. Generating such data would 

facilitate genetic-mapping analysis. The extraction method was optimized based on the 

available equipment in the lab. Although this method is fast and reproducible, it will not 

be suitable for analyzing large genetic populations. The advantage of using automated 

extraction methods should be considered for phenolic profiling of such large sample 

sizes. 

Acquiring UV/VIS-detection and full scan chromatograms on the lentil samples, some 

intense peaks were noticed that we were not able to identify with the applied mass 

spectrometer. It will be necessary to identify such unknown compounds using accurate 

mass instrumentation. Using such mass spectrometers, elemental composition will be 

determined as the error in the m/z assignment is much less compared with the triple 

quadrupole. This means that fewer molecular formula will have a specific m/z range 

which might lead to identification of the unknown samples. 

In these studies, a specific biochemical relationship between the Ggc/ggc gene (the 

other important locus for lentil seed coat background colour besides the Tgc/tgc) and 

the presence or absence of phenolic compounds were not found.  For these analyses 

only 73 phenolic compounds were used. More than 8000 phenolic compounds have 

been described in nature, and pigmentation (gray vs non-gray) may also be related to 

presence of other pigments, for example carotenoids and betalains. For future research, 

the presence or absence of other phenolic compounds besides carotenoids and 

betalains should be investigated in different seed coat colours of lentil. This might 

provide evidence of associations between Ggc/ggc and other pigments. 
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Legumes have a shared synteny, including the genes that are related to seed coat 

colour. Bioinformatics research works on lentil has started and Lens culinaris Genome 

v1.2 was released recently (June 2016). However, more bioinformatics research is 

needed and in the meantime, querying the lentil genome through a blast in 

phenylpropanoid genes in gene sequences from other legumes such as alfalfa and 

soybean might be helpful for identifying genes associated with gray colour. 

In Chapter 3, a limited number of yellow and red cotyledons were compared with each 

other and found some differences between these two cotyledon colours. Red and yellow 

colours of lentil cotyledons are basically associated with carotenoids. It would be 

interesting to continue these comparisons among cotyledons of a RIL population in 

order to see if there are associations between these colours and any of sub-classes of 

phenolic compounds.  

Biochemical clues about some of the specific phenolic compounds that are controlled by 

the tgc gene were provided. Some molecular analyses could be used to develop a more 

explicit indication of the exact regulatory genes in the phenylpropanoid pathway that are 

related to tgc.  

In Chapter 5, seed coats of fresh lentils with green seed coat colour were compared 

with those of green lentils stored for long periods. A future storage experiment could be 

designed to include all four seed coat colours. This might provide more detailed 

understanding of changes in phenolic compound profile after storage. It would be 

necessary to analyze fresh seeds (for example, from the LR-18 population with four 

seed coat background colours) and then compare them to samples stored for long 

periods of 7-14 years to determine how phenolic compounds profiles might change. In 
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addition, the effect of temperature and packaging techniques on phenolic profile could 

be investigated. 

In Chapter 5, increases in phenolic acids and flavones observed in green lentil seeds 

after storage. Breakdown of more complex species into smaller subunits proposed as 

the possible reason. Acid or alkaline hydrolysis on the extracted samples before the LC-

MS analysis should be applied to confirm this hypothesis.  

These studies were focused on the biochemical phenotyping and genetic influences of 

background seed coat colour in the absence of seed coat pattern. A separate group of 

genes that confer seed coat pattern, such as marbled, spotted, dotted, or combinations 

are available as true breeding lentil genotypes. The black seed coat phenotype could 

also be subjected to a deeper analysis.   

These set of studies detected phenolic compounds in raw lentil seeds. Changes in 

phenolic compound profiles after cooking lentils with different seed coat colour could 

provide deeper knowledge of potential nutritional effects of phenolic compounds. In 

addition, the effect of different methods of cooking can be investigated on the phenolic 

profiles of lentils.  

Determining of phenolic profiles of a specific lentil seed coat colour does not mean that 

all the detected phenolics can be available after digestion. Some studies could be 

designed on the bioavailability of phenolics after digestion in vitro or in vivo to gain 

insight into potential dietary influence of specific phenolics. 

Iron chelation could be a concern because of the adverse effects of some of the 

phenolic compounds, for example myricetin. Interestingly, some other phenolics such as 

kaempferol have been detected that increase the bioavailability of iron. Studies on the 
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effect of different types of phenolics on bioavailability of iron are ongoing in some 

collaborating laboratories such as the USDA at Ithaca, NY. It will be of great interest to 

design breeding programs to increase the amount of phenolic compounds with 

improving effects and to reduce the amount of specific phenolic compounds with 

inhibitor effects on iron bioavailability.  

In collaboration with USDA, the iron bioavailability in normal, zero-tannin gray, and zero-

tannin transparent lentils were compared using the caco-2 test. The results were 

promising and showed the highest iron bioavailability for zero-tannin transparent lentils. 

It will be interesting to compare lentil seeds with different seed coat background colour 

and pattern by this test. It would be possible to investigate all the phenolic compounds 

that have been detected in these sets of analyses and to determine the complete set of 

inhibitors and promoters of iron uptake in lentil samples. 

Higher amounts of flavan-3-ols, proanthocyanidins, and flavonols in green and gray 

seed coats suggests these lentil seed coats might possess greater antioxidative 

properties, and might be more promising as health-promoting foods. While only 20 % of 

lentils are consumed as whole seeds, the results of these experiments might lead to 

improve the knowledge of consumers and might increase the marketability of whole 

lentils seeds especially with green and gray seed coat colours. 
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Highlights 

 A systematic optimization for LC-MS analysis of polyphenols in lentil seed coats. 

 Acid extraction of polyphenols resulted in the breakdown of polymeric 

compounds. 

 Polyphenols were extracted efficiently in 1 hr with acetone: H2O (70: 30, v/v). 

 A core-shell Kinetex PFP column gave better isomer separation than C18 

columns. 
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 We developed a 30 min LC-MS method that showed differences between 

threegenotypes.  

Abstract 

A systematic set of optimization experiments was conducted to design an efficient 

extraction and analysis protocol for screening six different sub-classes of phenolic 

compounds in the seed coat of various lentil (Lens culinaris Medik.) genotypes. Different 

compounds from anthocyanidins, flavan-3-ols, proanthocyanidins, flavanones, flavones, 

and flavonols sub-classes were first optimized for use as standards for liquid 

chromatography mass spectrometry (LC-MS) with UV-VIS detection. The effect of 

maceration duration, reconstitution solvent, and extraction solvent were investigated 

using lentil genotype CDC Maxim. Chromatographic conditions were optimized by 

examining column separation efficiencies, organic composition, and solvent gradient. 

The results showed that a 1 h maceration step was sufficient and that non-acidified 

solvents were more appropriate; a 70:30 acetone: water (v/v) solvent was ultimately 

selected. Using a Kinetex PFP column, the organic concentration, gradient, and flow 

rate were optimized to maximize the resolution of phenolic compounds in a short 30-min 

analysis time. The optimized method was applied to three lentil genotypes with different 

phenolic compound profiles to provide information of value to breeding programs. 

Key words 

Polyphenols; Lens culinaris; Extraction; Core-Shell Column; HPLC condition 

optimization 

Introduction 

Phenolic compounds (also known as polyphenols) make up a large group of secondary 
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metabolites characterized by the presence of an -OH group and an aromatic ring 

(Vermeris and Nicholson, 2006). The basic C6-C3-C6 (A-, C-, and B-ring) structure 

(Figure I) is typically observed, with different phenolic sub-classes being dependent 

upon further hydroxylation, methylation, or other modifications (Abad-García et al., 

2009). In human nutrition, phenolic compounds act as a “double-edged sword”, exerting 

both adverse effects and health benefits (Martin and Appel, 2010). There are several 

publications regarding health benefits of phenolic compounds, for example in protection 

against cancer (Martin and Appel, 2010; Thomasset et al., 2006) and cardiovascular 

diseases (Martin and Appel, 2010). Conversely, adverse effects described in the 

literature include inhibition of non-haem iron (Hooper and Frazier, 2012; Lynch, 1997) 

and induction of pro-oxidative stress and H2O2 production when polyphenols are 

present in high amounts (Lambert et al., 2007; Oikawa et al., 2003). These contrasting 

effects highlight the importance of analyzing these compounds in food resources. 

 
Figure I. C6-C3-C6 structure in phenolic compounds.  

	

Lentil (Lens culinaris Medik.) is a good source of protein, carbohydrates, dietary fiber 

components, minerals, vitamins, and secondary metabolites that include phenolic 

compounds (Xu and Chang, 2009). Simple phenolic compounds (Tsopmo and Muir, 

2010), phenolic acids (Amarowicz et al., 2009; Bartolomé et al., 1997; López-Amorós et 



97 
 

al., 2006; Xu and Chang, 2009), flavan3-ols and proanthocyanidins (Amarowicz et al., 

2009; Amarowicz et al., 2010; Bartolomé et al., 1997; Dueñas et al., 2002; Dueñas et 

al., 2003; Escarpa et al., 2002; Zou et al., 2011), anthocyanidins (Takeoka et al., 2005; 

Xu and Chang, 2010), flavonols (Aguilera et al., 2010; Amarowicz et al., 2009; 

Amarowicz et al., 2010; Dueñas et al., 2002; Escarpa et al., 2002; Tsopmo and Muir, 

2010; Xu and Chang, 2009; Zou et al., 2011), stilbenes (Dueñas et al., 2002), flavones 

(Amarowicz et al., 2009; Dueñas et al., 2002; Xu and Chang, 2009, 2010), and 

flavanones (Aguilera et al., 2010) are the major sub-classes of phenolic compounds 

found in lentil seeds. Phenolic compounds are much more diverse in the lentil seed coat 

than in the cotyledon and mostly consist of oligomers and polymers of 

proanthocyanidins (Dueñas et al., 2002). Quantifying phenolic compound 

concentrations in lentils is needed to assess the potential for long-term development of 

breeding crops with improved quantity and quality of such compounds. Any suitable 

analytical method must be able to simultaneously quantify different sub-classes of 

phenolic compounds and do so as efficiently as possible due to the need to analyze 

large numbers of samples. 

Several methods are used to analyze phenolic compounds. Liquid chromatography-

mass spectrometry (LC-MS) methods are well-suited because of their selectivity and 

sensitivity. When coupled with ultraviolet detection (LC-UV-MS), these methods offer a 

fast solution to determine unknown phenolic compounds (Abad-García et al., 2009). A 

critical step in these methods is sample preparation. Although several methods have 

been reported for extraction of phenolic compounds in lentil seeds, no systematic 

comparisons among these methods have been made to determine the differences 
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among them or relative advantages or disadvantages of each. Extraction time is another 

important parameter as long extraction times (for example (Bartolomé et al., 1997; 

Dueñas et al., 2002; Takeoka et al., 2005)) make analytical methods very time 

consuming and not readily applicable to the analysis of phenolic compounds in a large 

number of lentil genotypes. If extraction efficiencies are similar, the method that can be 

accomplished in the shortest time would be the preferred approach.  

Previous experiments involving lentil seeds have used chromatographic gradients to 

separate phenolic compounds in a time range of 70 to 120 min (Aguilera et al., 2010; 

Bartolomé et al., 1997; Dueñas et al., 2002; Zou et al., 2011). These separations were 

typically done using columns with large particles (e.g., 5 µm); in particular, C18 columns 

are commonly used (Aguilera et al., 2010; Amarowicz et al., 2009; Amarowicz et al., 

2010; Bartolomé et al., 1997; Dueñas et al., 2002; Dueñas et al., 2003; López-Amorós 

et al., 2006; Takeoka et al., 2005; Tsopmo and Muir, 2010; Xu and Chang, 2010; Zou et 

al., 2011). However, the implementation of newer column technologies (e.g., core-shell) 

with smaller particle sizes (e.g., 2.6 µm) can improve the separation efficiency and 

thereby allow for a shorter analysis time (Lesellier, 2012). As the column is a critical 

parameter in LC-MS experiments, an investigation of the performance of core-shell 

columns for the analysis with phenolic compounds in lentil is warranted; to our 

knowledge, no such work has been previously reported.  

In addition, optimizing the gradient and the organic modifier (Biesaga et al., 2007) can 

contribute to improvements in LC-MS methods. We employed H2O: acetonitrile (ACN): 

formic acid (FA) to affect separation, while making changes to the amount of acid and 

organic solvent (separately) to improve the resolution of peaks.  
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We optimized phenolic compound extraction for speed and efficiency by examining both 

solvent type and extraction duration for several sub-classes of phenolic compounds in 

lentil seed coats. We also examined three different types of columns, the amount of 

organic modifier, and the gradient of the organic phase for their ability to achieve fast 

separation and sufficient resolution of peaks for different types of isomeric phenolic 

compounds.  

Ultimately, the optimized method was applied to three different seed coat colours of 

lentil to demonstrate similarities and differences in the phenolic compound profiles. The 

results indicate that the time efficient procedure we developed can be successfully 

applied to the extraction and analysis of phenolic compounds for phytochemical 

screening of various lentil genotypes in breeding programs.  

Materials and methods 

Plant material 

Seeds from three lentil genotypes (CDC Maxim, 946a-46, Indianhead) were obtained 

from the Crop Development Centre at the University of Saskatchewan (Saskatoon, 

Canada). The seeds were decorticated using an abrasive mill (SATAKE Engineering 

Co. Ltd No# 554046 Japan) and the seed coats separated using sieves and a column 

blower. To analyze the lentil seed coat, ~50 mg (for each replicate) was weighed into 

micro centrifuge tubes. The tubes were covered, put in a -80 °C freezer for 1 h, and 

then freeze-dried overnight. A ¼ inch ceramic sphere bead was added to each tube and 

the seed coats pulverized using Fast Prep®FP120 (Qbiogene, Inc., Canada) two 

consecutive times for 10 s at a speed setting of 4.0.  
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HPLC-MS 

Experiments were conducted using an HP1100 series (Agilent, Germany) reversed 

phase high performance liquid chromatograph (HPLC) with UV-VIS detection coupled to 

a Quattro LC (Waters, UK) triple quadrupole mass spectrometer (MS) equipped with an 

electrospray ionization (ESI) interface. Waters’ MassLynx 4.1 software was used for 

integration of peak areas. Unless otherwise specified, the chromatographic column was 

a Genesis C18 and the mobile phases used were H2O: FA (95:5, v/v) as solvent A and 

H2O: ACN: FA (5:90:5, v/v/v) as solvent B. The column oven temperature was 25 °C 

and the injection volume was 2 µL. The mobile phase was delivered at a flow rate of 0.2 

mL/min and the gradient used is given in Table I. 

Table I. Typical gradient of organic solvent used in this study; solvent A and B were 
H2O: FA (95:5, v/v) and H2O: ACN: FA (5:90:5, v/v/v), respectively. 
Time  (min) Solvent A (%) Solvent B (%)Flow  rate (mL/min)

0 99 1 0.2 
2 99 1 0.2 
10 95 5 0.2 
20 90 10 0.2 
30 80 20 0.2 
40 60 40 0.2 
50 20 80 0.2 
55 20 80 0.2 

55.05 99 1 0.2 
60 99 1 0.2 

 

Reagents and standards  

Fourteen phenolic compounds (based upon the literature and their commercial 

availability) were considered, including sub-classes of anthocyanidins, flavan-3-ols, 

proanthocyanidins, flavanones, flavones, and flavonols (Table II). Internal standards 

(ISs) were compounds that were not detectable in preliminary seed coat studies but had 
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similar structures to the analytes of interest so should respond in an analogous way and 

thereby provide a reference with respect to extraction efficiency and ionization variability 

due to differences in the sample matrix. Malvidin-3-O-galactoside, (−)-gallocatechin, 

flavone, 3-hydroxy-4-methoxy-cinnamic acid, 4-aminosalicylic acid, 4-hydroxy-6-

methylcoumarin, salicin, and procyanidin C1(epicatechin-(4β→8)-epicatechin-(4β→8)-

epicatechin) were purchased from Sigma-Aldrich (Missouri, USA), whereas (+)-

catechin, naringenin, luteolin, luteolin-4'-O-glucoside, luteolin-7-O-glucoside, 

kaempferol-3-O-glucoside, myricetin-3-O-rhamnoside, quercetin-3-O-glucopyranoside, 

quercetin-3-O-galactoside, and procyanidin B1 (epicatechin-(4β→8)-catechin) were 

purchased from Extrasynthese (Genay, France). A series of experiments using flow 

injection analysis were used to confirm the m/z of the parent ion (full MS scan); 

determine the m/z value(s) of the most intense fragment ion(s) (product ion scan); and 

to optimize the MS conditions, namely the cone voltage (CV) and collision energy (CE), 

for quantification using multiple reaction monitoring (MRM); all were done using ESI in 

positive mode. Note that MRM is a very sensitive, selective technique in which the first 

quadrupole is used to select the desired molecular ion, the second as a collision cell to 

fragment the ion, and the third to monitor an intense fragment ion.  
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Table II. Characteristics of the phenolic compounds including sub-class, optimum 
Molecular and Fragment ions, Cone voltage (CV), Collision energy (CE), and UV-VIS 
wavelength; IS, C, and G stand for internal standard, epi(catechin), and epi 
(gallocatechin), respectively.  A Genesis C18 column was used with a flow rate of 0.2 
mL/min. Solvent composition was A (H2O: FA (95:5, v/v)) and solvent B (H2O: ACN: FA 
(5:90:5, v/v/v)) with the gradients as described in §2.2. 
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GG proanthocyanidins 2.4 610.7 306.7 37 25  274 

GGC proanthocyanidins 2.8 898.7 290.7 35 25  276 

GC proanthocyanidins 3.6 594.7 290.7 43 25  276 

(−)-gallocatechin flavan-3-ols 3.7 306.3 307.1 138.8 30 20 274 

4-aminosalicylic acid IS 3.9 153.1 154 118.6 48 14 234, 300 

GCC proanthocyanidins 4 882.7 290.7 35 25  276 

CC proanthocyanidins 7.6 579.3 126.8 36 32  280 

Salicin IS 8 286.3 287.4 106.8 8 14 270 

procyanidin B1 proanthocyanidins 8.9 578.5 579.3 126.8 36 32 280 

(epi) catechin-glucoside flavan-3-ols 9.5 452.7 290.7 40 20 280 

(+)-catechin flavan-3-ols 10 290.3 291.2 138.8 27 18 280 

CCC proanthocyanidins 20.3 867.4 579 38 15  278 

procyanidin C1 proanthocyanidins 22 866.8 867.4 579 38 15 280 

3-hydroxy-4-methoxy-
cinnamic acid 

IS 25.9 194.2 195.2 116.9 17 10 268, 326 

malvidin-3-o-galactoside  anthocyanidins 29 528.9 493.4 331 40 23 278, 528 

myricetin-3-o-rhamnoside flavonols 29.7 464.4 465.4 319.1 20 13 264, 358 

quercetin-3-o-galactoside  flavonols 30.2 464.4 465.2 303.2 28 15 265, 358 

quercetin-3-o-
glucopyranoside 

flavonols 30.4 464.4 465.2 303.2 21 14 265, 358 

luteolin-7-o-glucoside  flavones 30.9 448.4 449.3 287.3 28 24 268, 348 

kaempferol-3-o-glucoside flavonols 33.7 448.4 449.3 287.3 25 15 266, 348 

luteolin-4'-o-glucoside flavones 34.7 448.4 449.3 287.3 36 25 268, 334 

4-hydroxy-6-
methylcoumarin 

IS 36.2 176.2 176.9 134.9 41 18 268, 334 

Naringenin flavanones 37.6 272.3 273 152.8 34 22 290 

Luteolin flavones 38.5 286.2 287.1 152.8 60 33 267, 358 

Flavone flavones 46.4 222.2 223.1 76.8 60 40 254,298 

 

With optimum MRM conditions, initial LC conditions were applied using the C18 column 

allowing the retention time and UV-VIS wavelength to be determined for each analyte. 

Furthermore, many proathocyanidin oligomers (e.g., procyanidin dimers (CC), 
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prodelphinidin dimers (GG and GC), procyanidin trimers (CCC), and prodelphinidin 

trimers (GGC and GCC)) as well as (epi) catechin glucoside were not commercially 

available but are major components in the lentil seed coat. The procyanidin oligomers 

contain monomers of epi(catechin) while prodelphinidin oligomers contain monomers of 

epi(gallocatechin) and/or epi(catechin). MRM conditions were optimized considering a 

range of CV and CE and the transitions (molecular ion > fragment ion) determined in 

previous papers (Dueñas et al., 2003), with Rt values then determined (Table II). 

Because standards were not available, the identification of which oligomer was present 

could not be confirmed; therefore, they are assigned only as dimers, trimers, and so on. 

Similarly, for the glycosylated form of (epi) catechin, the exact bond location and type of 

sugar could not be determined. Note that ions with the same transitions were monitored 

in one channel with the Rt being used to differentiated these compounds. Using one 

channel decreased the number of transitions and promoted chromatogram accuracy by 

increasing the number of points per peak. Thus, the 579.3 > 126.8 transition was used 

for procyanidin B1 and CC, 867.4 > 579 for procyanidin C1 and CCC, 465.2 > 303.2 for 

quercetin-3-O-glucopyranoside and quercetin-3-O-galactoside, and 449.3 > 287.3 for 

luteolin-7-O-glucoside, kaempferol-3-O-glucoside, and luteolin-4'-O-glucoside. 

Optimizing extraction method 

All extraction optimizing tests were conducted using CDC Maxim lentils. 

Duration of extraction method 

The extraction method was modified from (Dueñas et al., 2002). The seed coat powder 

(~50 mg) was macerated with 750 µL of a solution containing 0.1% HCl in methanol 

(MeOH): water (80:20, v/v) three times for a) 3 x 24 h on platform, b) 2 h + 24 h + 2 h on 
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platform, c) 1 h on platform + 1 h in ultrasonic bath + 1 h on platform, and d) 3 x 1 h in 

ultrasonic bath. The rate of shaking on the rocking platform was 1400 rpm, and 80 kHz 

frequency/100% power was applied in the ultrasonic bath. After each extraction, the 

tubes were centrifuged twice (12,000 rpm for 5 min each with the maximum relative 

centrifugal force (rcf) of 15300) and as much of the supernatant as possible was 

removed while keeping this amount the same among samples. Then 100 µL of each 

extract were combined and dried down with a Speed Vac (LABCONCO, Kansas City, 

USA). Samples were then re-dissolved in a reconstitution solvent of 300 µL methanol: 

water (5:95, v/v). The chromatographic conditions used were as described in §2.2.  

An additional experiment was designed to determine how the intensity of compounds 

changed by increasing the number of extraction steps. Phenolic compounds of lentil 

seed coat were extracted four times with the extract of each step analyzed separately. 

The areas under each peak in the chromatograms were integrated and normalized from 

1 to 100 with MS Excel to determine the percent of the total recovered in each step.  

Reconstitution solvent  

The high organic percentage of the extraction solvent will adversely affect 

chromatography. Consequently, the samples were dried down and reconstituted to 

better match the starting mobile phase. Three reconstitution solvents were compared, 

namely MeOH: H2O (5:95, v/v), MeOH: H2O (10:90, v/v), and acetic acid: MeOH: H2O 

(0.5:50:49.5, v/v/v).  

Extraction solvent 

The effect of different extraction solvents on the concentration of phenolic compounds 

was investigated. Based on previously published protocols (Aguilera et al., 2011; 
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Bartolomé et al., 1997; Pang et al., 2007), five solvents were considered, namely 

methanol (with 0.1% HCl): water (80:20, v/v), acetone: water: acetic acid (70:29.5:0.5, 

v/v/v), acetone: water (70:30 v/v), methanol: water (70:30, v/v), and methanol: water: 

acetic acid (80:19.5:0.5, v/v/v). 

Optimizing chromatographic conditions 

This part of the experiment was conducted using the mixture of standards described in 

§ 2.3.  

Selection of chromatographic column 

Three different columns were compared: Core-shell Kinetex pentafluorophenyl (PFP), 

100 × 2.1 mm id, 2.6 μm particle size (Phenomenex, Torrance, CA); Core-shell Kinetex 

C18, 100 × 2.1 mm id, 2.6 μm particle size (Phenomenex, Torrance, CA); and Genesis 

C18, 100 × 2.1 mm id, 4 μm particle size (Grace Vydac, Illinoise, US).   

Organic percentage and gradient 

The effect of the acid concentration in the mobile phase was investigated using 0.5, 1, 

2, and 5% formic acid in Solvents A and B. Furthermore, the optimum gradient was 

tested by changing the slope of the linear gradient from 5 to 50 min and therefore the 

composition of the organic solvent in the isocratic gradient from 50 to 55 min, as shown 

in Table III.  

Table III. Different gradients of organic solvents that were used for optimizing 
chromatographic conditions 

Time (min) Solvent B (%) 
0 1 1 1 1 
5 1 1 1 1 
50 30 50 70 90 
55 30 50 70 90 

55.05 1 1 1 1 
60 1 1 1 1 
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Results obtained using the different chromatographic conditions were compared based 

on the 

capacity factor (K’)
	 	 	

	 	
                  Eq. 1 

and the 

resolution= 2 ∗ 	 	 	

	 	 	 	
                            Eq. 2 

where compound “b” elutes later than compound “a”. 

Method applicability for comparing different genotypes of lentil 

Chromatograms for three different genotypes (964a-46, Indianhead, and CDC Maxim) 

with different seed coat colours (green, black, and grey, respectively) were compared to 

see how applicable the optimized method was for analyzing contrasting seed coat 

phenotypes. 

LC-MS reproducibility 

To ensure good reproducibility of the LC-MS method, one of the samples was repeated 

at the start, middle, and the end of a run. In addition, a combination of 18 standards plus 

reconstitution solvent (MeOH: H2O, 5:95, (v/v)) was used as a quality control. Solvent 

blanks and method blanks (solvent plus IS) were also included to ensure that 

contamination was not present. 

Statistical analysis 

Data exploration and analysis of variance was done using R software (v. 2.15.3) (R 

Core Team, 2013). Compounds resulting in low chromatogram peak areas near the 

background noise were omitted due to reliability concerns. Data were transferred to an 

Excel® spreadsheet and final results were recorded as the average of replicates ± 
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standard deviation. The experimental design was based upon randomized complete 

blocks.  

Results and discussion  

Optimizing compounds for use as standards in an LC-MS method 

The MS allows for quantification of expected phenolic compounds, and UV-VIS 

detection will help to identify unexpected phenolic compounds. Because phenolic 

compounds absorb UV-VIS radiation between 250 and 600 nm, we can look for peaks 

in that UV-VIS range that are not associated with a corresponding MS peak and 

investigate further. For this study, quantification of expected phenolic compounds was 

done with a triple quadrupole mass spectrometer using MRM as described in §2.2. For 

all phenolic standards, the optimum molecular ions were protonated [M+H]+ (Table II) 

except for malvidin-3-O-galactoside, which is already a cation in solution (purchased as 

a chloride salt). As a result malvidin-3-O-galactoside does not require a proton to ionize 

and therefore produces an M+ ion.  

With the collision gas on, the molecular ion collides with neutral gas molecules causing 

fragmentation and enabling the optimum ions to be identified for use in MRM analyses. 

The major fragment ion in (MS/MS spectra of) malvidin-3-O-galactoside, luteolin-4’-O-

glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-O-galactoside, 

quercetin-3-O-glucopyranoside, myricetin-3-O-rhamnoside, and (epi) catechin-glucoside 

is related to sugar loss (162 for glucose/galactose and 146 for rhamnose). The fragment 

ion for flavan-3-ols at m/z 138.8 is the result of C-ring cleavage at 1/3 bond (Figure I). In 

proanthocyanidins, fragment ions at m/z 291, m/z 307, and m/z 579 are related to the 
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breaking of bonds between their monomers (flavan-3-ols). The fragment ion at m/z 127 

could be due to the rupture of the C-ring at the 2/4 bond. In flavanones and flavones, 

fragment ion m/z 153 is the result of C-ring cleavage at the 1/3 bond (Abad-García et 

al., 2009). With the optimum molecular and fragment ions identified, MRM was carried 

out to optimize CV and CE (Table II). 

Different standard solutions were run on a Genesis C18 column using the default 

conditions (§2.2). More polar compounds (e.g., proanthocyanidins and flavan-3-ols) 

eluted at the start of the run; later eluting compounds were mostly flavones (Table II). 

Besides compound polarity, the type of functional group and the nature and position of 

conjugate can also affect the elution order (Abad-García et al., 2009). Glycosylated 

luteolins came out sooner than their aglycones (38.5 min). On the other hand, luteolin-7-

O-glycoside (Rt = 30.9 min) eluted before luteolin-4’-O-glycoside (Rt = 34.7 min). 

Quercetin-3-O-galactoside eluted a bit earlier than quercetin-3-O-glucopyranoside and 

the prodelphinidins in Table II eluted sooner than the procyanidins. The UV spectra 

contain major absorption peaks for prodelphinidins and procyanidins at 274-276 and 

278-280 nm, respectively (Table II). For both flavones and flavonols, two major peaks 

were observed at 254-268 and 298-358 nm. The UV-VIS spectrum for anthocyanidin 

(malvidin-3-O-galactoside) was very specific, with two major peaks observed at 278 and 

528 nm (Table II).  

Optimization of extraction method 

Extraction duration 

Maceration times that were used previously for lentil seeds ranged from ~12 to 36 h 

(Bartolomé et al., 1997; Dueñas et al., 2002; Takeoka et al., 2005). Figure II shows the 
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effect of maceration duration on different phenolic compounds in CDC Maxim lentil seed 

coats. In this figure, C and G represent (epi) catechin and (epi) gallocatechin, 

respectively. Thus, CC and CCC are procyanidin dimers and trimers consisting of two 

and three (epi) catechins, respectively; GC and GG represent prodelphinidin dimers 

with one and two (epi) gallocatechin(s), respectively; and GCC and GGC are 

prodelphinidin trimers that have, respectively, one and two (epi) gallocatechins beside 

two or one (epi) catechins. Note that both stereoisomers of catechin and epicatechin 

have the same molecular weight; this is also true for both gallocatechin and 

epigalocatechin. Areas of the LC-MS/MS peaks for each phenolic compound were 

divided by the sample dry weight (in mg) and values for 3, 28, and 72 h total extraction 

durations were compared to determine any effect attributable to lentil seed coat 

maceration time. No significant differences are evident for most of the phenolic 

compounds (Figure II). Previous work shows the duration of extraction to have only a 

minor effect on recovery of isoflavones from soy protein (Griffith and Collison, 2001). 

For profiling phenolic compounds in a large number of genotypes, a fast maceration 

step is advantageous. Based on our results, a maceration time of 1 h (× 3) was 

determined to be sufficient and time efficient. 
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Figure II. Effect of maceration time on the mean area per mg sample of phenolic 
compounds; Maceration treatments were 3×24 h on platform, 2 h + 24 h + 2 h on 
platform, 1 h on platform + 1 h ultrasonic bath + 1 h platform, and 3×1 h in ultrasonic 
bath. C, G, cat-gluc, and myr-3-rham represent (epi) catechin, (epi) gallocatechin, (epi) 
catechin-glucoside and myricetin-3-O-rhamnoside, respectively. A Genesis C18 column 
with a flow rate of 0.2 mL/min was used with solvents and gradients as described in 
§2.2. 
 
Optimizing the number of extractions 

Figure III shows the normalized area of the lentil seed coat phenolic compounds in the 

first to fourth extraction steps. Compounds were extracted four times for 1 h using the 

ultrasonic bath and/or platform shaker. With respect to the ISs, the first extraction 

removed more than 80% and virtually none remained at the fourth extraction. The same 

trend was observed for flavonols (kaempferol-3-O-glucoside and myricetin-3-O-

rhamnoside) and flavones (luteolin-4’-O-glucoside). Different results were obtained for 
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oligomers of proanthocyanidins (B1, CC, GC, C1, CCC, GCC, and GGC) and, more 

specifically, their monomers (catechin and gallocatechin), as a significant amount of the 

monomers, dimers, and trimers were extracted in the fourth step. We believe this is due 

to the acid causing the proanthocyanidin polymers to slowly breakdown, as these 

polymers are found in large quantities in the lentil seed coat (Dueñas et al., 2003). 

Further evidence for this hypothesis is given in §3.2.3 and 3.2.4. We decided to use 

three extractions to ensure good recovery. Note that during this experiment (and the 

previous one), the differences between application of an ultra-sonic bath and a shaker 

platform on the extraction were not significant for the phenolic compounds analyzed. 

However, as heating of the water (and hence samples) was observed when using the 

ultrasonic bath, we decided to continue the experiments using only the platform shaker. 
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Figure III. Effect of the number of extractions using 
ultrasonic/platform/ultrasonic/platform on normalized area of different phenolic 
compounds; error bars are the standard deviation of three replicates. 3-Cinn, 4-sal, 4-
coum, C, G, kaemp-3-gluc, lut-4’-gluc, and myr-3-rham represent 3-hydroxy-4-methoxy-
cinnamic acid, 4-aminosalicylic acid, 4-hydroxy-6-methylcoumarin, (epi) catechin, (epi) 
gallocatechin, kaempferol-3-O-glucoside, luteolin-4'-O-glucoside, and myricetin-3-O-
rhamnoside, respectively. A Genesis C18 column was used with a flow rate of 0.2 
mL/min and solvents and gradients as described in §2.2. 
 

Reconstitution solvent  

Figure IV shows the effect of different reconstitution solvents on the peak areas of 

phenolic compounds. The left side of the plot shows peak areas obtained from 

reconstituting extracts from lentil seed coats, and the right side shows peaks areas from 

reconstituting chemical standards. The reconstitution solvents in both cases were 

MeOH: H2O (5:95, v/v), MeOH: H2O (10:90, v/v), and acetic acid: MeOH: H2O 

(0.5:50:49.5, v/v/v). Overall, the use of different reconstitution solvents for the chemical 

standards resulted in minimal differences in the peak areas obtained. The largest 

change was in the mean area of 3-hydroxy-4-methoxy-cinnamic acid, which increased 

by 17% when the acid-containing reconstitution solvent was applied. A high amount of 
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ethanol was required for stock preparation of this standard, suggesting that the higher 

amount of organic solvent improves solubility. However, significant changes were 

evident for the lentil seed coat extracts.  Note that the peak areas of the IS, 3-hydroxy-

4-methoxy-cinnamic acid showed the same pattern for both the chemical standard 

solution and the lentil seed coat extract solution. Similarly, Peak areas for luteolin were 

similar for the various solvents with respect to lentil seed coat extracts and chemical 

standards. However, catechin and gallocatechin had significantly higher peak areas in 

the lentil seed coat extract when reconstituted with acetic acid: MeOH: H2O 

(0.5:50:49.5, v/v/v); this is in contrast to the similar mean areas of both of these flavan-

3-ols in the chemical standards data for all three reconstitutions solvents considered. 

Notably, the area of the dimer proanthocyanidin B1 in the lentil seed coat extract 

decreased upon reconstitution in acetic acid: MeOH: H2O (0.5:50:49.5, v/v/v) but was 

the same for the three different reconstitution solvents when the chemical standard was 

used. These data suggest that the acid may contribute to the breakdown of this dimer 

(epicatechin-(4β→8)-catechin) into monomers (and therefore other oligomers extracted 

from the seed coat would break down after reconstitution as well). Because the data 

suggest that the presence of acid in either the reconstitution or extraction solvent 

(§3.2.1) can cause breakdown of the polymers, investigation of other extraction solvents 

(with and without acid) would be worthwhile to determine a more suitable extraction 

solvent. Peak areas obtained using 5 or 10% organic reconstitution solvent were 

comparable and either of these two could be applied. We chose 10% for the remainder 

of this study as it did not have an adverse effect on the chromatography. 
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Figure IV. Effect of the reconstitution solvent on the peak areas of phenolic compounds 
obtained from solutions prepared from lentil seed coat extractions (left) and chemical 
standards (right). 3-Cinn represents 3-hydroxy-4-methoxy-cinnamic acid. Reconstitution 
solvents were MeOH: H2O (5:95, v/v), MeOH: H2O (10:90, v/v), and acetic acid: MeOH: 
H2O (0.5:50:49.5, v/v/v). A Genesis C18 column with a flow rate of 0.2 mL/min was 
used, with solvents and gradients as described in §2.2. 

	

Extraction solvent 

Several solvents have been used for extraction of phenolic compounds from lentil 

seeds, including methanol (Tsopmo and Muir, 2010), acidified methanol (Dueñas et al., 

2002; Escarpa et al., 2002; López-Amorós et al., 2006; Takeoka et al., 2005), acetone 

(Amarowicz et al., 2009; Amarowicz et al., 2010; Bartolomé et al., 1997), and acidified 

acetone (Xu and Chang, 2010; Zou et al., 2011), yet a thorough experiment to compare 

their effectiveness in extracting different sub-classes of phenolic compounds has not 

been reported. Based on these previous studies, five different extraction solvents 
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comprised of acetone, methanol, and acidified forms with acetic acid and/or 

hydrochloric acid were considered. The peak areas per sample weight were obtained 

for a range of phenolic compounds (Figure V). Areas were similar for all solvents except 

methanol/HCl: water. Use of acidified methanol with HCl increased the area/weight for 

catechin and gallocatechin. As this solvent increased the extraction of flavan-3-ols, it 

would be expected to also improve extraction of proanthocyanidins, which are oligomers 

and polymers of flavan-3-ols. However, it led to decreased area/weight of (epi) catechin-

glucoside and dimers and trimers of (epi) catechin (CC and CCC). A similar trend was 

observed for prodelphinidin dimers and trimers, which have (epi)catechin and 

(epi)gallocatechin (GC, GGC, and GCC) building blocks. Xu and Chang (Xu and Chang, 

2007) found that both acetone and acidified acetone extracted more total condensed 

tannins than other solvents, but separate analyses of monomers and/or oligomers were 

not discussed. As described earlier, a large amount of proanthocyanidin oligomers and 

polymers exist in lentil seed (Dueñas et al., 2003) and our goal is to accurately reflect 

the relative amounts of these phenolic compounds in our measurements. Because the 

presence of acid appears to cause some breakdown of these species (and also the 

sugar containing (epi) catechin) without providing any apparent benefits, acidified 

solvents were not considered further. As the area/weight of the other extraction solvents 

were similar, acetone: H2O (70: 30, v/v) was chosen because it improved the rate at 

which the samples could be dried down.  



116 
 

 
Figure V. Effect of extraction solvent on area/ mg weight of different phenolic 
compounds; error bars reflect the standard deviation of three replicates. 3-Cinn, cat-
gluc, C, G, and lut-4’-gluc represent 3-hydroxy-4-methoxy-cinnamic acid, (epi) catechin-
glucoside, (epi) catechin, (epi) gallocatechin, and luteolin-4'-O-glucoside, respectively. A 
Genesis C18 column with a flow rate of 0.2 mL/min was used, with solvents and 
gradients as described in §2.2. 

	

Optimization of chromatographic conditions  

Type of column  
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Different types of C18 fully porous columns have been used for analyzing phenolic 

compounds in lentil, including Zorbax Stablebond C18 (Xu and Chang, 2010; Zou et al., 

2011), Nova Pak C18 (Aguilera et al., 2010; Amarowicz et al., 2009; Bartolomé et al., 

1997; Dueñas et al., 2002; Dueñas et al., 2003), Nucleosil C18 (Escarpa et al., 2002), 

and Symmetry C18 (Tsopmo and Muir, 2010) columns. With the exception of the Nova 

Pak C18 column (4 µm), all employ a 5 µm particle size. Although superficially porous 

(core-shell) columns are comparable to Ultra-HPLC columns and superior to HPLC in 

terms of speed and efficiency (Guillarme et al., 2010), we could find no report of core-

shell column use with C18 or other stationary phases (e.g., PFP) for analyzing lentil 

seed coats. Here, core-shell columns (Kinetex C18 and PFP) with a 2.6 µm particle size 

were compared with a fully porous column with a 4 µm particle size (Genesis C18). 

Unlike conventional C18 columns, the Kinetex PFP has a different selectivity because it 

contains a PFP phase that provides aromatic and polar selectivity by incorporating 

fluorine atoms on the phenyl ring.  Isoflavones in rat serum were resolved better using a 

core-shell PFP column than a C18 column; the fluorinated phenyl ring on the stationary 

phase of the PFP column appears to be more hydrophilic than the C18 chain and, as a 

result, has greater interaction with hydrophobic isoflavones (Gavina et al., 2013). 

Using the gradient with a maximum of 50% solvent B, as described in Table III, the 

performance of the three columns was tested; the results are summarized in Table IV. 

The earliest eluting compound (gallocatechin) came out near to the void volume in both 

the Genesis and Kinetex C18 columns, whereas gallocatechin was retained longer in 

the Kinetex PFP column (Table IV). Overall, the two core-shell columns (Kinetex C18 

and PFP) retained phenolic compounds longer than the conventional C18 column 
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(Genesis C18). Peak widths of the core-shell columns were similar and significantly 

narrower than for the Genesis C18. In addition to the smaller pore size, the inner core of 

the core-shell columns is solid fused silica; because analytes cannot penetrate, the 

diffusion path is shorter and results in sharper peaks and better resolution compared 

with fully porous particles with similar diameters (Guillarme et al., 2010). For isomeric 

compounds (compounds with the same m/z), separation of these compounds by LC is 

critical. An example of isomeric compounds is kaempferol-3-O-glucoside and luteolin-4'-

O-glucoside. For the different isomeric compounds present in our mixture, the best 

resolution was achieved with the Kinetex PFP column. Figure VI shows chromatograms 

of the traces for the transition 449.3 > 287.3 (luteoin-7-O-glucoside, luteoin-4'-O-

glucoside, and kaempferol-3-O-glucoside). The compounds eluted in the same order in 

all three columns (confirmed with individual standards in separate runs); however, all 

three compounds are baseline resolved using the Kinetex PFP (Figure VI.a) but the 

peaks for luteoin-4'-O-glucoside and kaempferol-3-O-glucoside overlap using the C18 

columns (Figures VI.b and VI.c). The change in selectivity of the fluorinated phenyl ring 

on the stationary phase of the PFP column enabled this separation. Consequently, the 

Kinetex PFP column was used for the remainder of the study. 
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Table IV. Effect of column type on the capacity factor (K’), peak width, and resolution for 
Genesis C18, Kinetex C18 and Kinetex PFP columns 

phenolic compound  

K' peak width (sec) Resolution 
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Gallocatechin 1.2 2  3 20.2 14.2  10 11.7 28.6 22.5 

B1 
 

  3.9 7.5 6.3 24.6 15.6 13.8 2.1 1.9 14.4 

Catechin 4.6 7.9 8.4 36.8 16.4 10.7 15.8 29.3 27.1 

malvidin-3-O-galactoside  12.5 15.8 14.2 17.9 15.5 10.6 1.1 6 13 

myricetin-3-O-rhamnoside 12.7 16.9 15.7 17.3 13.2 8 1.3 4.7 4.1 

quercetin-3-O-galactoside 13 17.6 16.1 22.8 8.8 7.9 1.5 2.2 3.3 

quercetin-3-O-glucoside 13.4 17.8 16.4 22.5 9 8.1 0.6 0.8 7.8 

luteolin-7-O-glucoside 13.5 17.9 17.2 22.6 9.8 7.7 5 16.1 7.3 

kaempferol-3-O-glucoside 14.8 19.7 17.9 24.7 7.7 8.5 1.6 1.4 16.3 

luteolin-4'-O-glucoside 15.1 19.9 19.7 20.7 9.7 9.8 4.4 24.3 11.4 

4-hydroxy-6-

methylcoumarin 
16.4 23.6 21 32 14.1 8.9 3.1 2.8 22.4 

Luteolin 17.3 24.1 23.6 26.3 13.7 9.5 1 6.9 10.9 

Naringenin 17.6 25.3 24.9 27.9 13.4 10.1 27 54.9 45.1 

Flavone 25 35.3 30.6 24.7 14.6 10.5       

Solvent A was H2O: FA (95:5, v/v) and solvent B was H2O: ACN: FA (5:90:5, v/v/v) with 
the gradient utilized 50% B maximum 
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Figure VI. Chromatograms monitoring m/z 449.3>287.3 with a) Kinetex PFP columns, b) 
Kinetex C18, and c) Genesis C18; peaks are luteolin-7-O-glucoside, kaempferol-3-O-
glucoside, and luteolin-4’-O-glucoside (from left to right). Solvent A was H2O: FA (95: 5, 
v/v), solvent B was H2O: ACN: FA (5:90:5, v/v/v), and the flow rate was 0.2 mL/min. A 
linear gradient from 5 to 50% B from 5 to 50 min and an isocratic gradient of 50% B 
from 50.1 to 55 min were used, as shown in Table III. 
 

Mobile phase gradient and composition  

The next step involved optimizing the chromatographic conditions for analyzing lentil 

seed coats. Mobile phases consisting of mixtures of H2O: ACN:acetic acid (Aguilera et 

al., 2010; Amarowicz et al., 2009; Amarowicz et al., 2010; Dueñas et al., 2002; López-

Amorós et al., 2006), H2O: ACN: triflouroacetic acid (TFA) (Tsopmo and Muir, 2010), or 

H2O: MeOH: FA (Takeoka et al., 2005) have been used for the chromatographic 

analysis of phenolic substances in lentil. ACN was employed in this study as the organic 

solvent since it showed better separation and had a shorter chromatographic run time 

for tomato flavonoids compared with methanol (Biesaga et al., 2009). FA was selected 

as the acid since it can achieve low pH values (2-3) without causing electrospray 

ionization suppression issues inherent with TFA (Kuhlmann et al., 1995). To optimize 

the amount of FA in the mobile phase, four different percentages of formic acid in 
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solvent A (H2O: FA (v/v)) and solvent B (H2O: ACN: FA ( v/v/v)) were applied to 

determine the effect on the K’ and selectivity of phenolic compounds: A (99.5:0.5), B 

(9.5:90:0.5), pH=2.33; A (99:1), B (9:90:1), pH=2.17; A (98:2), B (8:90:2), pH=2.02; and 

A (95:5), B (5:95:5), pH=1.82. Increasing the percentage of formic acid reduced the 

retention of phenolic compounds (Figure VII), with the effect being more dramatic for the 

highly hydrophilic compounds (i.e., flavan-3-ols and proanthocyanidins); with 5% formic 

acid, gallocatechin eluted near the void volume. Adequate resolution was maintained at 

lower FA concentrations as the selectivity of critical pairs was virtually identical for 

different percentages of formic acid (data not shown). As a result, 0.5 and 1% FA were 

both suitable options to maintain good retention of the polar analytes. We selected H2O: 

FA (99:1, v/v) as the peak shapes for some compounds (e.g., malvidin-3-O-galactoside) 

were marginally better in 1% FA.  

 
Figure VII. Effect of formic acid concentration on K’ of phenolic standards; Solvent A 
(H2O: FA (v/v)) was 99.5:0.5 (pH=2.33), 99:1 (pH=2.17), 98:2 (pH=2.02), or 95:5 
(pH=1.82), as shown on x-axis. A Kinetex PFP column with a flow rate of 0.2 mL/min 
was used. A linear gradient from 5 to 50% B from 5 to 50 min and an isocratic gradient 
of 50% B from 50.1 to 55 min were used, as shown in Table III.  
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In separate runs, the slope of the linear gradient (5-50 min) was changed such that the 

endpoint (and subsequent isocratic gradient from 50-55 min) changed from 30 to 90% 

solvent B. ACN is a common organic modifier for extraction of phenolic compounds and 

its use has resulted in better separation than that achieved with methanol (Biesaga et 

al., 2007). Adjusting the maximum % of the organic solvent affected the retention 

(Figure VIII.a) and separation of critical isomers (Figure VIII.b). Specifically, a higher 

percentage of organic solvent for the endpoint of the gradient reduced the analysis time 

but at the expense of decreasing the resolution of critical pairs (Figure VIII.b). In the run 

that used 30% ACN as the endpoint of the linear gradient, the late eluting compound 

(flavone) came out after 60 min (Figure VIII.a). Therefore, a modified concentration of 

the mobile phase was introduced. The same gradient was used for the first 44 min and 

then the amount of ACN increased from 26.7% at 44 min (the value of B at that time in 

the gradient) to 50% by 50 min. Addition of this step resulted in elution of flavone from 

the Kinetex PFP column before 55 min while not affecting the critical pairs of phenolic 

compounds (which eluted before 44 min).  
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Figure VIII. a) Effect of organic solvent percentage (30, 50, 70, and 90% B) on capacity 
factor of phenolic compounds (* minimum K’ for flavone if it came out at 60 min). b) 
Effect of acetonitrile concentration on K’ of phenolic standards. For both (a) and (b), a 
Kinetex PFP column, 5% FA, and a flow rate of 0.2 mL/min were used.  
 
Effect of flow rate. As a final step in the method development, the flow rate was 

optimized. To minimize the analysis time, the flow rate was increased to the maximum 

that could be reliably achieved without the concern of over-pressuring the column. Our 



124 
 

final flow rate of 0.4 mL/min was double the flow rate used in previous optimization 

stages, and enabled the gradient interval to be decreased by half without any 

degradation in separation. Figure IX shows the final gradient for the optimized 

chromatographic conditions using phenolic compound chemical standards. 

 
Figure IX. Chromatogram of phenolic standards applying the optimized method: (1) 
gallocatechin, (2) B1, (3) catechin, (4) C1, (5) Malvidin-3-O-galactoside, (6) myricetin-3-
O-rhamnoside, (7) quercetin-3-O-galactoside, (8) quercetin-3-O-glucopyranoside, (9) 
luteolin-7-O-glucoside, (10) kaempferol-3-O-glucoside, (11) luteolin-4'-O-glucoside, (12) 
4-hydroxy-6-methylcoumarin[IS], (13) luteolin, (14) naringenin, and (15) flavone. 
Chromatograms of each transition were overlaid. A Kinetex PFP column was used with 
a flow rate of 0.4 mL/min. Solvent composition was  solvent A (H2O: FA (99:1, v/v)) and 
solvent B (H2O: ACN: FA (9:90:1, v/v/v)), with the following gradient: 0 min (1% B), 2.5 
min (1% B), 22.5 min (26.7% B), 25.0 min (50% B), 27.5 min (50% B), 27.55 min (1% 
B), 30 min (1% B).  
 

Applying optimized method to the analysis of different lentil genotypes 

Within the mass spectrometry software, three functions were defined with time ranges 

of 0-10.5, 8-16.5, and 16-30 min. Each function contained 6-7 transitions, which made it 

efficient enough to sample at least eight points per chromatographic peak. The 

optimized extraction and chromatographic methods were applied to three genotypes of 



125 
 

lentil with different seed coat colours. Figure X shows the total ion current (TIC) 

chromatograms of a) black (Indian head), b) green (964a-46), and c) grey (CDC Maxim) 

lentil seeds; peak intensities were normalized to the most intense peak in the black 

lentil. The seed coat of lentil is enriched with proanthocyanidin oligomers and polymers 

(Dueñas et al., 2003), which can be observed clearly in the TIC chromatograms of all 

genotypes (Figure X.a,b,c). Peaks for gallocatechin (peak 1), catechin (peak 8), (epi) 

catechin-glucoside (peak 6), GC (peak 3), B1 (peak 5), CC (peak 7), GGC (peak 2), 

GCC (peak 4), and myricetin-3-O-rhamnoside (peak 9) are very similar for the black, 

green and grey seed coat genotypes. The major differences are related to the flavones 

luteolin-4’-O-glucoside (peak 10) and luteolin (peak 12), which are much more 

concentrated in the black seed coat genotype compared with the green and grey seed 

coat genotypes.  
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Figure X. Chromatograms of phenolic compounds in the seed coats of a) Indian head, 
b) 964a-46, and c) CDC Maxim lentil obtained using the optimized method: (1) 
gallocatechin, (2) GGC, (3) GC, (4) GCC, (5) B1, (6) (epi) catechin-glucoside, (7) CC, 
(8) catechin, (9) myricetin-3-O-rhamnoside, (10) luteolin-4'-O-glucoside, (11) 4-hydroxy-
6-methylcoumarin, and (12) luteolin.  
 
Conclusions 

A systematic approach was used to develop and optimize an LC-MS method for the 

analysis of phenolic compound composition in lentil seed coats. The optimum MS 

conditions (CV and CE), molecular and fragment ions, Rt, and UV-VIS wavelength were 
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determined for 18 different phenolic standards using LC-MS with UV-VIS detection. The 

use of long duration maceration was found to be unnecessary for extracting phenolic 

compounds from lentil seed coats; 1 h maceration times provided similar results to 

those obtained using longer times. Three extraction steps gave good recovery and were 

used in this study; however, only one extraction would be required to compare levels 

among the different genotypes if 13C or 2D-labelled internal standards for each analyte 

were added to the extraction solvent. Alternatively, only one labelled standard or a 

suitable analog would be required for each compound sub-class if the extraction 

efficiencies are similar within a sub-class; we are currently investigating this approach.  

The use of acidified reconstitution or extraction solvents resulted in a breakdown of the 

polymeric phenolic compounds into smaller subunits. When comparing genotypes, the 

composition of the phenolic compounds should ideally not be altered by the analytical 

method. As a result, a non-acidified extraction solvent composed of acetone: H2O (70: 

30, v/v) and a non-acidified reconstitution solvent of MeOH: H2O (10:90, v/v) were 

chosen for extraction and reconstitution of phenolic compounds, respectively.  

Both core-shell columns retained early eluting compounds longer than the Genesis C18 

column, with the Kinetex PFP column having the longest retention time. The isomeric 

compounds were best resolved using the Kinetex PFP column. Higher percentages of 

formic acid in the mobile phase (>1%) should be avoided as this results in polar 

phenolic compounds eluting near the void volume. The concentration of the organic 

solvent was also optimized to maximize the resolution of critical isomers. Through this 

process and further optimization of the flow rate, a 30 min LC-MS method was 

developed.  
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The LC-MS method was successfully applied to the analysis of three lentil genotypes 

(black, green and grey seed coat). The intensities of oligomeric flavan-3-ols were very 

similar for all three genotypes, while luteolin and its glycosylated form were more 

concentrated in the black seed coat genotype. This illustrates that the developed 

method could be successfully applied to phenolic compound profiling of various lentil 

genotypes and this improved phenotyping capability used to develop genotyping 

systems for breeding strategies with objectives related to altering or improving the 

spectrum of phenolic compounds in lentils.  
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Appendix 2. P-values from mixed model ANOVA F-test for the effect of cotyledon colour and seed coat colour on phenolic 
compounds in SPG location, where numbers represent the mean square of area ratio per mg sample. 
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Appendix 3. P-values from mixed model ANOVA F-test for the effect of cotyledon colour and seed coat colour on phenolic 
compounds in STH location, where numbers represent the mean square of area ratio per mg sample. 
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Appendix 4. P-values from mixed model ANOVA F-test for the effect of cotyledon colour and seed coat colour on phenolic 
compounds in SPG and STH locations, where numbers represent the mean square of area ratio per mg sample. 
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Appendix 5 (a). Analysis of variance for 10 brown normal Ggc Tgc Tan lines in three replicates. 
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Appendix 5 (b). Analysis of variance for 10 gray zero-tannin Ggc Tgc tan lines in three replicates.  

  D
f 

V
an

ill
ic

 a
ci

d-
4-
β

-D
-g

lu
co

si
de

 

K
ae

m
pf

er
ol

-3
-O

-r
ob

in
os

id
e-

7-
O

-r
ha

m
no

si
de

  

K
ae

m
pf

er
ol

 d
iru

tin
os

id
e 

Lu
te

ol
in

-4
'-O

-g
lu

co
si

de
 

Genotypes 

9 0.
01

49
6 

33
.6

 

15
44

3 

0.
00

03
33

 

Residual 

20
 

0.
01

6 

33
.4

7 

46
72

5 

0.
00

03
33

 



137 
 

Appendix 6. Effect of storage of different plant materials on storage ratio for samples 
analyzed by chromatographic (thin layer chromatography, HPLC, or LC-MS) and 
spectrophotometric (Prussian blue, Folin-Ciocalteu’s Phenol Reagent, or vanillin assay) 
methods 
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Flavonols Kaempferol Pinto bean  0.7 ± 0.1 Chromatographical 
(Beninger et al., 

2005) 

Flavonols 
Kaempferol-3-O-
acetylglucoside 

Pinto bean  1.3 ± 0.1 Chromatographical 
(Beninger et al., 

2005) 

Flavonols 
Kaempferol-3-O-

glucoside 
Pinto bean  1.6 ± 0.9 Chromatographical 

(Beninger et al., 
2005) 

Flavonols 
Kaempferol-3-O-
glucosylxylose 

Pinto bean  0.9 ± 0.4 Chromatographical 
(Beninger et al., 

2005) 

Phenolic acids Ellagic acid Strawberry 4.2 ± 2.5 Chromatographical 
(Aaby et al., 

2007) 

Phenolic acids Ferulic acid Dry bean 3.1 ± 2.3 Chromatographical 
(Srisuma et al., 

1989) 

Phenolic acids Sinapic acid Dry bean 1.5 ± 0.7 Chromatographical 
(Srisuma et al., 

1989) 

Flavan-3-ols (-)-Epicatechin Apple 0.8 ± 0.2 Chromatographical 
(Carbone et al., 

2011) 

Flavan-3-ols (-)-Epicatechin Soybean  0.4 Chromatographical 
(Zhou et al., 

2010) 

Flavan-3-ols (+)-Catechin Apple 1 ± 0.4 Chromatographical 
(Carbone et al., 

2011) 

Flavan-3-ols (+)-Catechin Strawberry 0.3 ± 0.1 Chromatographical 
(Aaby et al., 

2007) 

Proanthocyanidins 
Procyanidin 

dimers 
Blueberry 0.5 ± 0.2 Chromatographical 

(Howard et al., 
2010) 

Proanthocyanidins 
Procyanidin 

trimers 
Blueberry 0.3 ± 0.2 Chromatographical 

(Howard et al., 
2010) 

Proanthocyanidins 
Procyanidin 
tetramers 

Blueberry 0.3 ± 0.1 Chromatographical 
(Howard et al., 

2010) 

Proanthocyanidins 
Procyanidin 
pentamers 

Blueberry 0.3 ± 0.2 Chromatographical 
(Howard et al., 

2010) 

Proanthocyanidins 
Procyanidin 
hexamers 

Blueberry 0.3 ± 0.1 Chromatographical 
(Howard et al., 

2010) 

Proanthocyanidins 
Procyanidin 
heptamers 

Blueberry 0.3 ± 0.1 Chromatographical 
(Howard et al., 

2010) 

Proanthocyanidins 
Procyanidin 

octamers 
Blueberry 0.3 Chromatographical 

(Howard et al., 
2010) 
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Total Total non-tannins Dry bean 0.8 Spectrophotometrical 
(Martín-Cabrejas et al., 

1997) 

Total Total non-tannins Faba bean 0.8 Spectrophotometrical 
(Nasar-Abbas et al., 

2009) 

Total Total free phenolics Faba bean 0.9 Spectrophotometrical 
(Nasar-Abbas et al., 

2009) 

Total Total phenolics Alfalfa  1.4 Spectrophotometrical (Cakmak et al., 2010) 

Total Total phenolics Dry bean 0.9 Spectrophotometrical 
(Martín-Cabrejas et al., 

1997) 

Total Total phenolics Lentil  0.24 Spectrophotometrical (Pirhayati et al., 2011) 

Total Total phenolics Pinto bean 0.2 Spectrophotometrical (Pirhayati et al., 2011) 

Total Total proanthocyanidins Lentil  0.75 Spectrophotometrical 
(Nozzolillo and Bezada, 

1984) 

Total Total proanthocyanidins Faba bean 0.2 Spectrophotometrical 
(Nasar-Abbas et al., 

2009) 

Total Total proanthocyanidins Faba bean 0.9 Spectrophotometrical (Mareuardt et al., 1978) 

Total Total proanthocyanidins Pinto bean 0.7 Spectrophotometrical (Beninger et al., 2005) 

Total Total tannins Dry bean 7 ± 3.1 Spectrophotometrical 
(Martín-Cabrejas et al., 

1997) 

Total Total tannins Faba bean 0.9 Spectrophotometrical 
(Nasar-Abbas et al., 

2009) 

Storage ratio values were mostly obtained from the Phenol-Explorer web 
database(Rothwell et al., 2013) or calculated according to the following equation; 
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