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COMPATIBILITY OF SHELAH AND STUPP’S AND MUCHNIK’S

ITERATION WITH FRAGMENTS OF MONADIC SECOND ORDER

LOGIC

DIETRICH KUSKE

Institut für Informatik, Universität Leipzig

Abstract. We investigate the relation between the theory of the iterations in the sense of
Shelah-Stupp and of Muchnik, resp., and the theory of the base structure for several logics.
These logics are obtained from the restriction of set quantification in monadic second order
logic to certain subsets like, e.g., finite sets, chains, and finite unions of chains. We show
that these theories of the Shelah-Stupp iteration can be reduced to corresponding theories
of the base structure. This fails for Muchnik’s iteration.

1. Introduction

Rabin’s tree theorem states, via an automata-theoretic proof, the decidability of the
monadic second order (short: MSO) theory of the complete binary tree. It allows to derive
the decidability of seemingly very different theories (e.g., the MSO-theory of the real line
where set quantification is restricted to closed sets [11]). Its importance is stressed by
Seese’s result that any class of graphs of bounded degree with a decidable MSO-theory has
bounded tree-width (i.e., is “tree-like”) [13].

In [15], Shelah reports a generalization of Rabin’s tree theorem that was proved by
Shelah and Stupp. The idea is to start with a structure A and to consider the tree whose
nodes are the finite words over the universe of A together with the prefix order on these
words. Then the immediate successors of any node in this tree can naturally be identified
with the elements of the structure A – hence they carry the relations of A. The resulting tree
with additional relations is called Shelah-Stupp-iteration. The above mentioned result of
Shelah and Stupp states that the MSO-theory of the Shelah-Stupp-iteration can be reduced
to the MSO-theory of the base structure A. If A is the two-elements set, then Rabin’s tree
theorem follows.

A further extension is attributed to Muchnik [14] who added a unary clone predicate to
Shelah and Stupp’s iteration resulting in the Muchnik-iteration. This clone predicate states
that the last two letters of a word are the same. This allows, e.g., to define the unfolding of
a rooted graph in its Muchnik-iteration [5]. Muchnik’s theorem then gives a reduction of the
MSO-theory of the Muchnik-iteration to the MSO-theory of the base structure. The proof
was not published by Muchnik himself, but, using automata-theoretic methods, Walukiewicz
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showed that the reduction in Muchnik’s theorem is even uniform (i.e., independent from the
concrete base structure) [17]. Since, as mentioned above, the unfolding of a rooted graph
can be defined in the Muchnik-iteration, the MSO-theory of this unfolding can be reduced
to that of the graph [5]. This result forms the basis for Caucal’s hierarchy [2] of infinite
graphs with a decidable MSO-theory. Walukiewicz’s automata-theoretic proof ideas have
been shown to work for the Muchnik-iteration and stronger logics like Courcelle’s counting
MSO and guarded second-order logic by Blumensath & Kreutzer [1].

In [10], we asked for a first-order version of Muchnik’s result – and failed. More precisely,
we constructed structures with a decidable first-order theory whose Muchnik-iteration has
an undecidable first-order theory. As it turns out, the only culprit is Muchnik’s clone
predicate since, on the positive side, we were able to uniformly reduce the first-order theory
(and even the monadic chain theory where set variables range over chains, only) of the
Shelah-Stupp-iteration to the first-order theory of the base structure.1

The aim of this paper is to clarify the role of weak monadic second order logic MSOw in
the context of Shelah-Stupp- and Muchnik-iteration. We first define infinitary versions of
these iterations that contain, in addition to the finite words, also ω-words. On the positive
side, we prove a rather satisfactory relation between the theories of the infinitary Shelah-
Stupp-iteration and the base structure. More precisely, the Shelah-Stupp result together
with some techniques from [11] allows to uniformly reduce the MSOclosed-theory of the
infinitary Shelah-Stupp-iteration (where set quantification is restricted to closed sets) to
the MSO-theory of the base set. Our result from [10] ensures that Shelah-Stupp-iteration
is FO-compatible in the sense of Courcelle (i.e., the FO-theory of the infinitary Shelah-
Stupp-iteration can be reduced uniformly to the FO-theory of the base structure). Our new
positive result states that Shelah-Stupp-iteration is also MSOw-compatible. To obtain this
result, one first observes that the finiteness of a set in the Shelah-Stupp-iteration is definable
in MSOmch (where quantification is restricted to finite unions of chains), hence the MSOw-
theory of the Shelah-Stupp-iteration can be reduced to its MSOmch-theory. For this logic, we
then prove a result analogous to Rabin’s basis theorem: Any consistent MSOmch-property
in the Shelah-Stupp-iteration of a finite union of chains (i.e., of a certain set of words over
the base structure) has a witness that can be accepted by a small automaton. But an
automaton over a fixed set of states can be identified with its transition matrix, i.e., with
a fixed number of finite sets in the base structure. We then prove that MSOmch-properties
of the language of an automaton can effectively be translated into MSOw-properties of the
transition matrix.

On the negative side, we prove that infinitary Muchnik-iteration is not MSOw-compat-
ible. Namely, there is a tree Tω with decidable MSOw-theory such that for any set M of
natural numbers, there exists an MSOw-equivalent tree AM such that M can be reduced
to the MSOw-theory of the infinitary Muchnik-iteration of AM . This proof uses the fact
that the existence of an infinite branch in a tree is not expressible in MSOw, but it is a
first-order (and therefore a MSOw-) property of the infinitary Muchnik-iteration.

1In the meantime, Alexis Bes found a simpler proof of a stronger result based on the ideas of automatic
structures and [16] (personal communication).
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2. Preliminaries

2.1. Logics

A (relational) signature σ consists of finitely many constant and relation symbols (to-
gether with the arity of the latter); a purely relational signature does not contain any
constant symbols. Formulas use individual and set variables, usually denoted by small
and capital, resp., letters from the end of the alphabet. Atomic formulas are x1 = x2,
R(x1, . . . , xn), and x1 ∈ X where R is an n-ary relation symbol from σ, x1, x2, . . . , xn are
individual variables or constant symbols, and X is a set variable. Formulas are obtained
from atomic formulas by conjunction, negation, and quantification ∃Z for Z an individual
or a set variable. A sentence is a formula without free variables. The satisfaction relation
|= between a σ-structure A and formulas is defined as usual. For two σ-structures A and
B, we write A ≡MSO

m B if, for any sentence ϕ of quantifier depth at most m, we have
A |= ϕ iff B |= ϕ. If A and B agree on all first-order formulas (i.e., formulas without set
quantification) of quantifier depth at most m, then we write A ≡FO

m B.
Let (V,�) be a partially ordered set. A set M ⊆ V is a chain if (M,�) is linearly

ordered, it is a multichain if M is a finite union of chains. An element x ∈M is a branching
point if {y ∈M | x < y} is nonempty and does not have a least element.

We will also consider different restrictions of the satisfaction relation |= where set vari-
ables range over certain subsets, only. In particular, we will meet the following restrictions.

• Set quantification can be restricted to finite sets, i.e., we will discuss weak monadic
second order logic. The resulting satisfaction relation is denoted |=w and the equiv-
alence of structures ≡w

m.
• Set quantification can be restricted to chains (where we assume a designated binary

relation symbol � in σ) which results in |=ch and ≡ch
m , cf. Thomas [16].

• |=mch etc. refer to the restriction of set quantification to multichains.
• The superscript closed denotes that set variables range over closed sets, only (where

we associate a natural topology to any σ-structure), cf. Rabin [11].

Let t be some transformation of σ-structures into τ -structures, e.g., transitive closure.
A very strong relation between the L-theory of A and the K-theory of t(A) is the existence
of a single computable function red that reduces the K-theory of t(A) to the L-theory of A

for any σ-structure A. As shorthand for this fact, we say “The transformation t is (K,L)-
compatible” or, slightly less precise “The K-theory of t(A) is uniformly reducible to the
L-theory of A.” (K,K)-compatible transformations are simply called K-compatible.

Example 2.1. Any MSO-transduction is MSO-compatible [4] and finite set interpretations
are (MSOw,FO)-compatible [3]. Feferman & Vaught showed that any generalized product
is FO-compatible [7]. Finally, any generalized sum is MSO-compatible by Shelah [15].

2.2. Shelah and Stupp’s and Muchnik’s iteration

Let A be a (not necessarily finite) alphabet. With A∗ we denote the set of all finite
words over A, Aω is the set of infinite words, and A∞ = A∗ ∪ Aω. The prefix relation
on finite and infinite words is �. The set of finite prefixes of a word u ∈ A∞ is denoted
↓u = {v ∈ A∗ | v � u}, if C ⊆ A∞, then ↓C =

⋃
u∈C ↓u. For L ⊆ A∞ and u ∈ A∗ let

u−1L = {v ∈ A∞ | uv ∈ L} denote the left-quotient of L with respect to u.
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Let σ be a relational signature and let A = (A, (RA)R∈σ) be a structure over the
signature σ. The infinitary Shelah-Stupp-iteration A

∞ of A is the structure

A
∞ = (A∞,�, (R̂)R∈σ, ε)

where, for R ∈ σ,

R̂ = {(ua1, . . . , uan) | u ∈ A∗, (a1, . . . , an) ∈ RA} .

The (finitary) Shelah-Stupp-iteration A
∗ is the restriction of A

∞ to the set of finite words A∗.

Example 2.2. Suppose the structure A has two elements a and b and two unary relations

R1 = {a} and R2 = {b}. Then R̂1 = {a, b}∗a and R̂2 = {a, b}∗b. Hence the finitary Shelah-
Stupp-iteration A

∗ can be visualized as a complete binary tree with unary predicates telling
whether the current node is the first or the second son of its father. In addition, the root ε
is a constant of the Shelah-Stupp-iteration A

∗. Furthermore, the infinitary Shelah-Stupp-
iteration A

∞ adds leaves to this tree at the end of any branch. Since this allows to define
(R,≤) in A

∞, the unrestricted MSO-theory of A
∞ is undecidable.

Example 2.3. (cf. [9]) The Shelah-Stupp iteration allows to reduce the Cayley graph of a
free product to the Cayley graphs of the factors. Let Mi = (Mi, ◦i, 1i) be monoids finitely
generated by Γi for 1 ≤ i ≤ n and let Gi = (Mi, (E

a
i )a∈Γi

, {1i}) denote the rooted Cayley
graph of Mi. Then the Cayley graph G = (P, (Ea)a∈

S

Γi
) of the free product P = (P, ◦, 1)

of these monoids can be defined in the Shelah-Stupp iteration of the disjoint union of the
Cayley graphs Gi. For this to work, let M =

⋃
1≤i≤nMi be the disjoint union of the monoids

Mi and consider the structure

A = (M, (Mi)1≤i≤n, (E
a
i )1≤i≤n

a∈Γi

, U)

where U = {1i | 1 ≤ i ≤ n} is the set of units.
Then a word w ∈ M ∗ belongs to the direct product P iff the following holds in the

Shelah-Stupp iteration of A:
∧

1≤i≤n

∀xl y � w : x ∈ M̂i → y /∈ M̂i ∧ y /∈ Û

where l denotes the immediate successor relation of the partial order �. For a ∈ Γi and
v, w ∈ P , we have v ◦ a = w (i.e., (v, w) ∈ Ea) iff the Shelah-Stupp iteration satisfies

(
∃v′ ∈ Û : v l v′ ∧ (v′, w) ∈ Êa

i

)
∨ (v, w) ∈ Êa

i ∨
(
∃w′ ∈ Û : w l w′ ∧ (v, w′) ∈ Êa

i

)
.

Muchnik introduced the additional unary clone predicate cl = {uaa | u ∈ A∗, a ∈ A}.
The extension of the Shelah-Stupp-iterations by this clone predicate will be called finitary
and infinitary Muchnik-iteration (A∗, cl) and (A∞, cl), resp. Courcelle and Walukiewicz [5]
showed that the unfolding of a directed rooted graph G can be defined in the Muchnik
iteration (G∗, cl) of G.

To simplify notation, we will occasionally omit the word “finitary” and just speak of
the Shelah-Stupp- and Muchnik-iteration.
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3. A basis theorem for MSOmch

Rabin’s tree theorem [11] states the decidability of the monadic second order theory
of the complete binary tree. As a corollary of his proof technique by tree automata, one
obtains Rabin’s basis theorem [12, Theorem 26]: Let ϕ be a formula with free variables
X1, . . . , X` and let L1, . . . , L` ⊆ {a, b}∗ be regular languages such that the binary tree satis-
fies ϕ(L1, . . . , L`). Then it satisfies ψ(L1, . . . , L`) where ψ is obtained from ϕ by restricting
all quantifications to regular sets. To obtain this basis theorem, it suffices to show that
validity of ∃X` : ϕ(L1, . . . , L`−1, X`) implies the existence of a regular set R` such that
ϕ(L1, . . . , L`−1, R`) holds true in the binary tree.

This is precisely what this section shows in our context of MSOmch and the Shelah-
Stupp-iteration A

∗. Even more, we will not only show that the set R` can be chosen
regular, but we will also bound the size of the automaton accepting it.

Throughout this section, σ denotes some purely relational signature.

3.1. Preliminaries

For k, ` ∈ N, let τk,` be the extension of the signature (σ,�) by k constants and `
unary relations. Using Hintikka-formulas (see [6] for the definition and properties of these
formulas) one can show that for any of the signatures τk,` and m ∈ N, there are only finitely

many equivalence classes of ≡mch
m . An upper bound T (`,m) for the number of equivalence

classes of ≡mch
m on formulas over the signature τ2,` can be computed effectively.

Now let A = (A, (R)R∈σ) be some σ-structure. For u ∈ A∗, let A
∗
u denote the τ1,0-

structure (uA∗,v, (R)R∈σ, u) where

• the relation v is the restriction of � to uA∗ and
• R is the restriction of R̂ to uA+.

For any u, v ∈ A∗, the mapping f : A
∗
u → A

∗
v with f(ux) = vx is an isomorphism – this is

the reason to consider R and not the restriction of R̂ to uA∗. Similarly, the τ2,0-structure

A
∗
u,v = (uA∗ \ vA+,v, (R)R∈σ , u, v) is defined for u, v ∈ A∗ with u � v. Here, again, R is

the restriction of R̂ to uA+ \ vA+.
Frequently, we will consider the structure A

∗ together with some additional unary
predicates L1, . . . , L`. As for the plain structure A

∗, we will also meet the restriction of
(A∗, L1, . . . , L`) to the set uA∗, i.e., the structure (A∗

u, L1 ∩uA
∗, . . . , L` ∩uA

∗). To simplify
notation, this will be denoted (A∗

u, L1, . . . , L`); the structure (A∗
u,v, L1, . . . , L`) is to be

understood similarly.

Example 2.2 (continued). In the case of Example 2.2, A
∗
u is just the subtree rooted

at the node u. On the other hand, A
∗
u,v is obtained from A

∗
u by deleting all descendants

of v and marking the node v as a constant. Thus, we can think of A
∗
u,v as a tree with a

marked leaf. These special trees are fundamental in the work of Gurevich & Shelah [8] and
of Thomas [16].

In the following, fix some ` ∈ N. We then define the operations of product and infinite
product of τk,`-structures: If A = (A,�A, (RA)R∈σ , a1, a2, L

A
1 , . . . , L

A

` ) is a τ2,`-structure

and B = (B,�B, (RB)R∈σ , b1, . . . , bk, L
B
1 , . . . , L

B

` ) a disjoint τk,`-structure with k ≥ 1, then
their product A · B is a τk,`-structure. It is obtained from the structure

(A ∪B,�A ∪ �B, (RA ∪RB)R∈σ, L
A
1 ∪ LB

2 , . . . , L
A

` ∪ LB

` )
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by identifying a2 and b1, taking the transitive closure of the partial orders, and extending
the resulting structure by the list of constants a1, b2, b3, . . . , bk. Now let An be disjoint
τ2,`-structures with constants un and vn for n ∈ N. Then the infinite product

∏
n∈N

An is a
τ1,`-structure. It is obtained from the disjoint union of the structures An by identifying vn

and un+1 for any n ∈ N. The only constant of this infinite product is u0. If A ∼= An for all
n ∈ N, then we write simply A

ω for the infinite product of the structures An.
Standard applications of Ehrenfeucht-Fräıssé-games (see [6]) yield:

Proposition 3.1. Let j, `,m ∈ N, An,A
′
n be τ2,`-structures for n ∈ N and let B,B′ be some

τj+1,`-structures such that An ≡mch
m A

′
n for n ∈ N and B ≡mch

m B
′. Then

A0 · B ≡mch
m A

′
0 · B

′ and
∏

n∈N

An ≡mch
m

∏

n∈N

A
′
n .

Remark 3.2. We sketch a typical use of the above proposition in this section. Let x ∈ A∗

be some sufficiently long word. Since ≡mch
m has only finitely many equivalence classes, there

exist words u, v, w with x = uvw and v 6= ε such that (A∗
u, {x}) ≡

mch
m (A∗

uv, {x}). Hence we
obtain

(A∗, {x}) = (A∗
ε,u, ∅) · (A

∗
u, {uvw}) ≡

mch
m (A∗

ε,u, ∅) · (A
∗
uv, {uvw})

∼= (A∗, {uw}) .

(This proves that every consistent property of a single element of A
∗ is witnessed by some

“short” word.)
The last isomorphism does not hold for the Muchnik-iteration since the clone predicate

allows to express that the last letter of u and the first letter of v are connected by some
edge in the graph A.

Convention 3.3. We consider complete deterministic finite automata M = (Q,B, ι, δ, F ),
called automata for short. Its language is denoted L(M). We will also write p.w for δ(p,w).
The transition matrix of M is the tuple T = (Tp,q)p,q∈Q with Tp,q = {b ∈ B | δ(p, b) = q}.

As explained above, we will use automata to describe subsets of the Shelah-Stupp
iteration A

∗, i.e., the alphabet B will always be a finite subset of the universe of A. These
regular subsets have the following nice property whose proof is obvious.

Lemma 3.4. Let A be a σ-structure with universe A and let M = (Q,B, ι, δ, F ) be an
automaton with alphabet B ⊆ A. Then, for any u, v ∈ B∗ with δ(ι, u) = δ(ι, v), the mapping
fu,v : uA∗ → vA∗ : ux 7→ vx is an isomorphism from (A∗

u, L(M)) onto (A∗
v , L(M)).

As a consequence, the number of isomorphism classes of structures (A∗
v, L(M)) is finite.

This fails in the Muchnik-iteration even for L(M) = ∅: With A = (N, succ) and m,n ∈ N,
we have (A∗

m, cl)
∼= (A∗

n, cl) iff m = n since the structure (N, succ,m) can be defined in
(A∗

m, cl).

3.2. Quantification

While multichains in the Shelah-Stupp-iteration can be rather complicated, this section
shows that, up to logical equivalence, we can restrict attention to “simple” multichains.
Here, “simple” means that they are regular and, even more, can be accepted by a “small”
automaton.

For the rest of this section, let A = (A, (R)R∈σ) be some fixed σ-structure and `,m ∈ N.
For 1 ≤ i ≤ `, let Mi = (Qi, Bi, ιi, Fi) be automata with Bi ⊆ A such that L(Mi) ⊆ A∗
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is a multichain in the Shelah-Stupp iteration A
∗. Write L for the tuple of multichains

(L(M1), . . . , L(M`)).

Proposition 3.5. Let C ⊆ A∗ be a chain. Then there exist u, v ∈ A∗, E ⊆ ↓u \ {u}, and
F ⊆ ↓v \ {v} such that ιi.u = ιi.uv for all 1 ≤ i ≤ ` and (A∗, L, C) ≡mch

m (A∗, L,D) with
D = E ∪ uv∗F .

Proof. One shows the existence of u1 ≺ u2 ∈ A∗ such that C ∪ {u1, u2} is a chain, ιi.u1 =
ιi.u2 for all 1 ≤ i ≤ `, (A∗, L) ∼= (A∗

ε,u1
, L) · (A∗

u1,u2
, L)ω, and (A∗, L, C) ≡mch

m (A∗
ε,u1

, L, C) ·

(A∗
u1,u2

, L, C)ω. This uses arguments similar to those in Remark 3.2 and Ramsey’s theorem.

The result follows with u = u1, uv = u2, E = C ∩ ↓u \ {u}, and F = u−1(C ∩ ↓u2 \ {u2}).

The above proposition shows that every consistent property of a chain is witnessed by
some regular chain D. Using the pigeonhole principle and arguments as in Remark 3.2, one
can bound the lengths of u and v to obtain

Proposition 3.6. Let C ⊆ A∗ be a chain. Then there exists an automaton N with at
most 2

∏
1≤i≤` |Qi| · T (` + 1,m) states such that L(N ) is a chain and (A∗, L, C) ≡mch

m

(A∗, L, L(N )).

It is our aim to prove a similar result for arbitrary multichains in place of the chain
C in the proposition above. Certainly, in order to get a small automaton for a multichain,
the branching points of this set have to be short words. Again using arguments as in
Remark 3.2, one obtains

Lemma 3.7. Let M ⊆ A∗ be a multichain. Then there exists a multichain N ⊆ A∗ such
that

• (A∗, L,M) ≡mch
m (A∗, L,N) and

• any branching point of N has length at most k =
∏

1≤i≤`(|Qi| + 1) · T (`+ 1,m).

Lemma 3.8. Let M be a multichain such that all branching points of M have length at
most s− 1. Then there exists an automaton N with at most (2

∏
1≤i≤` |Qi| ·T (`+1,m))s+1

many states such that L(N ) is a multichain and (A∗, L,M) ≡mch
m (A∗, L, L(N )).

Proof. Let n =
∏

1≤i≤` |Qi| and L = (L(M1), . . . , L(M`)).
The lemma is shown by induction on s. If s = 0, then M is a chain, i.e., the result

follows from Prop. 3.6.
Now let M be a multichain such that any branching point has length at most s > 0.

By the induction hypothesis, for every a ∈ A, there exists an automaton Na with at most
(2nT (`+ 1,m))s+1 many states such that L(Na) is a multichain and

(A∗
a, L,M) ≡mch

m (A∗, a−1L(M1), . . . , a
−1L(Ma

` ), L(Na)) .

Let θ be the equivalence relation on A with (a, b) ∈ θ if and only if

(1) δi(ιi, a) = δi(ιi, b) for all 1 ≤ i ≤ ` and
(2) (A∗

a, L,M) ≡mch
m (A∗

b , L,M).

Let H ⊆ A contain precisely one element h from any θ-equivalence class. Then the set⋃
{aL(Nh) | a θ h ∈ H and a−1M 6= ∅} ∪ ({ε} ∩M) is a multichain and can be accepted by

some automaton N with the right number of states.
Then (A∗, L, L(N )) is obtained from (A∗, L,M) by replacing any subtree (A∗

a, L,M)
with the equivalent structure (A∗, a−1L(M1), . . . , a

−1L(Ma
` ), L(Nh)) for a θh ∈ H. Hence,

by Prop. 3.1, (A∗, L,M) ≡mch
m (A∗, L, L(N )).
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Putting these two lemmas together, we obtain that, indeed, every consistent property
of a multichain M is witnessed by some multichain that can be accepted by some “small”
automaton:

Proposition 3.9. Let M ⊆ A∗ be some multichain. Then there exists an automaton N
with at most (2nT (` + 1,m))s+1 many states (where s = n · T (`+ 1,m), n =

∏
1≤i≤` |Qi|)

such that L(N ) is a multichain and (A∗, L,M) ≡mch
m (A∗, L, L(N )).

Now a result analogous to Rabin’s basis theorem follows immediately

Theorem 3.10. Let A be a σ-structure, let ϕ be an MSOmch-formula in the language of
the Shelah-Stupp-iteration A

∗ with free variables X1, . . . , X` and let L1, . . . , L` ⊆ A∗ be
regular languages such that (A∗, L1, . . . , L`) |=mch ϕ. Then (A∗, L1, . . . , L`) |=reg−mch ϕ
where |=reg−mch denotes that set quantification is restricted to regular multichains.

Recall that Rabin’s basis theorem follows from his tree theorem whose proof, in turn,
uses the effective complementation of Rabin tree automata. While the above theorem is an
analogue of Rabin’s basis theorem, the proof is more direct and does in particular not rest
on any complementation of automata.

4. Shelah-Stupp-iteration is (MSOmch
, MSOw)-compatible

The results of the previous section, as explained at the beginning, imply that quan-
tification in an MSOmch-sentence can be restricted to regular sets that are accepted by
“small” automata. In this section, we will use this insight to reduce the MSOmch-theory of
the Shelah-Stupp-iteration to the MSOw-theory of the base structure.

Fix some σ-structure A with universe A, some finite set of states Q, some initial state ι,
and some set of final states F ⊆ Q. Then, for any automaton M = (Q,B, ι, δ, F ) with
B ⊆ A, the language L(M) is a set in the Shelah-Stupp-iteration A

∗ while its transition
matrix is a tuple of finite sets in the base structure A. The idea of our reduction is that
MSOmch-properties of the set L(M) in the Shelah-Stupp-iteration A

∗ can (effectively) be
translated into MSOw-properties of the transition matrix T in the base structure A.

In precisely this spirit, the following lemma expresses simple properties of the automa-
ton M and of the language L(M) in terms of FO-properties of (A, T ) = (A, (Tp,q)p,q∈Q).

Lemma 4.1. Let F ⊆ Q be finite sets and ι ∈ Q. There exist formulas reach(Q,p,q) for
p, q ∈ Q and mchain(Q,ι,F ) of FO with free variables Tp,q for p, q ∈ Q such that for any
σ-structure A and any automaton M = (Q,B, ι, δ, F ) with transition matrix T :

(1) (A, T ) |=w reach(Q,p,q) iff there exists a word w ∈ A∗ with δ(p,w) = q.
(2) (A, T ) |=w mchain(Q,ι,F ) iff L(M) is a multichain.

Proof. The proof is based on the observation that (1) one only needs to search for a path
of length at most |Q| and (2) that L(M) is a multichain iff no branching point belongs to
some cycle.

So far, we showed that simple properties of L(M) are actually FO- (and therefore
MSOw-) properties of the transition matrix of M. We now push this idea further and
consider arbitrary MSOmch-properties of a tuple of languages L(M1), . . . , L(M`).
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Theorem 4.2. There is an algorithm with the following specification
input: • ` ∈ N,

• finite sets Fi ⊆ Qi and states ιi ∈ Qi for 1 ≤ i ≤ `,
• and a formula α with free variables among L1, . . . , L` in the language of

the Shelah-Stupp-iteration A
∗.

output: A formula α(Q,ι,F ) in the language of A with free variables among T i
p,q for p, q ∈ Qi

and 1 ≤ i ≤ ` with the following property:
If A is a σ-structure and Mi = (Qi, Bi, ιi, T

i, Fi) are automata with Bi ⊆ A for
1 ≤ i ≤ `, then

(A∗, L(M1), L(M2), . . . , L(M`)) |=
mch α ⇐⇒ (A, T 1, T 2, . . . , T `) |=w α(Q,ι,F ) .

Proof. The proof proceeds by induction on the construction of the formula α, we only
sketch the most interesting part α = ∃X β. Set n =

∏
1≤i≤` |Qi|, s = nT (` + 1,m), and

k = (2nT (`+1,m))s+1. Let A be a σ-structure and let Mi = (Qi, Bi, ιi, δi, Fi) be automata
with Bi ⊆ A and transition matrix T i. Then, by Prop. 3.9, (A∗, L(M1), . . . , L(M`)) |=

mch α
iff there exists an automaton N with k states such that

(A∗, L(M1), L(M2), . . . , L(M`), L(N )) |=mch β .

Using the induction hypothesis on β and β(Q,ι,F ), this is the case if and only if there exist

finite sets T `+1
i,j , B ⊆ A for i, j ∈ [k] = {1, 2, . . . , k} such that

• T `+1 forms the transition matrix of some automaton with alphabet B
• for some F ⊆ [k], the automaton M`+1 = ([k], B, 1, T `+1, F )

– accepts a multichain M (i.e., (A, T `+1) |=w mchain([k],1,F )) and

– this multichain satisfies β (i.e., A, T 1, . . . , T `+1 |=w β((Q,[k]),(ι,1),(F ,F ))).

Since all these properties can be expressed in MSOw, the construction of α(Q,ι,F ) is complete.

As an immediate consequence, we get a uniform version of Shelah and Stupp’s theorem
for the logics MSOw and MSOmch:

Theorem 4.3. Finitary Shelah-Stupp-iteration is (MSOmch,MSOw)-compatible.

Remark 4.4. (MSOch,FO)-compatibility of Shelah-Stupp-iteration [10] can alternatively
be shown along the same lines: One allows incomplete automata and proves an analogue
of Prop. 3.6 for the logic MSOch. Then Theorem 4.3 can be shown for the pair of logics
(MSOch,FO).

5. Infinitary Muchnik-iteration is not (FO, MSOw)-compatible

Our argument goes as follows: From a set M ⊆ N, we construct a tree AM . The
MSOw-theory of this tree will be independent from M and M will be FO-definable in the
infinitary Muchnik-iteration (A∞

M , cl). Assuming (FO,MSOw)-compatibility of the infinitary
Muchnik-iteration, the set M will be reduced uniformly to the MSOw-theory of AM . For
M 6= N , this yields a contradiction.

A tree is a structure (V,�, r) where � is a partial order on V such that, for any v ∈ V ,
(↓v,�) is a finite linear order and r � v for all v ∈ V .
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We will consider the set Tω = {(a1,m1)(a2,m2) . . . (ak,mk) ∈ (N × N)∗ | m1 > m2 >
m3 · · · > mk} of sequences in N

2 whose second components decrease. This set, together
with the prefix relation �, forms a tree (Tω,�, ε) with root ε that we also denote Tω. Nodes
of the form w(a, 0) are leaves of Tω. Any inner node of Tω has infinitely many children
(among them, there are infinitely many leaves). Furthermore, all the branches of Tω are
finite. Even more, if x is a node different from the root, then the branches passing through
x have bounded length.

We will also consider the set T∞ = a∗Tω where a is an arbitrary symbol. Together with
the prefix relation, this yields another tree (T∞,�, ε) that we denote T∞. Differently from
Tω, it has an infinite branch, namely the set of all nodes an for n ∈ N.

For two trees S and T and a node v of S, let S ·v T denote the tree obtained from the
disjoint union of S and T by identifying v with the root of T (i.e., the node v gets additional
children, namely the children of the root in T ).

It is important for our later arguments that this operation transforms trees equivalent
wrt. ≡w

m into equivalent structures. More precisely

Proposition 5.1. Let S, T , and T ′ be trees and k ∈ N such that T ≡w
k T ′. Then S ·v T ≡w

k

S ·v T
′ for any node v of S.

With a≤n = {ε, a, a2, . . . , an}, the set a≤nTω together with the prefix relation and the
root, is considered as a tree that we denote a≤nTω.

Proposition 5.2. For any k ∈ N, we have Tω ≡w
k T∞.

Proof. The statement is shown by induction on k where the base case k = 0 is trivial. To
show Tω ≡w

k+1 T∞, it suffices to prove for any formula ϕ(X) of quantifier-depth at most k

Tω |=w ∃X ϕ(X) ⇐⇒ T∞ |=w ∃X ϕ(X) .

Assuming T∞ |=w ∃X ϕ, there exist n ∈ N and M ⊆ a≤nTω finite with (T∞,M) |=w ϕ.
Hence we have

(T∞,M) ∼= (a≤nTω,M) ·an (T∞, ∅)

≡w
k (a≤nTω,M) ·an (Tω, ∅) by Prop. 5.1 and the induction hypothesis

∼= (a≤nTω,M) .

Hence (a≤nTω,M) |=w ϕ and therefore a≤nTω |=w ∃X ϕ. Using Tω ≡w
k+1 a≤nTω (see

complete paper for the proof), we obtain Tω |=w ∃X ϕ.
Conversely, one can argue similarly again using Tω ≡w

k+1 a
≤nTω.

Remark 5.3. This proves that the existence of an infinite path cannot be expressed in
weak monadic second order logic since T∞ has such a path and Tω does not.

Using an idea from [5], the existence of an infinite path is a first-order property of the
infinitary Muchnik-iteration. The following lemma pushes this idea a bit further:

Lemma 5.4. Let T = (T,≤, r) be a tree and let U ⊆ T be the union of all infinite branches
of T . Then the MSOw-theory of (T,≤, r, U) is uniformly reducible to the MSOw-theory of
the infinitary Muchnik-iteration (T∞, cl) of the tree (T,≤, r) without the extra predicate.

For M ⊆ N, let AM = {bm | m ∈ M}T∞ ∪ {bm | m /∈ M}Tω and AM = (AM ,�, ε).
Then AM is obtained from the linear order (N,≤) ∼= (b∗,�) by attaching the tree T∞ to
elements from M and the tree Tω to the remaining numbers.
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Theorem 5.5. For M ⊆ N, we have AM ≡w
k Tω for all k ∈ N, and M can be reduced to

the FO-theory of the infinitary Muchnik-iteration (A∞
M , cl).

Proof. Using Ehrenfeucht-Fräıssé-games and Prop. 5.2, one obtains

AM ≡w
k (b∗Tω,�, ε) ∼= T∞ ≡w

k Tω .

For the second statement, it suffices, by Lemma 5.4, to reduce M to the first-order
theory of (AM ,�, ε, U) where U = b∗ ∪ {bm | m ∈M}a∗ is the set of nodes of the tree AM

that belong to some infinite branch.

If a transformation t is (FO,MSOw)-compatible, then for any structure A, the FO-
theory of t(A) can be reduced to the the MSOw-theory of A. Contrary to this, the above
theorem states that the FO-theory of the infinitary Muchnik-iteration can be arbitrarily
more complicated than the MSOw-theory of the base structure. Hence we obtain

Corollary 5.6. Infinitary Muchnik-iteration is not (FO,MSOw)-compatible.

6. Summary

Table 1 summarizes our knowledge about the compatibility of Muchnik’s and Shelah &
Stupp’s iteration. It consists of four subtables dealing with finitary and infinitary Muchnik-
iteration and with finitary and infinitary Shelah-Stupp-iteration. The sign + in cell (K,L) of
a subtable denotes that the respective iteration is (K,L)-compatible, – denotes the opposite.
Minus-signs without further marking hold since the base structure can be defined in any
of its iterations. Capital letters denote references: (A) is [15], (B) [17], (C) [10, Prop. 3.4],
(D) [10, Thm. 4.10], (E) Theorem 4.3, (F) Theorem 5.5, and (G) since the base structure
is definable in its iteration and finiteness of a set is no MSO-property. Small letters denote
that the result follows from Theorem 6.1 below and some further “simple” arguments from
the result marked by the corresponding capital letter.

Theorem 6.1. Let (K,L) be any of the pairs of logics (MSOclosed,MSO), (MSOch,MSOch),
or (MSOmch,MSOmch). There exists a computable function red such that, for any σ-
structure A, red reduces the K-theory of (A∞, cl) to the L-theory of (A∗, cl).

The same holds for the Shelah-Stupp-iterations.

The two questions marks in Table 1 express that it is not clear whether finitary Muchnik-
iteration is MSOw-compatible or not.

Note the main difference between Muchnik- and Shelah-Stupp-iteration: the latter is
K-compatible for all relevant logics while only MSO behaves that nicely with respect to
(infinitary) Muchnik-iteration

A referee proposed to also consider the variant of MSO where set quantification is
restricted to countable sets. As to whether Muchnik iteration is compatible with this logic
is not clear at the moment.
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Muchnik inf. Muchnik
MSO MSOw FO MSO MSOw FO

MSO + (B) – – MSOclosed + (b) – –
MSOw – (g) ? – MSOw – (g) – (f) –
FO + (b) ? – (C) FO + (b) – (F) – (c)

Shelah-Stupp inf. Shelah-Stupp
MSO MSOw FO MSO MSOw FO

MSO + (A) – – MSOclosed + (a) – –

MSOmch – (g) + (E) – MSOmch – (g) + (e) –
MSOw – (G) + (e) – MSOw – (g) + (e) –

MSOch + (a) + (e) + (D) MSOch + (a) + (e) + (d)
FO + (a) + (e) + (d) FO + (a) + (e) + (d)

Table 1: summary
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