
AN ADAPTIVE MIDDLEWARE FOR
MOBILE INFORMATION SYSTEMS

Volker Gruhn and Malte Hülder
Applied Telematics/e-Business Group, Dept. of Computer Science, University of Leipzig, Klostergasse 3, Leipzig, Germany

gruhn@ebus.informatik.uni-leipzig.de,huelder@ebus.informatik.uni-leipzig.de

Keywords: Mobile applications, Dynamic reconfiguration, Reconfiguration triggers, Adaptive middleware, Reactive sys-
tems.

Abstract: The advances in mobile telecommunication networks as well as in mobile device technology have stimulated
the development of a wide range of mobile applications. While it is sensible to install at least some components
of applications on mobile devices to gain independence of rather unreliable mobile network connections, it is
difficult to decide about the suitable application components and the amount of data to be provided.Because
the environment of a mobile device can change and mobile business processes evolve over time, the mobile
system should adapt to these changes dynamically to ensure productivity.
In this paper, we present a mobile middleware that targets typical problems of mobile applications and dynam-
ically adapts to context changes at runtime by utilizing reconfiguration triggers.

1 INTRODUCTION

Over the past years, the development of mobile ap-
plications has increased significantly, and more and
more specialized applications are introduced that sup-
port mobile business processes performed by mobile
field workers.

For example, let us consider an information sys-
tem that enables an insurance agent to perform his
business processes. Supplementing office work, the
agent visits his clients at their homes or at the site of
insured objects. Particularly in claims management,
he has to visit the insured object, ascertain necessary
data and organize the claim settlement. Depending
on the type of claim, the claims management process
can be very different: for a damaged car, e.g., in a cat-
alog containing all parts of the particular model, the
affected parts have to be marked. For other objects,
the agent has to take photos of the affected objects.

From this example, we can see two major issues
that need to be considered in supporting mobile busi-
ness processes (Gruhn et al., 2007): On one hand, the
processes may be very specific and complex, and on
the other hand, data used during a process may only
be used for this particular process (like the catalog
containing all parts of a particular car). Traditionally,
these issues have been addressed in two ways:
1. A complex application is installed on the mobile

device, which comprises the knowledge of all pro-
cesses and their necessary data. This approach al-
lows working with the application autonomously, but
it may also consume a lot of storage space on the mo-
bile device. Moreover, it is rather expensive in devel-
opment, operation, and maintenance.
2. Alternatively, the complex application is installed
on a server, while the mobile device only holds a thin
client that only renders the data. Resource consump-
tion on the mobile device, as well as development and
maintenance costs, remain low. However, such a thin
client application depends on a permanent network
connection to the server (Jing et al., 1999).

Our approach proposes to dynamically mobilize
components and data at runtime, based on knowl-
edge of business processes and the current environ-
ment context. We therefore present a mobile, service-
oriented middleware that allows transferring applica-
tions (or parts of them) from a server to mobile client
devices. The middleware provides an execution en-
vironment that allows execution of the same imple-
mentation on both the server and the mobile clients.
It also dynamically adapts to the current environment
context, e.g. it considers the current network connec-
tion when invoking services on the local device or
the remote server. The considered context informa-
tion, possible adaptations, and the rules controlling
dynamic reconfiguration are presented in sect. 4.2.

108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In sect. 2, we discuss typical problems experi-
enced by mobile applications, followed by an outline
of related work (sect. 3). Subsequently, we introduce
our mobile middleware in sect. 4, which is completed
by a validation in sect. 5. The paper is rounded off by
our conclusions and future outlook (sect. 6).

2 PROBLEMS OF DISTRIBUTED
MOBILE APPLICATIONS

One of the most crucial problems of distributed mo-
bile applications is volatile network connectivity. Mo-
bile network connections are rather slow compared
to wired networks and also they often vanish without
warning. Applications depending on a network con-
nection cannot be used under these circumstances.

On the other hand, mobile information systems
may be very helpful, if they can be used in places
where no network connection is available, e.g. in
a building’s basement, out in the field, or even in a
disaster area. Therefore, mobile information systems
should be capable of disconnected operation.

Another crucial problem is the limited storage
space of mobile devices. The limited resources do
not allow placing a complex application and all of its
data on a mobile device. Hence, only selected parts
of complex applications can be made available on the
device to support the current mobile business process.
Similarly, only a carefully chosen subset of the data in
a central data store can be replicated to a mobile de-
vice to support these activities.

In both cases, it is difficult to decide about the
appropriate selection of data and components which
ought to be transferred to the mobile device. Further-
more, such a decision should not be fixed, but has to
be made repeatedly to adapt to the current situation of
the device and the mobile business process.

Another challenge lies in the fact that mobility and
size of mobile devices causes them to be lost or stolen
more easily than fixed office computers. Providing
applications and data on a mobile device brings about
increased security requirements. For example, confi-
dential data should be removed from the device when
it gets lost or at least the data has to be encrypted so
that it is useless for an unauthorized finder.

Applications installed on mobile devices may
have to be updated from time to time. Calling the
devices in to be updated by an administrator is time-
consuming and requires logistical effort. Distributing
updates on compact discs or other media requires the
users to be able to perform the updates themselves
and increases the risk of updates being installed with
significant delays or not at all. Thus, online updates

via the Internet have become popular. However, pro-
viding an update management tool for each mobile
application individually, increases development effort
and resource consumption on mobile devices.

Advances in mobile device technology have
brought about numerous different devices and an in-
creasingly faster development of even more device
types. Keeping up with this development by provid-
ing applications tailored for specific devices becomes
more and more complex and expensive. An execution
environment that levels device differences may reduce
development and maintenance costs significantly.

We consider these problems relevant for such a
number of mobile applications that they ought to be
addressed in a general way. Our approach is based
on an adaptive mobile middleware, which targets the
stated problems for the class of mobile information
systems, and is variable enough to support a great va-
riety of mobile business processes. Sect. 4 describes
the main aspects of our approach in more detail.

3 RELATED WORK

In this section, we give a brief overview on selected
related work:

Hong et al. give an introduction to context-
awareness. They group context information in com-
puting, user and physical context (Hong et al., 2005).
We do not see the necessity to handle these three
types of context differently, and therefore we propose
a generic context interface for components and re-
configuration triggers. While currently only the mo-
bile business process context and the most impor-
tant computing context sensors (CPU, memory, disk
space, bandwidth) have been implemented, other sen-
sors may easily be added at a later stage.

Coda (Kistler and Satyanarayanan, 1992) is a dis-
tributed file system that provides file operations for
mobile systems which are temporarily disconnected,
by implementing client-side caching, and server repli-
cation mechanisms. Files can be stored on several
servers so that a client may copy them from another
server, if one is not available. However, Coda is based
on the notion of files, which is too coarse-grained
to support service orientation and synchronization of
business object attributes.

The Odyssey system (Noble and Satyanarayanan,
1999) has evolved from Coda. While Coda hides
environment data from applications, Odyssey allows
quality-based access to data, notifying the application
when a parameter (e.g. the available network band-
width) is out of bounds and thus enabling it to re-
act to this situation accordingly. However, Odyssey

AN ADAPTIVE MIDDLEWARE FOR MOBILE INFORMATION SYSTEMS

109



is also based on the notion of binary files which is not
suitable for service orientation and synchronization of
fine-grained business object attributes.

Other than Coda and Odyssey, Xerox PARC’s
Bayou (Terry et al., 1998) does not try to resolve data
inconsistency itself. It rather notifies the applications
which themselves can provide methods to resolve the
conflicts. Like other file-based systems, Bayou has
not been designed for service-oriented architectures.

The SATIN component system (Zachariadis et al.,
2006) follows a similar approach to ours of providing
a light-weight middleware for mobilizing application
parts. However, we put a strong emphasis on service
orientation as well as managing user data during off-
line operation. Furthermore, we propose a solution
to decide about mobilizing components at runtime,
based on knowledge about mobile business processes.

Popa et al. introduce a mechanism called ”code
collection” for code execution on mobile devices in
(Popa et al., 2004). Code collection is a management
concept combining caching techniques and garbage
collection techniques for memory management. It dy-
namically loads and removes methods to and from the
device’s memory depending on the amount of mem-
ory available. Similar to data caching, subsequent
calls to removed methods lead to a miss and require
reloading those methods via the network. Thus, it is
not suitable for offline operation. We still consider
this approach interesting as it may help to improve
the selection of components most likely being used
during disconnected mode as we discuss in sect. 6.

A rather recent development is Google Gears
(Google, 2007; Herrington, 2007). It solely tar-
gets web applications for which it supports an off-
line mode. The execution of business logic in off-
line mode is restricted to logic implemented in Java-
Script which can be executed in the browser. In our
approach we focus on mobilizing and executing the
same implementations on server and mobile clients.

4 MobCo MIDDLEWARE

Our mobile middleware was developed as part of the
MobCoproject. It is implemented on top of the OSGi
framework standard (OSGi Alliance, 2005), which it-
self is a service oriented component layer based on
the Java programming language.

4.1 Subsystems

The architecture ofMobComiddleware is shown in
Figure 1. It comprises a number of subsystems, each
of which is responsible for different aspects.

Communication

Monitoring

Persistence

MobCo Middleware

MobCo Component

Component

Framework

Component

Manager

Trigger

Figure 1: Subsystems ofMobCoMiddleware

The component framework provides the inter-
face used by components to interact with the mobile
middleware. For example, it allows a component to
lookup and invoke services provided by other compo-
nents. It also provides access to the persistence sub-
system allowing a component to query, load and store
data, and to the monitoring system allowing to inspect
the current environment’s context.

The component manageris responsible to de-
ployment and removal of components. On that basis,
it also has to manage the transfer of new or updated
components and control the update process of unde-
ploying an outdated and deploying the updated ver-
sion of a component. The component manager also
resolves component dependencies and automatically
transfers required dependencies to the mobile system.

The persistencesubsystem realizes a distributed
data store which consists of a local data store on each
mobile device and a central database on the server. It
allows selecting a number of data objects to be repli-
cated to the mobile device and synchronized with the
server when necessary.

The persistence subsystem uses the object ori-
ented database db4o (Versant Corp., 2008) as a ba-
sis for its functionality, but it hides the db4o inter-
faces behind the component framework. This way,
the database may be substituted, if necessary.

Thecommunicationsubsystem controls the com-
munication between two middleware instances and it
controls the routing of service calls by components.

The R-OSGi extension (Rellermeyer et al., 2007)
is used for the incorporation of remote services pro-
vided on another device.

The monitoring subsystem collects information
about the system’s environment. In particular, it ob-
serves the device’s network connectivity, its storage
space, memory and computational load.

The trigger subsystem manages the dynamic re-
configuration of our mobile middleware by means of
reconfiguration triggers, which decide about neces-
sary reconfigurations based on the information col-
lected by the monitoring subsystem.

ICEIS 2009 - International Conference on Enterprise Information Systems

110



4.2 Dynamic Reconfiguration

Dynamic reconfiguration means changing the distri-
bution or the behavior of a mobile application at run-
time, according to changes in the environment. As we
have seen in sect. 2, mobile applications often suffer
from similar problems and thus, they may adapt to en-
vironment changes in similar ways. Our middleware
provides several standard reconfigurations, some of
which can be applied independently of the current ap-
plication, and some that may be utilized by applica-
tion developers for their individual applications.

In order to design the ways in which such a dy-
namic reconfiguration takes place, we have to define
the context information to react to, and the set of pos-
sible reactions which can be performed according to
the current situation. We call the rules that decide
about whether a reaction has to follow the current sit-
uationreconfiguration triggersor justtriggers.

Triggers collect information about the environ-
ment and the executed mobile business processes and
decide whether a reconfiguration is necessary. Thus,
triggers provide a mapping from the set of environ-
mental and mobile business process information to
the set of possible reconfigurations, which will be de-
fined in the following sections.

4.2.1 Relevant Context Information

For the sake of brevity, we will only name (rather
than discuss) the parameters that are considered for
the set of mobile business processes and environmen-
tal information that triggers base their decisions on:
Network type, bandwidth, latency, CPU power, CPU
load, device type, storage space, memory, component
size, component dependencies, component version,
user information, and the currently executed mobile
business process.

4.2.2 Possible Reconfigurations

The set of reactions that may be initiated by reconfig-
uration triggers can be divided into reactions that have
to be provided by a mobile middleware, and reactions
that change the behavior of an application. In order to
keep the middleware small and lightweight for mobile
devices, the set of middleware reactions contains only
the reactions necessary for dynamic changes in com-
ponent distribution, dynamic routing of service calls
and handling of replicated data. This comprises the
following activities:

Mobilization. A trigger may decide to mobilize a
component, i.e. transfer it to the mobile host for
local execution.

Removal. A trigger can react to outdated or unneces-
sary components or low storage space by remov-
ing a component from the local system.

Routing. Components can reside on a mobile host as
well as on the server. A trigger may decide for
the application to employ the local or the remote
installation, depending on the current situation.

Replication. The trigger can initiate the replication
of selected business objects, when a connection
becomes available, or when a replicated business
object is changed on the server.

Synchronization. When a business object has been
changed during offline mode and a network con-
nection becomes available, synchronization of the
replicated business object has to be initiated. Dur-
ing synchronization, possible conflicts and incon-
sistencies between local and remote copy have to
be resolved.

Application Reaction. If a mobile application pro-
vides its own adaptations to different situations,
triggers can be used to invoke the according func-
tionality in the appropriate situation.

4.3 Standard Triggers

Based on the monitored environment data and the
possible reconfigurations, we have implemented a
number of standard triggers, which can be configured
for individual application needs, if required.

Application developers may implement their own
reconfiguration triggers to control dynamic adaptation
of the middleware, or to allow their applications to
adapt to context changes by application reactions.

Network Class Triggers. are used to group low level
network information like network type, latency
and bandwidth into high level network classes.
Network classes may be defined by the developer,
e.g. ”low speed”, ”high speed”, or ”WLAN”,
”GPRS”, and ”UMTS” could be such classes.

Routing Triggers. adjust the preferred routing of
service calls based on the current network class,
the availability or unavailability of certain compo-
nents, or the occurrence of certain process events.

Offline Readiness Triggers.control the mobiliza-
tion of components to ensure their availability
during offline mode. There are Offline Readiness
Triggers that mobilize components necessary for
complete applications, selected mobile business
processes, or according to a developers’ selection.

Update Triggers. control checking and provision of
updates. If updates are available, selective triggers

AN ADAPTIVE MIDDLEWARE FOR MOBILE INFORMATION SYSTEMS

111



can prioritize them according to their relevance
for the currently executed application or process.

Download Management Triggers.control enqueu-
ing component downloads to the download queue,
aborting currently enqueued downloads, and ad-
justing the number of parallel downloads.

5 EXPERIENCE

To show the feasibility of our approach, we have im-
plemented the mobile middleware as described above,
and we have built a mobile information system appli-
cation that utilizes the middleware’s features.

5.1 About the Application

The application is taken from the telecommunications
domain and supports service technicians performing
their work in the field. In particular, service techni-
cians have to visit customers and install or repair their
telephone or Internet connections, and they have to
maintain infrastructure appliances.

The application comprises more than 90 compo-
nents that provide small application units to allow for
fine-grained distribution on mobile devices.

Currently, computers running Microsoft Windows
XP and Vista, MacOS 10.5 and mobile devices run-
ning MS Windows CE and Mobile are supported.

5.2 Mobile Business Process

The mobile business processes supported by the ap-
plication are easy to understand. Still, the complete
mobile business process model which provides the
foundation for our implementation is too complex and
beyond the scope of this paper.

In brief, the service technician receives a number
of tasks from his dispatcher on his mobile device. Be-
fore he starts his work, the service technician sorts the
tasks in a convenient order he intends to follow for the
rest of the day. This sequence is reported back to the
dispatcher who may assign additional tasks during the
course of the day, if they fit the technician’s plan, e.g.
because they are close to the current task’s location.

During his working day, the technician attends
the customers’ locations and installs or repairs their
telecommunication connections. On completion of
such a task, he files an activity report and updates the
vehicle log. Additionally, he may give advice on ad-
ditional equipment (e.g. a WLAN router) and order
appropriate devices from an online procurement sys-
tem. As the service technician has direct customer
contact, he may also perform a customer survey.

5.3 Component and Data Distribution

From the mobile business process model, the mobile
middleware gains knowledge about the components
necessary to execute a certain process. This knowl-
edge is used to provide the relevant components on
the local device in time, when the process is started.
This way, it can be assured that all necessary compo-
nents are locally available to execute and complete the
current process, even if the device gets disconnected.

5.4 Update Management

The application uses an update trigger that checks for
updates upon starting the middleware, typically on a
daily basis. The service technician performs the cus-
tomer survey after the execution of a task that involves
customer contact. Therefore, when such a task is ex-
ecuted, another update trigger checks for updates and
ensures that the latest version of survey components
is provided before the survey is to be performed.

5.5 Utilizing Context Information

The developer only has to care about component lo-
cations and routing of service calls, if the application
shall behave in different ways depending on the en-
vironment’s context. In our example, the application
comprises a simple procurement system that allows
ordering additional telephone or computer equipment.

If the device has an online connection to the sever
when the procurement system is accessed, the list of
products can be loaded from the server including up-
to-date price and stock information. If the device
is disconnected when the procurement system is ac-
cessed, only the ten most popular products can be
loaded from the local data store. The number of prod-
ucts stored on the mobile device has been reduced
significantly to save local storage resources, while
still providing basic procurement system functional-
ity in disconnected mode. Additionally, there is no
up-to-date information about the availability of prod-
ucts in stock. Therefore, the procurement system has
to behave differently depending on the network con-
nection: In online mode, the order can be placed di-
rectly on customer’s request, but in offline mode, only
a quotation for the selected products can be requested.
This request is stored locally on the device until it re-
connects to the server. After reconnection, the quo-
tation request is transmitted to the server which pro-
cesses the request and creates an individual quotation
including the current price list and stock information.

Note that this use of context information is
application-specific – customers’ satisfaction is ex-

ICEIS 2009 - International Conference on Enterprise Information Systems

112



pected to increase when an order can only be placed if
up-to-date pricing and stock information is available.

As we have seen, our middleware cares about in-
corporating local or remote services automatically,
based on the current context and developers’ prefer-
ences. But it allows applications to observe the cur-
rent context and adapt their behavior as well.

6 CONCLUSIONS AND
OUTLOOK

We have developed a middleware for mobile devices
that allows execution of application components on
mobile hosts as well as dynamic reconfiguration of
its behavior by evaluating triggers and realizing their
reactions. On top of that, we have implemented a mo-
bile application from the telecommunications domain
utilizing the mobile middleware’s features.

The results show the feasibility of our approach.
Instead of solving the typical problems of mobile ap-
plications named in sect. 2 from scratch, they have
been targeted by our mobile middleware. Application
developers therefore may concentrate on the actual
business logic of their mobile information systems.

While the validation has shown the approach to
be feasible, both mobile middleware and the imple-
mented application have not yet reached production
status. Before the middleware may be used in pro-
ductive environments, we have to increase its stabil-
ity and user friendliness, and we have to address some
security and performance issues.

For future research, we see a great potential in
actively utilizing mobile business process models to
transfer the required components to the mobile device
early during process execution, to allow for seamless
operation in offline mode. Currently, the selection
of needed components has to be done manually by
implementing an appropriate trigger, or automatically
based on dependencies.

Popa et al. propose the inspection of code depen-
dencies and object references to reclaim memory (like
in garbage collection) to be combined with data about
invocation frequencies of methods (similar to caching
strategies) (Popa et al., 2004). We believe that enrich-
ing code dependencies, object references, and mo-
bile business process information with user behavior
information may additionally aid the decision about
mobilizing the code that is likely to be used in future.
Proving this hypothesis is subject of future research.

ACKNOWLEDGEMENTS

The Applied Telematics/e-Business group is endowed
by Deutsche Telekom AG. The mobile middleware
was developed in theMobCoproject which was co-
founded by Deutsche Telekom Laboratories.

REFERENCES

Google (2007). Google Gears. http://gears.google.com/.

Gruhn, V., Köhler, A., and Klawes, R. (2007). Modeling
and analysis of mobile business processes.Journal of
Enterprise Information Management, 20(6):657–676.

Herrington, J. (2007). The Power of Google Gears.
http://www.oreilly.de/artikel/2007/07/googlegears.html.

Hong, D., Chiu, D. K. W., and Shen, V. Y. (2005). Re-
quirements elicitation for the design of context-aware
applications in a ubiquitous environment. InProceed-
ings of the 7th international conference on Electronic
commerce (ICEC ’05), pages 590–596, NY, USA.

Jing, J., Helal, A. S., and Elmagarmid, A. (1999). Client-
server computing in mobile environments.ACM Com-
put. Surv., 31(2):117–157.

Kistler, J. J. and Satyanarayanan, M. (1992). Disconnected
Operation in the Coda File System.ACM Transactions
on Computer Systems, 10(1):3–25.

Noble, B. and Satyanarayanan, M. (1999). Experience with
adaptive mobile applications in Odyssey.Mobile Net-
works and Applications, 4.

OSGi Alliance (2005). OSGi Service Platform - Release 4.
Technical report, OSGi Alliance.

Popa, L., Raiciu, C., Teodorescu, R., Athanasiu, I., and
Pandey, R. (2004). Using code collection to sup-
port large applications on mobile devices. InMobi-
Com ’04: Proceedings of the 10th annual interna-
tional conference on Mobile computing and network-
ing, pages 16–29, New York, NY, USA. ACM.

Rellermeyer, J. S., Alonso, G., and Roscoe, T. (2007).
R-OSGi: Distributed Applications Through Software
Modularization. InMiddleware ’07, volume 4834 of
LNCS. Springer.

Terry, D. B., Petersen, K., Spreitzer, M. J., and Theimer,
M. M. (1998). The Case for Non-transparent Replica-
tion: Examples from Bayou.IEEE Data Engineering,
pages 12–20.

Versant Corp. (2008). db4objects. http://www.db4o.com/.

Zachariadis, S., Mascolo, C., and Emmerich, W. (2006).
The SATIN Component System–A Metamodel for
Engineering Adaptable Mobile Systems.IEEE Trans-
actions on Software Engineering, 32(11):910–927.

AN ADAPTIVE MIDDLEWARE FOR MOBILE INFORMATION SYSTEMS

113


