
Software Processes for the Development of  
Electronic Commerce Systems 

 
Volker Gruhn 1), Mykhaylo Dubinskyy 2) 

1) Department of E-Business/Applied Telematics, Faculty of Mathematics and Computer Science, 
University of Leipzig, Germany, e-mail: volker.gruhn@informatik.uni-leipzig.de, 

http://www.informatik.uni-leipzig.de/telematik 
2) Department of Information-Computing Systems and Control, Institute of Computer Information 

Technologies, Ternopil Academy of National Economy, Ukraine, e-mail: md@tanet.edu.te.ua, 
http://www.tanet.edu.te.ua 

 
Abstract: The development of electronic commerce 
systems is subject to different conditions than that of 
conventional software systems. This includes the 
introduction of new activities to the development process 
and the removal of others. An adapted process must cope 
with important idiosyncrasies of EC system development: 
EC systems typically have a high degree of interaction, 
which makes factors like ergonomics, didactics and 
psychology especially important in the development of 
user interfaces. Typically, they also have a high degree of 
integration with existing software systems such as legacy 
or groupware systems. Integration techniques have to be 
selected systematically in order not to endanger the 
whole software development process. This article 
describes the development of an EC system and it 
generalizes salient features of the software process used. 
The result is a process model that can be used for other 
highly integrative EC system development projects. The 
processes described are determined by short process 
lifecycles, by an orientation towards integration of legacy 
systems and by a strict role-based cooperation approach. 
 
Keywords: Electronic Commerce System, Software 
Process Model, Software Process. 

 
1. INTRODUCTION 

In this paper, electronic commerce (EC) is defined as 
conducting transactions of any kind by means of 
electronic media, especially the Internet. The roles of 
suppliers and customers in these transactions can be 
adopted by different parties, such as consumers (C), 
administrations (A), businesses (B) or even their 
employees (E) [20,21,22]. The parties involved in EC 
transactions use information technology systems to 
automate their transactions [2,5]. The examples used in 
this paper are business-to-employee (B2E) EC systems. 
The EC portal system discussed in this article is an 
integration platform for different software systems: 
conventional (i.e. non EC) software systems such as 
legacy and office systems as well as other EC based 
systems such as shop systems. 

In the same way that conventional application 
software systems are developed according to 
conventional software development processes, special 

software development processes are necessary to 
delineate the development of EC systems [3,7,9,11]. 
Generally the software development processes for EC 
systems differ from those for conventional application 
software systems, but some paradigms, as for example 
the Enterprise JavaBeans (EJB) or DCOM component 
models are well-suited for both types of systems [23,25]. 

The difference between development processes is 
because of the difference in their general purpose. While 
conventional application software systems might win 
user acceptance mainly through their functionality, a 
special class of EC systems have to win user acceptance 
mainly due to the user interface and performance. 
Statistics says that usually user tend to quit his visit of 
site after 8-15 seconds waiting for response [17]. It 
causes the loss of the prestige of the company that is 
represented on the site. That’s why the tasks concerning 
the selection of content, presentation, characterization of 
customer behavior, workload forecasting and 
performance modeling are very prominent [24]. The 
characteristics of EC customer behavior like peak-like 
request bursts and high-volume data requests are also not 
typical for conventional software systems [16]. 
Specialists for software ergonomics, didactics, graphical 
design and psychology should be used to perform the 
tasks mentioned above. 

The roles that are involved to the development of EC 
system are more specialized and more widely spread 
between participating suppliers than is normally the case 
with conventional software systems development. In 
most cases, the variety of required skills could not be 
found in one single supplier such as a software company. 
The way out could be found in collaboration between 
many suppliers with specialized skills such as multimedia 
design companies, software companies including 
freelancers as experts and content providers. A process 
for the development of EC systems has to take this 
distribution into account, by considering contract 
settlement and means for easing communication between 
suppliers. 

As argued previously, when developing EC systems, 
a special software development process is needed to take 
into account these factors. This paper presents such a 
process that has been defined during the development of 
a B2E EC portal system. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
2. PROCESS MODEL DEVELOPMENT 

In general, the software development process for the 
development of a certain system is defined by a process 
model. A process model presents all the activities, the 
required tools and the created intermediate or final 
products necessary to achieve the process’s purpose. A 
process model is usually tailored to a certain 
development project. A process, on the other hand, is the 
execution of a process model (in the object-oriented way 
of thinking, a process is an instance of a process model), 
i.e. the activities that are delineated in the process model 
are actually performed.  

Although a formal specification of a software 
development process in the form of a process model 
simplifies its support by workflow systems, it is not 
mandatory for achieving a positive effect in software 
development. In order to reach consensus about the 
software development process among all those involved, 
an informal though structured and comprehensive 
description can be sufficient. A company's knowledge of 
the best practices was and remains often described in 
internal documents and development guidelines. For 
example, ISO 9000 (part 1-3) defines only the contents of 
the description of the best practices and development 
guidelines, but not their notation. However, informal 
specifications relying on natural language bear the danger 
of misinterpretation because they usually have enormous 
volume, and some concepts, dependencies and 
prerequisites cannot always be formulated precisely. 

One trend in the software process community is to 
promote processes which focus on components and on 
building systems from components. Examples are 
Catalysis [26] and SELECT [27]. Both describe in detail 
how components could be specified and how the 
integration of components into systems should look like. 
Some of the elements used in the process for developing 
IPSI are related to these process models. 

The Internet Portal System for Insurances (IPSI) is 
intended to provide support for insurance agents with 
their daily work. The main goal of the portal is to support 
business-to-employee processes [15] that are including 
the communications between insurance company and its 
agents, providing information about the product portfolio, 
tariffs and customer contacts via portal and its 
subsystems. This portal system demonstrates some of the 
idiosyncrasies of EC systems that generate the demand 
for adapted software development processes.  

During the requirements analysis phase of the project, 
it was recognized that the EC portal will serve as an 
integration platform for different heterogeneous 
subsystems [8]. Based on an n-tier-architecture, the user 
interface and data repository will be separated from the 
functional business logic [12] that will reside in multiple 
application components (called subsystems). These 
highly integrative characters of IPSI will substantially 

impact onto the software process chosen. 
The process model for the development of the IPSI 

EC portal – is presented schematically in Fig.1, using the 
FUNSOFT net notation [6]. In order to reduce the 
complexity of presentation and increase the number of 
levels of abstraction, this notation allows distinction 
between elementary tasks (e.g. write story book, perform 
test data creation) and subprocess models (e.g. 
requirements analysis, subsystem evaluation, prototype 
development), which can again contain elementary tasks 
and subprocess models.  

The object-oriented design using UML, prototype 
development, adaptors implementation to integrated 
software systems as subsystems of the EC portal and the 
use of a middleware (CORBA/RMI) for communication 
within the portal are represented in this software 
development process. The development process also 
shows that the use cases described in UML are an 
important prerequisite for several sub process models 
such as the user interface specification and development. 

 
3. PROCESS DESCRIPTION 
Requirement specification. The requirements 

analysis starts with a competition analysis, subsequent 
proposal and contract evaluation, and project 
initialization. After this, the functional and non-
functional requirements for EC software system are 
identified.  

For the development of the EC portal for insurance 
agents, a competition analysis should determine if other 
software companies already offered a similar systems and 
which targets groups those companies are aimed at. 
Afterwards, the product idea was presented to several 
insurance companies, and one insurance company was 
chosen as a partner and potential client. During the 
proposal and contract evaluation, the feasibility of the 
client's requirements was clarified. The goal was a 
contract basis that was stable in every regard (content-
wise, legal, mercantile) and the creation of a basis on 
which a software system could be developed that met the 
client's functional and technical requirements. 

The initial list of requirements resulting from the 
competition analysis is the starting point for the creation 
of a requirements catalog for the entire EC portal to be 
developed. This requirements catalog is checked for 
contradictions, redundancy and completeness in several 
ways; for example, by interviewing users and providers 
that have different, potentially competing requirements 
(in our case the insurance agents and the insurance 
company).  

During the interviews some supporting systems for 
insurance companies are examining in order to identify 
further requirements. After consolidating all requirements 
from the different sources, the requirements catalog is 
corrected and extended while the requirements are re-
checked for errors. 

 



 
 

Fig.1 – Electronic commerce portal development process model. 
 

Subsystem evaluation. Usually, EC systems have to 
be integrated into the existing infrastructure by sharing 
data with its systems. However, the sharing of data 
between EC system and existing software systems may 
not always be sufficient – sometimes the use of existing 
functionality is necessary. Thus, the IPSI electronic 
commerce portal exchanges data with its subsystems as 
well as with the database systems of the insurance 
company. In this way, the portal can supply the insurance 
agent with data of people insured and their contracts. 
Furthermore, the portal needs the functionality of a 
complex tariff computation module, e.g. for a life 
insurance. For the IPSI electronic commerce portal, it is 
good idea to integrate existing software systems for most 
subsystems. But this decision should be followed by 
market analysis with determination of the exact systems 
that should be integrated. The analysis also has to take 
into account non-functional criteria such as price, 
availability, support, platform, and possibilities of 
integrating the system. I the case of IPSI's office, content 
management, procurement and communications 
subsystems the most respective are: Microsoft Outlook 
2000, Pirobase 4.0, SmartStore 2.0 and some freeware 
communication applications.  

Prototype development. In addition, it had to be 
determined that if the software systems selected provided 
a programming interface (API), or if an interface could 
be developed. This can be achieved by developing 
prototypes on the basis of key features (major 
requirements in form of use cases), with the goal to 
identify opportunities for integrating the software 
systems between each other. First, for each software 

system, the key features that will be realized by the 
prototype have to be defined. The prototype has to show 
if the features of the underlying software system could be 
accessed through its interface. 

Based on the prototypes, the effort, cost and time for 
the development of the whole EC system could be 
estimated. In the case of the IPSI electronic commerce 
portal, more significant resources were used for the 
interface development of MS Outlook 2000 than for the 
development of the communications subsystem based on 
Java libraries. But sometimes the integration of some 
systems can be very difficult. For example, under some 
conditions the integration of an SAP R/2 system with an 
EC system can only be achieved through the generation 
of batch input folders and could therefore require more 
attention in terms of resource capacity devoted to that 
integration task. 

GUI development. According to the IPSI Process 
Model, the graphical user interface for EC system is 
developed in two steps. First, a user interface prototype is 
designed. The prototype development begins with writing 
a storybook based on use cases. This storybook is then 
used to define a style guide and, in a second step, to 
realize and implement the user interface for the EC 
system. For the IPSI electronic commerce portal, this was 
done for multiple access channels (WWW, WAP). 

Due to the portal’s specific functionality in the 
insurance B2E application domain, its content is a 
significant element. Content comprises all the 
information the EC portal provides, as well as its 
presentation within the user interface. Content often has 
multimedia characteristics, i.e. it comprises textual 



information, moving and still pictures and audio 
information. Consequently, a content manager 
responsible for multimedia information plays an 
important role in the software development process. This 
new role can consists of several other roles, such as the 
media author who collects textual information and 
reworks it for a consistent presentation; the media 
designer responsible for the audio-visual design of the 
user interface; and the media producer who researches 
available media, creates images, graphics, animations, 
audio and video sequences, and clarifies copyright issues. 
Media editors are responsible for quality assurance in the 
multimedia content part of the application.  

In addition to the role of a content manager, with its 
many tasks and responsibilities, the role of an 
ergonomics advisor has to be taken on by a team 
member. The ergonomics advisor’s task is to ensure that 
the user interface of the EC portal meets ergonomic 

criteria, i.e. 
• it is suited to the tasks the user has to accomplish; 
• it guides the user by being self-explanatory and 

gives additional help on request; 
• it lets the user decide how to use the system 

without forcing him or her to follow a predefined 
set of procedures; 

• it signals and describes user errors and allows 
their correction with little effort; 

• it can be adapted to the user’s level of experience; 
User manuals can be differentiated into tutorials and 
references. For the creation of the user manuals, a style 
guide is used that describes what the complete user 
documentation should look like. The storybook that is 
used for the user interface prototype also can be used for 
the tutorial development (Fig.2). 

 

 
 

Fig.2 – User interface design subprocess model. 
 
 

Integration and system test. In the implementation 
phase, the system architecture is being implemented (e.g. 
in Java). In this phase, elementary parts of the system 
architecture (controllers, adaptors, formatters and 
business objects) should be incrementally implemented, 
all class tests should be performed and classes should be 
combined to subsystems. 

Every implemented subsystem subsequently has to 
pass a component test. Based on the use cases, test data 
set is created to test the functionality of every subsystem. 
This test usually combines black box and white box tests 
as described in [28]. While white box technique is 
applied to components for which the source code is 
available, black box technique have to be applied to all 
components purchased from vendors, since these usually 
do not provide access to their source codes. 

In the integration phase, the tested components should 
be integrated into the EC portal, after that the complete 
integrated system is becoming the subject to system and 
integration tests. This test is performing, using test data 
sets created by extending the component tests. After 
successful system test, the EC portal is considered to be 
completed and to be ready for delivering to the customer. 

 
 

4. EVALUATION OF THE PROCESS 
The process chosen for the development of IPSI 

provides some features which are closely related to 
features of EC systems. It is influenced by the software 
process work as described in [29,30]. The most important 
features of EC systems reflected by the chosen software 
process are: 

1. The development process for the IPSI electronic 
commerce portal is characterized by the high 
effort necessary to integrate the subsystems. The 
integration effort comprises not only the design 
and implementation of interfaces (APIs), but also 
testing of those interfaces. The more complex the 
subsystems are, the more effort is required for the 
interface test since the necessary test drivers and 
stubs have to be equally complex.  

2. It is rather difficult to assess the feasibility of 
developing an EC system, because new, unproven 
technologies have usually to be used. What makes 
estimates even more complex is the fact that in 
some cases the effort needed to implement a 
specific component depends on implementation 
details (like the side effects of using RMI). These 
details can only be clarified by developing 
prototypes.  



3. Usability engineering is a crucial task. In EC 
systems users are a heterogeneous and usually not 
personally known set of people. To check whether 
are not navigation details and site structure suit 
them well is difficult and – in general – demands 
for usability engineering methods. 

4. Testing urgently demands the integration of 
different types of testing techniques. This relates 
to the integration of black box and white box 
techniques as well as the combined use of 
component and system tests. 

As mentioned in [7,10,30] these challenges are typical 
for EC system. Even though some of these challenges are 
properly addressed by traditional software process 
models, the process model applied to the development of 
IPSI concentrates on these challenges and therefore 
provides a solution to the problem of developing EC 
system. 

 
5. CONCLUSION 

Software processes for EC system are different from 
traditional software processes (as, for example, used in 
the development of information systems). Even though 
not a single of the identified challenges for the 
development of EC systems is completely new, process 
models which focus on EC systems (and which therefore 
are a natural choice for the development of such systems) 
are not available. Our approach was to start with a real 
problem (the development of IPSI), to model the process 
as it was carried out and to generalize the process in the 
process model. 

Result is a rather lean software process model which 
covers most aspects of EC systems and which is flexible 
enough to be easily extended, if needed. The IPSI 
development process have included all the activities 
mentioned in section 3, but there are some other aspects 
to be kept in mind when developing EC systems, not 
included adequately in the IPSI development process. For 
example, consideration of performance issues is 
extremely important, especially when using highly 
layered object-oriented architectures for Web 
applications. Thus, performance modelling and testing 
[16,24] should be a central activities in any software 
development process for EC systems. In general, quality-
assuring activities of any kind are often victims of the 
“time-to-market” philosophy. Here, the goal must be to 
construct software development processes that ensure a 
consistent high quality of EC systems, despite the 
changed and dynamic conditions, and take into account 
the shorter development time for these systems. 

Our future work will be devoted to applying the 
proposed software process model to other types of EC 
systems (e.g. to a business-to-consumer system) and to 
integrated subprocesses which focus on activities like 
performance modelling and after-release monitoring 
which have not been appropriately considered yet. 

 
 

6. REFERENCES 
[1] Baker, S.; Geraghty, R.: Java for Business Objects. 
In: Carmichel, A.: Developing Business Objects, SIGS 
Cambridge University Press, (1998), pp. 225-237 
[2] Adam, N.R; Yesha, Y. (eds.): Electronic 
Commerce: An Overview. In: Adam, N.; Yesha, A.: 
Electronic Commerce. LNCS 1028, Springer Verlag, 
Berlin (1995), pp. 4-12 
[3] Bayer, F.; Junginger, S.; Kühn, H.: A Business 
Process-Oriented Methodology for Developing E-
Business Applications. In: Baake, U.; Zobel, R.; Al-
Akaidi, M. (eds.): Proc. 7th  European Concurrent 
Engineering Conference, SCS Publishing House, (2000), 
pp. 123-132 
[4] Book, M.; Gruhn, V.; Schöpe, L.: Realizing An 
Integrated Electronic Commerce Portal System. In: 
Chung, M. (ed.): Proc. of the Americas Conf. on 
Information Systems AMCIS 2000, Ass. for Information 
Systems (2000), pp. 156-162 
[5] Chesher, M.; Kaura, R.: Electronic Commerce and 
Business Communications. Springer Verlag, Berlin 
Heidelberg New York (1998) 
[6] Deiters, W.; Gruhn, V.: The Funsoft Net Approach 
to Software Process Management. In: Int. Journal of 
Software Engineering and Knowledge Engineering, Vol. 
4, No. 2, (1994), pp. 229-256 
[7] Haire, B., Henderson-Sellers, B, Lowe, D.: 
Supporting Web Development in the OPEN process: 
Additional Tasks. In Proc. 12th COMPSAC, (2001), pp- 
383-389 
[8] Hasselbring, W.; Koschel, A.; Mester, A.: 
Basistechnologien für die Entwicklung von Internet-
Portalen. In: Heuer, A.; Leymann, F.; Priebe, D.: 
Datenbanksysteme für Büro, Technik und Wissenschaft 
(BTW) (2001), pp. 517-526 
[9] Harrison, W.; Ossher, H.; Tarr, P.: Software 
Engineering Tools and Environments. In: Finkelstein, A.: 
Proc. 22nd Int. Conf. on Software Engineering (2000), 
pp. 263-277 
[10] Hoffner, Y., Ludwig, H., Grefen, P., Aberer, K.: 
Crossflow: Integration Workflow Management and 
Electronic Commerce. IN: SIGecom Exchanges, Vol. 1, 
No. 2, ACM Press (2001), pp. 1-10  
[11] Gruhn, V., Schöpe, L.: A Software Process for an 
Integrated Electronic Commerce Portal. In: Ambriola, V. 
(ed.) Proc. 8th EWSPT, Springer Verlag, Berlin, 
Heidelberg, New York (2001), pp. 90-101 
[12] Lewandowski, S.: Frameworks for Computer-Based 
Client/Server Computing: In: ACM Computing Surveys, 
Vol. 30, No. 1, ACM Press (1998), pp. 3-27 
[13] Lamond, K.; Edelheit, J.: Electronic Commerce 
Back-Office Integration. In: BT Technology Journal, 
Kluwer Academic Press, Vol. 17, No. 3, (1999), pp. 87-
96 
[14] Laartz, J., Scherdin, A., Carfarell, D., Hjartar, K.: 
Evolve your architecture. IN: CIO Magazine, Issue 
September, 15 (2000) 



[15] Lincke, D.; Zimmermann, H.: Integrierte Standard-
anwendungen für Electronic Commerce – Anforderungen 
und Evaluationskriterien. In: Hermanns, A.; Sauter, M.: 
Managementhandbuch Electronic Commerce, Verlag 
Franz Vahlen München, (1999) pp. 197-210 
[16] Menasce, D.A, Almeida, V.: Scaling for e-Business, 
Models, Performance, and Capacity Planning, Prentice 
Hall, (2000) 
[17] Nielsen, J.: Designing Web Usability: The Practice 
of Simplicity, Riders Publ., (2000) 
[18] Noffsinger, W., Niedbalski, R., Blanks, M., 
Emmart, N.: Legacy Object Modeling speeds Software 
Integration. In: CACM, Vol. 41, No. 12, ACM Press 
(1998), pp.80-89 
[19] Haifi, L.: XML and Industrial Standards for 
Electronic Commerce. In: Knowledge and Information 
Systems, Vol. 2, No. 4, Springer Verlag London (2000), 
pp. 487-497 
[20] Shaw, M.J.: Electronic Commerce: State of the Art. 
In: Shaw, M.; Blanning, R.; Stader, T.; Whinston, A. 
(eds.): Handbook on Electronic Commerce , Springer 
Verlag, Berlin, Heidelberg, New York (2000), pp. 3-24 
[21] Zwass, V.: Electronic Commerce: Structures and 
Issues. In: Int. Journal of Electronic Commerce (1996), 
Vol. 1, No. 1, pp. 3-23 
[22] Zwass, V.: Structure and Macro-Level Impacts of 
Electronic Commerce: From Technological Infrastructure 

to Electronic Marktplaces. In: Kendall, K.E.; Emerging 
Information Technology (1999), Sage Publ., pp. 517-526 
[23] Brown, A.W.; Wallnau, K.C.: The Current State of 
CBSE, IEEE Software 9/10, 1998 
[24] Menasce, D.; Almeida, V.: Capacity Planning for 
Web Performance – Metrics, Models and Methods, 
Prentice Hall 1998 
[25] Szyperski, C.: Component Software - beyond 
Object-Oriented Programming, Addison-Wesley 1998 
[26] D‘Souza, D.; Wills, A.: Objects, Components, and 
Frameworks with UML - The Catalysis Approach, 
Addison-Wesley 1998 
[27] Allen, P.; Frost, S.: Component Based Development 
for Enterprise Systems, Cambridge Univ. Press, 1998 
[28] Beydeda, S.; Gruhn, V.: A Graphical 
Representation of Classes for Integrated Black- and 
White-Box Testing, in: Proceedings of the International 
Conference on Software Maintenance 2001, November 
2001, Firenze, Italy 
[29] Alloui, I.; Cimpan, S.; Oquendo, F.: Monitoring 
Software Process Interactions: A Logic-Based Approach, 
in: Proceedings of the 8th European Software Process 
Workshop, LNCS 2077, Springer 
[30] Cignoni, G.: Reporting about the Mod Software 
Process, in: Proceedings of the 8th European Software 
Process Workshop, LNCS 2077, Springer 

 


