
Mobile Business Processes

Volker Gruhn, Matthias Book

Chair of Applied Telematics/e-Business1, Dept. of Computer Science, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany

{volker.gruhn, matthias.book}@informatik.uni-leipzig.de

Abstract. Today’s global markets demand global processes. Increasingly, these
processes are not only distributed, but also contain mobile aspects. We discuss
two challenges brought about by these mobile business processes: Firstly, the
need to specify the distribution of processes across several sites, and secondly,
the need to specify the dialog flows of the applications implementing those
processes on mobile devices. To remedy the first challenge, we give an over-
view of the Process Landscaping method with its support for refining processes
across multiple abstraction layers and associating their activities and objects
with distinguished locations. Next, we present a Dialog Flow Notation and Dia-
log Control Framework for the specification and management of complex hy-
pertext-based dialog flows. These tools allow developers to build user inter-
faces for mobile client devices with different input/output capabilities, which all
access the same application logic on a central server.

1 Introduction

The market reach of goods and services is ever increasing today – both in the busi-
ness-to-consumer (B2C) and business-to-business (B2B) sector, transactions are per-
formed on a regional, national or even global scope [22]. The global markets demand
global business processes in order to handle those transactions efficiently. However,
when looking at global markets, it would be a costly over-abstraction to consider the
associated business processes as centralized entities [19]. Rather, they involve distrib-
uted teams, distributed service provisioning, and distributed repositories. This envi-
ronment places higher demands on the infrastructure, coordination, communication
and cooperation of the involved parties, all of which affect the suitable process mod-
els substantially ([10], [20]). As illustrated in the examples of the Iridium software
process and housing industry processes, distribution affects both processes and data.

Recently, an additional challenge has been developing: As working environments
are becoming more mobile, we are not just dealing with distributed processes any-
more. In addition, we need to consider mobile processes: All sales-oriented processes
tend to become more mobile, and the same is true for processes spreading over vari-
ous sales channels. Also, processes delivering services to customers’ locations tend to
encompass mobile aspects. These mobile processes require flexible support for coor-
dination and communication among the involved parties, as well as controlled remote

1 The Chair of Applied Telematics/e-Business is endowed by Deutsche Telekom AG.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Volker Gruhn, Matthias Book

data access. Under these conditions, a central question is whether the mobility re-
quirements affect the process models themselves or just their execution support [12].

1.1 Mobile Process Landscaping

When modeling the processes of a project, there are some key issues that developers
need to resolve: After identifying the core processes, they need to determine a suitable
order for modeling them and establish the interfaces between them. With regard to
distributed and mobile processes, two especially vital questions are where process
parts or activities are to be executed, and which data are needed in which location.

To support the specification, optimization and implementation of distributed proc-
esses, the Process Landscaping methodology was developed [13]. It comprises a
number of activities that are also suitable for handling mobile business processes. The
first step consists of identifying the high-level process clusters, positioning them in a
process landscape and establishing their mutual interfaces (Fig. 1).

Configuration
Management

Software
Development

Quality
Management

Project Management

supporting processescustomer processes

cu
st

om
er

 re
la

tio
ns

hi
p

lif
e

cy
cl

e

Fig. 1. Process landscape of a software development project (example)

In the following steps, different aspects of the process model are refined in whichever
order is most natural in a concrete project: To refine interfaces, the data exchanged
between the clusters is specified in combination with the direction of the data flow.
Clusters can be refined in two different ways: The developer can either specify a set
of sub-clusters that make up a super-cluster, or define a concrete process model that
defines the activities performed and deliverables produced in a cluster. Activities in
the process model may again be refined by sub-process models. This way, developers
can move from a very coarse to a highly detailed definition of processes in a struc-
tured way – the overall process landscape serves as an orientation, with refinements
being added on lower levels of abstraction as needed. This facilitates easy analysis of
the model and discussion of the process.

Mobile Business Processes 3

Besides the structure imposed on the process model by the relationships between
super- and sub-clusters, super- and sub-process models, further structural information
is specified by assigning locations on the process landscape to objects and activities:
Each activity must be assigned to one or more execution locations, and every object
type must be assigned to a storage site. Furthermore, the interfaces are first-class enti-
ties in Process Landscaping to allow early identification of process relationships [14].

1.2 Mobile Process Implementation Characteristics

Despite the support by modeling methodologies such as Process Landscaping, the im-
plementation of mobile processes is still hindered by a number of major obstacles to-
day: Firstly, the required telecommunications infrastructure might be unavailable or
unable to provide the necessary bandwidth. With network availability being less of a
problem today (except for some isolated areas) and the introduction of high-volume
transmission technologies such as UMTS imminent, this obstacle is starting to fade –
however, slow deployment of the network equipment and mobile devices, combined
with potentially high introductory prices, will likely limit the speed of adoption of
mobile applications for some time to come.

Secondly, the currently employed legacy systems may be too inflexible for imme-
diate integration with mobile processes, and difficult to open up to new access pat-
terns. While not impossible, building suitable interfaces to integrate legacy systems
with mobile processes and application front-ends is likely to be a complex and costly
task. Similarly, organizational issues and traditional processes may not be compatible
with mobile business processes and need to be adapted carefully to realize the full po-
tential of mobile applications.

Finally, among the variety of mobile devices available today, only few mainstream
conventions or de facto standards have developed yet. Since devices differ widely in
aspects such as screen size, input/output interfaces, networking, programming and
dialog capabilities, mobile applications either have to cater to the lowest common de-
nominator, or be modified to fit different mobile devices. This becomes most obvious
(and challenging) in the area of mobile dialog design.

One approach to solving these problems seems to be the use of hypertext-based
user interfaces (UIs) for mobile applications, where the UI consists of web pages pre-
sented in a browser. Compared to window-based user interfaces, they require only
modest client capabilities, making them especially suitable for mobile devices with
their strict energy, memory, input and output limitations [9]. Furthermore, the simple
information elements and interaction techniques of hypertext-based UIs can be ren-
dered on various presentation channels, ranging from desktop to mobile devices [3].
This multi-channel thin client scenario requires the application logic to be imple-
mented presentation channel-independently on a central server, while the UI is ren-
dered individually on various client devices [23].

However, when developing applications with hypertext-based UIs, software engi-
neers need to be aware that their implementation differs in some important character-
istics from applications with window-based UIs ([21], [26]):

Firstly, the devices’ different input and output capabilities restrict the amount of in-
formation users can work with at a time. Consequently, presentation channel-

4 Volker Gruhn, Matthias Book

independent applications must not only implement different UIs, but also be able to
handle different interaction patterns – for example, a task that may be completed in
one interaction step with a desktop browser may take three steps on a mobile device
and a dozen over an interactive voice response (IVR) system (Fig. 2).

Application
server

Mobile
client

Ad
dr

es
s

da
ta

Address form

Desktop
client

Sh
ip

pi
ng

 d
at

aShipping form Bi
lli

ng
 d

at
aBilling form

Ad
dr

es
s,

sh
ip

pi
ng

,
bi

llin
g

fo
rm

Address,

shipping,

billing data

Fig. 2. Different dialog flows on different devices

Secondly, hypertext-based UIs present information on pages instead of in windows.
Consequently, interactions that would be performed without involving the application
logic in a window-based UI (e.g. closing a window) require the generation of a new
page in a page-based UI and thus involve the application logic for every interaction
step. Thirdly, hypertext-based UIs employ a request-response mechanism to pull data
from the server. Since the application logic cannot push data to the client, it can only
react passively to user actions (like clicking on a link) instead of actively initiating
dialog steps (like opening a new window). Finally, the Hypertext Transfer Protocol
(HTTP) is stateless: The protocol only transports data, but does not maintain any in-
formation on the state of the dialog system. Consequently, the application itself has to
manage the dialog state for each user session, which requires complicated logic for
more complex dialog structures.

Regarding the impact of these characteristics on the user experience, one of the
most notable effects is the limitation to simple dialog structures in many hypertext-
based applications today: Linear and branched dialog sequences can be easily imple-
mented and are therefore commonplace, but already simple nested structures (e.g. an
authorization form inserted at the beginning of a sensitive transaction) require a lot of
dialog control logic, and no application that the authors are aware of is capable of
nesting arbitrary dialogs on multiple levels.

Since users have a long-established conceptual model of nested dialogs from win-
dow-based applications, they will likely transfer that model to hypertext-based appli-
cations. However, because of insufficient dialog control logic, many applications still
violate users’ expectations today when they send them to other pages than they in-
tended to reach (in some web applications, for example, login forms return users to
the homepage after a successful login instead of sending them to the area that required
authorization, forcing them to navigate manually to the desired area). This violation

Mobile Business Processes 5

of the ISO dialog principles of controllability and conformity with user expectations
[17] imposes a high cognitive and memory load on the user.

Since these challenges are independent of a specific application, a desirable solu-
tion would be a notation and a framework that can be used for the specification and
implementation of any hypertext-based application. After giving an overview of the
related work (section 2), we will therefore introduce a Dialog Flow Notation for
specifying complex dialog flows (section 3), and present the architecture of a Dialog
Control Framework for managing those dialog flows on different devices (section 4).

2 Related Work

A number of notations for the specification of interactive systems’ user interfaces
have been proposed over time. However, many were developed for traditional win-
dow-based applications and are therefore not suitable for the task of modeling the
special characteristics of hypertext-based applications presented in section 1.2: While
they can model direct manipulation techniques and multiple windows, which hyper-
text applications lack, they do not provide means for specifying request-response in-
teraction patterns on page-based media.

Other approaches that were explicitly designed to describe hypertext systems
mostly focus on data-intensive information systems, but not interaction-intensive ap-
plications [8]: For example, the RMM development process [16] allows the definition
of navigable relationships between data entities, and the OOHDM [24] process pro-
vides classes like node, link and index to represent different forms of navigation;
however, the resulting structures remain “flat” and cannot be nested arbitrarily. The
same is true for the HDM-lite notation used by the Autoweb tool [7], which supports
the automatic generation of database schemas and application pages from a concep-
tual model; and the modeling language DoDL [6], which allows mapping of struc-
tured database content to static hypertext pages, but does not support dynamic fea-
tures. Finally, while the language WebML [5] is capable of modeling simple dynamic
features of a data-intensive web application by providing operation units for creating,
deleting and modifying entities, it does not support more complex structures such as
modular, nestable dialog sequences.

For the implementation of hypertext-based applications, several frameworks exist
that separate the user interface from the application logic to facilitate easier dialog
control, as suggested by the Model-View-Controller (MVC) design pattern [18]. The
Apache Jakarta Project’s Struts framework [1] is one of the most popular solutions
today. However, Struts forces developers to combine dialog control logic and applica-
tion logic in the Model implementation, since the Controller does not implement any
actual dialog control logic, but merely maps action names to class names (a more
thorough discussion of the Struts approach vs. the one suggested in this paper will be
presented in section 4).

The challenges of device-independent design are addressed in the Sisl (Several In-
terfaces, Single Logic) approach [2]. It inserts a so-called “service monitor” between
the central application logic and the presentation logic for each device type to coordi-
nate the events that the interface can generate with the events that the application

6 Volker Gruhn, Matthias Book

logic can currently handle. This allows Sisl to support a wide spectrum of devices, in-
cluding speech recognition systems, and handle the partial or unordered input that
they may produce. However, since Sisl uses acyclic graphs for modeling dialogs, it
seems more suitable for simple prompt- or menu-based interaction scenarios than for
highly interactive applications with complex (i.e. nested or cyclic) dialog structures.

We are still missing a solution that controls the dialog structure of a hypertext-
based application independently of the implementation of the Model and View tiers,
supports different interaction patterns on different devices, and allows developers to
work with complex dialog constructs like dialog modules nested on multiple levels.
The Dialog Flow Notation and Dialog Control Framework introduced in the following
sections are designed to address this need.

3 Dialog Flow Notation

To define the concept of a “dialog flow” and develop the elements of the Dialog Flow
Notation (DFN), we first examine the client-server communication taking place when
users work with a hypertext-based application. As Fig. 3 shows, a page A’ displayed
on the client is rendered from source code (e.g. HTML) that was first generated by an
entity A (e.g. a JavaServer Page) on the server and then transmitted to the client.
When the user follows a link or submits a form on this page, the resulting data a is
transmitted to the server. The application logic may now process the data in a number
of steps (here: 1 and 2), which each generate data (b and c) that is processed in the
next step. Finally, the source code for the following page is generated (B), transmitted
to the client and rendered there (B’). Alternatively, user-submitted data (such as d)
may not require any application logic processing, but directly lead to the generation
and rendering of a new page (C and C’).

A' B' C'

A

a

1 2
b

B
c

C

d

Server

Client

Dialog Step

Fig. 3. Client-server communication in HTTP

We call the server activity happening between the submission of a request and the re-
ceipt of a response by the client a dialog step (in an online shop, for example, a dialog
step might begin with submission of the user’s billing information, comprise the vali-
dation of his credit card data by the application logic, and end with the generation of a
confirmation page). Multiple consecutive dialog steps form a dialog sequence – for
example, an online shop’s checkout dialog sequence might be composed of several

Mobile Business Processes 7

dialog steps for collecting the user’s address, shipping options, and billing informa-
tion. Finally, all possible dialog sequences that can be performed on a certain presen-
tation channel of an application constitute that channel’s dialog flow. An online
shop’s dialog flow might for example comprise searching for products, looking at de-
tailed product information, putting products into the cart, checking out, etc.

3.1 Notation Elements

Looking back at the communication model in Fig. 3, we realize that the client-server
communication and thus the distinction between generating (A) and rendering pages
(A’) is irrelevant for the purpose of modeling dialog flows: When specifying how the
user interacts with the application logic via the UI pages, the dialog flow designer
does not need to know about technical details such as pages’ source code being gen-
erated on the server and transmitted to the client prior to rendering.

The DFN therefore only specifies the order of the UI pages and processing steps,
and the data exchanged between them. It models the dialog flow as a transition net-
work, i.e. a directed graph of states connected by transitions called a dialog graph
(Fig. 4).2 As illustrated in the communication model above, dialog graphs do not need
to be bipartite.

Mask
A

Event
a Action

1 2
b

B
c

C
d

Fig. 4. Dialog graph

The DFN refers to the transitions as events and to the states as dialog elements, dis-
cerning atomic and compound elements. Atomic dialog elements are hypertext pages
(symbolized by dog-eared sheets and referred to by the more generic term masks here)
and application logic operations (symbolized by circles and called actions from now
on). Every dialog element can generate and receive multiple events, enabling the de-
veloper to specify much more complex dialog graphs than the linear succession of
elements shown above. Which element will receive an event depends both on the
event and the generating element (e.g., an event e may be received by action 3 if it
was generated by mask D, but be received by action 4 if generated by mask E).
Events can carry parameters, i.e. application-specific information such as form input
submitted from a mask, and thus facilitate communication between dialog elements.

Theoretically, the complete dialog flow of an application could be described using
only atomic elements. However, the resulting specification would be much too com-
plicated to understand, and the “flat” structure does not support reuse of often-needed
dialog graphs. The DFN therefore provides compound dialog elements (compounds)
which encapsulate dialog graphs and realize the key requirement of nested dialog
structures: A compound’s interior dialog graph can contain sub-compounds, and the

2 The basic concepts and symbols of this notation were inspired by Harel’s Statecharts [15], but

their semantics have been adapted for the context of hypertext dialog flow specification.

8 Volker Gruhn, Matthias Book

compound itself can be embedded in the exterior dialog graphs of super-compounds.
We discern two types of compound dialog elements: Dialog modules (symbolized by
rectangles with rounded corners) contain an interior dialog graph with one entry point
and one or more exit points, while dialog containers (symbolized by rectangles) con-
tain an interior dialog graph with one entry point, but no exit points.

Login
check
name,

passwd

submit

incorrect

has
admin
rights?

correct

check
login
status

not yet
logged

in

 no

already logged in

mark
user as
logged

in

done

User Authorization

create new
account

register

 yes

is admin

is user

cancel

Fig. 5. User Authorization dialog module

We will introduce the features of dialog modules using the User Authorization mod-
ule in Fig. 5 as an example. This module checks if the user is already logged in and
shows a Login mask to prompt for his user name and password, if necessary. If the
user’s credentials are correct, the module marks him as logged in, checks his access
rights and terminates, notifying the super-compound of the user’s status. If the user
does not yet have an account, he can register using the embedded create new account
sub-module. Note that by splitting the application logic into relatively fine-grained
operations instead of implementing them all in one action, the module can react flexi-
bly to different situations, like bypassing the credential check when the user is already
logged in.

Initial and Terminal Events. When a compound receives an event from the exterior
dialog graph that it is embedded in, traversal of its interior dialog graph starts with the
initial event. When the interior dialog graph terminates, it generates a terminal event
that is propagated to the super-compound and continues the traversal of the exterior
dialog graph. Depending on the semantics of the termination, developers can choose
between three kinds of terminal events (Table 1):

Mobile Business Processes 9

Table 1. Event types and notation symbols

Event type Interior dialog
graph symbol

Exterior dialog
graph symbol

Initial event

n/a

Regular terminal event Event Name
Event Name

Done terminal event
Cancelled terminal event
Abort event

n/a

Regular terminal events are intended to communicate application-specific information
to the terminating module’s exterior dialog graph, such as the result of an operation or
decision (for example, the User Authorization module generates an is user or is admin
terminal event, depending on the user’s rights). Often, however, modules do not need
to notify their calling super-compound about some application-specific state, but
should simply indicate if they completed their task successfully or not. The DFN pro-
vides the done and cancelled terminal events to model these situations (for example,
the create new account module may terminate with a done or cancelled event, de-
pending on the success of the registration process). In contrast to regular terminal
events, done and cancelled events are unnamed and cannot carry parameters. Their
application-independent semantics enable the dialog control logic to handle them
automatically in certain situations, as we will see soon.

Compound Events and Return Mechanism. Complex dialog structures will usually
contain a certain amount of redundancy, since some dialog elements may be linked
from many other elements in the application. If we had to specify all the respective
events explicitly, our dialog graph diagrams would soon become cluttered with
redundant information. In his Statecharts notation, Harel introduced a special
construct to counter the combinatory explosion of transitions that often plagues state
machines: a transition leading from a contour to a state [15].

The DFN uses a similar construct, albeit adapted for dialog flow specification: A
so-called compound event, symbolized in dialog graph diagrams by an arrow leading
from the compound’s contour to a certain element, indicates that this event may be
generated by every element in the compound. As an example, consider the dialog
graph of a simple online shop in Fig. 6:3 The shop’s homepage, list of items in each
category, detailed description of each item, shopping cart and checkout process shall
be linked from every mask in the system. If all events connecting the elements had
been specified explicitly, a tangled event web would have been the result. Using com-
pound events, however, we can express the relationships in a much clearer diagram.

3 The shop was modeled as a dialog container instead of a module since it does not have a natu-

ral terminal state.

10 Volker Gruhn, Matthias Book

Shop

User
Authorization

Inventory
Administration

is admin

Shop
Home

is user

home
Checkout

check
out

Category
Items

Item
Details

show
category show item

add to
cart

Shopping
Cart

add to cart cart updated show cart

save
items in

cart?

save
cart

no saved

yes

resum
e

Fig. 6. Shop dialog container

Note that the above dialog graph does not explicitly specify what happens when a
user does not complete the Checkout module with a done event, but cancels its execu-
tion. For usability reasons, we would not want to return the user to the shop’s home
page in this case, but to the mask from which he had entered the Checkout module (in
the same way that window-based applications return the focus to the parent window
after the user closed a child window). However, since we do not know at specification
time where to return the user, we cannot specify the receiver of the cancelled event.
The Dialog Control Framework introduced in section 4 solves this apparent dilemma
by using the cancelled event’s application-independent semantics described earlier: If
the framework intercepts a done or cancelled event without a specified receiver, the
return mechanism automatically leads the event to the dialog mask from which the
terminated module was activated, creating the familiar “nesting” effect for the user.
Fig. 7 shows a sample dialog sequence employing this mechanism (the gray arrows
indicate the compounds’ nesting levels).

The scope of compound events only encompasses the compound that they are
specified in, but not its super- or sub-compounds. For example, while the show item
event leads to the Item Details mask from any other mask in the Shop container, such
a connection does not exist for any masks inside the Checkout sub-module.

Mobile Business Processes 11

ch
eck

out

cancel

Checkout

Shopping
Cart

cart
up-

dated Shopping
Cart

Enter
address,
shipping,

billing

add to
cart

add
to

cart

Shop

identified by return mechanism

Fig. 7. Return mechanism

Common Events and Abort Mechanism. In some situations, however, it may
actually be desirable that certain events can be handled even if their receiver is not
specified in the compound that they are generated in – for example, the create new
account module may be reachable from anywhere within a hypertext-based
application, not just from the Login mask. To model these relationships, the DFN
provides the common event. Similar to the compound event, it is symbolized by an
arrow leading away from the compound’s contour, but outward to another compound
element (and only to a compound – it may not lead to an atomic element or into a
dialog graph). This so-called common compound is nested into the user’s dialog
sequence wherever he generates the respective common event, independently of his
current position in the application.

Portal

no

Umbrella Site

Shop

Forum

Umbrella Site

user
cookie

present?

create new
account

read
cookie
data

yes

us
er

id
en

tif
ie

d

enter
portal

enter
shop

enter
forum

register

Fig. 8. Portal application container

As an example, consider the Portal application container in Fig. 8 (the application
container, symbolized by a double-line box, is the root of the compounds’ nesting hi-
erarchy, where every user’s dialog sequence starts when he enters the application).

12 Volker Gruhn, Matthias Book

The various parts of this portal system are modeled as common compounds so they
can be reached from anywhere within the application.

As with compound events, we need to consider how to return from a common
compound. For common modules, we can simply use the return mechanism that leads
the user back to the dialog mask that called the module. However, common containers
pose more of a challenge. Since they do not terminate by themselves, and nesting
them deeper and deeper into each other as the user navigates between them would
gradually lock up memory, the only option is to abort a common container before an-
other one can be activated at the same nesting level. For example, if the user is cur-
rently in the Shop container and generates an enter portal event, traversal of the Shop
container’s interior dialog graph (and of all compounds nested into it at the time) has
to be aborted before the Umbrella Site container’s initial event can be handled.

In order to abort a compound in a controlled way, a special abort dialog graph can
be specified for it, which might ask the user if he really wants to abort (also giving
him a chance to resume the original dialog graph where he left off), or if he wants to
save any unsaved data before aborting. Traversal of the abort dialog graph, which
may not contain any sub-compounds and must not be connected to the compound’s
regular dialog graph, starts at the abort event (see symbol in Table 1) and ends at a
cancelled terminal event. For example, in the Shop container’s abort dialog graph
(Fig. 6), the system prompts the user if he wants to save the items in his cart before
leaving, or if he wants to resume shopping. Fig. 9 shows a dialog sequence using the
abort mechanism to switch from the Shop to the Umbrella Site container.

save
items in

cart?

save
cart

yes saved

en
ter

po
rta

l

Abort mode

Home

enter
por-
talShopping

Cart

Portal

Shop Umbrella Site

recreated by
abort mechanism

intercepted by
abort mechanism

Fig. 9. Abort mechanism

In case the user decides not to switch containers, he can generate a resume event
(symbolized in dialog graph diagrams by an arrow leading towards the compound’s
contour), which invokes the resume mechanism. Using an algorithm similar to the re-
turn mechanism, it leads the user back to the dialog mask in the regular dialog graph
that was last displayed before the abort sequence started.

Presentation Channels. The notation constructs introduced so far allow developers
to specify complex, hierarchical dialog flows. However, we still need a way to specify
the presentation channel-dependent dialog flows required for different client devices,

Mobile Business Processes 13

as illustrated in Fig. 2. In the DFN, this can be achieved by specifying the dialog
flows for different media in separate dialog compounds and adding the channel labels
of the respective presentation channels in square brackets after the compound’s name.

For example, Fig. 10 specifies the dialog flows for a Checkout module on the
HTML and WML presentation channel. Note that while the channels employ different
dialog masks according to the clients’ input/output capabilities, they use the same ac-
tions for processing the user’s input, as indicated by the shading. This enables devel-
opers to implement the device-independent application logic only once and then reuse
it for multiple presentation channels. Provided that the actions were designed with
sufficient granularity, further channels can be added to an application just by imple-
menting the respective masks and specifying the new channels’ dialog flows.

Checkout [WML]

Enter
address

check
address

submit

incorrect
Enter

shipping
data

correct check
shipping

data

submit

incorrect
Enter
billing
data

correct check
billing
data

submit

incorrect
correct place

order
ok

Checkout [HTML]

Enter
address,
shipping,

billing

check
address

submit

incorrect
correct check

shipping
data

correct check
billing
data

correct place
order

ok

incorrect
incorrect

cancel

cancel

Fig. 10. Checkout module on HTML and WML presentation channel

This concludes our presentation of all notation elements. While their semantics were
not described formally here, the implementation of the Dialog Control Framework
(section 4) defines operational semantics for all constructs.

3.2 Dialog Flow Specification Language

After the dialog flows of an application have been specified in dialog graph diagrams,
an efficient transition from specification to implementation is desirable: The dialog
graph diagrams should not just visualize the dialog flow, still requiring developers to
implement the appropriate dialog control manually, but should rather serve as direct
input for the dialog control logic, instructing it how to handle events.

To achieve this, the graphical specifications must first be transformed into a ma-
chine-readable representation that can be parsed by the dialog control logic. We there-
fore introduce the Dialog Flow Specification Language (DFSL), an XML-based lan-
guage consisting of elements that correspond to the DFN’s dialog elements, events
and constructs. A complete dialog flow specification consists of two documents – a
dialog flows document containing a textual representation of the dialog graphs, and a
dialog elements document mapping dialog elements to their implementation (Fig. 11).

14 Volker Gruhn, Matthias Book

Dialog
Flows

Document

Dialog
Elements
Document

Dialog Flow Notation Dialog Flow Specification Dialog Control Framework

Fig. 11. Transition from specification to implementation

4 Dialog Control Framework

The dialog control logic that reads the DFSL documents and manages the dialog flow
accordingly is application-independent. Therefore, we implemented it in a Dialog
Control Framework that can be reused for any hypertext-based application and pres-
entation channel. Hypertext-based applications are usually designed according to the
Model-View-Controller (MVC) paradigm [18], which suggests the separation of user
interface, application logic and control logic. While user interface and application
logic can be distinguished quite naturally (“what the user sees” vs. “what the system
does”), the distinction between application logic and dialog control logic is much
more subtle (“what the system does” vs. “what it should do next, based on the user’s
input”). Therefore, it is easy to mix up the implementation of application and dialog
control logic, even if both are separated well from the presentation logic.

4.1 Struts: Decentralized Dialog Control

For example, in the Apache Jakarta Struts framework [1], the dialog flow is controlled
by so-called Action objects. Fig. 12 shows how these handle each request:

1. A request comes in from the client.
2. The Controller dispatches the request to the responsible Action object, as defined

by the action mappings read earlier from a configuration file.
3. The Action performs some application logic, either by itself or by calling a sub-

system that does the actual work. In the process, the Model data is updated.
4. Based on the outcome of the application logic operation, the Action object de-

termines how to proceed in the dialog flow and indicates to the Controller which
View should generate the response.

5. The Controller forwards the request to the View indicated by the Action.
6. The View generates the response using application data extracted from the Model.
7. The response is sent back to the client.

Mobile Business Processes 15

Client

Controller

ModelView

1. R
equ

est

2. Dispatch

3. U
pdate

4. Command

5. Forw
ard

6. Extract

7. Response

Application
Logic

Dialog
Control logic
& Flow Spec

Fig. 12. Coarse architecture of the Struts framework

As indicated by the shading in the figure, the dialog control logic is distributed over
all actions in the Struts approach, i.e. the dialog flow is not specified outside the ap-
plication, but actually implemented in the Java code of the Action objects.

This allows the actions to make only relatively isolated dialog flow decisions, and
hampers the implementation of more complex dialog structures with constructs like
nested dialog modules. To raise the actions’ awareness of the “big picture” and enable
them to control more complex constructs, still more control logic would have to be
implemented in them, exacerbating the problem. Also, the hard-coded decentralized
implementation of the dialog control logic is relatively inflexible, almost unsuitable
for reuse and hard to maintain. Finally, achieving presentation channel independence
would require additional effort and possibly redundant work: Since the dialog flow
depends on the presentation channel, while the application logic does not, their close
coupling prevents the reuse of actions on multiple presentation channels. Instead, each
presentation channel would require its own set of Action objects to implement the
individual dialog flow for the respective devices.

4.2 DCF: Centralized Dialog Control

In contrast, the Dialog Control Framework (DCF) presented in this paper features a
very strict implementation of the MVC pattern, completely separating not only the
application logic and user interface, but also the dialog flow specification and dialog
control logic: The controller decides where to forward requests by using a central dia-
log flow model to look up the receivers of events generated by masks and actions
[25]. This dialog flow model is an object structure that is not hard-coded anywhere,
but constructed automatically from the parsed DFSL documents upon initialization of
the framework (Fig. 13).

As the coarse architecture shows, the actions are relatively lightweight here since
they contain only application logic, while all dialog control logic has been moved to
the dialog controller. This controller does not receive requests from the clients di-
rectly anymore. Instead, on each presentation channel, it receives events that have
been extracted from the requests by channel servlets. The dialog controller looks up
the receivers for these events in the dialog flow model – a collection of objects repre-

16 Volker Gruhn, Matthias Book

senting dialog elements that hold references to each other to mirror the dialog flow.
This dialog flow model is built upon initialization of the framework by parsing the
DFSL documents containing the dialog flow specification (the shaded parts of the
diagram emphasize that the dialog control logic and the flow specification are de-
coupled from the application logic and from each other in this approach). Depending
on the receiver that the controller retrieved from the model for an event, it may call an
action, forward the request to a mask, nest or terminate compounds. The latter opera-
tions are performed on compound stacks, which store the nested compounds that con-
stitute the state of the dialog system for each user. We refer to this design pattern as
MVC+D (Model-View-Controller plus Dialog Flows).

2. Lookup

6. Lookup

Client

Dialog
Controller

ModelDialog
Mask

3. Dispatch

4. U
pdate

5. Result

7. Forw
ard

8. Extract

Action

Dialog Flow Model

Channel
Servlet

1. Request

Dialog
Flows

Document

Dialog
Elements
Document

Dialog Graph DiagramsDialog Flow Specification

9. Response

manual
conversion

automatic
conversion

Compound
Stack

Fig. 13. Coarse architecture of the Dialog Control Framework

In each dialog step, these components work together as follows:

1. A client request with an encoded event is received by a channel servlet, which de-
codes the event and sends it to the dialog controller.

2. The dialog controller refers to the dialog flow model to look up how to handle this
event in the current dialog system state, as stored on the user’s compound stack.

3. If an action shall handle the event, it is invoked and the event passed on to it (if a
mask shall handle the event, the system proceeds with step 7 instead).

4. The action performs some application logic, either by itself or by calling a sub-
system that does the actual work. In the process, the Model data is updated.

5. Based on the outcome of the application logic operation, the action generates a new
event and returns it to the dialog controller.

6. The dialog controller refers to the dialog flow model to look up how to handle this
event in the current dialog system state, as stored on the user’s compound stack.

7. If a mask shall handle the event, the request is forwarded to it (if another action
shall handle the event, the system proceeds with step 3 instead).

8. The mask generates the response using application data extracted from the Model.
9. The response is sent back to the client.

For easier comparison with the Struts approach, events involving compounds were
not shown in the above sequence. If compounds have to be activated or terminated,

Mobile Business Processes 17

the dialog controller would push them onto or retrieve them from the user’s com-
pound stack and then look up the next event in the dialog flow model.

This centralized dialog control solution has three advantages over the previously
discussed approach:

• The strict separation between application logic implementation, user interface de-
sign, dialog flow specification and dialog control logic enables a high degree of
flexibility, reusability and maintainability for the components of all four tiers.

• Due to this clean separation, presentation channel-independent applications can be
built with minimal redundancy: Only the dialog masks and the dialog flow
specifications for the different channels have to be adapted, while the application
logic is implemented only once.

• Finally, since the central dialog control logic is aware of the whole dialog flow
specified for a channel (it knows the “big picture”), it can provide mechanisms for
the realization of complex dialog constructs. Thus, the application developer can
use context-independent dialog modules that may be nested, aborted and resumed
without having to deal with states, stacks and resume point identification.

To build an application with this framework, the developer does not need to know
about the inner structure or implementation of the framework. He only needs to pro-
vide subclasses of an ActionImpl class implementing the actions, JavaServer
Pages implementing the dialog masks, DFSL documents specifying the dialog flow
and mapping elements to their implementing entities, and if required, channel servlets
for various presentation channels (the prototype framework we implemented already
provides HTMLChannel and WMLChannel servlets). Since these deliverables are
completely application-specific, the framework is suitable for black box reuse, giving
developers a high degree of flexibility and convenience in building their application.

The authors implemented a prototype of the Dialog Control Framework employing
the Java 2 Enterprise Edition. The Dialog Flow Notation elements, events and dialog
graph constructs were modeled in a class structure making heavy use of generaliza-
tion, overwriting and overloading techniques to achieve modularity, extensibility and
device independence. To validate the suitability of the Dialog Flow Notation, Dialog
Flow Specification Language and Dialog Control Framework for practical use, a
demo application that employs all dialog control features was developed at the Chair
of Applied Telematics’ Mobile Technology Lab. The “Travel Planner” application
provides users a front-end for scheduling trips (including reservations for transport
and accommodation) that can be accessed via a desktop web browser or a WAP-
enabled mobile device. Its development covered all phases from the specification of
the dialog flows via their translation into DFSL documents to the framework-based
implementation of the application.

5 Conclusions

This paper discussed two challenges brought about by mobile business processes:
Firstly, the need to specify the distribution of processes across several sites, and sec-
ondly, the need to specify the dialog flows of the applications implementing those

18 Volker Gruhn, Matthias Book

processes on mobile devices. It then gave an overview of the Process Landscaping
method with its support for refining processes across multiple abstraction layers and
associating their activities and objects with distinguished locations. Next, it presented
a Dialog Flow Notation and Dialog Control Framework for the specification and
management of complex dialog flows in hypertext-based applications.

Introducing the MVC+D pattern, the framework not only strictly distinguishes ap-
plication logic, user interface and dialog control, but also separates the dialog control
logic from the dialog flow specification. The associated notation is essential for pro-
viding the specification of the dialog flow to the framework. Since it does not require
a detailed knowledge of the underlying protocols and technologies, but instead works
with three relatively intuitively understandable concepts (“masks contain what the
user sees, actions contain what the system does, and compounds contain transactions
the user can perform”), it can also be used by people without programming experi-
ence, such as representatives of the application’s target audience, usability experts and
user interface designers. Therefore, the notation’s dialog graph diagrams can be used
as a communication tool throughout the software development process. The graphical
specifications can be transformed into DFSL documents according to simple rules, al-
lowing for an efficient transition from specification to implementation.

A weak point of the notation might be the fine granularity of actions that is re-
quired to employ them flexibly on different presentation channels (this especially
concerns actions responsible for processing user input submitted through forms): The
finer the actions are grained, the easier it is to adapt to different interaction patterns –
however, very fine granularity also results in quite high specification, implementation
and performance overhead. When specifying an application, the developer therefore
needs to find a balance between the desired flexibility and the required granularity,
while being aware that if the granularity is not fine enough, it may be difficult to add
more presentation channels to an existing application in the future. Research on solu-
tions to this dilemma is currently in progress.

Another issue that is a current focus of our research is the framework’s robustness
and error tolerance. When encountering events that cannot be handled, a graceful deg-
radation is the minimum requirement. There are a number of ways in which an event-
driven system might react in this case [11], for example by ignoring the event or by
reestablishing a clearly defined state. In some situations, however, a more user-
friendly reaction would be desirable – most importantly, when the user employs the
client’s backtracking feature. On the Web, clicking the browser’s back button is the
second most frequent user activity after clicking on a link [4]. It should therefore not
be dismissed as a rare and exceptional activity that can be neglected by the dialog
control logic, but rather be regarded as a normal interaction pattern that the applica-
tion must be able to handle as well as regular clicks on links. Backtracking in a hyper-
text-based application is similar, but not equivalent to the undo feature of traditional
applications: While a traditional undo aims to reverse a previous application opera-
tion, backtracking aims to revisit a previous dialog mask without changing the appli-
cation’s data model. This is a challenge since the user events that are recreated
through backtracking often lead to actions, which perform application-logic opera-
tions before the dialog step finally completes with displaying a mask.

Finally, more empiric research is needed to see how the Dialog Flow Notation and
Dialog Control Framework can be integrated into the software development process

Mobile Business Processes 19

for hypertext-based applications. Experiences gained from larger projects should also
yield insights into possible limitations of both tools in certain application domains or
on certain presentation channels.

References

1. Apache Jakarta Project: Struts. http://jakarta.apache.org/struts/
2. Ball, T., Colby, C., Danielsen, P., Jagadeesan, L.J., Jagadeesan, R., Läufer, K., Mataga, P.,

Rehor, K.: Sisl: Several Interfaces, Single Logic. International Journal of Speech Technol-
ogy 3, 2 (June 2000), 91-106. Kluwer Academic Publishers, 2000

3. Butler, M., Giannetti, F., Gimson, R., Wiley, T.: Device Independence and the Web. IEEE
Computing 6, 5 (Sep.-Oct. 2002), 81-86

4. Catledge, L.D., Pitkow, J.E.: Characterizing Browsing Strategies in the World Wide Web.
Computer Networks and ISDN Systems 27, 1065-1073. Elsevier Science, 1995

5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks 33 (June 2000), 137-157

6. Doberkat, E.E.: A Language for Specifying Hyperdocuments. Software - Concepts and
Tools 17, 1996, 163-172

7. Fraternali, P., Paolini, P.: Model-Driven Development of Web Applications: The Autoweb
System. ACM Transactions on Information Systems 28, 4 (Oct. 2000), 323-382

8. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31, 3 (Sep. 1999), 227-263

9. Gaedke, M., Beigl, M., Gellersen, H.-W., Segor, C.: Web Content Delivery to Heterogene-
ous Mobile Platforms. Advances in Database Technologies, Lecture Notes in Computer Sci-
ence 1552. Springer, 1998

10. Graw, G., Gruhn, V.: Process Management In-the-Many. 4th European Workshop on Soft-
ware Process Technology (EWSPT ’95), Lecture Notes in Computer Science 913, 163-178.
Springer, 1995

11. Green, M.: A Survey of Three Dialogue Models. ACM Transactions on Graphics 5, 3 (July
1986), 244-275

12. Gruhn, V., Wellen, U.: Support for Distributed Business Processes. Asia-Pacific Software
Engineering Conference (APSEC99), Takamatsu, Japan, December 7-10, 1999

13. Gruhn, V., Wellen, U.: Structuring Complex Software Processes by “Process Landscaping”.
European Workshop on Software Process Technology (EWSPT 2000), Lecture Notes in
Computer Science 1780. Springer, 2000

14. Gruhn, V., Wellen, U.: Process Landscaping: Modelling Distributed Processes and Proving
Properties of Distributed Process Models. Lecture Notes in Computer Science 2128, 103ff.
Springer, 2001

15. Harel, D.: Statecharts: A visual formalism for complex systems. Scientific Computer Pro-
gramming 8, 3, 231-274

16. Isakowitz, T., Stohr, E. A., Balasubramanian, P.: RMM: a methodology for structured hy-
permedia design. Communications of the ACM 38, 8 (Aug. 1995), 34-44

17. International Organization for Standardization: Ergonomic requirements for office work
with visual display terminals (VDTs) – Part 10: Dialogue principles. ISO 9241-10, 1996

18. Krasner, G.E.: A Cookbook for using the Model-View-Controller User Interface Paradigm
in Smalltalk. Journal of Object-Oriented Programming 1, 3 (1988), 26-49

19. Lupu, E.C., Sloman, M.: Conflicts in Policy-Based Distributed Systems Management. IEEE
Transactions on Software Engineering 25, 6, 852-869. IEEE Computer Society Press, 1999

20 Volker Gruhn, Matthias Book

20. Nuseibeh, B., Kramer, J., Finkelstein, A., Leonhardt, U.: Decentralized Process Modelling.
4th European Workshop on Software Process Technology (EWSPT ’95), Lecture Notes in
Computer Science 913, 185-188. Springer, 1995

21. Rice, J., Farquhar, A., Piernot, P, Gruber, T.: Using the web instead of a window system.
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’96).
ACM Press, 1996

22. Shaw, M.J.: Electronic Commerce: State of the Art. Shaw, M., Blanning, R., Stader, T.,
Whinston, A. (eds.): Handbook on Electronic Commerce, 3-24. Springer, 2000

23. Sinha, A.: Client-Server Computing. Communications of the ACM 35, 7 (July 1992), 77-98
24. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Communications of

the ACM 38, 8 (Aug. 1995), 45-46
25. Singh, I., Stearns, B., Johnson, M., et al.: Designing Enterprise Applications with the J2EE

Platform, 2nd Edition. Addison-Wesley, 2002
26. Zhao, W., Kearney, D., Gioiosa, G.: Architectures for Web Based Applications. 4th Austral-

asian Workshop on Software and Systems Architectures (AWSA 2002), Feb. 2002,
http://www.dstc.monash.edu.au/awsa2002/papers/Zhao.pdf

