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ABSTRACT 
In this paper, we identify and analyze structural properties which 
reflect the functionality of a Web site. These structural properties 
consider the size, the organization, the composition of URLs, and 
the link structure of Web sites. Opposed to previous work, we 
perform a comprehensive measurement study to delve into the 
relation between the structure and the functionality of Web sites. 
Our study focuses on five of the most relevant functional classes, 
namely Academic, Blog, Corporate, Personal, and Shop. It is 
based upon more than 1,400 Web sites composed of 7 million 
crawled and 47 million known Web pages. We present a detailed 
statistical analysis which provides insight into how structural 
properties can be used to distinguish between Web sites from 
different functional classes. Building on these results, we 
introduce a content-independent approach for the automated 
coarse-grained classification of Web sites. A naïve Bayesian 
classifier with advanced density estimation yields a precision of 
82% and recall of 80% for the classification of Web sites into the 
considered classes. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – information filtering, selection process;  
H.2.8 [Database Management]: Database Applications – data 
mining. 

General Terms 
Algorithms, Experimentation, Measurement. 

Keywords 
web mining, web site classification, web structure mining, web 
measurement, naïve bayesian classification, search engines 

1. INTRODUCTION 
The World Wide Web comprises an ever-growing number of Web 
sites providing different information and serving different needs. 
Therefore, it becomes more and more difficult to judge and 
classify Web sites. However, while Web sites differ in design and 
content, many Web sites are created for the same purpose. As a 
consequence, they are related by their functionality like the Web 
sites of two universities or two competing corporations.  
The ability to classify Web sites with different functionality 
would be extremely valuable for improving the capabilities of 
search engines. In fact, the coarse-grained classification of Web 
sites could improve the quality of search results. This holds 
especially in case of an uncertain information need behind the 
query of an user. A coarse-grained classification would allow for 
marking search results in accordance to their corresponding Web 
sites' class. This would enable the user to easily choose results 
from the right context. First demo applications like Yahoo! 
Mindset [17] build on this idea. In addition to this, results from 
different classes could be included within the top 10 hits to 
present widespread results. Personalized ranking could be 
performed by favoring results from a certain class of interest with 
regard to the search history of the user. Furthermore, the freshness 
of the index of a search engine could be increased by adjusting 
the refreshing strategy in accordance to the change ratios of Web 
sites from different classes [5]. 
A very broad classification of Web sites as commercial, 
organizational, or educational can be performed by considering 
their top level domain, e.g. .com, .org, or .edu. As a consequence, 
this kind of classification is in part trivial for some Web sites. 
These Web sites are often physically located in the US. But as 
online shops and companies share the top level domain .com, the 
classification becomes inaccurate. Furthermore, Web sites of 
various genres reside in the same top level domain in countries 
other than the US, e.g. .ch, .de, or .fr. 
The aim of this research is a coarse-grained classification of Web 
sites into classes describing their functionality. In other words, we 
want to identify what a Web site is, and not what it is about. Since 
our approach is solely based on the structural properties of Web 
sites, we identify properties reflecting their functionality. These 
structural properties consider the size, the organization, the 
composition of URLs, and the link structure of Web sites. Our 
study reveals to examine, amongst others, the number of pages, 
the fraction of HTML documents, and the average internal 
outdegree. Opposed to previous work, we perform a 
comprehensive measurement study to delve into the relation 
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between the structure and the functionality of Web sites. Our 
study focuses on five of the most relevant functional classes, 
namely Academic, Blog, Corporate, Personal, and Shop, as 
discussed in Section 3. The resulting benchmark is based upon 
1,461 Web sites composed of 7,020,191 crawled and 47,225,117 
known pages, whereas known pages include the crawled pages 
and further discovered but not crawled pages. We present a 
detailed statistical analysis which identifies distinguishing 
measures for the coarse-grained classification of Web sites. 
Furthermore, we perform an advanced density estimation based 
on the distributions of these measures fitted from the measured 
data. Subsequently, we show that a naïve Bayesian classifier with 
advanced density estimation yields a precision of 82% and recall 
of 80% for the coarse-grained classification of Web sites into the 
five considered functional classes. 
The remainder of this paper is organized as follows. Section 2 
summarizes related work on Web site classification and Web 
measurement. Section 3 introduces our Web measurement 
methodology, which defines how to select and gather the data 
necessary for the analysis of structural properties. This analysis is 
described in Section 4. In Section 5, we build on the presented 
Web measurement results by providing an advanced approach for 
the automated classification of Web sites by their structural 
properties. Finally, concluding remarks are given. 

2. RELATED WORK 
In recent years, several approaches for the classification of Web 
sites have been introduced. These approaches have to be 
distinguished by the purpose of classification, i.e. approaches 
aiming on discerning the functionality of a Web site by analyzing 
their structure, e.g. [1], compared to approaches focusing on the 
categorization by topical content, e.g. [10], [12], [16]. 
Amitay et al. [1] examined the structural patterns of 202 Web 
sites in order to detect their functionality. They achieved a 
precision of 54.5% and 59%, respectively, for the classification of 
these Web sites into functional classes by applying two 
classification algorithms. Thus, their results provide evidence for 
the fact that the structure of a Web site reflects its functionality. 
Like [1], our approach for the coarse-grained classification of 
Web sites is based upon structural properties and driven by the 
same motivation. However, while [1] focused mainly on the link 
structure of Web sites, we aim at gaining a deeper insight into the 
relation between structure and functionality by analyzing different 
types of structural properties in a comprehensive measurement 
study. Furthermore, we introduce an advanced approach for 
classification resulting in a higher classification accuracy. 
Pierre [16] discussed several issues related to the content-
dependent, fine-grained classification of Web sites. He introduced 
a superpage-based approach for the classification of Web sites 
into industry categories utilizing metatags. Kriegel et al. [10] 
further exploited the semantic structure and local context 
information by representing a Web site as a tree of pages with 
topics. They employed the k-order Markov tree classifier and 
evaluated their approach based upon a testbed of 82,842 Web 
pages representing 207 corporate Web sites from two specific 
categories. Tian, Huang, and Gao [12] proposed an approach for 
Web site classification based on content, structure, and context 
information of Web sites. Their approach represented the Web 
site structure as a two-layered tree, i.e. a DOM tree for each page 

and a page tree for linking all pages. They presented a two-phase 
classification algorithm using the Hidden Markov Tree as the 
statistical model of both trees. Opposed to our work, all of these 
approaches [10], [12], [16] depend on textual content, focus on 
different small fractions of the Web, and are in part evaluated 
upon small benchmarks of Web sites. However, the outlined 
development towards more sophisticated classification approaches 
highlights the benefit of structural properties for the classification 
of Web sites even in the field of fine-grained classification. 
Web measurement focusing on the link structure and the 
evolution of the Web has also been an active area of research in 
recent years. The papers [3], [6] reported large-scale measurement 
studies of the Web's link structure. Broder et al. [3] provided 
evidence that the macroscopic structure of the Web comprises 
three main components: IN, SCC, and OUT, i.e. looks like a bow 
tie. Building on these results, Dill et al. [6] discovered that both 
micro- and macroscopic graph structures possess the bow tie 
structure, i.e. cohesive sub-regions of the Web, introduced as so 
called thematically unified clusters, display the same 
characteristics as the Web at large. These unified clusters are for 
example a random collection of Web sites. We adopt the idea of 
considering unified clusters. Though, instead of building random 
collections, we consider classes of Web sites related by their 
functionality. [3], [6], aimed at gaining insight into the graph 
structure of the Web. Opposed to this, the aim of our study lies in 
gaining insight into the structure of Web sites and its relation to 
the functionality as basis for their coarse-grained classification. 
Several other Web measurement studies, e.g. [5], [11], investigate 
the change frequency of individual Web pages across different top 
level domains. Cho and Garcia-Molina [5] studied the evolution 
of more than 500,000 Web pages drawn from 270 US Web sites. 
They reported that pages from university Web sites changed less 
frequently than pages on Web sites with .com top level domain. In 
a complementary study [11], Fetterly et al. studied the evolution 
of more than 150 million Web pages across European, US, and 
Asian top level domains. They observed a strong relation between 
top level domain and frequency of change. In summary, the 
evolution studies state that pages drawn from Web sites belonging 
to different domains change at different rates [5], [11]. We argue 
that Web sites with different functionality, which are in part 
comparable to Web sites from different top level domains, e.g. 
.com in contrast to Web sites from .edu, also differ in their 
structural properties. Therefore, they can be classified without 
inspecting their content and crawling them repeatedly. 

3. MEASUREMENT METHODOLOGY 
3.1 Selection of Web Sites 
Since our studies focus on the functionality of a Web site and not 
on its topical content, we concentrate on the following five 
functional classes: 

• Academic: Web sites of universities and research institutions. 

• Blog: The group of Web logs as a popular representative of 
community Web sites with many individual content creators. 

• Corporate: The Web presence of enterprises. 

• Personal: The homepages of individuals or small groups. 

• Shop: Online shops and auction portals offering products 
usually for sale. 

 



Similar classes are considered whenever importance is attached to 
distinguishing Web sites because of their functionality [1], [13]. 
Considering the tremendous size of the Web and the various 
genres and modes of Web sites that occur on it, this set of 
functional classes cannot be complete. We intentionally omit the 
class comprising spam Web sites in order to have a clean index. 
Furthermore, we do not focus on search engines and Web 
directories as these types of Web sites are normally not searched 
for but used to find Web sites of the considered classes. 
Remember that our classification approach is motivated by 
achieving better search results. The consideration of further 
interesting classes like non-profit organizations or information 
portals is left for future work. However, we believe that the 
considered functional classes belong to the most relevant classes 
in accordance to the motivation and due to the fact that a vast 
amount of Web sites can be assigned to these classes. 
In order to analyze the structural properties as general basis of 
classification, we select several Web sites from each considered 
functional class. This is achieved by randomly choosing the 
corresponding URL from Web directories like the Open Directory 
Project [7] within an appropriate category. Our measurements are 
strictly focused on the German part of the Web, i.e. we only 
obtain URLs from the top level domain .de. This is due to several 
reasons: Firstly, we want to avoid noisy data due to mixing Web 
sites from different countries whose structure and organization 
might be influenced by national distinctions. Secondly, we 
manually verified that the selected Web sites really belong to their 
assigned classes in order to have a solid benchmark. This aim can 
be achieved more efficiently with our knowledge of the German 
part of the Web. Thirdly, the top level domain .de is a very good 
example of the Web of an industrialized nation where Web sites 
of various functionalities reside in the same top level domain. In 
addition to this, we select only URLs pointing at the entry page of 
a Web site (e.g. http://www.uni-leipzig.de), i.e. URLs without a 
subdomain or a path leading to a page in a subdirectory. This 
approach guarantees that the data for each Web site is collected 
beginning with the entry page of a Web site.  

3.2 Collecting the Data 
For collecting data from the selected Web sites, we employ a 
search engine software system developed by our group. Our 
search engine runs on a Linux dual-processor PC server with 3.0 
GHz Intel Pentium IV Xeon processors and 6 GB RAM.  
The crawl is seeded from the sets of URLs of the Web sites 
belonging to the given functional classes. These sets are disjoint 
so that every Web site is assigned to exactly one class. We define 
a Web site as the set of Web pages which belong to the same 
domain, e.g. uni-leipzig.de. Thus, according to our definition the 
pages located in a subdomain of a Web site, e.g. informatik.uni-
leipzig.de, are also considered as belonging to this Web site. 
Crawling the entry page of each Web site first, the content of the 
page is parsed to extract links to other pages. Our crawler scans 
every single Web site in a breadth-first-search manner following 
only internal links, i.e. links pointing at a page within the same 
domain. External links are counted for later analysis, but are 
discarded afterwards. By crawling the Web sites in this way, we 
assure on the one hand that only pages from the pre-selected Web 
sites are downloaded and considered for our measurement study. 

Table 1. Measurement statistics of functional classes 

Class #Web Sites #Crawled Pages #Known Pages
Academic 158 2,233,615 11,860,670
Blog 222 751,717 2,071,394
Corporate 449 571,492 2,188,385
Personal 274 273,839 576,266
Shop 358 3,189,528 30,528,402
Total 1,461 7,020,191 47,225,117

 

On the other hand, we are able to determine the level of a page, 
i.e. the minimum number of clicks it is away from the entry page. 
Furthermore, we detect the language of the page’s content by 
applying several heuristics like checking the http-header, the 
metatags, and counting language-specific stopwords.  
To reduce the traffic placed on the servers hosting the selected 
Web sites, we crawled at most 20,000 pages per Web site or at 
most 2 GB of data. This boundary allows collecting data in a 
sufficient way as most Web sites comprise less than 20,000 pages. 
Our results show that even Web sites consisting of more than 
20,000 pages can be well classified based upon the analysis of the 
data from the crawled pages. This is because we are able to use 
additional data from further discovered but not crawled pages of 
these Web sites as described in the following subsection. In 
addition to this restriction, our crawler obeys the robots exclusion 
protocol and the netiquette by keeping a timeout of at least two 
seconds between two successive requests to the same server. The 
crawl is completed when no further pages belonging to the pre-
selected Web sites can be retrieved obeying the restrictions 
described before. 
Collecting data in order to analyze the structural properties of a 
Web site in this manner is independent of a page’s textual content, 
the importance of the content to a human user, the freshness of the 
content, and its change ratio as none of these measures is 
considered for the classification. We examine all Web sites from 
which at least 100 pages could be crawled correctly. On the one 
hand, this minimizes measurement errors due to Web sites which 
could not be crawled properly, e.g. because of flash intros or 
redirections. On the other hand, we assure that our analysis is 
based on statistical significant sample sets of pages within each 
Web site. The entire Web sites are characterized and classified 
based upon the analysis of these fetched portions. 
Table 1 shows the resulting number of Web sites per functional 
class. Furthermore, it summarizes how many pages have been 
overall crawled per class and how many pages are known. The 
number of known pages includes the number of crawled pages 
plus further pages belonging to Web sites within the class. These 
Web pages have been discovered but have not been downloaded. 
All in all we analyze the structural properties of 1,461 Web sites 
from five distinct functional classes. Each class comprises at least 
158 Web sites. The analysis is based upon 7,020,191 crawled and 
47,225,117 known Web pages. 
Since collecting the data in order to analyze structural properties 
is an essential step for our classification approach, it is important 
to consider its computational cost. The download of a remote 
Web page is much more expensive than in-memory classification 
operations [10], [12]. As described in the following subsection, 
most of the identified measures can be derived from the known 
pages of a Web site. Thus, they can be derived not only from 

 



crawled pages but from pages which have not been downloaded. 
Our benchmark contains 40,204,926 such non downloaded Web 
pages. The ability to analyze structural properties of these pages 
is a major advantage of our approach as it saves computational 
cost and enhances the accuracy at the same time. 

3.3 Structural Properties of Web Sites 
In order to identify and analyze structural properties which reflect 
the functionality of a Web site, we focus on structural properties 
that consider the size, the organization, the composition of URLs, 
and the link structure of Web sites. 
We analyze the size of a Web site by determining the number of 
known pages per Web site (page count) and the average document 
size, which describes size in terms of amount of available data. 
The organization of a Web site is spotted by counting the number 
of distinct subdomains per Web site, analyzing the fraction of 
document types, checking the number of different languages, and 
by detecting the average and maximum level of its pages. We 
compute the number of subdomains by adding up the number of 
different host parts within the URLs of one Web site. The 
document type is determined by inspecting the file extension. We 
checked the URLs for many of the most common file extensions 
including .html, .xml, .txt, .pdf, .ps, .php, .asp, .jsp, .pl. Further 
detected file extensions are added up together, defined as other. A 
language is counted for the observed Web site if at least ten pages 
present their content in this language. We are able to detect the 
languages German, English, French, Spanish, Italian, and Dutch. 
The average and the maximum level of a Web site are determined 
by checking the level of every page, i.e. by counting the minimum 
number of links that have to be followed beginning from the entry 
page, which has level 0, in order to reach this page. 
Further properties describing the general composition of the 
URLs of a Web site can be directly derived from the URLs. We 
determine the length of the site name, i.e. the string length of the 
top domain without subdomains, the average length of all URLs, 
and the average length of the URL path. Furthermore, we count 
the number of slashes and digits within the path. Although these 
properties might not be promising for reflecting the functionality 
at first sight, we find that Web sites of distinct classes differ in 
these measures as presented in Section 4. 
Obviously, the link structure provides another source to gain 
further insight into the structural properties of a Web site. We 
consider the link structure by calculating the average and 
maximum overall, internal, and external outdegree as well as the 
external site outdegree. The outdegree of a page is defined as the 
number of links within a page pointing at other pages belonging 
to the same Web site, i.e. internal links, or at pages on other Web 
sites, i.e. external links. The sum of the internal and the external 
outdegree is the overall outdegree. Duplicated links within one 
page are counted only once. The difference between the external 
outdegree and the external site outdegree is that the former counts 
the number of links to distinct external pages whereas the latter 
counts the number of links to distinct Web sites. 
Tables 2 and 3 summarize all measures for the different types of 
properties and state whether a measure can be derived from all 
known or just from the crawled pages of a Web site. Since most 
of the measures can be derived from all known pages, the 
available amount of data for the analysis grows rapidly as stated 
before. 

Table 2. Measures derived from known pages 

Measure Type 
Number of known pages Size
Avg. number of slashes in URL path URL 
Avg. number of digits in URL path URL 
Avg. URL length  URL 
Avg. length of URL path URL 
Length of sitename URL 
Level (avg., max) Organization 
Number of subdomains Organization 
Fraction of document types (HTML, PDF, PS, 
PHP, TXT, ASP, JSP, XML, PERL, Other) 

Organization 

 

Table 3. Measures derived from crawled pages 

Measure Type 
Outdegree (max., avg.) Link structure
Internal outdegree (max., avg.) Link structure
External outdegree (max., avg.) Link structure
External site outdegree (max., avg.) Link structure
Number of different languages Organization
Avg. document size Size

 

Although our analysis is focused on the German part of the Web, 
we believe that our methodology is applicable for other parts of 
the Web, too. This holds especially for Web sites within the top 
level domain of other industrialized countries. Since the identified 
structural properties are independent of a page’s content, they can 
be determined easily for the Web sites representing the relevant 
functional classes. These Web sites can be obtained from trusted 
Web directories for the considered top level domain. As a 
consequence, applying our measurement methodology would gain 
insight into the relation between structure and functionality of 
Web sites within top level domains other than .de as basis for 
their coarse-grained classification. 

4. MEASUREMENT RESULTS 
In this section, we provide insight into how the structure reflects 
the functionality of a Web site. Therefore, we analyze the 
structural properties by plotting the cumulative distribution of 
each measured parameter. The goal of this analysis is to identify 
distinguishing measures for the coarse-grained classification of 
Web sites from different functional classes. Due to space 
limitations we do not present the distributions of all considered 
properties, but concentrate on those for which the differences 
between the classes are most impressing. However, for the 
classification process outlined in Section 5 all measured 
properties stated in Section 3 are taken into consideration.  
As a first example of a distinguishing measure derived from the 
structural properties, we analyze the size of a Web site in terms of 
number of Web pages. Obviously, Web sites from the functional 
class Academic are in general much larger than Web sites from 
the class Personal. This intuition is underlined by Figure 1 which 
shows that more than 80% of the Web sites from class Academic 
have at least 6,000 pages. For Web logs this fraction is only about 
17% while Web sites from class Shop are also quite large. 80% of 
the Web sites from this class consist of more than 1000 pages. 
The smallest Web sites in terms of number of known pages 
belong to class Personal, which is an intuitive result. Only 10% of 

 



the Web sites from the class Corporate have more than 2000 
known pages. This is due to the fact, that our benchmark for this 
class comprises many small and medium-sized enterprises. We 
conclude that the number of known pages of a Web site is an 
important indicator of the functional class it belongs to. 
As an impressing example of the measures representing the 
fraction of document types used within a Web site, Figure 2 
provides the distribution of the fraction of HTML documents for 
each functional class. We observe in this figure that more than 
70% of the Web sites from class Personal consist almost entirely, 
i.e. with more than 95%, of HTML documents. Web sites from 
class Corporate have on average less HTML documents. Here, a 
larger fraction of about 40% of the Web sites has almost no 
HTML documents. Another 20% of the Web sites from this class 
consist with more than 80% of HTML documents. The remaining 
40% of these Web sites are partly composed of HTML and non-
HTML documents. The fraction of HTML documents on Web 
sites of class Academic is rather uniformly distributed between 
0% and 100%. Web sites from the classes Shop and Blog are 
composed to the least extend of HTML documents. Only 15% and 
7% of the sites, respectively, consist almost entirely of HTML 
documents, and about 50% and 70%, respectively, have almost no 
HTML document on the entire Web site. 
Figure 3 shows that quite simple structural properties regarding 
the composition of URLs nevertheless also reflect the 
functionality. We observe that especially Web sites of class Shop 
differ from the other Web sites as the pages of 80% of these Web 
sites have on average more than five digits per URL. A frequent 
use of session IDs to keep state, e.g. during the shopping session 
of a customer, is a possible reason for this observation. Web sites 
from class Personal have on average the smallest number of digits 
within their URLs, i.e. about 80% have five or less digits. This is 
an intuitive result as the creation of personal homepages rather 
seldom utilizes more sophisticated techniques. 
Finally, significant differences between the structural properties 
of the considered functional classes can be observed in the 
average internal outdegree depicted in Figure 4. Web sites from 
the class Shop have on average the strongest internal navigational 
structure, i.e. provide many links to other pages of the same site. 
For example about 50% of the Web sites from this class contain 
on average more than 40 internal links per page. This might be 
due to the fact, that shops often contain comprehensive product 
listings with links to Web pages describing the listed products in 
more detail. In contrast, Web sites from the class Personal have 
on average only few internal links per page, i.e. only about 20% 
of these sites have on average more than 10 internal links per 
page. Between these extremes 40% of the Web sites from class 
Academic have more than 20 internal links per page. Thus, the 
average internal outdegree provides significant discriminative 
power to distinguish between the different functional classes. 
In summary, the figures show that all considered types of 
structural properties, i.e. properties regarding the size, the 
organization, the composition of URLs, and the link structure, 
reflect the functionality of a Web site. Therefore, the differences 
in the distributions of structural properties of Web sites with 
different functionality allow for deriving measures with 
discriminative power, denoted as discriminators in the rest of this 
paper. We exploit these discriminators for the coarse-grained 
classification of Web sites. 
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Figure 1. Number of known pages of functional classes 
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Figure 2. Fraction of HTML documents of functional classes 
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Figure 3. Avg. number of digits of functional classes 
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Figure 4. Avg. internal outdegree of functional classes 

 

 



5. COARSE-GRAINED CLASSIFICATION 
5.1 Naïve Bayesian Classifier with Advanced 
Density Estimation 
The naïve Bayesian classifier [9] is known to be a simple but 
effective technique for classification tasks in several application 
domains like spam-filtering and pattern recognition. As the name 
“naïve” suggests this method makes the important simplifying 
assumption that the discriminators are conditionally independent 
given the class. Although this assumption does not hold in many 
applications, the naïve Bayesian classifier nevertheless provides 
excellent classification performance [8]. As a consequence, our 
approach builds on a naïve Bayesian classifier. It utilizes an 
advanced density estimation procedure by fitting the measured 
data to a comprehensive set of distribution functions to improve 
the classification accuracy as outlined in this section.  
In our application, the naïve Bayesian classifier computes the 
probability of a Web site belonging to one of the five considered 
functional classes, denoted as Ci with i=1,…,5, given the set of 
discriminators. This probability is denoted as P(Ci| xr ) where xr  = 
<x1,…,xd> is a vector composed of the particular values observed 
for the discriminators of the Web site to classify. d is the number 
of used discriminators. The computation is based on several 
components. Firstly, the likelihood of the discriminators given the 
considered class, denoted as P( xr |Ci). Secondly, the prior 
probability reflecting the fraction of existing Web sites for each 
class, denoted as P(Ci). Thirdly, a normalizing constant in the 
denominator, denoted as P( xr ), which is invariant across classes. 
Putting it all together, according to Bayes’ theorem the 
probability of a Web site belonging to a specific class given the 
set of discriminators can be computed by 
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Since the fractions of Web sites from the considered classes are a 
priori unknown for the World Wide Web, we assign for each class 
the same prior probability, i.e. P(Ci)=1/5 for i=1,…,5. The 
probabilities  can be deduced by 
evaluating the appropriate probability density function f

( | ), 1,..., , 1,...,5j iP x C j d i= =
j,i 

modeling the distribution of discriminator j for class i. 
The computation of the probability of each class Ci given the set 
of discriminators xr  by a naïve Bayesian classifier heavily 
depends on the set of discriminators used for classification [15]. 
On the one hand, it is important to use as many discriminators as 
possible to distinguish between classes. On the other hand, the 
classification performance suffers from discriminators which are 
redundant due to correlations. Thus, we employ the discriminator 
selection approach outlined in [15], which chooses an appropriate 
set of discriminators according to the best classification accuracy. 
A second simplifying assumption often used in naïve Bayesian 
classifiers is the normality assumption of the discriminators. Since 
this assumption does not hold in general, we aim to improve the 
classification accuracy with advanced density estimation. That is, 
while retaining the independence assumption of the discriminators 
our approach accounts for the fact that discriminators may follow 

probability distributions other than normal. Thus, we fit the 
measured data to the probability density functions (pdf) 
exponential, normal, lognormal, Weibull, Pareto, and additionally 
to the step function given in equation (2).  
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This equation defines a probability density function used for 
mathematically capturing discretization techniques for Bayesian 
classifiers. The density function defines the probability pk that a 
measured data value x falls into the interval number k, defined by 
the interval boundaries mk-1 and mk. The parameters for this 
distribution are the interval boundaries mk and the relative 
frequencies pk for interval number k, k=1,…,n. We employ the 
weighted proportional k-interval discretization approach by Yang 
and Webb [18] for determining mk. The parameters pk  are derived 
from the measured data by calculating the relative frequencies of 
measured data values for each interval k given by mk. 
Furthermore, the parameters of the well-known continuous 
distributions exponential, normal, lognormal, Weibull, and Pareto 
are determined by fitting the cumulative distribution functions 
(CDF) of the distributions to the measured data by least-squares 
regression utilizing the Levenberg-Marquardt algorithm [2]. We 
employ the CDF instead of the pdf for fitting because it is not 
biased by discretization. 
By this choice of possible distribution functions we account for 
the observation made in Section 4 that the measured distributions 
of the discriminators may differ extremely both among different 
discriminators and even for the same discriminator among 
different classes. For example recall from Figure 2, that the 
fraction of HTML documents for class Personal roughly takes 
only the two values 0 and 1, i.e. describing a discrete distribution. 
Opposed to this, the values of the same discriminator for class 
Academic are more evenly spread between 0 and 1, i.e. describing 
a continuous distribution. With our approach we combine the 
advantage of the independence from discretization, given by the 
continuous distributions, with the advantage of the high flexibility 
of the step function.  
The choice of the best suited distribution for each discriminator 
and class is based upon the root-mean-square of residuals [14] 
denoted as Δ and defined by equation (3). 
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s denotes the number of measured values, CDFm denotes the CDF 
of the measured values, and F(x) denotes the CDF of the fitted 
probability distribution. Thus, after fitting each of the six 
distributions to the measured data for each discriminator and 
class, the error terms are calculated and compared. The 
distribution with the smallest Δ fits best to the measured data and 
is therefore chosen for the classification task. 

 



Table 4. Results of fitting distributions to measured data 

Discriminator Class Distribution Parameter 1 Parameter 2 Error term Δ
Academic lognormal μ = 10.2024 σ = 1.7678 0.03270
Blog lognormal μ = 6.74803 σ = 1.9701 0.02440
Corporate lognormal μ = 5.18206 σ = 1.56141 0.03139
Personal lognormal μ = 5.31639 σ = 1.57409 0.01135

Number of known pages 

Shop lognormal μ = 9.35839 σ = 2.68941 0.00263
Academic lognormal μ = 2.74898 σ = 0.72313 0.02123
Blog Weibull α = 1.47891 λ = 0.00717598 0.01859 
Corporate Weibull α = 1.08249 λ = 0.0621629 0.01334 
Personal lognormal μ = 1.5701 σ = 0.901351 0.02181 

Avg. internal outdegree 

Shop Weibull α = 1.5335 λ = 0.0027379 0.03157 
 
Table 4 exemplifies the distributions, corresponding parameters 
and Δ values for the two discriminators number of known pages 
and average internal outdegree. We observe that the number of 
known pages follows a lognormal distribution for all considered 
classes. Furthermore, the small values of the error terms Δ 
indicate a close fit of the distribution functions to the measured 
data. Recall that we do not consider Web sites from which less 
than 100 pages could be crawled. Thus, for fitting the distribution 
functions to the measured data we subtract 100 from the measured 
values of the number of known pages in order to let the 
distribution start at zero instead of 100. We further observe, that 
there are significant differences in the parameters of the 
distribution between the individual classes, reflecting the power 
of the discriminator. For the average internal outdegree, Table 4 
points out that this discriminator follows a lognormal distribution 
for the classes Academic and Personal instead of a Weibull 
distribution for the other classes. Thus, we conclude that the 
distributions of a particular discriminator for different classes may 
not only differ in terms of distribution parameters but furthermore 
in terms of the distribution function. 
Most measured distributions of the discriminators not stated in 
Table 4 can be well modeled by the lognormal or Weibull 
distribution, respectively. The discriminators constituting 
fractions of documents of a specific type are generally modeled 
by the discrete distribution with smallest root-mean-square of 
residuals. This is due to the fact that for many of these 
discriminators the measured data only take on a small number of 
distinct values. As a consequence, this behavior can only be 
appropriately modeled by the discrete distribution. Further 
discriminators which are best modeled by the discrete distribution 
include the number of languages and the number of subdomains, 
clearly because these discriminators can only take discrete values. 

5.2  Classification Results 
As [4], [10] we evaluate the accuracy of our classification 
approach by employing 10-fold cross validation. This method 
divides the overall collected data set of the Web sites of all 
considered classes randomly into ten sets of equal size. In each of 
the ten turns, another set is utilized for the automated 
classification and the remaining nine sets are used as training 
data. Subsequently, we determine for each turn the achieved 
precision and recall for the considered five major classes of Web 
sites individually and then average them over all turns of the cross 
validation. In the actual classification process a Web site is 
assigned to the class with the highest probability, so that all Web 

sites are classified. In addition to this, we examine different 
confidence levels by assigning a Web site to a particular class 
only if the probability for that class is above a certain threshold, 
i.e. 0.8 and 0.9, respectively. Otherwise the Web site is marked as 
undefined. 
We present the results of the classification process for the naïve 
Bayesian classifier with advanced density estimation in  
Table 5. The precision of the classification for one class is defined 
as the fraction of Web sites classified as members of that class 
which also actually belong to the class. The recall is defined as 
the fraction of Web sites which belong to a class and are also 
classified as members of that class. Micro-averaging and macro-
averaging aggregate the precision and recall for each class into an 
overall measure [4]. Micro-averaging makes the overall precision 
and recall depend mostly on the precision for classes with a large 
number of sites in the sample set (i.e., Corporate and Shop). 
Opposed to this, the macro-averaged measures pay equal 
importance to each class. Furthermore, the F1 score describes the 
overall performance of a classifier with respect to recall and 
precision at the same time [4]. We calculate the F1 score for the 
macro-averaged values. Table 5 shows that our approach yields a 
precision of 82% and recall of 80% for the classification of all 
Web sites resulting in a F1 score of 81%. The micro-averaged 
precision and recall are 80%. Considering the different confidence 
levels, the precision of our classifier can be increased to 87% by 
applying a threshold of 0.9 for the classification probability. 
However, this approach is at the cost of a smaller recall of 70% as 
278 of the 1,461 Web sites remain unclassified. In addition to this, 
Table 5 shows that Web sites of the classes Academic and 
Corporate can be best classified with a precision of 98% and 85%, 
respectively.  

Table 5. Classification accuracy at different confidence levels 

No Thresh. Thresh.=0.8 Thresh.=0.9 Conf.
Class Pre. Rec. Pre. Rec. Pre. Rec.
Academic 0.98 0.85 0.99 0.84 0.99 0.82
Blog 0.79 0.78 0.84 0.72 0.86 0.70 
Corporate 0.85 0.83 0.86 0.75 0.86 0.68 
Personal 0.74 0.78 0.81 0.69 0.85 0.64 
Shop 0.74 0.78 0.76 0.72 0.76 0.67 
# Undef. 0 176 278
Micro-avg. 0.80 0.80 0.84 0.73 0.85 0.69
Macro-avg. 0.82 0.80 0.85 0.74 0.87 0.70 
F1 score 0.81 0.79 0.78

 



Table 6. Confusion matrix of classifier without threshold 
Class C1 C2 C3 C4 C5 

C1: Academic 134 
84.8% 

1 
0.6% 

14 
8.9% 

1
0.6% 

8
5.1% 

C2: Blog 0 
0.0% 

174 
78.4% 

2 
0.9% 

18
8.1% 

28
12.6% 

C3: Corporate 1 
0.2% 

2 
0.4% 

372 
82.9% 

25
5.6% 

49
10.9% 

C4: Personal 0 
0.0% 

28 
10.2% 

20 
7.3% 

215
78.5% 

11
4.0% 

C5: Shop 2 
0.6% 

15 
4.2% 

32 
8.9% 

30
8.4% 

279
77.9% 

As our results are very promising, future work will focus on the 
identification of further structural properties of Web sites with 
discriminative power. We will extend our analysis to consider 
additional functional classes as mentioned before. Furthermore, 
applying our methodology to Web sites from top level domains 
other than .de will gain insight into their structural properties in 
comparison to the German part of the Web. 
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