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ABSTRACT 

This study provides insight into the structure/function relationship between desaturases 

and acetylenases, and indicates amino acid residues within acetylenases which influence 

reaction outcome. Oleate desaturases belong to a family of enzymes capable of introducing cis 

double bonds between C12 - C13 in oleate esters. Acetylenases are a subset of oleate desaturase 

enzymes which introduce a triple bond in the C12 - C13 position of linoleate. To better 

understand which amino acids could be responsible for differentiating the activity of 

acetylenases from typical desaturases, a total of 50 protein sequences were used to compare the 

two classes of enzymes resulting in the identification of 11 amino acid residues which are 

conserved within either separate family but differ between the two groups of enzymes. These 

identified amino acid residues were then singularly altered by site-directed mutagenesis to test 

their role in fatty acid modification. Specifically, the wild type acetylenase, Crep1 from Crepis 

alpina, and a number of point mutants have been expressed in Saccharomyces cerevisiae, 

followed by fatty acid analysis of the resulting cultures. Results indicate the importance of 4 

amino acid residues within Crep1 (Y150, F259, H266, and V304) with regards to desaturase 

and acetylenase chemoselectivity, stereoselectivity, and/or substrate recognition. The F259L 

mutation affected the acetylenase by converting it to an atypical FAD2 capable of producing 

both cis and trans isomers. The V304I mutation resulted in the conversion of Crep1 into a 

stereoselective FAD2, where only the cis isomers of 16:2 and 18:2 were produced. The Y150F 

mutation led to a loss of acetylenase activity without affecting the inherent desaturase activity 

of Crep1. The H266Q mutation appears to affect substrate selection causing an inability to bind 

substrate (16:1-9c and/or 18:1-9c) in a cisoid conformation, resulting in an increased 

accumulation of trans product. The changes in enzyme activity detected in cultures expressing 

Crep1 mutants demonstrate the profound effect that exchanging as little as one amino acid can 

have on an enzyme properties. Enzymes retain some conservation of amino acids necessary for 

activity, such as those involved in metal ion binding, whereas subtle changes can affect overall 

enzyme function and catalysis. 
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1. INTRODUCTION 

1.1 Overview 

Fatty acid desaturases are enzymes capable of modifying pre-existing carbon to carbon 

bonds within fatty acids. These enzymes vary in specific function and are responsible for the 

introduction of a wide spectrum of fatty acids found throughout nature. They are regioselective, 

display substrate selectivity, and introduce functionality in a stereospecific manner. One 

specific class of desaturases known as ∆12 fatty acid desaturases (FAD2s) modify oleic acid 

(cis-9-octadecenoic acid; 18:1−9c) by introducing a double bond between the 12th and 13th 

carbons from the fatty acid carboxyl-terminus. Other desaturase homologues have acquired 

diverged activity and are capable of introducing different functional groups, such as hydroxyl, 

epoxy, or acetylene groups. Diverged homologues that introduce a triple bond within a fatty 

acid are known as acetylenases.  

This thesis deals with an exploration of the structure/function relationships between 

FAD2s and acetylenases. This introduction begins by relating a brief history of desaturases, 

their diversity in nature, and explains what is known of their structures and functions. This is 

followed by a section on evolutionarily-related variants of FAD2 desaturases, which looks 

more precisely at the acetylenase from Crepis alpina, Crep1. Previous studies that are similar in 

nature to this one are then discussed, in which the structural similarity of desaturases and 

variant homologues were considered and investigated.  

 

1.2 Introduction to Fatty Acid Desaturases 

Fatty acids are aliphatic carboxylic acids that are essential in all biological systems. 

They play a major role in energy storage, cell structure, cellular signaling, vitamin composition 

and absorption, and in metabolic regulation. They are classified based on their size and 

functional groups that may or may not be present within their aliphatic portion. Saturated fatty 

acids have no functional groups other than their carboxylic acid groups. They are made up of 

repeating methylene groups and are considered saturated due to the presence of hydrogen 

atoms occupying all carbon valencies. Unsaturated fatty acids are fatty acids which, in addition 

to their carboxylic acid groups, have another functional group associated with them. A good 

example is monounsaturated 18:1-9c which has a double bond between the 9th and 10th carbon 

positions (Figure 1.1).  
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Figure 1.1 Desaturation of Stearic Acid to Oleic Acid 
This reaction synthesizes oleic acid by introducing a double bond at the ∆9 position of stearic 
acid (18:0). In plastids, 18:0 is attached to an acyl carrier protein whereas in animals, 18:0 is 
attached to coenzyme A. X represents the variable substrate carrier. 
 

1.2.1 Nomenclature 

During this study the use of common names and systematic names have been simplified 

by using abbreviated forms which identify fatty acids by their carbon chain length, degree of 

desaturation, the position of the desaturation (or other functional group), and when applicable, 

the geometric configuration of double bonds. Figure 1.2 shows an example of this usage, 

linoleic acid (cis, cis-9,12-octadecadienoic acid) which is abbreviated to 18:2-9c,12c. Here the 

18 represents the number of carbons, followed by the degree of desaturation (i.e. 2), followed 

by the position of the double bonds from the carboxylic terminus and their geometric 

conformation (where 9c represents the ∆9 position in the cis configuration and the 12c 

represents the ∆12 position also in the cis orientation). Some abbreviations do not disclose the 

cis/trans orientation, in which case the compound is assumed to always be in the cis 

orientation. Fatty acids which incorporate a different functional group are abbreviated using the 

same system, but replace the position of desaturation with a position of the respective 

functional group followed by an appropriate symbol. Examples of this are: crepenynic acid 

(cis-9-octadecen-12-ynic acid) which contains an alkyne group is abbreviated as 18:1-9c,12a; 
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Figure 1.2 Nomenclature of Fatty Acids 
Three examples are shown of fatty acid nomenclature that is used throughout this study. The 
first number in the names indicate fatty acid chain length, followed by the number of double 
bonds present, their position from the carboxyl carbon, and their geometric conformation (i.e. c 
for cis and t for trans). In the case that a different functional group is present, the position is 
shown followed by an appropriate symbol.16:2-9c,12c is an 16 carbon long fatty acid with 2 
double bonds. One cis double bond is between C9-C10 and the other is between C12-C13 (A). 
16:2-9c,12t is an 16 carbon long fatty acid with 2 double bonds. One is a cis double bond 
between C9-C10 and the other is a trans double bond between C12-C13 (B). 18:1-9c,12a is an 
18 carbon long fatty acid with only one double bond, and one acetylene group (represented by 
the letter a). The cis double bond is positioned between C9-C10 and the acetylene group is 
found between C12-C13 (C). 
 

vernolic acid (12,13-epoxy-cis-9-octadecenoic acid) is abbreviated as 18:1-9c,12e; ricinoleic 

acid (12-hydroxy-cis-9-octadecenoic acid) is abbreviated as 18:1-9c,12OH (Figure 1.2). 

 Nomenclature regarding positional regioselectivity of desaturases should also be 

commented on. The use of ∆ assumes that a desaturase enzyme inserts a functional group by 

sensing the carbon position from the carboxyl terminus of fatty acids. Another method of 

introducing a functional group is by positioning functional groups by ω positions from the 

methyl end of fatty acids. Therefore ω3 fatty acid desaturases introduce a double bond 3 

carbons away from the methyl end of 18:2-9c,12c, producing α−linolenic acid (18:3-

9c,12c,15c) (Savile et al., 2001). Other modes of desaturation include the (v+3) assignment 

which inserts a double bond 3 positions from an existing bond at position v (Meesapyodsuk et 

al., 2000a). 
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The introduction of double bonds within fatty acids can be accomplished by enzymes 

known as fatty acid desaturases. There have been two groups of desaturases that have been 

identified; soluble (see NCBI accession #cd1050) and membrane-bound desaturases (see NCBI 

accession #cd01060). Although some similarities exist between these two groups, they 

represent two distinct families. Additionally, the more diverse membrane-bound desaturases 

can be further subdivided based on their particular activities and sequences homology. The 

variability in the activity displayed by desaturases and their homologues has led to research into 

how their structural composition affects overall function (Buist, 2004).  

 

1.2.2 Survey of Fatty Acid Desaturases; History, Distribution, and Function 

Unsaturated fatty acids have been detected in all forms of life although the mechanism 

by which their functional group is introduced is different. In anaerobic environments, 

prokaryotes have been shown to introduce double bonds during the biosynthesis of fatty acids. 

This pathway involves the dehydration of β-hydroxydecanoate (10:0-3OH), an intermediate 

normally involved in the biosynthesis of palmitate (16:0) and stearate (18:0). Dehydration of 

this substrate yields β,γ−decenoate (10:1-3c), which is then extended to form palmitoleate 

(16:1−9c) and vaccinate (18:1-11c) (Nagai and Bloch, 1968). However this pathway does not 

account for the generation of the most plentiful unsaturated fatty acid occurring in nature, 18:1-

9c. As well, this pathway is only found in microorganisms and does not involve true 

desaturases that were later detected. 

The first evidence indicating desaturation in eukaryotes was accomplished by feeding 

deuterium-labeled 18:0 to mice. This led to the observation that 2H-18:0 was directly converted 

to 2H-18:1-9c acid (Schoenheimer and Rittenberg, 1935). It is now known that the synthesis of 

18:1-9c is an aerobic process achieved in eukaryotes and is the preliminary desaturation step 

involved in further production of polyunsaturated fatty acids.  

It was not until the 1960s that research involving phytoflagellate Euglena gracilis 

showed that a cell-free soluble desaturase system could be reconstituted when 3 components 

were brought together. It was revealed that 18:0 could be desaturated to 18:1-9c when (i) a 

flavin portion capable of oxidizing triphosphopyridine nucleotide (TPNH), an electron 

acceptor, was added with (ii) a non-heme iron protein which behaved like ferredoxin, where it 

acts in concert as an electron transport chain for (iii) a particulate fraction containing an 
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unidentified desaturase enzyme (Bloomfield and Bloch, 1960).  This discovery allowed for 

more focused research into desaturases and led to the identification and isolation of the three 

enzyme components required (Holloway et al., 1963; Gelhorn and Benjamin, 1964; Oshino et 

al., 1966; Gurr et al., 1970; Holloway and Wakil, 1970; Oshino et al., 1971; Oshino and Sato, 

1971; Spatz and Strittmatter, 1971; Holloway and Katz, 1972; Shimakata et al., 1972; 

Strittmatter et al., 1972). Two of the identified components are required in the electron 

transport chain involved in desaturation and will be discussed later. The last component 

isolated was the terminal component in the electron transport chain, the stearoyl-CoA 

desaturase (SCD) from rat (Strittmatter et al., 1974). The isolation of rat SCD allowed for its 

cDNA to be characterized and cloned (Thiede et al., 1986), which paved the way for other 

desaturases to be characterized in subsequent research. Similar desaturases were identified in 

other organisms including mouse (Ntambi et al., 1988), yeast (Stukey et al., 1989), and humans 

(Li et al., 1994; Zhang et al., 1999).  

 Research generated from earlier definitions of desaturase systems did not solely revolve 

around animal systems. Many studies in plant systems were also conducted, which eventually 

led to the purification of a soluble stearoyl-acyl carrier protein (ACP) ∆9-desaturase from 

safflower (McKeon and Stumpf, 1982). Later studies allowed for the full nucleotide sequence 

of stearoyl-ACP ∆9-desaturases from castor and cucumber to be reported (Shanklin and 

Somerville, 1991). These soluble desaturases, which are only found in the plastids of plants, are 

not evolutionarily related to the membrane-bound desaturases, which are found in all 

eukaryotes. Membrane-bound desaturases are not soluble and are instead found integrated 

within the endoplasmic reticulum and plastid membranes. 

 Although much research generated information on desaturase system components and 

allowed for the identification of many desaturases, all the desaturases discussed so far are 

responsible for the introduction of double bonds at the ∆9 position within unsaturated fatty 

acids. These desaturases do not explain desaturation which occurs at other locations, such as 

those involved in the generation of poly-unsaturated fatty acids (PUFAs). In the late 1980s, a 

large study considering lipid metabolism in plant systems was conducted and led to the 

identification of mutants in Arabidopsis thaliana plants that resulted in modified lipid pools 

(Browse et al., 1985; Feldmann et al., 1989; Somerville and Browse, 1991). This research 

indicated the existence of many desaturases in plants, which exist in specific cellular 
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compartments, and differentially regulate lipid metabolism. One such mutant which failed to 

accumulate 18:2−9c,12c allowed for the identification and cloning of the ∆12 fatty acid 

desaturase from Arabidopsis (Okuley et al., 1994). FAD2 now represents a class of fatty acid 

desaturases responsible for the generation of 18:2−9c,12c from its precursor 18:1-9c (Figure 

1.3). FAD2 is an integral membrane-bound protein and is not related to the soluble stearoyl-

ACP ∆9-desaturase. In addition to fad2, this research also allowed other plant desaturase genes 

to be identified including fab2, fad3, fad4, fad5, fad6, fad7, and fad8 (Miquel and Browse, 

1992; Miquel et al., 1998). 

It is now recognized that fatty acid desaturases make up a broad group of enzymes that 

carry out a large number of reactions on various substrates. Two distinct groups of fatty acid 

desaturases exist: one smaller family found only in plants consists of the soluble acyl-ACP 

desaturases belong to the ferritin-like superfamily; the other is a larger and more diverse 

superfamily of membrane bound desaturases which have been detected in a range of organisms 

including fungi, plants and animals (Shanklin and Cahoon, 1998). The soluble desaturases are 

not evolutionarily related to membrane bound desaturases and carry out desaturation reactions 

on newly generated acyl-ACP substrates found exclusively in the plastids of plants. In general 

these reactions introduce a cis double bond at the ∆9 position of 18:0, although some members 

of this family display variability in their regioselectivity and in their substrate selectivity. Some 

examples of these variant acyl-ACP desaturases include myristoyl-∆9-acyl-ACP desaturase 

from Asclepius (Cahoon et al., 1997a), palmitoyl-∆5-acyl-ACP desaturase from Basia 

(Whitney et al,. 2000), and palmitoyl-∆6-acyl-ACP desaturase from Thunbergia (Cahoon et al., 

1994).  

The second family of desaturases consists of a much larger group of membrane bound 

enzymes which catalyze a wider range of reactions than those seen in the soluble acyl-ACP 

desaturases. These reactions include cis and trans desaturation, hydroxylation, epoxidation, 

acetylenation, and are suspected to even carry out aldehyde decarbonylation and ubiquinol 

dehydrogenation (Shanklin and Cahoon, 1998). The substrates upon which these enzymes carry 

out these reactions are not limited to saturated fatty acids, but include mono and 

polyunsaturated fatty acyl esters, aldehydes, sphingolipids, sterols, and carotenoids. In recent 

work (Sperling et al., 2003) the phylogenetic relationship of desaturases allowed for the further 
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Figure 1.3 Desaturation of Oleic Acid to Linoleic Acid 
This reaction is enzymatically catalyzed by membrane-bound fatty acid desaturases (FAD2). 
Linoleate (18:2−9c,12c) is produced after the introduction of a double bond at the ∆12 position 
of oleate (18:1−9c). Substrate is attached to the sn2-position of phosphatidylcholine indicated 
by the X position. 

 

sub-classification of membrane desaturases based on their sequence similarity and function. 

This work shows that the differences in the spacing of amino acid recognition sequences found 

in all membrane bound desaturases may be used to divide this family into two subclasses. 

Further categorization of desaturases has also been accomplished by sub-dividing the 

desaturases according to their function and phylogeny (Figure 1.4). Sperling et al., 2003, 

divided membrane bound desaturases into the following groups: i) desaturases that introduce a 

double bond in saturated substrates (i.e. ∆5, ∆7, ∆9, and ∆11 desaturases), ii) sphingolipid 

modifying enzymes (i.e. ∆4E, ∆2OH, ∆4OH, and ∆8(E/Z)), iii) ∆4, ∆5, ∆6,and ∆8 front-end 

desaturases (i.e. desaturases capable of inserting a double bond between preexisting double 

bonds and the carboxyl terminus of a fatty acid), and iv) ∆12/ω6, ∆15/ω3 desaturases and their 

exotic paralogues (where ∆ defines the position of a cis double bond unless followed by E 

which defines a trans double bond, or OH which represents hydroxylation, or E/Z defines a 

bifunctional cis/trans desaturase). A similar division of desaturases based on their phylogeny  
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Figure 1.4 Regioselectivity Phylogram of Lipid Desaturases and Modifying Enzymes 
This diagram is reproduced from Sperling et al. 2003. The programs CLUSTALX and 
TreeView were used to align and group full-length amino acid sequences in a radial diagram 
according to their regioselectivities. Regioselectivities are symbolized by numbers (∆-
desaturases) and subcellular localization (PL=plastidial, ER=microsomal). Sphingolipid acyl 
amide α-hydroxylases and sphingolipid sphingoid C4-hydroxylases are designated as ∆2OH 
and ∆4OH. Sphingolipid sphingoid desaturases are represented by ∆4E and ∆8. A grey 
background indicates sphingolipid-modifying enzyme groups. Dotted branches represent 
cytochrome b5 fusion proteins. Variant exotic modifications (epoxidation, hydroxylation, 
conjugation and acetylenation) are noted behind the organism. References for sequences are 
found in the original work. Reproduced with permission from Sperling et al., 2003. 
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and function has also been shown in work conducted strictly on membrane bound desaturases 

(Alonso et al., 2003). Their work allowed for the partitioning of desaturases into three clusters 

consisting of the ∆9 desaturases, front-end desaturases (namely ∆5, ∆6 and ∆8 desaturases), 

and ∆12/ω6 and ∆15/ω3 desaturases. Although the study by Alonso et al. (2003) considers a 

smaller range of desaturases than Sperling et al. (2003), the results are in congruence with each 

other, validating the sub-categorization of membrane bound desaturases based on their 

phylogenic roots and their function.  

Front-end desaturases are required for the synthesis of PUFAs but are not reviewed in 

this work. Additional information regarding front-end desaturases and their role in the synthesis 

of PUFAs can be found in other reviews (Pereira et al,. 2003; Napier et al., 2003; Nakamura 

and Nara, 2004).  

 
1.2.3 Structure of Fatty Acid Desaturases and Their Components 

The main focus of this section will be microsomal FAD2s and related enzymes, and 

their electron transport components. Although soluble desaturases are not directly related with 

this study, their structure and components are briefly discussed followed by a description of 

membrane-bound desaturase systems. A great deal of information on soluble desaturases can be  

found in an elaborate review by Shanklin and Cahoon , 1998.  

 

1.2.3.1 Soluble Desaturase Systems 

The amino acid sequences derived from soluble desaturases place them in a separate 

family as those found in membrane-bound desaturases. Differences existing in amino acid 

motifs that are believed to co-ordinate a diiron cluster separate the soluble desaturases from the 

membrane bound desaturases. Soluble desaturases contain two amino acid sequence motifs 

(D/EXXH) which act as ligands for the diiron cluster that is necessary for enzyme activity. 

These motifs are not found in membrane-bound desaturases, which instead contain three 

conserved histidine boxes that are thought to function in an analogous fashion as the two 

D/EXXH motifs found in soluble desaturases. Soluble desaturases are exclusively localized in 

plastids where they carry out reactions on saturated acyl-ACP substrates. 

Although electron transport components for soluble desaturases are similar to 

microsomal systems some differences exist. In non-photosynthetic tissue, soluble desaturases 
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receive their reducing equivalents indirectly from nicotinamide adenine dinucleotide phosphate 

oxidase (NADPH). The transfer of electrons from NADPH is achieved by ferredoxin-NADP+ 

oxidoreductase flavoprotein which then passes the electrons to the 2Fe-2S ferredoxin electron 

carrier and then to the soluble desaturase itself. In photosynthetic tissue, no NADPH or 

flavoprotein is required since reducing equivalents are generated from photosystem I and 

transferred to ferredoxin which directly supplies the desaturases (Jacobson et al., 1974).  

The over-expression of soluble stearoyl-ACP ∆9-desaturase has led to its isolation and 

allowed for its biochemical characterization (Thompson et al., 1991). The inclusion of a diiron 

cluster has been confirmed and is believed to be directly involved in catalysis (Fox et al., 

1993). The ∆9-stearoyl-ACP desaturase from castor has been isolated and crystallized 

(Lindqvist et al., 1996) revealing information on the Fe-ligand properties as well as a 

hydrophobic channel presumed to be the substrate binding pocket. A consensus motif [(D/E) 

X2H]2 involved in the binding of the metal cofactors has been identified, allowing  further 

detection of a number of enzymes believed to be related to soluble desaturases, including a 

phenol hydroxylase from Pseudomonas, an alkene monooxygenase from Mycobacterrium and 

methane monooxygenase from Methylococcus (Shanklin and Cahoon, 1998).  

 

1.2.3.2 Electron Transport in Membrane-Bound Desaturase systems 

Studies conducted in the 1960s identified 3 cellular components in protozoans as a 

requirement for successful desaturation in nature (Nagai and Bloch, 1968). These microsomal 

components are cytochrome b5 reductase, cytochrome b5, and a terminal desaturase enzyme 

(Figure 1.5). In addition to these components it was also shown that the coenzyme nicotinamide 

adenine dinucleotide (NADH) and oxygen are required for desaturase activity. The requirement 

of oxygen for successful desaturation in eukaryotes has been known for a long time. It was 

initially reported that yeast could not be cultured under anaerobic conditions (Pasteur, 1879) 

but was at a later date shown that yeast could be cultured if the media was supplemented with 

18:1-9c and ergosterol (Andreassen and Stier, 1954). These early observations were indicators 

that oxygen was a requirement for desaturase activity. It is now known that oxygen serves as 

the terminal electron acceptor in desaturase reactions (Goldfine, 1965).  
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Figure 1.5 Electron Transport Chain Components for Microsomal Desaturases 
The flow of electrons originates at the NADH (left side) and is passed down to the terminal 
desaturase enzyme through a series of reactions involving cytochrome b5 reductase and 
cytochrome b5. The final products include water (reduced from molecular oxygen) and 
linoleate (from oleate) esterified at the sn2-position of phosphatidylcholine. 
 

 Cytochrome b5 reductase is the first electron transport component involved in the 

electron transfer from NADH to the desaturase enzyme. This reductase is an amphipathic 

flavoprotein consisting of a hydrophobic portion which attaches itself to the endoplasmic 

reticulum (ER) membrane, and a hydrophilic section capable of interacting with the aqueous 

cytosol and polar head groups of phospholipids. The hydrophobic portion of cytochrome b5 

reductase is required for the anchoring of cytochrome b5 to the microsomal membrane 

(Strittmatter, 1972).  

 Cytochrome b5 is a hemoprotein acting as an electron transport intermediate responsible 

for the delivery of electrons from cytochrome b5 reductase to microsomal desaturases. The 

cytochrome involved in desaturation is the microsomal form of cytochrome b5. The crystal 

structure for bovine cytochrome b5 has been resolved and shows an alpha+beta class fold 

capable of supporting a central heme group (Argos and Mathews, 1975). Microsomal 

cytochrome b5 also has a 40 amino acid hydrophobic segment believed to interact with the ER 

membrane and with cytochrome b5 reductase (Spatz and Strittmatter, 1971). Front-end 

desaturases exist as fusion proteins which incorporate the cytochrome b5 component to either 

the amino or carboxyl terminus of the desaturase enzyme (Napier et al., 2003). Electron 

transport and the required components for FAD2 desaturation are shown in Figure 1.5. 

 

1.2.3.3 Integral Membrane Desaturases 

The structure of membrane desaturases is not known since these enzymes are recalcitrant to 

purification due to their lipophilic nature. Although numerous attempts at purifying microsomal 
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desaturases have yielded some results (Strittmatter et al., 1972), a crystal structure has yet to be 

resolved. Despite this obstacle, genomic information obtained since the first sequenced FAD2 

has revealed much about FAD2s and similar enzymes (Somerville and Shanklin, 1996). 

Membrane-bound desaturases can now be recognized by a conserved signature sequence found 

in all these desaturases (Stukey et al., 1989). Three conserved histidine sequences (known as 

His-boxes) with the motifs [HX(3-4)H]X(7–41)[HX(2–3)HH]X(61–189) [(H/Q) X(2–3)HH] have been 

identified in all integral membrane desaturases and are believed to coordinate a diiron-oxygen 

cluster which makes up the catalytic site of the enzymes. The idea that the diiron cluster makes 

up the enzyme active site is supported by the fact that replacing any of the conserved histidine 

residues within these motifs ablates enzymatic activity in desaturases (Shanklin, 1994; 

Avelange-Macherel and Macherel, 1995). Variability existing in the space between the second 

and the third His-boxes, without affecting the hydrophobic segments found in between, has 

allowed the separation of membrane bound desaturases into two groups. One group of 

desaturases contains the shorter sequences and is believed to have evolved from the ‘longer’ 

sequence desaturases via gene deletion. The longer sequence group of desaturases contains all 

acyl and sphingolipid modifying desaturases, whereas the shorter sequence group includes only 

one known formal desaturase (a sterol ∆5 desaturase) and is made up primarily of sterol 

hydroxylases (Sperling et al., 2003). 

 

1.2.3.4 Desaturases Contain Iron 

The presence of iron within desaturases has been known since the isolation of rat 

stearoyl-CoA ∆9-desaturase. It was first assumed that only one atom of non-heme iron was 

present per desaturase protein (Strittmatter et al., 1974), but it is now known that two non-heme 

iron ions are integrated within desaturases (Broadwater et al., 1998). The diiron cluster is 

required for activity and believed to be part of the active site within desaturases and related 

enzymes (Shanklin et al., 1997). Mechanisms involving similar diiron clusters have been based 

on similar systems for methane monooxoygenase (MMO) (Shu et al., 1997) and more recently 

on Pseudomonas oleovorans alkane ω-hydroxylase (AlkB) (Shanklin and Whittle, 2003). A 

number of soluble diiron proteins classes have been identified. Class I includes hemerythrin 

and myohemerythrin, coordinated by nitrogen ligands (Holmes et al., 1991). Class II includes 

soluble acyl-ACP desaturases, ribonucleotide reductase and MMO coordinating the diiron 
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cluster via oxygen ligands (Wallar and Lipscomb, 1996; Fox et al., 1994; Kurtz, 1990). Class 

III includes variant binding motifs for the diiron cluster and include the membrane bound 

desaturases and AlkB (Shanklin and Whittle, 2003). These kinds of metalloenzymes 

encapsulate two iron ions within a coordination environment involving histidine nitrogen 

bridged to oxygen. The assumption that conserved His-boxes coordinate a metal active site is 

supported by topological models (Figure 1.6) of integral membrane desaturases that place all 

the His-boxes on the cytoplasmic face of the ER membrane (Stuckey et al., 1990; Shanklin et 

al., 1994; Man et al., 2006). 

 

1.2.3.5 Mechanism of Desaturation 

The mechanism by which desaturation occurs has been well-studied over the last 

decade. Desaturation is a positional and geometrically stereospecific reaction which involves 

the (slower) abstraction of one hydrogen followed by the (faster) abstraction of another 

hydrogen from a neighboring carbon. Evidence for this mechanism has been shown as early as 

the mid century involving ∆9 desaturation. Investigators used four stereospecifically labeled 
3H-18:0 incubated with Corynebacterium diphtheria cultures to show that the pro-R tritium was 

lost in ∆9 and ∆10 3H-18:0, but not with pro-S hydrogen. Isotope effects also allowed 

investigators to suggest that the formation of 18:1-9c was preceded by the removal of hydrogen 

at the ∆9 position of 18:0 followed by another hydrogen at the ∆10 position (Schroepfer and 

Bloch, 1965a; Schroepfer, 1965b). Kinetic isotope effects have also been used to assess the 

mechanism of ∆12 desaturation which indicates an early hydrogen abstraction from 12th carbon 

followed by a fast hydrogen abstraction at the 13th carbon (Behrouzian and Buist, 1998). It is 

now believed that a diiron-oxo cluster ligated to conserved amino acids within desaturase 

enzymes make up the active site (Fox et al., 1993). Currently our understanding of iron’s role 

during desaturation is thought to be similar to that of soluble MMO (Shu et al., 1997). At rest, 

MMO’s diiron core is in the oxidized diferric (FeIII- FeIII) form. The reduction of this core is 

accomplished by NADH resulting in the diferrous (FeII-FeII) form. Molecular oxygen can then 

bind the diferrous center to produce a peroxo form (P) which is then converted to an active 

form (Q) capable of abstracting hydrogen from the substrate. The substrate is converted to an 

intermediate radical, which is quenched by the caged hydroxyl group, resulting in a 

hydroxylated product and the recycling of the diiron core back to the diferric form. The 
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Figure 1.6 Proposed Topology of FAD2 Desaturases 
Several desaturases predicted by Shankin et al. 1994 all retain the same topology predicting 
that the three conserved histidine-rich motifs are found in the cytoplasmic face of the 
endoplasmic reticulum. In their diagram Ia, Ib, and II represent the histidine-rich motifs (His 
boxes) which are alleged to coordinate an oxygen containing diiron cluster. This figure is 
reproduced from Shankin et al. 1994. 
 

role of iron within desaturases is believed to act in the same way, although no hydroxyl group 

is returned to the substrate, and instead another hydrogen is abstracted allowing a diene to be 

created. Hydroxyl groups which are bound to the diiron cluster are then believed to be released 

as water, which recycles the diiron center back to its original form (Shanklin and Cahoon, 

1998) (Figure 1.7). A much more definitive explanation of the mechanisms involved during 

desaturation amongst the many different desaturases has been well reviewed by Buist, 2004. 

Substrate also plays an important role in desaturation since specificity of desaturases is 

not usually very permissive. Beyond simply recognizing chain length and the degree of 

saturation, desaturases require that fatty acids are introduced by specific carriers. Phospholipids 

have been successfully demonstrated as being a substrate for membrane-bound desaturases and 

homologs. Thus it is now recognized that FAD2s preferably act on 18:1-9c residues at the sn2 

position of phosphatidylcholine (Sperling et al., 1993; Sperling and Heinz, 1993).  
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Figure 1.7 Proposed Mechanisms for MMO and Desaturases 
This diagram from Shanklin and Cahoon, 1998, is a proposed mechanism of desaturation which 
considers the activation states of the diiron cluster. Top panel, proposed common oxygen 
activation pathway; middle panel, MMO proposed reaction path; lower panel, possible route of 
fatty acid desaturation. Reproduced from Shanklin and Cahoon, 1998. 
 

1.3 Variants of FAD2 Desaturases 

The conserved motif for membrane-bound desaturases have allowed for the identification of 

many proteins which make up a super-family of non-heme oxygen dependent enzymes. These 

enzymes include the ∆9-desaturases isolated from rat and yeast (OLE1) responsible for the 

production of 18:1-9c from 18:0, FAD2s responsible for the introduction of a double bond at 

the ∆12 position of 18:1-9c during synthesis of 18:2−9c,12c, and FAD3s responsible for the 

introduction of a double bond at the ∆15/ω3 position of 18:2−9c,12c. Other FAD2-related 

enzymes which introduce different functional groups within fatty acids have also been included 

within this super family. This section begins by discussing some of the variant desaturases and 

continues to elaborate on a specific FAD2 variant from Crepis alpina, the acetylenase Crep1. 
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1.3.1 Chemoselectivity of FAD2 Variants 

A number of microsomal desaturase-related enzymes are highly similar to FAD2s do 

not primarily introduce double bonds. Instead these enzymes are capable of introducing various 

functional groups at select positions within fatty acids (Figure 1.8). 

Some of these enzymes such as the fatty acid hydroxylase from Ricinus communis (castor) 

introduce a hydroxyl group at the ∆12 position of 18:1-9c (Van de Loo et al., 1995). This 

hydroxylase is believed to be evolutionarily derived from membrane-bound desaturases, 

sharing a 67% sequence similarity with A. thaliana FAD2. The requirement of non-heme iron 

by this enzyme was suggested after observations that activity was reduced in the presence of 

cyanide, azide, or metal chelators, but was not affected by carbon monoxide (Galliard and 

Stumpf, 1966).  

Another FAD2 variant cloned from Lesquerella fendleri has been shown to be 

bifunctional as a hydroxylase and a desaturase (Broun et al., 1998a). This enzyme was isolated 

on the basis of nucleotide sequence similarity with the R. communis ∆12 hydroxylase and 

expressed in Arabidopsis thaliana. It was shown that 18:1-9c,12OH did accumulate in the 

seeds of transgenic A. thaliana. Furthermore, when this same enzyme was expressed in A. 

thaliana fad2-3 mutants, which have reduced capability in producing 18:2-9c,12c, the enzyme 

was shown to function as an oleate ∆12 desaturase. This is not the case with the R. communis 

hydroxylase which was also examined in parallel experiments which examined fatty acid 

accumulation, but did not differ significantly from untransformed plants. Other FAD2 variants 

known as epoxygenases from Vernonia galamensis (Ironweed) (Hitz, 1998) and Crepis 

palaestina (a relative of dandelion) (Lee et al., 1998) have been shown to introduce epoxy 

groups instead of double bonds within fatty acids. The expoxygenase from C. palaestina was 

cloned from developing seeds and shown to encode a protein of 374 amino acids. This enzyme 

shares sequence similarity with the Arabidopsis ∆12 desaturase (58% identity) and the R. 

communis hydroxylase (53% identity). Transgenic expression of C. palaestina epoxygenase 

resulted in the accumulation of vernolic acid (18:1-9c,12e) in A. thaliana seeds to 15% (w/w) 

of total fatty acids. 

Conjugated trienoic systems have also been found to be introduced by FAD2 related 

enzymes. Conjugated systems differ from methylene interrupted diene systems since double 

bonds exist without methylene interruption (Figure 1.8). FAD2-related conjugases from  
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Figure 1.8 FAD2 and FAD2 Variant Reactions 
This figure lists the typical activity for FAD2 and alternative reactions from FAD2 divergents. 
(a) FAD2 typically introduces a cis double bond at the ∆12 position of 18:1-9c bound to 
phosphatidylcholine. (b) Alternative reactions in FAD2 homologs responsible for the 
introduction of other functional groups such as hydroxyl groups, conjugated bonds, triple 
bonds, and epoxy groups. Reproduced from Jaworski and Cahoon, 2003. 
 
Calendula officinalis (marigold) and Mormordica charantia (bitter melon) that are responsible 

for the modification of ∆9 carbons during the synthesis of calendic acid (18:3-8t,10t,12c) have 

also been reported (Cahoon et al., 1999; Fritsche et al., 1999; Cahoon et al., 2001). By using an 

expressed sequence tag approach, two enzymes from Calendula officinalis were isolated. These 

enzymes shared 40-50% amino acid identity with other known FAD2s. Transgenic expression 

of these enzymes in soybean embryos and in yeast supplied with 18:2−9c,12c resulted in the 

accumulation of calendic acid.  



 18

Two variant FAD2 enzymes (DsFAD2-1 and DsFAD2-2) have been isolated and cloned 

from Dimorphotheca sinuata and found to be involved in the synthesis of dimorphecolic acid 

(18:2-9OH,10t,12t). Expression of DsFAD2-1 in yeast and soybean embryos resulted in the 

accumulation of 18:2-9c,12t instead of its geometric isomer, 18:2-9c,12c. 18:2-9c,12t was then 

further modified to dimorphecolic acid by DsFAD2-2. When DsFAD2-2 was expressed in 

yeast without the 18:2-9c,12t substrate and in the absence or presence of a typical FAD2, a 

dimorphecolic isomer was produced (18:2-9OH,10c,12c). These results imply that DsFAD2-2 

is a bifunctional FAD2-variant capable of inserting a hydroxyl group at the ∆9 position with a 

concordant double bond migration (Cahoon and Kinney, 2004). 

FAD2 related acetylenases which introduce an acetylene bond at the ∆12 position of 

18:2-9c,12c bound to the sn2-position of phosphatidylcholine have been cloned from Crepis 

alpina (Lee et al., 1998) and Petroselinum crispum (parsley) (Cahoon et al., 2003). Crep1, an 

acetylenase from C. alpina was the first functional acetylenase to be cloned. Cloning was 

achieved by using cDNA from C. alpina developing seeds and amplifying the gene by PCR 

using degenerate FAD2 and castor hydroxylase primers. The protein was shown to share 59% 

amino acid identity with R. communis hydroxylase and 56% amino acid identity with A. 

thaliana FAD2. Crep1 was expressed in S. cerevisiae in the presence of 18:2−9c,12c, which 

allowed for the production of 18:1-9c,12a.  

The up-regulation of FAD2-like enzymes in parsley after being exposed to a peptide 

fungal elicitor allowed for the detection of ELI12 (Kirsch et al., 1997). In later studies, the 

expression of ELI12 in transgenic soybean embryos led to the accumulation of 18:1-9c,12a, 

defining ELI12 as an FAD2-derived acetylenase (Cahoon et al., 2003). Furthermore, this work 

also led to the identification of several acetylenases in other members of the Apiaceae, 

Asteraceae, and Araliaceae families. 

 Another variant of FAD2 enzymes is the more recently isolated Cop-odeA desaturase 

from the fungus Coprinus cinereus (Zhang et al., 2007). This enzyme has been shown to 

function as a bifunctional ∆12/∆15 desaturase after being expressed in S. cerevisiae and in 

which total fatty acids comprised of 8.8% 16:2-9c,12c, 1.0% 16:3-9c,12c,15c,  29% of 18:2-

9c,12c and 0.6% 18:3-9c,12c,15c. Similar ∆12/∆15 fatty acid desaturases have also been 

reported in other filamentous fungi (Damude et al., 2006). 
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Of course these variants are just some examples of the many bifunctional and exotic 

desaturases that have been reported in nature. Many other examples of FAD2 variants exist. 

Additionally, the bifunctionality of desaturases is also believed to be an endogenous trait of 

most desaturases to some degree. The degree of functionality is believed to be determined by 

specific amino acid residues found near the active site or acyl-binding pocket of desaturases 

(Buist, 2004).  

 

1.3.2 An Acetylenase from Crepis alpina, Crep1 

 During analytical investigations of Crepis foetida seed oil, a novel fatty acid cis-9-

octadecen-12-ynoic acid (18:1-9c,12a) (Figure 1.9) was discovered (Mikolajczak et al., 1964). 

This compound which made up 60% of the total oil content in seeds was named crepenynic 

acid (18:1-9c,12a). Some early attempts in understanding the biosynthesis of 18:1-9c,12a used 

radioactive labeling experiments allowing researchers to suggest that the acetylene was 

introduced in pre-existing unsaturated fatty acid. This research also indicated that 18:1-9c,12a 

residues were found predominantly in the sn2 and sn3 position of triacylglycerols in developing 

seeds (Haigh et al., 1968). 18:1-9c,12a was also detected in other plants such as in Afzelia 

cuanzensis (Gunstone et al., 1967) and Ixiolaena brevicompta (Ford et al., 1983) and received 

more attention after being linked to mortality in sheep (Ford et al., 1986). Toxic effects of  

18:1-9c,12a are now believed to be due to its interfering effect during prostaglandin and 

leukotriene synthesis (Ford et al., 1986; Croft et al., 1987; Nugteren and Christ-Hazelhof, 

1987). 18:1-9c,12a has also been implicated as a precursor in the production of falcarinol 

(Barley et al., 1988), a naturally occurring fungicide with reported anti-carcinogen activity 

(Zheng et al., 1999; Kobaek-Larsen, 2005). Work conducted by Johansson and Samuelsson, 

2001, provided further physical and chemical properties of 18:1-9c,12a as compared to 18:1-9c 

and 18:2-9c,12c esters. Their work showed that 18:1-9c,12a does oxidize extremely rapidly. 

 More definitive studies conducted in the late 1990s allowed researchers to 

conclude that a ∆12 acetylenase was responsible for the introduction of the acetylene group in 

18:1-9c,12a (Lee et al., 1998). The substrate involved during the production of 18:1-9c,12a was 

identified as 18:2-9c,12c by using radio-labeled substrates. The responsible gene (crep1) was 

cloned using primers designed for endoplasmic reticular desaturases and cDNA from Crepis  
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Figure 1.9 Reactions Catalyzed by Crep1 
Crep1 is a bifunctional desaturase/acetylenase acting on (i) oleic acid (18:1-9c) to produce 18:2 
geometric isomers (18:2-9c,12c and 18:2-9c,12t), and on (ii) linoleic acid (18:2-9c,12c) to 
produce 18:1-9c,12a.  
 

alpina developing seeds, allowing the pVT-Crep1 plasmid to be constructed (derived from 

pVT100U) (Vernet et al., 1987; Elble, 1992). Sequencing of crep1 revealed a 375 amino acid 

protein possessing 59% amino acid sequence identity with the castor ∆12-hydroxylase and 56% 

identity with the Arabidopsis FAD2. The Crep1 gene was expressed in Saccharomyces 

cerevisiae (YN94-1 strain) and cultures were grown in the presence of 18:2−9c,12c, allowing 

for an accumulation of 18:1-9c,12a up to 0.3% of total fatty acid peaks detected during GC 

analysis. This work also identified and isolated an epoxygenase (Cpal1) from Crepis palaestina 

with genomic similarity to Crep1 (81% identity), but although sequence similarity was 

remarkable, no epoxy-fatty acids were detected in Crep1 cultures, nor was any acetylene-fatty 

acids detected in Cpal1 expressing cultures, leading researchers to suggest that small changes in 

amino acid sequences govern the different activities of these enzymes.  

 Crep1 contains the same 3 His-boxes as identified in other membrane-bound fatty acid 

desaturases. Other similarities shared with FAD2 include the requirement of NADH (or 

NADPH) as a cofactor, inhibition by cyanide, and that they are unaffected by carbon monoxide 

(a P450 inhibitor) and P450 antibodies (Lee et al., 1998).  
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In addition to catalyzing the acetylenation of 18:2−9c,12c, Crep1 is also capable of 

introducing a cis or trans double bond at the ∆12 position of 18:1-9c, defining Crep1 as a 

bifunctional acetylenase/desaturase (Carlsson et al., 2004). Crep1 was expressed in S. 

cerevisiae and shown to accumulate both 18:2-9c,12t and 18:2-9c,12c isomers to a 3:1 ratio as 

well as the acetylenase product, 18:1-9c,12a. Carlsson et al., 2003, also determined that 18:2-

9c,12c, and not 18:2-9c,12t was the precursor to 18:1-9c,12a. Kinetic isotope experiments have 

also been used to consider the mechanism of acetylenation by Crep1 which indicate that 

hydrogen abstraction initially occurs at C12 followed by a rapid hydrogen abstraction from C13 

(Reed et al., 2003). Crep1 reactions are shown in Figure 1.9. 

Expression patterns of Crep1 were also studied in C. alpina and shown to be expressed 

the greatest in seed tissue where 18:1-9c,12a accumulates, but was also expressed in flower 

heads, although no 18:1-9c,12a accumulates there (Nam and Kappoch, 2007).   

 
1.4 Structure/Function Relationships among Fatty Acid Desaturases and Variants 

Although no crystal structures for FAD2s or their derivatives are available, studies 

considering their structure/function relationship have been conducted in which amino acid 

residues were exchanged and effects analyzed. This has led to the hypothesis that FAD2s and 

variants have two very important sites built within them which compose an active site and a 

substrate binding pocket (Shanklin and Whittle, 2003). This section considers some of the 

mutation analyses of fatty acid desaturases and their effect on chemoselectivity, substrate 

selectivity, and regioselectivity.  

 

1.4.1 Mutation Analysis of Desaturases and their Homologs 

Experiments involving the mutational analysis of desaturases were first conducted to 

discern the role of conserved amino acid motifs (His boxes). Mutation experiments which 

replaced alanine residues for the conserved histidine residues in rat ∆9-desaturase indicated 

their requirement for enzymatic activity (Shanklin et al., 1994). Similar experiments have also 

indicated the importance of these motifs in acyl desaturases (Avelange-Macherel et al., 1995), 

sterol desaturases (Taton et al., 2000), and in AlkB hydroxylase (Shanklin and Whittle, 2003). 

As previously mentioned, these conserved amino acids are believed to coordinate a diiron 

cluster that interacts with molecular oxygen.  
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Mutational analysis has also been used to investigate the role of the cytochrome b5 

domain found in front-end desaturases, which identified an axial heme-binding residue critical 

for activity (Sayanova et al., 1999). The N-terminal cytochrome b5 domain from borage ∆6 

desaturase has also been replaced with the b5 domain from Arabidopsis ∆8 desaturase 

(Sayanova et al., 2000). Yeast cultures harboring these chimaeras successfully accumulated 

18:3-6c,9c,12c although in smaller amounts when compared to unmodified borage ∆6 

desaturase expressed under similar conditions. In the same study, Sayanova et al., 1999, also 

considered the importance of the conserved glutamine residue in ∆ 5, ∆6, and ∆8 desaturases 

which replaces the conserved histidine residue within the third His-box of ∆12 and ∆15 

desaturases. A mutant ∆6 desaturase which harbored histidine instead of glutamine did not 

produce 18:3-6c,9c,12c indicating the strict requirement of glutamine participation in front-end 

desaturases.  

Variations in the amino acids involved around the active site and transmembrane 

domains are believed to affect the chemoselectivity and regioselectivity of FAD2 and their 

homologs (Broun et al., 1998b). Chemoselectivity is the preferred chemical reaction for a 

substrate (e.g. hydroxylation vs. desaturation), whereas regioselectivity is the preferred location 

of bond making or breaking within a substrate. The substrate position within an enzyme is also 

an important determinant of an enzyme’s functionality and selectivity, which is ultimately 

governed by specific amino acids which influence the binding of substrate molecules. In one 

related study (Broun et al., 1998a), the functionality of a ∆12 desaturase was successfully 

converted to a ∆12 hydroxylase (m7FAD2) after exchanging as few as 4 amino acids. These 

amino acids are conserved within desaturase enzymes but differ from the conserved amino 

acids found in hydroxylases (LFAH2). The success in exchanging functionality between 

paralogs was largely due to their initial sequence alignments. After aligning hydroxylases (from 

the plants Lesquerella fendleri and Ricinus communis) and desaturases (from the plants A. 

thaliana, Zea mays, Glycine max, R. communis, and Brassica napus), the authors noted the 

non-conservative changes between both subsets of enzymes. The chemoselectivity was 

modified within enzymes after exchanging 7 conserved amino acids found in FAD2 but which 

were conserved but different in LFAH2. The ability to exchange the functionality between 

hydroxylases and desaturases as reported by Broun et al., 1998a, suggested that acetylenase 

function could also be altered by using a similar approach. 
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 Similar experiments have been conducted in which the chemoselectivity of an enzyme 

remained the same, but regioselectivity and substrate preference were altered. Cahoon et al., 

1997b, successfully altered a ∆6-palmitoyl-ACP desaturase into a ∆9-stearoyl-ACP desaturase 

by replacing 5 amino acids. These residues which affect acyl-chain length selectivity were 

shown by crystallography to line the substrate binding cavity. It is important to note that 

Cahoon’s work was performed using soluble acyl-ACP desaturases and not FAD2s, for which 

no crystallographic data is available, and that although acyl-ACP desaturases and FAD2 are 

unrelated, both families are believed to have substrate binding cavities which may function 

similarly. The positional effects of a substrate binding cavity in desaturases and their role in 

determining regioselectivity are also discussed and modeled by Meesapyodsuk et al., 2000b.  

  Two different desaturase genes from the fungus Claviceps purpurea have recently been 

examined, providing insight in the structural determinants of regioselectivity (Meesapyodsuk et 

al., 2007). CpDes12 is a FAD2 enzyme which shares 87% identity with CpDesX, a FAD2 

variant believed to have been derived from an ancestral gene duplication of CpDes12. CpDesX 

is a bifunctional desaturase capable of inserting a double bond at the ∆12 position, the ∆15 

position, and at ‘v+3’ positions, which is the 3rd position from a preexisting double bond. 

During this study, reciprocal site-directed mutagenesis which exchanged amino acids between 

the CpDes homologs was used to show that two amino acids conferred the catalytic specificity 

of CpDesX and CpDes12. The two amino acids (valine/isoleucine at 152 and valine/alanine at 

206) exist very close to the 3rd conserved His-box, being 3 amino acids upstream and 11 amino 

acids downstream (respectively). When amino acids at both these positions in CpDes12 were 

exchanged for those found in CpDesX, the FAD2 enzyme gained a 68-fold increase in the ratio 

of ∆15/∆12 desaturation. Reciprocal experiments which exchanged CpDesX amino acid 

residues with those found in CpDes12 resulted in a dramatically reduced ratio of ∆15/∆12 

desaturation. The C-terminal sequences (residues 302 to 477) were also shown to be important 

contributors of catalytic specificity. Meesapyodsuk, 2007, comments that an enzyme’s 

regioselective activity could possibly be determined by simply exchanging one amino acid.  

 

1.5 Objectives 

This work considers the structure/function relationship between FAD2s and 

acetylenases and provides insight into the structural determinants of their chemoselectivity and 
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regioselectivity. Conserved amino acids found in FAD2s were compared to those found in 

acetylenases and conserved amino acids which differed between each group were exchanged by 

site-directed mutagenesis in the acetylenase Crep1. More specifically, 38 FAD2 sequences 

were compared to 12 acetylenase sequences. Amino acid conservation amongst the desaturases 

and acetylenases were found to differ at 11 key positions. Amino acids at these positions within 

Crep1 were exchanged for the amino acids found in analogous positions within the FAD2 

shared consensus sequence. Crep1 and Crep1 mutant enzymes were expressed in S. cerevisiae 

and cultured in either the presence or absence of 18:2−9c,12c, which acted as a substrate for 

Crep1 and mutant constructs. S. cerevisiae was chosen as a host since it does not possess 

endogenous FAD2 or acetylenase activity, but has been demonstrated to successfully express 

functional FAD2 and Crep1 when transformed with the appropriate vector (Covello and Reed, 

1996; Lee et al., 1998).  Fatty acids produced by these transgenic yeast cultures were then 

analyzed by GC-FID and GC-MS. This study reports the effects that these point mutations had 

on fatty acid accumulation in transgenic yeast.  

 

The objectives of this research were: 

1- To collect and align FAD2 and acetylenase sequences, 

2- To compare sequences and determine conserved amino acids which are found in either 

FAD2s or acetylenases, but not in both groups, 

3- To design mutant crep1 constructs which harbor designated point mutations determined 

from (2) (above), 

4- To express crep1 and mutants derived from crep1 in INVSc1 yeast and to determine the 

effect(s) that point mutations had on the total fatty acid profiles in yeast. 

 

Acetylenases have evolved more recently from FAD2 enzymes retaining much of the 

structural backbone which appear to be necessary for activity such as the conserved histidine 

residues believed to be involved in ion binding (Sperling et al., 2003; Cahoon et al., 2003). 

Only a small number of amino acid substitutions are involved in chemoselectivity. By 

exploring completely conserved amino acids which differ between acetylenases and 

desaturases, it is possible to elucidate which amino acids are the most important in determining 

chemoselectivity, stereoselectivity, and substrate selection. 
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2. MATERIALS AND METHODS 

2.1 Determination of Amino Acid Targets 

2.1.1 Sequence Selection and Alignments 

Painstaking effort to avoid errors or omissions was given in the initial selection of 

definite FAD2 sequences since a large number of reported FAD2 are based on preliminary 

sequence data that lack investigation and definitive proof of function. Therefore the 

Arabidopsis thaliana FAD2 (ATHFAD2) (accession #NP_187819) was chosen to represent the 

core FAD2 sequence to use with the Basic Local Alignment Search Tool (BLASTP) (Altschul 

et al., 1990) since it has been shown to be a specific FAD2 involved solely in the desaturation 

of 18:1-9c at the ∆12 position (Covello and Reed, 1996; Okuley et al., 1994). BLASTP 

parameters were set to default. Sequences are listed in Table 3.1. 

Acetylenase sequences were collected by conducting a BLASTP search using the 

Petroselinum crispum ELI12 sequence (PCRACET) (accession # AAB80697). PCRACET was 

used since it has been shown to be a true acetylenase (Kirsch et al., 2000; Cahoon et al., 2003). 

Twelve acetylenase sequences were collected in this manner (Table 3.1). 

Amino acid sequences were aligned using CLUSTALW (Thompson et al., 1994) with 

settings allowing the output alignment to be generated as they were originally input so that 

results clearly differentiated acetylenase and FAD2 sequences. All other parameters were set to 

their default setting. Acetylenase sequences were at the top of the input list (sequences 1-12) 

followed by the FAD2 sequences (sequences 13-50). CLUSTALW results were saved as 

alignment files (.aln) and later used as the input alignment files during further sequence 

comparative analysis (see below).  

The Dimorphotheca sinuata acetylenase (DSIACET ) and Prunus armeniaca desaturase 

(PRAFAD2) sequences (and others to a lesser extent) are truncated and were therefore 

excluded from alignments when considering enzyme family sequences upstream from the first 

conserved histidine box. This affects the conserved glycine/alanine amino acid residue found 

prior to the first His-box in desaturases/acetyleneases. DSIACET and PRAFAD2 truncated 

sequences were incorporated in all other sequence analyses. 
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2.1.2 Conservation of Amino Acids in Desaturases and Acetylenases 

The Conserved Property Difference Locator software (CPDL) (Mayer et al., 2005) 

compares the conservation of amino acids between two groups of protein sequences and reports 

the amino acid differences that exist. The alignment files generated from CLUSTALW 

alignments were used as the input file for CPDL. CPDL analysis was conducted using strict 

conservation settings. During CPDL data entry, the Top Group entry was set from 1 to 12 

(unless DSIACET was excluded in CLUSTALW alignments, in which case 1 to 11 was entered 

instead). This indicated that the top 12 entries in CLUSTALW were the 12 acetylenase 

sequences, followed by the remaining 38 FAD2 sequences. All other parameters were left at 

default except for Conservation Level which was tested for both all and all or all but one, 

allowing us to consider potential sequencing errors during the analysis.  

 

2.2 Site-Directed Mutagenesis of pVTCrep1 

2.2.1 Plasmid Preparation 

The crep1 gene was previously sub-cloned into the pVT100U vector (Vernet et al., 

1987; Lee et al., 1998) (Figure 2.1) to create pVTCrep1 (not shown). These plasmids were used 

throughout this study as positive (pVTCrep1) and negative (pVT100U) controls (provided by 

D. Reed, NRC/PBI). The pVT100U and pVTCrep1 plasmids include the yeast autosomal 

replication factor (2µ ori), a uracil biosynthesis gene (URA3) for selection in yeast, an 

ampicillin resistance marker (ApR) for selection in Escherichia coli, an origin of replication for 

E. coli (f1 ori), and a constitutive alcohol dehydrogenase promoter (ADH3) for the continuous 

expression of cloned genes in yeast.  

pVT100U and pVTCrep1 were transformed into E. coli TOP10F’ (F’{lacIQ 

Tn10(TetR)} mcrA (mrr-hsdRMD-mcrBC) θ80lacZ∆M15 ∆lacX74recA1araD139 ∆(ara-

leu)7697 galU galK rpsL endA1 nupG) using a One Shot TOP10F’ Competent Cell Kit 

(Invitrogen, Carlsbad, CA, USA) which uses heat shock on prepared competent cells. 

Transformed cells were selected for on Luria-Bertani broth (LB) + 100 µg/mL ampicillin 

grown overnight at 37°C. Protocol and reagent preparation was accomplished according to 

manufacturer’s instruction (Invitrogen, Carlsbad, CA, USA). 

Successful transformants were isolated by streaking single colonies onto new LB + 100 

ug/mL ampicillin plates and culturing them overnight at 37°C. Single colonies from these  
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Figure 2.1 The pVT100U Plasmid 
The pVT100U plasmid was used to transform INVSc1 yeast to create a negative control. This 
plasmid includes a multiple cloning site (MCS-7), the alcohol dehydrogenase promoter (ADH), 
ampicillin resistance marker for growth in Escherichia coli, a 2µ ori replication factor for 
autosomal replication in yeast, and the URA3 uracil biosynthesis gene. This plasmid is from 
Vernet et al., 1987. 
 

 

isolated strains were then used to separately inoculate 10 mL of liquid LB + 100 µg/mL 

ampicillin and grown overnight at 37°C. Plasmids were purified using a Wizard Plus Midipreps 

DNA Purification System (Promega, Madison, WI, USA).  
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2.2.2 Site-Directed Mutagenesis 

Point mutations at selected amino acid residues within pVTCrep1 were generated using 

a QuikChange II Site-Directed Mutagenesis Kit (Stratagene, La Jolla CA, USA). This method 

allowed for simple point mutations in a four-step procedure in double-stranded DNA vector, 

eliminating the need for sub-cloning into M-13 bacteriophage vectors, single-stranded DNA 

rescue, use of restriction sites, or multiple transformations. The general method uses two 

oligonucleotide primers that include the desired mutation(s) and are complementary to the 

opposite dsDNA vector containing the gene of interest. It also uses a highly efficient Pfu Turbo 

DNA polymerase and, the dsDNA vector. After thermocycling, template DNA is treated with 

DpnI restriction enzyme, which cleaves only the methylated template DNA. This allows for 

selection of the newly generated unmethylated DNA which contains the point mutation. 

SDM reactions used 2 µL of 6.05 ng/µL pVTCrep1 dsDNA template in combination 

with 5 µL of 10X supplied reaction buffer, 1.25 µL of each 0.100 µL/mL forward and reverse 

mutagenesis primers which were specific for the desired mutation (see Table 2.1), 1 µL of 

provided dNTP mixture, and 38.5 µL ddH2O. Reaction mixtures were heated for 10 minutes at 

95°C before 1 µL of pfuUltra HF DNA polymerase (2.5 U/µL) was added. Thermocycling was 

performed using either an MJ Research Thermal Cycler PTC-100 (BioRad, Hercules, CA, 

USA) or a Biorad I-Cycler. Thermocycling involved an initial 30s at 95°C followed by twelve 

cycles of the following: denaturation at 95°C for 30s; annealing at 55°C for 60s; elongation at 

68°C for 8m 30s. Mutations N146H, F183L, and F183W required 16 cycles of thermocycling. 

Afterwards 1 µL of the provided DpnI restriction enzyme (10 U/µL) was added to reaction 

mixtures and allowed to digest for 1 hour at 37°C. All mutant constructs were validated by 

DNA sequencing (see below). Oligonucleotide primers used to introduce point mutations into 

pVTCrep1 were designed using PrimerX software 

(http://www.bioinformatics.org/primerx/documentation.html Copyright © 2003 by Carlo 

Lapid) (Table 2.1). Oligonucleotide primers were synthesized by DNA Technologies Group 

(Plant Biotechnology Institute, Saskatoon, Canada). dNTP mixture was obtained from 

Invitrogen (Carlsbad, CA, USA). 
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Table 2.1 Oligonucleotide Primers Used to Sequence and Mutagenize pVTCrep1  
This table displays the name and sequence of oligonuceotide primers used to mutate or 
sequence the acetylenase Crep1. Each point mutation required a forward and reverse 
oligonucleotide primer (CF1/CR1. CF2/CR2, CF3/CR3) during site-directed mutagenesis. 

Name Usage Sequence (5’ 3’) 
CF1 Sequencing GCAAGGTAGACAAGC 
CR1 Sequencing GTGGGTTTGAAAATGCCAGATGCA 
CF2 Sequencing CTGCACAATATTTCAAGC 
CR2 Sequencing AACCGGAACGAAAACCCCTACATT 
CF3 Sequencing AAGGTAGGGGGTCCAAGGGTGTAT 
CR3 Sequencing GTGGGAACCTGGGGGATGGAAAAA 

F-G97A Mutagenesis CTTATGGGTCATCGCTCACGAATGCGGTC 
R-G97A Mutagenesis GACCGCATTCGTGAGCGATGACCCATAAG 
F-A139S Mutagenesis GCCACCGGAACCACCATTCTAACACAAATTCGCTTG 
R-A139S Mutagenesis CAAGCGAATTTGTGTTAGAATGGTGGTTCCGGTGGC 
F-N146H Mutagenesis CACAAATTCGCTTGACCACGATGAAGTTTACATC 
R-N146H Mutagenesis GATGTAAACTTCATCGTGGTCAAGCGAATTTGTG 
F-Y150F Mutagenesis CTTGACAACGATGAAGTTTTTATCCCCAAAAGCAAGGCC 
R-Y150F Mutagenesis GGCCTTGCTTTTGGGGATAAAAACTTCATCGTTGTCAAG 
F-F183L Mutagenesis CCTTCACCCTAGGCTTGCCTCTATACCTCTTTAC 
R-F183L Mutagenesis GTAAAGAGGTATAGAGGCAAGCCTAGGGTGAAGG 
F-L183W Mutagenesis CTTCACCCTAGGCTGGCCTCTATACCTC 
R-L183W Mutagenesis GAGGTATAGAGGCCAGCCTAGGGTGAAG 
F-K194R Mutagenesis CTCTTTACCAATATTTCCGGCAGAAAGTATGAAAGGTTTGCCAAC 
R-K194R Mutagenesis GTTGGCAAACCTTTCATACTTTCTGCCGGAAATATTGGTAAAGAG 
F-F259L Mutagenesis CAGTTTTAGGCGTGTTTATCTTTTTGGATATCATCACCTACTTGCACCAC 
R-F259L Mutagenesis GTGGTGCAAGTAGGTGATGATATCCAAAAAGATAAACACGCCTAAAACTG 
F-H266Q Mutagenesis CATCACCTACTTGCAACACACCCATCTGTC 
R-H266Q Mutagenesis GACAGATGGGTGTGTTGCAAGTAGGTGATG 
F-V304I Mutagenesis GTGTGCTCCATGATATTACACACACTCACG 
R-V304I Mutagenesis CGTGAGTGTGTGTAATATCATGGAGCACAC 
F-H306D Mutagenesis GTGTGCTCCATGATGTTACAGATACTCACGTTATGCATCATC 
R-H306D Mutagenesis GATGATGCATAACGTGAGTATCTGTAACATCATGGAGCACAC 
F-I317M Mutagenesis CATCTGTTTTCATACATGCCACACTATCATGCGAAG 
R-I317M Mutagenesis CTTCGCATGATAGTGTGGCATGTATGAAAACAGATG 

 

Some initial difficulty in generating F183W (where the conserved Crep1 phenylalanine 

residue at position 183 was converted to the conserved FAD2 tryptophan residue at the same 

position) led to the creation of F183L. This facilitated the point mutation to tryptophan at the 

183rd position since L183W was easily generated afterward. After F183L was created, it was 

retained and used in subsequent experiments. All point mutations were successfully generated 

within pVTCrep1 resulting in 12 mutant plasmids. 
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2.2.3 Sequencing 

All DNA sequencing was performed using an ABI Prism Big Dye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) with a 3730x1 DNA 

Analyzer (Applied Biosystems, Foster City, CA, USA) (DNA Sequencing Lab, Plant 

Biotechnology Institute, Saskatoon, Saskatchewan). Three separate primer pairs shown in 

Table 2.1 were used to sequence plasmids; CF1/CR1, CF2/CR2, CF3/CR3 include both the 

forward and reverse primers. 

 

2.2.4 Transformation of InvSc1 Yeast Cultures 

All plasmid constructs were individually transformed into S. cerevisiae strain InvSc1 

(MATa his3D1 leu2 trp1-289 ura3-52) using a Saccharomyces cerevisiae EasyComp 

Transformation Kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. 

Yeast cells were made competent by the lithium acetate method (Ito et al., 1984; Gietz and 

Schiest, 1991), using reagents that were provided in the kit. Untransformed competent cells 

were cultured in yeast extract peptone dextrose (YPD) media prepared according to 

manufacturer’s instructions. Transformants were selected on minimal synthetic dextrose media 

supplemented with amino acids excluding uracil (SD-URA) (Bio101 Inc., Vista, CA, USA). 

Single colonies were restreaked onto new SD-URA plates and cultured overnight at 37°C.  

 

2.3 Analysis of InvSc1 Yeast Harboring pCrep1 and Mutant Constructs 

2.3.1 Growth Conditions 

Starter cultures of transformed yeast were grown for 48 hours at 28°C in 1 mL SD-URA 

broth. 100 µL of starter culture was then used to inoculate 10 mL SD-URA in 50 mL 

Erlenmeyer flasks. Linoleic acid (18:2-9c,12c) (Nu-Chek Prep Inc., Elysian, MN, USA) was 

also added to cultures (100 µg/mL free acid in 0.1% tergitol v/v) which were to be analyzed for 

18:1-9c,12a and 18:2-9c,12c and 18:2-9c,12t isomers. All experiments were performed in 

triplicate cultures on three different occasions. Cultures were grown for three days at 20°C 

followed by another three days at 15°C on a platform shaker (200 rpm) to increase fatty acid 

product, as described by Reed et al., 2003. 
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2.3.2 Sample Preparation for Gas Chromatography and Mass Spectrometry Analysis 

Cultures grown in the presence of 18:2-9c,12c were centrifuged (1500 G for 5 min), 

washed (1 mL 10% tergitol v/v), centrifuged at 1500 G for 5 min, and rinsed twice using 5 mL 

of ddH2O to remove excess tergitol and18:2-9c,12c. Cultures grown in the absence of 18:2-

9c,12c were centrifuged (1500 G for 5 min), rinsed (5 mL ddH2O), and centrifuged. 100 µL of 

17:0 (100 µg/mL in methanol) (Nu-Chek Prep Inc., Elysian, MN, USA) was added to each 

sample to act as an internal standard. Sample preparation involved the saponification of fatty 

acids using 1 mL of 10% KOH (w/v) in methanol and heating the reaction mixture in a sealed 

glass tube with a Teflon-lined lid to 80°C for exactly one hour. The heating of extracts was 

performed behind an acrylic glass shield as a safety precaution. Mixtures were then cleared of 

sterols by extracting with 1 mL hexane, followed by acidification of free fatty conjugate bases 

using 500 µL of 10% acetic acid. Fatty acids were then extracted using 2 mL hexane and later 

concentrated under a nitrogen stream. The residue was methylated by heating to 60°C in the 

presence of 1 mL 1% sulfuric acid (v/v) in dry methanol for one hour. Fatty acid methyl esters 

(FAMEs) were extracted from the mixture using 2 mL hexane after addition of 1 mL ddH2O.  

The FAMEs were then dried under a N2 stream to dryness followed by the addition of 200 µL 

ethyl acetate. This method is adapted from that of Reed et al., 2003. 

 

2.3.3 Fatty Acid Analysis by Gas Chromatography and Mass Spectrometry 

The hexane extracts from the methylation reactions were analyzed by GC-MS using an 

Agilent 6890N GC with a DB-23 column (30 m x 0.25 mm i.d., J&W Scientific), 25:1 split 

flow injector at 225°C, and a column oven temperature program of 160°C for 1 min then 

4°C/min to 240°C connected to an Agilent 5973N mass selective detector in electron impact 

mode under standard conditions (70 eV). GC analysis was done using an Agilent 6890 GC with 

a similar column and the oven under the same conditions connected to a flame ionization 

detector. Quantitations for both detection systems were done using Chemstation software 

(Agilent) calculated peak area integrations and comparing areas to 17:0 added to samples as an 

internal standard and applying appropriate response factors for the necessary comparisons. For 

FID analysis, response factors of the fatty acid methyl esters being quantitated were determined 

to be 1.0 on a weight basis. This method is adapted from that of Reed et al., 2003.
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3. RESULTS 

3.1 Sequence Analysis of Fatty Acid Desaturases and Acetylenases 

To explore the structure/function relationship between acetylenases and desaturases, 

their primary structures were considered. Amino acid conservation within but not between each 

group of enzymes was analyzed using a series of bioinformatics tools. Several sequences for 

FAD2s with reported desaturase activity were collected from Genbank. A sequence similarity 

search using ATHFAD2 was also conducted using BLASTP from which several FAD2 

sequences were obtained.  Results were pooled and used to create a database composed of 38 

FAD2 sequences. Twelve acetylenase sequences were also collected using similar methods. All 

but one of the retrieved acetylenase sequences have been reported by the same source (Cahoon 

et al., 2003). These 12 acetylenase sequences were also added to our database. The 38 FAD2 

sequences that were chosen represent 17 plant families and one algae family (Chlorellaceae). In 

contrast, the 12 acetylenase sequences are dispersed in only 3 plant families:  Asteraceae, 

Apiaceae, and Araliaceae. Plants from these families include sunflower, strawflower, Black-

eyed Susan, parsley, fennel, carrot, African daisies, marigold, and English ivy (Table 3.1) 

All sequences were then aligned. Although some acetylenase sequences were truncated 

at the N-terminus as opposed to complete FAD2 sequences (i.e. FVUACET, DCAACET, 

HBRACET, DSIACET, RHIACET, COFACET), they were included in the overall analysis 

(Appendix A). The analysis was conducted with and without these sequences and results 

indicated that amino acid residue conservation in the truncated N-terminal positions did not 

greatly influence the overall final results; that is, no conservation of amino acids amongst 

acetylenases or FAD2s differ within their N-terminal other than the glycine residue at position 

97 within Crep1.  

Aligned sequences were then compared using the CPDL software. The CPDL software 

allowed for the determination of amino acids which are conserved in either the FAD2 or 

acetylenase enzymes, but that differ in the other group of enzymes. Results highlighted 11 

amino acid residues that are conserved in either one group of enzymes but are different in the 

other group of enzymes (Figure 3.1).  
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Table 3.1 Abbreviations of Sequences Used to Determine Conservation in FAD2s and 
Acetylenases  
∆12 fatty acid desaturases and acetylenase sequences that were used in this study are divided 
into two groups (indicated by the label along the left margin). Names and abbreviations of the 
sequences were designated based on genus, species, and function. The strongest evidence of the 
designated activity is listed under the evidence column.  

 
 

Name Family Genus 
Species 

NCBI 
Accession #

Evidence 

PCRACET 
(ELI12) 

Apiaceae Petroselinum 
crispum 

AAB80697.1 transgenic soybean  
expression 

PCRACET-2 Apiaceae Petroselinum 
crispum 

AAG23923.1 89% AA ID to  
PCRACET (ELI12) 

PCRACET-3 Apiaceae Petroselinum 
crispum 

AAG23924.1 91% AA ID to  
PCRACET (ELI12) 

FVUACET Apiaceae Foeniculum 
vulgare 

AAO38034.1 91% AA ID to  
PCRACET (ELI12) 

DCAACET Apiaceae Daucus 
carota 

AAO38033.1 91% AA ID to  
PCRACET (ELI12) 

HANACET Asteraceae  Helianthus 
annuus 

CAA76158.2 transgenic soybean  
expression 

RHIACET Asteraceae Rudbeckia 
hirta 

CAB64256.1 94% AA ID to  
HANACET 

HBRACET Asteraceae Helichrysum 
bracteatum 

AAO38037.1 89% AA ID to  
HANACET 

DSIACET Asteraceae  Dimorphothec
a sinuata 

AAO38036.1 89% AA ID to  
HANACET 

COFACET Asteraceae Calendula 
officinalis 

AAO38035.1 transgenic soybean  
expression 

CALACET Asteraceae Crepis 
alpina 

AAO38032.1 transgenic yeast  
expression 

A
C

E
T

Y
L

E
N

A
SE

S

HHEACET Araliaceae Hedera 
helix 

AAO38031.1 transgenic soybean  
expression 

ATHFAD2 Brassicaceae Arabidopsis  
thaliana 

NP_187819.1 transgenic yeast  
expression 

BCAFAD2 Brassicaceae Brassica  
carinata 

AAK26633.1 91% AA ID to  
ATHFAD2 

BJUFAD2 Brassicaceae Brassica  
juncea 

CAA62578.1 90% AA ID to  
ATHFAD2 

BRAFAD2-1 Brassicaceae Brassica 
rapa 

CAG26981.1 90% AA ID to  
ATHFAD2 

∆1
2

D
E

SA
T

U
R

A
SE

S

BNAFAD2 Brassicaceae Brassica 
napus 

AAF78778.1 90% AA ID to  
ATHFAD2 
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VGAFAD2 Asteraceae Vernonia 
galamensis 

AAF04094.1 transgenic yeast  
expression 

CPAFAD2 Asteraceae Crepis 
palaestina 

CAA76157 73% AA ID to  
ATHFAD2 

HANFAD2 Asteraceae Helianthus 
annuus 

AAL68983.1 transgenic yeast  
expression 

COFFAD2 Asteraceae Calendula 
officinalis 

AAK26633.1 transgenic yeast  
expression 

GHIFAD2-1 Malvaceae Gossypium 
hirsutum 

AAQ16653.1 76% AA ID to  
ATHFAD2 

GHIFAD2-2 Malvaceae Gossypium 
hirsutum 

AAQ16654.1 76% AA ID to  
ATHFAD2 

GHIFAD2-3 Malvaceae Gossypium 
hirsutum 

AAL37484.1 76% AA ID to  
ATHFAD2 

SOLFAD2 Chenopodiaceae Spinacia 
oleracea 

BAC22091.1 transgenic porcine  
expression 

TMAFAD2 Tropaeolaceae Tropaeolum 
majus 

AAV52834.1 77% AA ID to  
ATHFAD2 

CPEFAD2 Cucurbitaceae Cucurbita 
pepo 

AAS19533.1 78% AA ID to  
ATHFAD2 

TKIFAD2 Cucurbitaceae Trichosanthes 
kirilowii 

AAO37752.1 transgenic yeast  
expression 

JCUFAD2 Euphorbiaceae Jatropha 
curcas 

ABA41034.1 77% AA ID to  
ATHFAD2 

BOFFAD2 Boraginaceae Borago 
officinalis 

AAC31698.1 77% AA ID to  
ATHFAD2 

SINFAD2 Pedaliaceae Sesamum 
indicum 

AAX11454.1 75% AA ID to  
ATHFAD2 

LUSFAD2 Linaceae Linum 
usitatissimum 

ABB05230.1 75% AA ID to  
ATHFAD2 

SCOFAD2 Solanaceae Solanum 
commersonii 

CAA63432.1 74% AA ID to  
ATHFAD2 

NTAFAD2 Solanaceae Nicotiana 
tabacum 

AAT72296.2 60% AA ID to  
ATHFAD2 

ZMAFAD2 Poaceae Zea 
mays 

BAE93382.1 69% AA ID to  
ATHFAD2 

OSAFAD2 Poaceae Oryza 
sativa 

XP_467474.1 67.5% AA ID to  
ATHFAD2 

PAMFAD2 Lauraceae Persea 
americana 

AAL23676.1 59% AA ID to  
ATHFAD2 

HBRFAD2 Euphorbiaceae Hevea 
brasiliensis 

AAY87459.1 transgenic yeast  
expression 

∆1
2

D
E
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T

U
R

A
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S

VFOFAD2 Euphorbiaceae Vernicia 
fordii 

AAN87573.1 transgenic yeast  
expression 
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OEUFAD2-1 Lamiales Olea 
europaea 

AAW63040.1 transgenic yeast  
expression 

OEUFAD2-2 Lamiales Olea 
europaea 

AAW63041.1 transgenic yeast  
expression 

ADUFAD2 Fabaceae Arachis 
duranensis 

AAF82294.1 transgenic yeast  
expression 

AHYFAD2-1 Fabaceae Arachis 
hypogaea 

AAY53559.1 99.2% AA ID to  
ADUFAD2 

AHYFAD2-2 Fabaceae Arachis 
hypogaea 

AAB84262.1 70.5% AA ID to  
ATHFAD2 

AHYFAD2-3 Fabaceae Arachis 
hypogaea 

AAK67829.1 70.5% AA ID to  
ATHFAD2 

AMOFAD2 Fabaceae Arachis 
monticola 

AAX14399.1 98.9% AA ID to  
ADUFAD2 

AIPFAD2 Fabaceae Arachis 
ipaensis 

AAF82295.1 transgenic yeast  
expression 

GMAFAD2-1 Fabaceae Glycine  
max 

BAD89862.1 76% AA ID to  
ATHFAD2 

GMAFAD2-2 Fabaceae Glycine  
max 

P48631 76% AA ID to  
ATHFAD2 

∆1
2

D
E

SA
T

U
R

A
SE

S

CVUFAD2 Chlorellaceae Chlorella 
vulgaris 

BAB78716.1 transgenic yeast  
expression 

 
This study determines which amino acid residues within acetylenases and desaturases 

play a role in differentiating the different activities either assumed or observed. Based on 

CPDL, 11 amino acids were targeted within the Crep1 protein for site-directed mutagenesis. 

Amino acids at these locations within Crep1 were singularly exchanged for residues conserved 

at the same location in FAD2s. An example can be seen in Figure 3.1 where at position 336 

within the CPDL results (highlighted by a red arrow) indicate an isoleucine residue (I) which is 

always conserved within acetylenases, whereas methionine (M) is always conserved within 

FAD2s. The isoleucine residue within the Crep1 sequence was mutated to a methionine 

residue. The identity and locations of all amino acids targeted for site-directed mutagenesis, as 

well as the names of the plasmids constructed, are summarized in Table 3.2. In addition to the 

11 plasmids generated, another plasmid (pSG005) was also designed to explore the effects of 

replacing a conserved Crep1 residue with a residue that is not found in either FAD2s or 

acetylenases (F183L). Thus two changes were conducted at amino acid residue 183 within 

Crep1 (phenylalanine) so that one change introduced the conserved FAD2 residue (tryptophan), 

whereas the other introduced an amino acid residue not found in either acetylenases or FAD2s  
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Figure 3.1 Determination of Amino Acid Conservation Within Acetylenases and FAD2s 
by the Use of the Conserved Property Difference Locator 
 
Abridged Conserved Property Difference Locator (CPDL) results considering 12 acetylenase 
protein sequences compared to 38 ∆12 fatty acid desaturase (FAD2) sequences. The amino 
acids above the midline represent the consensus sequence of the 12 acetylenases whereas the 
amino acids below the midline occur in FAD2 enzymes. Residues beyond these positions (up 
for acetylenases and down for desaturases) are positioned farther from the midline as their 
frequency of occurrence within the respective group of enzymes diminishes. Residues in bold 
represent conserved amino acids. Color-filled triangles indicate conserved amino acids within 
either group of enzymes that is not found in the other group. Circles indicate conservation of 
properties of amino acids which differ between acetylenases and FAD2s. Symbols not filled 
with color indicate that the conserved amino acid or property from one group of enzymes is 
found in at least one sequence in the other group of enzymes. Eleven candidate amino acid 
targets for site-directed mutagenesis are indicated by red arrows. These amino acids are 
conserved in either acetylenases or FAD2 enzymes. Three conserved histidine motifs found in 
all acetylenase and desaturase sequences are highlighted in green. Note that at position 113, 
conservation of glycine within acetylenases is not denoted by CPDL due to the inclusion of N-
terminal truncated sequences. 

 

 

at this position (leucine). The CPDL results indicate other sites of interest where although no 

specific conservation exists for a single amino acid, amino acid properties are conserved in at 

least one group. These other sites were not considered any further in this study. In an attempt to 

visualize the location of the targeted amino acids, the topology of Crep1 was explored. A 

pictorial representation of Crep1 was produced by using a combination of software. 

Transmembrane spanning domains were predicted using the TMHMMv2.0 software suite 

(Krogh et al., 2001) (Figure 3.2A). A linear model of Crep1 highlighting the predicted 

transmembrane locations, the conserved His boxes, and the targeted amino acid positions was 

then created using DirectDomain software (Fink and Hamilton, 2007) (Figure 3.2B). In 

congruence with similar topological representations of desaturases previously reported 

(Stuckey et al., 1989; Shanklin et al., 1994; Minto et al., 2002), these results were used to 

generate a two-dimensional representation of Crep1 which highlights amino acids targeted for 

site-directed mutagenesis (Figure 3.3). Results indicate that 7 of the 11 conserved amino acids 

which differ between FAD2 and acetylenase enzymes exist in close proximity (within 12 amino 

acids) to the conserved His boxes. The remaining 4 targeted amino acids within Crep1 (F183, 

K194, H266, and F259) exist farther from the conserved His boxes. F183 appears to exist 
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Table 3.2 Conserved Amino Acids in FAD2s and Acetylenases 

This table displays the amino acid conservation in two groups of enzymes; acetylenases and 
∆12 fatty acid desaturases (FAD2s). Positions of targeted amino acids in Crep1 are listed in 
which the corresponding amino acid is completely conserved in at least one group of enzymes 
but differ from homologous amino acids found in the other group of enzymes. Amino acids 
residues in Crep1 were singularly replaced with residues found at the same location in the 
FAD2 consensus sequence. 
 

Plasmid 
Name 

Position of 
residue within 
Crep1 

Crep1 
 Residue 

FAD2 
Residue 

SG001 97 Glycine (G) Alanine (A) 
SG002 139 Alanine (A)  Serine (S) 
SG003 146 Asparagine (N) Histidine (H) 
SG004 150 Tyrosine (Y) Phenylalanine (F) 
SG005 183 Phenylalanine (F) Leucine (L) 
SG006 183 Phenylalanine (F) Tryptophan (W) 
SG007 194 Lysine (K) Arginine (R) 
SG008 259 Phenylalanine (F) Lysine (L) 
SG009 266 Histidine (H) Glutamine (Q) 
SG010 304 Valine (V) Isoleucine (I) 
SG011 306 Histidine (H) Aspartic Acid (D) 
SG012 317 Isoleucine (I) Methionine (M) 

 

 

within the 3rd transmembrane domain; K194 appears to exist within the lumen of the 

endoplasmic reticulum following the 3rd transmembrane domain. Lastly F259 and H266 appear 

near the putative cytosolic end of the 4th transmembrane domain (Figure 3.3). 

 

3.2 The Detection of Fatty Acids by Gas Chromatography 

This results section deals with the detection and identification of fatty acids from transgenic 

yeast cultures. The quantitation of fatty acids is presented in the later sections that follow. 

Initially, the fatty acids produced by the negative control (i.e. yeast harboring pVT100U) were 

analyzed when grown in the presence or absence of 18:2−9c,12c. The positive control (yeast 

harboring pVTCrep1), which expresses the unmodified form of Crep1, was investigated, 

followed by the analysis of the mutant constructs. Throughout the experiments, 
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Figure 3.2 Hydrophobicity of Crep1 used to Determine Transmembrane Domains 
(A) The predicted transmembrane domains for the acetylenase Crep1 determined by 
TMHMMv2.0 (Krogh et al., 2001). The TMHMM software predicts the location of 4 
transmembrane spanning domains within Crep1. The predicted location of Crep1 domains are 
indicated above the plot by a colored line, where the pink lines indicate the cytosol, the blue 
lines represent the lumen of the endoplasmic reticulum, and the red lines indicate positioning 
within the ER membrane.  
(B) A one-dimensional schematic of Crep1 acetylenase created using DomainDraw (Fink and 
Hamilton, 2007). This schematic highlights predicted transmembrane spanning domains (blue), 
conserved His boxes within Crep1 (purple), and the location of point mutations introduced 
within Crep1 (red). This data was used to generate a 2-dimensional topology of Crep1 protein 
presented in Figure 3.3. 
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Figure 3.3 The Predicted Topology of Crep1 Indicative of Conserved Amino Acids which 
are Targets for Site-Directed Mutagenesis 
A two-dimensional schematic of the acetylenase Crep1 composed of 375 amino acids. This 
diagram indicates the locations of selected amino acids targeted for site-directed mutagenesis 
within the Crep1 protein (black dots). Other important structures are highlighted: 4 predicted 
transmembrane domains (cylinders traversing ER membrane), conserved His boxes 
( )believed to coordinate a di-iron cluster ( ) at the active site, where hypothetical bonds are 
represented by dotted lines. 
 

fatty acids that make up the majority of all the total fatty acids produced in cultures were 

considered including hexadecanoic acid (16:0), cis-9-hexadecenoic acid (16:1−9c), 

octadecanoic acid (18:0), and cis-9-octadecenoic acid (18:1−9c). In addition to the major fatty 

acids detected, the minor amounts of 16:2-9c,12c and 16:2-9c,12t isomers, 18:2-9c,12c and 

18:2-9c,12t isomers, and 18:1-9c,12a were also examined. These fatty acids constitute the total 

fatty acid profile used throughout the following experiments. In addition, heptadecanoic acid 
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(17:0) was added during sample preparation as an internal standard, which was detected 

throughout all the experiments but was not included as part of the total fatty acid content. 

INVSc1 yeast was transformed with empty plasmid (pVT100U) to generate a negative 

control and then cultured for 6 days. Fatty acid accumulation in this strain was analyzed by 

GC-FID (Figure 3.4A). Four fatty acids were found to constitute the majority (>90%) of total 

fatty acids (TFA) detected: 16:0, 16:1−9c, 18:0, and 18:1−9c. Trace amounts of 18:2-9c,12c 

were also detected. Other fatty acids, such as dodecanoic acid (12:0) and tetradecanoic acid 

(14:0) were also produced, but always in minute quantities (<1% TFA) and were therefore not 

included in the total fatty acid profiles of cultures during this study. 

Negative controls were also grown for 6 days in the presence of 18:2-9c,12c followed 

by fatty acid analysis by GC-FID. In Figure 3.4B, the same 4 simple fatty acids were detected 

as in the previous experiment, as well as the (added) fifth fatty acid, 18:2-9c,12c. Additionally 

trace amounts of 16:2-9c,12t were also detected. 

When INVSc1 yeast was transformed with pVTCrep1 and grown for 6 days, GC-FID 

analysis revealed the same 4 endogenous fatty acids as detected in negative controls (i.e. 16:0, 

16:1−9c, 18:0, 18:1−9c) (Figure 3.5A), as well as 16:2-9c,12t, 18:2-9c,12t and 18:2-9c,12c 

(Figure 3.6A).  

Similar experiments using INVSc1 cultures bearing mutations F259L and V304I within 

Crep1 revealed another 16:2 isomer not detected in other cultures; 16:2-9c,12c (Figure 3.6B; 

results for V304I not shown). 

 Yeast strains expressing Crep1 were also grown for 6 days in the presence of 18:2-

9c,12c followed by fatty acid analysis by GC-FID. The same endogenous fatty acids detected in 

negative controls were present. Other fatty acids present in these cultures were 16:2-9c,12t and 

18:1-9c,12a. Although the presence of 16:2 isomers could be detected, 18:2 isomers could not 

be resolved due to the addition of 18:2-9c,12c (Figures 3.5B and 3.7). 
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Figure 3.4 Gas Chromatography of Fatty Acids in Yeast Negative Controls 
GC-FID traces are shown for the INVSc1 yeast strain transformed with pVT100U (empty 
vector) after growth for 6 days in the absence (A) and presence (B) of 18:2 9c,12c. 
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Figure 3.5 Gas Chromatography of Fatty Acids from Yeast Expressing Crep1 
GC-FID traces are shown for the INVSc1 yeast strain expressing the acetylenase Crep1 
following 6 days of growth in the absence (A) or presence (B) of 18:2-9c,12c.  
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Figure 3.6 The Accumulation of Geometric Isomers in Yeast Cultured in the Absence of 
18:2-9c,12c 
An inset of the 18:2 isomer region (A) and 16:2 isomer region (B) from Figure 3.5A (also seen 
as an insert in the top left corner of panel (A) and (B) indicates the elution order for geometric 
isomer of 18:2 in INVSc1 yeast cultures expressing Crep1 (blue), harboring pSG008 (F259L) 
(green), and negative controls harboring empty plasmid pVT100U (red).  
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Figure 3.7 GC Identification of 18:1-9c,12a and 16:2-9c,12t Accumulating in Yeast 
Cultured in the Presence of 18:2-9c,12c 
An inset of the 18:1-9c,12a region (A) and the 16:2 isomer region (B) from Figure 3.5B 
displays the accumulation of 18:1-9c,12a (A) and 16:2 isomers (B) when INVSc1 yeast was 
transformed with either pVTCrep1 (blue) or empty plasmid (red) and grown for 6 days in the 
presence of 18:2-9c,12c. 
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3.2.1 Identification of Fatty Acids 

Fatty acids were identified by either the use of purified standards using GC-FID 

analysis, GC-MS, or by both methods. Simple fatty acids such as 16:0, 16:1−9c, 18:0, and 

18:1−9c were easily identified by their retention times and confirmed by the use of standards 

during GC-FID analysis.  

18:2 isomers were identified by using a mixture of known standards during GC 

analysis. The standard included all geometric isomers of 18:2∆9,12. This allowed for the 

identification of 18:2-9c,12c and 18:2-9c,12t, as well as allowing us to discern their order of 

elution. 18:2-9c,12t eluted at the 12.8 min mark followed closely by 18:2-9c,12c which eluted 

at 13 min (Figure 3.6A). The identification of the 18:2 isomers was also confirmed by the use 

of GC-MS. 

 The identities of 16:2 isomers were not known during early GC-FID analysis. The 

appearance of peaks in yeast cultures expressing Crep1 or Crep1 mutant constructs required 

identification (Figure 3.6B). No purified 16:2 standards were available for the identification of 

16:2 isomers by GC-FID, hence chemical composition was identified by mass spectrometry 

whereas stereochemistry was assigned based on the elution pattern of 18:2 isomers. The peak 

appearing at the 9.9 min mark (16:2-9c,12t) in cultures expressing Crep1 or Crep1 mutants (and 

in trace amounts in negative cultures grown in the presence of 18:2-9c,12c), as well as the peak 

appearing at the 10.2 min mark (16:2-9c,12c) in yeast harboring plasmids pSG008 (F259L) or 

pSG010 (V304I) were analyzed by GC-MS (Figure 3.8). The fragmentation pattern obtained 

from the respective peaks were compared to our chemical database and identified as 16:2∆9,12. 

The stereochemistry of the 16:2 isomers was assigned based on the known elution order of 

analogous 18:2 isomers; in both cases, the trans isomers elute before the cis isomers (Figure 

3.6).  

Identification of 18:1-9c,12a was achieved by the use of a purified standard during GC-

FID and GC-MS analysis. An HPLC-purified 18:1-9c,12a standard was obtained from Crepis 

alpina seed oil which showed the same retention time (~15.5 min) as 18:1-9c,12a produced in 

yeast expressing either Crep1 or a Crep1 mutant. This purified standard was also analyzed by 

MS (Figure 3.9A) and shows the same fragmentation pattern as 18:1-9c,12a obtained from 

yeast cultures expressing Crep1 (Figure 3.9B).  
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Figure 3.8 MS Spectra for 16:2 Geometric Isomers 
MS spectra for the peak labeled 16:2-9c,12c (A) and 16:2-9c,12t (B) seen in Figure 3.6B. 
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Figure 3.9 MS Identification of 18:1-9c,12a 
The MS spectrum for HPLC purified 18:1-9c,12a in (A) compared to the MS spectrum of the 
peak identified as 18:1-9c,12a in (B) which was obtained from INVSc1 yeast expressing Crep1. 
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Analysis of 18:1-9c,12a was complicated by the presence of a compound which eluted 

shortly after 18:1-9c,12a itself (Figure 3.7A). This unknown product was present in all cultures, 

and was identified by GC-MS as 11-eicosenoic acid (20:1−11c) (Figure 3.10).  To validate the 

presence or absence of 18:1-9c,12a in yeast strains, single ion monitoring was used with m/z = 

236, which is found in 18:1-9c,12a-methyl esters (Figure 3.9) but not in 20:1−11c (Figure 

3.10). 

 

3.3 Quantitation of Fatty Acid in Yeast Grown in the Presence of 18:2-9c,12c  

In this section, the amounts of fatty acids which accumulated in transformed INVSc1 

yeast which was grown for 6 days in the presence of 18:2-9c,12c is reported (Table 3.3). These 

experiments were performed to quantify 18:1-9c,12a and 16:2 geometric isomers in transgenic 

yeast cultures that expressed Crep1 or Crep1 mutants. 18:2-9c,12c was added to cultures since 

it acts as a substrate for Crep1 during the generation of 18:1-9c,12a. The addition of 18:2-

9c,12c masks the presence of 18:2 isomers that may accumulate in transgenic cultures due to 

Crep1 activity. Thus 18:2 isomer accumulations is not reported for the experiments covered 

throughout this section, but will be covered in the next section.  

 

3.3.1 The Accumulation of 18:1-9c,12a in Yeast Cultured in the Presence of 18:2-9c,12c 

Yeast strains that had been supplied with 18:2−9c,12c to act as a substrate in the 

synthesis of 18:1-9c,12a were analyzed by GC-FID. Yeast cultures harboring negative control 

plasmids (pVT100U) showed no accumulation of 18:1-9c,12a. Yeast cultures that expressed 

Crep1 accumulated 18:1-9c,12a to levels of 0.199 ± 0.029% TFA (Table 3.3). Relative to the 

Crep1 strain, yeast strains harboring mutant plasmids showed a drop in the accumulation of 

18:1-9c,12a to values between 0.018 - 0.151% TFA (Table 3.3). Yeast strains harboring 

plasmid pSG004 (Y150F) showed the largest drop in 18:1-9c,12a accumulation to levels of 

0.018 ± 0.003% TFA; this represents an 11-fold reduction in 18:1-9c,12a accumulation 

compared to positive controls. Cultures harboring pSG003 (N146H) accumulated the most 

18:1-9c,12a amongst all cultures harboring mutant plasmids; 18:1-9c,12a accumulated to 0.151 

± 0.025% TFA in these cultures. This represents a 24% reduction of 18:1-9c,12a when 

compared to yeast cultures harboring the unmodified Crep1 (Figure 3.11). 
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Figure 3.10 MS Identification of 11-Eicosenoic Acid 
MS spectra for the product that eluted closely after 18:1-9c,12a (A) shown in Figure 3.7A and 
of standard 20:1-11c (11-eicosenoic acid) as retrieved from our database (B). 
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Table 3.3 The Accumulation of Fatty Acids Yeast Cultured in the Presence of 18:2-9c,12c 
Fatty acid accumulation observed in INVSC1 harboring respective plasmids. Cultures were 
grown for 6 days in the presence of 18:2-9c,12c. Results represent the means ± standard errors 
(n=3) from 3 independent experiments performed in triplicate. Results are shown as % TFA. 
 

Plasmid 
(Mutation) 16:0 16:1-9c 16:2- 

9c,12t 
16:2- 
9c,12c 18:0 18:1-9c 18:2- 

9c,12c 
18:1- 
9c12a 

pVT100U 
(- control) 

23.98 
±0.18 

18.5 
±2.0 

0.018 
±.001 ND 7.16 

±1.10 
11.1 
±1.5 

39.3 
±3.2 ND 

pVTCrep1 
(unmodified) 

24.43 
±0.30 

18.0 
±1.9 

0.067 
±0.014 ND 7.01 

±0.19 
10.5 
±1.4 

39.8 
±2.9 

0.199 
±0.029 

pSG001 
(G97A) 

24.19 
±0.36 

17.9 
±2.1 

0.039 
±0.006 ND 7.27 

±0.09 
10.9 
±1.6 

39.5 
±3.3 

0.078 
±0.010 

pSG002 
(A139S) 

24.43 
±0.12 

16.6 
±1.1 

0.037 
±0.007 ND 7.28 

±0.18 
10.0 
±0.8 

41.6 
±1.7 

0.077 
±0.024 

pSG003 
(N146H) 

24.53 
±0.13 

16.5 
±2.0 

0.053 
±0.009 ND 7.17 

±0.11 
9.9 
±1.5 

41.7 
±3.3 

0.151 
±0.025 

pSG004 
(Y150F) 

24.16 
±0.18 

18.5 
±1.1 

0.021 
±0.003 ND 7.18 

±0.05 
11.0 
±0.9 

39.2 
±1.8 

0.018 
±0.003 

pSG005 
(F183L) 

24.13 
±0.26 

16.6 
±1.8 

0.029 
±0.007 ND 7.08 

±0.08 
10.1 
±1.3 

42.0 
±2.8 

0.042 
±0.016 

pSG006 
(F183W) 

24.04 
±0.37 

17.6 
±1.7 

0.036 
±0.009 ND 7.06 

±0.13 
10.5 
±1.3 

40.6 
±2.5 

0.073 
±0.016 

pSG007 
(K194R) 

24.21 
±0.38 

17.2 
±1.6 

0.047 
±0.007 ND 6.92 

±0.31 
9.87 
±1.3 

41.7 
±2.5 

0.080 
±0.014 

pSG008 
(F259L) 

24.17 
±0.33 

17.7 
±1.6 

0.186 
±0.043 

0.034 
±0.008 

7.12 
±0.17 

10.6 
±1.1 

40.0 
±2.3 

0.080 
±0.013 

pSG009 
(H266Q) 

24.24 
±0.38 

16.9 
±2.0 

0.172 
±0.049 ND 7.21 

±0.18 
10.2 
±1.5 

41.2 
±2.9 

0.028 
±0.006 

pSG010 
(V304I) 

24.35 
±0.29 

17.5 
±1.6 

0.040 
±0.006 

0.019 
±0.004 

7.08 
±0.10 

10.3 
±1.3 

40.6 
±2.6 

0.101 
±0.015 

pSG011 
(H306D) 

24.29 
±0.25 

18.1 
±2.0 

0.055 
±0.009 ND 7.16 

±0.19 
10.8 
±1.5 

39.5 
±3.2 

0.059 
±0.007 

pSG012 
(I317M) 

24.27 
±0.14 

18.7 
±1.2 

0.052 
±0.006 ND 7.20 

±0.12 
11.2 
±1.0 

38.5 
±2.0 

0.132 
±0.017 
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Figure 3.11 Accumulation of 18:1-9c,12a in Yeast Cultured in the Presence of 18:2-9c,12c 
A graphical representation indicating the levels of 18:1-9c,12a that accumulated in transformed 
INVSc1 yeast cultured for 6 days in the presence of 18:2-9c,12c. Results represent the means ± 
standard errors (n=3) from 3 independent experiments performed in triplicate. 
 

3.3.2 The Accumulation of 16:2 Isomers in Yeast Cultured in the Presence of 18:2-9c,12c 

16:2 isomers were detected by GC-FID in some transformed INVSc1 strains carrying 

Crep1 or modified variants when grown in the presence of 18:2-9c,12c, which can be seen in 

Table 3.3 and Figure 3.7B. INVSc1 strains that were transformed with the empty plasmid 

pVT100U (negative control) did not accumulate any 16:2-9c,12c isomer and trace amounts of 

16:2-9c,12t (Figure 3.7B). Cultures expressing unmodified Crep1 accumulated 16:2-9c,12t to 

levels of 0.067 ± 0.014% TFA but did not accumulate 16:2-9c,12c isomer in detectable 

amounts (Figure 3.7B). The largest producers of 16:2-9c,12t were seen in cultures harboring 

plasmids pSG008 (F259L) and pSG009 (H266Q) where levels of the 16:2 isomer accumulated 

to 0.186 ± 0.043% TFA and 0.172 ± 0.049% TFA, respectively. This represents an increase of 

156-177% of 16:2-9c,12t isomer accumulation when compared to cultures expressing Crep1. 

Other yeast strains harboring mutant Crep1 constructs produced less 16:2-9c,12t isomer than 
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yeast cultures expressing Crep1. The smallest amount of 16:2-9c,12t amongst these cultures 

was detected in yeast strains harboring pSG004 where levels accumulated to 0.021 ± 0.003% 

TFA. This represents a 67% decrease of 16:2-9c,12t isomer accumulation when compared to 

cultures expressing Crep1 (Figure 3.12).  

Of all cultures analyzed, only 2 transformed strains accumulated 16:2-9c,12c to 

detectable amounts. Strains harboring pSG008 (F259L) showed 0.034 ± 0.008% TFA of 16:2-

9c,12c (Figure 3.6), where strains harboring pSG010 (V304I) accumulated lesser amounts of 

0.019 ± 0.004% TFA (Table 3.3).  

 

3.4 Quantitation of Fatty Acid in Yeast Grown in the Absence of 18:2-9c,12c  

This section deals with the amounts of fatty acids that accumulated in transformed 

INVSc1 yeast cultured for 6 days in the absence of 18:2-9c,12c. These experiments were 

performed to quantify 18:2∆9,12 and 16:2∆9,12 geometric isomers in transgenic yeast cultures 

that expressed Crep1 or Crep1 mutants. Since 18:2-9c,12c was not added to these cultures, 

there was not enough substrate available for Crep1 (and mutants) to produce 18:1-9c,12a. No 

18:1-9c,12a was detected by GC-MS in any yeast culture that was not provided an external 

source of 18:2-9c,12c. The lack of 18:2-9c,12c allows for the detection of 18:2∆9,12 as well as 

16:2∆9,12 isomers that accumulated in transgenic cultures due to Crep1 desaturase activity 

(Table 3.4). 

 

3.4.1 The Accumulation of 18:2-9c,12c in Yeast Cultures in the Absence of 18:2-9c,12c  

18:2-9c,12c was detected by GC-FID in transformed INVSc1 strains that were grown 

for 6 days in the absence of 18:2-9c,12c (Figure 3.13). INVSc1 strains that were transformed 

with the empty plasmid pVT100U (negative control) accumulated trace amounts of the 18:2 

isomer to levels of 0.010 ± 0.001% TFA. Cultures harboring pVTCrep1 accumulated levels of 

0.039 ± 0.001% TFA. In regards to cultures expressing Crep1 mutants, cultures harboring 

pSG005 (F183L) contained the least amount of 18:2-9c,12c with levels of 0.013 ± 0% TFA, 

which is similar to negative controls. Cultures harboring pSG008 (F259L) produced the most 

18:2-9c,12c with levels accumulating to 0.239 ± 0.017% TFA, which is an ~5-fold increase 

compared to cultures expressing Crep1. 
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Figure 3.12 Accumulation of 16:2-9c,12t in Yeast Cultured in the Presence of 18:2-9c,12c 
A histogram indicating the levels of 16:2-9c,12t that accumulated in transformed INVSc1 yeast 
cultures that were grown for 6 days in the presence of 18:2-9c,12c. Results represent the means 
+/- standard error where n=3 independent experiments conducted in triplicate. 
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Table 3.4 The Accumulation of Fatty Acids in Yeast Cultured in Absence of 18:2-9c,12c 
Fatty acid accumulation observed in INVSc1 harboring respective plasmids. Cultures were 
grown for 6 days in the absence of 18:2-9c,12c. Results represent the means ± standard errors 
(n=3) from 3 independent experiments performed in triplicate. Values represent the % TFA. 
 

 

 

Plasmid 
(Mutation) 16:0 16:1-9c 16:2- 

9c,12t 
16:2- 
9c,12c 18:0 18:1-9c 18:2- 

9c,12t 
18:2- 
9c,12c 

pVT100U 
(- control) 

18.92 
±0.18 

45.74 
±0.22 ND ND 6.48 

±.09 
28.85 
±0.06 ND 0.010 

±0.001 
pVTCrep1 
(unmodified) 

19.54 
±0.22 

45.34 
±0.08 

0.107 
±0.002 ND 6.73 

±0.11 
28.18 
±0.16 

0.056 
±0.002 

0.039 
±0.001 

SG001 
(G97A) 

19.37 
±0.26 

45.23 
±0.23 

0.072 
±0.009 ND 6.73 

±0.15 
28.52 
±0.13 

0.043 
±0.005 

0.036 
±0.004 

SG002 
(A139S) 

19.26 
±0.27 

45.34 
±0.12 

0.042 
±0.003 ND 6.56 

±0.044 
28.75 
±0.19 

0.025 
±0.001 

0.022 
±0.002 

SG003 
(N146H) 

19.29 
±0.20 

45.23 
±0.05 

0.094 
±0.012 ND 6.71 

±0.07 
28.59 
±0.18 

0.053 
±0.007 

0.037 
±0.004 

SG004 
(Y150F) 

19.11 
±0.33 

45.48 
±0.014 

0.015 
±0 ND 6.62 

±0.09 
28.69 
±0.29 

0.052 
±0.002 

0.037 
±0.001 

SG005 
(F183L) 

19.58 
±0.43 

45.19 
±0.06 

0.021 
±0.002 ND 6.69 

±0.10 
28.50 
±0.29 

0.009 
±0.001 

0.013 
±0 

SG006 
(F183W) 

19.38 
±0.31 

45.48 
±0.37 

0.036 
±0.002 ND 6.59 

±0.13 
28.42 
±0.09 

0.057 
±0.003 

0.037 
±0.001 

SG007 
(K194R) 

19.26 
±0.21 

45.14 
±0.24 

0.064 
±0.002 ND 6.60 

±0.03 
28.89 
±0.20 

0.033 
±0.002 

0.027 
±0.001 

SG008 
(F259L) 

19.38 
±0.16 

45.95 
±1.04 

0.301 
±0.027 

0.062 
±0.005 

6.27 
±0.47 

27.70 
±0.77 

0.111 
±0.008 

0.239 
±0.017 

SG009 
(H266Q) 

19.46 
±0.42 

44.97 
±0.09 

0.280 
±0.028 ND 6.65 

±0.11 
28.44 
±0.25 

0.156 
±0.015 

0.035 
±0.003 

SG010 
(V304I) 

19.73 
±0.63 

45.07 
±0.15 

0.030 
±0.003 

0.021 
±0.002 

6.66 
±0.19 

28.43 
±0.51 

0.009 
±0.002 

0.047 
±0.004 

SG011 
(H306D) 

19.54 
±0.34 

45.24 
±0.18 

0.041 
±0.001 ND 6.56 

±0.09 
28.60 
±0.18 

0.010 
±0.002 

0.021 
±0 

SG012 
(I317M) 

19.28 
±0.37 

45.34 
±0.06 

0.066 
±0.001 ND 6.48 

±0.13 
28.78 
±0.30 

0.037 
±0.001 

0.029 
±0 
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Figure 3.13 Accumulation of 18:2-9c,12c in Yeast Cultured in the Absence of 18:2-9c,12c 
A histogram indicating the levels of 18:2-9c,12c that accumulated in transformed INVSc1 yeast 
cultured for 6 days in the absence of 18:2-9c,12c. Results represent the means ± standard errors 
(n=3) from 3 independent experiments performed in triplicate. 
 
 
3.4.2 The Accumulation of 18:2-9c,12t in Yeast Cultures in the Absence of 18:2-9c,12c  

The percentage of 18:2-9c,12t was determined by GC-FID in transformed INVSc1 strains that 

were grown for 6 days in the absence of 18:2-9c,12c (Figure 3.14). INVSc1 strains that were 

transformed with the empty plasmid pVT100U (negative control) did not accumulate any levels 

of 0.056 ± 0.002% TFA. The least amount of 18:2-c9,12t detected (other than in negative 0.009 

± 0.001% TFA. Larger quantities of 18:2-9c,12t were detected in yeast harboring pSG008 

(F259L) with levels of 0.111 ± 0.008% TFA, an increase of 98% compared to Crep1 cultures. 

The greatest amounts of 18:2-9c,12t was seen in cultures harboring  pSG009 (H266Q) with 

levels of 0.156 ± 0.015% TFA, an increase of 179% when compared to cultures expressing 

Crep1. 
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Figure 3.14 Accumulation of 18:2-9c,12t in Yeast Cultured in the Absence of 18:2-9c,12c 
A histogram indicating the levels of 18:2-9c,12t that accumulated in transformed INVSc1 yeast 
cultured for 6 days. Results represent the means ± standard errors (n=3) from 3 independent 
experiments performed in triplicate. 
 

3.4.3 The Accumulation of 16:2−9c,12c and 16:2-9c,12t in Yeast Cultured in the Absence 

of 18:2-9c,12c  

16:2 isomers were detected by GC-FID in transformed INVSc1 strains when grown in the 

absence of 18:2-9c,12c (Figure 3.15). Although greater amounts of 16:2 isomers were detected 

in cultures not provided with 18:2-9c,12c when compared to cultures that had been grown in 

the presence of 18:2-9c,12c, their accumulation patterns were remarkably similar. Neither 16:2-

9c,12t nor 16:2-9c,12c isomers were detected in INVSc1 strains that were transformed with the 

empty plasmid pVT100U (negative control) when cultured in the absence of 18:2-9c,12c. 

Cultures expressing unmodified Crep1 accumulated 16:2-9c,12t to levels of 0.107 ± 0.002% 

TFA but did not accumulate any 16:2-9c,12c. The largest producers of 16:2-9c,12t were seen 
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Figure 3.15 Accumulation of 16:2-9c,12t in Yeast Cultured in the Absence of 18:2-9c,12c 
A histogram indicating the levels of 16:2-9c,12t that accumulated in transformed INVSc1 yeast 
cultured for 6 days in the absence of 18:2-9c,12c. Results represent the means ± standard errors 
(n=3) from 3 independent experiments performed in triplicate. 
 

in cultures harboring plasmids pSG008 (F259L) and pSG009 (H266Q) where levels of the 16:2 

isomer accumulated to 0.301 ± 0.027% TFA and 0.280 ± 0.028% TFA, respectively. This 

represents an increase of 162-181% of 16:2-9c,12t isomer accumulation when compared to 

cultures expressing Crep1. In congruence with earlier experiments, the smallest amount of 

16:2-9c,12t was detected in yeast strains harboring pSG004 (Y150F) where levels accumulated 

to 0.015% TFA. This represents a 86% decrease of 16:2-9c,12t accumulation when compared 

to cultures expressing Crep1.  

The 16:2-9c,12c isomer was only detected in two transformed yeast strains. Strains 

harboring pSG008 (F259L) showed 0.062 ± 0.005% TFA of 16:2-9c,12c, whereas strains 

harboring pSG010 (V304I) accumulated amounts of 0.021 ± 0.002% TFA (Table 3.4).  
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3.5 Analysis of Ratios Used to Determine the Effects of Mutations in Crep1 

While comparing the data from relative amounts of fatty acids indicates potential key target 

residues within Crep1, some product ratios are instrumental in determining how specific amino 

acid residues affect activity. Product ratios are used to determine mutational effects on: 1) 

Crep1 acetylenase activity to desaturase activity; 2) cis/trans ratios for desaturase activity (i.e. 

if there is a preference for the production of cis or trans isomers in mutant constructs); and 3) 

Crep1 substrate selectivity (i.e. if there is a preference for 16:1-9c or 18:1-9c during 

desaturation). 

 

3.5.1 Ratios Used to Determine Desaturase/Acetylenase Activity 

To determine whether mutant constructs had increased desaturase activity relative to 

acetylenase activity, product ratios considering the accumulation of 18:2-9c,12c and 18:1-

9c,12a in transgenic yeast cultures were calculated (Table 3.5).  Average amounts of 18:2-

9c,12c that accumulated in each strain grown in the absence of 18:2-9c,12c were compared to 

the average amounts of 18:1-9c,12a that accumulated in the same strain when grown in the 

presence of 18:2-9c,12c. These product ratios allow for the determination of how a mutation 

within Crep1 affects relative desaturase and acetylenase activities. Product ratios were also 

compared to the desaturation/acetylenation ratio in yeast strains expressing unmodified Crep1 

and are reported as a fold increase. 

Three Crep1 mutant constructs show an increase in desaturation when compared to 

unmodified Crep1: pSG004 (Y150F) shows a 10.5 fold increase in desaturase activity relative 

to acetylenase activity; pSG008 (F259L) shows a 15 fold increase in desaturase activity; 

pSG009 (H266Q) showed a 6.4 fold increase in desaturase vs. acetylenase activity when 

compared to the positive control strains expressing Crep1. Product ratios were compiled from 

the means and standard error (n=3) from three independent experiments conducted in triplicate.  

3.5.2 Ratios Used to Determine cis/trans Desaturase Activity 

To determine if point mutations affect Crep1 desaturase activity so that there is a preference for 

cis or trans isomer formation, the total cis isomer accumulation was compared to the total trans 

isomer formation in transgenic yeast cultures. Average amount of 16:2-9c,12c and 18:2-9c,12c 

which accumulated were summed and compared to total amounts of  (summed) 16:2-9c,12t 
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Table 3.5 Product Ratios Used to Determine the Effects of Mutations on Crep1 

Three different ratios were used to determine the effect of point mutations on Crep1 activity. 
Product ratios used to define the relationship between desaturation and acetylenation were 
based on the average amounts of 18:2-9c,12c compared to 18:1-9c,12a which accumulated in 
Crep1 and Crep1 mutant cultures. These ratios are listed below the ‘desaturation/acetylenation’ 
heading. The preference for cis isomer formation compared to trans isomer production is 
calculated by considering the total amount of 16:2-9c,12c and 18:2-9c,12c compared to total 
amounts of 16:2-9c,12t and 18:2-9c,12t and is found under the ‘total cis/total trans’ column. 
Substrate selectivity was determined by considering the total amounts of 16:2∆9,12 isomers 
produced compared to 18:2∆9,12 isomers produced and is found under the total ‘16:2/total 
18:2’ column. All ratios are compared to ratios obtained from yeast expressing unmodified 
Crep1 and are listed in the ‘fold increase’ column following respective ratios. 
 

Plasmid 
(Mutation) 

Desaturation 
Acetylenation 

Fold 
Difference 

Total cis 
Total trans 

Fold 
Difference 

Total 16:2 
Total 18:2 

Fold 
Difference 

pVTCrep1 
(unmodified) 

0.20 
± 0.03 

1 0.239 
± 0.008 

1 1.13 
± 0.04 

1 

pSG001 
(G97A) 

0.46 
± 0.08 

2.4 0.313 
± 0.052 

1.3 0.91 
± 0.15 

0.8 

pSG002 
(A139S) 

0.29 
± 0.09 

1.5 0.328 
± 0.036 

1.4 0.89 
± 0.09 

0.8 

pSG003 
(N146H) 

0.25 
± 0.05 

1.3 0.252 
± 0.042 

1.1 1.04 
± 0.18 

0.9 

pSG004 
(Y150F) 

2.06 
± 0.35 

10.5 0.552 
± 0.022 

2.3 0.17 
± 0.01 

0.1 

pSG005 
(F183L) 

0.31 
± 0.12 

1.6 0.433 
± 0.043 

1.8 0.95 
± 0.10 

0.8 

pSG006 
(F183W) 

0.51 
± 0.11 

2.6 0.398 
± 0.024 

1.7 0.38 
± 0.03 

0.3 

pSG007 
(K194R) 

0.34 
± 0.06 

1.7 0.278 
± 0.015 

1.2 1.07 
± 0.06 

0.9 

pSG008 
(F259L) 

2.99 
± 0.53 

15.2 0.731 
± 0.082 

3.1 1.04 
± 0.12 

0.9 

pSG009 
(H266Q) 

1.25 
± 0.29 

6.4 0.08 
± 0.01 

0.3 1.5 
± 0.2 

1.3 

pSG010 
(V304I) 

0.47 
± 0.08 

2.4 1.74 
± 0.27 

7.3 0.91 
± 0.13 

0.8 

pSG011 
(H306D) 

0.36 
± 0.04 

1.8 0.412 
± 0.024 

1.7 1.32 
± 0.09 

1.2 

pSG012 
(I317M) 

0.22 
± 0.03 

1.1 0.282 
± 0.005 

1.2 1.00 
± 0.02 

0.9 

 

 

and 18:2-9c,12t which accumulated in each yeast strain. Product ratios were also compared to 

cis/trans product ratio determined in yeast expressing unmodified Crep1 and are reported as a 

fold increase (Table 3.5). 
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With regard to the total cis to total trans product ratios, 3 mutant constructs increased 

production of cis isomers when compared to Crep1. These constructs are pSG004 (Y150F) 

which shows a 2.3 fold increase, pSG008 (F259L) which indicates a 3.1 fold increase, and 

pSG010 (V304I) which had a 6.4 fold increase. These constructs produced more cis isomers 

than trans isomers when compared to Crep1 controls. 

A decreased cis to trans product ratio was seen in only one mutant construct, pSG009 

(H266Q). Yeast strains harboring this plasmid showed a 70% decrease in cis/trans product 

accumulation when compared to Crep1 controls which indicates a preference for the trans 

isomer to be formed during desaturation.  

 

3.5.3 Ratios Used to Determine Substrate Selectivity 

To determine if Crep1 mutants preferred 16:1−9c or 18:1−9c as a substrate during 

desaturation, the 16:2/18:2 product ratios were calculated and compared (Table 3.5). The 

summed amounts of 16:2 isomers were compared to summed 18:2 isomers for each yeast strain 

grown in the absence of 18:2-9c,12c. 16:2/18:2 product ratios were also compared to controls 

expressing unmodified Crep1 and are reported as a fold increase.  

Table 3.5 shows that two mutant constructs appear to prefer 18:1−9c as a substrate: 

pSG004 (Y150F) showed a 90% decrease of 16:2/18:2 product accumulation when compared 

to Crep1; pSG006 (F183W) showed a 20% decrease in 16:2/18:2 product accumulation when 

compared to Crep1 controls. Other mutant constructs did not appear to substantially affect 

substrate selectivity. 
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4. DISCUSSION 

In this work the structure/function relationship between FAD2s and acetylenases was 

considered by examining the conserved amino acid residues which occur uniquely in either 

class of enzymes. Such amino acid residues were targeted for site-directed mutagenesis within 

the acetylenase Crep1, exchanging native amino acids in Crep1 with residues normally found in 

FAD2s. The effects that these mutations had on the relative activity of Crep1 were observed 

after expressing the mutated enzymes in INVSc1 and analyzing the product ratios of the 

transformed cultures by GC-FID and GC-MS. By assessing different product ratios, the effect 

mutations had on relative Crep1 activity could be divided into three different categories: 

relative acetylenase to desaturase activity, stereoselectivity, and substrate selectivity.  

 

4.1 Sequence Similarity and Choice of Mutants 

Conservation of amino acids in the selected FAD2 and acetylenase sequences were 

compared by using CPDL software. CPDL compares the conservation of amino acids between 

two subsets of protein sequences and reports the differences between these two subsets. CPDL 

also compares amino acid properties, such as size and hydrophobicity, which are conserved in 

either group of enzymes. Only the CPDL results that indicated conserved amino acids and not 

conserved amino acid properties for site-directed mutagenesis were regarded. A rational 

approach in determining which amino acids most likely differentiate FAD2 and acetylenase 

activity was achieved by using CPDL. This approach is based on the neutral theory of 

molecular evolution (NTOME) which holds that molecular evolution is dominated by genetic 

drift and not solely by selective adaptation (Kimura, 1983). The rate of molecular evolution is 

constant, an effect not explained by adaptation, and is proportional to the rate of mutation. The 

NTOME considers that most fixed mutations that occur at the molecular level are neutral in 

nature, and do not affect the active site and/or other critical sites within an enzyme. Therefore a 

mutation that causes the substitution/deletion of an amino acid residue within a protein that is 

not involved in the protein’s direct function should not affect or influence the overall fitness of 

the allele, and is therefore inconsequential and not selected for. In contrast, an amino acid 

residue which is involved in the functionality of a protein is required for the allele’s overall 

fitness and may be selected for at the genetic level. The NTOME is the basis for modern 

protein engineering which has been recently discussed by Shanklin, 2008. 
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 It was determined that strict amino acid conservation differed at 11 key positions when 

considering FAD2s and acetylenases. CPDL results also indicated other sites between the two 

groups of enzymes which had differences in properties, but no strict conservation of amino 

acids occurred. Although these other sites may affect the structure and function of FAD2 and 

acetylenase enzymes, they were considered to be secondary to the identified conserved amino 

acid differences and were not regarded furthermore in this study. It was decided that the 11 

amino acid locations were of primary importance and that these targets were the priority for 

further experimentation.  

 

4.2 Expression of pVTCrep1 and pVT100 in Yeast 

The production of 18:1-9c,12a, as well as 16:2 and 18:2 cis/trans isomers in transgenic 

yeast was successfully accomplished in these studies. Cultures expressing pVTCrep1 were used 

to represent the Crep1 positive control throughout this work, and cultures expressing pVT100U 

(empty plasmid) were used as the negative control. 18:1-9c,12a was detected in yeast cultures 

harboring pVTCrep1, which accumulated to 0.199% TFA when grown in the presence of the 

substrate, 18:2-9c,12c. Initial attempts from earlier research to produce 18:1-9c,12a in 

transgenic yeast successfully generated up to 0.3% of total peak area using GC-FID (Lee et al., 

1998). Later studies which also expressed pVTCrep1 in yeast were more successful. Carlsson 

et al., 2004, reported 18:1-9c,12a accumulation to 0.53% TFA when transgenic yeast was 

grown in the presence of 18:2-9c,12c. Differences between our values and those reported by 

Lee et al., 1998, and Carlsson et al., 2004, may be attributed to the different yeast strain used to 

express pVTCrep1, the method by which fatty acids were prepared for FID-GC analysis, and 

by differences in the fatty acid profiles used by each laboratory. 18:1-9c,12a was not detected 

in negative controls.  

In addition to 18:1-9c,12a, the desaturation products that accumulated in transgenic 

cultures when grown in the presence of 18:2-9c,12c were also considered. When cultures were 

fed 18:2-9c,12c, no 18:2 fatty acid could be considered as a direct product of the transgenic 

yeast since amounts were masked by the addition of the substrate. Although 18:2 products 

could not be considered in these cultures, 16:2-9c,12t product was detected in cultures 

expressing Crep1. 16:2-9c,12c was not detected in cultures harboring pVTCrep1, but 16:2-
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9c,12t did accumulate to 0.067% TFA. There exists no previous report of 16:2 accumulations 

with regard to Crep1.  

When cultures were grown in the absence of substrate (18:2-9c,12c), 18:2 and 16:2 

geometric isomers were successfully detected. Cultures harboring pVTCrep1 accumulated 

18:2-9c,12c to levels of 0.039% TFA. This amount represents the product of a FAD2-like 

desaturation of endogenous 18:1-9c. The amount of 18:2-9c,12c detected is less than those 

reported by previous investigators (Carlsson et al., 2004) who report an accumulation of 18:2-

9c,12c to 0.18% TFA. Again, these differences may be due to the different yeast strain used by 

both laboratories, the differences in culturing, sample preparation, and fatty acid profiles used. 

Slight amounts of 18:2-9c,12c to levels of 0.010% TFA were also detected in negative controls. 

These slight amounts of 18:2-9c,12c, which were very close to the detection limits of our 

instruments (~0.005%), should not have appeared and are possibly due to impurities found in 

the media itself. Carlsson et al., 2004, did not detect any such product in their negative 

controls. The amounts of 18:2-9c,12c observed in transgenic cultures were constant throughout 

the experiments, and the increased production of 18:2-9c,12c in positive controls  does indicate 

that Crep1 possesses a FAD2-like desaturation function when compared to our negative 

controls.  

18:2-9c,12t was also detected in yeast expressing pVTCrep1, but was not detected in 

negative controls. The 18:2-9c,12t is not a typical FAD2 desaturation product and instead 

represents a diverged FAD2-like reaction. The amount of 18:2-9c,12t detected in this work 

accumulated to 0.056% TFA. This amount is smaller than that reported by Carlsson et al., 

2004, which reported an accumulation to 0.47% TFA.  

The amounts of 16:2 isomers have not previously been reported, but prove valuable for 

comparison of cultures which have and have not been grown in the presence of 18:2-9c,12c. 

16:2-9c,12c was not detected in positive controls when grown in the absence or presence of 

18:2-9c,12c. The 16:2-9c,12t isomer accumulated to 0.107% TFA, a greater amount than that 

seen in cultures grown in the presence of 18:2-9c,12c. This increase in 16:2-9c,12t is probably 

due to a proportional effect seen in the TFA profile, since these cultures lacked the added 18:2-

9c,12c which offset the proportional levels of all other fatty acids detected in cultures. The 

production of 16:2-9c,12t in Crep1 expressing cultures, whether they were grown in the 
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presence or absence of 18:2-9c,12c confirms the trans desaturation activity of the Crep1 

enzyme. No 16:2 isomers were detected in negative controls.  

 

4.3 Expression of Crep1 Mutants in Yeast  

The activity of Crep1 and mutants derived from Crep1 cannot be measured directly in 

vitro since these proteins are incalcitrant to purification methods due to their membrane-

association. Furthermore, the protein expression levels of Crep1 were not measured and 

therefore the relative amounts of fatty acids that accumulated may be deceiving, although at 

times are instrumental as complementary data. Thus, the effect that point mutations had on the 

relative activity of Crep1 was considered by comparing product ratios for specific fatty acids in 

positive controls with that found in Crep1 mutant expressing cultures.  The use of product 

ratios has been well established in previous studies which consider the functionality of 

desaturases (Broun et al., 1998a; Broadwater et al., 2002). As well it is important to consider 

how point mutations affect the relative activity of Crep1 and to designate the differences with 

respect to chemoselectivity, substrate selectivity, and stereoselectivity. These different 

activities of Crep1 are individually discussed in the following subsections. 

 

4.3.1 Chemoselectivity 

The preference for Crep1 mutants to insert either a double bond or a triple bond at the 

∆12 position is discussed in this section. The relative desaturase and acetylenase activities were 

considered by comparing the product ratios of total 18:2-9c,12c to total 18:1-9c,12a 

accumulation in transgenic cultures. When compared to positive controls, the 

desaturation/acetylenation ratio of F259L mutants showed the greatest change with a ~15 fold 

increase. Other mutations also showed a large increase in this respect, including Y150F and 

H266Q which displayed 10.5 and 6.4 fold increase respectively (Table 4.1).  

Although there were other fluctuations seen in product ratios throughout the array of 

mutant constructs, no other mutation increased ∆12 desaturation as strongly as F259L. Based 

on the desaturase/acetylenase product ratio, position F259L appears to be the most important 

determinant tested regarding the chemoselectivity of Crep1. The F259L mutation had the effect 

of partially converting the Crep1 acetylenase to a FAD2-like desaturase. 
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The Y150F point mutation also caused a large change in acetylenation to desaturation 

suggesting that tyrosine at this position plays a key role in the acetylenase functionality of 

Crep1. Y150F also appears to be involved in substrate recognition (discussed below under 

substrate selectivity) capable of desaturation of the 18:1-9c substrate, but not as effectively in 

16:1-9c desaturation. This strongly suggests that Y150 is involved in the active site geometry 

and/or substrate binding cavity.  

Relative activity ratios obtained from yeast harboring pSG009 (H266Q) also showed an 

increase of desaturation over acetylenation when compared to positive controls. This increase 

in relative desaturase activity over acetylenase activity is coupled to a decrease in 18:1-9c,12a 

accumulation, whereas 18:2-9c,12c accumulation remains relatively the same as that seen in 

positive controls. This suggests that although H266Q is a strong determinant of relative 

acetylenase activity, it does not attenuate relative cis desaturase activity. 

 

4.3.2 Stereoselectivity 

Amino acid changes that affect the stereoselectivity of Crep1 are examined by 

considering the product ratios of total 18:2 and 16:2 12-cis isomers to the total 18:2 and 16:2 

12-trans isomers. Total cis to trans product ratios indicate that either point mutations at V304I 

or F259L result in an increased stereoselective preference for the 12-cis isomer to be formed 

when compared to controls, whereas a point mutation at H266Q increases preference for 12-

trans isomer production (Table 4.1). 

These changes indicate that the location of these mutations play an important role in 

substrate binding and active site geometry. The determinant of whether a cis or trans isomer is 

produced is believed to be based on the conformation that the substrate molecule possesses 

(cisoid vs transoid) when introduced to the active site (Carlsson et al., 2004). This premise is 

based on observations that hydrogen abstraction occurs in a step-wise manner initially at the 

C12 position (slow) followed by another hydrogen abstraction at C13 (fast) (Reed et al., 2003). 

The intermediate in this 2-step reaction has never been isolated, leading Carlsson et al., 2004 to 

suggest that a change in conformation during the reaction is unlikely, and that the substrate 

must already possess a specific conformation which will determine the reaction outcome. In the 
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Table 4.1 Crep1 Targeted Amino Acids Showing the Greatest Change in Product Ratio 
when Compared to Positive Controls 
 
This table highlights the 4 point mutations which affected Crep1 relative activity the greatest. 
Values represent the fold increase or decrease in product ratio compared to the positive control 
(where the ratio in the positive control is always = 1).  
 

 
Crep1 Mutation 

RATIO 
cis Desaturation 
Acetylenation 

RATIO 
Total cis 

Total trans 

RATIO 
Total 16:2 
Total 18:2 

Y150F 10.5 2.3 0.1 
F259L 15.2 3.1 0.9 
H266Q 6.4 0.3 1.3 
V304I 2.4 7.3 0.8 

 
 

case of the cis isomer, an abstraction of the pro-R hydrogen at both carbons (first at C12 then 

quickly afterwards at C13) is required, whereas during the trans isomer formation, a pro-R 

hydrogen abstraction at C12 is followed by a pro-S hydrogen abstraction at C13. The 

production of either a cis or trans isomer requires that respectively, the pro-R or pro-S 

hydrogen of C13 is in close proximity to the active site (Figure 4.1). Thus, the amino acid 

changes which affect the stereoselectivity of Crep1 should also affect the structure of the 

substrate-binding cavity or possibly the active site geometry itself. 

The accumulation patterns of cis and trans isomers show that although cis isomer 

formation is preferred with the F259L mutation, both cis and trans isomer production is 

increased when compared to controls. The case for substrate conformation does not seem to 

apply for this mutation, which affects more the desaturase activity than solely the 

stereoselectivity of Crep1.  Conversely, the affect that V304I has on stereoselectivity is coupled 

with a diminished ability to produce both 16:2-9c,12t and 18:2-9c,12t and a slight increase in 

the amount of  16:2-9c,12c and 18:2-9c,12c when compared to controls, which suggests that a 

substrate binds preferably in a cisoid conformation, or at least, that a pro-R hydrogen 

abstraction at C13 predominates.  

 The H266Q mutation also strongly affects Crep1 stereoselectivity, although in this case, 

the production of the trans isomer is strongly preferred over the cis isomer. The stereoselective 

preference caused by the H266Q mutation, coupled to the increased desaturation/acetylenation 
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ratio discussed earlier (see section 4.3.1), indicate that substrate binding cannot appropriately 

accommodate a cis isomer, whether it is a product, or in the case of 18:1-9c,12a production, a 

substrate. According to these results, a mutation at H266Q in Crep1 generates a serendipitously 

engineered ∆12 trans desaturase.   

 

4.3.3 Substrate selectivity 

Some point mutations in Crep1 led to changes in the total 16:2 isomers to total 18:2 

isomers ratio. The differences in product ratios indicate that the substrate selectivity of Crep1 

was modified when compared to positive controls. Yeast harboring either pSG004 (Y150F) or 

pSG006 (F183W) show a 10-fold and 3-fold decrease, respectively, in 16:2/18:2 product ratio 

indicating that an 18:1-9c substrate is preferred over a 16:1-9c substrate (Table 4.1). It was also  

seen that these changes did not affect the amount of 18:2 12-cis and 12-trans isomers, but 

instead accumulated less 16:2-9c,12t when compared to positive controls (Figures 3.13 - 3.15). 

This preference for a longer substrate could be the result of direct modification of the substrate 

binding channel, affecting substrate positioning in the active site. It can be difficult to 

understand why a longer-chained substrate should be recognized preferably over a shorter-

chained substrate if chain-length recognition is based solely on the position of a pre-existing ∆9 

double bond in substrate molecules. Structural changes which influence the size of a substrate 

binding cavity that accommodate for an 18-carbon long substrate should also be capable of 

accommodating a shorter 16-carbon long substrate, unless (1) substrate recognition of Crep1 

(and likewise other FAD2 enzymes) is influenced by methyl-end recognition, and/or (2) a 

substrate-binding pocket must not allow excessive movement of the substrate. It should also be  

noted that the mutations in Crep1, Y150F and F183W, resulted in aromatic amino acids being 

replaced with comparable aromatic amino acids.  

The construct pSG005 (F183L) which replaced the aromatic phenylalanine with a non-

aromatic and much smaller leucine resulted in the near ablation of desaturase activity with both 

16:1-9c and 18:1-9c substrate (Figures 3.13 - 3.15). Therefore, it is possible that a degree of 

constriction must exist within the substrate binding cavity for successful desaturation and/or 

acetylenation to occur. 
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Figure 4.1 Conformations of 18:1-9c Bound to C. alpina ∆12 Acetylenase 
The cisoid conformation in (A) will produce 18:2-9,12c and the transoid in (B) will produce 
18:2-9c,12t (reproduced from Carlsson et al., 2004). 
 

 

4.3.4 Accumulation Patterns 

As mentioned earlier, the protein expression levels of Crep1 were not determined, and it 

is therefore not recommended that relative amounts for any fatty acid that may have 

accumulated be representative of Crep1 activity. The following discussion on the accumulation 

patterns for Crep1 products is only meant to serve as complementary and supplementary 

information which adds to the earlier discussion. 

Notably, all point mutations resulted in a decrease of 18:1-9c,12a to some degree when 

compared to positive controls, indicating the importance of each identified amino acid with 

respect to the acetylenase functionality of Crep1. The greatest decrease in 18:1-9c,12a 

accumulation was seen in strains harboring pSG004 (Y150F), pSG005 (F183L), and pSG009 

(H266Q). Earlier mention of Y150F and F183L associated these mutations with substrate 

recognition and active site geometry. To reiterate on this matter, the active site and substrate 

binding cavity appear to be very specific in size to allow for an enzymatic reaction to occur. It 

is also important to remind the reader that F183L represents a mutation which does not 

naturally exist in either acetylenases or FAD2s, and the loss of activity caused by F183L is not 

completely unexpected. H266Q mutants represent a special case in substrate binding (as 

discussed above; see section 4.3.2) indicating a preference to bind substrate in the transoid 
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conformation. Since Crep1 requires 18:2-9c,12c (possessing a specific cis conformation) for 

the production of 18:1-9c,12a, the inability of the H266Q mutant to bind cis stereoisomers 

would also explain its decreased production of 18:1-9c,12a.  

The accumulation of 18:2-9c,12c in transgenic cultures was increased in yeast harboring 

pSG008 (F259L) and to a lesser degree, pSG010 (V304I) (Table 3.4). The increase in ∆12 cis 

desaturase activity responsible for the increased 18:2-9c,12c accumulation is reflected in the 

presence of 16:2-9c,12c also detected in these cultures. 16:2-9c,12c was not detected in any 

other culture including positive controls. The increased desaturase effect of F259L differs from 

that seen by V304I in two ways. First, a much higher proportion of 18:2 and 16:2 cis isomers 

are produced with mutations at F259L than at V304I, and second, mutations at F259L increased 

not only the production of the 16:2 and 18:2 cis isomers, but of the trans isomers as well. This 

effect was not seen in V304I mutants, which only increased the production of 16:2 and 18:2 cis 

isomers. It appears that F259L amplifies cis and trans desaturation, whereas V304I 

accumulated greater amounts of cis isomers only. 

Some mutations also resulted in decreased 18:2-9c,12c accumulation. The greatest loss 

was caused by F183L which resulted in 18:2-9c,12c accumulation to levels seen in negative 

controls, suggesting the ablation of desaturase activity. Other mutants with diminished 

desaturase activity, including A139S and H306D, appeared to operate at levels comparable to 

their diminished acetylenase activity.  

 

4 .4 Location of Mutations 

These studies indicate that individually replacing either 1 of 4 amino acids affected 

Crep1 activity the strongest (Table 4.1). Only one of these residues (V304) is directly proximal 

to the third conserved His-box, whereas the remaining three residues exist in a variety of 

positions found between the second and third His-boxes. The Y150 residue is located 12 

residues past the 2nd His-box; the F259 and H266 residues exists near the interface of the 4th 

transmembrane domain and cytoplasmic domain (Figure 3.3). These findings are not in 

agreement with the proposition made by Broun et al., 1998a, who suggested that the amino 

acids which affect activity the strongest exist near a conserved His-box. Broun et al., 1998a, 

considered 7 amino acids which differed between desaturases and hydroxylases, and by 

exchanging as little as 4 of these residues, produced a functional hydroxylase from a 
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desaturase, and vice versa. Only 2 amino acids of the 11 that were detected in this study were 

also examined by Broun et al.  The residues found at G97(A) and I317(M) were also described 

by Broun et al., 1998a, which they label as A104 and M324. During this study, replacing these 

amino acid residues in Crep1 with those found in analogous positions in FAD2s affected 

activity only modestly. To help compare the locations of target amino acids in this study with 

that conducted by Broun et al., 1998a, amino acid targets have been indicated in the Crep1 2-D 

topological representation (Figure 4.2). 

Work conducted by Libisch et al., 2000, which involved the construction of chimeras 

derived from Borago officinalis ∆6 fatty acid desaturase (Boofd6) and ∆8 fatty acid desaturase 

suggest that the 1st and 2nd predicted transmembrane domains from Boofd6 are involved in the 

formation of a substrate binding site. Their results were based on the inability of their chimeras 

to desaturate an 18-carbon long substrate, although were capable of desaturation of a 16-carbon 

long substrate. Results from this study only highlights the importance of Y150 with regard to 

substrate specificity, where 18:1-9c could be successfully desaturated, but shorter 16:1-9c 

could not. My results instead highlight the importance of the last (4th) predicted transmembrane 

domain with regards to substrate binding, where the H266Q mutant was found to generate 

increased amounts of trans isomers most probably due to substrate binding in a transoid 

conformation. This implies that the last transmembrane domain is of chief importance in 

stereoselectivity and contributes to a substrate binding channel. Additionally, according to 

Crep1 topology, this area is predicted to be at the interface of the cytosol and ER membrane, 

which seems a plausible location for substrate binding to occur.  

More recently, Meesapyodsuk et al., 2007, demonstrated that two residues (V or I at 

152 and A or V at 206) are important in determining the catalytic activity of CpDes12 and 

CpDesX desaturases. Residues at position 152 and 206 are analogous to V95 and A149 in 

Crep1. Although neither of these amino acids was targeted for SDM in my work, they exist 

next to amino acids G97 and Y150 in Crep1 which were targeted and analyzed in my work. 

The amino acid G97, which has also been mentioned by Broun et al., 1998a, only yielded 

modest affects when glycine was exchanged for alanine. Alternatively, Y150 was found to 

strongly affect Crep1 activity whether regarding relative acetylenase/desaturase activity, 

substrate selectivity, or stereoselectivity (Table 4.1). It is notable that these locations are likely 

involved in either the substrate binding site and/or the active site geometry. 
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Figure 4.2 Amino Acid Positions Targeted Within Crep1  
This diagram compares the amino acid positions which were targeted for site-directed 
mutagenesis in this study with amino acid positions which were targeted by an earlier study 
conducted by Broun et al., 1998a. Red circles indicate positions targeted in this work, whereas 
yellow circles indicate the positions targeted by Broun et al., 1998a. Two positions were 
exactly the same in both studies and are highlighted by stars. Conserved histidine motifs are 
represented by blue circles, which are believed to coordinate a diiron cluster (green). Amino 
acid positions are shown next to the respective circle. 
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5. CONCLUSIONS 

Results from this study have indicated the overall importance of several amino acid 

locations within the acetylenase Crep1 with regard to chemoselectivity, stereoselectivity, and 

substrate preference. Of primary importance were 4 amino acid substitutions, F259L, Y150F, 

H266Q, and V304I, which all contributed different effects on the reaction outcome. F259L 

affected the desaturase to acetylenase product ratio the greatest, implying its importance in 

conversion of an acetylenase to an atypical FAD2 capable of producing both cis and trans 

isomers, whereas V304I resulted in the conversion of Crep1 into a stereoselective FAD2, where 

the production of cis isomers of 16:2 and 18:2 were increased. The Y150F mutations led to a 

decrease in acetylenase activity, without any decrease in desaturase activity, also proving an 

important selector of enzyme activity in Crep1. The H266Q mutation affected substrate 

selection, seemingly causing an decreased capacity for the enzyme to bind substrate (16:1-9c 

and/or 18:1-9c) in a cisoid conformation, resulting in an increased accumulation of trans 

product. Other amino acid locations also affected relative activity of Crep1, but not greater than 

mutations at these 4 locations. The locations of these amino acids have been mapped onto a 2-

D topological representation of Crep1 and have implicated the cytosolic end of the 4th 

transmembrane domain in substrate recognition.  

 Future studies will be required to fully understand the structure/function relationship 

between acetylenases and desaturases. Further studies regarding the plasticity of Crep1 will be 

required to better understand its variant activity. Experiments which replace not one, but two or 

more amino acids within Crep1 would help to enlighten the acetylenase/desaturase relationship. 

An example of this would be to construct a mutant with both H266Q and F259L mutations and 

to explore the effects thereafter. Another experiment should investigate mutant constructs in a 

host other than yeast, since 18:1-9c,12a has been shown to be toxic to the cell (Ford et al., 

1986; Croft et al., 1987; Nugteren and Christ-Hazelhof, 1987). Experiments which use A. 

thaliana instead of S. cerevisiae have shown to accumulate greater amounts of 18:1-9c,12a 

(Broun et al., 1998b) and could prove more accurate when determining fatty acid content. 

Lastly, much of the data produced from this study cannot be validated due to the lack of protein 

expression validation. Therefore it is important to produce antibodies directed either to Crep1 

or to co-express Crep1 with a sequence tag used for antibody detection (i.e. histidine tag), 

which would allow for the confirmation of protein expression. 
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