
A Parallel Gr�obner Factorizer

Hans-Gert Gr�abe , Wolfgang Lassner

Institut f�ur Informatik, Universit�at Leipzig, Germany

June 24, 1994

Abstract

We report on some experience with a parallel version of the Gr�obner basis algorithm with

factorization, implemented in the REDUCE package CALI [4]. It is based on a coarse grain
parallel master-slave model with distributed memory. This model was realized on an HP

workstation cluster both with a disk remote connection based on (ordinary) REDUCE [9] and

the special PVM-based parallel REDUCE version of H. Melenk and W. Neun [7].
Our considerations focus on a detailed study of the practical time behaviour of the paral-

lelized improved Gr�obner factorization algorithm [5]. For well splitting examples, where the

number of intermediate subproblems is large compared to the number of parallel processes
available on the system (only for such examples this approach makes sense), we've got almost

always a good load balance. Since even for the relative slow disk remote connection the results

are encouraging, we conclude that with a fast and stable communication hard- and software
one will obtain a serious speed up on such problems compared to the serial implementation.

1 Introduction

In a precedent paper [5] we discussed a new (serial) implementation of the Gr�obner factorization
algorithm. Factorized Gr�obner bases are up to now the most powerful approach to the determination
of the solution set of a well splitting system of polynomial equations over an algebraically closed
�eld. A �rst detailed study appeared in [6]. The main advantage of the new implementation is
a careful study of the interconnections between di�erent problems thus allowing cancellation of
superuous computational branches in an early stage of the computation.

The Gr�obner factorization algorithm is well suited for a parallelization on almost all parallel
architectures, since it produces a lot of mutually independent subproblems that may be treated in
parallel by slave sessions started at di�erent nodes. Several such experiments are reported in the
literature, see e.g. [2] or [8], but we know of no report about a detailed study of the parallelized
implementation.

Such a detailed study is desirable since parallel symbolic algorithms have some special pecu-
liarities compared to parallel numerical applications. The most important special feature is the
intermediate problem's growth, that usually can't be predicted by the input data. Thus an e�cient
automatic load balancing needs much more e�ort than for most numerical problems. Secondly, (at
least advanced) symbolic problems usually rest on a deep knowledge of basic symbolic techniques as
simpli�cation, polynomial arithmetic over di�erent base rings, factorization etc. These techniques
must be available at each node. Thus parallel symbolic implementations usually need either a (true)
shared memory or powerful local nodes to support the necessary software. Moreover, due to the
high costs of excessive symbolic communication, usually the latter architecture supports only coarse
grain parallelized algorithms.

Below we report on our experience with a parallel implementation of the improved Gr�obner
factorizer algorithm on a workstation cluster, consisting of 8 HP 9000/735-99 of di�erent memory
size (32� 144MB), connected through FDDI each other and to a CONVEX server, supporting a

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(NFS-)shared �le system. It is part of the CONVEX Meta Series installation at the University of
Leipzig. We hope to continue these experiments in a near future on a massive parallel system with a
better communication hard- and software. Nevertheless especially the PVM-based implementation
leads already to a certain speedup compared to the serial version of the same algorithm.

In our experiments a master process manages, updates, and distributes the problems according
to the rules described in [5], whereas several slave processes work out the corresponding subtasks.

Since each slave process needs a full REDUCE session, each node can host at most 2 � � �3 of
them. Thus the number of slave processes, executable in parallel, is restricted by the hardware.

The problem list management developped in [5] is well suited for such a restricted parallelism,
even if, as in our experiments, the software doesn't support the interruption of executing tasks,
that turned out to be superuous, and the master manages only the list of subproblems not yet
distributed to the slaves.

Let's now describe the main algorithmic idea of our approach :

� During a preprocessing the master interreduces the set B of input polynomials and tries to
factor each f 2 B. If f factors, he replaces B by a set of new problems, one for each factor
of f , updates the side conditions, and applies the preprocessing recursively. This ends up
with a list of interreduced problems with non factoring base elements. This preprocessing is
currently not parallelized.

Then each of these ideal bases is prepared for further computations, e.g. computing the list
of critical pairs. They are collected in a problem list managed by the master, sorted by
\importance".

� The master distributes the most important problems to the slaves, one per process. The slaves
proceed with the usual Gr�obner basis algorithm on the list of pairs not yet processed, trying to
factor each reduced (non zero) S-polynomial before it will be added to the polynomial list. If
it factors, they split up the problem into as many subproblems as there are (di�erent) factors,
add each of the factors to the corresponding subproblem, update the pair list and the side
conditions, and return the new problems to the master.

� If the pair list is exhausted, the slave extracts the minimal Gr�obner basis of the subproblem
and continues with tail reductions. This may cause some of the reduced polynomials to factor
anew. Hence he applies the preprocessing once more. If the result is stable he returns it to
the master as a result. Otherwise the new problems are returned to the master.

� The master manages both the problem and the result lists according to the rules described in
[5].

Obviously this procedure terminates and returns a list of Gr�obner bases with the desired prop-
erties. For details of this part of the implementation we refer to [5].

2 The Communication Frames

Communication is the heart of any parallelization. Together with the high software requirements
of symbolic computations this suggests two approaches :

1. Resting on a standard symbolic package use its built in communication facilities developped
for serial purposes to design a parallel communication frame.

In a �rst approach we used the standard REDUCE distribution [9] together with the package
CALI [4] and its (symbolic mode) disk input/output facilities for communication between
di�erent processes.

Such an approach has the following advantages :

2

(a) We can use the full power of the diagnostic software supplied with REDUCE for the
analysis of the implementation.

(b) The communication protocol can be designed by the user and hence restricted to a
necessary minimum.

The main disadvantages are :

(a) The communication frame is slow. Surprisingly enough, it is not as bad as we expected
in advance.

(b) Due to the restricted communication protocol there is no error handling. This requires
a very secure task handling. After the resolution of certain read/write conicts caused
by the underlying NFS system we had almost no trouble even with large computations.

2. Extend standard symbolic software with an interface for RPC (remote procedure calls) through
one of the "classical" communication levels.

For such an approach we used the original symbolic mode interface of CALI with the PVM-
based REDUCE version of H.Melenk and W. Neun, [7], developped at the Zuse center in
Berlin. We kindly acknowledge the possibility to use this experimental software and the
support provided by the authors installing the system.

This approach has the following advantages :

(a) The communication itself is faster and more stable than in the �rst approach.

(b) One can use a standard communication RPC interface provided by the software.

Without doubt, this is the direction in which parallel symbolic software should be developped
further. Nevertheless also this approach has some (temporary) disadvantages :

(a) Transferring arguments of a RPC the corresponding expression tree is searched for re-
peated entries to minimize the necessary data transfer. This causes a relative great
overhead.

(b) The REDUCE-PVM interface doesn't (yet) support error handling.

(c) The software doesn't support detailed diagnostics.

Both versions use the RLISP remote interface proposed by Melenk and Neun in [7]. (A subset
of) its main features are the following procedures :

remote process(init�le)
start a slave process, load the REDUCE kernel and the necessary envi-
ronment due to the supplied init�le.

remote call(function, parameters, slave)
start a new task on a speci�ed slave executing

apply(function, parameters)

in the slave's REDUCE shell.
remote inquire(task)

test, whether the speci�ed task was �nished.

remote receive(task)
get the result of the task's request and close it.

remote kill(process)
terminate the slave process.

3

3 The Run Time Experiments and Conclusions

3.1 Preparing the run time experiment

Both communication frames follow the general RPC scenario as e.g. described in [11] :

� A remote request is formulated in the master's REDUCE shell.

� The remote request is submitted to the kernel process.

� The master's kernel transfers the request to the slave's kernel.

� The slave's kernel delivers the request to the slave's REDUCE shell.

Since the internal diagnostic software watches only for the REDUCE shells it is not easy to estimate
the true communication overhead.

On the other hand, dividing the communication overhead into two parts, the software and the
kernel parts, the internal and the external one, allows us even for a slow interactive medium as the
disk remote connection to get an impression about the potential possibilities of our algorithmic ideas
in a fast communication frame. Indeed, the internal (to REDUCE) overhead is almost constant and
doesn't depend on the externa. The only di�erence (and deformation of the calculation's graph)
comes from the di�erent time that slaves have to wait for calling the "slow" master and vice versa.

Since awakening sleeping processes is not supported by our communication frames, unbusy
slaves and master are sleeping a constant time (of 1s., calling sleep from inside REDUCE). These
(in)activities can be watched with the REDUCE diagnostic software (counting the calls to sleep).
This allows to predict in a very precise manner a fast communication scenario of the same calcula-
tions. We will discuss this below in more detail.

Note that slaves are sleeping during the (not yet parallelized) preprocessing.

To develop a good approximation of the true picture of the communication we have to collect
di�erent CPU times and real times. Here CPU time measures only activities of the corresponding
process, not of derived kernel activities. This applies to both the PVM-based communication and
the disk remote communication frames. Using the qualtime package of REDUCE we can count even
the CPU time spent in single procedures of both the master's and the slave's (the latter only in
the disk remote version) REDUCE shells. Real time is the real time di�erence between two events
and thus depends not only on the kernel processes responsible for the external communication, but
also on the general load factor of the machine. Comparing CPU and real time of a serial symbolic
implementation for reference we've got a factor in the range 2 : : :5 between both timings.

The master's CPU time mt may be divided essentially in two parts,

the call/receive time cr spent during remote call and remote receive, e.g. allocating
memory for the transferred data (excluding the �le management part of the kernel
process),

and the master's proper contribution prog to the Gr�obner bases computation (prepro-
cessing, list management etc.).

The same applies to the slave's CPU time st, that can be divided (and accessed) into two parts
in the same way :

the slave's contribution prog to the Gr�obner bases computation

and the slave's receive/send time cr.

4

3.2 The Examples

We tested our implementation on several big polynomial systems arizing in the computation of auto-
morphism groups of (complex) Lie algebras given by their structure constants. For a d-dimensional
Lie algebra we obtain this way d �

�
d

2

�
quadratic equations in d2 variables (aij) constituting the

matrix of the automorphism, see [3, cor. to thm. 2]. Due to the structure theory of these automor-
phism groups (CALI's varopt suggests the same) we consider the corresponding interreduced system
of polynomials with respect to the pure lexicographic term order, where variables with greater ji�jj
are counted �rst.1 In table 1 we collected all results, not only those with det(aij) 6= 0.

As result we obtain usually a prime component through the unit matrix and several other
components lying on the hypersurface det(aij) = 0.

Our examples arose from the following Lie algebras

1. a5.x : the 5-dimensional Lie algebra a5x in [10].

2. o4 : the 6-dimensional Lie algebra o4 = so3 � so3.

3. heat : the 6-dimensional Lie symmetry algebra of the heat equation, cf. [1, p. 178].

In table 1 we collected some characteristic data of these problems and the serial execution
(CPU)-time with REDUCE 3.5 and CALI in sec. on an HP-9000/735.

example vars eqns subsolutions time dimension of the solutions

a5.37 25 46 18 122 7 5x6 10x5 2x4 (2x5 with det 6= 0)
a5.39 25 46 6 73 8 2x7 3x6 (2x6 with det 6= 0)
a5.40 25 46 2 83 6 0
o4 36 90 9 1650 4x6 (2 with det 6= 0) 4x3 0
heat 36 90 2 911 6 0

Table 1 : The examples

3.3 The Disk Remote Version

Below in table 2 we collected our experimental results on the given examples, i.e.

the total serial (real) time tst,

the sum of the prog part contributions of the master and all slaves,

the number of tasks, i.e. subproblems sent to the slaves,

the master's mean call/receive communication (CPU) time per task,

the master's call/receive (CPU) time cr,

the master's CPU time mt,

the minimun and maximum slave's CPU time stmin and stmax

and for comparison the (master's) total (real) time tpt of the parallel computation.

These timings were obtained with 8 slaves on 8 nodes. We did also experiments with other
con�gurations. The results are similar.

All times are given in sec.

1
For heat we took the deglex. term order.

5

example tst
sum of
progs

tasks cr
task

cr mt stmin stmax tpt

a5.37 293 106.99 166 0.15 28 49.82 11.16 16.79 450
a5.39 191 112.56 243 0.12 37 53.94 11.27 18.51 575
a5.39 191 116.71 256 0.14 37 55.62 11.71 18.19 528
a5.40 244 79.55 143 0.20 33 46.14 6.92 19.25 349
a5.40 244 82.86 144 0.20 33 46.22 7.70 15.31 394
heat 2081 809.83 82 0.70 62 86.99 12.30 485.71 1101
o4 2169 1166.94 760 0.30 289 580.76 111.26 168.33 2032

Table 2 : Experimental results with the disk remote version. The global picture.

Comparing the second and the last columns of our table we see that the timings obtained by the
parallel disk remote implementation don't di�er as much from the (well tuned) serial implementation
as we were feared in advance. They report even a slight speedup for the larger examples. Some
examples we were running several times to see how far the output depends on the temporary load
situation of the cluster.

Although we reported in [5] a great inuence of the strategy choosing next subproblems on the
run time of the Gr�obner factorizer the total e�ort of both the serial and the parallel versions (using
the same strategy) for the computation of the Gr�obner bases should be comparable. This yields
an independent criterion for the adequateness of our scenario : the prog values of the slaves and
the master should more or less sum up to the serial CPU time given in table 1. These sums are
collected in the third column.

The mean call/receive communication time per task gives an impression about the average range
of a subproblem that had to be transferred between the master and the corresponding slave process.
Of course, the size of the problem varies not only between di�erent examples but also between
di�erent pieces of the same computation. Nevertheless it turned out, that the average value of cr

task

for each single slave doesn't di�er much from the average value over the whole computation. This
is a �rst indication for a good load (self)balance. This means that cr is a good approximation for
the total transfer amount (given in transfer units of about 0:8MB, comparing the entries in the
column cr

task
with the real disk �le size of the transferred requests).

A second indication for such a good balance is the small ratio between the maximal and minimal
slave's CPU time in almost all examples.

Comparing CPU times we see that in all cases but heat the master's time dominates. For heat
there are several "thick hunks" to be treated by some of the slaves thus forcing the master to wait
for them.

In table 3 we collected for the master's CPU time

the percentage of the contribution of the preprocessing % pre,

the percentage of the contribution of the call/receive part % cr,

the number of sleep calls,

and for the slaves' CPU times

the range of the percentage of the slave's prog part,

and the range of the number of sleep calls.

These parameters give a good impression about the local distribution of the computations.

6

example Master Slaves
% pre % cr # sleep % prog # sleep

a5.37 3 57 10 71..84 123..329
a5.39 < 1 62 27 68..76 171..439
a5.39 < 1 66 11 72..80 122..403
a5.40 17 71 7 62..73 72..228
a5.40 17 70 3 61..74 270..371
heat < 1 83 774 53..98 128..919
o4 30 50 64 74..81 86..105

Table 3 : Experimental results with the disk remote version. The local picture.

Let's give an interpretation of the number of sleep calls. In almost all examples the real
bottleneck was the slow input/output of the master process. But, comparing master's and slave's
CPU times, we conclude that even for a superfast communication the picture will not change much.
The only di�erence will be the range of sleep calls to the slaves. The great dispersion in table
3 rests mainly on the circumstance whether the slave had to handle a lot of small problems (high
sleeping rate standing in the master's queue to deliver the answer) or a smaller number of more
serious problems. In a faster frame these unsimilarities should disappear.

Let's try to predict the real time needed for the same computations, but with a communication
that is 10 times faster that our disk remote connection. With a load factor (real time vs. CPU
time) of about 3 our timings yield a real call/receive communication time of about 10 s. per transfer
unit. Altogether we get for the expected total parallel time etpt = tpt � 9cr the values in table 4
(o4 doesn't meet these assumptions, see table 1) :

example etpt
a5.37 198
a5.39 217
a5.40 73
heat 543

Table 4 : Expected real run time with fast communication.

3.4 The PVM-based Version

For the PVM based version we had access only to the master's time. In table 5 we compared these
timings with the corresponding disk remote values obtained earlier. We've got already a slight
speed up for almost all our examples. The number of tasks necessary to complete a problem di�ers
heavily between both versions (and also between runs at di�erent time of the same version). This
is due to the sensitivity of the Gr�obner factorizer to the subproblem selection strategy as reported
in [5].

PVM disk remote
example tst mt cr # tasks tpt mt cr # tasks tpt
a5.37 293 25.40 3.95 186 236 49.82 28 166 450
a5.39 191 17.80 3.20 175 138 55.62 37 256 528
a5.40 244 21.12 5.38 184 105 46.22 33 144 394
heat 2081 24.05 6.38 82 1312 86.99 62 82 1101
o4 2169 437.57 32.16 816 2091 580.76 289 760 2032

Table 5 : PVM based vs. disk remote version.

7

Taking into account the sensitivity mentioned above one should agree that these timings �t
very close into the expected run time scenario derived from the detailed consideration of the disk
remote connection above. Denote, on the other hand, that the huge PVM-software providing the
communication changes the load situation on the cluster drastically (even with one slave per node
its CPU usage is seldom more that 30%), so that it needs some care to compare the timings in the
table.

3.5 Conclusions

Due to the coarse granularity of our approach the number of available tasks is not very high and
one cannot expect a good load balance if the number of slave processes is beyond that number.
Nevertheless the results collected in table 2 { 5 show, that we obtain a good load balance and a
good ratio between the communication overhead of the slaves and the real work they have to do.

We tried even larger examples than the o4 and found that up to 24 slave processes (3 per node)
are well suited for our cluster. Our approach gives an almost equal distribution to the slaves,
provided the problem does well split into enough pieces. The smaller examples produced enough
subproblems only for 5 : : :8 slave processes. Hence the load balance in a given con�guration of a
medium range number (5 : : :20) of powerful (� 25 MB heap size) slave processes depends strongly
on the examples. Our approach is very well suited for examples that really admit factorization.
Many problems occuring in "real life" are of this kind. The performance will increase with a fast
communication frame that doesn't inuence the load factor so "heavily" as PVM does.

Some of the examples factored very well, thus producing a great amount of communication
overhead, whereas other examples factored into a small number of large Gr�obner basis computation
pieces only. In the former class the slow communication became a real bottleneck and slaves had
to wait a great amount of time. In the latter examples (e.g. in heat) the master was unbusy some
time, thus indicating a good load balance for the slaves.

References

[1] G. W. Bluman, S. Kumei : Symmetries and Di�erential Equations. Springer, New York, 1989.

[2] R. Bradford : A parallelization of the Buchberger algorithm. In : Proc. ISSAC'90, Tokyo, ACM
Press, New York 1990, 296.

[3] V. P. Gerdt, W. Lassner : Isomorphism veri�cation for complex and real Lie algebras by Gr�obner
basis technique. In : Modern group analysis : Advanced analytical and computational methods
in mathematical physics, (Ibragimov et al., eds.), Kluwer Acad. Publ. (1993), 245 - 254.

[4] H.-G. Gr�abe : CALI { A REDUCE package for commutative algebra. Version 2.1., Oct. 1993.
Available through the REDUCE library e.g. at redlib@rand.org.

[5] H.-G. Gr�abe : Solving polynomial systems with factorized Gr�obner bases. To appear.

[6] H. Melenk, H.-M. M�oller, W. Neun : Symbolic solution of large chemical kinematics problems.
Impact of Computing in Science and Engineering 1 (1989), 138 - 167.

[7] H. Melenk, W. Neun : RR { Parallel symbolic algorithmic support for PSL based REDUCE.
Draft version, Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin, Oct. 93.

[8] W. Neun, H. Melenk : Very large Gr�obner basis calculations. In : Computer algebra and
parallelism (ed. R. Zippel), LNCS 584 (1992), 89 - 99.

[9] REDUCE 3.5, Rand Corp., Santa Monica, Oct. 1993.

8

[10] J.Patera et al : Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986 -
993.

[11] Tanenbaum : Moderne Betriebssysteme. Carl Hanser Verlag M�unchen, 1994.

9

