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Abstract

We present a unifying approach to deformations of an associative algebra A that
allows to derive known formulas of Moyal-Vey (1949) and Coll-Gerstenhaber-Giaquinto
(1989) from a more general point of view. Such universal deformation formulas corre-
spond to special deformations of the comultiplication of a bialgebra.

1 Introduction

Let K be a ring containing the �eld Q of rational numbers, K0 = K[[h]] be the algebra of

formal series on h and (A; �A) a K-algebra. This algebra structure extends in a natural

way by K0-linearity to the algebra A0 := A[[h]] of power series in h with coe�cients in A

that we will denote by some abuse of notation also by �A. The aim of this paper is to

study deformations of this structure.

Definition 1 A (formal) deformation of the K-algebra A is an algebra structure Ah =

(A0; �h) on A
0 with

�h := �A +
1X
k=1

hk'k : A
0

A0 ! A0:

For �h to be associative in �rst order on h, '1 must ful�ll the property

'1(a1a2; a3) + '1(a1; a2)a3 = '1(a1; a2a3) + a1'1(a2; a3)

for a1; a2; a3 2 A, i.e. has to be a 2-cocycle in the Hochschild complex of A. Such a 2-cocycle

'1 is called an in�nitesimal of the deformation. We restrict ourselves to the case when the

2-cochains 'k have the form 'k = �A �Pk; where Pk : A
A! A
A are K�linear maps.

Given a 2-cocycle S := P1 we try to de�ne Pk for k � 2 so that �h is associative.

In practical applications such a 2-cocycle often appears as the product of 1-cocycles

S = D
E, where D;E are elements of a certain Lie algebra G acting by derivations on A.

There are two famous results that describe prolongations of such 2-cocycles to associative

multiplications on Ah:
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Theorem 1 (Moyal - Vey, [7], [3]) If the Abelian Lie algebra G acts on a K-algebra A

by derivations, then for any element S 2 G 
 G the composition �A � S is a 2-cocycle and

the multiplication

�h = �A � ehS

is associative.

Theorem 2 (V.Coll, M.Gerstenhaber, A.Giaquinto, [1]) If the 2-dimensional Lie algebra

G with generators E;D and commutator relation [E;D] = E acts on the K-algebra A by

derivations, then for S = E
D the composition �A �S is a 2-cocycle and the multiplication

�h = �A � (1 + hE 
 1)1
D

is associative.

Both theorems were �rst proved by direct calculations. For Moyal-Vey's theorem these

computations are straightforward and use only the Leibniz rule, since D and E commute.

The second result is less elementary. We will refer to this example as Gerstenhaber's.

Below we present a unifying approach to these results and give some generalizations of

the above formulas. It is based on the notion of an admissible bialgebra action on A that

allows to derive both results as partial cases of a more general principle to construct algebra

deformations. More precisely, we replace the universal enveloping algebra Uh(G) of the Lie

algebra G by a bialgebra B and de�ne conditions on an element P 2 (B
B)[[h]] such that

for any admissible bialgebra action � : B ! EndK(A) the composition �h = �A �(�
�)(P )

de�nes a deformation of A, i.e. we construct universal deformation formulas in the spirit of

[5]. It turns out that for a consistent theory deformations of A have to be associated with

deformations of the comultiplication of B leaving this way the class of universal enveloping

algebras.

Di�erent aspects of such a theory are demonstrated on Gerstenhaber's example. It

turns out, that in this case on the deformed bialgebra there is a h-independent K-bialgebra

structure that already exists in the �rst order deformation.

These investigations were stimulated by several discussions of the second author with

R.-O. Buchweitz during a one month stay at the University of Toronto in december 1992

and elaborated further during several visits to the University of Leipzig.

Some of the ideas were considered in the articles [9], [10].

2 Admissible bialgebra actions on algebras

Let (B; �B ;�B) be a bialgebra as de�ned, for example, in [2]. Here �B denotes the algebra

multiplication and �B : B �! B 
 B the comultiplication. We use the standard notion

where an integer index of an operator, acting on a tensor product, denotes the tensor

cofactor, on which the operator acts. For example,

�i : C

n

! C
(n+1) : c1 
 : : :
 cn 7! c1 
 : : :
 ci�1 
�(ci)
 ci+1 
 : : :
 cn;

�A;23 : A

3

! A
2 : a1 
 a2 
 a3 7! a1 
 �A(a2 
 a3) = a1 
 a2a3:
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For b 2 B we use the Sweedler notation �(b) =
P
b(1) 
 b(2) and �1�(b) = �2�(b) =P

b(1) 
 b(2)
 b(3) if we need to exploit their special structure as elements of B 
 B resp.

B 
B 
 B.

For a K-coalgebra C there is a notion of cohomology groups Hn(K;C) as explained

e.g. in [6]. They are the homologies of the complex

0 �! C �! : : :
�

�! C
k �! : : :

where for S 2 C
k the coboundary formula is de�ned as

�S = 1
 S +
kX
i=1

(�1)i�iS + (�1)k+1S 
 1:

Especially, a 1-cocycle X 2 C ful�lls the condition �(X) = X1 + X2. For a 2-cocycle

S 2 C 
K C we get �2(S) + S23 = �1(S) + S12.

For any two left modules (M; �M ); (N; �N) over the algebra B the tensor productM
K

N has a natural structure as left module over the algebra B de�ned by

�M
N : B 
 (M 
N)
�1

�! (B 
B) 
 (M 
N)
S23
�! (B 
M)
 (B 
N)

�M
�N
�! M 
N:

If a bialgebra B acts on aK-algebra A by � : B �! EndK(A) we have the natural condition

that �A : A
 A �! A is a B-module homomorphism, i.e.

A
 A
�A
�! A

(�
�)��B(b)# #�(b)

A
 A
�A
�! A

commutes, where A 
A is equipped with the B-module structure just de�ned. For b 2 B

and a1; a2 2 A we get the following condition:

�A(b)(�A(a1 
 a2)) = �A(�A
A(b)(a1 
 a2))

or more explicitly

�(b)(a1 � a2) =
X

�(b(1))(a1) � �(b(2))(a2)

This can be written as

8b 2 B �(b) � �A = �A � (�
 �) ��B(b) (1)

Definition 2 : A homomorphism � : B ! EndK(A) of K-algebras, that satis�es the

compatibility condition (1) between �A and �B is called an admissible action of the bialgebra

(B; �B;�B) on the K-algebra A.

For the sake of simplicity we often will omit the symbol of the action �. Then, for example,

(1) has the form

b � �A = �A ��B(b) or b(a1a2) =
X

b(1)(a1)b(2)(a2)
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for a1; a2 2 A; b 2 B.

This de�nition generalizes to bialgebras the concept of actions of universal enveloping

algebras induced by Lie algebra of derivations. Indeed, given an algebra A and a Lie algebra

G acting on A, the universal enveloping algebra B = U(G) has a natural bialgebra structure

with comultiplication � de�ned by

�(X) = X 
 1 + 1
X for X 2 G:

Then the action of B on A is admissible i� for X 2 G and a1; a2 2 A

X(a1 � a2) = �A ((X 
 1 + 1
X)(a1 
 a2)) = (Xa1)a2 + a1(Xa2);

i.e. X is a derivation of A.

Note that an action of a bialgebra B on a K-algebra A is de�ned by the action of the

generators of B on the generators of A.

Examples:

1. The left action of A on itself is an admissible bialgebra action, if we de�ne �(La) =

La 
 1 for the left action La 2 EndK(A) of a 2 A. Analogously the right action of Aop on

A is an admissible bialgebra action wrt. �(Ra) = 1
Ra.

This may be extended to an admissible action of the enveloping algebra Ae := A
KA
op

on A, where the comultiplication is given by the rule �(x 
 y) = (x 
 1) 
 (1 
 y). If

Ae = EndK(A), e.g. for a matrix algebra Mn(K), this construction allows to introduce an

admissible bialgebra structure on the whole algebra of endomorphisms EndK(A).

2. The natural action of the bialgebra B = K[ @
@x1

; : : : ; @
@xn

] on A = K[x1; : : : ; xn] is an

admissible bialgebra action, since B is the universal enveloping algebra of an Abelian Lie

algebra acting on A by derivations.

3. It induces an action of the Weyl algebra W = A 
K B on A that is an admissible

bialgebra action on A with respect to the natural bialgebra structure on W obtained by

scalar extension K �! A from B. More precisely, the multiplication on W is induced by

the commutation rules
@

@xi
� xj = �ij + xj �

@

@xi

and the comultiplication by the corresponding rules on A and B

�(xi) = xi 
 1 and �(
@

@xi
) =

@

@xi

 1 + 1


@

@xi
:

4. This may be generalized to arbitrary Lie algebras G acting on A by derivations.

Indeed, the admissible bialgebra action of the universal enveloping algebra B = U(G) on A

described above may be extended to an admissible bialgebra action onW = A
KB = A[G]

on A, if we extend multiplication and comultiplication on W by the following rules:

X � a = X(a) + a �X; �(a) = a
 1; �(X) = X 
 1 + 1
X:

Here and below a 2 A and X 2 G are identi�ed with their images in W under the embed-

dings A! A
 1 � W and G ! 1
 G � W .

5. This may be generalized once more: For any admissible action of a bialgebra B

on an algebra A there is a natural bialgebra structure on the K-module W := Ae 
 B
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extending those of Ae and B. As above we have only to de�ne the product b � (x
 y) for

b 2 B; (x
 y) 2 Ae. As easily seen the correct rule is

b � (x
 y) =
X

(b(1)(x)
 b(3)(y)) � b(2);

where �1�(b) = �2�(b) =
P
b(1)
 b(2) 
 b(3) are obtained from the comultiplication rule

on B. Again admissibility of the B-action on A guarantees that the given rules de�ne a

bialgebra structure on W and the natural action of W on A is admissible.

Remark: The only place we found in the literature, where a condition similar to (1)

was considered, is the following general result [5, Lemma 9.2.]:

Let V be any vector space, � : khV i 
 khV i �! khV i be the multiplication in

the free (=tensor) algebra khV i; C � End(khV i) be a subspace of the linear

endomorphisms, and � : C �! C 
 C be a linear map such that ��f(a 
 b) =

f(a b) for all f 2 C; a; b 2 khV i. Then � is coassociative, i.e. C is a coalgebra.

If moreover C is a subalgebra of End(khV i) and � a k-algebra homomorphism the natural

action of the bialgebra (C; �C ;�) on khV i is admissible.

3 Deformations of algebras with an admissible bialgebra ac-

tion

The main idea of this section is the observation that for both formulae considered in the

introduction the deformed multiplication has the form �h = �A � P for a certain element

P 2 (U(G)
 U(G))[[h]].

So let B be a bialgebra with an admissible action on A as in the last section. As

above the bialgebra structure extends to B0 = B[[h]] by K0-linearity in such a way that

(B0; �B;�B) acts admissible on (A0; �A). Below we consider the question, how deformations

of the algebra structure on A are related to those of the bialgebra B.

Let's consider the condition that must be ful�lled by an element P = 1+
P
1

i=1 h
iP(i) 2

B0 
K0 B0 = (B 
K B)[[h]] for �h = �A � P to be associative.

0 = �h � (�h;12 � �h;23) = � � P � (�12 � P12 � �23 � P23)

Since B acts admissible we get P ��12 = �12 ��1(P ); P ��23 = �23 ��2(P ) and altogether

0 = � � �12 � (�1(P )P12 ��2(P )P23)

Hence

�1(P )P12 ��2(P )P23 = 0 (2)

is a su�cient condition for P to make �h associative for any admissible B-action on A.

This yields already a proof of the following generalization of the Moyal-Vey formula.

Theorem 3 If the commutative bialgebra B acts admissible on A then for any 2-cocycle

S 2 B 
B the multiplication

�h = �A � ehS

is associative.
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Proof: Indeed, for P = ehS condition (2) is equivalent to

eh�1(S) � ehS12 = eh�2(S) � ehS23

and �nally to

�1(S) + S12 = �2(S) + S23: 2

Example : Let us consider the commutative bialgebra B with the free generators

Ei; D
i; L

j
i 2 C; i; j = 1; : : : ; n and the comultiplication that using the matrix notation

E = (E1 E2 : : : En ) ; D =

0
BBB@
D1

D2

...

Dn

1
CCCA ; L = (L

j
i ) ;

may be written in the following form

�(E) = E1L2 +E2; �(D) = D2 + L1D2; �(L) = L1L2:

Then the 2-cochain S = E1D2 =
Pn

i=1Ei 
Di is a cocycle and the power series P = ehS

satis�es the equation (2).

If B acts admissible on an algebra A this yields an explicit formula for a deformation

of A that doesn't �t into the frame of theorem 1.

The solution P = ehS of (2) described in theorem 3 is expressed as an exponential

function. Since f(x; h) = ehx is the solution of the di�erential equation @f
@h

= x � f with

initial condition f(x; 0) = 1 the expression

Sh := P�1
@P

@h
2 (B 
 B)[[h]]

also may play a crucial role for other applications. Note that the power series P is uniquely

de�ned by Sh but their connection may be more di�cult to describe than in theorem 3.

Since Shjh=0 = P(1) coincides with the element S 2 B 
 B de�ned in the introduction, Sh
is a deformation of S (in a sense to be speci�ed).

Under certain additional assumptions the condition (2) may be reformulated as a con-

dition on Sh. For example, if S = Sh does not depend on h we get P = exp(hS) and (2)

may be reformulated as

eh�1(S) � ehS12 � eh�2(S) � ehS23 = 0:

If the exponents mutually commute, i.e. [�1(S); S12] = [�2(S); S23] = 0 we can rewrite

this equation as

eh(�1(S)+S12) � eh(�2(S)+S23) = 0

that holds for any 2-cocycle S. Thus we proved the following generalization of the previous

theorem.

Theorem 4 Let S be a 2-cocycle of a (of a not necessarily commutative) bialgebra B and

[�1(S); S12] = [�2(S); S23] = 0:

Then P = exp(hS) satis�es the eq. (2). 2
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4 A �rst proof of Gerstenhaber's formula

With some more e�ort we also may prove Gerstenhaber's formula. By (2) we only have to

show

 (E1 +E2; D3) (E1; D2) =  (E1; D2 +D3) (E2; D3) (3)

for  (E;D) = P = (1 + hE1)
D2 :

To see this lets �rst collect several helpful identities :

Lemma 1 For f; g 2 K[x][[h]] we get

1. Enf(D) = f(D + n)En,

2. [D; f(E)] = �x @
@x
f(x) jx=E,

3. f(E)D = (D + E @
@E

ln f(E)) � f(E),

4. f(E)g(D) = g(D + E @
@E

ln f(E)) � f(E) (note that g(D + E @
@E

ln f(E)) is a function

with non commuting arguments !),

5.

ehED =
1X
k=0

hkEk

 
D

k

!
;

where 
x

k

!
:=

x(x� 1) : : :(x� k + 1)

k!
; such that (1 + hx)y =

1X
k=0

hkxk

 
y

k

!
:

6. f(E)e�D = e�Df(e�E) and e�Df(E) = f( E
e�
)e�D.

In particular

7. (1 + hx)Df(E) = f( E
1+hx)(1 + hx)D.

Proof: These formulas may be proved immediately by straightforward computations. 1.

{ 5. follow almost directly from the commutation rule [E;D] = E and linearity. To prove

6. we obtain from 1. for f =
P
akx

k

f(E)e�D =
1X
k=0

akE
ke�D =

1X
k=0

ake
�(D+k)Ek =

1X
k=0

ake
�D(e�kEk)

= e�D
1X
k=0

ak(e
�E)k = e�Df(e�E): 2

There is a more rigid result than theorem 2:

7



Theorem 5 A power series f(x; y) 2 K[x; y][[h]] with f(0; y) = 1; fx(0; y) = h y satis�es

(3) i� f =  , i.e.

f(x; y) = (1 + hx)y =
1X
k=0

hkxk

 
y

k

!
:

Proof: Replacing in (3) the commuting variables E1; D3 by x resp. y and the remaining

non commuting D2; E2 by D;E we have to solve the equation

f(x+E; y)f(x;D) = f(x;D+ y)f(E; y):

We will solve this functional equation transforming it to a di�erential equation for f . Take

the �rst derivative with respect to x

fx(x+E; y)f(x;D)+ f(x+ E; y)fx(x;D) = fx(x;D+ y)f(E; y)

and set x = 0. Then (f(0; y) = 1; fx(0; y) = hy)

fx(E; y) + f(E; y)hD = h(D + y)f(E; y)

or

fx(E; y) = h[D; f(E; y)]+ hyf(E; y): (4)

Lemma 1 yields

[D; f(E; y)] = �E
@

@E
f(E; y) = �Efx(E; y):

Substituting this expression in (4) we get an equation in E only.

fx(E; y) = �hEfx(E; y) + hyf(E; y):

Its integral with respect to the initial conditions yields f(x; y) = (1 + hx)y and vice

versa. 2

5 A bialgebra deformation

An extended version of the condition (2) is contained in the following theorem:

Theorem 6 Assume that the bialgebra (B; �B;�B) acts admissibly on A and P 2 1 +

h(B 
B)[[h]] satis�es condition (2). Then for A0 = A[[h]] and B0 = B[[h]]

1. Ah = (A0; �h = �A � P ) is a K0-algebra.

2. Bh = (B0; �B;�h) with �h(b) := P�1�B(b)P is a bialgebra.

3. The natural (K0-linear) bialgebra action of Bh on Ah is admissible.

4. Sh = P�1 @P
@h

is a 2-cocycle of the coalgebra (B0;�h):
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Proof: 2. One has only to prove the coassociativity of �h, i.e.

8 b 2 B0 �h;1 ��h(b) = �h;2 ��h(b):

With the de�nition of �h the left hand side of this expression expands as

P�112 �B;1(P
�1�B(b)P )P12:

Applying the multiplicativity of � we �nally obtain�
P�112 �B;1(P

�1)
�
(�B;1(�B(b))) (�B;1(P )P12)

and analogously for the right hand side�
P�123 �B;2(P

�1)
�
(�B;2(�B(b))) (�B;2(P )P23) :

But the left and right bracket terms are equal by (2) and its inverse whereas the middle

bracket terms are the same by the coassociativity of �B.

3. We have only to prove that condition (1) is ful�lled, i.e.

b � �h = b � �A � P = �h ��h(b) = �A ��B(b) � P:

But this follows immediately from (1) for B.

4. From (2) and the de�nition of �h we obtain

P12�h;1(P )� P23�h;2(P ) = 0:

Since @
@h
P = P Sh the derivative of (2) yields

�1(PSh)P12 +�1(P )P12Sh;12 = �2(PSh)P23 +�2(P )P23Sh;23:

Note that further

�1(PSh)P12 = �1(P )�1(Sh)P12 = �1(P )P12�h;1(Sh)

and also

�2(PSh)P23 = �2(P )P23�h;2(Sh):

Altogether we obtain

�1(P )P12 � �h(S) = 0:

Hence �h(S) = 0 since the �rst cofactor is invertible. 2

This theorem shows that our approach to algebra deformations through admissible

bialgebra actions is a very natural one. It does not only allow to formulate a condition

on P that implies the associativity of �h = �A � P but also yields a deformation of the

coalgebra structure on B in such a way that the deformation process may be iterated.

Its this point where we leave the original setting of (universal enveloping algebras of) Lie

algebras acting by derivations, since the deformed comultiplication rule is usually more

di�cult.
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Let's explain these changes on Gerstenhaber's example. For P = (1 + hE1)
D2 we get

as new comultiplication

�h(E) = P�1�B(E)P = (1 + hE1)
�D2(E1 +E2)(1 + hE1)

D2

Applying the rules collected in lemma 1 we get

�h(E) = E1 + E2(1 + hE1)
�D2+1(1 + hE1)

D2 = E1 + (1 + hE1)E2:

In the same way we obtain

�h(D) = P�1�(D)P = (1 + hE1)
�D2D1(1 + hE1)

D2 +D2:

Since

[(1 + hE1)
�D2 ; D1] = E1

@

@E1
(1 + hE1)

�D2 = �hD2E1(1 + hE1)
�D2�1

we get

(1 + hE1)
�D2D1 = (D1 � hD2E1(1 + hE1)

�1)(1 + hE1)
�D2

and �nally

�h(D) = D1 +D2 �
hE1D2

(1 + hE1)
= D1 + (1 + hE1)

�1D2:

Note that moreover

�h(1 + hE) = (1 + hE1)(1 + hE2);

i.e. the B-cocycle E may be lifted to the Bh-cocycle ln(1 + hE). Since

Sh = P�1
@P

@h
= (1 + hE1)

�D2 �E1D2 � (1 + hE1)
D2�1 = L�11 E1D2:

we get �h(D) = hSh, i.e. the B-cocycle D is not liftable. S is a bialgebra analog of a jump

cocycle as de�ned for algebras in [4].

Remark: Over K0[h�1] the bialgebra Bh may be generated by D and L = 1+hE with

the following relations

�(D) = D2 + L�11 D2; �(L) = L1L2; [L;D] = L� 1:

There is a K-bialgebra ~B = KhD;L; L�1i with the same relations. If we extend it trivially

to ~B0 = ~B[[h]] there is a bialgebra homomorphism

fh : ~B
0
�! Bh via L 7! 1 + hE:

This K-algebra will be considered in the next section.

10



6 Another derivation of Gerstenhaber's formula

From the above considerations we can extract the conditions on D;L that are necessary

for Gerstenhaber's formula to be ful�lled. This way we get the following generalization:

Theorem 7 Let ~B be a K0-bialgebra and L;D 2 ~B such that L�1 exists and the following

relations are ful�lled

L� 1 2 h ~B; [L;D] = L� 1; �(L) = L1L2; �(L) = D1 + L�11 D2:

Then the power series

P = L�D2

1 = exp(� lnL1 �D2)

satis�es eq.(2).

Note that D and L may depend (almost) arbitrarily on h.

Proof: For our P eq.(2) has the form

(L1L2)
�D3 � L�D2

1 = L
�D2�L

�1

2
D3

1 � L�D3

2

or

L�D3

1 � L�D3

2 �L�D2

1 = L
�D2�L

�1

2
D3

1 � L�D3

2 (5)

Here only L2 and D2 don't commute. In order to exchange the two factors L�D3

2 and L�D2

1

in the left hand side we introduce the element E := L� 1: Then [E;D] = E and by lemma

1 we have

f(E)g(D) = g(D+ E
@

@E
ln f(E)) � f(E)

for f; g 2 K[x][[h]]: Since

f(E2) = L�D3

2 = (1 + E2)
�D3 and E2

@

@E2
ln f(E2) = �E2L

�1
2 D3

the left hand side of (5) may be written as

(L1)
�D3 � L

�(D2�E2L
�1

2
D3)

1 � L�D3

2 :

Comparing this with the right hand side of (5) we see that the exponents of L1 are equal.

2

Substituting L = 1 + hE we get a new proof of Gerstenhaber's formula. The special

form of L may be derived in the following way: Assume that only L depends on h. We get

Sh = P�1
@P

@h
= L�11

@L1

@h
D2

and the choice of Sh as the jump cocycle 1
h
�D gives us

L�11
@L1

@h
D2 =

1

h
L�11 (L1 � 1)D2;

i.e. @L
@h

= 1
h
(L� 1). Its solution is L = 1 + hE with E = Ljh=0.
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7 First order deformations

In this section let K0 = K[h]=(h2), B0 = B 
K K0, and P = 1
 1 + hS for S 2 B0 
K0 B0:

Our considerations so far may be transferred to this setting to obtain a theory of �rst order

deformations. This linearizes all problems and, e.g., eq. (2) is equivalent to the condition

�(S) = 0: Thus there is a one-to-one correspondence between 2-cocycles of the coalgebra

B and solutions P of (2).

The new comultiplication in Bh de�ned by theorem 6

�h(b) = P�1 ��B(b) � P = (1� hS)�B(b)(1+ hS)

yields

�h(b) = �B(b) + h[�B(b); S]

and for the new coboundary operator �h of Bh

�hS = �S � h[�B;1(S); S12] + h[�B;2(S); S23]:

Hence S may not be a Bh-cocycle. To prolongate the deformation to the next order S has

to be changed into Sh = S + hS0 such that

�S0 = [�B;1(S); S12]� [�B;2(S); S23]:

Let's apply this construction to Gerstenhaber's example. The �rst order deformation of

B = U(G) generated by the 2-cocycle S = E1D2 yields the K[h]=(h2)-algebra Bh generated

by two elements E;D with the following relations

[E;D] = E; �h(E) = E1 +E2 + hE1E2; �h(D) = D1 +D2 � hE1D2

and

�h(S) = �2hE1E2D3

For the 2-cochain E2
1D2 = E2 
D 2 B 
 B we get

�(E2

D) = �(E2)
D = �2E1E2D3:

Thus the B-cocycle S may be lifted to the Bh-cocycle

Sh = E1D2 � hE2
1D2 = (1� hE1)E1D2:

Hence Bh has the K�bialgebra structure considered in theorem 7. Thus we derived Ger-

stenhaber's formula already at the �rst order deformation step.
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