
1 
 

 

 

 

 

THERMAL ENVIRONMENT MODELING AND OPTIMIZATION 

OF GREENHOUSE IN COLD REGIONS 

 

 

A Thesis Submitted to the College of 

Graduate and Postdoctoral Studies 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Division of Environmental Engineering   

University of Saskatchewan 

Saskatoon, Saskatchewan 

 

By 

 

MD SHAMIM AHAMED 

 

 

 

 

© Copyright Md Shamim Ahamed, April 2018. All rights reserved 



i 
 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a post-graduate degree from 

the University of Saskatchewan, I agree that the libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was done. It is understood that any copying or publication or use 

of this thesis or parts thereof for financial gain shall not be allowed without my written permission. 

It is also understood that due recognition shall be given to me and to the University of 

Saskatchewan in any scholarly use which may be made of any material in my thesis. 

Requests for permission to copy or to make other uses of materials in this thesis in whole or part 

should be addressed to: 

 

Head of the Department of Chemical and Biological Engineering 

University of Saskatchewan, 57 Campus Drive 

Saskatoon, Saskatchewan, S7N 5A9 

Canada 

or 

Dean of the College of Graduate and Postdoctoral Studies 

University of Saskatchewan, 110 Science Place   

Saskatoon, Saskatchewan, S7N 5C9 

Canada. 

  



ii 
 

ABSTRACT 

Thermal simulation models for the time-dependent heating requirement of greenhouses are very 

important for the evaluation of various energy-saving technologies, and energy-efficient design of 

greenhouses based on local climates. A quasi-steady state thermal model “GREENHEAT” was 

developed using the programing language MATLAB for simulation heating requirement in 

conventional greenhouses. The model could predict the hourly heating requirement based on the 

input of hourly weather data, indoor environmental parameters, and physical and thermal 

properties of greenhouse building materials. The model was validated with measured data from a 

commercial greenhouse located in Saskatoon, Canada, and the monthly average error in prediction 

was found to be less than 5.0%. This study also reviewed various energy-saving technologies used 

in greenhouses in cold climate, and the GREENHEAT model allowed selections of commonly 

used ones in the simulation. The GREENHEAT model was used for evaluating the impact of 

various geometrical parameters on the heating requirement of the single span and multiple-span 

conventional greenhouses located in Saskatoon. Results showed that the east-west oriented gable 

roof greenhouse could be more energy-efficient for the multi-span gutter connected greenhouse 

whereas quonset shape as a free-standing single span greenhouse. The large span width could be 

beneficial for the single-span greenhouses, but the impact of increased span width could be 

negligible on the heating demand of multi-span greenhouses. The model was also used for an 

economic feasibility analysis of year-round vegetable production (tomato, cucumber, and pepper) 

in northern Saskatchewan, and tomato was found to be the most economical vegetable as compared 

to the cucumber and pepper. 

Another heating simulation model CSGHEAT was developed to estimate of the supplemental 

heating requirement of mono-slope Chinese-style solar greenhouses (CSGs). This model is also a 

quasi-steady state thermal model using the programming language MATLAB, and it can simulates 

the hourly heating requirement of CSGs. The model was validated with experimental data from a 

CSG located in Winnipeg, Manitoba. The average error for prediction of the hourly heating 

requirement was found to be less than 8.7%. The model sensitivities to various geometrical and 

thermal parameters were studied. The results indicated that the thermal properties of cover, thermal 

blanket, and parameter insulation were the most important design parameters in CSGs.  
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Finally, the heating requirement in CSGs was modeled using TRNSYS simulation tool, and the 

predictions were compared with that of CSGHEAT. The result indicated that TRNSYS had serious 

limitations for modeling of greenhouse thermal environment, thereby high uncertainties could 

occur, thus was not suitable for greenhouse simulation.  

 

Keywords: Heating simulation model; conventional greenhouse, Chinese-style solar greenhouse; 

energy-efficient design, TRNSYS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

CO-AUTHORSHIP STATEMENT 

This thesis includes eight individual manuscripts, which form the core of this thesis, the candidate 

(Md Shamim Ahamed) developed conceptual ideas and theoretical frameworks of the developed 

models (GREENHEAT and CSGHEAT), carried out simulations and performed various analyses, 

and designed and prepared all manuscripts. I am or will be, the first author of all eight manuscripts.   

The manuscripts presented in Chapter 2-5 and Chapter 7-8 are co-authored by Md Shamim 

Ahamed, Professor Huiqing Guo, and Professor Karen Tanino. The co-authors (Prof. Huiqing Guo 

and Prof. Karen Tanino) provided financial and laboratory support, guidance on various aspects 

of the research and critical reviews of the results and analysis presented in the manuscripts. 

The sixth manuscript entitled ‘Heating demand and economic feasibility analysis for year-round 

vegetable production in Canadian Prairies’ greenhouses’ (Chapter 6) is under review in the Journal 

of Information Processing in Agriculture. This manuscript is co-authored with Professor Huiqing 

Guo, Lisa Taylor, and Professor Karen Tanino. The co-authors (Prof. Huiqing Guo and Prof. Karen 

Tanino) provided valuable support and advice on various aspects of the research and manuscript 

preparation. Another co-author (Lisa Taylor) contributed to select the suitable crop species for 

greenhouse production in high northern latitudes, and also collected data about the yield rates, 

market prices, and vegetable consumption rates by average Canadian. 

  



v 
 

ACKNOWLEDGMENTS 

First and foremost, I am proud to express my earnest and heartfelt gratitude and appreciation to 

thank my supervisor, Prof. Huiqing Guo for her guidance and advice throughout this dissertation. 

Her input has been invaluable and contributed immensely to the success of this research. I also 

would like to thank my co-supervisor Prof. Karen Tanino for her invaluable support and advice. I 

extend my sincere thanks to my committee Chair Prof. Oon-Doo Baik, and others committee 

members Prof. Chris Zhang, Prof.  Lope G. Tabil, Prof. Carey J. Simonson, and Dr. Warren 

Helgason.  

I would like to acknowledge Grandora Gardens for providing the data for validation of the 

GREENHEAT model.  Special thanks go to the owner of Wenkai Greenhouse, Winnipeg for 

allowing us to experiment with his Chinese-style solar greenhouse, and also thanks to RLee 

Prokopishyn for helping to install the experimental setup in the greenhouse. I also would like to 

thanks all members of my research groups for their help, suggestions, and appreciation to my 

research work.   

I wish to thank all lovely people in Bangladesh who graciously supported my 18 years of education 

in different institutes of Bangladesh. I also would like to express my gratitude to the College of 

Graduates and Postdoctoral Studies (CGPS), University of Saskatchewan, and Innovation 

Saskatchewan for providing funding for this research work.   

Last but not least, I need to thank my parents and family members who helped me a lot 

unconditionally throughout my life. I would like to thank my parents Abdur Rashid Bapery and 

Rowshnara Begum, my elder brother Md Jane Alam, my family members, teachers, and friends 

for encouraging me and believing in me in every single step. Endless support, sacrifice, and 

encouragement from my lovely wife, Arifun Nahar, is highly acknowledged. Without her support, 

I might not have been able to finish this research work. Thank you, my sweet and lovely son, 

Saifan Ahamed, who brought a notable change in my life with lots of happiness. 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

DEDICATION 

 

This thesis is dedicated to 

My parents (late Abdur Rashid Bapery and Rowshnara Begum), 

Wife (Arifun Nahar Mithila), 

Son (Saifan Ahamed) and 

My family members 

 

 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 
PERMISSION TO USE ................................................................................................................... i 

ABSTRACT .................................................................................................................................... ii  

CO-AUTHORSHIP STATEMENT .............................................................................................. iv 

ACKNOWLEDGMENTS .............................................................................................................. v 

DEDICATION ............................................................................................................................... vi 

LIST OF TABLES ....................................................................................................................... xiii 

LIST OF FIGURES ..................................................................................................................... xiv 

CHAPTER 1 ................................................................................................................................... 1  

INTRODUCTION .......................................................................................................................... 1 

1.1 Research purpose ...................................................................................................................... 3  

1.1.1 Knowledge gaps .................................................................................................................. 3 

1.1.2 Objectives ........................................................................................................................... 4 

1.2 Thesis outline ............................................................................................................................ 5  

1.3 Copyright and author permissions ............................................................................................ 5 

CHAPTER 2 ................................................................................................................................... 7  

EVALUATION OF A CLOUD COVER BASED MODEL FOR ESTIMATION OF HOURLY 
GLOBAL SOLAR RADIATION IN WESTERN CANADA .................................................... 7 

Overview ......................................................................................................................................... 7 

Abstract ........................................................................................................................................... 8 

2.1 Introduction ............................................................................................................................... 9  

2.2 Cloud cover solar radiation models (CRM) ............................................................................ 10  

2.3 Meteorological data for the study ........................................................................................... 11 

2.4 Statistical indicators for model evaluation .............................................................................. 12 

2.5 Results and discussion ............................................................................................................ 13 

2.5.1 Cloud cover ....................................................................................................................... 13 

2.5.2 Solar radiation ................................................................................................................... 14 

2.6 Conclusions ............................................................................................................................. 20  

Acknowledgement ........................................................................................................................ 21 

CHAPTER 3 ................................................................................................................................. 22 

A QUASI-STEADY STATE MODEL FOR PREDICTING THE HEATING REQUIREMENTS 
OF CONVENTIONAL GREENHOUSES IN COLD REGIONS ............................................ 22 

Overview ....................................................................................................................................... 22 

Abstract ......................................................................................................................................... 23 

Nomenclature ................................................................................................................................ 24  



viii 
 

3.1 Introduction ............................................................................................................................. 27  

3.2 Principles of modelling ...................................................................................................... 28  

3.2.1 Heat gain from solar radiation .......................................................................................... 30 

3.2.1.1 Hourly solar radiation through the inclined surface ................................................... 30 

3.2.1.2 Cloud cover solar radiation ........................................................................................ 31 

3.2.2 Heat gain from environmental control systems ................................................................ 32 

3.2.3 Heat transfer by conduction and convection ..................................................................... 33 

3.2.4 Heat transfer by air exchange............................................................................................ 35 

3.2.5 Heat transfer through floor and perimeter ......................................................................... 35 

3.2.6 Long-wave radiation transfer from greenhouses .............................................................. 35 

3.2.7 Heat used in evapotranspiration ........................................................................................ 37 

3.3 Program design ....................................................................................................................... 37  

3.4 Description of the model commercial greenhouse .................................................................. 38 

3.5 Results and discussion ............................................................................................................ 40 

3.5.1 Evaluation of solar radiation sub-model ........................................................................... 40 

3.5.2 Simulation of the model greenhouse ................................................................................. 41 

3.5.2.1 Analysis of heat transfers in the greenhouse .............................................................. 42 

3.5.3 Validation of the model .................................................................................................... 45 

3.6 Conclusions ............................................................................................................................. 47  

Acknowledgements ....................................................................................................................... 48 

CHAPTER 4 ................................................................................................................................. 49 

A REVIEW OF ENERGY SAVING TECHNIQUES FOR REDUCING HEATING COST OF 
CONVENTIONAL GREENHOUSES ..................................................................................... 49 

Overview ....................................................................................................................................... 49 

Abstract ......................................................................................................................................... 50 

4.1 Introduction ............................................................................................................................. 51  

4.2 Energy-efficient design of greenhouses .................................................................................. 52 

4.2.1 Greenhouse shape ............................................................................................................. 52 

4.2.2 Orientation ........................................................................................................................ 54 

4.2.3 North wall ......................................................................................................................... 56 

4.2.3.1 Non-transparent north wall ........................................................................................ 56 

4.2.3.2 Heat storage with north wall ...................................................................................... 57 

4.3 Use of energy-efficient greenhouse cover .............................................................................. 60 

4.4 Energy saving potential of thermal screen .............................................................................. 63 



ix 
 

4.5 Energy saving potential of insulation ..................................................................................... 65  

4.5.1 Insulation between two layers of cover ............................................................................. 65 

4.5.2 Foundation and sidewall insulation................................................................................... 67 

4.6 Energy saving potential of indoor microclimates management .............................................. 67 

4.6.1 Integration of indoor set-point temperature ...................................................................... 67 

4.6.2 Control of indoor relative humidity .................................................................................. 70 

4.7 Heating contribution of supplemental lighting ....................................................................... 71 

4.8 Energy saving potential of heating systems ............................................................................ 73 

4.8.1 Active heating ................................................................................................................... 73 

4.8.2 Passive heating .................................................................................................................. 75 

4.8.2.1 Water heat storage ...................................................................................................... 76 

4.8.2.2 Rock bed heat storage ................................................................................................ 77 

4.9 Use of alternative energy for greenhouse heating ................................................................... 78 

4.9.1 Industrial waste heat for greenhouse heating .................................................................... 78 

4.9.2 Geothermal energy for greenhouse heating ...................................................................... 80 

4.9.3 Wood biomass ................................................................................................................... 84 

4.10 Energy saving potential of windbreaks ................................................................................. 85  

4.11 Conclusions ........................................................................................................................... 85  

Acknowledgement ........................................................................................................................ 87 

CHAPTER 5 ................................................................................................................................. 88 

ENERGY EFFICIENT DESIGN OF GREENHOUSE FOR CANADIAN PRAIRIES USING A 
HEATING SIMULATION MODEL ........................................................................................ 88 

Overview ....................................................................................................................................... 88 

Abstract ......................................................................................................................................... 89 

5.1 Introduction ............................................................................................................................. 90  

5.2 Materials and method .............................................................................................................. 92  

5.2.1 Introduction of the GREENHEAT model ......................................................................... 92 

5.2.2 Simulation of heating requirement .................................................................................... 92 

5.3 Results and discussion ............................................................................................................ 96 

5.3.1 Energy-efficient greenhouse shape ................................................................................... 96 

5.3.2 Energy efficient orientation .............................................................................................. 99 

5.3.3 Angle of roof and width of span ..................................................................................... 102 

5.4 Conclusions ........................................................................................................................... 106  

Acknowledgment ........................................................................................................................ 108 



x 
 

CHAPTER 6 ............................................................................................................................... 109 

HEATING DEMAND AND ECONOMIC FEASIBILITY ANALYSIS FOR YEAR-ROUND 
VEGETABLE PRODUCTION IN CANADIAN PRAIRIES’ GREENHOUSES ................. 109 

Overview ..................................................................................................................................... 109 

Abstract ....................................................................................................................................... 110 

6.1 Introduction ........................................................................................................................... 111  

6.2 Materials and method ............................................................................................................ 112  

6.2.1 Description of the study greenhouse ............................................................................... 112 

6.2.2 Description of the heating model (GREENHEAT) ........................................................ 112 

6.2.3 Economic analysis .......................................................................................................... 115 

6.2.3.1 Capital investment ................................................................................................... 115 

6.2.3.2 Annual operating cost .............................................................................................. 117 

6.2.3.3 Gross return .............................................................................................................. 118 

6.2.3.4 Benefit-cost analysis (BCA) .................................................................................... 118 

6.2.3.5 Sensitivity Analysis ................................................................................................. 119 

6.3 Results and discussion .......................................................................................................... 119 

6.3.1 Greenhouse heating requirement .................................................................................... 119 

6.3.2 Economic analysis .......................................................................................................... 121 

6.3.2.1 Sensitivity analysis ................................................................................................... 124 

6.4 Conclusions ........................................................................................................................... 126  

Acknowledgement ...................................................................................................................... 128 

CHAPTER 7 ............................................................................................................................... 129 

DEVELOPMENT OF A THERMAL MODEL FOR SIMULATION OF SUPPLEMENTAL 
HEATING REQUIREMENTS IN CHINESE-STYLE SOLAR GREENHOUSES .............. 129 

Overview ..................................................................................................................................... 129 

Abstract ....................................................................................................................................... 130 

Nomenclature .............................................................................................................................. 131  

7.1 Introduction ........................................................................................................................... 133  

7.2 Principle of the model ........................................................................................................... 135  

7.2.1 Net solar heating gain ..................................................................................................... 137 

7.2.2 Heat transfer between floor and indoor air ..................................................................... 138 

7.2.3 Heat transfer between north wall and indoor air ............................................................. 139 

7.2.4 Solar fraction on the north wall and floor ....................................................................... 140 

7.2.5 Heat gain from environmental control systems .............................................................. 141 



xi 
 

7.2.6 Heat loss through the greenhouse envelope .................................................................... 141 

7.2.7 Heat loss caused by infiltration ....................................................................................... 141 

7.2.8 Heat loss caused by evapotranspiration .......................................................................... 142 

7.3 Model development and validation ....................................................................................... 143 

7.3.1 CSGHEAT model development ..................................................................................... 143 

7.3.2 Description of the study greenhouse ............................................................................... 143 

7.3.3 Measurement method and simulation of study greenhouse ............................................ 144 

7.3.4 Model performance evaluation ....................................................................................... 146 

7.4 Results and discussion .......................................................................................................... 146 

7.4.1 Greenhouse indoor climate ............................................................................................. 146 

7.4.2 Evaluation of the solar radiation sub-model ................................................................... 147 

7.4.3 Comparison of simulated and measured temperature of ground and north wall ............ 148 

7.4.4 Validation for heating simulation ................................................................................... 150 

7.5 Conclusions ........................................................................................................................... 151  

Acknowledgement ...................................................................................................................... 153 

CHAPTER 8 ............................................................................................................................... 154 

SENSITIVITY ANALYSIS OF CSGHEAT MODEL FOR ESTIMATION OF HEATING 
ENERGY CONSUMPTION IN A CHINESE-STYLE SOLAR GREENHOUSE ................ 154 

Abstract ....................................................................................................................................... 155 

8.1 Introduction ........................................................................................................................... 156  

8.2 Materials and methods .......................................................................................................... 157  

8.2.1 Heating simulation model (CSGHEAT) ......................................................................... 157 

8.2.2 Sensitivity analysis.......................................................................................................... 157 

8.2.3 Base case model and weather data .................................................................................. 158 

8.3 Results and discussion .......................................................................................................... 161 

8.3.1 Sensitivity of CSGHEAT model to default parameters .................................................. 161 

8.3.1.1 Air thermal conductance of air spaces in a double-layer cover ............................... 162 

8.3.1.2 Greenhouse floor parameters ................................................................................... 163 

8.3.1.3 Characteristic length of convective surface ............................................................. 165 

8.3.2 Sensitivity of greenhouse building materials .................................................................. 167 

8.3.2.1 Greenhouse cover and thermal blanket .................................................................... 167 

8.3.2.2 North wall ................................................................................................................ 169 

8.3.2.3 Greenhouse perimeter .............................................................................................. 170 

8.3.3 Sensitivity of crop parameters ........................................................................................ 171 



xii 
 

8.3.4 Sensitivity of indoor climatic parameters ....................................................................... 172 

8.3.5 Summarizing discussion of sensitivity analysis .............................................................. 176 

8.4 Conclusions and recommendations....................................................................................... 177 

Acknowledgement ...................................................................................................................... 178 

CHAPTER 9 ............................................................................................................................... 179 

MODELING OF HEATING DEMAND IN THE CHINESE-STYLE SOLAR GREENHOUSE 
USING TRANSIENT BUILDING ENERGY SIMULATION MODEL TRNSYS .............. 179 

Overview ..................................................................................................................................... 179 

Abstract ....................................................................................................................................... 180 

9.1 Introduction ........................................................................................................................... 181  

9.2 Materials and method ............................................................................................................ 182  

9.2.1 Description CSG model using TRNSYS ........................................................................ 182 

9.2.2 CSGHEAT model ........................................................................................................... 186 

9.2.3 Simulation of heating requirement .................................................................................. 187 

9.3 Results and discussion .......................................................................................................... 188 

9.3.1 Comparative performance of TRNSYS and CSGHEAT model ..................................... 188 

9.3.2 Sensitivity analysis.......................................................................................................... 192 

9.4 Conclusions ........................................................................................................................... 194  

Acknowledgement ...................................................................................................................... 196 

CHAPTER 10 ............................................................................................................................. 197 

CONCLUDING REMARKS ...................................................................................................... 197 

10.1 Contributions....................................................................................................................... 197  

10.2 Summary and conclusions .................................................................................................. 198 

10.3 Future works ....................................................................................................................... 201 

Appendix A ................................................................................................................................. 202 

A.1 MATLAB Code for computer program of conventional greenhouse ............................... 202 

A.2 MATLAB Code for computer program of Chinese-style solar greenhouse ..................... 218 

Appendix B ................................................................................................................................. 229  

B.1 Copyright Permissions ...................................................................................................... 229 

References ................................................................................................................................... 235  

 

 
 
 

 



xiii 
 

LIST OF TABLES 

Table 2.1: The description of sample location in Western Canada and local 

coefficients of the Kasten-Czeplak model. 
12 

Table 2. 2: Comparison of statistical indicators for estimating the hourly solar 

radiation for four different cities in Western Canada. 
18 

Table 2.3: Evaluation of cloud cover model based on different set of cloud cover data. 19 

Table 3.1: Constant values of different parameters used in the simulation. 39 

Table 4.1: Thermal properties of different greenhouse cover materials. 61 

Table 4.2: Summary of heating performance of the different passive heating system 

with the rock bed as heat storage material. 
78 

Table 5.1: Other input values used for heating simulation. 94 

Table 5.2: Geometrical description of different sections of the greenhouses with east-

west orientation. 
96 

Table 6.1: Constant input values for simulation of heating requirements in the study 

greenhouse. 
113 

Table 6.2: Environmental control parameters’ input values in heating requirement 

simulation.   
115 

Table 6.3: Capital investment for growing tomato, cucumber, and pepper in Canadian 

Prairies’ greenhouses. 
117 

Table 6.4: Annual capital costs, variable costs, and net return (NR) for the production 

of tomato, cucumber, and pepper. 
123 

Table 7.1: Constant parameters used for simulation of heating requirement. 145 

Table 8.1: Base case value for constant parameters used for simulation of the heating 

requirement. 
160 

Table 9.1: Physical and thermal properties of materials used in modeling of the CSG 

using TRNSYS.   
185 

 

 

 

 



xiv 
 

LIST OF FIGURES 

Figure 2.1: Hourly frequency of occurrence of cloud cover. 14 

Figure 2.2: Scatterplots between measured and estimated global solar radiation by the 

Kasten-Czeplak models, (a) with the original coefficients (b) locally fitted coefficients 

in Saskatoon. 

15 

Figure 2.3: Scatterplots between measured and estimated global solar radiation by the 

Kasten-Czeplak models, (a) with the original coefficients (b) locally fitted coefficients 

in Winnipeg. 

15 

Figure 2.4: Scatterplots between measured and estimated global solar radiation by the 

Kasten-Czeplak models, (a) with the original coefficients (b) locally fitted coefficients 

in Fort McMurray. 

16 

Figure 2.5: Scatterplots between measured and estimated global solar radiation by the 

Kasten-Czeplak models, (a) with the original coefficients (b) locally fitted coefficients 

in Vancouver. 

16 

Figure 3.1: Flowchart of the computer program GREENHEAT for simulation of the 

greenhouse heating requirement. 
38 

Figure 3.2: The scatter plot of estimated and measured value of global solar radiation 

on the horizontal surface in Saskatoon. 
41 

Figure 3.3: Annual variation of the heating requirements in the study greenhouse, and 

the outside average temperature in Saskatoon. 
42 

Figure 3.4: Annual variation of heating contribution from solar radiation compared to 

the total heat gain. 
43 

Figure 3.5: Annual variation of the heat gains from different environmental control 

systems. 
44 

Figure 3.6: Annual variation of heat loss by different heat transfer mechanisms from 

the study greenhouse during heating mode. 
45 

Figure 3.7: Comparison of predicted and actual heating requirements in the study 

greenhouse. 
47 

Figure 4.1: View of the common conventional greenhouse shape. 54 

Figure 4.2: Schematic representation of reflective inclined surface attached to the 

north wall. 
 57 



xv 
 

Figure 4.3: Greenhouse with heat-storing north wall integrated with the ground air 

collector. 
59 

Figure 4.4: (a) A electrical blower for providing insulation in double layer 

polyethylene covered greenhouses, and (b) liquid foam insulation between two layers 

of cover. 

66 

Figure 4.5: Specific energy consumption in greenhouses as a function of inside air 

temperature. 
69 

Figure 4.6: Energy consumption as a function of fixed RH set point for simulations 

with different temperature integrations scheme. 
71 

Figure 4.7: Top view of greenhouse geothermal heating system integrated with the 

irrigation well. 
81 

Figure 4.8: GSHP system connected with PV panel for heating the greenhouse 83 

Figure 5.1:  Cross-section views of different available shapes of conventional 

greenhouses. 
95 

Figure 5.2:  Annual variation of average daily total solar insolation into the 

greenhouses of different shapes with the east-west orientation. 
98 

Figure 5.3:  Predicted annual heating requirements in five different shapes of 

greenhouses with an east-west orientation. 
99 

Figure 5.4:  Annual variation in average daily solar radiation in a single-span 

greenhouse with E-W and N-S orientation. 
100 

Figure 5.5:  Annual variation in average daily solar radiation in a six-span greenhouse 

with E-W and N-S orientation. 
101 

Figure 5.6:   Percentile increase or decrease of solar radiation gain with the E-W 

orientation as compared to the N-S orientation for various length-width ratios of the 

multiple-span greenhouse. 

102 

Figure 5.7:   The heating requirement and the solar radiation gain with the various 

roof angle in the single-span greenhouse. 
103 

Figure 5.8:   Average daily total solar heat gain per square meter of floor area in the 

selected single-span greenhouse for different span widths. 
104 

Figure 5.9:   Average daily total solar heat gain per square meter of floor area in the 

selected multi-span (6 spans) greenhouse for different span widths. 
105 



xvi 
 

Figure 5.10:  Annual heating requirement in the selected single-span and the multi-

span greenhouse with various span widths. 
106 

Figure 6.1:  Monthly heating requirement of the greenhouse for the production of 

tomato, cucumber, and pepper. 
121 

Figure 6.2:   The effect of a change in heating fuel price on NPV for the production of 

tomato, cucumber, and pepper in the study greenhouse. 
124 

Figure 6.3:  The effect of a change in discount rate on NPV for the production of 

tomato, cucumber, and pepper. 
125 

Figure 6.4: The effect of a change in product price on NPV for the production of 

tomato, cucumber, and pepper. 
126 

Figure 7.1.   The heat balance in a Chinese solar greenhouse on a typical winter day. 136 

Figure 7.2.  View of the projected length of sun rays entering a typical Chinese-style 

solar greenhouse. 
140 

Figure 7.3:  Hourly temperature variation of the soil surface, north wall surface, 

indoor and outdoor air, and solar radiation in the greenhouse on March 28-30, 2017. 
147 

Figure 7.4:  Comparison of measured and predicted global solar radiation on the 

horizontal surface on March 28-30, 2017. 
148 

Figure 7.5:  Comparison between the predicted and the measured soil temperature in 

the greenhouse on March 28-30, 2017. 
149 

Figure 7.6:   Comparison between the predicted and the measured temperature of the 

north wall on March 28-30, 2017. 
150 

Figure 7.7:  Comparison of measured and predicted heating requirement in the study 

greenhouse on March 28-30, 2017. 
151 

Figure 8.1:   The sensitivity of air thermal conductance of air gap in the double layer 

cover. 
163 

Figure 8.2:  The sensitivity of underground soil temperature, depth of soil for 

negligible temperature fluctuation, and thickness of topsoil layer. 
165 

Figure 8.3:  The sensitivity of characteristic length of the north wall and the south 

roof. 
166 

Figure 8.4:  The sensitivity of solar transmissivity, transmissivity to long-wave 

radiation, and emissivity coefficient of greenhouse double layered poly cover. 
168 



xvii 
 

 
  

Figure 8.5: The sensitivity of the thermal blanket on the heating requirement. 169 

Figure 8.6:  The sensitivity of the thermal conductivity of insulation material and 

solar absorptivity of the north wall. 
170 

Figure 8.7:  The sensitivity of the perimeter heat loss factor on the heating 

requirement. 
171 

Figure 8.8:  The sensitivity of the leaf area index and the canopy light extinction 

coefficient. 
172 

Figure 8.9:  The sensitivity of the indoor set-point temperature (daytime and night-

time). 
173 

Figure 8.10:  The sensitivity of the indoor relative humidity and the air velocity on 

the heating requirement. 
175 

Figure 8.11: The sensitivity of the installed power of supplemental lighting and the 

CO2 supply rate on the heating requirement 
176 

Figure 9.1:  Side view of a typical Chinese-style solar greenhouse. 183 

Figure 9.2: Components of TRNSYS heating simulation model of the Chinese-style 

solar greenhouse. 
184 

Figure 9.3:  Monthly average ambient temperature and solar radiation on the 

horizontal surface in Saskatoon.    
188 

Figure 9.4:  Monthly average daily heating requirement in the study greenhouse as 

predicted by from TRNSYS and CSGHEAT without thermal blanket and plants. 
189 

Figure 9.5:  Monthly average daily heating requirement in the reference greenhouse 

as predicted by TRNSYS and CSGHEAT with consideration of the thermal blanket. 
191 

Figure 9.6:  Monthly average daily heating requirement in the study greenhouse as 

predicted by TRNSYS and CSGHEAT with consideration of thermal blanket and 

evapotranspiration. 

192 

Figure 9.7:  Sensitivity of the change of moisture gain and infiltration rate on the 

heating requirement.    
194 



1 
 

CHAPTER 1 

INTRODUCTION 

A greenhouse is a building, an enclosed structure that creates a favorable micro-climate for crop 

production. Greenhouse technology has been used for around two centuries around the world for 

crop production (Gupta and Chandra, 2002). Crop production in greenhouses became popular to 

meet the food demand of an increasing number of world population because of much higher crop 

yields with more consistent crop quality than field crops. However, the greenhouse industry is one 

of the most energy demanding agricultural sectors as it requires control and creation of optimum 

environments for increased yield (Vadiee, 2011). The production costs in cold region greenhouses 

are extremely high because of high energy demand; thereby the growers might experience the 

marginal profit or high produce price at the consumer level. The heating and cooling costs in the 

greenhouse at northern latitudes including Canada could be about 75-85% of the total operating 

costs excluding cost associated with labor (Rorabaugh et al., 2002), whereas the heating energy 

demand represents about 70-80% of the total greenhouse energy demand (Sanford, 2011). The 

heating cost in Canadian greenhouse accounts about 15-20% of total greenhouse operational cost 

(Statistics Canada, 2008).   Therefore, the greenhouse in cold regions such as the Canadian Prairies 

is highly energy inefficient and economically less profitable. As a result, Canadian Prairies 

including Saskatchewan mainly relies on the produce transported from southern U.S.A, British 

Columbia, and Ontario, which leads to higher product price and quality of product deteriorate over 

long-distance transportation. Therefore, energy efficient design of greenhouses and use of 

alternative energy such as industrial waste heat or solar energy can minimize the heating energy 

demand for greenhouse production at high northern latitudes. Also, Saskatchewan has the highest 

number of sunshine hours of any province that can be effectively capitalized through solar 

greenhouse technology, which can offset the need for high supplemental heating demand in 

conventional style greenhouses. The Chinese-style solar greenhouse (CSG) is typically an 

unheated envelope with transparent south facing covering and an insulated wall in the North, East, 

and West sides.   CSGs are highly energy-efficient, and vegetables can grow without supplying 
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additional heat even when the average daily temperature falls below -10˚C in China (Tong et al., 

2013). However, a significant amount of additional heating could be required under Canadian 

Prairies’ weather conditions (Beshada et al., 2006).  

Greenhouse thermal model for energy simulation is important for optimizing the energy-efficient 

designs and economic feasibility analysis of greenhouse production. Numerous studies have been 

performed to develop greenhouse thermal models to describe the heat and mass transfer process 

in greenhouses. Greenhouse thermal models can be classified into three groups such as: static, 

dynamic, and intermediate. Static models (Chiapale and Kittas, 1981; Morris, 1964) were mainly 

developed to determine the capacities of heating and cooling equipment and based on the 

approximated thermal gain and losses, and these models require yearly or monthly meteorological 

data. Intermediate models (Chandra and Albright, 1981; Garzoli, 1985; Jolliet et al., 1991; Tunc 

et al., 1985) are the improved versions of simple static models taking into account solar 

contributions; however, the validity is restricted to certain types of greenhouses and climates. 

Complex dynamic models (Cooper and Fuller, 1983; Sethi, 2009; Vanthoor et al., 2011) were 

mostly developed based on several energy balance equations of greenhouse interactive 

components such as cover, plants, floor, and indoor air. These models show good accuracy but 

need very complicated modification to estimate the heating energy requirement over long periods 

or for a greenhouse with different configurations. Also, most previous models did not consider the 

effect of plant evapotranspiration and environmental control systems on the energy balance of 

greenhouses. The environmental control systems including supplemental lighting, CO2 supply 

system, and air circulation system are very important to maintain the optimum indoor environment 

for higher yield and better quality of crop production in northern greenhouses. Also, these 

environmental control systems have a significant contribution to the greenhouse heating 

requirement (Brault et al., 1989; Yang et al., 2015).  

Structural design and operation techniques in the Chinese-style solar greenhouse are different than 

the conventional greenhouses, so the heat and mass transfer mechanisms in the CSGs are quite 

different. CSGs are relatively small with a large thermal mass in the north and side walls and in 

the ground which has important influences on the energy balance of greenhouses. A couple of 

thermal models (Guo et al., 1994; Meng et al., 2009; Tong et al., 2009; Yu et al., 2016) have been 

developed for evaluation of temperature variation at different components in the CSGs. Most of 
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these models are suitable to evaluate the temperature fluctuations in the greenhouse interactive 

components, but very complicated to simulate the heating requirement.          

Also, the commercial building energy simulation tools such as TRNSYS, EnergyPlus, and DOE 

usually need complicated modifications for simulation of greenhouse heating requirements, and 

the existing greenhouse models have various limitations for simulation of the time-dependent 

heating requirement in greenhouses. In this study, two thermal models (GREENHEAT and 

CSGHEAT) were developed to simulate the heating requirement in the conventional and Chinese-

style solar greenhouses. The developed models were also used for analysis of different energy 

saving measures and an economic feasibility study of greenhouse production at high northern 

latitudes.    

1.1 Research purpose 

1.1.1 Knowledge gaps 

The following are the main knowledge gaps: 

1. Many mathematical models have been developed for predicting the thermal environment 

of the conventional greenhouses.  Most of these models were developed by using individual 

energy balance equations for the interactive components (plants, soil, cover, and air) of 

greenhouses. These models are very complex for long-term simulation because of large 

number of input parameters, and also need a significant modification for different types of 

greenhouses. On the other hand, simplified models based on the lumped estimation of the 

greenhouse heat sources and sinks are not precise because of some significant sources of 

heat exchange such as plant transpiration, supplemental lighting, CO2 generator were 

neglected. Therefore, an accurate simplified model is needed for simulation of the time-

dependent heating requirement in the conventional greenhouses.  

2. There is no unique design for the conventional greenhouses because the performance of 

greenhouses varies based on location, size, and types of crops grown. A large number of 

studies have been conducted for the energy-efficient design of the conventional 

greenhouses based on local weather conditions in different parts of the world. However, 

very limited information is available about energy-efficient design of the conventional 

greenhouses for Canadian Prairies. Also, very limited information is available about the 

economic feasibility of greenhouse production in Canadian Prairies regions.    
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3. A few mathematical models have been developed to evaluate the thermal performance of 

Chinese-style solar greenhouse, and most of these models are developed based on the 

energy balance equation of the different components of the greenhouses. However, the 

existing models need very complicated modification for estimation of the time-dependent 

heating requirement in CSGs. Also, very limited information is available on energy-

efficient design features of CSGs under Canadian weather conditions.  

1.1.2 Objectives  

The overall objective of this research was to develop the heating simulation models for 

greenhouses (conventional greenhouse, and Chinese-style solar greenhouse), and also analyze the 

heating requirements for different settings in greenhouses under Candain Prairies weather 

conditions. The following were the detailed objectives of the study: 

1. Develop a thermal model with a solar radiation sub-model for simulation of time-

dependent heating requirements in conventional greenhouses based on the input of local 

weather data, indoor environmental control parameters, and physical and thermal 

properties of greenhouse building materials and plants. 

2. Identify the different techniques of heating energy saving options for the conventional 

greenhouses and the energy-efficient design of greenhouse parameters which vary 

depending on the location of greenhouses. Analyze the heating energy saving potential of 

the selected design parameters of the conventional greenhouses under the weather 

conditions of Saskatchewan.   

3. Conduct the economic feasibility study of year-round production of common vegetables in 

a conceptually designed conventional greenhouse in northern Saskatchewan. 

4. Develop a thermal model for simulation of the supplemental heating requirement in the 

Chinese-style solar greenhouses, and validate the model with experimental data from a 

typical Chinese-style solar greenhouse.  

5. Analyze the sensitivity of the developed heating simulation model of the Chinese-style 

solar greenhouse, and evaluate the heating requirement for different settings in the study 

greenhouse.    

6. Configure TRANSYS for predicting the heating requirement of CSGs, and also compare 

the performance of heating simulation model (CSGHEAT) with the commercial building 

simulation software TRANSYS. 
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1.2 Thesis outline 

This thesis follows a manuscript based structure according to the College of Graduate and 

Postdoctoral Studies (CGPS) guidelines. After an introduction in Chapter 1, Chapters 2-9 represent 

eight individual manuscripts that been published, accepted, submitted or ready to submit for 

publication. Chapter 2 provides the background of the solar radiation sub-model which is a very 

important part of the modeling of greenhouse thermal environment. Chapter 3 describes the 

detailed principle of the GREENHEAT model for simulation of heating requirement in the 

conventional greenhouses, and also the validation of the model and the analysis of heating transfer 

in a conventional greenhouse under cold climate. Chapters 4 and 5 address the second objective of 

the study. Chapter 4 includes the comprehensive review of heating energy saving techniques for 

conventional greenhouses. Based on the developed model in Chapter 3, Chapter 5 presents the 

energy-saving potential of some design features of the conventional greenhouses in Saskatchewan. 

To address the objective 3, Chapter 6 incorporates the economic feasibility of greenhouse 

production in northern Saskatchewan. 

Chapter 7 provides the comprehensive background of the heating simulation model and validation 

for the CSGHEAT model. Based on the developed model in Chapter 7, Chapter 8 includes the 

sensitivity of the CSGHEAT model for simulation of the heating requirement in CSGs. This 

chapter also includes the sensitivity of the different design features and environmental control 

parameters on the heating requirement in a typical Chinese-style solar greenhouse. Chapter 9 

addresses the objective 6 and presents detailed description of a heating simulation model for CSG 

using the commercial building simulation tool TRNSYS. The performance of the TRNSYS model 

was compared with the developed thermal model (CSGHEAT) described in Chapter 7.  

Finally, Chapter 10 summarizes the conclusions from the present study and also discusses 

opportunities for the future research on this topic. 

1.3 Copyright and author permissions 

Chapters 2 through 9 of this thesis consist of manuscripts that have been published, submitted or 

ready to submit for publication. Consistent with the copyright and author rights of each publisher, 

the manuscript citations are provided below. Permission to use or author rights from each publisher 

allowing the use of the manuscripts in this thesis is included in Appendix B. For all manuscripts, 
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as per the guidelines of the College of Graduate and Postdoctoral Studies, for manuscript-style 

theses, the student is the first author and supervisor (s) the second author (s). 

Chapter 2: Ahamed, M. S., Guo, H., and Tanino, K. (2018). Evaluation of a cloud cover based 

model for estimation of hourly global solar radiation in Western Canada. International Journal of 

Sustainable Energy, 1-10. DOI: https://doi.org/10.1080/14786451.2018.1443934 

Chapter 3: Ahamed, M. S., Guo, H., and Tanino, K. (2017). A quasi-steady state model for 

predicting the heating requirement of conventional greenhouses in cold region. Information 

Processing in Agriculture, 1-13. DOI: https://doi.org/10.1016/j.inpa.2017.12.003 

Chapter 4: Ahamed, M. S., Guo, H., and Tanino, K. (2018). A review of different techniques for 

reducing the heating cost of conventional winter greenhouses. Submitted to the International 

Journal of Energy Research; submission no. ER_18_9421. 

Chapter 5: Ahamed, M. S., Guo, H., and Tanino, K. (2018). Energy efficient design of greenhouse 

for Canadian Prairies using a heating simulation model. International Journal of Energy Research, 

1-10. DOI: https://doi.org/10.1002/er.4019 

Chapter 6: Ahamed, M. S., Guo, H., Taylor, L., and Tanino, K. (2018). Heating demand and 

economic feasibility analysis for year-round vegetable production in Canadian Prairies' 

greenhouses. Submitted to the Information Processing in Agriculture; submission no. 

IPA_2018_15.  

Chapter 7: Ahamed, M. S., Guo, H., and Tanino, K. (2018). A thermal model for simulating 

supplemental heating requirements in Chinese-style solar greenhouses. Submitted to the 

Computers and Electronics in Agriculture; submission no. COMPAG_2018_106. 

Chapter 8: Ahamed, M. S., Guo, H., and Tanino, K. (2018). Sensitivity analysis of CSGHEAT 

model for estimation of heating energy consumption in a Chinese-style solar greenhouse. 

Submitted to the Computers and Electronics in Agriculture; submission no. COMPAG_2018_316. 

Chapter 9: Ahamed, M. S., Guo, H., and Tanino, K. (2018). Modeling of heating demand in the 

Chinese-style solar greenhouse using transient building energy simulation model TRNSYS. The 

manuscript is ready to submit to the Journal. 
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CHAPTER 2 

EVALUATION OF A CLOUD COVER BASED MODEL FOR ESTIMATION OF 

HOURLY GLOBAL SOLAR RADIATION IN WESTERN CANADA 

 (The manuscript presented in this chapter has been published in the International Journal of 

Sustainable Energy, DOI: https://doi.org/10.1080/14786451.2018.1443934) 

Overview 

The simulation of solar radiation is a very important part of the development of greenhouse thermal 

models. The input of solar radiation data for simulation of greenhouse microclimates could be 

difficult since the solar radiation data are not easily available for most locations, especially in 

remote areas. In this chapter, the performance of the cloud cover based solar radiation model 

(Kasten-Czeplak model) was evaluated for four different locations in Western Canada. The 

simulated solar radiation from the Kasten-Czeplak model was compared with the data from the 

National Solar Radiation Database (NSRDB). The estimation of solar radiation is one of the very 

important part for modeling of greenhouse thermal environment. Results presented in this chapter 

fulfill part of the first and fourth objectives of this thesis and more configurations are studied in 

Chapters 3 and 7. The Kasten-Czeplak model was used as a sub-model of the developed thermal 

models for the conventional (Chapter 3) and Chinese-style solar greenhouses (Chapter 7). As the 

lead author of this manuscript, I conducted the research, analyzed the results, prepared the 

manuscript, incorporated co-authors comments, and addressed the reviewers’ comments. The 

coauthors (Professor Huiqing Guo, and Professor Karen Tanino) have contributed to this 

manuscript through providing technical guidance to conduct the research and constructive review 

to improve the quality of research.    
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Abstract 

Cloud cover based solar radiation models are relatively simple and convenient as the models 

require the input of cloud cover data which are mostly available from the meteorological stations. 

In this study, the performance of a cloud cover based solar radiation model (Kasten-Czeplak 

model) with original or locally fitted coefficients was evaluated for estimating the hourly global 

solar radiation for four different locations in Western Canada. The average value of R2, mean bias 

error, and root mean square error are 0.69, -61.6 W m-2, and 157.9 W m-2, respectively, for the 

model with original coefficients, whereas 0.82, 4.4 W m-2, 107.1 W m-2 with locally fitted 

coefficients. Results show that the Kasten-Czeplak model with locally fitted coefficients 

satisfactorily estimated the hourly solar radiation of four different locations in Western Canada. 

Also, the results indicate that the model with original coefficients has very limited accuracy under 

intermediate cloud cover conditions.          
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2.1 Introduction 

Continuous time series data of solar radiation are very important for the evaluation of building 

thermal performance and analysis the potential of different solar application systems. However, 

the time series solar radiation data are mainly available in the developed countries, whereas very 

limited resources in the developing countries. Although the solar radiation stations do exist in the 

developing countries, there are uncertainties regarding the quality of data obtained. Also, the 

measured data from a given solar station become less accurate for a location that is beyond 50 km 

from the measuring station (Younes and Muneer, 2007). The surface weather stations which 

recording the solar radiation data is very small compared to the number of meteorological stations 

that record meteorological data including temperature, precipitation, relative humidity, sunshine 

duration, and cloud cover. Also, the observational records for solar radiation are usually short and 

often have missing data because of equipment malfunction (Cutforth and Judiesch, 2007). 

Therefore, many empirical models have been developed for estimation of global solar radiation by 

using commonly available meteorological data such as sunshine duration, temperature, 

precipitation, relative humidity, and cloud cover. The sunshine based solar radiation models (Al-

Mostafa et al., 2012; Bakirci, 2008; Trnka et al., 2005) are usually considered to be more reliable 

because the sunshine data are precisely recorded by a sunshine recorder whereas cloud cover data 

are based on the visual estimation and satellite image. Also, the variation of solar radiation 

explained by sunshine duration is 70-85% whereas 50% quoted against the cloud amount (Bennett, 

1969). However, the sunshine duration data are not easily available from the weather stations. 

Conversely, the temperature-based models (Spokas and Forcella, 2006; Supit and van Kappel, 

1998) could be the most convenient tool for estimation of solar radiation because of the wide 

availability of air temperature data, but accuracy is limited for hourly simulation as these models 

estimate the solar radiation based on the daily maximum and minimum temperature. However, the 

cloud cover based models can provide comparatively accurate predictions, and cloud cover data 

are relatively easy to access from weather stations (Kim et al., 2014).  

Previous studies (El-Metwally, 2004; Younes and Muneer, 2007) shows that the performance of 

solar radiation models could be significantly different depending on the location of the study area. 

Hence, it is very important to evaluate the performance of these models against the local dataset, 

and also need to determine the local coefficients for estimation of solar radiation with good 

accuracy. De Jong & Stewart (1993) estimated the daily total solar radiation of Western Canada 
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by using temperature and precipitation based model. Similarly, Barr et al. (1996) evaluated the 

solar radiation model by using sunshine duration and temperature data. Kahimba et al. (2009) 

evaluated the SolarCalc model developed by Spokas & Forcella (2006) for estimating the hourly 

incoming solar radiation of different locations in Western Canada by using daily total precipitation 

(mm), and daily maximum and minimum air temperatures. Jeong et al. (2016) used several 

empirical models to simulate daily solar radiation in Quebec using two meteorological inputs such 

as daily temperature and relative humidity. To the best of our knowledge, no previous studies are 

found related to the prediction of solar radiation from cloud cover data in Canada. Therefore, the 

objective of this study is to evaluate the selected cloud cover based solar radiation models for 

different locations in Western Canada. The preliminary results from this study were presented in 

the CSBE/SCGAB Annual Conference, Winnipeg, Canada (Ahamed et al., 2017a).   

2.2 Cloud cover solar radiation models (CRM) 

Different types of empirical models have been developed for estimating the daily/hourly solar 

radiation using cloud cover information. Most of these models (Black 1956; Sarkar 2016; Badescu 

1999; Bennett 1969) are used for estimating the daily average total solar radiation using cover 

cloud data. Kasten and Czeplak (1980) developed a cloud cover based solar radiation model by 

using ten-years (1964–1973) of continuous hourly data from Hamburg, Germany. The model used 

the cloud amount in Oktas which ranges from 0 to 8; zero Oktas indicate a completely clear sky 

and 8 Oktas means a completely overcast sky. Younes and Muneer (2007) evaluated the 

performance of several cloud cover based models for estimation of hourly global solar radiation 

for different locations in England. Results show that the Kasten-Czeplak model performed 

relatively better than the other models. Also, the Kasten-Czeplak model has been tested against 

the dataset for different locations over the world (Younes and Muneer 2007; Badescu and 

Dumitrescu 2014a; Kim, Baltazar, and Haberl 2014; Badescu and Dumitrescu 2014b), but the 

model has not been evaluated against the dataset from high northern latitudes. Therefore, the 

Kasten-Czeplak models with the original coefficients and locally fitted coefficients were 

considered for evaluating their performance against the dataset of four different locations in 

Western Canada. For this analysis, the original Kasten-Czeplak model is referred to as M1.  

According to the Kasten & Czeplak (1980), the global solar radiation (Ig) on any horizontal surface 

under cloud cover condition can be estimated by using the following equation: 
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I୥ = I୥ୡ(1 − 0.75 ቀ
୒
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ቁ
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)          (2.1) 

where Igc is the clear sky global solar radiation (W m-2); N is the cloud cover (Oktas). 

The Kasten-Czeplak model with locally fitted coefficients can be written as follows:  

I୥ = I୥ୡ(1 − A ቀ
୒

଼
ቁ

୆

)           (2.2) 

where A and B are the local coefficients. The model with locally fitted coefficients is referred to 

as M2 for this analysis. 

The Katen-Czeplak model estimates the clear sky solar radiation based on empirical equation 

related to the solar altitude angle which is relatively simple as the model avoids the atmospheric 

attenuation of solar radiation (Orsini et al., 2002). The clear sky solar radiation on the earth surface 

depends on the solar altitude angle and local atmospheric turbidity. By considering the atmospheric 

turbidity, the clear sky global solar radiation on the horizontal surfaces, and the direct normal 

irradiance (IN) on any terrestrial region can be calculated  as follows (Tiwari, 2003): 

I୥ୡ = I୒ cos θ୸ +
ଵ

ଷ
( Iୣ୶ − I୒) cos θ୸        (2.3)    

I୒ = Iୣ୶ exp ቂ
ି୘౎

(଴.ଽାଽ.ସ ୱ୧୬ ⍺)
ቃ , ⍺ = 90 − θ୸        (2.4) 

where θz is the zenith angle (degrees), ⍺ is the solar altitude angle (degrees).   

According to Spencer (1971), the extraterrestrial radiation from the sun on a surface normal to the 

sun’s rays on the nth day of the year is given by: 

Iୣ୶ = Iୱୡ ቂ1 + 0.033 × cos ቀ360 ×
୬ିଷ

ଷ଺ହ
ቁቃ       (2.5) 

where Isc is the solar constant (1367 W m-2), n is the day of the year.   

2.3 Meteorological data for the study 

Four representative locations in Western Canada including Saskatoon, Winnipeg, Fort McMurray, 

and Vancouver, were considered for this study. Twelve years (2004-2015) of hourly 

meteorological data including solar radiation and cloud cover data were collected from the 

National Solar Radiation Data Base (NSRDB). Hubbard (1994) reported that the length of the 

dataset should be more than one year to characterize the seasonal pattern of special variability. 

Gueymard (2000) recommended that a minimum of three-year datasets are needed to validate the 

solar radiation models. Previous studies (Badescu, 2002; Muneer and Gul, 2000; Younes and 
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Muneer, 2007) used continuous time series data for validation of solar radiation models, and 

reported that more than one-year data would be logical enough to characterize the temporal 

evolution of metrological data. Hence, the data from the NSRDB were grouped into two datasets 

such as 75% as training dataset and 25% as a test dataset. The training dataset (2004-2012) was 

used for estimation of the local coefficients by fitting against the local dataset for all selected 

locations, and the test dataset (2013-2015) was considered for validation of the models. The details 

of geographical information of the selected locations and the estimated local coefficients are listed 

in Table 2.1. 

Table 2.1: The description of sample location in Western Canada and local coefficients of the 

Kasten-Czeplak model. 

Locations 
Latitude 

(˚N) 

Longitude 

(˚W) 

Altitude 

(m) 

Coefficient 

A 

Coefficient 

B 

Data 

period 

Saskatoon 52.13 106.66 456 0.54 0.43 2004-2012 

Winnipeg 49.89 97.18 232 0.57 0.48 2004-2012 

Fort McMurray 56.73 111.38 261 0.55 0.32 2004-2012 

Vancouver 49.25 123.06 45 0.61 0.36 2004-2012 

 

2.4 Statistical indicators for model evaluation 

The statistical indices including the coefficient of determination (R2), mean bias error (MBE), root 

mean square error (RMSE), and t-statistic (t-stat) were considered to evaluate the adequacy of the 

cloud cover based solar radiation models. The MBE can be the indicator to figure out the tendency 

of overestimation or underestimation of the model, and the RMSE can be used to figure out the 

degree of dispersion of the estimated radiation against the measured radiation (Kim et al., 2014). 

Another statistical indicator (t-statistic) was proposed by Stone (1993) for evaluation of solar 

radiation model, and the indicator allows models to be compared for performance evaluation with 

other models. The negative value of MBE would indicate the overestimation while the positive 

indicates underestimation, and low values of RMSE and t-stat are desirable for higher accuracy of 

the model. The MBE, RMSE, and t-stat can be estimated by the following equations (Stone, 1993):  
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          (2.6) 
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୬
          (2.7) 

t − stat = ට
୑୆୉మ(୬ିଵ)

ୖ୑ୗ୉మି୑୆ మ
         (2.8) 

where Io is the observed/measured solar radiation (W m-2); Ie is the estimated solar radiation (W 

m-2); and n is the number of data points. 

Dimensionless qualities rMBE and rRMSE are defined by (Badescu and Dumitrescu 2014a): 

 rMBE =  
୑୆୉

Ĭ
           (2.9) 

rRMSE =  
ୖ୑ୗ୉

Ĭ
          (2.10) 

where Ĭ  is the mean value of measured global solar irradiation (W m-2).  

2.5 Results and discussion 

2.5.1 Cloud cover 

Hourly cloud cover data (2013-2015) from the NSRDB for four different locations in Western 

Canada were analyzed, and the frequency of cloud cover occurrence is shown in Figure 2.1. The 

peak frequency of occurrence is observed at the value of 0 and 4 Oktas. The maximum occurrence 

of 26.9% is observed at the value of 0 Oktas in Vancouver, and the minimum 21.7% in Fort 

McMurray. The peak frequency of 4 Oktas accounting 29.9% is observed in Fort McMurray and 

the minimum value of 21.1% in Winnipeg. The second most frequent cloud cover is 7 Oktas, 

accounting for 24.1%, 22.1%, 24.6%, and 18.4%, respectively, for Saskatoon, Winnipeg, Fort 

McMurray, and Vancouver. The lowest frequency of occurrence of cloud cover less than 2.0% is 

observed for the value of 2 and 5 Oktas.  
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Figure 2.1: Hourly frequency of occurrence of cloud cover. 

2.5.2 Solar radiation 

The estimated global solar radiation from the Kasten-Czeplak model was compared with the solar 

radiation data of 2013-2015 from the NSRDB. Figure 2.2-2.5 show the comparative performance 

of the Kasten-Czeplak model with original and locally fitted coefficients for four different 

locations in Western Canada. The scatterplots indicate that the cloud cover model (M2) with 

locally fitted coefficients performs well as compared the model (M1) with the original coefficients. 

Also, the figures indicate that the model with the original coefficients has a relatively higher 

tendency to overestimate  solar radiation as compared the model with the locally fitted coefficients. 

The overdispersion in estimation from the model with original coefficients is reduced for using of 

local coefficients because the local coefficients were estimated based on the measured dataset. The 

estimated solar radiation from the model (M1) is over-dispersed because the effect of local 

atmospheric composition, cloud composition, and height, and elevation of location, were not 

considered in solar radiation estimation.  
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Figure 2.2: Scatterplots between measured and estimated global solar radiation by the Kasten-

Czeplak models, (a) with the original coefficients (b) locally fitted coefficients in Saskatoon. 

 

Figure 2.3: Scatterplots between measured and estimated global solar radiation by the Kasten-

Czeplak models, (a) with the original coefficients (b) locally fitted coefficients in Winnipeg. 
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Figure 2.4: Scatterplots between measured and estimated global solar radiation by the Kasten-

Czeplak models, (a) with the original coefficients (b) locally fitted coefficients in Fort McMurray. 

 

Figure 2.5: Scatterplots between measured and estimated global solar radiation by the Kasten-

Czeplak models, (a) with the original coefficients (b) locally fitted coefficients in Vancouver. 
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Table 2.2 shows the statistical indicators obtained for four different locations of the model with 

original coefficients and locally fitted coefficients. The relative difference between the average 

measured and estimated solar radiation is less than 5.0% for the Kasten-Czeplak model with local 

coefficients whereas more than 14% for the model with original coefficients. The coefficient of 

determination (R2) value is ranging from 0.81 to 0.83 for the model with the local coefficients, 

whereas from 0.68 to 0.70 with the original coefficients.  The negative value of MBE indicates the 

model with the original coefficients has greater tendency to overestimate solar radiation for all the 

selected locations. The RMSE and t-stat values are noticeably lower for the Kasten-Czeplak model 

with the locally fitted coefficients. The RMSE value with the local coefficients varies between 

101.0 and 111.0 W m-2, with an average RMSE of 107.1 W m-2, whereas from 150.0 to 177.0 W 

m2, with an average value of 157.9 W m-2 for the model with original coefficients. Based on the 

results of statistical indicators, it shows that the estimation of hourly solar radiation from the model 

with local coefficients is more consistent with the measured data. Also, the performance of the 

model with local coefficients is close enough to the results from other studies (Ahamed et al., 

2017b; Badescu and Dumitrescu, 2016, 2014b; Kim et al., 2014; Younes and Muneer, 2007) for 

evaluation of the Kasten-Czeplak model with locally fitted coefficients. The statistical indicators 

value for the model with original coefficients is also quite close to the results from other types of 

models (Spokas and Forcella, 2006; Younes and Muneer, 2007) with their site-specific 

coefficients. Badescu and Dumitrescu (2014b) also adopted accuracy criteria for evaluation of 

solar radiation models for estimation of cloudy sky global irradiation. A threshold value of rMBE 

(±5-10%) and rRMSE (35-45%) was considered as good enough for computation of hourly solar 

irradiance. Based on the accuracy criteria, the model (M2) with local coefficients could be 

considered as good because the rMBE and rRMSE values are less than 5.0% and 40.0%, 

respectively. However, the rMBE value varies between 12.0% and 33.0% for the model (M1) with 

original coefficients, and the rRMSE value between 49.0% and 64.0%. Therefore, the performance 

of the model with local coefficients could be considered as poor for computation of solar radiation 

at high northern latitudes.     
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Table 2.2: Comparison of statistical indicators for estimating the hourly solar radiation for four 

different cities in Western Canada.   

Location Model 

Observed 

average hourly 

solar radiation 

(W m-2) 

Estimated 

average hourly 

solar radiation 

(W m-2) 

R2 
MBE 

(W m-2) 

RMSE 

(W m-2) 
t-stat 

Saskatoon 
M1 

284.6 
354.9 0.69 -56.7 154.1 43.9 

M2 291.9 0.82 -7.3 108.9 7.7 

Winnipeg 
M1 

304.7 
348.5 0.70 -38.3 150.7 30.1 

M2 295.4 0.82 9.3 110.4 9.7 

Fort 

McMurray 

M1 
243.6 

304.2 0.68 -60.2 150.5 49.8 

M2 242.9 0.81 0.6 101.0 0.67 

Vancouver 
M1 

274.4 
365.7 0.69 -91.0 176.2 68.9 

M2 289.6 0.83 15.1 107.9 16.2 

As the cloud cover is the only input parameter for the model; therefore, the good quality of cloud 

cover data is important to get a relatively better result from the model. The cloud cover observer 

has general tendency to underestimate cloud cover under low overcast condition but overestimates 

under high overcast condition (Brinsfield et al., 1984). Therefore, the evaluation of the model's 

performance under different cloud condition would be helpful for understanding their limitation 

for simulation of the global solar radiation. The cloud cover data were separated into three groups 

such as clear skies (N ≤ 1), intermediate skies (1< N <7), and overcast skies (N ≥ 7). The 

performance evaluation indicators value for selected the models under different sky conditions is 

given in Table 2.3. Sometimes, it becomes difficult to decide better performed solar radiation 

models from the statistical indicators. Therefore, a scoring system recommended by Muneer & 

Gul (2000) was used for better understanding of each model's performance. The score is the sum 

of absolute values of MBE and RMSE for different skies conditions, and the lowest score would 

be the best.  
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Table 2.3: Evaluation of cloud cover model based on different sets of cloud cover data.  

Location Model 
Cloud cover 

(Oktas) 
R2 

MBE 

(W m-2) 

RMSE 

(W m-2) 

Scores  

(W m-2) 

Saskatoon 

M1 

N ≤ 1 0.94 6.6 60.7 67.3 

1< N <7 0.60 -164.6 225.0 389.6 

N ≥ 7 0.62 11.3 125.4 136.7 

M2 

N ≤ 1 0.94 14.9 79.8 94.7 

1< N <7 0.61 -30.9 129.9 160.8 

N ≥ 7 0.64 9.0 117.2 126.2 

Winnipeg 

M1 

N ≤ 1 0.95 -1.9 62.1 64.0 

1< N <7 0.66 -150.7 211.5 362.2 

N ≥ 7 0.58 59.1 152.8 211.9 

M2 

N ≤ 1 0.93 23.4 90.7 114.1 

1< N <7 0.68 -15.7 119.6 135.3 

N ≥ 7 0.70 21.2 126.2 147.4 

Fort 

McMurray 

M1 

N ≤ 1 0.96 9.3 52.8 62.1 

1< N <7 0.61 -149.6 210.9 360.5 

N ≥ 7 0.68 8.3 101.8 110.1 

M2 

N ≤ 1 0.94 22.7 76.6 79.72 

1< N <7 0.61 -14.1 118.1 132.2 

N ≥ 7 0.67 -4.2 97.3 101.5 

Vancouver 

 N ≤ 1 0.95 -10.9 63.6 74.5 

M1 1< N <7 0.59 -188.9 248.5 437.4 

 N ≥ 7 0.60 -23.9 119.5 143.4 

 N ≤ 1 0.93 4.2 80.7 84.9 

M2 1< N <7 0.59 -30.4 125.8 156.2 

 N ≥ 7 0.60 20.2 112.9 133.1 

The results indicate that the model performs better under clear skies both with original and local 

coefficients. However, the model with original coefficients performs poorly under intermediate 

skies conditions because original coefficients do not consider the local atmospheric effect on solar 
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radiation. The average score with original coefficients under intermediate skies conditions is 387.4 

W m-2, whereas about 146.1 W m-2 with the locally fitted coefficients. The performance of the 

model with local coefficients is relatively poor under intermediate and overcast skies conditions 

compared to the clear skies conditions because the cloud cover observation is a relative 

measurement so the higher error in estimation could be occurred due to the error in cloud cover 

observation. The MBE values indicate both models have a general tendency to underestimate the 

solar radiation for high overcast conditions and an opposite trend for low overcast conditions 

because the cloud cover observer usually underestimates cloud cover under low overcast condition 

but overestimates under high overcast condition.   

2.6 Conclusions 

In this study, the cloud cover model based Kasten-Czeplak model was evaluated for estimation of 

hourly global solar radiation of four different locations in Western Canada. The results show that 

the observed solar radiation data from the NSRDB is better consistent with the estimated solar 

radiation from the Kasten-Czeplak model using locally fitted coefficients. The results also indicate 

that the model with original coefficients performs poorly under intermediate skies condition which 

could be improved significantly using local coefficients. Henceforth, it is recommended to use the 

Kasten–Czeplak model with local coefficients for estimation of hourly global solar irradiation.  
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CHAPTER 3 

A QUASI-STEADY STATE MODEL FOR PREDICTING THE HEATING 

REQUIREMENTS OF CONVENTIONAL GREENHOUSES IN COLD REGIONS 

 (The manuscript presented in this chapter has been published in the Journal of Information 

Processing in Agriculture, DOI: https://doi.org/10.1016/j.inpa.2017.12.003) 

Overview 

Thermal model for simulation of greenhouse heating requirement is essential for studying the 

energy-efficient design and economic feasibility of greenhouse production under particular 

weather conditions. This chapter includes the detailed theoretical principle for the development of 

the heating simulation model for the conventional greenhouses (Objective 1), and also the analysis 

of different heat sources and sinks in a typical conventional style greenhouse at high northern 

latitudes. The developed model (GREENHEAT) presented in this chapter was used for the energy-

efficient design of conventional greenhouse for Canadian Prairies (Chapter 5) and economic 

feasibility study of year-round greenhouse production (Chapter 6). As the lead author of this 

manuscript, I conducted the research, analyzed the results, prepared the manuscript, incorporated 

co-authors comments, and addressed the reviewers’ comments. The coauthors (Professor Huiqing 

Guo, and Professor Karen Tanino) have contributed to this manuscript through providing technical 

guidance to conduct the research and constructive review to improve the quality of research.   
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Abstract 

A time-dependent, quasi-steady state thermal model (GREENHEAT) based on the lumped 

estimation of heat transfer parameters of greenhouses has been developed to predict the hourly 

heating requirements of conventional greenhouses. The model was designed to predict the hourly 

heating requirements based on the input of greenhouse indoor environmental control parameters, 

physical and thermal properties of crops and construction materials, and hourly weather data 

including temperature, relative humidity, wind speed, and cloud cover. The model includes all of 

the heat transfer parameters in greenhouses including the heat loss for plant evapotranspiration, 

and the heat gain from environmental control systems. Results show that the predicted solar 

radiation data from the solar radiation sub-model are a reasonable fit with the data from the 

National Solar Radiation Database (NSRDB). Thermal analysis indicates environmental control 

systems could reduce 13-56% of the total heating requirements over the course of a year in the 

study greenhouse. During the winter season, the highest amount of greenhouse heat is lost due to 

conduction and convection, and the heat used for evapotranspiration is dominant in the summer. 

Finally, the model was validated with actual heating data collected from a commercial greenhouse 

located in Saskatoon, and the results show that the model satisfactorily predicts the greenhouse 

heating requirements. 
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Nomenclature 
Ac, Af ,Ap area of cover, floor, and plant, m2 

An, At area of non-transparent and transparent surfaces, m2 

CF cloud cover factor, Oktas 

Cpa specific heat of air, J kg-1 K-1 

Em motor efficiency, % 

Fc, Fsk cover view factor and sky view factor, dimensionless  

Fp perimeter heat loss factor, W m-1 K-1 

Fhc, Fa heat conversion factor, and lighting allowance factor, dimensionless 

Fum, Ful motor load factor, and motor use factor, dimensionless 

Gr Grashof number, dimensionless 

g acceleration of gravity, m s-2 

H depth of underground soil for constant temperature, m 

ha thermal air conductance, W m-2 K-1 

hi, ho convection coefficient for indoor and outdoor surfaces, W m-2 K-1 

Ib, Id direct beam radiation, and diffuse radiation on horizontal surfaces, W m-2 

Ibc, Idc clear sky direct beam radiation and diffuse radiation, W m-2 

Ig global solar radiation on horizontal surface, W m-2 

Igc clear sky global solar radiation on horizontal surface, W m-2 

Iex, IN, Isc extraterrestrial solar radiation, sky beam normal radiation, and solar constant (Wm-2) 

ka, kc, ks thermal conductivity of air, cover, and soil, W m-1 K-1 

k thermal conductivity of ith section in composite wall, W m-1 K-1 

Lc, Lf characteristic length of convective surfaces and plant leaves, m 

Lv latent heat of water vaporization, J kg-1 

MFR carbon dioxide supply rate in greenhouse, kg m-2
 
hr-1 

MT moisture transfer rate, kg s-1 

n day of the year, n=1, for January1st 

N number of air exchange per hour 

Nc number of layer in covering 

Nf number of re-circulation fans  

Nu Nusselt number, dimensionless 
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NHV net heating value of fuel, MJ kg-1 

P perimeter of greenhouse, m 

Pm motor power rating, W 

Pr Prandtl number, dimensionless 

PR CO
2 

production rate, kg/kg fuel 

p  atmospheric pressure, kPa 

pw partial pressure of the water vapor, kPa 

pws partial pressure at saturation, kPa 

Q Heat transfer rate, W 

Ra, Rs aerodynamic resistance and stomatal resistance, s m-1 

Re Reynold number, dimensionless 

S total solar radiation entering the greenhouse, W 

Tc, Ti, To cover temperature, indoor temperature, and outdoor temperature, K 

Ts, Tsk underground soil temperature and sky temperature, K 

TR turbidity Factor, dimensionless 

Ut, Un heat transfer coefficient for transparent and non-transparent surfaces, W m-1 K-1 

V volume of greenhouse, m3 

vi, vo indoor airspeed, and outdoor airspeed, m s-1 

W installed power of lamp, W m-2 

wps saturated humidity ratio of air at plant temperature, kg kg-1 

wi humidity ratio of air at indoor temperature, kg kg-1 

Greek letters 

ɑs factor for estimation of effective solar radiation, dimensionless  

β angle of inclined surface with horizontal, degrees 

γ surface azimuth angle, degrees 

δ declination angle of sun, degrees 

ɛc, ɛi emissivity of cover and indoor components, dimensionless 

ɛsky, ɛclear cloud cover sky emissivity and clear sky emissivity, dimensionless 

θ angle between two radiative surfaces, degrees 

θz zenith angle of sun, degrees 

θi angle of incidence of surfaces, degrees 
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ρ air density, kg m-3 

ρr reflectivity of outdoor ground, dimensionless 

τ transmissivity of cover, dimensionless 

𝜏௟ transmissivity of cover to long-wave radiation, dimensionless 

μ dynamic viscosity of air, kg m-1 s-1 

φ local latitudes, degrees 

∂ volumetric thermal expansion coefficient, K-1 

σ Stefan-Boltzmann Constant, W m-2 K-4 

ω hour angle, degrees 

⧍x thickness of ith section in composite wall, m 

∆T temperature difference, ˚C 

Subscripts 

sr, sw south roof and south wall 

nr, nw north roof and north wall 

er, ew east roof and east wall 

wr, ww west roof and west wall 
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3.1 Introduction 

Greenhouse production of vegetables can enable people living in cold regions to enjoy fresh 

healthy food during the winter season. The harvested area of greenhouse production in Canada has 

been increasing steadily despite high heating costs (Statistics Canada, 2008). At high northern 

latitudes, heating of a greenhouse for about eight months of the year is essential to ensure the 

growth and development of crops grown therein. In Canada, heating accounts for 10–35% of the 

total greenhouse production costs; the amount of heat necessary depends on the building envelope, 

the location of the greenhouse, and the kind of crops grown (Spencer, 2009).  Different types of 

thermal models are available that can be used for studying the greenhouse heating requirement, 

but the approaches of modeling are different depending on the application of these models. Static 

models (Chiapale and Kittas, 1981; Morris, 1956) were initially developed by considering the heat 

transfer by conduction, convection, and radiation through the greenhouse cover, but the precision 

of the static models is very limited (±25% error) (Sethi et al., 2013). Reasons include the lack of 

consideration of the effect of solar radiation in the model, and the prediction is often based on 

yearly or monthly average meteorological data. Improved static models (Breuer and Short, 1985; 

Chandra and Albright, 1981; Fitz-Rodríguez et al., 2010; Hill, 2006; Jolliet et al., 1991; Tunc et 

al., 1985) have been developed to increase the accuracy of the simple static models, however, they 

are valid only for certain types of greenhouses and requires the input of hourly solar radiation data. 

These intermediate models neglect the heat addition from environmental control systems such as 

supplemental lighting, CO2 generators, and various electric motors that contribute significantly to 

heating in commercial greenhouses.  It was estimated the supplemental lighting with high-pressure 

sodium (HPS) lamps contributed about 25-41% of the total heating requirement of a double-poly 

greenhouse located in Quebec City (Brault et al., 1989). Conversely, complex dynamic models 

(Avissar and Mahrer, 1982; Cooper and Fuller, 1983; De Zwart, 1996; Kindelan, 1980; Sengar 

and Kothari, 2008; Sethi, 2009; Singh et al., 2006; Singh and Tiwari, 2000; Vanthoor et al., 2011)  

have been developed by forming individual energy balance equations for greenhouse interactive 

components including cover, plant, floor, and indoor air. These models show good precision for 

predicting the temperature variation of different interactive components in greenhouses, but 

require complicated modifications to simulate greenhouse heating with a different configuration. 

For example, Vanthoor et al. (2011) developed a dynamic model based on solving the individual 

energy balance equation of the indoor air, cover, soil, plant, and thermal screen, however, these 
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energy balance equations need complicated modifications for a greenhouse without a thermal 

screen, or with multilayer of glazing, and that had nontransparent wall. Also, these complex 

dynamic models neglect the heating contribution of different environmental control systems, and 

require hourly solar radiation data that are not easily available in some locations. 

Energy simulation software including EnergyPlus, EE4, and TRNSYS is available for simulation 

of energy requirements in different types of buildings. These tools have limitations such as not 

accurately accounting for the dynamic heat and mass transfer process caused by plant 

evapotranspiration and other environmental control systems used in greenhouses. Building 

simulation tools need to be modified to account for heat and mass transfer in a greenhouse, and 

often need additional models to increase the prediction accuracy (Lee et al., 2012). As such, these 

building simulation tools have limitations for simulation of greenhouse thermal environments, and 

existing greenhouse lumped estimation models have limitations to consider all of the heat transfer 

parameters involved in greenhouses.  This study develops a time-dependent quasi-steady state 

thermal model named GREENHEAT to simulate the heating requirement in conventional 

greenhouses in cold regions.  

3.2 Principles of modelling 

The GREENHEAT model was designed to predict the heating requirements of conventional 

greenhouses under heating mode when greenhouse temperature and relative humidity (RH) are 

controlled at a set-point. This model did not consider the cooling mode of the greenhouse, which 

allows the temperature to rise above the set-point and where RH may be higher or lower than the 

set-point, because greenhouses in cold regions mostly control indoor temperature through natural 

ventilation. A greenhouse is a complex physical and biological system including the dynamic heat 

and mass transfer process and the process of plant photosynthesis. Therefore, several assumptions 

were considered when developing the model for simulation of heating requirements in 

conventional greenhouses. The major assumptions for simplification of the model are as follows: 

1. Greenhouse air is considered to be well-mixed, which means that there is no spatial 

difference in air temperature because the mechanical air-circulation system is used to avoid 

air stratification in modern commercial greenhouses.    
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2. Radiative heat exchange between walls and roofs is assumed to be negligible because the 

temperature is not significantly different when indoor temperature is controlled at the set-

point and the air is well circulated. 

3. The fluctuation of indoor relative humidity is considered to be negligible since the modern 

commercial greenhouses control relative humidity at an optimum set-point during heating 

mode.  

4. The ground heat loss from floor to the depth-ground is considered in a steady state mode 

since the fluctuation of underground soil temperature is negligible after a certain depth.   

The model was developed based on the lumped-system analysis of heat sources and sinks in 

greenhouses because the indoor temperature and relative humidity in modern commercial 

greenhouses are usually well controlled and uniform during heating mode. The heat sources in a 

conventional commercial greenhouse include solar radiation and heat from environmental control 

systems including supplemental lighting, CO2 generators, and recirculating fans. The possible heat 

sinks in greenhouses include heat loss by conduction and convection, heat loss with air exchange, 

floor and perimeter heat loss, long-wave radiation heat loss, and heat used in the process of plant 

evapotranspiration.   

The general form of heat balance for conventional greenhouses can be given by: 

Q୦ = Sources − Sinks = ൫Qୱ+ Qୱ୪ + Qୡ୭మ
+  Q୫൯ − ൫Q୲ + Q୧ + Q୥ + Q୮ + Q୰ + Qୣ൯ (3.1) 

where Qh is the heating requirement; Qs is the net heat gain from solar radiation; Qsl, Qେ୓మ
, and Qm  

are the heat gain from supplemental lighting, CO2 generators, and motors, respectively; Qt is the 

heat transfer by conduction and convection; Qi is the heat transfer caused with air exchange; Qg is 

the heat transfer through the greenhouse floor; Qp  is the heat transfer along  the perimeter; Qr  is 

the heat loss by  transfer of long-wave radiation; and Qe is the heat used in the process of plant 

evapotranspiration. 

A negative value (Qh) from simulation would indicate supplemental heating is needed in the 

greenhouse, while a positive value indicates cooling needs. A detailed description of the modeling 

principle for estimation of heat sources and sinks in conventional greenhouses is given in the 

following sections.     
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3.2.1 Heat gain from solar radiation 

The solar radiation that passes through the greenhouse cover can be absorbed by greenhouse indoor 

components; the remaining portion is lost outside of the greenhouse. It is very complicated to 

estimate the amount of solar insolation effectively used in a greenhouse. As a rough rule, one-half 

of the available insolation in the greenhouse is converted immediately to sensible heat added to 

the air, one-quarter is added as latent heat to the greenhouse air, and the last quarter is usually lost 

(Al-Helal and Abdel-Ghany, 2011; Albright, 1990). The net heat gain from solar radiation can be 

estimated as follows: 

Qୱ = ɑୱS           (3.2) 

The total solar radiation available in the greenhouse depends on several factors, mainly on the 

transmissivity and orientation of the transparent cover surface. The transparent cover surface area 

available to receive solar radiation is different depending on the type of greenhouse. Therefore, 

the solar radiation through different surfaces is estimated separately based on the orientation of the 

surfaces. Finally, the total solar radiation in greenhouses is the sum of the incoming solar radiation 

through different surfaces exposed to the outside and can be given by Sethi (2009): 

S = ∑τ୧A୧I୧           (3.3) 

where τi, and Ai, are the solar transmissivity and area of ith section; and Ii is the total solar radiation 

available on ith section. 

∑τ୧A୧I୧ = τୱ୰Aୱ୰Iୱ୰ + τୱ୵Aୱ୵Iୱ୵ + τ୬୰A୬୰I୬୰ + τ୬୵A୬୵I୬୵ + τୣ୵Aୣ୵Iୣ୵ + τ୵୵A୵୵I୵୵ +

τୣ୰Aୣ୰Iୣ୰ + τ୵୰A୵୰I୵୰         (3.3a) 

3.2.1.1 Hourly solar radiation through the inclined surface  

The solar radiation on any inclined surface includes the beam component from direct beam 

radiation and the diffuse radiation. The diffuse component composed of isotropic diffuse 

component received uniformly from the skydome, circumsolar diffuse component resulting from 

forward scattering of solar radiation and concentrated in an area close to the sun, horizon 

brightening component concentrated in a band near the horizon and most pronounced in clear skies, 

and a reflected component that quantifies the radiation reflected from the ground to the tilted 

surface. Different models (Isotropic sky model, Klucher model, Hay and Davies model, Reindl 

model, Muneer model, and Perez model) are available for estimating solar radiation on an inclined 

surface. The isotropic sky model is the simplest model for predicting the solar radiation on the 

inclined surface with reasonable accuracy as compared to the other more complicated models 
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(Loutzenhiser et al., 2007). According to Liu and Jordan (1963), the total solar radiation on an 

inclined surface with an angle (β) is given by the isotropic diffuse model: 

I୧  =  Iୠ
ୡ୭ୱ஘౟ 

ୡ୭ୱ ஘౰
 +  I ୢ ቀ

ଵାୡ୭ୱஒ

ଶ
ቁ + (Iୠ + Iୢ)ρ୰  ቀ

ଵି ୡ୭ୱஒ

ଶ
ቁ     (3.4) 

The angle of incidence of beam radiation on a surface and the zenith angle of the sun can be 

expressed as follows (Duffie and Beckman, 2006):  

cos θ୧ =  sin δ sin φ cos β –  sin δ cos φ sin β cos γ +  cos δ cos φ cos β cos ω +

cos δ sin φ sin β cos γ cos ω +  cos δ sin β sin γ sin 𝜔     (3.5) 

cos θ୸   =   cos φ  cos δ  cos ω +  sin φ  sin δ      (3.6) 

The declination angle (δ) depends on the nth day of the year, and the hour angle (ω) depends on 

the time of the day; the required values of these parameters have been calculated according to the 

ASHRAE Fundamental (ASHRAE, 2013). 

3.2.1.2 Cloud cover solar radiation 

The solar radiation data are very important for the analysis of solar application systems and 

building thermal performance. However, the continuous time series solar radiation data are mainly 

available in developed countries, whereas very limited resources in the developing countries. Also, 

the measured data available from a solar station become less accurate for a distance of 50 km from 

the measuring station (Younes and Muneer, 2007). Therefore, the estimation of solar radiation by 

using cloud cover solar radiation models are convenient because the cloud cover data can be easily 

obtained from meteorological stations. The solar radiation transmitted through the clouds depends 

on a number of factors such as the degree of cloudiness, cloud thickness (or height), water content 

per unit of volume, and the distribution of clouds in relation to the position of the sun in the sky. 

Cloud cover can significantly affect the availability of solar radiation; about 80-90% of solar 

radiation intensity can be reduced by thick, low-level, and layered cloud (Matuszko, 2012).  A few 

empirical models (Kasten and Czeplak, 1980; Lam and Li, 1998; Muneer and Gul, 2000) have 

been developed to estimate solar radiation based on cloud cover information. Previous studies 

(Badescu and Dumitrescu, 2014a; Younes and Muneer, 2007) have reported that the Kasten-

Czeplak model is relatively simple and accurate compared to other cloud cover models.  These 

studies also indicate the Kasten-Czeplak model performs significantly better at estimating global 

solar radiation with local coefficients (A, B). Therefore, the global solar radiation, diffuse 



32 
 

radiation, and direct beam radiation on a horizontal surface under cloud cover can be given as 

follows (Kasten and Czeplak, 1980):  

I୥ = I୥ୡ(1 − A ቀ
େ୊

଼
ቁ

୆

)          (3.7) 

Iୢ = I୥(0.3 + 0.7 ቀ
େ୊

଼
ቁ

ଶ

)         (3.8) 

Iୠ = (I୥ − Iୢ)           (3.9) 

Clear sky global solar radiation on a horizontal surface (Igc) is the sum of the clear sky direct beam 

radiation (Ibc) and the diffuse radiation component (Idc).  Several solar radiation models (ASHRAE, 

2013; Hottel, 1976; Iqbal, 1983; Tiwari, 2003) have been used for estimating clear sky direct and 

diffuse radiation on a horizontal surface. The solar radiation model using the turbidity factor is 

comparatively simple and convenient for estimating clear sky solar radiation.  The clear sky beam 

and diffuse radiation on any horizontal surfaces and the direct normal irradiance on any terrestrial 

region can be calculated using the turbidity factor (Tiwari, 2003): 

Iୠୡ = I୒ cos θ୸           (3.10) 

Iୢୡ =
ଵ

ଷ
( Iୣ୶ − I୒) cos θ୸         (3.11)    

I୒ = Iୣ୶ exp ቂ
ି୘౎

(଴.ଽାଽ.ସ ୱ୧୬ ⍺)
ቃ , ⍺ = 90 − θ୸       (3.12) 

According to Spencer (1971), the extraterrestrial heat from the sun on a surface normal to the sun’s 

ray on the nth day of the year is given by: 

Iୣ୶ = Iୱୡ ቂ1 + 0.033 × cos ቀ360 ×
୬ିଷ

ଷ଺ହ
ቁቃ       (3.13) 

3.2.2 Heat gain from environmental control systems 

Greenhouses can receive a significant amount of heat from environmental control systems such as 

supplemental lighting, air circulation fans, and carbon dioxide enrichment equipment. Depending 

on the types of lamps, the supplemental lighting can return about 75-100% of thermal energy as 

heat to the greenhouses (Castilla, 2013). The heat addition from supplemental lighting can be 

estimated by the following equation (ASHRAE, 2013):  

Qୱ୪  =  WF୦ୡFୟ A୤           (3.14) 
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Recirculation of indoor air is very important for reducing air stratification in greenhouses because 

air stagnation may cause abnormal growth of plants and also increase heating requirements. 

Therefore, recirculation fans are needed in greenhouses in the direction of plant rows at distances 

not less than 30 times of the diameter of the fan (ASABE, 2006).  The instantaneous heat gain 

from the motors of recirculating fans can be estimated by the following equation (ASHRAE, 

2013): 

  Q୫ = N୤
୔ౣ

୉ౣ
F୳୫F୪୫           (3.15) 

The heat gains from CO2 generators depend on the types of equipment used for carbon dioxide 

enrichment in greenhouses. A significant amount of heat can be added to a greenhouse when CO2  

is produced from the combustion of fuel in greenhouses. The  amount of heat from the CO2 

generators can be estimated by the following equation (ASHRAE, 2013): 

Qୡ୭మ
= 0.278 × NHV × MFR ×

୅౜

୔ୖ
        (3.16) 

3.2.3 Heat transfer by conduction and convection  

Conduction and convection are two of the major heat transfer phenomena in greenhouses. Heat 

transfer through the processes of conduction and convection in transparent and non-transparent  

envelopes can be calculated as follows:  

Q୲ = (U୲A୲ + U୬A୬) × (T୧ − T୭)        (3.17) 

Depending on the types of greenhouse envelopes, two different approaches have been applied to 

the estimation of the overall conduction and convection heat transfer coefficient. The overall heat 

transfer coefficient for transparent surfaces and non-transparent surfaces can be given as (Tiwari, 

2003):  

U୲ = [
1

hi
+ Nୡ×

lc
kc

+(Nୡ-1)×
ଵ

୦౗
+

1

ho
]
-1

        (3.18) 

U୬ = [
ଵ

୦౟
+ ∑

୩

⧍୶
+

ଵ

୦౥
]ିଵ         (3.19) 

The estimation of thermal air conductance of air spaces (ha) for a double-layer greenhouse cover 

is very complicated. The thermal resistance of air spaces depends on several factors including 

temperature difference, the direction of heat flow, orientation, the thickness of air spaces, and the 

emissivity coefficient of the surface that encloses the air spaces (ASHRAE, 2013). The air gap of 

greenhouse covers varies between 8-12 mm depending on the type of cover; and the emissivity of 

covers range from 0.2-0.9 (Hill, 2006). Depending on the temperature difference and orientation, 
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the thermal resistance of a 13 mm air spaces varies from 0.45-0.13 for an emittance range of 0.2-

0.82 (ASHRAE, 2013). Garzoli and Blackwell (Garzoli and Blackwell, 1987) determine the 

thermal resistance of the air spaces for double-layer polyethylene-covered greenhouses by 

analyzing the rate of heat loss through the cover under different climatic conditions. A value of 

3.85 (W m-2 .K-1) for the thermal air conductance of the air spaces (ha) has been found to give very 

good agreement between the predicted and the measured rate of heat loss. Therefore, the thermal 

air conductance of the air spaces is assumed to be 3.85 (W m-2 .K-1) for calculating the overall heat 

transfer coefficient of a multi-layer greenhouse cover.  

Several empirical equations (Bot, 1983; Garzoli and Blackwell, 1981; Kindelan, 1980; Kittas, 

1994; Papadakis et al., 1992) have been developed to determine the convection coefficient for 

greenhouse covering surfaces, but these equations are only valid for certain conditions. Therefore, 

the following equation derived from the Nusselt number can be used to estimate the convective 

heat transfer coefficient for different surfaces (Tiwari, 2003): 

h =  
୒౫୩౗

୐ౙ
           (3.20)     

Indoor air velocity in greenhouses is usually very low compared to the outside, so the heat 

convection between the cover and the indoor components mainly occurs due to the thermal 

difference between the surfaces. Therefore, the convection heat transfer at the cover inside surface 

is considered to be a free convection. The indoor convection coefficient of the transparent surfaces 

under turbulent flow conditions can be estimated using following relation (Tiwari, 2003):  

h୧ =  ቀ
୩౗

୐ౙ
ቁ 0.1(G୰ P୰) ଴.ଷଷ   (10ଽ < G୰ P୰ < 10ଵଷ)      (3.21) 

 G୰ =  
୥ ப୐ୡయ⧍୘

ஜమ
           (3.22)                                                                                                    

  P୰ =  
ஜେ౦౗

୩౗
           (3.23)     

For nontransparent vertical surfaces, the indoor convection coefficient is estimated by the 

following equation (Tiwari, 2003):  

h୧ =  ቀ
୩౗

୐ౙ
ቁ 0.1 (10ଵଵ) ଴.ଷଷ          (3.24) 

On the other hand, the heat convection between the greenhouse enclosed surface and the outside 

air is considered to be forced convection; because outdoor airspeed is the dominant force for heat 

convection from an outside surface. For forced convection, the outdoor convection coefficient 

under turbulent flow along a plane surface can be expressed as follows (Wong, 1977): 
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h୭  = (
୩౗

୐ౙ
)0.037 (Rୣ

଴.଼ P୰
଴.ଷଷ)      (Rୣ  > 5 × 10ହ)      (3.25) 

Rୣ =
஡୴ ౥୐ౙ

ஜ
           (3.26) 

3.2.4 Heat transfer by air exchange  

The air exchange in greenhouses transfers a large amount of heat to the outside during the winter 

season. Depending on airtightness, wind speed, and inside-outside temperature differences, 

infiltration represents about 20% of the total heat loss from greenhouses (Jolliet et al., 1991). 

However, the air exchange caused by ventilation was not considered in the model because the 

forced ventilation system is shut down during the winter season to minimize heat loss when heating 

is needed. A natural ventilation system usually operates in greenhouses when the indoor 

temperature is greater than the set-point temperature and, cooling is needed, but natural ventilation 

of cooling is not considered in this study since the objective is to estimate heating needs. Thus, the 

heat loss from greenhouses caused by infiltration can be calculated from the following relation 

(Sethi and Sharma, 2007): 

Q୧ = 0.33 N V(T୧ − T୭)         (3.27) 

3.2.5 Heat transfer through floor and perimeter 

A large amount of heat can be lost through the greenhouse floor including conduction through the 

ground and heat transfer along the perimeter. The floor surface temperature is considered to be the 

same as the indoor temperature. Also, the fluctuation of underground soil temperature over the 

year at a certain depth becomes negligible, so the steady-state method is applied to estimate heat 

conduction through the floor (Florides and Kalogirou, 2004). Based on steady-state, one-

dimensional heat conduction, the heat transfer through the floor can be estimated by the following 

equation (Tunc et al., 1985):  

Qୱ  =  
୩౩

ୌ
 A୤ (T୧ − Tୱ)          (3.28) 

The perimeter heat loss can be calculated using the given equation (ASHRAE, 2013):  

Q୮  =  F୮ P (T୧ − T୭)          (3.29) 

3.2.6 Long-wave radiation transfer from greenhouses  

The exchange of long-wave radiation through the transparent cover is responsible for a significant 

amount of heat loss in greenhouses. The thermal radiation emitted from indoor greenhouse 
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components can be transmitted to the sky or absorbed in the cover, and part of the radiation can 

reflect back to the greenhouses. The use of a thermal curtain at night reflects the radiative heat 

back to the greenhouse. Therefore, it is assumed long-wave radiation loss through a transparent 

roof would be negligible when the reflective thermal curtain is in operation. This transmitted 

radiative heat loss from a greenhouse can be expressed as follows (Hill, 2006): 

Q୰  =  ൣσ ɛୡ Aୡ Fୡ ൫T୧
ସ – Tୡ

ସ൯ + σ ɛ୧ τ୪A୤ Fୱ୩ ൫T୧
ସ – Tୱ୩

ସ൯ ൧    (3.30) 

 The view factor between the greenhouse and the sky (Fsk) is considered to be 1.0 because the 

greenhouse is enclosed by the sky, which can be considered a black hemisphere (Vadiee, 2011).  

The view factor between the ground and the cover (Fc) can be estimated as follows (Liu and Jordan, 

1961): 

Fୡ =
ଵାୡ୭ୱ

ଶ
           (3.31) 

The cover temperature is typically a linear function of the indoor and the outdoor temperature 

(Hill, 2006). The following linear function can be used to solve cover temperature (Bakker, 1995):  

Tୡ =
ଶ

ଷ
 T୭ +

ଵ

ଷ
T୧          (3.32)         

 The effective sky temperature is usually estimated by using the different empirical equations 

based on the measured ground meteorological parameters including air temperature, air-water 

vapor tension, and sky cloud cover. However, most of the existing greenhouse thermal models 

used the simplest models (Swinbank, 1963; Whillier, 1967) based on the outside air temperature 

without taking into account cloud cover. The estimation of sky temperature taking cloud cover into 

consideration is more accurate than simple correlations based on air temperature. According to 

Clark and Allen (1978) the effective sky temperature can be estimated as follows:  

Tୱ୩ = T୭ɛୱ୩
଴.ଶହ          (3.33) 

ɛୱ୩ = (1 + 0.0224 CF − 0.0035 CFଶ + 0.00028 CFଷ) ɛୡ୪ୣୟ୰    (3.34) 

ɛୡ୪ୣୟ୰ = 0.787 + 0.7641 ln (
୘ౚ౦

ଶ଻ଷ
)        (3.35) 

The dew point temperature of the outside air (Tdp) based on the outdoor relative humidity (RHo) 

and the dry bulb temperature (To) can be calculated by the following equation (Martin et al., 1997): 

Tୢ ୮ = (
ୖୌ౥

ଵ଴଴
)଴.ଵଶହ(112 + 0.9 × T୭) + 0.1 × T୭ − 112     (3.36) 
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3.2.7 Heat used in evapotranspiration 

Evapotranspiration represents evaporation from the floor or growth media and transpiration from 

the plants, and it is responsible for a significant amount heat loss in greenhouses. The evaporation 

from the floor is very complicated to model, and this study considers it to be included in plant 

evapotranspiration. Evapotranspiration from plant leaves is an evaporative cooling process that 

reduces the canopy surface temperature. Therefore, greenhouse plants get heat from the solar 

radiation/indoor air to recover the reduced temperature of the leaf surface. The heat used by plants 

in the process of plant evapotranspiration can be estimated as follows (Nobel, 1974): 

Qୣ = M୘ L୴           (3.37) 

M୘ =  A୮ρ
୵౦౩ି୵౟

(ୖ౗ାୖ౩)
          (3.38) 

The plant surface area can be calculated from the leaf area index of plants. The saturated humidity 

ratio at plant temperature and the humidity ratio at indoor air temperature can be calculated as 

follows (Albright, 1990):  

w୮ୱ = 0.6219
୔౭౩

(୔ି୔౭౩)
          (3.39) 

 w୧ = 0.6219
୔౭

(୔ି୔౭)
          (3.40) 

Previous studies (Singh et al., 2006; Singh and Tiwari, 2010) show that a negligible temperature 

difference exists between the plant and the indoor air. Therefore, the water vapor saturation 

pressure at plant temperature is calculated by assuming plant temperature to be the same as the 

indoor temperature. The actual vapor pressure can be calculated from the relative humidity and the 

saturated vapor pressure.  

The aerodynamic resistance and stomatal resistance in plant evapotranspiration can be calculated 

from the following relationships (Boulard et al., 1991; Boulard and Wang, 2000): 

Rୟ = 220 ×
୐౜

బ.మ

୴౟
బ.ఴ            (3.41) 

Rୱ = 200 ൬1 +
ଵ

ୣ୶୮(଴.଴ହ(த୍ౝିହ଴))
൰        (3.42)             

3.3 Program design 

The programming flow chart for simulating the greenhouse heating requirement for the model 

(GREENHEAT) developed in this study is shown in Figure 3.1. The programming language 

MATLAB was used to develop this computer program for simulation of heating requirements of 
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conventional greenhouses. The input parameters for simulation include latitude and longitude of 

the study area, the indoor set-point temperature, relative humidity, air exchange rate, physical and 

thermal properties of crops and construction materials, and hourly weather data including 

temperature, relative humidity, cloud cover, and wind speed.  

 

Figure 3.1: Flowchart of the computer program GREENHEAT for simulation of the greenhouse 

heating requirement. 

3.4 Description of the model commercial greenhouse 

A four-span gable roof greenhouse with east-west orientation (1125 m2) located near the city of 

Saskatoon (52.09oN latitude, 106.82oW longitude, and 428 m elevation), covered with air-inflated, 

double-layer polyethylene film was selected for this study. The north wall of the greenhouse was 

non-transparent and insulated with extruded polystyrene board and plywood sheathing. A similar 

non-transparent composite wall was constructed 2.43 m from the ground on the east and west 

section of the sidewall, and 1.65 m on the south section of wall; twin-wall polycarbonate panels 

(8 mm) were used for the remaining portion of the sidewall. The hourly weather data (temperature, 

relative humidity, cloud cover, and wind speed) in Saskatoon for 2014 as collected by the National 

Solar Radiation Database (NSRDB) were used for simulation of the heating requirements in the 

study greenhouse. Tomato plants were grown in the greenhouse, so the indoor set-point 

temperatures were maintained at 21˚C during the daytime and 18˚C during the night. The relative 
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humidity in the study greenhouse was controlled at 75% using the mechanical dehumidifier. 

Depending on the types of crops, the supplemental lighting is usually turned on when the 

greenhouse solar radiation reaches below 240-300 W/m2 (Dorais, 2003), and a photoperiod about 

14-h  was found to be best for optimum growth of tomatoes in greenhouses (Demers et al., 1998). 

Therefore, it was considered that the supplemental lighting would be turned on when solar 

radiation in the greenhouse was reduced to 250 W m-2, and artificial lighting was turned off 

between 10 PM to 7 AM to maintain the optimal 14-h photoperiod.  The CO2 generator was 

considered to be in operation only during the daytime, and a thermal curtain was used at night. 

Other constant values used in the simulation are listed in Table 3.1. 

Table 3.1: Constant values of different parameters used in the simulation. 

Parameters Value 

Greenhouse characteristics   

 Infiltration rate per hour (N) (ASABE, 2006) 1.0  

 Thermal conductivity of plywood (19 mm) 0.12 (W m-1 K-1) 

 Thermal conductivity of polystyrene insulation (65 mm) 0.03 (W m-1 K-1) 

 Perimeter heat loss factor (Fp) (ASHRAE, 2013) 0.85 (W m-1 K-1) 

 Angle of roof (β) 26˚ 

Soil characteristics   

 Thermal conductivity of soil (ks) (ASHRAE, 2013) 1.4 (W m-1 K-1) 

 Soil temperature (Ts) (Florides and Kalogirou, 2004) 15 (˚C) 

Plant characteristics (Rincón et al., 2012)  

 Average leaf area index of tomato (LAI) 2.0 

 Characteristic length of tomato leaf (Lf) 0.027 (m) 

 Emissivity coefficient of plants (ɛi) 0.9 

Covering characteristics (Sanford, 2011)  

Poly cover (6 mils)   

 Emissivity of IR barrier poly cover (ɛc) 0.2 

 Transmissivity to solar radiation (τ) 0.75 

 Transmissivity to long-wave radiation (𝜏௟) 0.29 

 Thermal conductivity (kc) 0.33 (W m-1 K-1) 
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3.5 Results and discussion 

3.5.1 Evaluation of solar radiation sub-model  

The model estimated the hourly solar radiation based on the input of hourly cloud cover data from 

the NSRDB. Figure 3.2 shows the scatter plot of the estimated hourly solar radiation from the 

model versus the data from the NSRDB. The statistical indices including the coefficient of 

determination (R2) and the root mean square error (RMSE) were used to evaluate the adequacy of 

the solar radiation sub-model. The R2 and RMSE values are 0.78 and 112.61 W m-2, respectively, 

which is very close to the results obtained in other studies (Badescu and Dumitrescu, 2014a; Kim 

et al., 2014; Younes and Muneer, 2007) to estimate global solar radiation. Based on the statistical 

Polycarbonate (8 mm twin-wall)   

 Emissivity of polycarbonate (ɛc) 0.65 

 Thermal conductivity (kc) 0.2 (W m-1 K-1) 

 Transmissivity to solar radiation (τ) 0.78 

 Transmissivity coefficient to long-wave radiation (𝜏௟) 0.03 

Other parameters  

 Indoor air velocity (Castilla, 2013) 0.2 (m/s) 

 Latent heat of water vaporization (Lv) (ASHRAE, 2013) 2450 (kJ kg-1) 

 Installed lighting wattage (W) (Dorais, 2003) 100 (W m-2) 

 Heat conversion factor (Fhc) (Castilla, 2013) 0.75 

 Lighting allowance factor (Fa) (ASHRAE, 2013) 1.2 

 Number of recirculating fans (Nf) 8 

 Rated power of motors (Pm) 375 (W) 

 Motor efficiency (Em) 0.9 

 Motor load factor (Fum) (ASHRAE, 2013) 1.0 

 Motor use factor (Ful) (ASHRAE, 2013) 1.0 

 Net heating value of fuel (NHV) (ASHRAE, 2013) 38 (MJ m-3 of gas) 

 Rate of CO2 supply in greenhouse (MFR) (Castilla, 2013) 4.5 (g m-2
 
hr-1) 

 CO2 production rate (PR) (EIA, 2016) 2.7 (kg  kg-1 of fuel) 

 Stefan-Boltzmann Constant (σ)  5.67×10-8 (W m-2 K-4) 

  Reflectivity of outdoor ground (ρr) 0.5 
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indicators, it can be concluded that the estimation of hourly solar radiation from the solar radiation 

sub-model is reasonably fit with the data from the NSRDB.  

 

Figure 3.2: The scatter plot of estimated and measured value of global solar radiation on the 

horizontal surface in Saskatoon. 

3.5.2 Simulation of the model greenhouse   

Figure 3.3 shows the annual variation of the simulated heating requirements in the study 

greenhouse and the monthly average temperature in Saskatoon (52.09˚N, -106.82˚W) in 2014. The 

annual total estimated heating requirement in the study greenhouse was about 1380 MJ m-2
. The 

peak heating requirement occurred in February, and was 15.6% higher than the value in January 

(the lowest average temperature was recorded in February at -19.2˚C). Figure 3.3 shows that the 

average temperature in March and November was -8.0˚C and -8.03˚C, respectively, but the average 

daily heating requirement in November was about 5.8% higher than the heating requirement in 

March because the average daily solar heat gain in March was about three times higher than the 

solar heat gain in November.  
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Figure 3.3: Annual variation of the heating requirements in the study greenhouse, and the outside 

average temperature in Saskatoon.  

3.5.2.1 Analysis of heat transfers in the greenhouse 

Greenhouse heat gain includes the heat from solar radiation and the heat from environmental 

control systems, including supplemental lighting, CO2 supply system, and air circulation system.  

Figure 3.4 shows the variation of heating contributions from solar radiation compared to the total 

heat gain in the greenhouse. Based on the simulation results, solar radiation contributed about 44-

65% of the total heat gain in the greenhouse during the three coldest months (January, February, 

and December), whereas about 83-86% during the summer months (June-August).     
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Figure 3.4: Annual variation of heating contribution from solar radiation compared to the total 

heat gain. 

The heating contribution of different environmental control systems is shown in Figure 3.5. The 

predicted heat gains from environmental control systems were about 13-56% of the total 

greenhouse heat gain over the year. Figure 3.5 indicates the heat gain from supplemental lighting 

decreased with the increase of day length because the artificial photoperiod decreased with the 

increase of day length in summer; an opposite trend was true for the CO2 supply system because 

the operating time of CO2 generator increased with an increase in day length. However, the heat 

gain from electric motors was constant for the entire simulation period since the recirculating fans 

were considered to be in operation all the time. The heat contribution from supplemental lighting 

mainly depends on the installed wattage of the lighting system and the period of artificial lighting. 

At winter solstice in 2014, the HSP lamp with an installed capacity of 100 W m-2 contributed about 

38.0% of the total heating requirement in the study greenhouse with eight hours of artificial 

lighting. Brault et al. (Brault et al., 1989) reported similar heating contributions from HPS lamps 

in a double-polyethylene greenhouse in Quebec, Canada. The CO2 generators contributed about 

6.5% of the total heating requirement when operating for seven hours during the daytime, whereas 

24-hour operation of recirculating fans contributed about 3.8% of the total heating demand. The 

predicted result indicates environmental control systems can supply a significant amount of heat 
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to a greenhouse, which can significantly reduce heating demands. However, most of the previous 

models ignore the heat gain from these environmental control systems, so that a significant error 

arises in simulation when the heat addition from these environmental systems is neglected.  

 

Figure 3.5: Annual variation of the heat gains from different environmental control systems. 

Figure 3.6 shows the annual variation of heat loss from the study greenhouse by different heat 

transfer mechanisms such as transmission heat loss, infiltration loss, long-wave radiation loss, heat 

loss through the ground, and heat loss for evapotranspiration. The similar trend of heat losses was 

found in a conventional greenhouse in the UK (Al-Hussaini and Suen, 1998), however, the 

magnitude of heat loss by different mechanisms would be different depending on the greenhouse 

envelope and their location. Since February was the coldest month in 2014 (Figure 3), the amount 

of heat loss from the greenhouse was highest in February. About 40% of the total heat from the 

study greenhouse was lost through conduction and convection during the coldest three months of 

the year. The heat loss caused by infiltration was the second largest source of heat loss (up to 32%) 

in the greenhouse, followed by the heat loss caused by long-wave radiation (up to 21%). After 

March, the long-wave radiation loss increased because the operation hour of the energy curtain 

decreased with an increase in day length. The heat loss caused by the process of evapotranspiration 

from plants accounted for about 9.0% during extremely cold periods, while the heat used in the 

process of evapotranspiration was found to be the highest in summer and spring because 
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evapotranspiration depends greatly on solar radiation. The heat loss along the perimeter and the 

vertical conduction through the soil fluctuated mildly over the year because the underground 

temperature was considered to be constant over the year. A very small amount of heat (about 3.0%) 

was lost through the floor of the study greenhouse. The thermal analysis indicates more than 80% 

of greenhouse heat is lost by transmission, infiltration, and exchange of long-wave radiation. 

Therefore, the use of insulation and construction materials with a high thermal resistance, infrared 

radiation (IR) barrier glazing, and reflective thermal screens at night would significantly reduce 

greenhouse heating requirements at high northern latitudes. The intensity of heat loss through 

different mechanisms could be different depending on the type of structure, materials used for 

construction, management of environmental control systems, and also, importantly, the location 

of the greenhouse. However, the thermal analysis of different heat sources and sinks in the 

greenhouse at high northern latitudes would be helpful for greenhouse growers and researchers for 

analyzing the energy efficient greenhouse production under similar cold climates.    

 

Figure 3.6: Annual variation of heat loss by different heat transfer mechanisms from the study 

greenhouse during heating mode. 

3.5.3 Validation of the model 

The actual heating requirement in the study greenhouse for the year of 2014 from March to October 

was calculated based on the data collected from the commercial greenhouse. The data for the four 
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coldest months were ignored for validation because the greenhouse started its operation in mid-

February and continued until mid-November. The monthly heating requirement was calculated 

based on the heating value (38 MJ kg-1) and the retail rate (CAD 0.286 m-3) of natural gas. The 

predicted heating requirement was calculated without considering the heating contribution from 

the supplemental lighting because no supplemental lighting was provided in the greenhouse in 

2014. The comparison of the predicted and the actual heating requirement is shown in Figure 3.7. 

Figure 3.7 shows that the predicted heating requirement in the greenhouse is close to the actual 

heating requirement, except for the summer months when the natural ventilation system was in 

operation very frequently to control the indoor relative humidity instead of the mechanical 

dehumidifier. Therefore, the air-exchange rate during summer months (July-August) could be 

relatively higher that draws the cool outside air into the greenhouse, thereby increasing the 

greenhouse heating requirement. Also, the actual heating requirement during the summer months 

is very close to the heating requirement in May, but the average temperature during the summer 

months was relatively high compared to the average temperature in May. Hence, the conclusion 

regarding the model validation was made without considering the data from June to August.  The 

validation of the model shows that the errors in heating prediction for the winter months is less 

than 9.0%, and 4.6% is the average simulation error. Previous studies (Jolliet et al., 1991; Sethi et 

al., 2013; Singh and Tiwari, 2010) reported that the average percent error in simulation of about 

10% is reasonably acceptable for greenhouse thermal modeling. The percent error of the simple 

static models (Chiapale and Kittas, 1981; Morris, 1956) is about 25% , and close to 11% for the 

improved static models (Jolliet et al., 1984; Pieters and Deltour, 1997), whereas error is less than 

10% for the complex dynamic models (Bot, 1983; Sethi, 2009; Singh and Tiwari, 2000; Trigui et 

al., 2001). Therefore, it can be concluded that GREENHEAT can predict the heating requirement 

of conventional greenhouses with good accuracy.  
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Figure 3.7: Comparison of predicted and actual heating requirements in the study greenhouse. 

3.6 Conclusions 

In this study, a quasi-steady state thermal model named GREENHEAT was developed based on 

the lumped estimation of heat sources and sinks in greenhouses. The developed model considered 

most of the heat sources and sinks in a conventional greenhouse, including the hourly variation of 

solar radiation, heat gain from environmental control systems, and heat used for plant 

evapotranspiration. The simulated results indicate that the environmental control systems 

(supplemental lighting, CO2 generators, and motors of recirculating fans) contribute up to 56% of 

heating requirements in the study greenhouse. The transmission heat loss by conduction and 

convection is the largest component of heat loss (40%) during the winter periods followed by the 

infiltration and long-wave radiation loss, respectively. Validation shows that the average error in 

prediction is less than 5%, therefore, the model can be considered sufficiently accurate for 

simulation of heating requirements in conventional greenhouses. The model will be beneficial for 

researchers, engineers, and growers to assist with their decision-making regarding energy-efficient 

designs and feasibility analysis of greenhouse production in cold northern climates.   
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CHAPTER 4 

A REVIEW OF ENERGY SAVING TECHNIQUES FOR REDUCING HEATING 
COST OF CONVENTIONAL GREENHOUSES 

(The manuscript presented in this chapter was submitted to the International Journal of Energy 

Research, submission no: ER_18_9421) 

Overview 

Knowledge of heating energy saving potential is essential to study the energy-efficient design of 

greenhouses. This chapter includes the comprehensive review of different techniques to reduce the 

heating cost of the conventional-style greenhouse in cold regions.  Results presented in this chapter 

fulfill part of the second objective of this thesis (i.e., to identify the different techniques of heating 

energy saving options for the conventional greenhouses), and more configurations are studied in 

Chapter 5 to address this objective completely. As the lead author of this manuscript, I conducted 

the research and prepared the manuscript for submission to the journal. The co-authors (Professor 

Huiqing Guo, and Professor Karen Tanino) have contributed to this manuscript through providing 

technical guidance to conduct the research and constructive review to improve the quality of 

research.      
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Abstract 

Reducing heating cost is the major challenge for greenhouses growers especially the greenhouses 

located at high northern latitudes. Several techniques have been applied to reduce the heating cost 

in winter greenhouses. This study presents a comprehensive review of different energy saving 

techniques for reducing the heating cost of the conventional winter greenhouses including energy-

efficient design of greenhouses, use of energy-efficient greenhouse cover, use of thermal curtain, 

energy-efficient management of indoor microclimates, selection of energy-efficient heating 

system, and potential of using alternative energy sources. Previous studies indicate energy saving 

potential of design parameters (shape, orientation) highly depend on the locations of greenhouses, 

and the energy-saving potential of most passive heating systems (water tanks, rock bed) might not 

be feasible for commercial greenhouses production in high northern latitudes. The reviewed also 

indicates that the alternative energy such as industrial waste heat, geothermal energy, and wood 

biomass could be a suitable option to reduce the greenhouse heating cost for large-scale 

production. However, it is very important to consider the trade-offs between the agronomic need 

of greenhouse plants and energy saving potential of various energy saving techniques, also the 

economic feasibility of energy saving systems in greenhouses. It can be concluded that the study 

would be useful for greenhouse growers, researchers, and manufacturer for creating the sustainable 

energy-efficient greenhouse production in cold regions.    
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4.1 Introduction 

Control environment agriculture such as crop production in greenhouses is becoming very popular 

because of very high output which is 10 to 20 times higher than the outdoor production (Nederhoff 

and Houter, 2007). However, the higher energy cost in greenhouse production is the major 

challenge for the greenhouse industry. The energy cost is the second largest operating cost after 

labor for greenhouse production in cold regions. About 65-85% of the total energy consumed in 

greenhouses is used for heating, and the remaining portion is used for electricity and transportation 

(Runkle and Both, 2012). The cost for heating (mainly) and cooling in northern greenhouses 

represents about 70-85% of total operating costs excluding cost associated with labor (Anifantis 

et al., 2017; Rorabaugh et al., 2002), and the heating energy could be up to 90 % of the total energy 

demand (Kristinsson, 2006). Therefore, reducing greenhouse heating cost would make the 

greenhouse production more economical and sustainable. To reduce heating cost, the greenhouses 

must be energy-efficient and enable the use of renewable resources such as solar, biomass, and 

geothermal heat. Many studies have been conducted to reduce heating cost of greenhouses; several 

strategies such as energy-efficient structural design, use of energy-efficient cover, improved 

heating and ventilation systems, energy-efficient management of indoor micro-climates, and use 

of renewable energy sources, can be applied depending on the location of greenhouses. The 

principles of these techniques are mostly to increase the solar heat gain of the greenhouse and 

reduce heat loss from the greenhouses. However, its very important that there are trade-offs 

between the agronomic need of the plants and energy saving potential of various energy saving 

techniques (Sanford, 2011). Hence, the information related to the energy-efficient strategies and 

their effect on plants and the economic feasibility of the existing heating energy-saving 

technologies for the conventional greenhouses would be useful for the greenhouse growers, 

researchers, and manufacturer. Sethi and Sharma (2008) reviewed and evaluated the various 

passive heating technologies available for worldwide agricultural greenhouses. Anifantis et al. 

(2017) reviewed key strategies of energy saving using renewable and sustainable based solutions 

such as photovoltaic (PV) modules, solar thermal collectors, and hybrid PV/T collectors and 

systems. To our best knowledge, there is no recent literature review about the energy saving 

techniques for reduction of heating cost in the conventional greenhouses. Therefore, the objective 

of this study is to present a comprehensive review of the potential techniques to reduce the heating 

cost of the conventional-style winter greenhouses.   
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4.2 Energy-efficient design of greenhouses 

The energy-efficient design of greenhouse envelope is very important to reduce the heating cost 

of the conventional greenhouses located in cold regions. The goal of energy-efficient design is to 

increase solar energy gain and energy retention in the greenhouses. The design parameters of 

greenhouse envelope that greatly affect the heating requirement include the greenhouse shape, 

orientation, and north wall. 

4.2.1 Greenhouse shape  

Greenhouse shape influences the amount of solar radiation received by the greenhouse, as well as 

amount heat transfer with the outsides. In general, greenhouses are distinguished into two types: 

(i) single module or mono-span; and (ii) multi-module or multi-span. Djevic & Dimitrijevic (2008) 

studied the energy consumption for various types of double-layered plastic film covered 

greenhouses in Serbia region and reported 4-10% less heating energy consumption in the multi-

span greenhouse as compared to the different types of single-span greenhouses. The multi-span 

greenhouses are more energy efficient as compared to the single-span greenhouse because less 

surface exposes to the outside per unit floor area (Boodley, 1998; Hanan, 1998a). Also, the 

geometry of greenhouse roof has a significant effect on solar energy gain and heat loss in winter 

greenhouses. Five different shapes including even-span gable roof, uneven-span gable roof, gothic 

arch shape, vinery shape, and quonset shape are usual practice for crop production (Figure 4.1). A 

few studies have been conducted for selecting the energy-efficient greenhouse shape for different 

locations because the energy-saving potential of greenhouse shape greatly depends on the locations 

of greenhouses. Chandra (1976) theoretically studied the thermal performance of three types of 

single-span greenhouses (even-span gable roof, gothic arch roof, and quonset shape) under weather 

condition of Winnipeg (49˚N) in Canada. It was observed that the gothic arch roof greenhouse 

required about l5-25% less heating as compared to the gable roof and  quonset type of greenhouses. 

Gupta & Chandra (2002) evaluated the heating requirement of three types of greenhouses under 

cold climate condition of northern India (28˚N). The simulated heating requirement in the gothic 

arch shaped greenhouse was about 2.6% and 4.2% less as compared to the gable roof and the 

quonset shape, respectively. Similarly, Cakır and Sahin (2015) studied five different greenhouse 

shapes (Figure 4.1) for selecting the optimum shape based on the availability of solar radiation;  

they reported that the gothic arch shape as the optimum type in the studied region (40.3˚N) in 

Turkey. Conversely, Singh and Tiwari (2010) studied the thermal performance of similar five 
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different greenhouse shapes under weather condition in New Delhi, India. The results indicated 

that the uneven-span gable roof greenhouse received the highest solar radiation because uneven-

span shape has a highest surface area for receiving the solar radiation, and quonset shape received 

the lowest solar radiation; therefore, the uneven-span shape gable roof greenhouse required the 

lowest additional heating to keep the optimum indoor temperature. Similarly, Sethi (2009) 

theoretically studied the availability of solar radiation in five different greenhouse shapes under 

three different climate conditions (10˚N, 31˚N, and 50˚N) of India and obtained a similar result in 

all three different latitudes. Other similar studies (Kumari, Tiwari, & Sodha, 2007; Malquori, 

Pellegrini, & Tesi, 1993; Tiwari & Gupta, 2002) conducted under different climate condition also 

recommended that the uneven-span gable roof greenhouse is the most suitable from the heating 

point of view. Ahamed et al. (2018a) also optimized the greenhouse shape based on the additional 

heating requirement in five different greenhouse shapes (Figure 4.1) in Saskatoon (52.13˚N), 

Canada. The results showed that the uneven-span gable roof shape received the highest solar 

radiation, but no significant difference in the heating requiement as compared to the even-span 

gable roof shape; whereas the quonset shape received the lowest solar radiation; however, the 

quonset shape greenhouse required about 7.6% less annual heating as compared to the even-span 

gable roof shape, but the quonset shape cannot be adopted as multi-span greenhouses. Hence, the 

even-span gable roof greenhouse was considered as energy-efficient for the multi-span gutter 

connected greenhouses whereas quonset shape as a free-standing single span greenhouses. 

Ghasemi et al. (2016) investigated the energy saving potential of six different greenhouse shapes 

including: even span, uneven span, vinery, single span (mono roof), gothic arch, and quonset type, 

under the climatic condition of Tabriz, Iran. The results showed that the single span shape received 

the highest solar radiation and the vinery shape received the lowest solar radiation in a typical 

winter day, whereas the vinery shape showed the least supplemental heating requirement and the 

highest heating was required for the gothic arch shape to reach desired plant temperature.  

Based on the outcome of previous studies, it shows that the energy-efficient greenhouse shape 

could be different depending on the location and physical dimensions of greenhouses. Therefore, 

it is very important to study the energy-saving potential of greenhouse shape based on local 

weather conditions because the heat gain from solar radiation per unit area of cover could be lower 

than the rate of heat loss under extreme cold weather conditions (Ahamed et al., 2018a). 
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Figure 4.1: View of the common conventional greenhouse shape (Sethi et al. 2009). 

4.2.2 Orientation 

The orientation of a greenhouse (ridge direction) has a significant contribution to reducing the 

heating energy of winter greenhouses and its effect is location dependent. Chandra (1976) 

theoretically studied the energy-saving potential of an east-west (E-W) oriented free-standing 

gothic arch shaped greenhouse under northern latitudes of Canada (49.25°N). It was observed that 

east-west (E-W) oriented greenhouse required about 20% less heating as compared to the same 

size of greenhouse with a north-south (N-S) orientation. Gupta & Chandra (2002) simulated the 

heating requirement of a gothic arch shape greenhouse (1200 m2) with E-W and N-S orientation 

in India (28.8˚N); the heating requirement with E-W orientation was only 2% less than the N-S 

oriented one. Stanciu et al. (2016) evaluated the effect of orientation on the heating and cooling 

requirement in a greenhouse (180 m2) located in Romania (44.25˚N). They found the cooling 

energy saving was about 125 kWh/day in June and 87 kWh/day of heating energy saving in 

January, with the E-W orientation as compared to the N-S oriented one. Conversely, Ghasemi et 

al. (2016) reported that the N-S orientated greenhouse required less additional heating in a typical 

winter day as compared to E-W orientated one in Iran.  Facchini et al. (1983) evaluated the energy 

efficiency of a greenhouse with different orientations and concluded that the longer side should 

face the south, i.e. E-W orientation, for lower energy consumption in a greenhouse located in 
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northern Italy. Similarly, a few studies have been conducted to select the optimum orientation of 

a greenhouse based on the availability of solar radiation in the greenhouse. The solar transmissivity 

of a single-span greenhouse was studied experimentally using scale model with E-W and N-S 

orientation at 37.58°N latitude of Greece (Papadakis et al., 1998). The study proved that the E-W 

orientation is preferable since the average solar energy gain for the E-W orientation was higher 

than the N-S orientation.  Sethi (2009) theoretically studied the availability of solar radiation in an 

even-span gable roof greenhouse at three different latitudes (10°N, 31°N, and 50°N) in India. At 

10°N latitudes, it was found that the N-S orientation receives more solar radiation over the year as 

compared to the E-W orientation. However, the comparison of orientation at 31°N latitude showed 

that the E-W oriented greenhouse received about 5.4% higher solar radiation in December and 

15.8% less solar radiation in June. The difference of solar radiation gain with E-W orientation and 

N-S one was significantly higher at greater northern latitudes (50°N), with 14.2% higher solar 

radiation in December whereas it was 8% less in June. Similarly, Ahamed et al. (2018a) reported 

about 51.8% more solar radiation in December with a single span  E-W orientated greenhouse in 

Saskatoon, Canada, whereas  about 20.1%  less in June with N-S orientation. A similar result was 

also found from the theoretical study conducted by Dragićević (2011) for different latitudes (24˚N, 

34˚N, 44˚N, and 54˚N) in Serbia. Most of these previous studies have been conducted for the 

single-span greenhouse. Harnett et al. (1979) reported the consistent benefit regarding the solar 

light transmission in a multi-span E-W orientated greenhouse as compared to the N-W one; 

however, the uniformity of light transmittance can be reduced in an E-W oriented multi-span 

greenhouse because shadow could occur on the plants from the gutters of greenhouses. Conversely, 

Ahamed et al. (2018a) reported that the solar heat gain with E-W orientation could be reduced by 

a large margin for a multi-span greenhouse when the length-width ratio become greater than one.  

In summary, a greenhouse with E-W orientation receives higher solar radiation during the winter 

season at higher northern latitudes because of lower altitudes angle of the sun. Thereby, the long 

south facing surface receives the high direct solar radiation during the winter time. Hence, the 

length-width ratio of a multi-span greenhouse need to be maintained greater than one to obtain the 

maximum benefit of E-W orientation in northern greenhouses.    
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4.2.3 North wall 

The design of north wall is very important because most incoming solar radiation in greenhouses 

is received by the south wall and south roof and mostly leaves through the transparent north wall. 

The thermal performance of a northern greenhouse can be improved by using the reflective north 

wall and the massive thermal mass in the north wall or using heat storing materials. 

4.2.3.1 Non-transparent north wall 

The concept of the opaque north wall is practiced for greenhouses in northern hemisphere because 

of lower altitude angle of the sun in the winter season. The transparent north wall has a high 

potential of losing solar energy because the direct incoming solar radiation usually leaves through 

the transparent north wall. Chandra (1976) observed that a very little solar heat gain (around 3%) 

from the transparent north wall in an east-west oriented greenhouse. In another study, it was 

reported that about 24% of solar radiation loss can be decreased with the nontransparent north wall 

in a greenhouse in India (Tiwari et al., 2002). The north wall insulation in a N–S oriented 

greenhouse in India (28˚N) resulted a little reduction in the heating requirements (approx. 5%), 

whereas the reduction was about 30% in an E–W oriented greenhouse. This difference in the 

reduction with greenhouse orientation could be the direct consequence of the area available for 

insulation such as the north wall area in a N–S oriented greenhouse was only 39.18 m2 while the 

area available in an E–W oriented greenhouse was 1584.0 m2 (Gupta and Chandra, 2002). 

Different techniques such as the use of color coated film, aluminized polyester film, and air proof 

polyethylene film coated with aluminum, have been practiced to prevent direct solar radiation loss 

through the north wall.  Heartz & Lewis (1982) observed about 14% less heating requirement with 

the reflective north wall (white coating) as compared to the conventional greenhouse with the 

transparent north wall. Aluminized polyester sheet was used as a reflector in the north wall of a 

121 m2 glass-covered greenhouse at Silsoe Bedfordshire (52.05˚N), UK, to reduce the loss of direct 

solar radiation through the north wall (Bailey and Critten, 1982); the lighting intensity in the 

greenhouse was about 20-25% higher than the greenhouse with a transparent north wall. In another 

application, a 30-mm thick of glass wool wrapped in airproof polyethylene film with aluminum 

coating was used to make the opaque north wall in a glass-covered greenhouse (Andersson and 

Nielsen, 2000). About 28% of the heating requirement was reduced as compared to the uninsulated 

greenhouse, but electrical energy consumption was increased by 35% for the additional 

supplemental lighting to increase the lighting intensity in the greenhouse. The overall reduction in 
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energy consumption was about 25% less as compared to the uninsulated greenhouse (Andersson 

and Nielsen, 2000). In another application, the thermal performance of opaque north wall in a 340 

m2 single polyethylene covered greenhouse was tested in Gard Andure, France (Banboul and 

Banbouserale, 1987), and a similar study also performed in a 104 m2 polycarbonate greenhouse at 

Lozere, France (Francois, 1987). In both studies, the opaque north walls were able to maintain 

about 7-9˚C higher indoor temperature than the outside air.  

On the other hand, the inclination of the reflective north wall could increase the illumination level 

on the floor. Pucar (2002) observed that the inclined reflective north wall enhanced the 

illumination level about 50% as compared to the vertical wall. Similarly, Gupta & Tiwari (2005) 

concluded that a 15˚ inclined reflective north wall would be more efficient in utilizing solar 

radiations as compared to a vertical wall, as shown in Figure 4.2. 

 

Figure 4.2: Schematic representation of reflective inclined surface attached to the north wall 

(Gupta and Tiwari, 2005a). 

4.2.3.2 Heat storage with north wall  

A significant amount of heating requirement can be reduced by using massive thermal mass in the 

north wall that can store solar energy during the daytime and release at night. The massive thick 

thermal mass is usually made of brick or cement blocks filled with different materials having high 
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heat capacity including sand, concrete, and phase change material (PCM). Santamouris (1993) 

reviewed the thermal performance of different heat storing north wall for greenhouse heating, and 

the reduction of heating demand was reported about 35-50% depending on the location and type 

of greenhouses. In another study, Santamouris et al. (1994) reported about 82% saving of heating 

energy with a 60-cm thick insulated north wall in a 30 m2 glass-covered greenhouse with E-W 

orientation in France (46.85˚N), when the average daily temperature was 3.4˚C and 5.4˚C in 

December and January, respectively. Ghasemi et al. (2016) studied the energy saving potential of 

the north wall constructed of bricks covered with concrete for different greenhouse shapes in Iran. 

The results showed that the use of the brick north wall in the greenhouses on an average could 

reduce 13.4% of energy consumption. Gupta and Tiwari (2005b) studied the thermal performance 

of a greenhouse with the north wall made of brick, concrete, and mud; they concluded that concrete 

wall as the suitable one since more energy could be stored during sunshine hours. The study also 

reported that the variation of wall thickness had a negligible effect on the plant and room 

temperature.      

Also, the heat storing north wall was used in combination with other thermal storage systems 

including the ground air collector (GAC), photovoltaic/thermal (PV/T) collector, and earth-to-air 

heat exchanger (EAHE) system to improve the greenhouse heating performance. In GAC, the solar 

radiation is absorbed in the blackened sand, concrete, and rock bed, and the absorbed heat is 

circulated in the greenhouse, and cool greenhouse air returned to the collector. Singh & Tiwari 

(2000) studied the thermal performance of a greenhouse (24 m2) in India (28.40˚N) with massive 

north wall and ground air collector. The system was able to maintain the indoor temperature 5-6˚C 

above the outside air temperature. Similarly,  Jain & Tiwari (2003) found that the stored thermal 

energy in the 12 m2 GAC in a greenhouse (24 m2) located in Delhi, India,  gave a rise of 

temperature of 6–7˚C from the ambient during the night. Nayak and Tiwari (2008) studied the 

thermal performance of a greenhouse (48 m2) with brick north wall integrated with two 76 W 

photovoltaic (PV) panels to store the solar energy in Delhi, India; they reported the yearly net 

electrical energy saving was about 716 kWh. Tiwari et al. (2006) studied the thermal performance 

of a greenhouse (24 m2) with brick north wall integrated with the EAHE under same weather 

conduction, and the temperature of the greenhouse increased 4˚C for typical winter night due to 

use of an EAHE.  Also, the potential of using stored thermal energy with the help of a GAC and 

EAHE was investigated for a greenhouse (24 m2) in Delhi, India (Ghosal et al., 2005). The total 
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length of the buried pipes in both arrangements was kept same; and the temperatures of greenhouse 

air with GAC were observed to be 2–3˚C higher than those with EAHE. 

 

Figure 4.3: Greenhouse with heat-storing north wall integrated with the ground air collector (Jain 

and Tiwari, 2003). 

Sensible heat storage systems such as massive north wall have low initial cost and require less 

technical knowledge as compared to the latent heat storage system by using the phase change 

materials (PCMs). However, the sensible heat storage systems such as massive north wall require 

a high volume of thermal mass and greater temperature difference. Therefore, the latent thermal 

storage system using PCM have many advantages over the sensible one including high heat 

capacity, low volume, low temperature, thermal energy stored and released at an almost constant 

temperature (Berroug et al. 2011). PCM use chemical bonds to store and release heat, it can store 

a large amounts of heat in phase change from solid to liquid (latent heat of fusion) at a constant 

temperature corresponding to the phase transition temperature and the circulating fluid (air or 

water) can extract heat from the storage unit causing the phase change material to solidify (Sethi 

and Sharma, 2008). There are two types of PCM: organic (paraffin wax, vegetable extract, 

polyethylene glycol) and inorganic (salt hydrates). The most commonly used PCM in the 

greenhouses are CaCl2·6H2O, Na2SO4·10H2O, polyethylene glycol (PEG), and paraffin. Sethi and 

Sharma (2008) reviewed the different techniques of using PCMS for greenhouse heating and 
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reported that the use of CaCl2 6H2O as a latent heat storage material could satisfy 30–75% of the 

annual heating needs of greenhouses situated at various locations. Later, Berroug et al. (2011) also 

theoretically studied the inside temperature of a greenhouse with a CaCl2 6H2O filled a north wall, 

and the temperature of plants and indoor air were found to be 6–12˚C high during a winter night 

as compared to the greenhouse without the PCM filled north wall. Bouadila et al. (2014)  studied 

the thermal performance of a greenhouse (14.8 m2) in Tunisia (36.4˚N) with a solar air heater with 

PCM using a packed bed of spherical capsules as a latent heat storage system. Results showed that 

the night time temperature was about 5°C higher as compared to the controlled greenhouse. 

However, more technology development is still required for application of this technology in 

greenhouses. The major barriers to use PCM include the super-cooling, low thermal conductivity, 

phase segregation, fire safety, and costs (Bland et al., 2017). The super-cooling and phase 

segregation could cause thermal cycling degradation thereby limiting the useful lifecycle of the 

material. Also, the sensitivity towards the moisture causes serious disadvantages for long-term 

usage. Moreover, there is a big research gap about the economic feasibility of using PCM for large-

scale greenhouse production and also the maintenance needed for PCM systems once they have 

been installed in greenhouses.    

4.3 Use of energy-efficient greenhouse cover 

The selection of covering materials for greenhouse depends on several factors such as capital cost 

and maintenance cost, its effect on plant growth and yield, and local climate and technical support 

(Papadopoulos and Hao, 1997). The greenhouse cover or glazing is the basic factor that greatly 

influences the energy consumption in greenhouses (Papadakis et al., 2000). Good covering 

materials must have high transparency to global solar radiation, especially within the 

photosynthetically active radiation (PAR) range, should be as opaque as possible to the long-wave 

infrared radiation (IR). A good covering material also must have higher diffusive radiation, good 

insulation, and anti-condensation properties (Castilla, 2013). Greenhouse covering materials are 

mainly two types such as plastic film and rigid panels (glass, polycarbonate, fiberglass, and 

acrylic). There is no ideal greenhouse cover; each has pros and cons and influence the plant 

microclimates in unique ways. The high transmissivity to the short-wave solar radiation and low 

transmissivity to the long-wave radiation, as well as low thermal conductivity are the important 

properties of greenhouse cover for energy conservation in winter greenhouses. The important 

thermal properties of common greenhouse covering material are presented in Table 4.1. The 
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traditional glass and acrylic panels allow high solar radiation transmission into the greenhouses as 

compared to other covering materials, but the infiltration rates are higher in the rigid panel covered 

greenhouses because the infiltration rates are proportional to the number of joints/connections 

which are typically higher in rigid panels. On the other hand, polyethylene film covered 

greenhouses have low infiltration rate and transmit the light in a fairly scattered manner, but 

usually have greater heat loss for exchange of long-wave radiation. On the other hand, diffusive 

glass has advantages to scatter the light as well as transmission of photosynthetic light as good as 

non-treated glass when the antireflection coating is used. Hence, the improvement of light 

transmission with diffusive cover could result in less supplemental lighting thereby increasing 

potential energy saving (Victoria et al., 2012).    

Table 4.1: Thermal properties of different greenhouse cover materials (Sanford, 2011; bPapadakis 

et al. 2000; Hill, 2006; cZhao et al. 2011).  

Covering Material 

Solar 

transmission 

(%) 

Long-wave 

transmission 

(%) 

Emissivity 

coefficient 

Thermal 

conductivity 

(W m-1 K-1) 

Infiltration 

rate 

(ACH) 

Glass (3.2 mm) Single 88-93 3 0.9 0.76 1.10 

Low emissivity 

glass (3.2 mm) 
Single 78 <3 0.3a 0.76 1.10 

Diffusive glass 

(3.2 mm)  
Single 8-85 <3 - - 1.10 

Polyethylene 

film (6-8 mil, 

UV-stabilized) 

Single 87 50 
0.2 0.33 

0.85 

Double 78 <50 0.75 

Polyethylene 

film (6-8 mil, 

IR-barrier) 

Single 87 20 
0.2b 0.33 

0.85 

Double 78 <20 0.75 

Poly-carbonate 

(6-8 mm) 

Single 90 <3 
0.65c 0.17 

1.10 

Double 78-82 <3 0.85 

Acrylic panel 

(8 mm) 

Single 90 <5 
0.65c 0.2 

1.10 

Double 84 <3 0.85 
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The condensation of water vapor on the inner surface of cover could reduce the solar transmissivity 

thereby reducing the solar heat gain in greenhouses (Papadakis et al., 2000). Eggers (1975) 

reported that about 15-18% less solar radiation transmitted under the untreated plastic covered 

greenhouse as compared to the greenhouse cover having anti-condensation property. Also, the 

characteristics of a water droplet on the cover influence the rate of heat transfer through the cover. 

The condensation on the glass and rigid plastic materials usually form as water film or spread 

drops, whereas sphere shape droplets form on the polyethylene film sheet. Holman (2010) reported 

that the overall heat transfer rate from a surface with dropwise condensation (sphere shape) could 

be as much as ten times higher than that of film condensation (spread drops), because the film 

condensation formed on the glass and the rigid plastic material improve the insulation to reduce 

radiation heat transfer from the greenhouses (Feuilloley et al., 1994). So, the condensation on the 

cover has advantage and disadvantage in term of heat transfer from the greenhouses. However,  

most studies agreed that the heat loss caused by condensation exceeds the heat transfer prevented 

by film condensation (Delwich and Willits, 1984; Garzoli, 1986; Weimann, 1986). Another serious 

problem with condensation is plant disease, dripping water from condensation on plant surfaces 

promotes fungal diseases such as botrytis and powdery mildew. Also, dripping water spreads plant 

pathogens from plant to plant by splashing soil and plant debris. The new plastic cover usually has 

the anti-dripping property which prevent condensation or allows the condensate flow down on the 

side that can reduce the problem associated with condensation.  

A few studies have been conducted to evaluate the energy-saving potential of different types of 

greenhouse covers. Previous studies (Dieleman and Hemming, 2009; Hill, 2006; Tantau et al., 

2009; Van’t Ooster et al., 2008) concluded that the most promising methods of reducing heating 

energy demand in greenhouses is the use of double layer cover instead of single layer cover. Cemek 

et al. (2006) studied the effect of different type of polyethylene film covers on aubergine growth, 

productivity, and energy requirement. The monthly average air temperature in the double-poly 

greenhouse and the IR-barrier polyethylene were higher than the UV stabilized and the untreated 

polyethylene cover. The overall heat transfer coefficient of different types of glass covered 

greenhouse was studied by using MatLight computer model (Swinkels et al., 2001). The study 

reported that the total heat transfer coefficient of the double-layer glass is about 16% lower as 

compared to the single-glass cover. The heating requirement of a 4,000 m2 double layer PE covered 

Venlo-type greenhouse was simulated using Transient System Simulation (TRNSYS) software 
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program, and compared the heating requirement with the single and double glass-covered 

greenhouse (Semple et al., 2017). The heating demand in the double layer PE covered greenhouse 

was about 27% less as compared to the single layer glass-covered greenhouse whereas about 21% 

higher as compared to the greenhouse covered with double layered glass.  Fabrizio (2012) studied 

the energy saving potential of a twin-wall polycarbonate covered greenhouse as compared to the 

traditional glass greenhouse, and the simulated results indicated that the polycarbonate cover 

greenhouse required 30-35% less heating than the glass-covered greenhouse. Researchers also 

trying to improve optical and thermal properties of existing greenhouse cover. High-quality 

polyethylene and glass are now available to reduce the condensation and heat loss problems 

associated with the traditional covering materials. A new double-layer glass panel with different 

anti-reflection coatings has similar transmissivity (84%), and lower heat transfer coefficient (3.6 

W m-2 K-1) as compared to the traditional single glass (7.6 W m-2 K-1) (Hemming et al., 2011). 

Another study was conducted in a 500 m2 greenhouse in the western Netherlands,  the results 

showed that the new double layer glass also has transmissivity about 88%, and the heat transfer 

coefficient was 1.2 W m-2 K-1,  whereas  6.7 W m-2 K-1 for the traditional single glass (Hemming 

et al., 2012). Kempkes et al. (2014) also found that the use of this new double layered glass cover 

had energy savings up to 60% without affecting the production level in a commercial nursery 

greenhouse in the western Netherlands. Hemming et al. (2017) reported about 10-20% more 

natural light in greenhouses could be achieved during winter months through use of diffuse 

coverings with anti-reflective coatings and hydrophilic condensation properties on light 

transmission. So, the use of newly developed covering materials (diffusive glass, rigid plastic 

cover) could reduce a significant amount of heating requirement in greenhouses and also could 

minimize the problems associated with the tradition covering materials.  

4.4 Energy saving potential of thermal screen 

Thermal screen or night curtain is often used to reduce the loss of thermal radiation to the sky 

during the winter nights. The use of thermal screen can reduce about 40-70% of night-time long-

wave radiation loss from the greenhouse (Andersson, 2010; Bakker, 2006; Chandra and Albright, 

1981). Sethi & Sharma (2008) reported that the use of thermal screen in greenhouses could save 

about 23-60% of heating energy depending on the location and types of thermal screens, and the 

heating energy saving could be up to 90% by using thermal curtain with other passive heating 

systems such as rock bed heat storage system. De Zwart  (1996) studied the energy saving potential 
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of the thermal screen in a Venlo type greenhouse (768 m2) located in the Netherland, and the 

annual energy consumption was reported about 20% less as compared to the greenhouse without 

a thermal screen. Different types of thermal screens (aluminized thermal screen, isotex 60, 

polyester screen, black polyethylene, polypropylene monofilaments, and ethylene thermal screen) 

have been used to reduce the greenhouse heating requirement. A large number of studies 

(Andersson, 2010; Bailey, 1981; Bailey & Winspear, 1975; Dawson & Winspear, 1976; 

Goebertus, 1988; Rebuck, Aldrich, & White, 1977; Teitel, Peiper, & Zvieli, 1996; Zhang et al., 

1996) have been conducted to evaluate the energy-saving potential of various types of thermal 

screens. Coulon  & Wacquant (1984) experimented with two types of thermal screens namely 

permeable thermal screen (isotex 60) and aluminized thermal screen. The total fuel consumption 

per unit area was reduced by 24.48 % with isotex 60, and about 42.9% with aluminized thermal 

screen as compared to the greenhouse without a thermal screen. Sethi et al. (2003) used aluminized 

polyester sheet as a night screen in a 21 m2  glasshouse in India (30.56°N), and observed 3-4˚C 

higher indoor temperature as compared to the unscreened greenhouse. The aluminized thermal screen 

is more efficient because of high reflectivity as compared to the other screens such as polyethylene, 

polyester, polypropylene, and polystyrene. Fuller et al. (1984) reported about 30% of energy saving in a 

greenhouse by using a molded polyester screen with mixture of aluminum. In addition, the polyethylene 

sheet and the inflated polyethylene tube also used to increase the roof insulation at night. Abak et al. 

(1993) reported that the night temperature in a single skinned plastic greenhouse with PE made 

night screen was 3.4˚C higher as compared to the unscreened greenhouse. Öztürk & Başçetinçelik 

(2003) used thermal screens made of PE and polyester material, and the thermal screen 

effectiveness for energy saving was 16% and 19.8%, respectively, for the PE and polyester screens. 

Roberts et al. (1981) used polypropylene monofilaments thermal screen in a double-layered PE 

covered greenhouse and obtained the energy savings up to 58%.  Jolliet et al. (1984) reported that 

an ethylene thermal screen (EVA) and chrome coated one reduced the nighttime thermal 

transmittance through the roof by 35 % and 47 %, respectively, and whereas about 52 % if they 

installed simultaneously. The experimental study conducted by Short & Shah (1981) indicated that 

the night time heat loss from a double acrylic greenhouse could minimize by 60–70% with the 

polystyrene pellet shading system. An additional thermal blanket over the plant mass and below 

the thermal screen was recommended for winter greenhouses, and the air temperature surrounding 

the plant mass was recorded 2-5°C higher than air temperature between the cover and the thermal 
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screen (Ghosal and Tiwari, 2004; Shukla et al., 2006a, 2006b). Also, double layer thermal screen 

also recommended instead of single layer thermal screen to improve the effectiveness of thermal 

screen (Cui and Wang, 2002). From previous studies, it shows that at least 20% of heating energy 

could be saved by drawing any thermal screen at night in the winter greenhouses.  

4.5 Energy saving potential of insulation 

Greenhouse envelopes have little insulation as the maximum light transmittance become beneficial 

for the plants. The energy saving from insulation in the conventional greenhouses including the 

air gap insulation in double-layered cover, insulation in the side wall and basement wall, is 

reviewed in this section. 

4.5.1 Insulation between two layers of cover   

Greenhouse heat loss could be greatly reduced by providing the insulation between two layers of 

cover such as air layer insulation, liquid foam insulation, air bubble insulation, and pellet 

insulation. Inflated air layer insulation is the most common and affordable technique for the double 

layer polyethylene covered greenhouses. An electric blower is usually used to maintain an internal 

air layer which form a heat insulation barrier to reduce the transmission heat loss through the cover. 

It is recommended to draw the air from outside to prevent the condensation between the sheets 

because outside air is usually drier than the indoor air (Sanford, 2011). Also, the pellets of 

polystyrene beads and the liquid foam have been experimented to provide insulation in the double 

layer polyethylene covered greenhouses. The former is one of the most energy efficient insulation 

systems in the greenhouses (Short and Shah, 1981), and it can reduce the cover heat loss by 90% 

(Elwell et al., 1984). However, the pellet insulation system did not become popular for large 

commercial greenhouses because of difficulty in conveying and distributing the pellets (Enshayan, 

1984). The liquid foam insulation system is very convenient regarding the handling of foam 

between two layers of cover. The liquid foam is generated and injected into the gap between two 

layers of the cover,  and the collapsed foam is drained to the storage tank. The use of liquid foam 

techniques in greenhouses firstly reported during the late 1970s (Groh, 1977; Wells, 1980). The 

theoretical analysis proved that the maximum energy saving potential of this technique was up to 

80% (Groh, 1977), but the experimental study found the energy saving potential about 20-40% 

(Wells, 1980). Villeneuve et al. (2005) studied the heating energy saving potential of using 

dynamic liquid foam in a conventional prototype greenhouse (24 m2) in Montreal, Canada.  Results 
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Figure 4.4: (a) A electrical blower for providing insulation in double layer polyethylene covered 

greenhouses, and (b) liquid foam insulation between two layers of cover (Aberkani et al., 2011; 

Runkle and Both, 2012).   

showed that the system could lead to energy savings of more than 50% at night, it was also noticed 

that the solar radiation measured inside the greenhouse was about 5.0% lower than the reference 

greenhouse since the presence of foam or solution residues on the membranes could reduce the 

transmissivity of cover. Similarly, Aberkani et al. (2006) found that the use of the liquid foam 

system reduced energy consumption by 62 % without reducing tomato yields. The thermal 

performance of liquid foam insulation technique also investigated for a greenhouse in Canada 

(42˚N) and reported up to 62% reduction of roof heat loss at night in April, and at least 29% 

reduction in January (Aberkani et al., 2011). The energy saving potential of liquid film can be 

decreased by the outside cold air temperature, and the extremely low outside temperature might 

freeze the liquid foam (Aberkani et al., 2011; Roberts & Mears, 1978). Also, air bubble plastic 

film along the inside surface of the cover could reduce the heating demand in greenhouses. 

Depending on the location, the film can reduce the heating demand up to 50% when applied along 

a single layer PE covered greenhouse (Duncan et al., 1979). Most of these insulation techniques 

except the air layer insulation were studied for the small or prototype greenhouses. The main 

barrier for using the liquid foam and pellet insulation system is the maintenance and operation of 

the system. Also, limited information is available about the economic feasibility of these systems 

for the commercial-scale greenhouse production.   
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4.5.2 Foundation and sidewall insulation 

Insulation to the foundation around the perimeter of greenhouses, to the side walls up to the height 

of the plants can reduce a significant amount of conduction heat loss from greenhouses. Foundation 

heat loss can be reduced by 50% through the installation of 2.5-5 cm of polyurethane or 

polystyrene insulation (Latimer, 2009). Installation of polyurethane or polystyrene board (2-5 cm 

thickness) vertically around the entire perimeter to a depth of 0.6 m can increase the soil 

temperature near the sidewall as much as 10˚C in the winter season (Bartok, 2001). Gauthier et al. 

(1997) evaluated the energy-saving potential of perimeter insulation (0.76 m thick polystyrene) in 

a polycarbonate panel covered greenhouse (60 m2) in La Pocatiere, Canada. Results show that the 

energy recovery ratio for the installed soil heat exchanger-storage system (SHESS) in the 

greenhouse is approximately 73% with insulation around the perimeter and falls to 67% without 

perimeter insulation. Similarly, extruded polystyrene insulation board, aluminum faced building 

paper, and foam insulation can be installed to the sidewall up to bench height or height of plants 

to reduce the heat loss. A study proved that the installation of 4-5 cm thick foam insulation up to 

1 m height of side wall in a greenhouse (250 m2) saved about 1514 liters of fuel oil or 1526 m3 of 

natural gas over a heating session under northern climates (Bartok, 2001).  

4.6 Energy saving potential of indoor microclimates management  

Optimum climate control in greenhouses is very important for better plant growth, yield and 

quality, and also for energy saving. A significant amount of heating energy can be saved by 

effective management of indoor greenhouse microclimates including indoor set-point temperature 

and relative humidity.  

4.6.1 Integration of indoor set-point temperature 

A significant amount of greenhouse energy consumption can be reduced through lower the set-

point temperatures. Also, extreme suboptimal temperatures may delay plant development and also 

affect other plant characteristics such as dry matter distribution (Körner and Challa, 2003a). So, 

the temperature integration (TI) is probably a better option for most greenhouse crops. Previous 

studies reported that the temperature effects on plant growth are relatively high under daylight 

conditions (Challa et al., 1995; Heuvelink, 1989). Also, Tantau (1998) reported that the night time 

energy consumption in a single layer glass-covered greenhouse is about 70% of the total energy 

consumption for 15°C indoor set-point temperature (Figure 4.5). So, the dropping of night 
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temperature (1-2˚C lower than the daytime temperature) could reduce the heating energy 

consumption up to 30% in winter greenhouses  (Elings et al., 2005; Gilli et al., 2017; Langton and 

Hamer, 2003; Spanomitsios, 2001).  

Conversely, several studies indicated that most crops respond to the longtime average temperature 

rather than fixed day/night temperature integration (Langhans et al., 1985; Miller et al., 1985). 

Therefore, dynamic temperature integration (DTI) over a longer period can compensate the cold 

spell during one of the following days that can accelerate the higher saving energy in greenhouses. 

Several studies tried to study the energy-saving potential of DTI between sub-optimal (lowest 

critical) and supra-optimal (top critical) temperature, and maintain the desired average for any 

user-defined period. Sigrimis et al. (2000) studied the energy-saving potential of varying the 

heating set-points temperature using past information to achieve the desired average for a 

particular period. The study allowed the temperature drop by 1-2°C below 17˚C for a couple of 

hours over three days and maintained the desired average temperature similar to the average 

temperature in FTI strategy (17˚C for the night and 22˚C for daytime) for 30 days. As compared 

to the fixed temperature integration (FTI), the DTI strategies for the long time (1-3 days) reduced 

the energy consumption up to 23%. Similarly, Körner and Challa (2003b)  reported about 4.5% 

annual energy saving for the short time DTI strategy or up to 9% for the long time (6 days) as 

compared with the FTI. Körner and Van Straten (2008) also found that the DTI for six days period 

reduced annual energy consumption by 13.4% as compared to fixed TI, whereas 7.8% for the 24 

hour DTI strategy. However, TI could have effect on plant growth and development, and fruit 

quality. Langton and Horridge (2006) showed that DTI between sub-optimal (14°C) and supra-

optimal temperatures (24°C) delayed flowering in chrysanthemum when compared with plants 

grown at FTI (19°C average temperature). Conversely, Truffault et al. (2015) reported that DTI 

did not affect tomato fruit size and composition (sugars, acids, vitamin C), but leaf area slightly 

decreased by 11%. DTI strategies are mostly applied with a temperature margin between 4-8 °C 

and an averaging period of 24 h (Körner and Van Straten, 2008). Some studies (Körner and Challa, 

2004; Langton and Horridge, 2006) reported that DTI for an extended period (6 days) caused short 

flowering delays for chrysanthemum as compared to the 24 hour DTI.  

A few studies have conducted to evaluate energy saving potential of TI with the temperature drop 

for certain hours.  Borhan (2007) studied the energy-saving potential of TI with a pre-night (6 to 

9 pm) temperature of 13°C as compared to the TI with a pre-night temperature of 17°C for tomato 



69 
 

production, and about 3-5% of reduced energy consumption was reported. Similarly, Hao et al. 

(2011) evaluated the energy-saving potential of TI with pre-morning (3 to 6 am) temperature drop 

at 13˚C, but the reduced the energy use from March to May was about 6-8%. Hao et al. (2015) 

studied energy saving potential with temperature drop for a certain period in the greenhouse for 

cucumber production. The air temperature was allowed to drop to 12°C during the pre-night period 

(6-9 pm) from March 6 to April 20 and 13°C during the pre-morning period (3 to 6 am) from April 

27 to May 27, while it was maintained at 19°C or 18°C. The new temperature integration strategy 

(TI-drop) could be an energy efficient climate control strategy in greenhouse production; however 

some plants could be sensitive to the kind of temperature control practice in greenhouses. 

 

Figure 4.5:  Specific energy consumption in greenhouses as a function of inside air temperature 

(Tantau, 1998). 

Another approach for greenhouse energy saving with temperature integration is the control of set-

point temperature based on the outdoor wind speed. The wind speed-based temperature control 

technique is such as dropping of set-point temperature below the required average value when 

outdoor wind velocity is higher than the average speed and increasing up to optimum set-point 

when wind speed is lower as compared to the average value. This practice would reduce heat loss 

from greenhouses as low temperature gradient would cause low the relative heat loss. The 

temperature integration in response to the outdoor wind speed gave a reduction of 5-10% in the 
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annual heating requirement in a study greenhouse as compared to a greenhouse heated at a constant 

15˚C (Bailey, 1985).  However, the energy saving potential in wind speed depending temperature 

control is comparatively low as compared to the temperature integration based on day-night 

integral (Tantau, 1998). 

4.6.2 Control of indoor relative humidity 

The control of high relative humidity (RH) is very important to prevent the fungal growth in plants 

in a fully closed greenhouse. The main reason for RH control is to prevent condensation, high RH 

caused plant disease. Also, the control of relative humidity may have an impact on the energy 

consumption in greenhouses. If the relative humidity exceeds a certain limit, then heating set-point 

will be increased because the control of humidity or the saturation deficit can be achieved by 

heating and/or ventilation so that energy consumption will be high (Tantau, 1998). However, 

greenhouse industry in cold region does not practice this strategy for RH control since high heat 

loss occurs during the heating season, so other dehumidification methods (heat exchanger, chilled 

water condensation, chemical dehumidification, and mechanical dehumidification) are used for 

commercial production. Campen et al. (2003) compared different dehumidification methods (air-

to-air heat exchangers, ventilation, chilled water condensation) for a commercial greenhouse and 

suggested that the most promising and economical method would be the use of heat exchangers.  

Gao (2012) evaluated four dehumidification methods (air-to-air heat exchangers, ventilation, 

chilled water condensation, and mechanical dehumidifier) in a greenhouse located in the Canadian 

Prairies. Results showed that the mechanical dehumidification could be effective and energy-

efficient dehumidification method for year-round. Similarly, other studies (De Zwart, 2014; Han 

et al., 2015) also reported that the internal mechanical dehumidifier is more energy efficient and 

effective for year-round operation.  

On the other hand, the energy saving in greenhouses with temperature integration is comparatively 

high when the indoor air has high RH. Energy saving with the temperature integration was 

increased when the RH was over 90% as compared to the RH fixed at 85%. However, high RH 

(above 90%) could cause the condensation in greenhouse thereby plant disease would increase 

(Körner and Challa, 2003b). Körner and Challa (2004) showed that yearly energy consumption 

could be reduced by 18% for TI with RH control between 80 and 85% as compared to a fixed set-

point of 80% RH. The study also reported that the dynamic RH within 80-85% had no negative 
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consequences on crop development, but there was a strong increase in the dry weight of all plant 

organs. Hence, TI with process-based humidity control (flexible humidity control regime) would 

be more energy efficient as compared to the fixed RH in greenhouses. 

 

Figure 4.6: Energy consumption as a function of fixed RH set point for simulations with different 

temperature integrations scheme (Körner and Challa, 2003b). 

4.7 Heating contribution of supplemental lighting 

Supplemental lighting is very important for a modern greenhouse in northern latitudes because the 

shorter day length and reduced solar radiation affect the plant growth in greenhouses (Nelson, 

1985). The supplemental lighting for greenhouses depends on the daily light integral which varies 

due to location and time of the year, and crop species; the lighting selection is also affected by 

lamp cost, electrical cost, and heating requirement (Dorais, 2003). The operating cost and the 

energy use efficiency are the major challenges of artificial lighting in greenhouses. The common 

types of lamps for artificial lighting in greenhouses are: (i) incandescent; (ii) fluorescent; and (iii) 

high-intensity discharge lamps (Castilla, 2013). Incandescent lamps have very low energy 

efficiency in converting electricity into photosynthetically active radiation (PAR) (around 6%), 

emitting most of the energy in the IR range. Fluorescent and high-intensity discharge lamp 

(halogen and sodium) have high energy efficiency 20%, and 26-27%, respectively (Baille, 1993). 

High-pressure sodium (HPS) lamp for supplemental lighting is more efficient for converting the 
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electrical energy into the useful light for photosynthesis. Besides, LED lamp is more energy 

efficient than HPS lamp, but the capital cost for LED is extremely high as compared to other lamps 

and no heating contribution in greenhouses. The energy efficiency of artificial lighting can increase 

by using inter-lighting (combination of HPS and LED) or more efficient lamps, as it is expected 

from light emitting diodes (LED) in the future (Castilla, 2013).  Singh et al. (2015) reviewed the 

research work done on energy-efficient greenhouse lighting with LEDs and concluded that LEDs 

can significantly reduce the electricity cost and investment will be returned in long-term operations 

in greenhouse industry although it has high capital cost. However, more research is needed to 

understand the plant response to LED as a supplemental lighting source in greenhouse industries 

(Singh et al., 2015). 

Although the main purpose of supplemental lighting is to increase the photosynthesis rate by 

extending the day length (photoperiod), it can provide a significant amount of heating in 

greenhouses depending on the types of lamps used. In general, about 75-100% of the consumed 

electrical energy by supplemental lighting systems (except LEDs) can be converted into the 

sensible heat (Castilla, 2013; Fisher et al., 2001). About 25-30% of the heating contribution was 

reported from high-intensity discharge (HID) lamp for a greenhouse located in the Netherlands 

(Mpelkas, 1981). Brault et al. (1989) reported about 25-41% of the heating requirement in a double 

poly greenhouse in Quebec City, was provided from the light level of 30 W/m2 (PAR). Another 

study was conducted in a twin wall polycarbonate (8 mm thick) covered greenhouse located at the 

University of Laval, Quebec (46.47ºN). The heating contribution was reported up to 100% with 

supplemental lighting (25 W/m2 of PAR) when the temperature difference between inside and 

outside was between 10-12ºC, and the heating contribution decreased to 30% when temperature 

difference was greater than 25°C (Zhang et al., 1996). Another study was conducted to evaluate 

the heating contribution from 21 high-pressure sodium lamps of 250 W which were used for 

supplemental lighting in a 100 m2 glass-covered greenhouse in Seoul, North Korea (Yang et al., 

2015). The greenhouse was operated with thermal screens at night. The heat contribution from 

lighting for five hours a day was evaluated up to 91.3 MJ, and the effective contributions of lighting 

for heating were between 12.8% and 72.2%. Ahamed et al. (2017) reported that the HPS lamp (100 

W m-2) contributed about 38.0% of the total heating requirement with eight hours of artificial 

photoperiod at the winter solstice. Similarly, White & Sherry (1981) suggested that the 

supplemental lighting with HID lamps (15 W m-2 PAR) met the heating requirement in the study 
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greenhouse when the temperature difference is less than 12ºC. Hence, the use of supplemental 

lighting could be an option to reduce the greenhouse heating requirement. Also, the supplemental 

lighting with HPS lamps could increase the operating costs depending on the rate of electricity, 

and LED has high initial cost, so the detailed economic feasibility evaluation would be beneficial 

for decision making about supplemental lighting system for greenhouse operation in cold regions. 

4.8 Energy saving potential of heating systems 

The heating system in greenhouses can be in the active or passive mode, and sometimes a 

combination of active and passive mode. Active mode of heating systems means the supply of heat 

from other sources for increasing indoor temperatures. In passive mode, the solar energy is used 

to heat the greenhouse by storing the heat using different heat storage materials. The passive 

heating systems are suitable for the small size of greenhouses located in moderate climates, and 

the active mode of the heating system is usually used for commercial greenhouse production at 

high northern latitudes.  

4.8.1 Active heating 

Active heating systems include the hot water pipe heating system, hot air heating system, and 

infrared radiation (IR) radiation heating system. In general, the water heating system is very 

common practice for large commercial greenhouses, and hot air heating system and infrared 

radiation heating system are mostly used for the small size of greenhouses or the Mediterranean 

greenhouses where heating needs are relatively low. In water heating, the plants are usually warmer 

than the surrounding air because the heating pipe is often placed at crop level and warms up the 

crops both by convectively heating the air and by radiating heat directly to the plants. Conversely, 

the main advantage of air heating is to promptly responses to control the air temperature, but 

additional energy electrical energy requires for the heaters (Bartzanas et al., 2005). 

Mavrogianopulos et al. (1993) reported that higher heat loss occurs in a small size greenhouse with 

pipe heating system as compared to the hot air heating system because the half of the total length 

of heating pipes was located near the side walls. Conversely, Teitel et al. (1999) found no 

significant difference between these two types of the heating systems regarding the energy use if 

the pipes and ducts are positioned between the plant rows, but the hot air heating system requires 

additional electrical energy that accounts 10% of the energy required for heating. However, the 

pipe heating system maintains higher plants temperature than the surrounding air so that indoor 
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set-point can be lower than the optimal temperature range. Therefore, the hot water heating system 

indirectly could reduce the greenhouse heating requirement by proving the heat closer to plants 

surfaces (Runkle and Both, 2012). The location of heating pipe in greenhouses was investigated 

by Popovski (1986), the study recommended the lower height of pipe mesh to reduce the radiation 

loss to cover, and to increase the radiation to crop canopy. The position of heating pipes closes to 

the plant canopy or on the soil could provide a uniform vertical temperature distribution by 

avoiding air stratification in greenhouses. This system can minimize the heating demand by 15-

25% as compared to the conventional fan assisted convector heater (Jolliet et al., 1991). In general, 

the position of heating pipe at the middle height of crop canopy found the best practice for 

maximizing the efficiency of the heating system (Teitel and Tanny, 1998). However, the 

combination of the heating pipe and the air heater more suitable for optimum control of air 

temperature and relative humidity, but the heating energy consumption  was increased by 19% 

(Bartzanas et al., 2005). Kurpaska & Slipek (2000) also studied the energetic efficiency assessment 

of two types of pipe heating systems such as the buried pipes heating system and vegetation heating 

system. The result indicated that the vegetation heating required 3K higher water temperature than 

buried pipe heating, and heat loss also found higher in vegetation heating system. Fabrizio (2012) 

studied the thermal performance of a polycarbonate-covered greenhouse with the underground 

heating system. In this system, the hot water (40°C) was passed through a hollow polypropylene 

sheet placed at 15 cm below the ground cultivation level.  The system reduced the heating 

requirement up to 26% as compared to the overhead tube air heaters.  

The use of infrared radiation heating system can be an alternative option for reducing the 

greenhouse energy consumption. The use of long-wave radiation heating sources could directly 

heat the greenhouse plants without moving air, so air and cover temperature remain relatively low 

and thereby heat loss could be reduced significantly. In the greenhouse with infrared radiation 

heating system, plant and greenhouse soil temperature could be 1.7˚C or higher than the 

surrounding air temperature (Stone and Youngsman, 2006). Caouette et al. (1990) compared the 

temperature distribution in an infrared radiation heated greenhouse with the greenhouse heated by 

the hot air heating system. The results showed that the infrared radiation heating system allowed 

to reduce the set-point temperature by 3˚C and still maintained the comparable leaf temperature. 

In another study, about 33-41% of heating energy savings was reported for using a long-wave 

radiation heating system as compared to the conventional air heating system (Blom et al., 1981). 
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Similarly, the heating energy saving potential of the infrared heating system was evaluated by 

comparing with the conventional water pipes heating system for a 285 m2 Swedish greenhouses 

(Näslund et al., 2002). The heating energy saving potential was reported about 11.8%, and the 

heating saving could be increased by 15-20% for using the overhead heating system.  Similarly, 

Kavga et al. (2007) reported that the heating efficiency of the longwave radiation heating system 

was about 45% higher as compared to the hot water pipe heating system for a 500 m2 glass-covered 

greenhouse located in Greece. Teitel et al. (2000) used a 500 W microwave generator to heat a 

small greenhouse which was used to grow tomato and pepper plants. The experimental results 

showed that the microwave generator could be used for the greenhouse heating without visible 

plant damage. The energy required for microwave heating system was about 45% less as compared 

to the hot air heating system. Although the infrared heating system has advantages over 

conventional hot air and pipe heating system, but the infrared heating system cloud cause the 

greater temperature differences at various location in the greenhouse, so crops development may 

not be as uniform as in the conventional heating system (Näslund et al., 2002). However, more 

details studies about the use of radiant heaters for greenhouse heating might require as there is risk 

of burning the plant leaves. However, the radiant heater can be more suitable for loading ducks, 

header houses, and work areas of greenhouses (Sanford, 2011). Previous studies indicate the 

infrared radiation heating system could be more energy efficient among active mode of heating 

systems but also has some major consequences on plant growth, so hot water pipe heating system 

mostly practices for large-scale greenhouse production.      

4.8.2 Passive heating 

The passive mode of greenhouse heating system used solar energy for heating by using different 

heat storage materials such as water, rock bed, and phase change material (PCM). Sethi & Sharma 

(2008) reviewed and evaluated several types of passive heating for greenhouse application and 

concluded that this method is usually efficient for small size greenhouses located in the moderate 

climates. These passive heating methods can be combined with the active heating system to reduce 

heating cost of large commercial greenhouses. The following section reviewed the potential 

heating energy saving in winter greenhouse with the passive mode of heating systems.   



76 
 

4.8.2.1 Water heat storage 

The heat storage in greenhouse by using water as storage media can be achieved by placing the 

water-filled plastic bags and ground tubes in the greenhouse between two rows of plants, and water 

tanks/barrels can be placed either inside or outside of greenhouses. These systems act as solar 

collectors and heat storage media during daytime and release heat at night. Several researchers 

(Farah, 1987; Grafiadellis, 1987; Mavrogianopulos et al., 1993; Montero et al., 1987; Pacheco, 

1987) have studied the thermal performance of water-filled polyethylene bag and ground tubes for 

greenhouse heating. These systems could maintain 2–10˚C higher inside air temperature 

depending on the volume of water used in the system and the size of greenhouses. The bag 

diameters ranged between 23-35 cm, containing 60–70 liters of water per meter of tube length, and 

the length of tubes ranged between 2-12 m (Sethi and Sharma, 2008). A layer of 2–3 cm thick 

insulating sheet made of polystyrene is recommended below the ground tubes to reduce the heat 

loss to the ground (Farah, 1987; Sallanbus et al., 1987). However, these water tubes could cover 

from 20–30% of the greenhouse floor surface which could not be used for crop growing.  

Several researchers (Dutt, Rai, Tiwari, & Yadav, 1987; Gupta & Tiwari, 2002; Santamouris et al., 

1994; Sethi, Lal, Gupta, & Hans, 2003; Sorensen, 1989) have studied the thermal performance of 

different type of water tanks which usually were placed on the side of the greenhouse along the 

north wall. These systems were able to maintain the indoor temperature 4-10˚C high than ambient 

temperature depending on the solar absorption capacity of tanks, volume of water, and size of 

greenhouses. The water storage tank can be painted black to improve the heating performance of 

greenhouses. The water heat storage tanks placing outside of greenhouses were usually combined 

either with the air-water heat exchanger (Grafiadellis, 1987; Levav and Zamir, 1987) or the solar 

flat plate collectors (Hazami et al., 2005; Kumari, Tiwari, & Sodha, 2003). Shallow water pond 

(SSP) is another technique of using water mass for heat storage, where water-filled plastic 

containers are placed inside of greenhouses. The water body can be insulated at the bottom and 

side with a transparent plastic cover. Different chemicals or salt can be used to increase the heat 

storage capacity of the water pond. Carnegie et al. (1983) reported about 77% of annual heating 

energy saving from the shallow solar pond (1/5th area of the greenhouse) in a commercial 

greenhouse. Al-Hussaini & Suen (1998) conducted an analytical study for using shallow solar 

ponds as a heating source for greenhouses under cold climates of the United Kingdom (51˚18N). 

About 30% of the greenhouse floor area was considered as a solar pond having a black bottom in 
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a double poly greenhouse. The result showed that the system saved a significant amount of 

greenhouse heating energy from March to October and 100% saving in summer between May-

September. The water heat storage system is very convenient for the small size of greenhouses  

which located in the moderate climate, but these systems occupied a significant greenhouse floor 

area.  

4.8.2.2 Rock bed heat storage 

In the rock bed heat storage system, the hot air from greenhouses is circulated into to the storage 

medium through recirculating fans to store the heat from solar radiation, and release by reverse 

circulation process at night when the indoor temperature is below the optimum level. The storage 

area of rock-bed can be inside and outside near to the greenhouse at a depth 40-50 cm, and most 

commonly used rock bed material is gravel having 2–10 cm diameter (Sethi and Sharma, 2008). 

A large number of studies (Bouhdjar et al., 1996; Kavin & Kurtan, 1987; Kürklü, Bilgin, & Özkan, 

2003; Öztürk & Başçetinçelik, 2003; Santamouris et al., 1994) have been conducted to evaluate 

the thermal performance of rock-bed heat storage as a passive mode of greenhouse heating.  The 

previous studies show that rock bed heat storage systems satisfied 15-76% of annual heating needs 

in greenhouses. Based on the review study conducted by the Sethi & Sharma (2008), the heating 

energy potentials of different type of rock bed as heat storage system for greenhouse heating are 

listed in Table 4.2. Most of these studies were conducted for the small-scale greenhouses because 

these passive heating systems might not be feasible for the large-scale production. Because the 

initial costs for these systems could be very high, and the heat storage density of solids is usually 

less than water thereby large amounts of solids are needed than water (Öztürk and Başçetinçelik, 

2003b).  
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Table 4.2: Summary of heating performance of the different passive heating system with the rock 

bed as heat storage material.  

Description of Greenhouse 
Description 

of rock-bed 

Thermal 

performance 
Reference 

Glass covered greenhouse (176 m2) 

located in the USA (34.83˚N, 77.3˚W)  

15,700 kg of 

gravel 

Indoor temperature 

5˚C higher 

(Huang et al., 

1981) 

Polyethylene covered greenhouse (2850 

m2) located in Canada (45.5˚N, 73.5˚W)  

202,000 kg 

of gravel 

40% of heating 

needs 

(Bricault, 

1982) 

Polyethylene covered greenhouse (300 

m2) located in Cyprus (35.2˚N, 33.3˚E)  

74,000 kg of 

gravel 

76% of heating 

needs 

(Fotiades, 

1987) 

Glass covered greenhouse (432 m2) 

located in Prague (50.1˚N, 14.3˚E)  

43,000 kg of 

gravel 

Indoor temperature 

4-6˚C higher 

(Jelinkova, 

1987) 

Polyethylene covered greenhouse (100 

m2) located in Hungary (47.4˚N, 19.1˚E)  

48,000 kg of 

brick 

53% of heating 

needs 

(Kavin & 

Kurtan,1987 ) 

Double glass-covered greenhouse (161 

m2) located in Germany (50.5˚N, 7.1˚E)  

14,000 kg of 

gravel 

20% of heating 

needs 

(Santamouris 

et al., 1994) 

Polyethylene covered greenhouse (120 

m2) located in Turkey (37.1˚N, 35.2˚E)  

64,480 kg of 

Volcanic 

18.9% of heating 

needs 

(Öztürk and 

Başçetinçelik, 

2003b) 

4.9 Use of alternative energy for greenhouse heating 

The increased price of fossil fuels and the effect of using fossil fuel on the environment are 

encouraging greenhouse growers to consider alternative fuels for greenhouse heating. The possible 

alternate sources for greenhouse heating cloud be industrial waste heat, geothermal heat, and wood 

biomass.  The following section includes the previous studies about the potential use of alternative 

fuels for greenhouse heating.  

4.9.1 Industrial waste heat for greenhouse heating 

The term “waste heat” refers to heat that is either lost through the flue stack of an industrial 

operation, or which is rejected from a power generation station to improve the thermodynamic 

efficiency of the cycle (Andrews and Pearce, 2011). A huge amount of heat generally in the form 

of flue gases or warm water is released from industrial and power plant processing systems, these 
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waste heat can be utilized for greenhouse heating. The use of low-temperature industrial 

wastewater (20-25ºC) heating system has been proved to be a good approach in terms of 

greenhouse energy conservation (Connellan, 1986; Malfa, G., Noto, G., Parrini, 1992; Qaisar et 

al., 2010; Vreugdenhil and Mittleider, 2009). The wastewater from a power plant was used for 

heating six commercial Velno type greenhouses (53,000 m2) covered with single glass 

(Brendenbeck, 1992). The heating system could maintain the greenhouse temperature up to 22ºC 

even with the outside temperature of 14ºC. Pietzsch and Meyer (2008) studied the potential of 

using reject heat from the biogas power plants for heating a greenhouse in Freising, Germany. 

Results showed that the useable reject of 650 kW could heat the greenhouse size of 5279 m2. 

However, the useable reject heat from biogas power plant could be fluctuated by large margin, 

which might complicate greenhouse heating system. Chinese et al.  (2005) studied the technical 

and economic feasibility of using low-temperature waste heat for greenhouse heating, and heat 

was released from the chair manufacturing industrial plant located in an industrial district of North-

Eastern Italy. The study found that the proposed renewable energy solution could lead to 

significant savings in comparison to traditional fossil fuel from the point of view of costs and 

environmental impact. The result showed that the system could save up to 20% of fuel oil to 

maintain the indoor temperature range between 14-16ºC. Andrews & Pearce (2011) studied the 

feasibility of using waste heat from a glass industry for greenhouse application, and the system 

was found more economical than a purely natural gas heating system for the selected experimental 

greenhouse. Thomas et al. (2017) studied the energy-saving potential of using waste heat from a 

sugar plant discharge hot water (average temperature 46˚C and average flow rate of 7571 m3 per 

day) for heating a greenhouse (1.2 ha) located in Lovell, USA. The simulated results showed that 

the heating energy consumption could be reduced by 67% through utilization of waste heat and 

water to air heat pumps when compared to the variable air volume heating (VAV) system. A 

similar study reported that the amount of waste heat from the sugar plant would be sufficient to 

provide the annual heating demands in a 1.25 ha greenhouse and a water to air heat pump system 

utilizing waste heat could save about 74% of  the total annual site energy for greenhouse heating 

(Denzer et al., 2017).  

Also, the effective use of industrial flue gas heat for greenhouse heating could be an alternative to 

reduce the CO2 emission from the industry. The Kiawana Industrial complex in Australia 

performed an energy assessment of their local industry park and found the potential mitigation of 
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CO2 emission up to 7% (Van Beers and Biswas, 2008). Therefore, the use of industrial was heat 

for greenhouse heating would be beneficial for reducing the heating cost and mitigation of CO2 

emission. However, the biggest barrier for using the waste heat is the high investment costs to 

connect wasted heat to the greenhouse, and another main barrier is the unreliability of waste energy 

to support required energy for greenhouse year around because of different maintenance periods 

in the processes and industries (Manning et al., 1983). Therefore, a detailed feasibility study is 

required for decision making regarding the use of industrial waste heat for greenhouse heating.  

4.9.2 Geothermal energy for greenhouse heating 

The use of geothermal energy for greenhouse heating can be another option for minimizing the 

heating cost in winter greenhouses.  Based on the review of 2005, about 7.5% of the global use of 

geothermal energy is used for crop production in greenhouses (Lund et al., 2005). The worldwide 

use of geothermal energy for greenhouse heating increased by 10% in installed capacity and 13% 

in annual energy use. Geothermally heated greenhouses can reduce production costs up to 35%, 

allow production in cold temperatures where commercial greenhouses production would not be 

feasible (Lund, 2010). Depending on the underground soil and water temperature, the geothermal 

energy can be used through different techniques. Hot underground water (>60ºC) can directly 

supply into greenhouse heating system with pump and return to the reservoir (Bartok, 2015). Adaro 

et al. (1999) used underground warm water (average 27˚C) for heating a 1000 m2   greenhouse 

located at Argentina (33.2˚N, 64.3˚W), and indoor temperature was 3-4˚C higher than ambient 

temperature. Similarly, Ghosal & Tiwarin (2004) used geothermal warm water (28˚C) for heating 

of a double poly greenhouse, which incorporated with thermal curtain and blanket just over plants. 

The results show that indoor temperature of the air surrounding the plant was about 5-10˚C higher 

than ambient temperature. The heat exchanger between geothermal water and the greenhouse 

heating system can be installed for using the low-temperature geothermal water.  A steel plate 

main heat exchanger was used between geothermal water and the greenhouse heating system for 

heating a large commercial greenhouse located in Greece (Bakos et al., 1999). The system could 

maintain an inside temperature of 20ºC when the outside temperature was 7ºC and the inside 

temperature of 15ºC when the outside temperature falls to 2ºC. Kondili and Kaldellis (2006) 

studied the heating performance a greenhouse (10,000 m2) in Greece using the geothermal hot 

water of temperatures around 82˚C and yields a flow rate over 30 m3/h. According to the results 

obtained the mean daily heating deficit during winter was about 5 MW h/day, and about 50% of 
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the available geothermal energy from the system could support the heating requirement in the 

greenhouse during the winter season. Sethi & Sharma (2007) studied the thermal performance of 

a greenhouse (24 m2) which heated using the underground water (24-25˚C) from an irrigation well. 

The greenhouse air was circulated through the pipe (fully immersed in water) placed horizontally 

in the trench in the opposite direction (Figure 4.7). The air circulation system was connected to the 

heat exchanger, and the system was able to maintain the greenhouse room air temperature 7–9˚C 

above ambient during winter nights.  

  

 

Figure 4.7: Top view of greenhouse geothermal heating system integrated with the irrigation well 

(Sethi and Sharma, 2007). 

On the other hand, the geothermal energy can be used with an earth-to-air heat exchanger (EAHE), 

where indoor air circulated through underground pipes, and the air passed through the tubes warm 

up by high soil temperature. Similarly, a liquid such as propylene glycol or methyl alcohol can be 

circulated through the underground piping system (Bartok, 2015). A large number of studies 

(Balghouthi et al., 2005; Esen and Yuksel, 2013; Gauthier et al., 1997; Ghosal and Tiwari, 2006; 

Sharan et al., 2004; Tiwari et al., 2006) have been conducted to evaluate the potential of earth-to-

air heat exchanger (EAHE) for greenhouse heating. Sethi & Sharma (2008) reviewed the energy-

saving potential of a heating system with EAHE for different size of greenhouses (30-2500 m2). 
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The diameter of underground pipes ranged between 0.1-.025 m with spacing between 0.4-0.8 m. 

The air velocity through the pipes cloud be between 4-11 m s-1. These systems satisfied about 28-

62% of greenhouse heating demand depending on the types of greenhouses and their locations. 

Ground-source or geothermal heat pumps (GSHPs) also used to transfer the underground heat into 

the greenhouses to provide heating. Several studies (Benli, 2011; D’Arpa et al., 2016; Hepbasli, 

2011; Noorollahi et al., 2016; Ozgener and Hepbasli, 2005) have been conducted to study thermal 

performance of using GSHPs for greenhouse heating. Chai et al. (2012) evaluated the heating 

performance of the GSHP system for a greenhouse in northern China (39.4˚N). The results showed 

that the heating cost of the greenhouse with GSHP was lower than gas-fired heating system (GFH) 

by 11.4%, but were higher than coal-fired heating system (CFH) by 12.9%. Miller (2008) 

compared the geothermal greenhouse heating systems with the conventional ones (hot water 

boiler) to evaluate their economic aspects. Results indicated that the average energy costs per unit 

area of greenhouse floor would decrease if GSHP heating systems were utilized in greenhouses 

instead of using conventional ones. Benli (2013) compared the performance of horizontal and 

vertical GSHPs for greenhouse heating in Elazig, Turkey. The study concluded that in the vertical 

layout, the ground temperature was relatively stable, whereas in the horizontal layout, the ground 

temperature changed dramatically during a year. Furthermore, the coefficient of performances 

(COPs) was obtained to be in the range of 3.2-3.8 and 3.1-3.6 for vertical and horizontal GSHPs, 

respectively. Anifantis et al. (2017)  studied the performance of a renewable energy system for 

heating a greenhouse (32 m2) in Bari, Italy. The system consisted of GSHP and photovoltaic panels 

which connected to an electrolyser to produce hydrogen by electrolysis and then store it in a 

pressure tank (Figure 4.8). During the night, the hydrogen was converted into electricity and used 

for operation the GSHP to heat a tunnel greenhouse, and results showed that the overall system 

efficiency was about 11%.  
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Figure 4.8: GSHP system connected with PV panel for heating the greenhouse (Anifantis et al., 

2017). 

The review of previous studies indicates the use of geothermal heat for greenhouse heating could 

be a potential energy saving option for the greenhouse industry. However, the use of geothermal 

energy for greenhouse heating is not very common for the large-scale production. The reasons 

could be the high initial costs, lack of adequate economically justified technologies, the 

complicated maintenance and exploitation, the environmental problems, and, most of all, the 

absence of governmental support and good organization (D’Arpa et al., 2016). Chiasson (2006) 

reported that the feasibility of heating greenhouses with geothermal energy is strongly dependent 

on the fuel cost and the installation costs. D’Arpa et al. (2016) studied the economic feasibility of 

using geothermal energy for greenhouse heating with GSHPs in southern Italy. The results 

indicated that the greenhouse heating with GSHPs is possible with a relatively short payback 

period as compared to the traditional air source heating systems. However, Noorollahi et al. (2016) 

found that the GSHP is not economical for supplying energy for greenhouses in Iran, as a gas 

burning heating system can do the same task with significantly lower costs. Therefore, the 

economic feasibility analysis is very important for using the geothermal energy in greenhouse 

heating for particular locations.    



84 
 

4.9.3 Wood biomass  

The uncertainty of fossil fuel prices has forced greenhouses to consider alternative fuels, and wood 

biomass could be one of the options. The number of wood burning boilers installed in greenhouses 

in British Columbia, Canada, has been increasing since 2001 (Chau et al., 2009a). Hepbasli (2011) 

studied comparative investigation of various greenhouse heating options (solar assisted vertical 

ground-source heat pump, wood biomass boiler, and natural gas boiler) using exergy analysis 

method. Results showed that the most sustainable system becomes the wood biomass boiler among 

the cases studied. Chau et al. (2009)  studied the techno-economic analysis of wood biomass 

boilers for a greenhouse (7.5 ha) in the Lower Mainland of British Columbia in Canada. The results 

showed that installing a wood biomass boiler (wood pellet or wood residue) to provide 40% of the 

annual demand is preferable than using the natural gas boiler to provide 100% heat. In another 

study, Chau et al. (2009b) reported that the wood pellet boiler operated greenhouse production 

could not be economically feasible when the annual wood pellets price increased by 20%, whereas 

installing a wood biomass boiler could be feasible when natural gas price increases more than 3% 

per year. McKenney et al. (2011) studied the economic feasibility of substitution the conventional 

heating system (fossil fuel) with the biomass operated the heating system for greenhouse heating 

in southern Ontario, Canada. Results showed that the biomass heating systems have payback 

periods of 10 to >22 years for substituting the heating oil systems and 18 to >22 years for replacing 

the natural gas operated heating systems. Similarly, other studies (Bibbiani et al., 2017; Bisaglia 

et al. (2011) also concluded that the replacement of the traditional heating system with the biomass 

boiler heating could be economical for greenhouse heating depending on the local price of wood 

biomass and fossil fuels (natural gas, electricity, heating oil).  

Also, biomass heating system also has an economic benefit of CO2 enrichment from exhaust gases 

over pure CO2 (Chalabi et al., 2002). Conversely, CO2 enrichment from the exhaust gas of biomass 

boilers is still challenging and expensive since wood biomass boilers generate a high volume of 

particulate matters (PM) and ash emissions than other fossil fuels. However, the recent 

technologies including wet scrubbers and other recent flue gas conditioning devices could be 

helpful to reduce costs and make this process more feasible (Bibbiani et al., 2017). 
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4.10 Energy saving potential of windbreaks 

Wind speed greatly influences the heat loss from the greenhouses, so greenhouses should be in an 

area which is surrounded by the windbreak. The rate of heat loss from greenhouse become more 

than double when outdoor wind speed is about 7 m s-1 (Sanford, 2011). Therefore, the proper 

design and position of windbreaks around the greenhouse can reduce 5-10% of total annual heating 

energy requirement (Sanford, 2011; Sheard, 1977). Bartok (2001) has recommended the 

windbreaks should be on the north and northwest sides to reduce heat loss from greenhouses which 

caused by wind speed. Mistriotis et al. (2011) recommended plastic net cover windbreaks instead 

of traditional one which consisted of trees.  However, the windbreaks should install at a certain 

distance, so that light entrance should not affect and do not accumulate snowdrifts against the 

greenhouses. 

4.11 Conclusions 

Several types of techniques have been applied for reducing the greenhouse heating requirement 

thereby reducing the heating cost. Based on the review of different heating options for reducing 

heating cost, the following conclusions can be made:  

1. The heating energy saving potential of greenhouse shape depends on the location of 

greenhouse. And the east-west orientation of greenhouse is more energy-efficient for the 

winter greenhouse at high northern latitudes when the length-width ratio of greenhouses is 

greater than one.  

2. Although the opaque north wall increases the need for supplemental lighting in 

greenhouses, but the overall reduction in energy consumption was found significant as 

compared to the uninsulated greenhouse. Similarly, the massive north wall could reduce 

the heating cost, but might not be appropriate for the large commercial greenhouses.  

3. Each greenhouse covers influence the plant microclimates in unique ways; however, the 

use of newly developed greenhouse cover such as diffusive glass, IR barrier PE cover, and 

rigid plastic panels could save a significant of heating cost in greenhouses. And, about 20% 

of heating energy can be saved by using any energy screen at night in the winter 

greenhouses. 

4. Insulating the greenhouse is recommended especially the perimeter and the side wall near 

the ground. 
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5. Depending on the location of greenhouses, temperature integration could save about 10-

25% of greenhouse heating demand, and the supplemental lighting with HPS can contribute 

up to 30% of annual heating demand.  

6. The hot water pipe heating system mostly used for the large commercial greenhouse, and 

the location of pipe near the ground is recommended to reduce the heat loss from a 

greenhouse. Infrared heating could be more energy-efficient for the small size of 

greenhouse, but there is a risk of burning the plant leaves. Most of the passive mode of 

heating systems such as water heat storage might not be efficient for large commercial 

greenhouses. However, these passive modes of heating can be combined with the active 

heating system to reduce greenhouse heating cost of large commercial greenhouses. 

7. As the price of the fossil fuels is being increased, so the use of alternative energy such as 

industrial waste heat, geothermal energy, wood biomass could be a potential option to 

reduce the greenhouse heating cost. However, the detailed economic feasibility study is 

recommended for making the decision to replace the traditional heating systems with the 

renewable energy depending heating systems.   

Although, many techniques are available for reducing the greenhouse heating energy cost in the 

winter greenhouses, but all the techniques cannot apply at a time. The energy saving option needs 

to select based on the types of greenhouses, location, and the resources available near the 

greenhouses.   
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CHAPTER 5 

ENERGY EFFICIENT DESIGN OF GREENHOUSE FOR CANADIAN PRAIRIES 

USING A HEATING SIMULATION MODEL 

 (The manuscript presented in this chapter has been published in the International Journal of 

Energy Research, DOI: https://doi.org/10.1002/er.4019) 

Overview 

The energy-efficient design parameters for the conventional greenhouses were selected based on 

the research results presented in Chapter 4. In this chapter, we studied main greenhouse design 

parameters which impact could be different, or energy-saving potential could be significantly 

different depending on the location of greenhouses. The results presented in this chapter fulfill part 

of the second objective of this thesis (i.e., to analyze the heating energy saving potential of the 

selected design parameters of conventional greenhouses under the weather conditions of 

Saskatchewan). The outcomes from this study were used for the economic feasibility study of year-

round vegetable production in a conceptually designed conventional greenhouse in high northern 

latitudes (Chapter 6).  As the lead author of this manuscript, I conducted the research, analyzed 

the results, prepared the manuscript, incorporated co-authors comments, and addressed the 

reviewers’ comments. The co-authors (Professor Huiqing Guo, and Professor Karen Tanino) have 

contributed to this manuscript through providing technical guidance to conduct the research and 

constructive review to improve the quality of research.      
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Abstract 

Greenhouses in northern climates require a large amount of supplemental heating for growing 

crops in winter seasons, so energy efficient design of greenhouses based on local climate is 

important to minimize the heating demand. In this study, greenhouse design parameters including 

shape, orientation, the angle of the roof, and width of the span have been studied for the conceptual 

design of conventional greenhouses for Canadian Prairies using a heating simulation model. Five 

different shapes of greenhouses including even-span, uneven-span, modified arch, vinery, and 

quonset shape have been selected for the study. The simulation results proved that the uneven-

span gable roof shape receives the highest solar radiation whereas the quonset shape receives the 

lowest solar radiation. However, the quonset shape greenhouse requires about 7.6% less annual 

heating as compared to the gable roof greenhouse, but the quonset would not be adopted as multi-

span greenhouses. Therefore, the gable roof greenhouse is considered as energy efficient for the 

multi-span gutter connected greenhouses whereas quonset shape as a free-standing single span 

greenhouse.  In high northern latitudes, the greenhouse with east-west orientation is more energy 

efficient from heating and cooling point of view when the length-width ratio of the greenhouse is 

more than one. The heating energy saving potential of the large span width in a single-span 

greenhouse is relatively higher as compared to the multi-span greenhouses.  
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5.1 Introduction 

Greenhouses are very popular control environmental facilities for vegetable production in many 

parts of the world where outdoor climates are not favorable for growing crops. Greenhouses 

located in high northern latitudes such as Canada which operate year-round, need to supply a huge 

amount of supplemental heat for more than six months in a year. The heating cost in Canadian 

greenhouses is 15-20% of total greenhouse operational costs (Statistics Canada, 2008). Some 

studies also reported the heating energy requirement in a greenhouse located in the cold region 

represents up to 90-95% of the total energy demand for greenhouse production (Lristinsson, 2006). 

The high heating demand in northern greenhouses increases the production costs thereby 

increasing the market price of crops at the consumer level. Hence, several energy saving techniques 

such as energy efficient structural design, use of energy efficient coverings, use of thermal curtains, 

management of indoor microclimates, and use of renewable energy, have been practiced to reduce 

the heating costs in northern greenhouses. Several studies (Cakır and Sahin, 2015; Djevic and 

Dimitrijevic, 2009; El-Maghlany et al., 2015; Ghasemi et al., 2016; Gupta and Chandra, 2002; 

Kumari et al., 2007; Sethi, 2009; Singh and Tiwari, 2010; Tiwari and Gupta, 2002) have been 

performed to evaluate the energy-saving potential of greenhouses design parameters including the 

greenhouse shape and orientation under different climates. Some studies (Kumari et al., 2007; 

Sethi, 2009; Singh and Tiwari, 2010) reported the uneven-span gable roof shape as the most energy 

efficient greenhouse under different cold climate conditions in Indian. Conversely, Cakır and 

Sahin (2015) reported that the gothic arch shape as the optimum type in the studied region (40.3˚N) 

in Turkey. Previous studies (Ghasemi et al., 2016; Gupta and Chandra, 2002; Sethi, 2009; Stanciu 

et al., 2016) also reported that the east-west (E-W) oriented greenhouse as more energy efficient 

compared to the north-south (N-S) oriented one for high northern latitudes. Depending on the 

location of greenhouses, the heating energy saving potential in greenhouses with east-west 

orientation could be ranged between 2.0 and 28.0% (Gupta and Chandra, 2002; Stanciu et al., 

2016; Tiwari and Gupta, 2002), and that of greenhouse shape ranging from 3 to 26% (Ghasemi et 

al., 2016; Singh and Tiwari, 2010; Tiwari and Gupta, 2002). The outcomes from previous studies 

indicate the energy-saving potential of some greenhouse design parameters varies significantly 

depending on the location of greenhouses, and the effect of these parameters is more significant in 

a greenhouse located at higher latitudes as compared to the lower latitudes (Kurata, 1993). 

However, very limited information is available regarding the energy efficient design of large 
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greenhouses suitable for the northern latitudes including Canadian Prairies. Chandra (1976) 

theoretically studied the thermal performance of greenhouse design parameters (orientation and 

shape) under the weather condition of Winnipeg (49˚N) in Canada; however the study was 

conducted only for the representative days of summer and winter season. The energy efficient 

design based on the simulation of one complete year is important as the energy saving potential 

from solar radiation varies significantly over the year. Also, the study was conducted for three 

different greenhouse shapes including even-span gable roof, gothic arch, and quonset shape. To 

our best knowledge, other design parameters such as angle of the roof and span width have been 

left out in the previous studies. Furthermore, most of the previous studies have been conducted for 

single-span greenhouses, the results may not be valid for multi-span greenhouses. Therefore, the 

energy efficient design of greenhouse parameters including shape, orientation, and span width for 

high northern latitudes to minimize annual heating requirement would be useful for researchers, 

manufacturers, and greenhouse growers.  

The most effective and feasible approach to select design parameters is through simulation of 

greenhouse heating requirement. Depending on the application of models, a few mathematical 

models have been developed for predicting the microclimates of greenhouses. Some of the models 

(Chandra, 1976; Garzoli, 1985; Hill, 2006; Jolliet et al., 1991; Tunc et al., 1985) have been 

developed based on the steady-state heat balance of greenhouse for predicting the energy 

consumption in the greenhouse. However, the accuracy of prediction is limited because these 

models neglect some heat sources in greenhouses such as sensible heat used in plant transpiration, 

heat from supplemental lighting, and CO2 generators, and also validity restricted to certain types 

of greenhouses. On the other hand, the complex dynamic models (Chou et al., 2004; Cooper and 

Fuller, 1983; De Zwart, 1996; Kindelan, 1980; Sengar and Kothari, 2008; Singh et al., 2006) are 

more precise for predicting the greenhouse microclimates. However, these complex dynamic 

models need many modifications to be applicable for various types of greenhouses, and also very 

complicated for hourly simulation for a long time such as a year. Also, most of the previous models 

need to input the solar radiation data for predicting the thermal environment of greenhouses. 

Ahamed et al. (2017b) developed and validated a quasi-steady model (GREENHEAT) with a solar 

radiation sub-model which considered most of the heat sources and sinks of greenhouses, and also 

can be applied for various types of greenhouses. This time-dependent thermal environment model 
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was used in this study to select the energy efficient design parameters of conventional greenhouses 

for Canadian Prairies. 

The objective of this study is to select the energy efficient design parameters (shape, orientation, 

the angle of the roof, and width of span) of conventional style greenhouses for Canadian Prairies 

using the GREENHEAT greenhouse heating simulation model. 

5.2 Materials and method 

5.2.1 Introduction of the GREENHEAT model 

The GREENHEAT model for simulation of the heating requirement was developed based on the 

lumped estimation of heat transfer parameters in the conventional greenhouses. The general heat 

balance equation of the model is as follows (Ahamed et al., 2017b):  

Q୦ = Sources − Sinks = ൫Qୱ+ Qୱ୪ + Qୡ୭మ
+  Q୫൯ − ൫Q୲ + Q୧ + Q୥ + Q୮ + Q୰ + Qୣ൯ (5.1)                    

where Qh is the supplemental heating requirement; Qs is the net heat gain from solar radiation in 

the greenhouse; Qsl, Qେ୓మ
, and Qm  are the heat gain from supplemental lighting, CO2 generator, 

and motor, respectively; Qt is the heat transfer by conduction and convection, Qi is the heat transfer 

caused by infiltration; Qg is the heat transfer through greenhouse floor; Qp  is the heat transfer along  

the perimeter; Qr  is the heat transfer for  exchange of long-wave radiation; and Qe is the sensible 

heat used in the process of plant evapotranspiration. 

GREENHEAT could estimate the hourly heating requirement of conventional  greenhouse based 

input of indoor set-point parameters including temperature, relative humidity, air velocity, 

supplemental lighting, and CO2 supply rate, physical and thermal properties of construction 

materials, leaf area index and characteristics length of the plant leaves, and hourly weather data 

including temperature, relative humidity, wind speed, and cloud cover. In GREENHEAT model, 

the solar energy through an inclined surface was modeled according to the isotropic diffuse model 

proposed by Liu and Jordan (Liu and Jordan, 1961), and the total solar insolation available in the 

greenhouse is the sum of solar radiation passed through different sections of greenhouse envelope.  

5.2.2 Simulation of heating requirement 

A double layer polyethylene covered single-span greenhouse (1000 m2) located in Saskatoon 

(52.13˚N, 106.62˚W), Saskatchewan, Canada, was first considered for evaluating the heating 

energy saving potential of greenhouse roof shapes. The length, width, and ridge height of all five 
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each shape were 100 m, 10 m, and 6.5 m, respectively. Then a six-span greenhouse (length 100 m, 

width 10×6=60 m) with the selected energy efficient roof shape was also considered in other design 

parameters’ evaluation. The hourly weather data (temperature, relative humidity, cloud cover, and 

wind speed) of Saskatoon for 2015 from the National Solar Radiation Database (NSRDB) were 

used for simulation of the greenhouse heating requirement. Tomato plants were considered to be 

grown in the study greenhouse, so the indoor set-point temperatures were set at 21˚C during the 

daytime and 18˚C during the night. The indoor relative humidity was assumed to be constant at 

75% because most commercial greenhouses at high northern latitudes maintain the relative 

humidity at a set-point in heating season through different humidity control measures such as 

mechanical dehumidifier. The optimum photoperiod in greenhouses varies between 14 to 24 hours 

depending on the types of crops grown, and it is 14 hours for tomato. So, the supplemental lighting 

was considered to be turned on between 7 am to 10 pm when greenhouse solar radiation was lower 

than 250 W m-2 (Dorais, 2003). The CO2 generator was operated only during the daytime. The 

thermal curtain was used at night. Other values used for heating simulation are presented in Table 

5.1.  
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Table 5.1: Other input values used for heating simulation. 

Parameters Value 

Air exchange rate per hour (ASABE, 2006) 1.0 

Perimeter heats loss factor (ASHRAE, 2013) 0.85 (W m-1 K-1) 

Angle of roof 26˚ 

Thermal conductivity of soil (ASHRAE, 2013) 1.4 (W m-1 K-1) 

Number of layer in cover 2 

Thermal conductivity cover (Professional Plastics, 2017) 0.33 (W m-1 K-1) 

Emissivity of IR barrier poly cover (Sanford, 2011) 0.2 

Transmissivity to solar radiation (Sanford, 2011) 0.75 

Transmissivity to long-wave radiation (Sanford, 2011) 0.29 

Average leaf area index of tomato (Castilla, 2013) 2.0 

Characteristics length of tomato leaf (Rincón et al., 2012) 0.027 (m) 

Emissivity coefficient of indoor components 0.9 

Indoor air velocity (Castilla, 2013) 0.2 (m s-1) 

Installed lighting wattage (Dorais, 2003) 100 (W m-2) 

Number of recirculating fans 6 

Rated power of motors 375 (W) 

Motor efficiency 0.9 

Motor load factor (ASHRAE, 2013) 1.0 

Motor use factor (ASHRAE, 2013) 1.0 

Net heating value of fuel (ASHRAE, 2013) 38 (MJ m-3 of gas) 

Rate of CO2 supply in greenhouse (Castilla, 2013) 4.5 (g m-2
 
hr-1) 

CO2 production rate (EIA, 2016) 2.7 (kg  kg-1 of fuel) 

Reflectivity of outdoor ground (ρr) 0.5 

Five single-span greenhouses with different cross-section shapes including even-span gable roof, 

uneven-span gable roof, modified arch, vinery, and quonset are shown in Figure 5.1. Because of 

the complex geometry, the curved surface of the modified arch shape and the quonset shape were 

divided into three sections in solar radiation prediction. The details of each section of the 

greenhouse envelope with east-west (E-W) orientation are shown in Table 5.2. The energy efficient 
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shape of a greenhouse depends on allowing greatest solar heat gain and the least heat loss from the 

greenhouse. The availability of hourly solar radiation for each shape of greenhouse in east-west 

orientation was computed for the entire year. 

 

Figure 5.1: Cross-section views of different available shapes of conventional greenhouses 

(Sethi, 2009). 
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Table 5.2: Geometrical description of different sections of the greenhouses with east-west 

orientation. 

Section of 

surfaces 
Even-span Uneven-span Vinery Modified arch Quonset 

South roof 

A=559 m2 A=791 m2 A=523 m2 A=(189×3) m2  A=(286×2) m2 

β=26.6˚ β=18.5˚ β=35˚ 
β1=75˚, β2=45˚ 

 β3=15˚ 

β1= 57˚ 

β2= 35˚ 

γ=0˚ γ=0˚ γ=0˚ γ=0˚ γ=0˚ 

South wall 

A=400 m2 A=400 m2 A=357 m2 A=400 m2 A=286 m2 

β=90˚ β=90˚ β=78.5˚ β=90˚ β=75˚ 

 γ=0˚ γ=0˚ γ=0˚ γ=0˚ γ=0˚ 

North roof 

A=559 m2 A=354 m2 A=523 m2 A= (189×3) m2  A=(286×2) m2 

β=153.4˚ β=135˚ β=145˚ 
β1=105˚, β2=135˚ 

β3=165˚ 

β1=125˚ 

β2=145˚ 

γ=180˚ γ=180˚ γ=180˚ γ=180˚ γ=180˚ 

North wall 

A=400 m2     A=400 m2 A=357 m2 A=400 m2      A=286 m2 

β=90˚ β=90˚ β=101.5˚ β=90˚ β=105˚ 

γ=180˚ γ=180˚ γ=180˚ γ=180˚ γ=180˚ 

East wall 

A=52.5 m2 A=52.5 m2 A=45.3 m2 A=57.5 m2  A=43.3 m2 

β=90˚ β=90˚ β=90˚ β=90˚ β=90˚ 

γ=-90˚ γ=-90˚ γ=-90˚ γ=-90˚ γ=-90˚ 

West wall 

A=52.5 m2 A=52.5 m2 A=45.3 m2 A=57.5 m2 A=43.3 m2 

β=90˚ β=90˚ β=90˚ β=90˚ β=90˚ 

γ=90˚ γ=90˚ γ=90˚ γ=90˚ γ=90˚ 

Total area (2023 m2) (2050 m2) (1851 m2) (2049 m2) (1803 m2) 

*A= Area of surface, β = angle of surface, γ =surface azimuth  

5.3 Results and discussion 

5.3.1 Energy-efficient greenhouse shape 

Figure 5.2 shows the variation of monthly average daily total solar insolation available into the 

single-span greenhouses with five different shapes. The highest solar radiation is received by the 
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uneven-span shape in all the months except November to January when modified arch shape 

receives the highest solar radiation, because of the largest south roof which receives maximum 

solar radiation as compared to the other roof types of greenhouses. On the other hand, it can be 

observed that the vinery shape and the quonset shape receive the lowest solar radiation because of 

the smaller exterior surface to receive the solar radiation as compared to the other greenhouse 

shapes with the same floor area. The total annual solar radiation in the uneven-span is about 8.4% 

higher than the even-span shape, whereas the modified arch shape, vinery shape, and quonset shape 

receive 0.7%, 5.8% and 7.1% less solar radiation than the even-span shape, respectively. A very 

similar trend of solar heat gain in different greenhouse shapes was reported from the studies 

conducted at high northern latitudes in India (Ghasemi et al., 2016; Sethi, 2009; Singh and Tiwari, 

2010). Sethi (2009) reported that under cold climatic conditions (51˚N) of India, an uneven-span 

shape receives 11.3% more annual solar radiation compared to the even-span shape, and  the 

modified arch shape receives 0.6% more  radiation, whereas vinery and quonset shapes receive 

9.4% and 11.6% less solar radiation, respectively when compared with the even-span shape. 

Although the greenhouse dimensions including length, height, and width, are same for all selected 

shapes of greenhouses, the total solar radiation receives in greenhouses are different due to the 

difference in the ratio of the cover to the floor area (Ac/Ag) and also due to the difference in angle 

of incidence of solar radiation. As compared to the even-span shape, the uneven-span shape and 

the modified arch shape have 1.33% and 1.28% more Ac/Ag ratio while the vinery and the quonset 

shape have 10.9% and 8.5% less Ac/Ag ratio. Although the modified arch shape has a relatively 

higher Ac/Ag ratio as compared to the even-span but it receives lower solar radiation during spring 

and summer and fall seasons whereas higher solar radiation during the winter season. In the winter 

months from November to February, the modified arch shape receives highest solar radiation 

which is about 6.2% higher as compared the even-span shape, while the uneven-span shape 

receives about 5.7% higher solar radiation. Thus, the simulation results indicate that the shape of 

greenhouses has a considerable effect on the solar heat gain at high northern latitudes in winter 

when heating is needed. 

In June, the modified arch shape receives about 1.8% less solar radiation as compared to the even-

span shape, but the uneven-span receives about 9.7% higher solar radiation. The difference is 

caused by the difference in incidence angle because the high roof angle of modified arch shape 
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(especially near the gutter) might allow higher solar radiation when the solar altitude is relatively 

low and less solar radiation when the solar altitudes angle is relatively high.  

 

Figure 5.2: Annual variation of average daily total solar insolation into the greenhouses of 

different shapes with the east-west orientation. 

Figure 5.3 shows the simulated annual total heating requirement in five different shapes of 

greenhouses with an east-west orientation. The modified arch shape requires the highest heating 

although it has a relatively smaller exterior envelope area than the uneven-span likely because it 

receives less solar radiation than the uneven-span gable roof shape. The even-span gable roof 

greenhouse requires about 1.0% less annual heating as compared to the modified arch shape, but 

no significant heating difference between the even-span and the uneven-span. Conversely, the 

even-span shape needs 5.9% and 7.6% higher heating as compared to the vinery shape and the 

quonset shape, respectively. Although the vinery and the quonset shape receive the least solar 

radiation but require the lowest heating because the northern greenhouses experience more heat 

loss per unit area of cover than the solar heat gain on the same area during the winter season. For 

the same floor area, the total exposed cover surface area in the vinery shape and quonset shape is 

8.5% and 10.9% less as compared to the even-span, so less heat loss occurs as compared to the 

other shapes. Similarly, the modified arch shape receives greater solar radiation than the even-span 
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shape during heating period, but requires higher heating because the exposed area for the modified 

arch shape is about 1.3% higher.   

 

Figure 5.3: Predicted annual heating requirements in five different shapes of greenhouses with an 

east-west orientation. 

The results indicate that the quonset shape is more energy efficient as compared to other types of 

greenhouses. However, the vinery and the quonset shape cannot be adopted as gutter connected 

multi-span greenhouses. Hence, the quonset shape is recommended for a single span greenhouse 

for northern latitudes, and the even-span gable roof shape in case of multi-span greenhouses as the 

uneven-span shape require high capital cost but having insignificant heating saving potential. The 

modified arch shape could be beneficial for the cooling purpose as less solar radiation gain in the 

summer season. However, the energy required for cooling in northern greenhouses is not very 

significant since the cooling in northern greenhouses is mostly provided by the natural ventilation 

which could be facilitated with roll-up sidewalls and roof vents or open roof designs (Sanford, 

2011).  

5.3.2 Energy efficient orientation  

For the simulation with the north-south (N-S) orientation, the geometrical parameters (surface 

area, the angle of the surface, and surface azimuth) of the selected greenhouse shapes would be 
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changed based on the orientation of the surfaces. For this analysis, the energy efficient greenhouse 

orientation (E-W or N-S) was selected based on the availability of clear sky solar radiation because 

the heat loss from the greenhouse is not related to the orientation when the effect of wind direction 

is considered as negligible.  Figure 5.4 shows the comparison of simulated average daily total solar 

radiation per unit floor area for each month in a single-span gable roof greenhouse with E-W and 

N-S orientation. The result indicates the E-W oriented greenhouse receives greater solar radiation 

during the cold season (October-March), but less solar radiation during the mild and warm seasons 

as compared to the N-S oriented greenhouse. Comparing with N-S orientation for a single span 

greenhouse, the E-W oriented greenhouse receives 51.8% more solar radiation in December but 

20.1% less in June, thus need less heating in winter and less cooling in summer. A similar trend of 

solar gain in the single-span greenhouses with orientations also reported in other studies 

(Dragićević, 2011; Sethi, 2009), however, the intensity of solar gain could be significantly 

different depending on the location of greenhouses. 

 

Figure 5.4: Annual variation in average daily solar radiation in a single-span greenhouse with E-

W and N-S orientation. 

Figure 5.5 shows the solar radiation availability in an E-W and N-S oriented six-span gable roof 

greenhouse. The simulated result indicates that the E-W oriented multi-span greenhouse receives 

31.1% greater solar radiation in December, and 17.7% less in June than the N-S oriented one. The 
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high solar radiation gain during winter months with E-W orientation is because of the low altitude 

angle of the sun in northern latitudes thereby resulting in higher solar radiation in the longest 

southern section. The greenhouse with E-W orientation having a length-width ratio more than one 

has a greater southern section as compared to the N-S oriented one.  Therefore, the solar radiation 

gain in northern greenhouses with E-W orientation will increase with the increase of greenhouse 

length-width ratio. The result also indicates that the E-W oriented multiple-span greenhouse 

receives about 35-40% less solar energy per square meter of floor area during the winter months 

(October-March) as compared with the single-span greenhouse, which is due to the difference in 

the ratio of the cover to the floor area (Ac/Ag). The ratio in the single-span and the multi-span 

greenhouse are 2.0 and 1.4, respectively. However, the multi-span greenhouses might require less 

heating per square meter in cold regions because of less exterior cover area per meter square of 

floor area. 

 

Figure 5.5: Annual variation in average daily solar radiation in a six-span greenhouse with E-W 

and N-S orientation. 

Figure 5.6 shows the percentile increase or decrease of solar radiation in the E-W oriented 

greenhouse as compared to the N-S orientation for various length-width ratios of the greenhouse 

from 10 to 0.83. The results indicate the solar radiation gain in the multi-span greenhouse with E-

W orientation reduces with the decrease of the length-width ratio in spring/fall and winter season, 
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but it is the opposite in summer. In December, the E-W oriented greenhouse with a length-width 

ratio of 0.83 and 10.0 could have solar radiation gain of 27.9% and 51.8% more than the N-S 

oriented one. In another word, the solar energy gain in the N-S oriented greenhouse with a length-

width ratio of 10.0 is 52.2% more than that of 0.83; therefore length-width ratio cloud has a great 

impact on solar energy gain.  From March to September, the E-W oriented greenhouse receives 

less solar energy than N-S oriented one (June 17.7% less); however, for the E-W oriented 

greenhouse, the length-width ratio has much less impact on solar radiation gain during this period 

of mild and warm seasons. 

 Therefore, in high latitude regions, the length-width ratio of the multi-span greenhouses needs to 

be high for greater solar gain to reduce the heating needs in winter season as well as reduce solar 

gain in summer to reduce the cooling needs.  

 

Figure 5.6.  Percentile increase or decrease of solar radiation gain with the E-W orientation as 

compared to the N-S orientation for various length-width ratios of the multiple-span greenhouse. 

5.3.3 Angle of roof and width of span  

The availability of solar radiation and the heating requirement in the single-span gable greenhouse 

with the fixed span width of 10 m is simulated for various roof angles. Figure 5.7 shows the total 

heating requirement and the solar radiation gain per square meter of the greenhouse from 
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November-February. The result indicates that the solar radiation gains in the greenhouse increase 

linearly with the increase of roof angle because the cover surface area increases when the roof 

angle increases without changing the span width and the height of the sidewall. However, the 

increased roof angle also increases the heating demand in northern greenhouses during winter 

months because the heat loss per unit cover area is usually higher than the solar heat gain. 

Conversely, the low roof angle may affect the structural stability of cover because of the snow load 

in the winter season at northern latitudes, so it is recommended to keep the roof angle between 25-

30˚ to allow snow to slide down.  

 

Figure 5.7:  The heating requirement and the solar radiation gain with the various roof angle in 

the single-span greenhouse. 

To find the impact of span width on the heating requirement, the angle of the greenhouse roof was 

selected at 26˚, the wall height is kept same but the ridge height would be different as several span 

widths 8 m, 10 m, 12 m, 14 m, and 16 m were selected for this analysis. Figure 5.8 and Figure 5.9 

show the variation of solar heat gain per square meter of floor area in the single-span and the multi-

span greenhouses with various span widths. The result indicates that the solar heat gain per square 

meter of floor area decreases with the increase of span width because the ratio (Ac/Ag) decrease 

for the increase of span width. In winter season from November to February, the solar energy gain 

of single span greenhouse with 8 m span is 30-35% higher than that of a 16 m span greenhouse; 
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however, the short span greenhouse appears to be disadvantageous during summer as it gains much 

higher solar energy (about 23.5% from June to August). The impact of span width on solar heat 

gain in the multi-span greenhouse is very small as compared to that of the single-span greenhouse 

(within 5-8% in winter, and 3-4% in summer) because the ratio (Ac/A) is small in the multi-span 

greenhouse.  

 

Figure 5.8:  Average daily total solar heat gain per square meter of floor area in the selected single-

span greenhouse for different span widths. 
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Figure 5.9:  Average daily total solar heat gain per square meter of floor area in the selected multi-

span (6 spans) greenhouse for different span widths. 

Figure 5.10 shows the variation of the annual heating requirement in the single-span greenhouse 

and the multi-span greenhouse for different span widths. The result indicates the annual heating 

requirement per square meter of floor in the single-span greenhouse decreases 14.9% when the 

span width increase from 8 m to 16 m, because the Ac/Ag ratio decrease with the increase of span 

width such that the  Ac/Ag ratio is 13.4% lower in the 16 m span greenhouse as compared to the 

greenhouse with 8 m span. Conversely, the increase of span width from 8 m to 16 m in the multi-

span greenhouse causes a small reduction (3.5%) in annual heating requirement because the ratio 

(Ac/Ag) only slightly decrease (4.5%).  
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Figure 5.10: Annual heating requirement in the selected single-span and the multi-span 

greenhouse with various span widths. 

5.4 Conclusions 

The following conclusions can be drawn based on the theoretical analysis of solar radiation 

availability and the heating demand in northern greenhouses: 

1. The uneven span gable roof greenhouse receives the highest solar radiation, but the 

heat loss is also high because of the large exterior surface thereby the heat loss per 

unit of the cover area exceeds the solar heat gain.  

2. The gable roof greenhouses including even-span and uneven-span are found to be 

more energy efficient for the gutter connected multi-span greenhouses, and the 

quonset shape for the single span greenhouses. 

3. Greenhouses in northern latitude need to be oriented in east-west, and also the 

length-width ratio needs to be greater than one for minimization of heating needs 

with an east-west orientation.  

4. The angle of the roof could range between 25-30˚. The span width in single-span 

greenhouses needs to be wide as much as possible without compromising with the 

light transmittance to reduce heating needs. However, the impact of span width is 

negligible on the heating demand of multi-span greenhouses.  
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Based on the outcome of the study, it can be concluded that the east-west oriented multi-span gable 

roof greenhouse would be energy efficient for a large commercial greenhouse at high northern 

latitudes, whereas an east-west oriented  (wider span) quonset shape would be energy efficient for 

the single-span greenhouse.    
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CHAPTER 6 

HEATING DEMAND AND ECONOMIC FEASIBILITY ANALYSIS FOR YEAR-

ROUND VEGETABLE PRODUCTION IN CANADIAN PRAIRIES’ GREENHOUSES 

 (The manuscript presented in this chapter was submitted to the Journal of Information 

Processing in Agriculture, submission no: IPA_2018_15) 

Overview 

Based on the results presented in Chapter 5, a conceptually designed conventional greenhouse was 

selected for studying the economic feasibility of year-round greenhouse production in northern 

Saskatchewan. The results presented in this chapter fulfill the third objective of this thesis (i.e., to 

conduct economic feasibility of year-round production in a conventional greenhouse). As the lead 

author of this manuscript, I conducted the research, analyzed the results, prepared the manuscript, 

and incorporated co-authors comments. The co-authors (Professor Huiqing Guo, and Professor 

Karen Tanino) have contributed to this manuscript through providing technical guidance to 

conduct the research and constructive review to improve the quality of research. Another co-author 

(Lisa Taylor) contributed to this manuscript by studying some required information about 

greenhouse vegetable production in Canadian greenhouses.  
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Abstract 
Greenhouse vegetable production in Canadian Prairies is important for creating a sustainable 

regional food economy, especially in northern communities. This study included the estimation of 

heating demand for year-round production and evaluation of the economic feasibility of 

greenhouse vegetable production (tomato, cucumber, and pepper) in a conceptually designed 

greenhouse (0.6 ha) located in remote northern communities. The heating simulation was based 

on a greenhouse heating simulation model (GREENHEAT) developed by the authors recently. The 

simulation results showed that the annual heating requirement for the production of tomato, 

cucumber, and pepper are 1486, 1657, and 1754 MJ m-2,  respectively.   The economic analysis 

indicates the net return (NR) from the production of tomato, cucumber, and pepper, are $72.73/m2, 

$44.98/m2 and $47.4/m2, respectively, based on the market price $3.5/kg, $2.7/kg, and $8.0/kg, 

and yields of 55.0, 65.0, and 23.0 kg m-2. The net present value (NPV) for the tomato, cucumber, 

and pepper production are $ 22, $12, and $ 13 million, respectively, and the benefit-cost ratio 

(BCR) are 1.42, 1.23, and 1.22. The economic feasibility analysis indicates the year-round 

production of vegetables in a greenhouse at high northern latitudes would be economically 

profitable. 
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6.1 Introduction 

Canadian greenhouse vegetable industry has been experiencing continuous growth over the last 

twenty years. The export of Canadian greenhouse vegetables has increased by 43% from $579 

million in 2012 to a five-year high of $826 million in 2015 (Statistics Canada, 2015). However, 

about 96.0 % of the total greenhouse vegetable production area in Canada is from southern regions 

of Ontario, British Columbia, and Quebec. Greenhouses located in Canadian Prairies require a 

large amount of supplemental heat during the winter season, so the greenhouses are highly energy 

inefficient, and economically might not be profitable, especially in winter season from November-

March. Depending on the type of greenhouse structure, crops, and location of greenhouses, the 

heating cost in Canadian greenhouses accounts for 10-35% of the total production costs (Spencer, 

2009; Statistics Canada, 2008). The heating cost in a greenhouse varies depending on the type of 

vegetable grown in the greenhouses as different vegetables have different environment 

requirement including day and night set-point temperatures, supplemental lighting intensity, and 

CO2 concentration, as well as plant evapotranspiration can significantly affect the heating 

requirement. Besides heating cost, other operational costs include the cost of labor, material input, 

humidity control, and marketing, as well as some capital investment, these costs also vary 

depending on the type of vegetable grown in the greenhouses. So far, most of the existing 

“Canadian Pararies greenhouses” are in operation for eight months of the year, closing in the 

coldest months; therefore, the accurate economic prediction is important for the year-round 

production of vegetables in Canadian Prairie's greenhouses. However, very limited information is 

available about the economic feasibility of greenhouse vegetable production in Canadian Prairies.  

Using thermal models to predict heating requirement is an accurate, economical, and quick 

approach to acquire feasibility study results of greenhouses. Quite a few thermal models (Hill, 

2006; Jolliet et al., 1991; V.P. Sethi and Sharma, 2007; Singh et al., 2006; Singh and Tiwari, 2010) 

have been developed for estimation of greenhouse heating requirements. However, these existing 

thermal models have neglected the heating contribution from environmental control systems 

whereas the environmental control systems contribute a significant amount of heat in northern 

greenhouses, and require complicated modification for the greenhouse with different 

configuration. Ahamed et al. (2017b) developed a time-dependent greenhouse thermal model 

(GREENHEAT) for simulation of the hourly heating requirement in conventional greenhouses 

considering all heat sources and sinks including environmental control systems and the most up-
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to-date methods for heat transfer calculations. The model was validated using measured data from 

a commercial greenhouse and proved that it has a relatively good accuracy. It can be used as a 

scientific tool for predicting heating requirement of greenhouses. Hence, the objectives of this 

paper are to study the annual variation of heating demand for the production of major greenhouse 

vegetables (tomato, cucumber, and pepper), and assess the economic feasibility of year-round 

vegetable production in Canadian Prairie's greenhouses. A conceptually designed commercial 

greenhouse was used for this study, and the GREENHEAT model was used to simulate the heating 

requirement in the study greenhouse.    

6.2 Materials and method 

6.2.1 Description of the study greenhouse 

A six-spans gable roof greenhouse with an east-west orientation (6,000 m2) located in Saskatoon 

(52.13oN, 106.62oW), Saskatchewan, Canada was considered for this study. The physical 

dimensions and construction material of the greenhouse envelope were selected based on the study 

of the conceptual design of energy efficient conventional greenhouse for higher northern latitudes 

in Saskatchewan (Ahamed et al., 2018a). The greenhouse roof is covered with the air inflated 

double-layer polyethylene film, and the twin-wall polycarbonate (8 mm) enclosed the sidewall. 

The span width,  the sidewall height, and the ridge height were 10 m, 4 m, and 6.5 m, respectively. 

The energy curtain was considered to be in operation during the night to reduce the heat loss 

through the transparent cover. The supplemental lighting system was considered in operation when 

solar radiation was less than 250 W m-2. The CO2 generator was in operation for the entire sunlight 

period, and the air-circulation system was considered to be effective for all the times.  

6.2.2 Description of the heating model (GREENHEAT)  

The greenhouse heating model developed by Ahamed et al. (2017b) was a time-dependent lumped 

estimation model. The general heat balance of the model is given as follows (Ahamed et al., 

2017b):  

Q୦ = Sources − Sinks = ൫Qୱ+ Qୱ୪ + Qୡ୭మ
+  Q୫൯ − ൫Q୲ + Q୧ + Q୥ + Q୮ + Q୰ + Qୣ൯ (6.1)                    

where Qh is the heating requirement; Qs is the net heat gain from solar radiation; Qsl, Qେ୓మ
, and Qm  

is the heat gain from supplemental lighting, CO2 generators, and motors, respectively; Qt is the 

heat transfer by conduction and convection; Qi is the heat transfer caused by infiltration; Qg is the 
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heat transfer through greenhouse floor; Qp  is the heat transfer along  the perimeter; Qr  is the heat 

transfer by long-wave radiation; and Qe is the heat used in the process of plant evapotranspiration. 

The constant input parameters for simulation of heating requirements are listed in Table 6.1. The 

hourly weather data (temperature, relative humidity, wind speed, and cloud cover) in Saskatoon 

for 2015 from the National Solar Radiation Database (NSRDB) were used for estimation of hourly 

heating demand since the weather in remote Saskatchewan are not significantly different than 

Saskatoon. 

Table 6.1: Constant input values for simulation of heating requirements in the study greenhouse. 

Parameters Value 

Air exchange rate (ASABE, 2006) 1.0 

Perimeter heat loss factor (Worley, 2009) 0.85 (W m-1 K-1) 

Angle of roof 26˚ 

Thermal conductivity of soil (ASHRAE, 2013) 1.4 (W m-1 K-1) 

Thermal conductivity of cover (Professional Plastics, 2017) 0.33 (W m-1 K-1) 

Thermal conductivity of polycarbonate   0.2 (W m-1 K-1) 

Emissivity of IR barrier poly cover (Sanford, 2011) 0.2 

Emissivity of polycarbonate  0.65 

Solar transmissivity of poly cover (Sanford, 2011) 0.75 

Solar transmissivity of polycarbonate  0.78 

Transmissivity of poly cover to infrared radiation (Sanford, 2011) 0.29 

Transmissivity of polycarbonate to infrared radiation 0.03 

Indoor air velocity (Castilla, 2013) 0.2 (m s-1) 

Relative humidity  75(%) 

Installed lighting wattage  50 (W m-2) 

Number of recirculating fans 12 

Rated power of motors 375 (W) 

Net heating value of fuel (ASHRAE, 2013) 38 (MJ m-3 of gas) 

Other input parameters include indoor set-point temperature, CO2 supply rate, artificial 

photoperiod, characteristics length, and leaf area index which depend on the type of crop grown in 

greenhouses. The greenhouse vegetables including tomato, pepper, and cucumber, were selected 
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for the study since these three vegetables are mostly grown in Canadian greenhouses. For most 

vegetable crops, the 24 hours of optimum mean daytime temperature is ranged in 21-23˚C (Portree, 

1996), and few degrees lower for night temperature (Elings et al., 2005b). In this study, the indoor 

set-point temperature was selected based on the optimum daytime temperature, and the night 

temperature was selected as low as possible without hampering the plant growth to minimize heat 

loss. Another major limiting factor for northern greenhouses is the low natural light, so the use of 

supplemental lighting is essential for the year-round production of high-quality vegetables in high 

latitude regions. The operation hours of supplemental lighting are usually different depending on 

the type of crops, e.g. lettuce could be benefited from 24 hr of photoperiod, but photoperiod more 

than 17 hr would be harmful to some crops such as tomato (Dorais, 2003). The supply rate of CO2 

is also different depending on the type of plants. The supply of CO2 at the rate 4.5 g m-2 h-1 is 

recommended for most of the greenhouse vegetables to maintain the CO2 concentration around 

1000 ppm. However, the cucumber plant needs more CO2 concentration compared to other 

greenhouse vegetables such as tomatoes and peppers, but should not exceed 1500 ppm 

concentration level (Castilla, 2013). The characteristic dimension or characteristic length of leaves 

is an important parameter for estimating the heat exchange in the process of plant 

evapotranspiration. However, the determination of plant leaf dimension is complicated because of 

complex geometry in plant leaves. Raunkiaer (1934) classified plant leaves in different categories 

based on the size and shape of plant leaves. Based on that classification, pepper leaves were 

considered in the macrophyll class, tomatoes in mesophyll class, and cucumbers in megaphylls 

class, respectively. The required input parameters for simulation of heating requirement that 

depend on the types of plants are listed in Table 6.2.   
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Table 6.2:  Environmental control parameters’ input values in heating requirement simulation.   

  

6.2.3 Economic analysis 

6.2.3.1 Capital investment 

The major capital costs in greenhouses include the building construction cost and the machinery 

and equipment costs. The machinery and equipment costs include the cost for heating system, 

irrigation system, lighting system, CO2 supply system, air circulation/ventilation system, humidity 

control system, storage system, and other small machinery and tools. Greenhouse building 

construction cost in Canada ranged between $65-$85 per square meter depending on the types of 

greenhouses (Spencer, 2009). In this study, the capital investment for the greenhouse building was 

assumed to be $82 per square meter of floor area. However, the capital cost for the machinery and 

equipment are usually different depending on the types of crops grown in greenhouses. Alberta 

Agricultural and Rural Development Authority surveyed the required capital and variable costs in 

commercial greenhouses for the year of 2011 (Laate, 2013). Most of the capital costs were 

calculated based on the data from that study by considering 2% of average annual inflation of 

capital and variable costs (Chau et al., 2009a). Natural gas boilers operated heating system have 

been used in all of the surveyed greenhouses, and the capital cost for the heating system was 

considered to be same since the optimum temperature for tomato, cucumber, and pepper 

production range between 21-24˚C. The required capital cost for lighting and CO2 supply system 

was considered based on the literature, because most of the surveyed greenhouses had no 

supplemental lighting facilities for vegetable production, and no valid data were reported regarding 

the capital cost of supplemental lighting and CO2 supply system (Laate, 2013). The optimum 

Parameters Tomato Cucumber Pepper Ref. 

Daytime temperature (˚C)  22 24 22 (Tesi, 2001) 

Night time temperature (˚C) 16 20 18 (Tesi, 2001) 

Leaf area index  3.0 3.5 5.0 
(Castilla, 2013; Xiao et 

al., 2004) 

CO2 supply rate (g m-2 h-1) 4.5 6.0 4.5 (Castilla, 2013) 

Characteristics length of leaf (m) 0.027 0.22  0.108 (Raunkiaer, 1934) 

Photoperiod (hr) 14 18 16 (Dorais, 2003) 
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lighting in greenhouses depends on several factors such as daily light integral, crop species, lamp 

cost, electrical cost, and heating requirement. The capital cost for supplemental lighting in 

Canadian greenhouses is around $50 m-2 when high-pressure sodium lamp (HPS) installed with 

120 W m-2 wattage capacity (Dorais, 2003). However, the most common practice is to use 50 W 

m-2 by using HPS to provide useful PAR level of 10 W/m2 (Urban, 1997). Thus, the capital cost 

for supplemental lighting was considered based on the installed wattage of the lighting system 

which is  $30/m2. The capital cost for CO2 generators was considered to be the same for all three 

selected vegetables because most greenhouse vegetables need to supply CO2 at the rate of 4.5 g  

m-2 h-1 to maintain about 1000-ppm concentration in greenhouses (Van Berkel and Verveer, 1984). 

The capital cost for natural gas operated CO2 supply system in Canadian greenhouses is around 

$3.21/m2 when supply rate is not greater than 5 g m-2 h-1 (Blom et al., 2002). The required capital 

costs in Canadian Prairies greenhouses for the production of tomato, cucumber, and pepper are 

listed in Table 6.3.  

The annual depreciation of capital investments was calculated using the straight-line method of 

depreciation calculation based on 10% salvage value of the capital investment and reasonable 

economic life. Twenty years of economic life were considered for building, storage facilities, and 

HVAC system, and ten years for other machinery and equipment. 
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Table 6.3: Capital investment for growing tomato, cucumber, and pepper in Canadian Prairies’ 

greenhouses. 

Capital Investment ($CAD/m2) Tomato Cucumber Pepper 

Building  82.00 82.00 82.00 

Land 2.88 2.88 2.88 

Machinery and equipment    

 Warehouses / Storage facilities  3.00 1.44 5.78 

 Houses 4.82 6.20 2.98 

 Lighting 30.00 30.00 30.00 

 Heating system 42.78 42.78 42.78 

 Ventilation and RH control equipment 1.56 2.20 0.69 

 Benches 1.20 0.00 0.00 

 Irrigation system 2.00 1.10 1.54 

 Water Pumps / Sand Filters 0.48 0.25 0.78 

 CO2 supply system 3.21 3.21 3.21 

 Storage / Mixing Tanks 1.75 0.30 4.55 

 Sterilizers, Fertilizer Injectors, and Sprayers 1.74 1.30 1.01 

 Carts and Dolleys 5.61 0.89 5.83 

 Small Tools / Hardware 1.21 1.40 2.31 

 Bobcats/forklifts 1.40 1.05 1.88 

 Trucks and Roto-Tillers 4.98 3.58 5.81 

Total capital investment ($CAD/m2) 190.62 180.58 194.03 

6.2.3.2 Annual operating cost  

The major variable costs in greenhouse vegetable production include labor cost, heating and 

lighting cost, CO2 supply cost, marketing cost, fertilizer and chemical costs, repair and 

maintenance cost, material inputs, and other cash costs such as insurance.  The heating cost was 

calculated based on the predicted annual heating requirements using the GREENHEAT model, the 

retail rate ($0.2886/m3) of natural gas in Saskatchewan, and 90% efficiency of the heating system. 

Also, the operation costs for supplemental lighting and CO2 supply were calculated based on the 

estimated annual operating hours of the lighting system and CO2 supply system. The retail rate of 
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electricity ($0.114/kWh) in Saskatchewan, Canada, was used to calculate the operational cost of 

supplemental lighting in the greenhouse. Other variable costs including the cost of material inputs, 

labor costs, marketing costs, fertilizer and chemical costs, repair and maintenance costs, other cash 

costs of greenhouse production were collected from the survey study conducted for greenhouses 

in Alberta (Laate, 2013).   

6.2.3.3 Gross return 

The gross return from vegetable production was calculated based on the average annual production 

rate of tomato, cucumber, and pepper in commercial greenhouses, and the average market value 

of vegetables. Based on one cropping cycle, the annual yield of beefsteak tomato and bell peppers 

are around 55 kg m-2 and 23 kg m-2, respectively (Alberta Agriculture and Rural Development, 

2003). The cucumber yield rate is around 65 kg m-2 if three cropping cycles are practiced in 

commercial greenhouses (Badgery and James, 2010). The market prices of the selected vegetables 

could be very different depending on the location. Based on the sales data of the local Co-op 

grocery store at La Ronge, Saskatchewan, the local market prices of the vegetables were 

considered $3.5/kg for beefsteak tomato, 2.7/kg for large English cucumber, and $8.0/kg of bell 

pepper. 

6.2.3.4 Benefit-cost analysis (BCA) 

Different economic parameters such as the net return (NR), benefit-cost ratio (BCR), and net 

present value (NPV) are very important for the benefit-cost analysis of greenhouse vegetable 

production. The net return (NR) is calculated from the following general relation:  

NR =  Total production value of vegetable ቀ
$

୫మ
ቁ − Total production costs ቀ

$

୫మ
ቁ (6.2) 

The net present value (NPV) and the benefit-cost ratio (BCR) are different decision-making criteria 

in benefit-cost analysis of any investment. However, sometimes conflicts may arise between NPV 

and BCR because greatest NPV and BCR do not always occur simultaneously in the investment 

(Zheng et al., 2009). Therefore, both NPV and BCR are important for decision-making about an 

investment and these two parameters can be calculated using following two relations (Zheng et al., 

2009):     

NPV = ෍
୆౪ି஼೟

(ଵା୰)౪

୬

୲ୀ଴
          (6.3) 
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BCR = ෍
୆౪

(ଵା୰)౪

୬

୲ୀ଴
/ ෍

େ౪

(ଵା୰)౪

୬

୲ୀ଴
        (6.4) 

where  Bt and Ct are the gross benefit and cost in the tth year; r is the discount rate (the required 

minimum annual rate of return of new investment); n is the expected project life, and t is the project 

timescale in years. 

BCR and NPV were calculated based on the ten-year economic life of the greenhouse, and 10% 

discount rate. As the economic life of some capital investments is more than ten years, so the 

market value of these capital investments after ten years was calculated by subtracting the total ten 

years depreciated value from the initial capital investment.  

Another new criteria is recommended by Gitman (1977) which is called the risk exposure-ratio 

(RE-Ratio), it measures the degree of exposure risk present in a given capital investment 

(Grafiadellis et al., 2000). The RE-Ratio can be used to explain the possible reduction in annual 

cash inflows that a project can allows for keeping the project acceptable (Grafiadellis, 1987). The 

RE-Ratio and the factor of present value (Fr,t) can be expressed as follows (Gitman, 1977): 

RE − Ratio = (BCR − 1) ×
ଵ

୊౨,౪
        (6.5) 

F୰,୲ = ෍
ଵ

(ଵା୰)౪

୬

୲ୀ଴
          (6.5a) 

6.2.3.5 Sensitivity Analysis 

Sensitivity analysis gives an additional insight of the value of the investment, and an indicator to 

evaluate the effect of major variables on the derived outcomes (Grafiadellis et al., 2000). The 

enterprise value and cash flows in greenhouse production depend on several variables. The major 

variables including fuel price (natural gas), interest/discount rate, and product price were 

considered for analysis of the sensitivity of these two variables on the investment for greenhouse 

production in Canadian Prairies’ region.  

6.3 Results and discussion 

6.3.1 Greenhouse heating requirement 

The hourly heating requirement in the study greenhouse was simulated for year-round production 

of tomato, cucumber, and pepper. Figure 6.1 shows the monthly total heating requirements per 
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square meter of the greenhouse floor area. In general, the heating requirement for production of 

tomato is relatively lower compared to the production of cucumber and pepper production, the 

annual heating demand in the study greenhouse for year-round production of tomato, cucumber, 

and pepper are 1486, 1657, and 1754 MJ m-2,  respectively; i.e. cucumber and pepper heating 

demand is higher than tomato by 11.5% and 18.1%, respectively. This is mainly because the 

optimum temperature for cucumber and pepper plants is relatively low compared to the tomato. 

Also, the small value of leaf area index of tomato plants can be responsible for less 

evapotranspiration in the tomato greenhouse thereby the amount of heat used for 

evapotranspiration could be minimized. The optimum temperature for cucumber plants is 

relatively higher than the pepper plants but the heating requirement for the winter season (Nov-

Feb) is slightly less than the heating requirement for pepper production since the pepper plants 

usually have a larger value of leaf area index. Therefore, greater heat could be used in the process 

of evapotranspiration. However, the heating requirement for pepper production is relatively higher 

in summer and spring season (March-October) since the evapotranspiration increase with the 

increase of solar radiation. The heating requirement for the coldest three months (December-

February) are 58.4%, 57.0%, and 55.4% of the annual total heating requirements, for tomato, 

cucumber, and pepper, respectively; while the three summer months (June-August) heating are 

only about 2-5% of the annual requirement.   
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Figure 6.1: Monthly heating requirement of the greenhouse for the production of tomato, 

cucumber, and pepper. 

6.3.2 Economic analysis 

The major capital costs in Canadian greenhouses are building construction, heating system, 

supplemental lighting system, which are accounting about 80% of the total capital investment. The 

required total capital investment for tomato, cucumber, and pepper production are $190.62/m2, 

$180.58/m2, and $194.03/m2, respectively (Table 6.3). The calculated annual depreciation of 

capital investment and variable costs for the vegetable are given in Table 6.4. The annual 

depreciation of capital investments are similar for the production of tomato, cucumber, and pepper, 

because the major capital costs such as the cost of building construction, supplemental lighting, 

heating system, and CO2 supply system, are not much different. The major operational costs 

include labor, heating and lighting, material input, and marketing. The material input cost include 

the cost of growing media, seed/cuttings, tray, boxes, and other packaging materials. In the study 

conducted by Laate (2013), the transportation cost including the expenses for trucks or other 

vehicles owned by the greenhouse owner were apportioned according to their use in greenhouse 

operation, personal and leisure driving. Other transportation cost such as freight charges paid to 

commercial or private carriers for hauling greenhouse produce or supplies were added to the 

marketing cost.  
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The analysis of greenhouse operation cost indicates the cost for labor is the largest operational cost 

for greenhouse production, which accounts for 31.6% of the total operational costs for tomato 

production, whereas 26.9% and 28.6%, respectively, for the production of cucumber and pepper. 

The marketing cost is the second largest operation cost (16.0%) for the production of tomato 

followed by the cost of heating (14.9%), material inputs cost (9.6%), and cost for lighting (7.9%). 

The material input costs for the production of cucumber and pepper are 14.6% and 14.0%, 

respectively, and the heating costs are 15.2% and 15.4%, respectively. The cucumber plants 

usually require longer photoperiod for optimum production, so the lighting cost in cucumber 

greenhouse is significantly greater than that of tomato and pepper.  

The calculated annual depreciation of capital investment and variable costs for the production of 

tomato, cucumber, and peppers are shown in Table 6.4. The annual depreciation of capital 

investments is similar to the production of tomato, cucumber, and pepper, because the major 

capital investments sources such as the cost of building construction, supplemental lighting, 

heating system, and CO2 supply system, are not significantly different. The major operational costs 

include the cost of labor, costs for heating and lighting, material input costs, and marketing cost. 

The material input costs include the cost of growing media, seed/cuttings, tray, boxes, and other 

packaging materials. In the study conducted by  Laate (2013), the transportation costs including 

the expenses for trucks or other vehicles owned by the greenhouse owner were apportioned 

according to their use in greenhouse operation, personal and leisure driving. Other transportation 

costs such as freight charges paid to commercial or private carriers for hauling greenhouse produce 

or supplies were added to the marketing costs.  
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Table 6.4: Annual capital costs, variable costs, and net return (NR) for the production of tomato, 

cucumber, and pepper. 

Parameters Tomato Cucumber Pepper 

Capital cost (CAD$/m2.year)    

 Building and equipment depreciation  9.46 8.59 9.81 

 Paid capital interest  1.63 2.90 2.93 

 Property and business tax 0.40 0.81 0.18 

Variable cost (CAD$/m2.year)    

 Material costs 10.40 17.26 17.77 

 Labor costs 34.18 31.70 35.41 

 Marketing costs 17.37 14.65 17.37 

 Fertilizer and chemicals 7.27 5.90 7.27 

 Repair and maintenance 1.57 1.84 1.57 

 Other cash costs 4.91 4.41 5.73 

 Heating cost 16.12 17.85 19.03 

 Lighting cost 8.54 16.03 12.06 

 CO2  supply cost 2.96 3.92 2.96 

 Others electrical costs 4.95 4.50 4.50 

Total production costs ($CAD/m2)  119.77 130.36 136.60 

Total production value ($CAD/m2) 192.50 175.00 184.00 

Net return ($CAD/m2) 72.73 44.98 47.40 

As shown in Table 6.4, pepper production is the highest investment crop ($136.6/m2) followed by 

cucumber ($130.36/m2) and tomato ($119.77/m2).  The net return (NR) from tomato production is 

significantly higher ($72.73/m2) as compared to the production of cucumber ($44.98/m2) and 

pepper ($47.40/m2). The NR value indicates that the production of tomato would give a greater 

return compared to cucumber and pepper because the major variable costs such as the cost of 

lighting and material input costs are higher for the production of cucumber and pepper.  

Based on the market price and 10% of discount rate, the net present values (NPV) of greenhouse 

production for tomato, cucumber, and pepper are $ 21 million, $12 million, and $ 13 million, 

respectively, and the benefit-cost ratio (BCR) are 1.42, 1.23, and 1.22, respectively. The risk 
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exposure ratios (RE-ratio) are 6.84%, 3.68%, 3.58%, respectively, for the production of tomato, 

cucumber, and pepper. The RE-ratio indicates that the annual cash inflow from the production of 

tomato, cucumber, and pepper,  can be reduced by 6.84%, 3.68%, 3.58%, respectively, and thereby 

the investments would still maintain the positive NPV.  

6.3.2.1 Sensitivity analysis 

Natural gas is commonly used to generate heat and CO2 for commercial greenhouse production in 

Canada (Chau et al., 2009a). In 2010, about 79% of greenhouse growers used natural gas for 

heating greenhouses in Alberta (Laate, 2013). According to the SaskEnergy, the natural gas prices 

in Saskatchewan is fluctuated up to 50% over the last 15 years. The sensitivity of natural gas prices 

on NPV for the production of tomato, cucumber, and pepper, is shown in Figure 6.2.  A 50% 

decrease in the natural gas price increases the NPV by 16.3%, 33.0%, and 32.2% respectively. 

Conversely, a 50% increase in the fuel price reduces the NPV by 16.1%, 32.7%, and 31.9%. The 

price of natural gas is fluctuated by a large margin and the heating cost usually the second largest 

operational cost of greenhouse production at northern latitudes. Hence, the sensitivity analysis 

indicates that the economic return from greenhouse production in Canadian Prairies can 

significantly affect by the fluctuation of heating fuel price.         

 

Figure 6.2: The effect of a change in heating fuel price on NPV for the production of tomato, 

cucumber, and pepper in the study greenhouse. 
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Figure 6.3 shows the sensitivity of discount rate on the NPV for the vegetable production. The 

sensitivity of discount rate and product price on the NPV are analyzed by changing the possible 

range of values. The discount rate decrease by 50% will result in the increase of NPV by 42.6%, 

54.1%, and 55.1%, respectively, for the production of tomato, cucumber, and pepper, whereas 

50% increase in discount rate will result in the reduction of NPV by 29.7%, 37.5%, and 38.2%, 

respectively. The discount rate reflects the macroeconomic conditions; producers cannot influence 

it; however, a larger change in discount rate could affect the outcome significantly.   

 

Figure 6.3: The effect of a change in discount rate on NPV for the production of tomato, cucumber, 

and pepper. 

The sensitivity of product price on the NPV is shown in Figure 6.4. The product price has a perfect 

linear relation with NPV for the selected crops. For instance, a 10% decrease in tomato price causes 

the reduction of NPV by 32.2%, and 10% increase also increases the NPV by 32.8%. However, a 

10% increase in the unit price of cucumber and pepper could cause a significantly larger change 

on NPV by 52.6% and 53.7%. The outcomes from sensitivity analysis indicate the product price 

is the crucial factor that can significantly affect the size of NPV.  
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Figure 6.4: The effect of a change in product price on NPV for the production of tomato, 

cucumber, and pepper. 

As the prices of vegetables in Canadian Prairies; especially northern Saskatchewan are extremely 

high and sometimes the vegetable price can double during extreme winter months (November-

February). Therefore, the year-round production of vegetable in the greenhouses at higher northern 

latitudes can become economically feasible for greenhouse production as the unit price greatly 

affect the economic feasibility of greenhouse vegetable production.  Consumers also would benefit 

from the quality of the local produce greenhouse products would exceed imported produce while 

providing local employment.   

6.4 Conclusions 

Based on the result of this study, the following conclusion can be drawn about the production of 

tomato, cucumber, and pepper in Saskatchewan greenhouses. 

1. Supplemental lighting and the reduced night-time indoor temperature can significantly 

reduce the heating demand in Prairies greenhouses. 

2. Heating is the second largest operational cost, accounting more than 15% of the total 

operational cost required in a Canadian Prairies greenhouses.  

3. The production of tomato in the greenhouse could be more profitable than the production 

of cucumber and pepper. However, the RE-Ratio indicates that the investment in 
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greenhouse production for all three selected vegetables is stable from an economic point 

of view. 

4. The sensitivity analysis indicates that the economic outcome from greenhouse production 

is very sensitive to the product price, and the product price at remote northern latitudes are 

relatively higher. So, the locally produce vegetable at remote northern latitudes would be 

economically profitable.    
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CHAPTER 7 

DEVELOPMENT OF A THERMAL MODEL FOR SIMULATION OF 

SUPPLEMENTAL HEATING REQUIREMENTS IN CHINESE-STYLE SOLAR 

GREENHOUSES 

 (The manuscript presented in this chapter was submitted to the Journal of Computer and 

Electronics in Agriculture, submission no: COMPAG_2018_106) 

Overview 

Building materials and indoor environmental control practice in a Chinese-style solar greenhouse 

(CSG) are significantly different than the conventional greenhouses. Therefore, the developed 

heating simulation model for the conventional greenhouses (Chapter 3) could not be used for 

simulation of the heating requirement in the CSGs. This chapter presents a heating simulation 

model CSGHEAT developed for CSG, which fulfills the third objective of this thesis (i.e., to 

develop a heating simulation model for the Chinese-style solar greenhouses). The developed model 

(CSGHEAT) was validated with the three days of experimental data from a commercial CSG in 

Winnipeg, Canada. CSGHEAT model was used to fulfill the fifth and sixth objectives (Chapter 8 

and 9). As the lead author of this manuscript, I conducted the research, analyzed the results, 

prepared the manuscript, and incorporated co-authors comments. The co-authors (Professor 

Huiqing Guo, and Professor Karen Tanino) have contributed to this manuscript through providing 

technical guidance to conduct the research and constructive review to improve the quality of 

research.      
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Abstract 

The simulation model CSGHEAT has been developed to estimate the hourly heating requirements 

in a Chinese-style solar greenhouse. The heating model was developed based on the heat balance 

of greenhouse air. With the set indoor temperatures, the surface temperatures of the floor and north 

wall were estimated by solving ordinary differential heat balance equations. The model is relatively 

easy to use because the model does not need to input measured data such as solar radiation like 

other models, and most of the heat sources and sinks in the Chinese-style solar greenhouse are 

included in the model. The model was validated with experimental data, and the predicted result 

was found to be in good agreement with the measured data. The mean difference between the 

measured and the estimated soil temperature is about 1.4˚C, and 1.8˚C for the north wall. The 

average percent error and relative root means square error (rRMSE) value for hourly heating 

prediction are 8.7%, and 11.5%, respectively. Therefore, the CSGHEAT model is considered to be 

sufficiently accurate and a reliable tool for researchers and others in the greenhouse industry to 

assist in designing and analyzing supplemental heating requirements in Chinese-style solar 

greenhouses. 
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Nomenclature 
Ac, Af ,Ap area of cover, floor, and plant, m2 

An, At area of the non-transparent and transparent surface, m2 

Cp specific heat capacity, J kg-1 K-1 

Em motor efficiency, % 

Fc, Fsk cover view factor and sky view factor, dimensionless  

Fp perimeter heat loss factor, W m-1 K-1 

Fhc, Fa heat conversion factor and lighting allowance factor, dimensionless 

Fum, Ful motor load factor and motor use factor, dimensionless 

Hcs depth of underground soil for constant temperature, m 

ha air thermal conductance, W m-2 K-1 

hi, ho convection coefficient for indoor and outdoor surface, W m-2 K-1 

Ib, Id direct beam radiation and diffuse radiation on horizontal surface, W m-2 

ka, kc, kcs thermal conductivity of air, cover, and soil, W m-1 K-1 

K thermal conductivity of ith section in composite wall, W m-1 K-1 

Lc, Lf characteristics length of convective surfaces and plant leaves, m 

Lv latent heat of water vaporization, J kg-1 

MFR carbon dioxide supply rate, kg m-2
 
hr-1 

MT moisture transfer rate, kg s-1 

N day of the year, n=1, for 1st January 

Nc number of layers in cover, dimensionless 

Nr number of re-circulation fans, dimensionless 

NHV net heating value of fuel, MJ kg-1 

P perimeter of greenhouse, m 

Pm motor power rating, W 

PR production rate of CO
2 from fuel combustion, kg/kg fuel 

Q heat transfer rate, W  

Ra, Rs aerodynamic resistance and stomatal resistance, s m-1 

S total solar radiation entering the greenhouse, W 

Tc, Ti, To cover temperature, indoor temperature, and outdoor temperature, K 

Tcs, Tsk underground constant soil temperature and sky temperature, K 
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TR turbidity factor, dimensionless 

Ut, Un heat transfer coefficient for transparent and non-transparent surface, W m-1 K-1 

V greenhouse volume, m3 

vi, vo indoor airspeed and outdoor airspeed, m s-1 

W installed power of lighting, W m-2 

wps saturated humidity ratio of air at plant temperature, kg kg-1 

wi humidity ratio of air at indoor temperature, kg kg-1 

Greek letters 

ɑ solar absorptivity, dimensionless  

Β angle of inclined surface with horizontal, degrees 

Γ surface azimuth angle, degrees 

ɛc, ɛi emissivity of cover and indoor component, dimensionless 

Θ angle between two radiative surfaces, degrees 

θz zenith angle of the sun, degrees 

θi angle of incidence of surfaces, degrees 

Ρ volumetric density, kg m-3 

ρr reflectivity of outdoor ground, dimensionless 

τ solar transmissivity of cover, dimensionless 

𝜏௟ transmissivity of cover to long-wave radiation, dimensionless 

Subscripts  

A Air 

nw north wall 

F Floor 

 

 

 

 

 



133 
 

7.1 Introduction 

A high amount of supplemental heat is needed during the long winter months for greenhouses 

located in northern latitudes. The heating cost in northern greenhouses such as Canada can be from 

75 to 85% of the total operating cost, excluding costs associated with labor (Rorabaugh et al., 

2002). Hence, reducing heating cost by improving greenhouse covering materials and optimizing 

greenhouse design has been an important research topic for cold regions. Chinese-style solar 

greenhouse (CSG), a mono-slope greenhouse, has great potential to serve as a model of an energy-

efficient horticultural facility in northern latitudes because this type of greenhouse significantly 

reduce supplemental heating demands as compared to conventional greenhouses. It uses non-

transparent north wall, north roof, ground, etc. to store excessive heat during the daytime and 

release the heat at night when heating is needed. CSGs have been used to produce warm season 

vegetables at latitudes of 40˚N in China with little or no supplemental heating during the winter 

season (Zhang et al., 2008). Beshada et al. (2006) studied the thermal performance of a CSG in 

Manitoba (49.9˚N) and reported the greenhouse could maintain an indoor temperature above 10˚C 

about 19% of the time when the outdoor temperature fluctuated between -29.2 and 4.5˚C; however, 

supplemental heating was required at up to 17.0 W m-2 for 19 h per day to maintain an indoor 

temperature of 10˚C in February. As the high heating cost is one of the crucial factors for 

determination of CSG feasibility in the cold region, accurate prediction on heating requirement is 

needed before the greenhouse growers can make decision on establishing such greenhouses. 

Hence, simulation of supplemental heating requirements in CSGs is essential for predicting heating 

needs in greenhouses at higher northern latitudes; furthermore, the heating simulation model can 

also be used to analyze heat gain and loss through each component of the CGS so the design of 

the CGSs can be improved to minimize heating loads.   

A few thermal models (Du et al., 2012; Guo et al., 1994; Ma et al., 2010; Meng et al., 2009; Taki 

et al., 2016; Tong et al., 2009, 2008; Yu et al., 2016; Zhou et al., 2017; Zou et al., 2017) have been 

developed for simulation of microclimates in the CSGs. Most of these dynamic models (Ma et al., 

2010; Meng et al., 2009; Taki et al., 2016; Zhou et al., 2017) have been developed for prediction 

of temperature variations of different interactive components in CSGs including indoor air, cover, 

plant, soil, north wall, and sidewalls. These types of dynamic models have a high degree of 

complexity with numerous parameters that have to be determined due to the difference of 

greenhouse locations, shape, orientation, cover materials, crop, and weather conditions (Chen et 
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al., 2015; Sethi et al., 2013), therefore, they are not readily available for use by other researchers 

and greenhouse industries. Computation fluid dynamics (CFD) is a powerful method to analyze 

the spatial and temporal distribution of temperature for various interactive components in 

greenhouses. Tong et al. (2009) have used CFD for simulation of time and space dependent 

temperature distributions in a CSG. However, CFD model is difficult for simulation of a large 

greenhouse due to long computation time; it could be very complicated for heating simulation over 

a long period such as a month or a year (Taki et al., 2016). It also needs specialty CFD skill, each 

model is for a specific greenhouse and cannot be easily applied to other greenhouses. Also, variety 

‘black box’ methods have been used very recently for simulation of greenhouse thermal 

environment such as the artificial neural network (ANN), least squares support vector machine 

(LSSVM), convex bidirectional extreme learning machine (CB-ELM) (Yu et al., 2016; Zou et al., 

2017). Yu et al. (2016) have developed the temperature prediction model based on the least squares 

support vector machine (LSSVM) model. Zou et al. (2017) present a novel temperature and 

humidity prediction model based on convex bidirectional extreme learning machine (CB-ELM). 

The black-box modeling methods need large amounts of data, otherwise, the model's reliability 

could be unacceptable (Chen et al., 2015). Several studies (Ahamed et al., 2017b; Du et al., 2012; 

Jolliet et al., 1991) indicate that the lumped estimation models based on the energy balance of 

greenhouse as a whole could be a simple and reliable tool for time-dependent simulation of the 

heating requirement in greenhouses. Du et al. (2012) developed a simulation heat transfer model 

to estimate heating demands in a CSG, however, this model did not consider heat addition from 

the north wall. This model also neglected the heat contributions from environmental control 

systems, including lighting and CO2 generators, which are very important components for 

maintaining the optimum environment for plants in greenhouses at high northern latitudes. The 

previous studies (Du et al., 2012; Tong et al., 2009)  did not consider the variation of solar radiation 

fraction available on the north wall and soil surface in the presence of plants in greenhouses. Also, 

most of the previous models (Du et al., 2012; Ma et al., 2010; Taki et al., 2016) either neglected 

the heat transfer from the canopy transpiration (Du et al., 2012) or used coefficients for estimation 

of evapotranspiration (Ma et al., 2010; Taki et al., 2016), but the canopy transpiration varies 

significantly depending on solar radiation available in greenhouses. Furthermore, most of the 

studies were conducted in China, and these models are not applicable for Canadian greenhouse 

practice because the greenhouses in China are basically passive greenhouses without automatic 
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control of temperature by heating and ventilation systems. This environment management method 

cannot be accepted by different regions especially western modern commercial greenhouses which 

require indoor temperature well controlled by environment control systems. Therefore, the existing 

lumped estimation models would result in high uncertainty if used in CSGs located at high northern 

latitudes. Besides, new materials for cover, insulation, heat storage, etc. have been developed 

continuously, and methods for estimating heat and moisture transfer in the greenhouses have been 

modified continuously, therefore, the thermal model should reflect these new technologies.  

Conversely, the numerical models of buildings could not be used to accurately predict the energy 

requirement of greenhouses because the microclimate in greenhouses is affected by crop canopy 

and bare soil surface significantly. It also could be very complicated to integrate the environmental 

control systems of the greenhouse in building energy simulations models (Chen et al., 2015). 

Hence, the objective of the study was to develop a novel heating simulation model named 

“CSGHEAT” for estimation of time-dependent supplemental heat demand in Chinese-style solar 

greenhouses. It intended to include up-to-date greenhouse materials and energy saving 

technologies and heat source and sink models.   

7.2 Principle of the model 

Figure 7.1 shows the heat balance of a typical Chinese solar greenhouse during heating mode. The 

CSGHEAT model was designed to simulate heating requirements; therefore, the cooling load was 

not considered because the greenhouse’s temperature is usually controlled by opening the vent 

near the ridge. Heat and mass transfer in the greenhouse is a complicated process, so thermal 

modeling to simulate greenhouse heating requirements can be complex. For this reason, the 

following assumptions are made for the development of the heating simulation model for the 

Chinese-style solar greenhouses:  

1. The greenhouse is east-west oriented for receiving maximum benefit from solar radiation 

in heating season.   

2. The solar radiation available on the floor and north wall is uniformly distributed and the 

shading influence of plants and greenhouse roof elements is neglected because the accurate 

distribution of solar radiation becomes complicated when developing the heating 

simulation model.   
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3. Heat storage in the sidewall (east and west) and north roof material is considered to be 

negligible since the sidewall consists of insulating and siding materials.   

4. The fluctuation of indoor relative humidity is considered negligible since optimum 

humidity control is required for greenhouses at high northern latitudes.  

5. Heat flow through the composite wall and greenhouse floor is one-dimensional. 

Based on these assumptions, the heat balance of Chinese-style solar greenhouse can be given as 

follows: 

Q୦ = Sources − Sinks = (Qୱ + Qୱି୧ + Q୬୵ି୧ + Qୣୡ) − (Q୪୭ୱୱ + Q୧ +  Qୣ)   (7.1) 

where Qh is the supplemental heat demand; Qs is the net solar heat gain; Qs-i is the heat transfer 

between the ground and the indoor greenhouse components; Qnw-i is the  heat transfer between the 

north wall and the indoor greenhouse components; Qec is the heat addition from environmental 

control systems including supplement lighting (Qsl), carbon dioxide supply system (Qେ୓ଶ), and the 

air circulation system (Qm); Qloss is the transmission heat loss through the greenhouse envelope 

including conduction and convection loss (Qt), perimeter loss (Qp), and long-wave radiation loss 

(Qr);  Qi is the heat transfer caused by air infiltration; and  Qe is the heat transfer in the process of 

plant evapotranspiration.    

 

Figure 7.1: The heat balance in a Chinese solar greenhouse on a typical winter day. 
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7.2.1 Net solar heating gain 

Solar radiation passing through the cover of the CSG can be grouped into a number of categories. 

A fraction of solar radiation is converted to sensible heat, which heats the interior greenhouse 

components (plant and air), while a fraction of solar radiation is absorbed by the north wall and 

floor. A very small fraction of solar radiation is also reflected back to the outside, and another 

small fraction (2-3%) is used in photosynthesis (Albright, 1990). The amount of solar radiation 

that directly contributes to increasing the greenhouse interior component temperature can be given 

by:  

Qୱ = S − ɑ୤S୤ − ɑ୬୵S୬୵         (7.2) 

Solar radiation through the inclined south roof is modeled according to the following equation (Liu 

and Jordan, 1963): 

I୧  =  Iୠ
ୡ୭ୱ ஘౟ 

ୡ୭ୱ ஘౰
 + [ I ୢ ቀ

ଵାୡ୭ୱ ஒ

ଶ
ቁ +  (Iୠ + Iୢ)ρ୰  ቀ

ଵି ୡ୭ୱ ஒ

ଶ
ቁ]     (7.3) 

The shape of the south roof is an important factor for precise estimation of solar radiation in a 

Chinese-style solar greenhouse. Different shapes of the south roof have been used such as a straight 

south roof, two straight sections with one bend, and curved cross-section. The curved surface is 

the most popular shape recently for the south roof in Chinese solar greenhouses (Tong et al., 2013). 

With a curved roof, estimating the solar radiation is relatively complicated because the slope of 

the roof changes over the span length. The angle of the first section of the south roof near the 

ground needs to maintain an angle between 60˚ and 90˚, and the angle of the second section usually 

ranges between 20˚ to 30˚ depending on the location of the greenhouse (Zhang and Li, 1966).  

Therefore, the south roof of the greenhouse is separated into two sections to more accurately 

estimate the available solar radiation through the south roof. The total solar insolation available in 

the greenhouse through a transparent south roof can be estimated as follows: 

S = ∑ τ୧A୧I୧୧            (7.4) 

The hourly global solar radiation under actual sky conditions is modeled by using the solar 

radiation sub-model described by Ahamed et al. (2017b). In the solar radiation sub-model, the 

solar radiation is estimated using the  Kasten-Czeplak (Kasten and Czeplak, 1980) model based 

on the cloud cover (Oktas) information, and the clear sky solar radiation is modeled using the 

turbidity factor model described in Tiwari (Tiwari, 2003).   



138 
 

7.2.2 Heat transfer between floor and indoor air 

A fraction of incoming solar radiation in the greenhouse is absorbed by the floor, so the floor 

surface temperature does increase. Therefore, the heat would be exchanged between the 

greenhouse floor and the indoor air which can be calculated as follows:  

Q୤ି୧ =  h୤ି୧ A୤ (T୤ − T୧)         (7.5) 

For heated horizontal soil surfaces facing upward, the convective heat transfer coefficient can be 

calculated as follows (Tiwari, 2003):  

h୤ି ୧ =  ቀ
୩౗

୐౜
ቁ 0.15(10ଵ଴) ଴.ଷଷ          (7.6) 

The heat balance of the greenhouse floor can be written as follows:  

ρ୤C୮୤V୤
ୢ୘౜

ୢ୲
  =  ⍺୤S୤ − h୤ି୧A୤ (T୤ − T୧) −

୏౜

ୌౙ౩
A୤ (T୤ − Tୡୱ)     (7.7) 

The above equation can be written in the following form: 

ୢ୘౜

ୢ୲
 +  ⍺T୤ = B(t)          (7.8) 

where, 

⍺ =
h୤ି୧ A୤ +

K୤

Hୡୱ
 A୤

ρ୤C୮୤V୤
 

B(t) =
⍺୤S୤ + h୤ି୧ A୤T୧ +

K୤

Hୡୱ
 A୤Tୡୱ

ρ୤C୮୤V୤
 

The analytical solution of the equation (8) can be written as follows: 

T୤ =
୆(୲)

⍺
(1 − eି⍺୲)  +  T୭eି⍺୲        (7.9) 

where To is the greenhouse floor temperature at t=0. 

Estimating the solar radiation on the floor under the canopy is complicated because of several 

factors (e.g., the width of the greenhouse, solar altitude angle, type of crop, and growth stage of 

the plant), and each factor affects the solar radiation available on the floor. Several studies (Chen 

et al., 2014; Pieters and Deltour, 1997; Zhang et al., 2014) have used the Beer-Lambert law to 

estimate solar radiation under the plant canopy. The solar radiation available under the plant 

canopy can be calculated as follows using the canopy light extinction coefficient (Zhang et al., 

2014): 

  S୤ = F୤ S × eି୏.୐୅୍          (7.10) 
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7.2.3 Heat transfer between north wall and indoor air 

Heat transfer between the north wall and greenhouse air can be calculated as follows: 

Q୬୵ି =  h୵ି୧ A୬୵ (T୬୵ − T୧)        (7.11) 

For vertical hot surfaces under turbulent flow conditions, the indoor convective heat transfer 

coefficient can be calculated as follows (Tiwari, 2003):  

h୵ି୧ =  ቀ
୩౗

୐౭
ቁ 0.1 (10ଵଵ) ଴.ଷଷ          (7.12) 

The north wall of Chinese-style solar greenhouses is usually made up of a layer of different 

materials such as insulation material, heat storage material, and sheathing material. The indoor 

sheathing material is usually very heat conductive and very thin, so the temperature difference 

between the heat storage material and the indoor sheathing material is assumed to be negligible. 

Therefore, the heat balance of the north wall can be written as follows:  

ρ୬୵C୮୬୵V୬୵
ୢ୘౤౭

ୢ୲
  =  ⍺୬୵S୬୵ − h୵ି୧A୬୵ (T୬୵ − T୧) − U୬୵A୬୵ (T୬୵ − T୭)   (7.13) 

As with soil surface temperature, the change of the north wall surface temperature can be written 

in the following form: 

ୢ୘౤౭

ୢ୲
 +  ⍺T୬୵ = B(t)          (7.14) 

where,  

⍺ =
h୵ି୧ A୬୵ + U୬୵ A୬୵

ρ୬୵C୮୬୵V୬୵
 

B(t) =
⍺୬୵S୬୵ + h୵ି୧ A୬୵T୧ + U୬୵ A୬୵T୭

ρ୬୵C୮୬୵V୬୵
 

The analytical solution of the equation (16) can be written as follows: 

T୬୵ =
୆(୲)

⍺
(1 − eି⍺୲)  +  T୬୭eି⍺୲        (7.15) 

where Tno is the north wall surface temperature at t=0. 

The interception of solar radiation on the north wall depends on several factors such as the 

projected length of the north roof, height of the plant being grown, the width of plant rows, and 

plant density. The solar radiation available on the north wall can be estimated as follows:   

  S୬୵ = (1 − ɑ୮)F୬୵S         (7.16) 

where ɑp is a fraction of solar radiation intercepted by the plant for the north wall.  
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7.2.4 Solar fraction on the north wall and floor 

The solar fraction on the north wall and floor can be defined as the ratio of solar radiation falling 

on the surface to the total solar radiation transmitted through the south roof of the greenhouse 

(Gupta and Tiwari, 2005a). A few theoretical studies (Gupta et al., 2012; Gupta and Tiwari, 2005a; 

Tiwari et al., 2003) have been carried out for calculating the solar fraction on the north wall of 

conventional greenhouses, but most of these studies have used the commercial Auto-CAD model 

without considering plants in greenhouses. In this model, the physical dimension and projection 

of sun rays are considered for estimating the solar fraction on the north wall and greenhouse floor. 

According to the physical dimension and projection of sun rays (Figure 2), the solar fraction for 

the north wall (Fnw) and greenhouse floor (Ff) can be expressed as follows: 

F୬୵ =
୔

୔ା୛
=

ୌ

ୌା୛ ୲ୟ୬ ⍺
         (7.17) 

F୤ =
୛

୔ା୛
=

୛ ୲ୟ୬ ⍺

ୌା୛ ୲ୟ୬ ⍺
          (7.18) 

 

Figure 7.2: View of the projected length of sun rays entering a typical Chinese-style solar 

greenhouse (Beshada et al., 2006). 
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7.2.5 Heat gain from environmental control systems 

A significant amount heat can be added to the greenhouse from environmental control systems, 

which may include supplemental lighting, air circulation fans, and carbon dioxide enrichment 

facilities; These can be estimated as follows (ASHRAE, 2013): 

Qୱ୪  =  WF୦ୡFୟ A୤           (7.19) 

Qୡ୭మ
= 0.278 × NHV × MFR ×

୅౜

୔ୖ
        (7.20) 

 Q୫ = N୰
୔ౣ

୉ౣ
F୳୫F୪୫           (7.21) 

7.2.6 Heat loss through the greenhouse envelope 

The transmission heat loss through the greenhouse envelope includes conduction and convection 

heat transfer, perimeter heat loss, and transfer of long-wave radiation loss. The heat loss through 

the greenhouse envelope can be given as follows (ASHRAE, 2013; Hill, 2006):  

Q୪୭ୱୱ  =  Q୲ + Q୮ + Q୰         (7.22) 

Q୲ =  (AୡUୡ + ∑ A୵U୵) × (T୧ − T୭)       (7.23) 

Q୮ = F୮ P (T୧ − T୭)          (7.24) 

Q୰  =  ൣσ ɛୡ Aୡ Fୡ ൫T୧
ସ – Tୡ

ସ൯ + σ 𝜀௜ τ୪A୤ Fୱ ൫T୧
ସ – Tୱ୩

ସ൯ ൧     (7.25) 

The combined conduction and convection heat transfer coefficient for the transparent south roof 

and the non-transparent composite wall (north roof, north wall, and sidewall) can be given as 

(Tiwari, 2003):  

Uୡ = [
1

hi
+ ∑

୐౟

୏౟
୧ + ∑

ଵ

େ౟
୧ +

1

ho
]
-1

         (7.26) 

U୵ = [
1

hi
+ ∑

୐౟

୏౟
୧ +

1

ho
]
-1

         (7.27)  

The required values for estimating heat loss through the greenhouse envelope have been estimated 

according to the article by Ahamed et al. (2017b).  

7.2.7 Heat loss caused by infiltration  

The infiltration rate in Chinese-style solar greenhouses is comparatively low compared to the fully 

closed, gutter-connected greenhouses because CSGs have small operational windows and 

minimum joints in the envelope. A large number of studies have been conducted to estimate 

infiltration rates in conventional greenhouses, but very limited information is available for 

infiltration rates in Chinese-style solar greenhouses. Tong et al. (2008) developed a model using 
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the thermal balance method to estimate air exchange rates in CSGs, but the model is complicated 

to use as a sub-model. Jolliet et al. (1991) modified the building air leakage model to estimate 

greenhouse air leakage by placing the greenhouses in three groups (very airtight, airtight, and 

leaky). Therefore, the air exchange rate in CSGs can be estimated using the modified building 

model with minimum complexity (Jolliet et al., 1991):        

Q୧ =  ρୟQC୮ୟ (T୧ − T୭)         (7.28) 

Q = A୐ඥC୵
ଶ v୵

ଶ + f୲
ଶ(T୧ − T୭)        (7.29) 

A୐ = Aୡ𝑓௖           (7.30) 

where Q is the air exchange rate in greenhouse (m3 s-1); AL is the effective air leakage area (m2); 

Cw
 is the average wind pressure coefficient (0.22) and ƒt

 is the temperature difference factor (0.16 

(m s-1 K-1/2); vw
 is the wind velocity (m s-1); ƒc is the characterization of  tightness of the cover to 

air infiltration (2.5×l0-4 for very tight frames covered with rubber tape, 5×10-4 for tight covers 

without apparent holes, and (10-20)×10-4 for leaky covers with cracks or holes); with a thermal 

screen/blanket ƒc is reduced by 25%. 

7.2.8 Heat loss caused by evapotranspiration 

Evapotranspiration in greenhouses includes the evaporation from the floor/growth media and 

transpiration from the plants, both of which are responsible for a significant amount heat loss from 

greenhouses. The estimation of evapotranspiration in greenhouses is very complicated, and most 

of the existing models (Stanghellini model, Takaura model, and Penman-Monteith ET model) are 

usually developed to estimate evapotranspiration from farmland. Most previous studies (Boulard 

and Wang, 2000; Fatnassi et al., 2004) that estimate greenhouse evapotranspiration consider only 

evapotranspiration from the plant because of the complexity of modeling soil evaporation. 

Therefore, the heat used by plants in the process of plant evapotranspiration and the rate of 

evapotranspiration in greenhouses can be estimated as follows (Nobel, 1974): 

Qୣ =  M୘L୴           (7.31) 

M୘ =  A୮ρ[
୵౦౩ି୵౟

(ୖ౗ାୖ౩)
]          (7.32) 

The required values for moisture transfer rate have been estimated according to the method 

described by  Ahamed et al. (2017b).   
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7.3 Model development and validation 

7.3.1 CSGHEAT model development 

The programming language Matlab was used to develop the “CSGHEAT” computer program for 

simulating the hourly heating requirements in Chinese-style solar greenhouses. The computer 

program can simulate the hourly heating requirements based on the input information of indoor 

microclimates (temperature, relative humidity, air velocity, lighting capacity) and plants, outdoor 

weather data (temperature, relative humidity, wind speed, cloud cover), and the physical and 

thermal properties of the greenhouse constructional material. The hourly supplemental heating 

requirement is the main output from the model, and a negative value of Qh would indicate a need 

for heating and positive value indicate cooling need in the greenhouse. The model does not 

consider the cooling needs because greenhouse temperature is usually controlled with natural 

ventilation system. The model also simulates other parameters including solar radiation, floor 

temperature, and north wall temperature for prediction of heating requirement.  

7.3.2 Description of the study greenhouse 

The developed model was validated with experimental data collected from a commercial Chinese 

solar greenhouse located in Elie, Manitoba (49.9˚N, 97.75˚W). The model greenhouse (7 m wide 

and 30 m long) is east-west oriented, and tomato plants were transplanted for growing in the 

greenhouse, while they were still small. The single layer polyethylene cover (6 mils) encloses the 

curved south side of the greenhouse. For a curved surface, the angle near the ground is usually 

greater than the angle of the roof up to a certain height because a small angle near the ground is 

not suitable for effective use of floor space.  The angle near the ground up to 1.0 m height was 

considered to be 60˚, 26˚ for the rest of the section of the south roof, and about 34˚ for the non-

transparent north roof. The height of the greenhouse at the ridge was 3.5 m, and the height of the 

north wall was 2.1 m. The north wall (a wood stud wall) consisted of a complex layer of different 

materials; a 2-mm thick inside and outside sheathing of galvanized sheet steel, 152 mm of sand, 

13 mm of plywood, and 152 mm of fiberglass insulation; a plastic vapor barrier film was placed 

between the sand and fiberglass insulation. The side-wall and the north roof of the greenhouse 

were also supported by wood studs, plywood (13 mm) on the outside, and insulated from the inside 

with 152 mm of fiberglass insulation which was cover by the plastic film from inside as vapor 
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barrier. A cotton thermal blanket (20 mm) was used to minimize nighttime heat loss through the 

transparent south roof.  

7.3.3 Measurement method and simulation of study greenhouse 

Three days (March 28-30, 2017) of experimental data were collected for validation of the model. 

The hourly weather data of the study location including air temperature, relative humidity, wind 

speed, and global solar radiation, were recorded every 10 minutes using a portable weather station 

positioned near the greenhouse. The data from the weather station were obtained by a data logger 

(CR1000, Campbell Scientific Inc., USA) and compiled with CR1000 programming software. To 

simulate the solar radiation, three days of cloud cover data from the national solar radiation 

database (NSRDB) were used. The natural ventilation system was used to control the daytime high 

indoor temperature through an opening vent near the ridge, and the night-time temperature was 

controlled by providing heat from a small, electric space heater. The thermostat of the heater was 

set to turn on when the temperature went below 12˚C, and would turn off when the temperature 

went above 18˚C. The indoor greenhouse climate was not well controlled, and the heating load 

was simulated based on the input of measured room temperature and relative humidity. The air 

temperature and relative humidity were measured with a temperature and relative humidity probe 

(CS500, Campbell Scientific Inc., USA), and inside solar radiation was monitored with a 

pyrometer (LI-200, LI-COR Inc. Lincoln, Nebraska, USA) placed horizontally at 0.5 m above the 

ground. The greenhouse floor and north wall temperature were measured using wire-type 

thermocouples. The supplemental heating energy consumption of the heater was measured using 

an AC sensor.  All indoor data were recorded at 10 minute intervals using another data logger 

(CR10X, Campbell Scientific Inc., USA) and then compiled with CR10X programming software. 

The average hourly data was calculated based on the measured data recorded at 10 minute 

intervals.     

The thermal environment of the greenhouse was simulated based on the input of the required 

measured data, which include the outdoor temperature, relative humidity, wind speed, and cloud 

cover, and the indoor temperature and relative humidity. The other input values included physical 

and thermal properties of the greenhouse materials, which are listed in Table 7.1. The heat 

contribution from environmental control systems was not considered for heating calculation 
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because the study greenhouse had no environmental control systems (lighting, CO2 supply, air 

circulation) except a small, electric space heater.  

Table 7.1: Constant parameters used for simulation of heating requirement.  

Parameters Value 

South roof  

 Emissivity of IR barrier poly cover (Hill, 2006) 0.2 

 Transmissivity to solar radiation (Sanford, 2011) 0.9 

 Transmissivity to long-wave radiation (Sanford, 2011) 0.29 

 Thermal conductivity of cover  0.33 (W m-1 K-1) 

 Thermal conductivity of night curtain (Beshada et al., 2006) 0.015 (W m-1 K-1) 

North roof and side wall  

 Thermal conductivity of plywood  (ASHRAE, 2013) 0.12 (W m-1 K-1) 

 Thermal conductivity of fiberglass insulation  (ASHRAE, 2013) 0.04 (W m-1 K-1) 

North wall   

 Thermal conductivity of steel sheet  16 (W m-1 K-1) 

 Absorptivity for solar radiation 0.9 

 Specific heat capacity of sand (Beshada et al., 2006) 920 (J kg-1 K-1) 

 Mass density of sand (Beshada et al., 2006) 2240 (kg m-3) 

Soil characteristics   

 Thermal conductivity (ASHRAE, 2013) 1.4 (W m-1 K-1) 

 Absorptivity for solar radiation (Du et al., 2012) 0.92 

 Mass density (Du et al., 2012) 1975 (kg m-3) 

 Specific heat capacity  1480 (J kg-1 K-1)  

 Soil temperature at greater depth (Florides and Kalogirou, 2004) 15 (˚C) 

 Depth for constant soil temperature (Florides and Kalogirou, 2004) 3.0 (m) 

Air characteristics (Tiwari, 2003)  

 Specific heat of air  1006 (J kg-1 K-1) 

 Air density  1.2 (kg m-3) 

 Thermal conductivity of air 0.026 (W m-1 K-1) 

Plant characteristics  
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7.3.4 Model performance evaluation  

The model performance was evaluated in quantitative terms using the percent error, root mean 

square error (RMSE), and relative root means square error (rRMSE):  

Percent error =
(୷ౣି୷౛)

୷ౣ
× 100         (7.33) 

RMSE =  ට
∑(୷ౣି୷౛)మ

୬
          (7.34) 

rRMSE =
ଵ଴଴

ý
( ට

∑(୷ౣି୷౛)మ

୬
)         (7.35) 

where ym is the measured data; ye is the estimated data; n is the number of data points; and ý  is the 

mean value of measured data. Previous studies (Baptista, 2007; Vanthoor et al., 2011) indicate an 

rRMSE value of around 10% is reasonably acceptable for transient simulation from greenhouse 

climate models. Therefore, the rRMSE value around 10% or less is considered reasonably 

sufficient and accurate.  

7.4 Results and discussion 

7.4.1 Greenhouse indoor climate 

Figure 7.3 shows the hourly variation of solar radiation in the greenhouse and the temperature 

profile of different components in the greenhouse. The greenhouse inside temperature varied from 

15.5 to 35.3°C, while the outdoor temperature fluctuated between -1.6 and 11.4°C. Solar radiation 

contributed significantly to greenhouse indoor temperature fluctuations, and the average indoor 

 Leaf area index  1.0 

 Characteristics length of leaf 0.01 (m) 

 Light extinction coefficient  0.64 

 Plant factor for solar radiation interception on the north wall 0.85 

 Emissivity of plant and indoor components  0.9 

Other parameters  

 Indoor air velocity  0.1 (m s-1) 

 Latent heat of water vaporization (ASHRAE, 2013) 2450 (kJ kg-1) 

 Outside albedo for diffuse radiation 0.5 

 Perimeter heats loss factor (Worley, 2009) 0.85 (W m-1 K-1) 
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daytime temperature was 16.9˚C higher than the outside daytime temperature. The nighttime 

greenhouse temperature was mostly stable because an electric heater was turned on for heating the 

greenhouse. The indoor temperature, wall temperature, and soil temperature during the daytime 

mostly followed a similar trend of solar radiation in the greenhouse because the electric heater was 

turned off during the daytime. Sometimes the inside temperature fluctuated by a large amount, 

mostly at noon, which could be caused by the operation of the natural ventilation system in the 

greenhouse.   

 

Figure 7.3: Hourly temperature variation of the soil surface, north wall surface, indoor and outdoor 

air, and solar radiation in the greenhouse on March 28-30, 2017.  

7.4.2 Evaluation of the solar radiation sub-model  

Figure 7.4 shows the comparison of the predicted and measured global solar radiation on the 

horizontal surface. The estimated global solar radiation is found to be relatively consistent with 

the measured data. The coefficient of determination (R2), RMSE, and rRMSE value are 0.71, 68.34 

W m-2, and 30.54%, respectively, which indicates the estimation of solar radiation from the sub-

model is reasonably accurate. The small difference over a couple of hours could be due to the 

difference in cloud cover data because the cloud data used in the simulation was for the City of 

Winnipeg, which is about 46 km away from the study area.   
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Figure 7.4: Comparison of measured and predicted global solar radiation on the horizontal surface 

on March 28-30, 2017.  

7.4.3 Comparison of simulated and measured temperature of ground and north wall 

Figure 7.5 shows the comparison between the simulated and the measured values of the soil 

temperature. The mean value and standard deviation of the difference between the measured and 

the predicted temperature were 1.4˚C and 1.2˚C, respectively, and the maximum difference was 

about 4.5˚C, which usually occurred around noon when the greenhouse temperature was adjusted 

through the operation of the natural ventilation system. The simulation was performed without 

considering the greenhouse air-exchange through the natural ventilation system. The predicted soil 

temperature on the third night was relatively high because a soil heating cable in the growing bed 

was operating; however, the heat gain from the cable heating system was not included in the 

simulation as the experimental setup could not record this additional heat source for the 

greenhouse. The statistical indicators including the R2, RMSE, and rRMSE value are 0.68, 1.8˚C, 

and 9.35% respectively.  
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Figure 7.5: Comparison between the predicted and the measured ground temperature in the 

greenhouse on March 28-30, 2017. 

Figure 7.6 shows the comparison between the simulated and the measured temperature of the north 

wall. The mean value and standard deviation of the difference between measured and predicted 

temperatures were found to be about 1.8˚C and 1.4˚C, respectively. Similarly, the maximum 

difference was about 6.5˚C around noon because of opening the vent for controlling high indoor 

temperatures. Also, the predicted temperature of the first two nights was higher than the measured 

value, but the higher measured temperature on the third night may have been caused by the 

additional heat gain in the greenhouse from the soil cable heating system. Based on the statistical 

analysis of results, the R2, RMSE, and rRMSE value are 0.77, 2.2˚C, and 11.9%, respectively.      
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Figure 7.6: Comparison between the predicted and the measured temperature of the north wall on 

March 28-30, 2017.  

The RMSE value for estimation of ground and north wall temperatures is relatively low compared 

to other studies from greenhouse climate models (Singh et al., 2006; Vanthoor et al., 2011). Also, 

the rRMSE value is about 10%, so it can be concluded the estimation of the surface temperature 

of the ground and north wall are reasonably accurate.   

7.4.4 Validation for heating simulation 

The greenhouse mostly required cooling during the daytime, and the daytime greenhouse 

temperature was controlled through a natural ventilation system by opening a vent near the ridge. 

The heating/cooling requirement for the daytime was not considered for validation of the model 

because no supplemental heating was provided during the daytime. Figure 7.7 shows the 

comparison of simulated hourly heating requirement with the measured heating requirement in the 

study greenhouse. The figure indicates that the simulated hourly heating requirement is not 

significantly different than the actual heating requirement in the greenhouse except during the 

night of March 30th.  The difference on the third night could be due to the additional heat gain from 

the soil cable heating system located in the growing bed, which was not in operation in the first 
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two nights. The percent error in prediction varies from 0.2% to 24.9%, and the average error is 

around 8.7% when the data for the last night is excluded from the analysis. The rRMSE value is 

11.5%, so it could be considered that the simulated heating requirement from the developed model 

would be consistent with the actual supplemental heating requirement in a Chinese-style solar 

greenhouse. It needs to point out that the experimental greenhouse ventilation was not welled 

controlled, contributing to the discrepancies of the model predictions and measured data. In the 

future, the model could be further validated when better field data are available.      

 

Figure 7.7: Comparison of measured and predicted heating requirement in the study greenhouse 

on March 28-30, 2017. 

7.5 Conclusions 

A time-dependent heating simulation model, “CSGHEAT,” was developed for predicting the 

supplemental heating demand for Chinese-style solar greenhouses. It included up-to-date 

greenhouse materials and energy saving technologies and heat source and sink models. The 

simulation results show that the model can predict the hourly heating requirement of a CSG in 

good agreement with the experimental data. The model allows simulation of each heat source and 

sink in the greenhouse for short or long term, therefore, it can be used as a tool for assisting with 

the energy-efficient design of CSGs in any locations, and also predict additional heating 
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requirement for year-round production at high northern latitudes. The results also indicate that the 

Chinese-style greenhouses indoor temperature can be significantly higher than the outside 

temperature when solar radiation is available. Hence, Chinese-style solar greenhouse could be an 

alternative to conventional greenhouses for reducing heating cost in northern regions. The future 

work will focus on using the model to optimize the design parameters of the greenhouse.       
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CHAPTER 8 

SENSITIVITY ANALYSIS OF CSGHEAT MODEL FOR ESTIMATION OF 

HEATING ENERGY CONSUMPTION IN A CHINESE-STYLE SOLAR GREENHOUSE 

  (The manuscript presented in this chapter was submitted to the Journal of Computer and 

Electronics in Agriculture, submission no: COMPAG_2018_316) 

Overview 

A sensitivity analysis could be a useful tool for evaluation of model performance to the different 

values of input parameters and default parameters used for modeling. This chapter includes the 

sensitivity of the heating requirement predicted by the CSGHEAT model (Chapter 7). The results 

presented in this chapter fulfill the fifth objective of this thesis (i.e., to analyze the sensitivity of 

the CSGHEAT model on heating requirement). In this manuscript, we used the one-parameter-at-

a-time (OAT) approach of sensitivity analysis. As the lead author of this manuscript, I conducted 

the research and prepared the manuscript for submission to the journal. The co-authors (Professor 

Huiqing Guo, and Professor Karen Tanino) have contributed to this manuscript through providing 

technical guidance to conduct the research and constructive review to improve the quality of 

research.      
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Abstract 

The sensitivity of a heating simulation model (CSGHEAT) was performed for estimation of the 

time-dependent heating requirement in a Chinese-style solar greenhouse in cold region. Results 

showed that the constant value of air thermal conductance was the main default parameter of the 

model that significantly affected the model output. The results also indicated the heating 

requirement is highly sensitive to the greenhouse design parameters including the thermal 

properties of cover, thermal blanket, and greenhouse perimeter. The thermal blanket is the most 

important design parameter for the Chinese-style solar greenhouse, and the heating requirement 

could be increased between 32-41% during the coldest three months (January, February, and 

December) for changing the thermal conductivity from 0.01 to 0.05 Wm-1 K-1. Increasing daytime 

indoor set-point temperature from 19 to 23˚C would increase the heating demand between 13-

20%, whereas the heating demand could be increased by 9-18% for increasing the night-time 

temperature from 16 to 20˚C. Results also indicate the heating demand could be reduced up to 

20% during the coldest period for increasing the indoor relative humidity from 70 to 90%. The 

results from this study could be useful for providing advice on energy saving management of 

greenhouse operations and for designing the energy-efficient Chinese-style solar greenhouses in 

cold regions.  
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8.1 Introduction 

Chinese-style Solar Greenhouses (CSGs) have become popular to grow vegetables without any 

auxiliary heating or with minimum heating depending on the locations of greenhouses. CSGs are 

mostly used in China and are also being adopted by many countries including Canada. The 

adaptation of the CSGs beyond China might require some modification in design and 

environmental control systems. In northern China, mostly no auxiliary heating is supplied to the 

greenhouse, but supplemental heating might be required for extending the growing period in 

relatively high northern latitudes. The heating requirement in a typical CSG located in Saskatoon 

(52.13˚N) could be about 50% less as compared to a typical gutter connected commercial 

greenhouse (Ahamed et al., 2016). However, a substantial amount of supplemental heating is still 

required for year-round production at high northern latitudes.    

A few thermal models (Guo et al., 1994; Ma et al., 2010; Meng et al., 2009) have been developed 

to simulate the microclimate of the CSGs. However, almost all of the models are developed for 

simulation of temperature variation in different components in the CSGs. Ahamed et al. (2018b) 

developed and validated a time-dependent heating simulation model (CSGHEAT) for estimation 

of the heating requirement in the CSGs. Greenhouse thermal models are usually developed based 

on some assumptions and approximation of different heat transfer parameters. It is very important 

to analyze the effect of these parameters on the model output with a different value before the 

developed model is incorporated into a practical application. Also, the variation of some user-

defined input variables about greenhouse design and indoor environmental control systems could 

greatly affect the model output. As some variables have a higher impact than others on heating 

needs, the identification of highly sensitive variables is important from both a technical and 

economic perspective and should be handled with utmost care (Lam and Hui, 1996). Sensitivity 

analysis would identify the most influential parameters on the greenhouse heating demand.  

The objective of this study was to conduct a sensitivity analysis of a recently developed heating 

simulation model (CSGHEAT) for estimation of the heating energy requirement in a CSG at high 

northern latitudes. The results could be helpful to understand the degrees of sensitivity of the model 

to various influential parameters, and also to better understand energy-efficient design principles 

and operating strategies of environmental control systems used in cold regions.  
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8.2 Materials and methods 

8.2.1 Heating simulation model (CSGHEAT) 

The CSGHEAT model was developed for simulation of time-dependent heating requirements in 

the CSGs, and the cooling load was not considered because the greenhouse temperature is usually 

controlled by opening the vent near the ridge. The general heat balance equation of the developed 

model is given by (Ahamed et al., 2018b):  

Q୦ = Sources − Sinks = (Qୱ + Qୱି୧ + Q୬୵ି୧ + Qୣୡ) − (Q୪୭ୱୱ + Q୧ +  Qୣ)   (8.1) 

where Qh is the supplemental heat demand; Qs is the net solar heat gain; Qs-i is the heat transfer 

between the ground and the indoor greenhouse components; Qnw-i is the  heat transfer between the 

north wall and the indoor greenhouse components; Qec is the heat addition from environmental 

control systems including supplement lighting (Qsl), carbon dioxide supply system (Qେ୓ଶ), and air 

circulation system (Qm); Qloss is the transmission heat loss through the greenhouse envelope 

including conduction and convection loss (Qt), perimeter loss (Qp), and long-wave radiation loss 

(Qr);  Qi is the heat transfer caused by air infiltration; Qr is the heat transfer caused by exchanging 

of long-wave radiation through the transparent cover; and  Qe is the heat transfer in the process of 

plant evapotranspiration.    

CSGHEAT simulates the hourly heating requirement based on the input information of indoor 

microclimates (temperature, relative humidity, air velocity, lighting capacity), plants, weather data 

(temperature, relative humidity, wind speed, cloud cover), and the physical and thermal properties 

of greenhouse building materials. The hourly supplemental heating requirement (Qh) is the main 

output from the model.  

8.2.2 Sensitivity analysis 

Sensitivity analysis is a general concept used for energy simulations. There are many ways of 

conducting sensitivity analysis, which can be categorized into two basic approaches as local 

sensitivity method and global sensitivity method (Tian, 2013). Local sensitivity analysis method 

is based on a one-parameter-at-a-time (OAT) approach. The evaluation of output variability is 

based on the change of one parameter between certain ranges while the other parameters are 

maintained at a constant level. This method is a very effective way of comparing the relative 

importance of various parameters on the model output (Ioannou and Itard, 2015). Conversely, the 

global sensitivity analysis method is more reliable than the local sensitivity analysis but more 
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complicated and with high computational demand, because all inputs are varied simultaneously 

over the entire input space, allowing observation of the effect on the output of all individual inputs 

and also interactions between inputs. The local sensitivity analysis has been extensively used for 

building energy analysis because this method is straightforward to explain the effect on individual 

input parameters on the output (Tian, 2013). The sensitivity coefficient is often used for sensitivity 

study in the field of mathematics and control engineering (Lam and Hui, 1996). Among different 

forms of sensitivity coefficients for building energy simulation studies, the following form is the 

most suitable for multiple sets of data (Lam and Hui, 1996):   

Sensitivity coeffcient =  
∆୓୔/୓୔ౘ౗౩౛

∆୍୔/୍୔ౘ౗౩౛
        (8.2) 

where OPbase and IPbase are the base output and input; ∆OP and ∆IP are the variations of output and 

input, respectively. A high sensitivity coefficient  would indicate that the model output is highly 

impacted by the input value; therefore the value must be chosen very carefully (Yang et al., 2016). 

The maximum heating in Canadian Prairies greenhouses is required during the coldest three 

months (December, January, and February), so the sensitivity analysis was conducted for these 

three months.  

The important parameters of CSGHEAT model were categorized into two main groups including 

the default parameters for model development and input parameters for heating simulation. The 

input parameters for heating simulation were further separated into three groups such as the 

greenhouse design parameters, crops related parameters, and indoor environmental control 

parameters. The sensitivities of these parameters on the model output (heating requirement) were 

studied with the OAT approach of sensitivity analysis. 

8.2.3 Base case model and weather data 

The choice of base case model is very important for the local sensitivity analysis methods because 

all subsequent calculations and analyses are based on the comparison with it. The base case of 

simulation was selected based on optimum or standard practices for greenhouse operation in cold 

regions. So, it is expected that the base case can represent a typical CSG at high northern latitudes.  

A double layer air-inflated polyethylene covered CSG (60 m × 10 m area) with east-west 

orientation located in Saskatoon, Canada, was considered for this study. The angle of curved shape 

south roof near the ground was set at 60˚ (up to 1 m height), 26˚ for the rest of the section of the 
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south roof, and 34˚ for the non-transparent north roof. The height of the greenhouse at the ridge 

was 4.5 m, and the height of the north wall was 3.0 m.  The north wall (wood stud wall) consisted 

of multi-layer of different materials: a 2 mm thick inside and outside sheathing of galvanized sheet 

steel, 152 mm of sand, 19 mm of plywood, and 65 mm of extruded polystyrene insulation. The 

side-wall and the north roof of the greenhouse were made by plywood (19 mm) and insulated by 

extruded polystyrene insulation (65 mm). The plastic film vapor barrier resisted diffusion of 

moisture through the walls and north roof. A cotton made thermal blanket (20 mm) was considered 

to reduce the night time heat loss through the transparent south roof. For the study, tomato plants 

were considered to be grown in the greenhouse, so the daytime indoor set-point temperature was 

set at 21˚C and 18˚C for the night. The relative humidity was assumed to be constant at 80% during 

the entire simulation period. Depending on the types of crops, the supplemental lighting is usually 

turned off when solar radiation reaches below 240-300 W m-2 (Dorais, 2003), and about 14 h of 

photoperiod was recommended for optimum growth of tomato in greenhouses (Demers et al., 

1998). Therefore, it was considered that the supplemental lighting to be supplied when solar 

radiation in the greenhouse was reduced to 250 W m-2, and the artificial lighting was turned off 

between 10 PM-7 AM to maintain the 14 h of optimum photoperiod.  The CO2 generator was 

considered to be operating only for the daytime, the thermal blanket was used at night, and the air 

recirculation system was in operation all the time for 24 h a day. A brief description of the 

greenhouse base case is given in Table 8.1.  
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Table 8.1: Base case value for constant parameters used for simulation of the heating requirement.  

Parameters Value 

South roof  

 Emissivity of IR barrier poly cover (Hill, 2006) 0.2 

 Transmissivity to solar radiation (Sanford, 2011) 0.78 

 Transmissivity to long-wave radiation (Sanford, 2011) 0.2 

 Thermal conductivity of cover (6 mils) 0.33 (W m-1 K-1) 

 Thermal conductivity of night curtain (20 mm) (Beshada et al., 2006) 0.03 (W m-1 K-1) 

North roof and side wall (ASHRAE, 2013)  

 Thermal conductivity of plywood (19 mm)  0.12 (W m-1 K-1) 

 Thermal conductivity of polystyrene insulation (65 mm) 0.033 (W m-1 K-1) 

North wall (Beshada et al., 2006)  

 Thermal conductivity of steel sheet (2 mm) 16 (W m-1 K-1) 

 Absorptivity for solar radiation 0.9 

 Heat capacity of sand  920 (J kg-1 K-1) 

 Mass density of sand  2240 (kg m-3) 

Soil characteristics   

 Thermal conductivity (ASHRAE, 2013) 1.4 (W m-1 K-1) 

 Absorptivity for solar radiation  0.8 

 Soil temperature at greater depth (Hanova and Dowlatabadi, 2007) 10 (˚C) 

 Mass density (Du et al., 2012) 1975 (kg m-3) 

 Specific heat capacity  1480 (J kg-1 K-1)  

 Depth for constant soil temperature (Florides and Kalogirou, 2004) 3.0 (m) 

Air characteristics (Tiwari, 2003)  

 Specific heat of air  1006 (J kg-1 K-1) 

 Air density  1.2 (kg m-3) 

 Thermal conductivity of air  0.026 (W m-1 K-1) 

Plant characteristics (Rincón et al., 2012)  

 Leaf area index  2.0 

 Characteristics length of leaf 0.027 (m) 
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Apart from the building descriptions, the hourly weather data of Saskatoon (52.13˚N, 106.62˚W) 

including temperature, relative humidity, wind speed, and cloud cover data of 2015 from the 

National Solar Radiation Database (NSRDB) were used for simulation of the heating requirement. 

8.3 Results and discussion 

8.3.1 Sensitivity of CSGHEAT model to default parameters  

The thermal model was developed based on some assumptions to reduce the complexity of the 

model. The sensitivity of the model to some important parameters with default values in the model 

related to the assumptions in model development was conducted to evaluate their significance on 

the model output. These parameters include air thermal conductance of double-layer cover, 

greenhouse floor parameters, and characteristic length of convective surfaces.   

 Light extinction coefficient  0.64 

 Emissivity of plant and indoor components  0.9 

Other parameters  

 Indoor air velocity (Castilla, 2013) 0.1 (m s-1) 

 Latent heat of water vaporization  2450 (kJ kg-1) 

 Outside albedo for diffuse radiation 0.5 

 Perimeter heats loss factor (Worley, 2009) 0.85 (W m-1 K-1) 

 Installed lighting wattage  20 (W m-2) 

 Heat conversion factor (Castilla, 2013) 0.75 

 Lighting allowance factor (ASHRAE, 2013) 1.2 

 Number of recirculating fans  2 

 Rated power of motors  300 (W) 

 Motor efficiency  0.9 

 Motor load factor (ASHRAE, 2013) 1.0 

 Motor use factor (ASHRAE, 2013) 1.0 

 Net heating value of fuel (ASHRAE, 2013) 38 (MJ m-3 of gas) 

 Rate of CO2 supply in greenhouse (Castilla, 2013) 4.5 (g m-2
 
h-1) 

 CO2 production rate (EIA, 2016) 2.7 (kg / kg of fuel) 
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8.3.1.1 Air thermal conductance of air spaces in a double-layer cover 

The model estimates the heat transfer coefficient (conduction and convection) of multi-layer 

greenhouse covers by considering a constant value of 3.85 W m-2 K-1 for the air thermal 

conductance across the air gap in the inflated plastic films. According to the ASHRAE 

fundamental (2013), the air thermal conductance of airspace (13-90 mm) in the inclined surface is 

ranged between 2.0-6.5 W m-2 K-1; therefore, the sensitivity of airspace thermal conductance was 

conducted for the value range between 2.0-6.0 W m-2 K-1. Figure 8.1 shows the sensitivity of 

different values of air thermal conductance on the heating requirement predicted by the model. 

The result indicates the predicted heating requirement is sensitive to the value of air thermal 

conductance. The sensitivity coefficient decreased with the increase of air thermal conductance 

since the air thermal conductance is inversely correlated with the model output. The result also 

indicates that the model is more sensitive to the low air thermal conductance than the high value. 

The heating demand increased by about 18% for increasing the value of from 2.2 to 5.4 W m-2 K-

1. As compared to the base case (3.85 W m-2 K-1), the heating requirement decreased up to 12% for 

decreasing the value to 2.2 W m-2 K-1 and increased up to 7.5% for using 5.4 W m-2  K-1. However, 

the greenhouse covers with low-emissivity (0.2-0.5) are mostly used in commercial greenhouse 

production, and the air thermal conductance of the airspace ranges between 3.5-5.2 W m-2 K-1 for 

the surface emissivity ranges between 0.2-0.5 (ASHRAE, 2013). Hence, the assumption of 

constant air thermal conductance value at 3.85 W m-2 K-1 is reasonably acceptable as the transient 

simulation of air thermal conductance is very complicated.    
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           Figure 8.1:  The sensitivity of air thermal conductance of air gap in the double layer cover. 

8.3.1.2 Greenhouse floor parameters 

Greenhouse floor parameters including the underground soil temperature, depth of soil for 

negligible temperature fluctuation, and thickness of top soil layer, were considered for sensitivity 

analysis. The underground soil temperatures are affected by meteorological factors including 

incoming solar radiation, snow cover, air temperature, precipitation, and thermal properties of 

soils. Depending on the locations, the annual fluctuation of underground soil temperature after a 

certain depth (3-10 m) could be relatively constant (Florides and Kalogirou, 2004; Hanova and 

Dowlatabadi, 2007). The underground soil temperatures in Canada (45˚N) below 3 m could be 

ranged between 7-15˚C, so the sensitivity of underground soil temperature was conducted for the 

range between 6-14˚C. In CSGHEAT model, the greenhouse floor surface temperature was 

estimated by solving the heat balance of the greenhouse top-soil layer, and the temperature up to 

the depth of 10 cm was considered to be uniform. So, the sensitivity of the thickness of topsoil 

layer from 4 to 16 cm was considered for the analysis.  

Figure 8.2 shows the model sensitivity to greenhouse floor parameters. The result indicates the 

heating requirement decreased by less than 1.0% for increasing the underground soil temperature 

from 6 to 14˚C. Similarly, a negligible change in heating demand was found for changing the depth 
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of underground soil for constant temperature from 2 to 4 m, and the heating demand changed by 

about 3.5% for changing the thickness of the top-soil layer from 0.04 to 0.16 m. The heating 

requirement increased by less than 1% for increasing the value from 0.1 to 0.16 m, but heating 

demand decreased by about 2.5% for decreasing from 0.1 to 0.04 m. The sensitivity coefficient is 

mostly stable for changing the input value of underground soil temperature and depth of soil for 

constant temperature; however, the thickness of topsoil layer need to be chosen with utmost care 

especially for the thickness less than 0.1 m. The value of sensitivity coefficient for the underground 

temperature and depth of underground soil is relatively high in December; this could be due to the 

large number of hours of low set-point temperature (18˚C) at night. Therefore, the relative change 

of heating requirement could be higher in December as compared to the value in January and 

February. However, the high value of the coefficient for the thickness of the top-soil layer was 

found in February, because the greenhouse soil surface temperature could be significantly different 

depending on the availability of solar radiation in greenhouses which could be almost double in 

February as compared to the solar radiation in January and December. The overall sensitivity 

coefficient is very low for all three parameters, so the default value used for the floor parameters 

in the model could be reasonably acceptable. 
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Figure 8.2: The sensitivity of underground soil temperature, depth of soil for negligible 

temperature fluctuation, and thickness of topsoil layer. 

8.3.1.3 Characteristic length of convective surface 

The characteristic length of any heat transfer body depends on the geometry of the surface. In the 

model, the height of the vertical surface and the ratio of the surface area and perimeter (A/P) for 

horizontal surfaces such as south roof were considered as the characteristic length for estimating 

the convection heat transfer coefficient. The highest heat transfer in the Chinese-style solar 

greenhouse usually occurs through the north wall and south roof, so the characteristic lengths of 
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these two surfaces were considered for the sensitivity analysis. In the study greenhouse, the height 

of the north wall was 3 m, and the sensitivity analysis was conducted for the range between 2.4-

3.6 m. The characteristic length of the south roof (ratio of the surface area and the greenhouse 

perimeter) was about 4.3 m, so the sensitivity analysis was performed for the range between 3.7-

4.9 m. Figure 8.3 shows the change of heating requirement with the different values of 

characteristic lengths of the north wall and south roof. The heating demand increased by about 

3.0% for increasing the characteristic length of north wall from 2.4 to 3.6 m. The heating 

requirement changed by less than 1% for changing the characteristic length of the south roof from 

3.7 to 4.9 m. The low sensitivity coefficient also indicates that the reasonable change in 

characteristic length has a negligible effect on the model output. The monthly difference in 

sensitivity coefficients also could be due to the difference of the number of hours of the set point 

temperature for the daytime and night-time.   

 

Figure 8.3: The sensitivity of characteristic length of the north wall and the south roof. 
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8.3.2 Sensitivity of greenhouse building materials 

The thermal properties of the north wall and the south roof are more sensitive than other parts of 

greenhouse envelope because the heat transfer from the CSGs mostly occurs through these two 

parts due to their large area exposed to the outside. Also, the greenhouse perimeter is an important 

design parameter as the ratio of perimeter and floor area in CSGs is relatively greater than that of 

conventional greenhouses because they are narrow and long. 

8.3.2.1 Greenhouse cover and thermal blanket 

The thermal properties of transparent greenhouse cover including solar transmissivity, 

transmissivity to long-wave radiation, and emissivity, were considered for the sensitivity study. 

Depending on the types of covers, the solar transmissivity varies between 70-90%, and the 

transmissivity to the long-wave radiation varies between 3-50% (Sanford, 2011).  The emissivity 

of the greenhouse covers can be as low as for 0.2 for the polyethylene film to as high as 0.9 for the 

traditional glass (Aldrich and Bartok, 1994). However, the emissivity of newly developed 

polyethylene is relatively low, and the sensitivity of emissivity coefficient of greenhouse cover 

was conducted for the range between 0.01-0.4. Figure 8.4 shows the model output is sensitive to 

all three parameters. The heating requirement decreased by about 8.5% for increasing the solar 

transmissivity from 66 to 90%. As compared to the base case, the heating increased by about 5.0% 

for decreasing the transmissivity from 78 to 66%, and about 4.0% decreased by increasing the 

value from 78 to 90%. Conversely, the heating requirement could be reduced up to 36% by using 

the cover has a low transmissivity to the long-wave radiation (0.02) as compared to the cover with 

high transmissivity (0.4) to the long-wave radiation. Similarly, the heating requirement increased 

up to 29% for increasing the emissivity coefficient from 0.02 to 0.4. The sensitivity analysis 

indicates thermal properties greenhouse cover including solar transmissivity, transmissivity to 

long-wave radiation, and emissivity have a great impact on the greenhouse heating requirement. 

Therefore, the selection of suitable greenhouse cover is very important to reduce the greenhouse 

heating requirement.  
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Figure 8.4: The sensitivity of solar transmissivity, transmissivity to the long-wave radiation, and 

emissivity coefficient of greenhouse double layered poly cover. 

The thermal resistance of the south roof blanket is a very important parameter in the CSGs; the 

sensitivity analysis was also conducted for thermal conductance between 0.01-0.05 W m-1 K-1. 

Figure 8.5 shows that the heating requirement is very sensitive to the thermal conductivity of the 

blanket. The heating requirement increased between 32-41% for changing the thermal conductivity 

from 0.01 to 0.05 Wm-1 K-1. Therefore, the selection of high thermal resistance material for a 

thermal blanket is very important for reducing heating demand for the winter season. The value of 
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sensitivity coefficient also changed significantly for changing the value of thermal conductivity 

since the thermal conductivity has an inverse relation with the heating requirement. The result also 

indicates that the sensitivity coefficients are relatively high in December, it could be due to the 

difference of the day-length thereby the operational hours of the thermal blanket are relatively high 

in December. So, the sensitivity coefficient is relatively higher since the relative change of heating 

requirement would be higher in December.  

 

Figure 8.5: The sensitivity of the thermal blanket on the heating requirement. 

8.3.2.2 North wall 

The important parameters of the north wall include thermal conductivity of insulation material and 

solar absorptivity of the north wall. Figure 8.6 shows the sensitivity of thermal conductivity of the 

insulation material and the solar absorptivity of the north wall. The base case value of thermal 

conductivity and solar absorptivity were considered 0.033 W m-1 K-1 and 0.9, respectively. The 

result indicates heating demand increased by about 7.5% with the increase of the thermal 

conductivity of insulation material from 0.011 to 0.055 W m-1 K-1. And, the heating requirement 

decreased by about 1.5% for increasing the solar absorptivity of the north wall from 0.8 to 0.99. 
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The sensitivity analysis indicates the solar absorptivity has a very small effect on the heating 

requirement during the coldest winter months.  

 

Figure 8.6: The sensitivity of the thermal conductivity of insulation material and solar absorptivity 

of the north wall. 

8.3.2.3 Greenhouse perimeter  

Heat loss along the greenhouse perimeter depends on the type of insulation used along the 

perimeter. Depending on the type of insulation, the perimeter heat loss factor in greenhouses could 

be ranged between 0.5-1.1 W m-1 K-1 (Worley, 2009). The sensitivity of the model to perimeter 

heat loss factor was conducted for the range between 0.45-1.25 W m-1 K-1, and Figure 8.7 shows 

the results.  The heating demand increased by about 12% for increasing the heat loss factor value 

from 0.45 to 1.25 W m-1 K-1. The sensitivity coefficient is stable for changing the perimeter heat 

loss factor which indicates the perimeter heat loss factor has a linear relation to the model output. 
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The result indicates good insulation along the perimeter could reduce a significant amount heating 

demand in the CSGs.  

 

         Figure 8.7: The sensitivity of the perimeter heat loss factor on the heating requirement. 

8.3.3 Sensitivity of crop parameters  

The crop parameters including the leaf area index (LAI) and canopy light extinction coefficient 

were considered for the sensitivity study. For sensitivity analysis, LAI was considered from 1.0 to 

3.0, and the light extinction coefficient was considered between 0.5-0.76. Figure 8.8 shows the 

heating requirement increased with the increase of leaf area index since the plant transpiration rate 

increase with the increase of leaf area index. The heating requirement increased between 16-20% 

for changing the LAI from 1.0 to 3.0. As compared to the base case (2.0), the heating requirement 

decreased between 6-8% for the input value of 1.0 and increased between 8-10% for the input 

value of 3.0.  However, the heating demand changed by a small amount (about 2.0%) for changing 

values of the light extinction coefficient from 0.5 to 0.76.  Also, the small value of sensitivity 

coefficient indicates the canopy light extinction coefficient has a relatively low impact on the 

model output.    
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Figure 8.8: The sensitivity of the leaf area index and the canopy light extinction coefficient. 

8.3.4 Sensitivity of indoor climatic parameters 

The indoor environment parameters including set-point temperature, relative humidity (RH), air 

velocity, supplemental lighting, and CO2 supply rate, were considered for the sensitivity study. 

The optimum daytime temperature for tomato should be maintained between 21-27˚C and 16-18˚C 

for the night (Buschermohle and Grandle, 2002).  The sensitivity of indoor temperatures on the 

heating requirement was evaluated by selecting the daytime temperature between 19-23˚C, and the 

night-time temperature between 16-20˚C, and the result is shown in Figure 8.9. The result indicates 

the change of daytime set-point temperature from 19 to 23˚C increased the heating demand by 13-

20%, whereas the heating demand increased by 9-18% for increasing the night-time temperature 

from 16 to 20˚C.  
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          Figure 8.9: The sensitivity of the indoor set-point temperature (daytime and night-time). 

The relative humidity of 60-75% could be optimal for pollination, fruit set, and development of 

most greenhouse crops (Bakker, 1991; Snyder, 1992). However, the relative humidity in the fully 

closed greenhouses could be 90-100% during the winter season when the ventilation is low, and 

the sensitivity of the indoor relative humidity was conducted between 70-90%. The indoor air 

velocity more than 1.0 ms-1 around the leaf restricts the plant growth (ASABE, 2006), and some 

authors recommended that air velocity in greenhouses should be about 0.2-0.7 ms-1 (Castilla, 2013; 

Hanan, 1998b). For the sensitivity analysis, the indoor air velocity was chosen between 0.2-0.6 m 

s-1. Figure 8.10 shows the sensitivity of the heating requirement with the change of the indoor 

relative humidity and air velocity. The heating demand decreased with the increase of indoor 

relative humidity as the high relative humidity slows down the plant evapotranspiration rate in the 

greenhouse, so the heat used in plant transpiration could be reduced. The heating demand reduced 
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up to 18-20% for increasing the indoor relative humidity from 70 to 90%. However, the relative 

humidity over 85% could provide a favorable environment for fungal pathogens and plant disease 

because the water transfer through the stomata is slowly lost to the air (Wollaeger, 2015). 

Therefore, maintaining high relative humidity in the greenhouse could reduce heating demand but 

would increase the fungal disease in greenhouses.  The high RH also would result in condensation 

on cover and plants, leading to plant disease, so high RH must be prevented. The indoor air velocity 

has a relatively low impact on the heating requirement because in CSGHEAT model, the change 

of indoor air velocity is only related to the heat lost by plant transpiration. The impact of indoor 

air velocity on heat loss through the building envelope and on condensation formation on the south 

cover was not considered. The increased air velocity enhances the heating demand because the 

high air velocity reduces the leaf aerodynamic resistance to the transpiration. So, the heating 

demand increased by about 6.0% for increasing the air velocity from 0.2 to 0.6 m s-1.  

For the conventional greenhouses, the recommended illumination level for vegetable production 

ranges between 10-24 W m-2 PAR (Hanan, 1998b). The high-pressure sodium (HPS) lamp of the 

installed power of 50 W m-2 can provide useful PAR (Photosynthetically active radiation) level of 

10 W m-2 (Urban, 1997). However, CSGs typically use no supplemental lighting in northern China 

(James, 2013), but the supplemental lighting might require for offsetting the seasonally limited 

solar radiation in northern climates (Gomez and Mitchell, 2013). Therefore, the installed power of 

supplemental lighting between 10-30 W m-2 was considered for the sensitivity analysis. The 

recommended CO2 concentration in greenhouses varies with crop species, light intensity (PAR), 

leaf temperature, stage of crop development, as well as economic reasons such as the price of CO2 

and benefit of its use (Castilla, 2013). The CO2 concentration of 1000 ppm is usually considered a 

suitable benchmark for most greenhouse vegetables (Hanan, 1998b). The CO2 supply rate of 4.5 

gm-2 h-1 is recommended for maintaining the concentration level of 1,000 ppm (Van Berkel and 

Verveer, 1984). Hence, the sensitivity of CO2 supply rate range between 3.9-5.1 gm-2 h-1 was 

considered for the study. Figure 8.11 shows the sensitivity of the heating requirement to the 

installed power of supplemental lighting and the CO2 supply rate. The heating demand decreased 

significantly with the increase of installed power of supplemental lighting, but not very high for 

changing the supply rate of CO2. The sensitivity coefficient of the supplemental lighting and the 

CO2 supply rate is relatively stable for the change around the base case. The result indicates the 

heating demand decreased by 6-10% for changing the lighting power from 10 to 30 W m-2, and a 
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relatively small change (2.5%) of heating demand was found for the change of CO2 supply rate 

from 3.9 to 5.1 gm-2 h-1. The result shows that the supplemental lighting from HPS and the CO2 

generation from fossil fuel combustion could reduce the heating requirement, but greenhouse 

growers need to make the decision based on the capital and operation costs for these systems and 

also plants response to these systems. The sensitivity coefficient is mostly stable which also 

indicates these parameters has a linear relation with the model output. 

 

Figure 8.10. The sensitivity of the indoor relative humidity and the air velocity on the heating 

requirement. 

         



176 
 

 

Figure 8.11: The sensitivity of the installed power of supplemental lighting and the CO2 supply 

rate on the heating requirement.  

8.3.5 Summarizing discussion of sensitivity analysis 

The sensitivity analysis of greenhouse thermal simulation models is an essential component for 

the evaluation exercise of any model before using the model for engineering purposes including 

the design of appropriate heating systems, estimation of heating requirements, and energy-efficient 

design of envelope and environmental control systems in greenhouses. The sensitivity analysis 

indicates most of the default parameters used for model development are not very sensitive to the 

heating requirement except the air thermal conductance of the double-layered greenhouse cover. 

The sensitivity of greenhouse structural design parameters including the thermal properties 

greenhouse cover and thermal blanket, thermal properties of the materials used in the north wall, 

and perimeter heat loss factors would be useful for the understanding of the energy-efficient design 
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of the CSGs at higher northern latitudes. The results indicate that the thermal properties of the 

transparent cover and the thermal blanket are the most important design parameters for making the 

CSG more energy-efficient under cold climates. The plant characteristic especially the input of 

leaf area index (LAI) has a significant effect on the heating requirement, so the input value of LAI 

should be chosen with utmost care for simulation of the heating requirement. The indoor 

environment parameters including set-point temperature and RH in CSGs are usually not very well 

controlled like a modern conventional commercial greenhouse in Canada. The sensitivity analysis 

indicates the automatic control of indoor environmental parameters especially indoor temperature 

and RH could make the greenhouse more energy-efficient under very cold climates.  

8.4 Conclusions and recommendations 

In this study, the sensitivity of the heating simulation model (CSGHEAT) was conducted to 

evaluate the performance of the model for different values of the selected default parameters and 

also the sensitivity of design parameters and environmental control parameters on the heating 

requirement. The results indicate that the value used for default parameters in model development 

is reasonably acceptable. The sensitivity analysis also indicates the design parameters including 

the thermal properties of cover, thermal blanket, and parameter insulation are the most important 

structural design parameters to reduce the heating requirement in the CSGs. The heating 

requirement could be increased up to 41% for changing the thermal conductivity of the blanket 

from 0.01 to 0.05 Wm-1 K-1, and the heating demand could be reduced up to 36% by using the 

cover with a low transmissivity (0.02) to the long-wave radiation as compared cover with high 

transmissivity (0.4). Also, the environmental parameters including indoor set-point temperature 

and relative humidity have a high impact on the greenhouse heating requirement. The heating 

demand could be reduced by about 20% for increasing the RH from 70 to 90%. However, the 

greenhouse RH above 90% could enhance the fungal disease in greenhouses.  

Based on the sensitivity analysis, it could be concluded the predicted heating requirement from the 

model could be reasonably acceptable. The results from the sensitivity analysis of design 

parameters and environment control parameters would be useful for design and operation of the 

CSGs at high northern latitudes.  
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CHAPTER 9 

MODELING OF HEATING DEMAND IN THE CHINESE-STYLE SOLAR 

GREENHOUSE USING TRANSIENT BUILDING ENERGY SIMULATION MODEL 

TRNSYS 

 (The manuscript presented in this chapter is ready for submission to the Journal)  

Overview 

Building simulation tools (TRNSYS and EnergyPlus) were used in a couple of studies for 

simulation of greenhouse thermal environment. This chapter includes the comparative 

performance of CSGHEAT model and TRNSYS software for simulation of the heating 

requirement in a typical Chinese-style solar greenhouse. The results presented in this chapter fulfill 

the sixth objective of this thesis (i.e., to compare the performance of CSGHEAT model with 

building simulation software “TRANSYS). This manuscript also reported the major challenges 

and limitations of TRNSYS for simulation of greenhouse microclimates.  As the lead author of 

this manuscript, I conducted the research and prepared the manuscript for submission to the 

journal. The co-authors (Professor Huiqing Guo, and Professor Karen Tanino) have contributed to 

this manuscript through providing technical guidance to conduct the research and constructive 

review to improve the quality of research. 
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Abstract 

Building simulation program TRNSYS is user-friendly and widely used for transient simulation 

of thermal systems of commercial and residential buildings. A few researchers have attempted 

using TRNSYS for simulation of greenhouse microclimates.  In this study, the performance of 

TRNSYS for simulation of transient heating requirement in a Chinese-style solar greenhouse was 

compared with a greenhouse heating simulation model CSGHEAT. The major limitations of using 

TRNSYS in greenhouses were identified. The results showed that the difference in the heating 

simulation was less than 5.0% when some specific features of greenhouse operation such thermal 

blanket and plants were excluded in the simulation. However, the difference was larger when the 

operation of thermal blanket and plants were considered in simulation. Also, the use of TRNSYS 

for greenhouse modeling requires very sophisticated knowledge on TRNSYS. Thus, the building 

simulation tool (TRNSYS) is not suitable and practical for modeling of the actual greenhouse 

thermal environment, in which a high error in the simulation could occur.  
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9.1 Introduction 

Energy use in the agricultural industry is relatively small as compared to the total energy use in 

many countries such as only 8.1% of total energy use in the Netherland represents the agricultural 

sectors (Vadiee and Martin, 2013). However, for increased yield and controlled growth under very 

cold climates, the greenhouse industry is one of the most energy demanding sectors in the 

agricultural industry (Vadiee, 2011).  Heating costs for greenhouse production in northern regions 

could be more than 75% of thermal energy consumption in agriculture (Schepens et al., 1987). 

Different energy saving techniques have been used to reduce the heating requirement in the 

conventional greenhouses, but the heating energy still represents 70-80% of the total energy 

consumption in a typical conventional-style greenhouses in northern latitudes (Sanford, 2011). 

Conversely, the Chinese-style Solar Greenhouses (CSGs) are used to grow vegetables in northern 

China without additional heating during the coldest three months (monthly average temperature 

falls below -10˚C) of the year (Tong et al., 2013). As shown in Figure 9.1, CSG is characterized 

by a thick wall at the north, east and west sides and a transparent south facing curved roof (de 

Zwart, 2016). CSGs are mostly used for growing winter horticultural crops in China, and also 

being adopted by many countries including Japan, Korea, Russia, and Canada.  

Several thermal models (Du et al., 2012; Guo et al., 1994; Ma et al., 2010; Meng et al., 2009; Tong 

et al., 2008) have been developed for simulation of indoor microclimate and analysis of energy 

management in CSGs. Tong et al. (2008) used Computational Fluids Dynamics (CFD) model for 

simulation of temperature variations in different sections of a greenhouse in Shenyang, China. 

Deiana et al. (2014) investigated the influence of different building materials on the indoor 

temperature of the same CSG in Shenyang using dynamic building energy simulation program 

EnergyPlus.  Yu et al. (2016) developed a temperature prediction model based on the least squares 

support vector machine (LSSVM) model. Most of the previous studies focused on the simulation 

of indoor microclimate including the fluctuation of temperature and relative humidity in the 

greenhouse. However, a significant amount of auxiliary heating is required for year-round 

production at higher northern latitudes including Canadian Prairies (Beshada et al., 2006). Ahamed 

et al. (2018b) developed and validated a thermal model CSGHEAT for simulation of supplemental 

heating demand of the Chinese-style solar greenhouses. Also, different types of building energy 

simulation programs such as TRNSYS, EnergyPlus, and RETScreen have been used for simulation 

of greenhouse microclimates. TRNSYS is a versatile energy simulation tool for simple or complex 
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systems as well as complete energy analysis of single or multi-zone buildings. It is widely used to 

evaluate energy load of commercial and residential buildings by many researchers (Al-ajmi and 

Hanby, 2008; Rahman et al., 2010; Tzivanidis et al., 2011). Greenhouses also consist of a dynamic 

heat and mass transfer process like commercial and residential buildings. However, the heat and 

mass transfer process involved in greenhouses is very different because of the use of many 

different techniques for maintaining the optimum indoor microclimates, and the process of plant 

photosynthesis and transpiration, which significantly affect the heat and mass transfer process in 

greenhouses. A few studies (Ha et al., 2015; Henshaw, 2016; Semple et al., 2017, 2016; Vadiee 

and Martin, 2013) used TRNSYS for simulation of microclimate and energy load of different types 

of conventional greenhouses, while little has been done on CSGs. Most of the previous studies for 

greenhouse energy simulation using TRNSYS have been performed for different types of 

conventional greenhouses. Therefore, the objective of the study is to model the heating 

requirement in a typical CSG using TRNSYS, compare the performance of TRNSYS model with 

a greenhouse heating simulation model (CSGHEAT), and analyze the major challenges of using 

TRNSYS for modeling of greenhouse microclimate.       

9.2 Materials and method 

9.2.1 Description CSG model using TRNSYS 

A heating simulation model for the CSG was developed using transient system simulation software 

program TRNSYS (Solar Energy Laboratory, 2014a). TRNSYS simulation model consists of 

many components including weather data component, solar radiation component, a multizone 

building component, and control systems. A schematic layout of the developed model is presented 

in Figure 9.2. The weather data component TYPE 15-5 (Canadian weather for energy calculation) 

was used to input the typical meteorological year (TMY) data of Saskatoon (52.13˚N, 106.62˚W), 

Canada (Government of Canada, 2017). The global solar radiation incident on the south roof is 

calculated for each time step by internal modules based on the location, orientation, and geometry 

of the greenhouse.  

A typical Chinese-style solar greenhouse is shown in Figure 9.1. The greenhouse had a floor area 

of 210 m2 (30 m × 7 m), 3.5 m height at the ridge. The south roof of the greenhouse was considered 

to be glass-covered, and all the other three walls and north roof were non-transparent. The 

referenced greenhouse was modeled by a multi-zone subroutine component TYPE 56, which is 
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normally coupled to a weather data file for simulation of building heating and cooling loads. The 

information about the greenhouse including physical and thermal properties was defined by 

utilizing the TRNSYS sub-program called TRNBuild. The detailed description of the materials 

used for modeling of walls, roofs, and floor are listed in Table 9.1. 

 

Figure 9.1:  Side view of a typical Chinese-style solar greenhouse (Beshada et al., 2006). 
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Figure 9.2: Components of TRNSYS heating simulation model of the Chinese-style solar 

greenhouse. 

It was assumed that the south roof covered by 98% of the window for the daytime, which is 

considered to be only single layered glass cover material, and the heat transfer coefficient was 

assumed 5.68 W m-2 K-1. The heat transfer coefficient would not be constant as it is calculated by 

the TYPE 56 component at each time step based on the outside climate parameters and interior 

conditions (Solar Energy Laboratory, 2014b). The thermal blanket of the CSG is usually operated 

based on the availability of solar radiation, but TRNSYS has limitation to model the operation of 

the thermal blanket, so the thermal blanket was considered as external shading device which 

covered the south roof only for the night time, and the additional thermal resistance was assumed 

to be 0.37 h.m2 K kJ-1. The operation of the thermal blanket was modeled based on a schedule type 

manager of TRNBuild.   
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Table 9.1: Physical and thermal properties of building materials used in modeling of the CSG 

using TRNSYS.   

Surfaces Materials Thermal Properties 

South roof  Single layer glass (0.04 m) 

U = 5.86 W m-2.K 
g-value = 0.85 

Convection coefficient = 11 kJ h-1 m-2 K-1 

(inside), 64 kJ h-1 m-2 K-1 (outside) 

North roof  
and end 

walls 

Plywood (0.013 m), extruded 
polystyrene insulation (0.065 
m), and plastic sheet (from 

outside to inside). 

U= 0.25 W m-2.K 
Longwave emission coefficient = 0.9 

Convection coefficient = 11 kJ h-1 m-2 K-1 

(inside), 64 kJ h-1 m-2 K-1 (outside) 

North 
wall 

Galvanized steel (0.002 m), 
sand (0.152 m), extruded 

polystyrene insulation (0.065 
m), plywood (0.013 m), and 
steel (0.002 m) (from outside 

to inside). 

U= 0.23 W m-2.K 
Solar absorptance = 0.8 

Longwave emission coefficient = 0.9 
Convection coefficient = 11 kJ h-1 m-2 K-1 

(inside), 64 kJ h-1 m-2 K-1 (outside) 

Floor Plaster/Clay (0.1 m) 

U= 2.61 W m-2.K 
Solar absorptance = 0.8 

Longwave emission coefficient = 0.9 
Convection coefficient = 4.5 kJ h-1 m-2 K-1 

The sensible energy flux of the air node of inside air can be described as follows (Solar Energy 

Laboratory, 2014b) :  

Qୱୣ୬ୱ,୧ = Qୱ୳୰୤,୧ + Q୧୬୤,୧ + Q୴ୣ୬,୧ + Q୥,ୡ,୧ + Qୡ୮୪୥,୧ + Qୱ୭୪ୟ୧୰,୧    (9.1)  

where, Qsens,i  is the sensible energy flux of the zone;  Qsurf,i is the convective gain from surfaces; 

Qinf,i is the infiltration gain;  Qven,i is the ventilation gain; Qg,c,i is the internal convective gain 

(people, equipment, illumination, radiators, etc.); Qcplg,i  is  the gain from coupling air flow from 

adjacent zones; and Qsolair,i  is  the fraction of solar radiation entering an air node through external 

windows.  

The thermal capacitance of the zone needs to be simulated in the presence of plants. The crop 

density in the greenhouse could be significantly different from planting time to the maturity level. 

However, considering the change of thermal capacitance throughout the year was not possible, so 

a constant crop density of 6.0 kg m-2 was considered and thermal properties of crops were assumed 

to be similar as water (Semple et al., 2017).     
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The latent energy flux of the air node can be given as (Solar Energy Laboratory, 2014b):   

Q୪ୟ୲,୧ = h୴[m୧୬୤,୧൫wୟ − w୰ୣ୯,୧൯ + m୴ୣ୬,୧൫w୴ୣ୬୲ − w୰ୣ୯,୧൯ +  W୥,୧ + ∑ mୡ୮୪୥

ୱ୳୰୤ୟୡୣୱ 
୧ି୨

൫w୨ − w୧൯ −

Mୣ୤୤ ቀ
୵౨౛౧,౟ି୵౟,౪ష∆౪

∆୲
ቁ]          (9.2)  

where, Qlat,i  is the latent energy flux of the zone (kJ h-1); hv is latent heat of water vaporization (kJ 

kg-1);  m is the air mass flow rate (kg m-3); w is the humidity ratio (kgwater/kgair); Wg,i is the internal 

humidity gain (kgwater h-1);  Meff is the effective moisture capacitance of zone (kg); ∆t is the length 

of time step, (subscripts, a = ambient, vent = ventilation, inf = infiltration, req = required, cplg = 

coupling).  

Evapotranspiration (ET) including evaporation and transpiration in greenhouses plays a significant 

role in the energy balance of greenhouse microclimates. Evaporation and transpiration occur 

simultaneously, and it is very complicated to distinguish between these two processes; therefore, 

they are always combined as evapotranspiration. The moisture production through evaporation and 

transpiration in greenhouses depends on several factors including solar radiation, vapor pressure 

deficit, air velocity, types of plants, and inter-cultural practices used in greenhouses. Among these 

factors, the solar radiation has a strong correlation with the moisture production in greenhouses, 

and evaporation from the growing media is very small compared to crop transpiration during 

daytime (Katsoulas and Kittas, 2011). However, it is not possible to model the actual transient 

scenario of moisture production in greenhouses using TRNSYS. Therefore, evapotranspiration in 

greenhouses was modeled by adding an internal humidity gain with a schedule type manager.  

9.2.2 CSGHEAT model 

CSGHEAT model was developed based on the heat balance of the greenhouse air (Ahamed et al., 

2018b). The general heat balance equation of the developed model is given by:  

Q୦ = Sources − Sinks = (Qୱ + Qୱି୧ + Q୬୵ି୧ + Qୣୡ) − (Q୪୭ୱୱ + Q୧ +  Qୣ)   (9.3) 

where Qh is the supplemental heating demand; Qs is the net solar heat gain; Qs-i is the heat transfer 

between the ground and the indoor greenhouse components; Qnw-i is the  heat transfer between the 

north wall and the indoor greenhouse components; Qec is the heat addition from environmental 

control systems including supplement lighting (Qsl), carbon dioxide supply system (Qେ୓ଶ), and air 

circulation system (Qm); Qloss is the transmission heat loss through greenhouse envelope including 

conduction and convection loss (Qt), perimeter loss (Qp), and long-wave radiation loss (Qr);  Qi is 
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the heat transfer caused by air exchange through infiltration as no active ventilation usually provide 

during heating mode; Qr is the heat transfer caused by exchanging of long-wave radiation through 

the transparent cover; and  Qe is the heat transfer in the process of plant evapotranspiration.    

CSGHEAT model could simulate the hourly heating requirement in a CSG based on the input 

information of indoor microclimates (temperature, relative humidity, air velocity, and lighting 

capacity) and plants, and weather data (temperature, relative humidity, wind speed, cloud cover), 

and the physical and thermal properties of the greenhouse building materials. As like TRNSYS 

model, a similar  physical and thermal properties of building materials and typical meteorological 

year data of Saskatoon were used for heating simulation with CSGHEAT. 

9.2.3 Simulation of heating requirement   

The study greenhouse was located in Saskatoon (49.9˚N, 97.75˚W). The heating set-point 

temperatures for the day and night were considered as 21°C and 18°C, respectively, and the 

optimum relative humidity was considered at 80%. The cooling mode was set at 23˚C of indoor 

temperature, and dehumidification mode was considered to be effective at 81% of indoor RH.  The 

indoor air velocity was assumed at 0.1 m s-1 and the infiltration rate was considered at 0.5 air 

changes per hour (ACH) (Castilla, 2013; Xu et al., 2013). CSG usually closed all vents during the 

heating mode, so only infiltration was considered but no active ventilation was considered for 

heating simulation. The supplemental lighting was considered at 30 W m-2, which would be turned 

on when solar radiation would reach below 250 W m-2, and the lighting was considered to be 

turned off from 10:00 pm to 6:00 am, thereby 16 h of photoperiod was maintained in the 

greenhouse. The CO2 supply to the greenhouse could contribute to the heating of the greenhouse 

when CO2 is produced by combustion of fossil fuel, quite often natural gas. The heat gain from 

the CO2 generator was simulated based on the CO2 supply rate 4.5 g m-2 h-1 and the CO2 production 

rate 2.7 kg per kg of fuel, and the net heating value of natural gas was considered at 38.0 MJ m-3 

of gas (ASHRAE, 2013; Castilla, 2013). The CO2 generator was considered in operation for 

daytime from 6:00 am to 7:00 pm for TRNSYS, whereas the schedule for the CO2 generator in 

CSGHEAT is based on the availability of solar radiation. The air circulation system was 

considered in operation for the entire simulation period. The greenhouse simulation was performed 

over one-year period beginning 1st hour of the year with one hour of equal time-step.      
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9.3 Results and discussion 

The monthly average ambient air temperature and monthly average solar radiation on a horizontal 

surface are shown in Figure 9.3. Typical meteorological year data set represents the typical 

conditions based on ten years of data from 1998 to 2013. The analysis of dataset indicates that the 

lowest monthly lowest average temperature (-15.5˚C) in Saskatoon was recorded in January, 

whereas the lowest monthly average solar radiation (36 W m-2) occurred in December. The highest 

monthly average temperature (18.6˚C) was found in July, but the maximum monthly average solar 

radiation (260 W m-2) was recorded in June.      

 

Figure 9.3: Monthly average ambient temperature and solar radiation on the horizontal surface in 

Saskatoon.    

9.3.1 Comparative performance of TRNSYS and CSGHEAT model 

Similar physical and thermal properties of greenhouse envelopes and operating conditions were 

considered for simulation except for the operating schedule of environmental control systems such 

as the schedule of the CO2 supply system and the thermal blanket. In CSGHEAT, the schedule for 

environmental control systems is based on the availability of solar radiation instead of the schedule 

type manager used in the TRNSYS model. Different scenarios were considered to compare the 
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performance of these two selected models for estimation of the heating requirement in the study 

greenhouse.  

Figure 9.4 shows the comparison of the simulated monthly average daily total heating requirement 

in the study greenhouse from TRNSYS and CSGHEAT. The heating requirement was simulated 

without considering the effect of thermal blanket and evapotranspiration in the greenhouse as 

TRNSYS has limitation to model the actual scenario of these two aspects of greenhouse operation. 

The annual total heating requirement from the TRNSYS and CSGHEAT model is 1489 W m-2 and 

1516 W m-2, respectively. The simulated heating requirement from the CSGHEAT is usually 

higher than the heating demand from the TRNSYS model. If the results for the summer months 

(June, July, and August) were excluded from the analysis because of low heating requirement, then 

the maximum difference in the heating simulation is found in October (15.1%), and 5.03% is the 

average difference.    

 

Figure 9.4: Monthly average daily heating requirement in the study greenhouse as predicted by 

TRNSYS and CSGHEAT without thermal blanket and plants.  
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Thermal screens/blankets are usually used in greenhouses to reduce the radiative and conductive 

heat loss at night. For a commercial building, the shading feature is opposite to the deployment 

logic of night covers for greenhouses. This shading feature for the building is designed to close 

the shades when the total radiation on the window exceeds a certain value, and open them when 

the radiation is less than another (lower) value. Therefore, a schedule was created to open and 

close the thermal blanket of the CSG, such that the south roof was insulated with the thermal 

blanket from 6:00 pm to 7:00 am, and open otherwise. However, the actual operation of thermal 

blanket could not be modeled using schedule type manager as TRNBuild has limitation to set up 

the actual scenario. Figure 9.5 showed a comparison of the simulated heating requirement from 

these models when the thermal blanket was considered for greenhouse operation. The simulated 

result from the CSGHEAT indicates the use of thermal blanket could reduce the annual heating 

requirement by 60%, whereas about 61.5% based on the simulated result from the TRNSYS model. 

In general, the simulated heating requirement from the CSGHEAT model during the coldest four 

months is found lower than the value from the TRNSYS model since the CSGHEAT considers the 

operation of thermal blanket based on the availability of solar radiation. For the winter months 

(December-February), the solar radiation is usually available at around 9:00 am, but in TRNSYS 

model the thermal blanket was considered to open after 7:00 am. Conversely, the opposite trend 

was found for the rest of the period since the thermal blanket in TRANSYS model was in operation 

for a couple of hours after sunrise. The results indicate a significant error can be caused in heating 

simulation if the operation schedule of thermal blanket does not represent the actual scenario of 

the CSG.         
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Figure 9.5: Monthly average daily heating requirement in the reference greenhouse as predicted 

by TRNSYS and CSGHEAT with consideration of the thermal blanket.  

Another challenge in greenhouse energy simulation is the model of moisture production in 

greenhouses. Most of the previous studies for greenhouse simulation with TRNSYS (Ha et al., 

2015; Henshaw, 2016; Vadiee and Martin, 2013) did not consider the plants in the greenhouses. 

Semple et al. (2017) modeled the moisture production rate by using a constant internal humidity 

gain in the greenhouse that does not represent actual moisture production rate in greenhouses. Plant 

transpiration in greenhouses depends on the aerodynamic and stomatal resistance, and the stomatal 

resistance mainly depends on solar radiation. The aerodynamic resistance depends on the indoor 

air velocity, but the air velocity is relatively low in the greenhouse without forced ventilation. 

Therefore, the transpiration at night is very small as compared to that during the daytime. In this 

study, the internal humidity gain in the greenhouse for the daytime was assumed at 21.5 grams of 

water/hour/m2 whereas about 3.6 grams of water/hour/m2 for the night time, and these values are 

close to the average value of moisture production rate estimated in CSGHEAT model for the winter 

months.  
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Figure 9.6: Monthly average daily heating requirement in the study greenhouse as predicted by 

TRNSYS and CSGHEAT with consideration of thermal blanket and evapotranspiration.  

Figure 9.6 shows the simulated monthly average daily heating requirement in the greenhouse when 

thermal blanket and evapotranspiration were considered. The simulated monthly average daily 

heating requirements from the TRNSYS model are about 33-68% higher than the estimated heating 

requirement from the CSGHEAT model. This high difference in simulation was caused by the 

difference in moisture production rate because the TRNSYS model simulated the heat used for 

evaporation from the input value of constant internal moisture gain; however, the moisture 

production rate in the greenhouse mostly depends on the availability of solar radiation in 

greenhouses.  

9.3.2 Sensitivity analysis 

The sensitivity analysis was carried out to determine the relative impact of changing some 

parameters in TRNSYS model. The selected parameters for sensitivity analysis were identified 

based on the difference of some major parameters between TRNSYS and CSGHEAT. The 

transient change of evapotranspiration rate and infiltration rate in greenhouses is complicated to 

model using TRNSYS; however, the time-dependent value of these parameters is estimated in the 

CSGHEAT model. Therefore, the internal moisture gain and infiltration rate were considered for 
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the sensitivity analysis. The sensitivity analysis was performed for the coldest three months 

(January, February, and December) of the year.  

The sensitivity coefficient is widely used for sensitivity studies in the field of mathematics and 

control engineering (Lam and Hui, 1996). Among different forms of sensitivity coefficients for 

building energy simulation, the following form is most suitable for multiple sets of data (Lam and 

Hui, 1996).  

Sensitivty coeffcient =  
∆୓୔/୓୔ౘ౗౩౛

∆୍୔/୍୔ౘ౗౩౛
        (9.4) 

Where OPbase and IPbase are the base output and input, respectively; ∆OP and ∆IP are the variations 

of output and input, respectively. A high sensitivity coefficient would indicate that the model is 

more sensitive to the parameter and its value must be chosen very carefully (Yang et al., 2016). 

Figure 9.7 shows the change of heating demand relative to the base-case condition of simulation 

in TRNSYS model. The result indicates the heating requirement was changed significantly for 

different input values of internal moisture gain and infiltration rate. The heating requirement 

increased up to 20.5% for increasing moisture gain from 4.5 to 5.5 kg h-1 (22.2% increase), whereas 

about 9% increase for increased infiltration rate from 0.5 to 0.8 ACH (60% increase). For the 

whole simulated range of 3.5 to 5.5 kg h-1, the heating increased up to 53%; while 0.2 to 0.75 

ACH, heating increased up to 20%. Similarly, the high values of sensitivity coefficient (SC) 

indicate that the internal moisture gain and ACH have high impact on the heating requirement, so 

a small change in input value would cause a large change in the heating requirement. Comparing 

these two parameters, the SC of moisture gain is much higher than that of the ACH, indicating the 

moisture gain has high impact on the heating requirement than the ACH. Therefore, the simulation 

of greenhouse heating requirement with TRNSYS could give a high error since it could not 

represent the actual scenario of moisture gain and infiltration rate in greenhouses.      
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Figure 9.7: Sensitivity of the change of moisture gain and infiltration rate on the heating 

requirement.      

9.4 Conclusions 

TRNSYS simulation program is accurate, user-friendly, and widely used for transient simulation 

of thermal system of the commercial and residential buildings; however, the greenhouse physical 

parameters, transient moisture production rate, and indoor environmental control systems are quite 

different than usual buildings. The heating simulation results from this study indicate the 

difference between these two models is not significant when some specific features in greenhouses 

are excluded, which are unrealistic circumstances for a greenhouse in production. There are major 

challenges of using TRNSYS model for simulation of greenhouse heating requirements as 

summarized below. 
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1. The result indicates TRNSYS has limitation to model the actual scenario of operation of 

the thermal blanket, thereby, a significant error may occur in simulation of the heating 

requirement in greenhouses.     

2. The heat used in the process of evapotranspiration is one of the major contributors to the 

greenhouse energy balance. The moisture production rate through evapotranspiration 

mainly depends on solar radiation. In TRNSYS, the energy used for evapotranspiration 

have to be calculated by adding an internal humidity gain, where the moisture production 

rate either need to input as constant or need to schedule based on data from the literature. 

It is difficult to simulate the year-round situation by using a schedule based on calculated 

evapotranspiration rate based on the actual greenhouse conditions. 

3. The sensitivity analysis indicates that assumption of constant internal moisture gain, and 

the constant infiltration rate also can cause a significant error in heating prediction. Further, 

heating requirement is more sensitive to the internal moisture gain than the ACH.   

4. Above all, the use of TRNSYS for greenhouse modeling needs very sophisticated 

knowledge about TRNSYS because most design features in greenhouses are very different 

than the usual building shell, the heat and moisture sources are constantly changing, 

ventilation rate changes greatly and is difficult to estimate as a mixed mechanical and 

natural ventilation is used. 

Based on the results from this study, it can be concluded that the building simulation tools such as 

TRNSYS need very complicated modification for simulation of greenhouse thermal environment. 

Also, some actual scenario of greenhouse could not be represented in TRNBuid. Hence, the 

building simulation tool TRNSYS is not suitable for simulation of greenhouse thermal 

environments.           
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CHAPTER 10 

CONCLUDING REMARKS  

10.1 Contributions 

In this thesis, two mathematical models have been developed to simulate the time-dependent 

heating requirement in the conventional and Chinese-style solar greenhouses. The study also 

includes various energy saving measures in greenhouses located at high northern latitudes. The 

major contributions of the study are as follows:  

1. This study developed a quasi-steady state thermal model and the computer program based 

on the developed model (GREENHEAT) using MATLAB for simulation of the heating 

requirement in the conventional greenhouses. GREENHEAT was developed by 

considering most of the heat sources and sinks in greenhouses including 

evapotranspiration, the heating contribution of environmental control systems including 

supplemental lighting, CO2 generator, and air-circulation system, which were mostly not 

considered in previous studies.  

2. A critical review of different heating energy saving technologies was conducted for the 

conventional greenhouses under cold climates. Some of the design parameters in 

greenhouses could be significantly different depending on the location. GREENHEAT 

model was used for evaluating the heating energy saving potential of greenhouse design 

parameters including shape, orientation, and width of span under the weather conditions of 

Saskatchewan. Furthermore, the study of the economic feasibility of year-round vegetable 

production in the conventional commercial greenhouses in northern Saskatchewan.  

3. A Chinese-style solar greenhouse is significantly different than the convention greenhouse; 

therefore, another thermal model (CSGHEAT) was developed for simulation of the time-

dependent heating requirement in the Chinese-style solar greenhouses. The sensitivity 

analysis was conducted to evaluate the sensitivity of CSGHEAT model for simulation of 

the heating requirement in a typical CSG under Canadian weather conditions. The study 
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4. also includes the impact of different building materials and indoor environmental control 

parameters on the heating requirement.   

5. This study set up TRNSYS model for simulating heating requirement of the Chinese-style 

solar greenhouses and revealed major limitations of using building simulation tools for 

modeling of greenhouse thermal environment.   

The results presented in this thesis also provide the detailed analysis of different heat sources and 

sinks in the conventional and Chinese-style solar greenhouse under cold climates. The outcomes 

from this study would be useful for researchers, greenhouse growers, and industry for their study 

and decision making about the greenhouse production in high northern latitudes.  A summary of 

the major conclusions of each chapter which collectively address the overall thesis objectives is 

provided in the following section. 

10.2 Summary and conclusions 

The simulation of the time-dependent heating requirement in greenhouses is essential for design 

and optimization, and feasibility studies of greenhouse production under a particular weather 

condition. The estimation of time-dependent solar radiation is the important factor in the 

greenhouse heating simulation model.  In Chapter 2, the cloud cover based solar radiation model 

(Kasten-Czeplak model) model has been evaluated to estimate global solar radiation on the 

horizontal surfaces based on the input of cloud cover data (Oktas). The results show the estimated 

hourly global solar radiation from the model with the locally fitted coefficients are consistent with 

the dataset from the NSRDB in four different locations in Western Canada.  

Chapter 3 presents the development of GREENHEAT model including the detailed principle of 

GREENHEAT model, the analysis of various heat sources and sinks in the conventional 

greenhouses, and validation of the model. GREENHEAT model was developed based on the 

lumped estimation of heat sources and sinks in the conventional greenhouses, and the 

programming language MATLAB was used for computer simulation. The results show that the 

estimated heating requirement from GREENHEAT model is consistent (average error less than 

5%) with the actual heating data from a commercial greenhouse located in Saskatoon, Canada. 

The results also indicate that environmental control systems including supplemental lighting, CO2 

generators, and air circulation system, have significant contributions to the greenhouse heating 
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requirement; however, the heating contributions from these sources were ignored in most of the 

previous studies.   

In Chapter 4, a comprehensive review of different energy saving measures for the conventional 

greenhouses was performed. Previous studies show that a large number of techniques have been 

implemented to reduce the greenhouse heating energy cost, but the suitable energy saving 

techniques need to be selected based on the types of greenhouses, location, and the resources 

available near the greenhouses. Some features of energy-efficient greenhouse design could be 

different depending on the location of greenhouses. So, the parameters for studying the energy-

efficient design of greenhouse for cold regions were only selected for those whose energy saving 

potential could be significantly different depending on the location of greenhouses.  

Chapter 5 presents the selection of energy-efficient design parameters (shape, orientation, the 

angle of the roof, and width of span) of a large conventional greenhouse for Canadian Prairies 

using GREENHEAT model. The simulation results showed that the uneven span gable roof 

greenhouse received the highest solar radiation, but the highest heating requirement was found for 

the modified arch shape of greenhouses. The results indicate the gable roof greenhouses including 

even-span and uneven-span could be more energy-efficient for the gutter connected multi-span 

greenhouses, and the quonset shape for the single span greenhouses. The potential change of solar 

gain with east-west orientation is relatively low when the length-width ratio of greenhouses is 

greater than one. Also, the heating energy saving potential of the large span in a single-span 

greenhouse is relatively high as compared to the multi-span greenhouse.  

Most of the commercial greenhouses in Canadian Prairies are usually shut-down the operation 

during the coldest period (December-February) in winter season due to high heating cost. Also, 

the heating demand could be significantly different depending on the types of crops grown in 

greenhouses. Using GREENHEAT model, the variation of heating demands for year-round 

production of different vegetables (Tomato, Cucumber, and Pepper) under Canadian Prairies 

weather conditions, and the economic feasibility of vegetable production in a conceptually 

designed greenhouse located in Saskatchewan were predicted and included in Chapter 6. The 

economic feasibility analysis indicates the year-round production of vegetables in a greenhouse at 

higher northern latitudes of Canadian Prairies could be economically profitable; however, the 

tomato could be more profitable than the production of cucumber and pepper. 
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Chinese-style solar greenhouses (CSGs) have been proved as an energy-efficient horticultural 

facility for crop production at high northern latitudes. So, the adaptation of the CSG could be the 

alternate option to reduce the heating cost for greenhouse production in cold regions. A model for 

simulation of the heating requirement in the CSG is essential for feasibility study in cold regions. 

The development of CSGHEAT model for estimation of supplemental heating demand in the 

Chinese-style solar greenhouses is described in Chapter 7. CSGHEAT model can simulate the 

hourly heating requirement in CSGs based on the input of physical and thermal properties of 

building materials and indoor environmental control parameters. The model was validated against 

three days of experimental data from a commercial CSG in Winnipeg, Canada, and the results 

showed that the model could predict the hourly heating requirement of a greenhouse in good 

agreement (8.7% average error in prediction) with the experimental data. The developed model 

would be a very useful tool for assisting with the energy-efficient design of CSGs in particular 

locations, and also to analyze additional heating requirement under very cold climates.  

Chapter 8 includes the sensitivity study of different default parameters of CSGHEAT model and 

some input parameters on the heating requirements. The results showed that the default values 

used in the model could be reasonably acceptable since the heating requirement is not very 

sensitive to these parameters. The sensitivity study also indicated that the design parameters 

including the thermal properties of cover, thermal blanket, and perimeter insulation are the most 

important design parameters which are need to select with utmost care to reduce the heating energy 

consumption in the CSGs. The greenhouse heating requirement also found very sensitive to the 

small change of indoor environmental parameters such as indoor set-point temperature and relative 

humidity, so the optimum control of these parameters are important for making the CSGs more 

energy efficient.  

In Chapter 9, the building transient simulation program TRNSYS was used to simulate the 

supplemental heating requirement of a CSG located in Saskatoon, Canada, and the performance 

of TRNSYS model was compared with CSGHEAT model to identify the major challenges and 

limitations of the building simulation tools for simulation of greenhouse microclimates. The results 

showed that modeling of greenhouse thermal environment using TRNSYS could have high error 

in heating estimation as the actual scenarios of some specific greenhouse features such as the 

dynamic change of moisture production, the actual scenario for the operation of thermal blanket 

and environmental control parameters, could not be represented correctly in TRNSYS software.  
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Based on the results presented in this thesis, it can be concluded that the developed models 

(GEEENHEAT and CSGHEAT) would be useful tools to simulate the time-dependent heating 

requirement in the conventional and Chinese-style solar greenhouses.  Also, the overall the results 

of this thesis provide important insights about energy-efficient design of both conventional and 

CSG greenhouses and economic feasibility of greenhouse production in cold regions. The models 

would be beneficial to researchers, engineers, governments and greenhouse growers with their 

decision-making regarding energy-efficient design and feasibility analysis of greenhouse 

production in high northern latitudes. 

10.3 Future works 

The current study could be advanced for commercial application of the developed models for the 

greenhouse industry. Some potential avenues are discussed below:  

1. CSGHEAT model could be used to optimize the design parameters of CSG to make the 

greenhouse more energy efficient based on the local climate condition at higher northern 

latitudes.   

2. Developed models need to be improved like other commercial software for the wide-spread 

use of these models for simulation of heating requirement.  

3. The model also could be improved to estimate the ventilation and cooling need in 

greenhouses. 

4. CSGHEAT model was validated against the three days of experimental data from a 

commercial greenhouse where environmental control parameters were not well controlled. 

So, the validation of CSHHEAT model against the data of entire one-year from a well-

controlled greenhouse would be useful for evaluating the performance of CSGHEAT 

model.  
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Appendix A 

A.1 MATLAB Code for computer program of conventional greenhouse 

Main model 

clear all 
close all 
clc 
%-------------------------------Input--------------------------% 
%------------------------Input for Location--------------------% 
LATD=52.09; 
LON=-106.82; 
LST=-90 
%--------------------------Input got greenhouse---------------% 
L=43.29;             % Length of span 
W=6.4;               % Width of span 
NS=4;                % Number of span 
H=5.3;               % Height up to the ridge 
HS=3.65;             % Gutter height 
%--------------------------Roof-------------------------------% 
SRA=26;              % Angle of south roof 
SRA1=0;   
SRA2=0; 
ASR=155.86*NS;       % Area of south roof 
ASR1=0*NS; 
ASR2=0*NS;  
NRAA=26;             % Angle of north roof  
NRA=180-NRAA; 
NRA1=180-SRA1; 
NRA2=180-SRA2; 
ANR=155.86*NS;       % Area of north roof 
ANR1=0*NS; 
ANR2=0*NS;  
TSR=0.75;            % Solar transmissivity of roof 
emr=0.2;             % Emissivity of roof 
TLR=0.29;            % Transmissivity to the long-wave radiation  
NPR=2;               % Number of layer in roof 
KR=0.33;             % Thermal conductivity of roof cover 
LR=0.00152;          % Thickness of the roof cover 
%-------------------------South Wall--------------------------% 
HTSW=2.0;            % Height of transparent wall 
HNSW=1.65;           % Height of non-transparent wall 
HTASW=0;             % Height of angular wall 
      
SWA=90;              % Angle of wall 
ASW=79.22;           % Area of transparent wall 
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ASW1=79.22;          % Area of non-transparent wall 
ASW2=0.0;           % Area of angular wall 
TSW=0.78;           % Transmissivity of wall 
emsw=0.65;          % Emissivity of transparent  wall  
TLSW=0.03;          % Transmissivity to the long-wave radiation  
NPSW=2;             % Number of layer in transparent cover 
KSW=0.2;            % Thermal conductivity of cover 
LSW=0.008;          % Thickness of cover 
KSWI=0.03;          % Thermal conductivity of insulation 
KSWS=0.12;          % Thermal conductivity of siding material 
LSWI=0.065;         % Thickness of insulation 
LSWS=0.019;         % Thickness of siding material 
%-----------------------North Wall-----------------------------% 
HTNW=0;             % Height of transparent wall 
HNNW=3.65;          % Height of non-transparent wall 
HTANW=0;            % Height of angular wall 
NWA=180-SWA;        % Angle of wall          
ANW=L*HTNW;         % Area of transparent wall 
ANW1=L*HNNW;        % Area of non-transparent wall 
ANW2=L*HTANW;       % Area of angular wall 
TNW=0.78;           %Solar transmissivity of wall cover 
emnw=0.65;          %Emissivity of wall cover 
TLNW=0.03;          %Long-wave transmissivity 
NPNW=2;             %Number of layer 
KNW=0.2;            %Thermal conductivity 
LNW=0.008;          %Thickness 
KNWI=0.03;          %Thermal conductivity of insulation 
KNWS=0.12;          %Thermal conductivity of siding material 
LNWI=0.065;         %Thickness of insulation 
LNWS=0.019;         %Thickness of siding material 
%---------------------------East wall--------------------------% 
HTEW=1.2;           %Height of Transparent wall 
HNEW=2.43;          %Height of non-transparent wall 
EWA=90;             %Angle of wall 
AEW=(W*HTEW+0.5*W*(H-HS))*NS; %Area of transparent wall 
AEW1=(W*HNEW)*NS;   % Area of non-transparent wall 
TEW=0.78;           % Solar transmissivity 
emew=0.65;          % Emissivity  
TLEW=0.03;          %Long-wave transmissivity  
KEW=0.2;            %Thermal conductivity 
LEW=0.008;          %Thickness of cover 
NPEW=2;             % Number of layer 
KEWI=0.03;         % Thermal conductivity of insulation material 
KEWS=0.12;         % Thermal conductivity of siding material 
LEWI=0.065;        % Thickness of insulation material 
LEWS=0.019;        % Thickness of siding material 
%----------------------West wall-----------------------------% 
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HTWW=1.2;          %Height of transparent wall 
HNWW=2.43;         %Height of non-transparent wall 
WWA=90;            %Angle of wall 
AWW=(W*HTWW+0.5*W*(H-HS))*NS; %Area of transparent wall 
AWW1=(W*HNWW)*NS;   % Area of non-transparent wall 
TWW=0.78;           % Solar transmissivity  
emww=0.65;          % Emissivity of wall  
TLWW=0.03;          %Long-wave transmissivity  
KWW=0.2;            %Thermal conductivity 
LWW=0.008;          %Thickness of cover 
NPWW=2;             % Number of layer 
KWWI=0.03;         % Thermal conductivity of insulation material 
KWWS=0.12;         % Thermal conductivity of siding material 
LWWI=0.065;        % Thickness of insulation material 
LWWS=0.019;        % Thickness of siding material 
 
%----Environmental Control parameters and others input--------% 
N=1.0;             %Infiltration rate (ACH) 
T_id=21;           % Day time set point temperature 
T_in=18;           % Night time set point temperature  
RH=0.75;           % Indoor relative humidity 
Vi=0.2;            % Indoor air velocity 
IW=100;            % Install lighting wattage 
Turn_off=22;       % lighting turn off time 
Turn_on=7;         % Lighting turn on time  
Pw=375;            %Motor power rating 
Em=0.9;            % motor efficiency 
MLF=1.0;           %Motor load factor 
MUF=1.0;           % Motor use factor 
NF=8;              %Number of fan  
MNHV=38;           %Heating value of fuel 
MFR=4.5;           %CO2 flow rate 
F=0.85;            %Perimeter heat loss 
Lf=0.027;          % Characteristics length of leaf 
LA=2.0;            %Leaf area index  
% ---------------------Outdoor weather-----------------------% 
T_o=xlsread('TMY_saskatoon.xlsx','sheet1','E12:E8771'); 
RH_o=xlsread('TMY_saskatoon.xlsx','sheet1','G12:G8771'); 
V_o=xlsread('TMY_saskatoon.xlsx','sheet1','J12:J8771'); 
CCF=xlsread('TMY_saskatoon.xlsx','sheet1','M12:M8771'); 
GHI=xlsread('TMY_saskatoon.xlsx','sheet1','N12:N8771'); 
 
%------------------------Internal Calculation----------------% 
WG=W*NS;         % Total Width of greenhouse 
A=L*WG;          % Total Area of greenhouse 
V=A*HS+0.5*W*(H-HS)*L*NS;        %Volume of greenhouse 
P=2*(L+WG);                      %Perimeter of the greenhouse 



205 
 

ha=3.8;          %Thermal air conductance of air spaces 
CLr=ASR/(2*(L+sqrt((W/2).^2+(H-HS).^2))); 
Fsk=1.0;                          %Sky view factor 
Fsr=(1+cosd(SRA))/2;              %Cover view factor 
TAR=(ASR+ASR1+ASR2+ANR+ANR1+ANR2);     
CLnw=HTSW;           %Characteristics length 
CLnwn=HNSW;          %Characteristics length 
Fnw=(1+cosd(NWA))/2; %view factor  
 
CLew=HTEW;           %Characteristics length 
CLewn=HNEW;          %Characteristics length 
Few=(1+cosd(EWA))/2; % view factor  
CLww=HTWW;           %Characteristics length 
CLwwn=HNWW;          %Characteristics length 
Fww=(1+cosd(WWA))/2; % view factor  
CLsw=HTSW; 
CLswn=HNSW; 
Fsw=(1+cosd(SWA))/2; %view factor  
 
curtain_on=0; 
curtain_off=1; 
 
IWZ=0;               %Lighting power for no lighting 
QV=(N*V)/3600; 
F_sa=1.2;            % light allowance factor 
F_hc=0.75;           % heat conversion factor 
Pwn=375;                       
NFR=ceil(NF);                
PR=2.70;                      %KG of CO2/kg of fuel. 
C=0.2778;                     % conversion factor 
 
Rs=220*(Lf.^0.2/Vi.^0.8);     % Stomatal resistance  
emis=0.9;                     % emissivity of indoor plant  
Ap=L*WG*LA;                   % surface area of plant 
LV=2450000;                   % Latent heat of water 
 
ad=1.2;                        %Air density 
Cpa=1005.0;                    %Specific heat of air 
K2=0.0243;                     %Thermal conductivity  
visco=1.725*10^-5;             % Viscosity of air kg/ms 
vc=3.67*10^-3;                 %Volumetric expansion coefficient 
Pr=(visco*Cpa)/K2;             % Prandatl number 
K=1.4;                         %Thermal conductivity 
SH=3;                          % Depth 
Ts=20;                         %Underground soil temperature  
BC=5.6*10^-8;                  %Stefen-Boltzman constant 
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%--------------------Time dependent calculation---------------% 
Counter1=1; 
for n=1:365; 
    M=n*24; 
    T_O((1:24),n)=T_o(Counter1:M); 
    RH_O((1:24),n)=RH_o(Counter1:M); 
    V_O((1:24),n)=V_o(Counter1:M); 
    CCF_1((1:24),n)=CCF(Counter1:M); 
    GHI_1((1:24),n)=GHI(Counter1:M); 
    Counter1=M+1; 
End 
 
ST=solarradyear(LATD,LON,LST,SRA,SRA1,SRA2,TSR,SWA,TSW,NRA,NRA1,
NRA2,NWA,TNW,EWA,TEW,WWA,TWW,ASR,ASR1,ASR2,ANR,ANR1,ANR2,ASW,ANW
,AEW,AWW,CCF_1); 
SRActual=outsidesolar(LATD,LON,LST,CCF_1); 
SR=SRActual; 
ast=reshape(SR,8760,1);   
SumSR=sum(SR)'; 
SumGHI=sum(GHI_1)';  
       
for n=1:365 
    for t=1:24 
      if ST(t,n)<=0 
        Ti(t,n)=T_in; 
        else 
        Ti(t,n)=T_id;  
      end 
    end 
end 
 
for n=1:365; 
    for t=1:24 
    STT(t,n)=ST(t,n)*0.75;   
    Ra(t,n)=200*(1+(1/(exp(0.05*(TSR*SRActual(t,n)-50))))); 
    T_s(t,n)=Ts; 
    if V_O(t,n)<=1 
       V_O(t,n)=1; 
       else 
        V_O(t,n)=V_O(t,n); 
       end 
TD(t,n)=(RH_O(t,n)/100).^0.125*(112+0.9*(T_O(t,n)))+0.1*(T_O(t,n
))-112;  %Dew point temperature C 
ec_sky(t,n)=0.787+0.764*log((TD(t,n)+273.16)/273); % Clear sky 
emissivity  
e_sky(t,n)=(1+0.0224*(CCF_1(t,n))-
0.0035*(CCF_1(t,n))^.2+0.00028*(CCF_1(t,n)).^3)*ec_sky(t,n); 
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e_sky(e_sky>1)=0.9; 
Tsk(t,n)=(T_O(t,n)+273.16)*e_sky(t,n).^0.25; 
T_c(t,n)=(2/3)*T_O(t,n)+(1/3)*Ti(t,n);       %Cover temperature    
T_ck(t,n)=T_c(t,n)+273.16; 
vt(t,n)=abs(Ti(t,n)-T_c(t,n)); 
 
     if vt(t,n)<=1; 
             vt(t,n)=1.0; 
             else 
             vt(t,n)=vt(t,n); 
     end 
%----------------------Roof----------------------------------% 
Grr(t,n)=(9.8*vc*CLr.^3*vt(t,n))/(visco).^2;  %grashof number 
Rayr(t,n)=Grr(t,n)*Pr; 
hir(t,n)=(K2/CLr)*0.1*(Rayr(t,n)).^0.33; 
Rexr(t,n)=(ad*V_O(t,n)*CLr)/visco; % Reynold number 
h_Or(t,n)=((K2/CLr)*0.037*(Rexr(t,n)).^0.8*Pr.^0.33); 
Ur(t,n)=1/(1/hir(t,n)+NPR*(LR/KR)+(NPR-1)*1/ha+1/h_Or(t,n));  
q_TR(t,n)=(Ur(t,n)*TAR*(Ti(t,n)-T_O(t,n)))*3.6;  
%-----------------------South wall----------------------------% 
Grsw(t,n)=(9.8*vc*CLsw.^3*vt(t,n))/(visco).^2;  %grashof number 
Raysw(t,n)=Grsw(t,n)*Pr; 
hisw(t,n)=(K2/CLsw)*0.1*(Raysw(t,n)).^0.33; 
Rexsw(t,n)=(ad*V_O(t,n)*CLsw)/visco; % Reynold number 
h_Osw(t,n)=((K2/CLsw)*0.037*(Rexsw(t,n)).^0.8*Pr.^0.33); 
Usw(t,n)=1/(1/hisw(t,n)+NPSW*(LSW/KSW)+(NPSW-
1)*1/ha+1/h_Osw(t,n)); 
q_TSW(t,n)=(Usw(t,n)*ASW*(Ti(t,n)-T_O(t,n)))*3.6; 
q_rsw1(t,n)=(BC*emsw*ASW*Fsw*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_rasw1(t,n)=(BC*emsw*ASW2*Fsw*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_RSW(t,n)=(q_rsw1(t,n)+q_rasw1(t,n))*3.6; 
Rexswn(t,n)=(ad*V_O(t,n)*CLswn)/visco; % Reynold number 
h_Oswn(t,n)=((K2/CLswn)*0.037*(Rexswn(t,n)).^0.8*Pr.^0.33);  
hiswn(t,n)=(K2/CLswn)*0.1*(10.^11).^0.33;   
Uswn(t,n)=((1/hiswn(t,n))+(LSWI/KSWI)+(LSWS/KSWS)+(1/h_Oswn(t,n)
))^-1; 
q_TSWN(t,n)=(Uswn(t,n)*ASW1*(Ti(t,n)-T_O(t,n)))*3.6; 
%-------------North wall-------------------------------------% 
Grnw(t,n)=(9.8*vc*CLnw.^3*vt(t,n))/(visco).^2;  %grashof number 
Raynw(t,n)=Grnw(t,n)*Pr; 
hinw(t,n)=(K2/CLnw)*0.1*(Raynw(t,n)).^0.33; 
Rexnw(t,n)=(ad*V_O(t,n)*CLnw)/visco; % Reynold number 
h_Onw(t,n)=((K2/CLnw)*0.037*(Rexnw(t,n)).^0.8*Pr.^0.33); 
Unw(t,n)=1/(1/hinw(t,n)+NPNW*(LNW/KNW)+(NPNW-
1)*1/ha+1/h_Onw(t,n)); 
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q_TNW(t,n)=(Unw(t,n)*ANW*(Ti(t,n)-T_O(t,n)))*3.6; 
q_rnw1(t,n)=(BC*emnw*ANW*Fnw*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_ranw1(t,n)=(BC*emnw*ANW2*Fnw*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_RNW(t,n)=(q_rnw1(t,n)+q_ranw1(t,n))*3.6; 
Rexnwn(t,n)=(ad*V_O(t,n)*CLnwn)/visco; % Reynold number 
h_Onwn(t,n)=((K2/CLnwn)*0.037*(Rexnwn(t,n)).^0.8*Pr.^0.33); 
hinwn(t,n)=(K2/CLnwn)*0.1*(10.^11).^0.33;  
Unwn(t,n)=((1/hinwn(t,n))+(LNWI/KNWI)+(LNWS/KNWS)+(1/h_Onwn(t,n)
))^-1; 
q_TNWN(t,n)=(Unwn(t,n)*ANW1*(Ti(t,n)-T_O(t,n)))*3.6; 
  %----------------------East wal-----------------------------% 
Grew(t,n)=(9.8*vc*CLew.^3*vt(t,n))/(visco).^2;  %grashof number 
Rayew(t,n)=Grew(t,n)*Pr; 
hiew(t,n)=(K2/CLew)*0.1*(Rayew(t,n)).^0.33; 
Rexew(t,n)=(ad*V_O(t,n)*CLew)/visco; % Reynold number 
h_Oew(t,n)=((K2/CLew)*0.037*(Rexew(t,n)).^0.8*Pr.^0.33); 
Uew(t,n)=1/(1/hiew(t,n)+NPEW*(LEW/KEW)+(NPEW-
1)*1/ha+1/h_Oew(t,n)); 
q_TEW(t,n)=(Uew(t,n)*AEW*(Ti(t,n)-T_O(t,n)))*3.6; 
q_rew1(t,n)=(BC*emew*AEW*Few*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_REW(t,n)=(q_rew1(t,n))*3.6; 
Rexewn(t,n)=(ad*V_O(t,n)*CLewn)/visco; % Reynold number 
h_Oewn(t,n)=((K2/CLewn)*0.037*(Rexewn(t,n)).^0.8*Pr.^0.33); 
hiewn(t,n)=(K2/CLewn)*0.1*(10.^11).^0.33; 
Uewn(t,n)=((1/hiewn(t,n))+(LEWI/KEWI)+(LEWS/KEWS)+(1/h_Oewn(t,n)
))^-1; 
q_TEWN(t,n)=(Uewn(t,n)*AEW1*(Ti(t,n)-T_O(t,n)))*3.6; 
%-----------------------West wall-----------------------------% 
Grww(t,n)=(9.8*vc*CLww.^3*vt(t,n))/(visco).^2;  %grashof number 
Rayww(t,n)=Grww(t,n)*Pr; 
hiww(t,n)=(K2/CLww)*0.1*(Rayww(t,n)).^0.33; 
Rexww(t,n)=(ad*V_O(t,n)*CLww)/visco; % Reynold number 
h_Oww(t,n)=((K2/CLww)*0.037*(Rexww(t,n)).^0.8*Pr.^0.33);  
Uww(t,n)=1/(1/hiww(t,n)+NPWW*(LWW/KWW)+(NPWW-
1)*1/ha+1/h_Oww(t,n)); 
q_TWW(t,n)=(Uww(t,n)*AWW*(Ti(t,n)-T_O(t,n)))*3.6; 
q_rww1(t,n)=(BC*emww*AWW*Fww*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_RWW(t,n)=(q_rww1(t,n))*3.6; 
Rexwwn(t,n)=(ad*V_O(t,n)*CLwwn)/visco; % Reynold number 
h_Owwn(t,n)=((K2/CLwwn)*0.037*(Rexwwn(t,n)).^0.8*Pr.^0.33);  
hiwwn(t,n)=(K2/CLwwn)*0.1*(10.^11).^0.33; 
Uwwn(t,n)=((1/hiwwn(t,n))+(LWWI/KWWI)+(LWWS/KWWS)+(1/h_Owwn(t,n)
))^-1; 
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q_TWWN(t,n)=(Uwwn(t,n)*AWW1*(Ti(t,n)-T_O(t,n)))*3.6; 
%-----------Total transmission loss---------------------------% 
q_T(t,n)=q_TR(t,n)+q_TSW(t,n)+q_TSWN(t,n)+q_TNW(t,n)+q_TNWN(t,n)
+q_TEW(t,n)+q_TEWN(t,n)+q_TWW(t,n)+q_TWWN(t,n); 
q_W(t,n)=q_RSW(t,n)+q_RNW(t,n)+q_REW(t,n)+q_RWW(t,n); 
%-----Ventilation, Perimeter, and soil conduction heat loss----% 
q_I(t,n)=(ad*QV*Cpa*(Ti(t,n)-T_O(t,n)))*3.6; 
q_P(t,n)=F*P*(Ti(t,n)-T_O(t,n))*3.6;  
q_CS(t,n)=(K/SH)*A*(Ti(t,n)-T_s(t,n))*3.6;   
%------------Transpiration heat loss---------------------------% 
Re(t,n)=Ra(t,n)+Rs; 
pws(t,n)=(exp(-5.80002206e3/(Ti(t,n)+273)+1.3914993-48.640239e-
3*(Ti(t,n)+273)+41.764768e-6*(Ti(t,n)+273)^2-14.452093e-
9*(Ti(t,n)+273)^3+6.5459673*log(Ti(t,n)+273)))/1000; 
pw(t,n)=pws(t,n)*RH;          % Actual partial vapor pressure 
w(t,n)=(0.62198*pw(t,n))/(101.325-pw(t,n)); 
ws(t,n)=(0.62198*pws(t,n))/(101.325-pws(t,n)); 
Mt(t,n)=(Ap*ad*(ws(t,n)-w(t,n)))/Re(t,n); 
q_RE(t,n)=(Mt(t,n)*LV)*3.6;    
%----------------------Operation of Supplemental Lighting------% 
if STT(t,n)<=0 
curtain(t,n)=curtain_on; 
q_rc(t,n)=(BC*emis*TLR*A*Fsk*curtain(t,n)*((Ti(t,n)+273.16).^4-
Tsk(t,n).^4)); 
q_rc1(t,n)=(BC*emr*TAR*Fsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_RR(t,n)=(q_rc(t,n)+q_rc1(t,n))*3.6; 
%------------Total radiation loss------------------------------% 
q_R(t,n)=q_RR(t,n)+q_W(t,n); 
%--------------------Motors and CO2---------------------------% 
NHV(t,n)=0; 
q_co2(t,n)=3.6*((C*NHV(t,n)*MFR*A)/PR); 
q_m(t,n)=NFR*(Pwn/Em)*MLF*MUF*3.6;     
else       
curtain(t,n)=curtain_off;         
q_rc(t,n)=(BC*emis*TLR*A*Fsk*curtain(t,n)*((Ti(t,n)+273.16).^4-
Tsk(t,n).^4));  
q_rc1(t,n)=(BC*emr*TAR*Fsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_RR(t,n)=(q_rc(t,n)+q_rc1(t,n))*3.6; 
%-----------------------Total radiation loss-------------------% 
q_R(t,n)=q_RR(t,n)+q_W(t,n); 
%---------------------Motors and CO2--------------------------% 
NHV(t,n)=MNHV; 
q_co2(t,n)=3.6*((C*NHV(t,n)*MFR*A)/PR); 
q_m(t,n)=NFR*(Pw/Em)*MLF*MUF*3.6; 
end 
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     STSL(t,n)=ST(t,n)/A;  
     if STSL(t,n)<250 
           SW(t,n)=IW; 
           q_sl(t,n)=SW(t,n)*A*F_hc*F_sa*3.6; 
     else  
           SW(t,n)=IWZ; 
           q_sl(t,n)=SW(t,n)*A*F_hc*F_sa*3.6; 
     end 
 
     if t>=Turn_off 
         q_sll(t,n)=0; 
     elseif t<=Turn_on 
         q_sll(t,n)=0; 
     else 
         q_sll(t,n)=q_sl(t,n); 
     end 
 
    %-------------Heat balance equation----------------------% 
    q=q_T+q_R+q_CS+q_P+q_RE+q_I;  
    q_gain=q_co2+q_m+STT+q_sll; 
    q_heat=q-q_gain;  
    q_trsum=sum(q_T.*(q_T>0))'; 
    q_rsum=sum(q_R.*(q_R>0))'; 
    q_cssum=sum(q_CS.*(q_CS>0))'; 
    q_psum=sum(q_P.*(q_P>0))'; 
    q_ssum=sum(q_cssum+q_psum,2); 
    q_resum=sum(q_RE)'; 
    q_isum=sum(q_I.*(q_I>0))'; 
     q_slsum=sum(q_sll)'; 
    q_co2sum=sum(q_co2)'; 
    q_msum=sum(q_m)'; 
    q_solarsum=sum(STT)'; 
    q_heatsum=sum(q_heat.*(q_heat>0))'; 
    end 
end 
 
for i=1:365; 
    if i==1; 
        Q_T=q_heat(:,i); 
    else 
        Q_T=[Q_T;q_heat(:,i)]; 
    end 
end 
 
Q=(Q_T); 
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tt=[1:365*24]; 
HH=tt'; 
figure 
hold on 
plot(HH,Q/1000,'r','linewidth',0.1); 
plot([1,8760],[1500,1500],'k'); 
plot([1,8760],[0,0],'b'); 
plot([8760,8760],[-1500,1500],'k'); 
set(gca, 'Fontname','Times new roman') 
xlim([1 8760]); 
xlabel('Time,hr','fontweight','bold') 
ylabel('Energy Requirement,MJ/hr','fontweight','bold') 
set(gca,'YTickLabel', num2str(get(gca,'YTick')','%d'  
 
Solar Radiation Sub-Model 

functionST=solarradyear(LATD,LON,LST,SRA,SRA1,SRA2,TSR,SWA,TSW,N
RA,NRA1,NRA2,NWA,TNW,EWA,TEW,WWA,TWW,ASR,ASR1,ASR2,ANR,ANR1,ANR2
,ASW,ANW,AEW,AWW,CCF_1); 
 
SC=1368;            %Solar constant  
 
SASR=0; 
SASW=0; 
SANR=180; 
SANW=180; 
SAER=-90; 
SAEW=-90; 
SAWR=90; 
SAWW=90; 
pg=0.5;             %reflectivity of the ground 
%-------------- --------------Loop over year----------------% 
for n=1:365; 
    B(1,n)=(n-1)*(360/365); 
    IO(1,n)= SC*(1+0.033*cosd(360*(n-3)/365));       
    ET(1,n)= 229.2*(0.000075+0.001868*cosd(B(1,n))-
0.032077*sind(B(1,n))-.014615*cosd(2*B(1,n))-
0.04089*sind(2*B(1,n)));            
DA(1,n)=23.45*sind(360*(n+284)/365);    
         
    if n<=31 && n>=1 
        TR(1,n)=2.2; 
    elseif n>=32 && n<=59 
        TR(1,n)=2.2; 
    elseif n>=60 && n<=90 
        TR(1,n)=2.5; 
    elseif n>=91 && n<=120 
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        TR(1,n)=2.9; 
    elseif n>=121 && n<=151 
        TR(1,n)=3.2; 
    elseif n>=152 && n<=181 
        TR(1,n)=3.4; 
    elseif n>=182 && n<=212 
        TR(1,n)=3.5; 
    elseif n>=213 && n<=243 
        TR(1,n)=3.3; 
    elseif n>=244 && n<=273 
        TR(1,n)=2.9; 
    elseif n>=274 && n<=304 
        TR(1,n)=2.6; 
    elseif n>=305 && n<=334 
        TR(1,n)=2.3; 
    else 
        TR(1,n)=2.2; 
    End 
 
%-----------------Daily loop-----------------------------% 
for h=1:24 
  p=24*(n-1)+h; 
  tttt(1,p)=p; 
  AST(h,n)=h+(ET(1,n)/60)+(LON-LST)/15;    HA(h,n)=15*(AST(h,n)-
12); 
coz(h,n)=sind(LATD)*sind(DA(1,n))+cosd(LATD)*cosd(DA(1,n))*cosd(
HA(h,n));%Zemith angle 
 ZAD(h,n)=acosd(coz(h,n)); % Zenith angle in degree 
 coisr(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA)-   
sind(DA(1,n))*cosd(LATD)*sind(SRA)*cosd(SASR)+cosd(DA(1,n))*cosd
(LATD)*cosd(SRA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(SRA
)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA)*sind(SASR)*si
nd(HA(h,n)); 
 
coisr1(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA1)-
sind(DA(1,n))*cosd(LATD)*sind(SRA1)*cosd(SASR)+cosd(DA(1,n))*cos
d(LATD)*cosd(SRA1)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(S
RA1)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA1)*sind(SASR
)*sind(HA(h,n)); 
 
 coisr2(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA2)-
sind(DA(1,n))*cosd(LATD)*sind(SRA2)*cosd(SASR)+cosd(DA(1,n))*cos
d(LATD)*cosd(SRA2)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(S
RA2)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA2)*sind(SASR
)*sind(HA(h,n)); 
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 coinr(h,n)=sind(DA(1,n))*sind(LATD)*cosd(NRA)-
sind(DA(1,n))*cosd(LATD)*sind(NRA)*cosd(SANR)+cosd(DA(1,n))*cosd
(LATD)*cosd(NRA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(NRA
)*cosd(SANR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(NRA)*sind(SANR)*si
nd(HA(h,n)); 
 
coinr1(h,n)=sind(DA(1,n))*sind(LATD)*cosd(NRA1)-
sind(DA(1,n))*cosd(LATD)*sind(NRA1)*cosd(SANR)+cosd(DA(1,n))*cos
d(LATD)*cosd(NRA1)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(N
RA1)*cosd(SANR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(NRA1)*sind(SANR
)*sind(HA(h,n)); 
 
coinr2(h,n)=sind(DA(1,n))*sind(LATD)*cosd(NRA2)-
sind(DA(1,n))*cosd(LATD)*sind(NRA2)*cosd(SANR)+cosd(DA(1,n))*cos
d(LATD)*cosd(NRA2)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(N
RA2)*cosd(SANR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(NRA2)*sind(SANR
)*sind(HA(h,n)); 
 
coisw(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SWA)-
sind(DA(1,n))*cosd(LATD)*sind(SWA)*cosd(SASW)+cosd(DA(1,n))*cosd
(LATD)*cosd(SWA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(SWA
)*cosd(SASW)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SWA)*sind(SASW)*si
nd(HA(h,n)); 
 
coinw(h,n)=sind(DA(1,n))*sind(LATD)*cosd(NWA)-
sind(DA(1,n))*cosd(LATD)*sind(NWA)*cosd(SANW)+cosd(DA(1,n))*cosd
(LATD)*cosd(NWA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(NWA
)*cosd(SANW)*cosd(HA(h,n))+cosd(DA(1,n))*sind(NWA)*sind(SANW)*si
nd(HA(h,n)); 
 
coiew(h,n)=sind(DA(1,n))*sind(LATD)*cosd(EWA)-
sind(DA(1,n))*cosd(LATD)*sind(EWA)*cosd(SAEW)+cosd(DA(1,n))*cosd
(LATD)*cosd(EWA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(EWA
)*cosd(SAEW)*cosd(HA(h,n))+cosd(DA(1,n))*sind(EWA)*sind(SAEW)*si
nd(HA(h,n)); 
 
coiww(h,n)=sind(DA(1,n))*sind(LATD)*cosd(WWA)-
sind(DA(1,n))*cosd(LATD)*sind(WWA)*cosd(SAWW)+cosd(DA(1,n))*cosd
(LATD)*cosd(WWA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(WWA
)*cosd(SAWW)*cosd(HA(h,n))+cosd(DA(1,n))*sind(WWA)*sind(SAWW)*si
nd(HA(h,n)); 
 
 RBSR(h,n)=coisr(h,n)/coz(h,n); 
 RBSR1(h,n)=coisr1(h,n)/coz(h,n); 
 RBSR2(h,n)=coisr2(h,n)/coz(h,n); 
 RBSW(h,n)=coisw(h,n)/coz(h,n); 
 RBNR(h,n)=coinr(h,n)/coz(h,n); 
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 RBNR1(h,n)=coinr1(h,n)/coz(h,n); 
 RBNR2(h,n)=coinr2(h,n)/coz(h,n); 
 RBNW(h,n)=coinw(h,n)/coz(h,n); 
  RBEW(h,n)=coiew(h,n)/coz(h,n); 
  RBWW(h,n)=coiww(h,n)/coz(h,n); 
  ab(h,n)=90-ZAD(h,n); 
  abc(h,n)=(0.9+9.4*sind(ab(h,n))); 
  abcd(h,n)=-TR(1,n)/abc(h,n);  
    std(h,n)=exp(abcd(h,n)); 
    IN(h,n)=IO(1,n)*std(h,n); 
    IN(IN>1360)=0; 
    IN(IN<0)=0;        % kick out negative values 
    IB(h,n)=IN(h,n)*coz(h,n); 
    IB(IB<0)=0;        % kick out negative values 
    ID(h,n)=(1/3)*(IO(1,n)-IN(h,n))*coz(h,n); 
    ID(ID<0)=0;       % kick out negative values 
     
    SR(h,n)=(IB(h,n)+ID(h,n)); 
    SRActual(h,n)=SR(h,n)*(1-0.66*(CCF_1(h,n)/8)^0.63); 
    IDActual(h,n)=SRActual(h,n)*(0.3+0.7*(CCF_1(h,n)/8)^2); 
    IBActual(h,n)=SRActual(h,n)-IDActual(h,n); 
 
    IBSR(h,n)=IBActual(h,n)*RBSR(h,n); 
    IBSR(IBSR<0)=0; 
    IBSR1(h,n)=IBActual(h,n)*RBSR1(h,n); 
    IBSR1(IBSR1<0)=0; 
    IBSR2(h,n)=IBActual(h,n)*RBSR2(h,n); 
    IBSR2(IBSR2<0)=0; 
    IBSW(h,n)=IBActual(h,n)*RBSW(h,n); 
    IBSW(IBSW<0)=0; 
    IBNR(h,n)=IBActual(h,n)*RBNR(h,n); 
    IBNR(IBNR<0)=0; 
    IBNR1(h,n)=IBActual(h,n)*RBNR1(h,n); 
    IBNR1(IBNR1<0)=0; 
    IBNR2(h,n)=IB(h,n)*RBNR2(h,n); 
    IBNR2(IBNR2<0)=0; 
    IBNW(h,n)=IBActual(h,n)*RBNW(h,n); 
    IBNW(IBNW<0)=0; 
    IBEW(h,n)=IBActual(h,n)*RBEW(h,n); 
    IBEW(IBEW<0)=0; 
    IBWW(h,n)=IBActual(h,n)*RBWW(h,n); 
    IBWW(IBWW<0)=0; 
 
SRSR(h,n)=(IBSR(h,n)+IDActual(h,n)*((1+cosd(SRA))/2)+pg*SRActual
(h,n)*((1-cosd(SRA))/2))*ASR*TSR*3.6; 
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SRSR1(h,n)=(IBSR1(h,n)+IDActual(h,n)*((1+cosd(SRA1))/2)+pg*SRAct
ual(h,n)*((1-cosd(SRA1))/2))*ASR1*TSR*3.6; 
     
SRSR2(h,n)=(IBSR2(h,n)+IDActual(h,n)*((1+cosd(SRA2))/2)+pg*SRAct
ual(h,n)*((1-cosd(SRA2))/2))*ASR2*TSR*3.6; 
 
SRSW(h,n)=(IBSW(h,n)+IDActual(h,n)*((1+cosd(SWA))/2)+pg*SRActual
(h,n)*((1-cosd(SWA))/2))*ASW*TSW*3.6; 
 
SRNR(h,n)=(IBNR(h,n)+IDActual(h,n)*((1+cosd(NRA))/2)+pg*SRActual
(h,n)*((1-cosd(NRA))/2))*ANR*TSR*3.6; 
 
SRNR1(h,n)=(IBNR1(h,n)+IDActual(h,n)*((1+cosd(NRA1))/2)+pg*SRAct
ual(h,n)*((1-cosd(NRA1))/2))*ANR1*TSR*3.6; 
 
SRNR2(h,n)=(IBNR2(h,n)+IDActual(h,n)*((1+cosd(NRA2))/2)+pg*SRAct
ual(h,n)*((1-cosd(NRA2))/2))*ANR2*TSR*3.6; 
 
SRNW(h,n)=(IBNW(h,n)+IDActual(h,n)*((1+cosd(NWA))/2)+pg*SRActual
(h,n)*((1-cosd(NWA))/2))*ANW*TNW*3.6; 
 
SREW(h,n)=(IBEW(h,n)+IDActual(h,n)*((1+cosd(EWA))/2)+pg*SRActual
(h,n)*((1-cosd(EWA))/2))*AEW*TEW*3.6; 
 
SRWW(h,n)=(IBWW(h,n)+IDActual(h,n)*((1+cosd(WWA))/2)+pg*SRActual
(h,n)*((1-cosd(WWA))/2))*AWW*TWW*3.6; 
    
ST(h,n)=SRSR(h,n)+SRSR1(h,n)+SRSR2(h,n)+SRSW(h,n)+SRNR(h,n)+SRNR
1(h,n)+SRNR2(h,n)+SRNW(h,n)+SREW(h,n)+SRWW(h,n); 
STT=(sum(ST))'; 
end 
end 
 
Outside solar radiation on horizontal surface 
 
function SRActual=outsidesolar(LATD,LON,LST,CCF_1) 
SC=1368;           
pg=0.5;              
%---------------------------Loop over year---------------------% 
 
for n=1:365; 
    B(1,n)=(n-1)*(360/365); 
    IO(1,n)= SC*(1+0.033*cosd(360*(n-3)/365)); 
    ET(1,n)= 229.2*(0.000075+0.001868*cosd(B(1,n))-
0.032077*sind(B(1,n))-.014615*cosd(2*B(1,n))-
0.04089*sind(2*B(1,n))); 
    DA(1,n)=23.45*sind(360*(n+284)/365);        
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     if n<=31 && n>=1 
        TR(1,n)=2.2; 
    elseif n>=32 && n<=59 
        TR(1,n)=2.2; 
    elseif n>=60 && n<=90 
        TR(1,n)=2.5; 
    elseif n>=91 && n<=120 
        TR(1,n)=2.9; 
    elseif n>=121 && n<=151 
        TR(1,n)=3.2; 
    elseif n>=152 && n<=181 
        TR(1,n)=3.4; 
    elseif n>=182 && n<=212 
        TR(1,n)=3.5; 
    elseif n>=213 && n<=243 
        TR(1,n)=3.3; 
    elseif n>=244 && n<=273 
        TR(1,n)=2.9; 
    elseif n>=274 && n<=304 
        TR(1,n)=2.6; 
    elseif n>=305 && n<=334 
        TR(1,n)=2.3; 
    else 
        TR(1,n)=2.2; 
    end 
%-----------------------------Daily loop----------------------% 
for h=1:24 
   p=24*(n-1)+h; 
   tttt(1,p)=p; 
   AST(h,n)=h+(ET(1,n)/60)+(LON-LST)/15; 
   HA(h,n)=15*(AST(h,n)-12); 
   
coz(h,n)=sind(LATD)*sind(DA(1,n))+cosd(LATD)*cosd(DA(1,n))*cosd(
HA(h,n));%Zemith angle 
    ZAD(h,n)=acosd(coz(h,n)); % Zenith angle in degree 
    ab(h,n)=90-ZAD(h,n); 
    abc(h,n)=(0.9+9.4*sind(ab(h,n))); 
    abcd(h,n)=-TR(1,n)/abc(h,n); % Problem in this section 
    std(h,n)=exp(abcd(h,n)); 
    IN(h,n)=IO(1,n)*std(h,n); 
    IN(IN>1360)=0; 
    IN(IN<5)=0;  % kick out negative values 
    IB(h,n)=IN(h,n)*coz(h,n); 
    IB(IB<0)=0;  % kick out negative values 
    ID(h,n)=(1/3)*(IO(1,n)-IN(h,n))*coz(h,n); 
    ID(ID<0)=0;  % kick out negative values 
    SR(h,n)=IB(h,n)+ID(h,n); 
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    SRActual(h,n)=SR(h,n)*(1-0.66*(CCF_1(h,n)/8)^0.63); 
end 
end  
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A.2 MATLAB Code for computer program of Chinese-style solar greenhouse 

Main model 
clear all 
close all 
clc 
%-------------------------Input-----------------------------% 
LATD=52.09; 
LON=-106.82; 
LST=-90; 
LFA=0.66;      %Local factor for solar radiation model 
LFB=0.63;      %Local factor for solar radiation model 
L=30;          %Length of span 
W=7.0;         %Width of span 
Hs=1.4;        %Height from wall to ridge 
HS=2.1;        %Height of north wall 
H=Hs+HS;       %Height at ridge 
A=L*W;         %Total Area of greenhouse 
V=A*HS;        %Volume of greenhouse 
P=2*(L+W);     %Perimeter of the greenhouse 
%--------------- South Roof and south wall------------------% 
SRA=26;         % Angle of inclined south wall 
SRA1=60;         
SRA2=0; 
ASR=180;         %Total area of south roof %%%%%%%%%%%%%%%%%% 
ASR1=35;  
ASR2=0;  
TAR=(ASR+ASR1+ASR2); %Area of the roof cover 
TSR=0.85; 
TLR=0.03; 
emc=0.3;          %Emissivity of the cover 
SWA=90; 
ASW=0;            %Transparent vertical south wall 
ASW1=0;           %Non-transparent vertical south wall 
TSW=0.85; 
%-------------------North roof and wall----------------------% 
NRA=34; 
WNR=((H-HS)/sind(NRA)); %Slope length of north roof 
ANR=L*WNR;              %Area of north roof 
ANW=L*HS;               %Non-transparent north wall 
%--------------------------Side wall--------------------------% 
AEW=26.75;              %Non-transparent east wall 
AWW=AEW;                %Non-transparent west wall 
TASW=AEW+AWW+ASW1; 
%------------------------Cover thermal properties-------------% 
NPR=1;                   %Single layer or multilayer in roof 
K1=0.5;                  %Thermal conductivity of cover 
K2=0.026;                %Thermal conductivity of air 
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L1=0.04;                %Thickness of cover 
ha=3.8;                 %Air thermal conductance 
Kn=0.015;               %Thermal conductivity of night curtain 
Ln=0.02;                %Thickness of night curtain 
%----------------------North wall thermal properties-----------% 
Knw=0.2;            %Thermal conductivity of north-wall material 
Knis=16.0;          %Indoor sheathing material 
Kns=16;             %Outside sheathing material 
Kni=0.033;          %Insulation material 
Kns1=0.1;           %Plywood  
Lnw=0.152;          %Thickness of north-wall material 
Lns1=0.013;         %Siding material (Plywood) 
Lns=0.002;          %Inside sheathing material  
Lni=0.065;          %Insulation material 
anw=0.9;            %Solar absorptivity  
Cpw=920;            %Heat capacity of heat storage material 
adw=2240;           % Mass density of heat storing material 
%----------------------North roof------------------------------% 
Knr=0.33;          %Thermal conductivity vapor barrier 
Knrs=0.1;          %Siding material (plywood) 
Knri=0.033;        %Insulation material 
Lnr=0.00015;       %Thickness of north-roof vapor barrier 
Lnrs=0.013;        %Siding material (plywood) 
Lnri=0.065;        %Insulation material  
%---------------------Sidewall---------------------------------% 
Ksw=0.33;          %Thermal conductivity of vapor barrier 
Ksws=0.1;          % Siding material (plywood) 
Kswi=0.033;        %Insulation material 
Lsw=0.00015;       % Thickness of north-roof vapor barrier 
Lsws=0.013;        %Siding material (plywood) 
Lswi=0.065;        %Insulation material 
%-------------------Set point----------------------------------% 
T_id=21;           %Day time set point temperature 
T_in=18;           %Night time set point temperature  
RH=0.8;            %Indoor relative humidity 
Vi=0.1;            %Indoor air velocity 
%-----------------Lighting, CO2 and air circulation-----------% 
IW=30;             %Install light wattage 
IWZ=0; 
F_sa=1.0;          %Light allowance factor 
F_hc=0.75;         %Heat conversion factor 
  
Pw=300;            %Power rating of motor 
Pwn=300;           %Night time 
Em=0.9;            %Motor efficiency 
MLF=1.0;           %Motor load factor 
MUF=1.0;           %Motor use factor 



220 
 

NF=2;             %Number of fan for air recirculation 
NFR=ceil(NF);      
 
NHV=38;           %Heating value of fuel 
MFR=4.5;          %CO2 flow rate 
MFRN=0;           %Night time C02 supply rate 
PR=2.70;          %KG of CO2/kg of fuel. 
C=0.2778;         %Conversion factor 
%-----------------Others input parameters---------------% 
F=0.5;            %Perimeter heat loss coefficient 
emis=0.9;         %Emissivity of indoor plant and air 
ad=1.2;           %Air density 
Cpa=1005.0;       %Specific heat of air 
CF=0.00025;       %Cover factor 
CFn=CF-CF*0.25; 
WF=0.22;          %Wind factor 
TF=0.16;          %Temperature factor 
Fsr=1.0;          %View factor betn south roof and sky 
Fgsr=(1+cosd(SRA))/2;  
BC=5.6*10^-8;      %Stefen-Boltzman constant 
visco=1.725*10^-5; %Viscosity of air kg/ms 
Pr=(visco*Cpa)/K2; %Prandatl number 
vc=3.67*10^-3;     %Volumetric expansion coefficient 
CLr=TAR/P;         %Characteristics length of surface  
CLsw=HS; 
CLnw=HS; 
CLnr=WNR; 
CLf=(A/P); 
LV=2450000;        %Latent heat of water vaporization 
Mw=adw*(HS*Lnw*L); 
Ms=ads*(A*dxs); 
%----------------Soil and Plant   information-------------% 
K=1.4;              %Thermal conductivity of soil 
as=0.8;             %Solar absorptivity  
Cps=900; 
ads=1300; 
dxs=0.1; 
Tcs=20; 
Zs=3.0;              %Depth of constant soil temperature 
  
Lf=0.027;            %Characteristics length of leaf 
SIP=0.7;             %Solar interception by plant on north wall 
Rs=220*(Lf.^0.2/Vi.^0.8); %Stomatal resistance of plant leaf 
LAI=2.0;             %Leaf area index of   plants 
Ap=A*LAI;            %Surface area of plant 
LEC=0.64;            %Light extinction coefficient of plant 
% ------------------input value of simulation------------------% 
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T_o=xlsread('TMY_saskatoon.xlsx','sheet1','E12:E8771'); % 
Outside temperature 
RH_o=xlsread('TMY_saskatoon.xlsx','sheet1','G12:G8771');% 
Outside temperature 
V_o=xlsread('TMY_saskatoon.xlsx','sheet1','J12:J8771'); %Outside 
air velocity 
CCF=xlsread('TMY_saskatoon.xlsx','sheet1','M12:M8771'); %Cloud 
cover 
 
curtain_on=0; 
curtain_off=1; 
%-------------------Numerical calculation---------------------% 
h=waitbar(0,'Initializing waitbar'); 
Counter1=1; 
for n=1:365; 
    M=n*24; 
    T_O((1:24),n)=T_o(Counter1:M); 
    RH_O((1:24),n)=RH_o(Counter1:M); 
    V_O((1:24),n)=V_o(Counter1:M); 
    CCF_1((1:24),n)=CCF(Counter1:M); 
    GHI_1((1:24),n)=GHI(Counter1:M); 
    Counter1=M+1; 
end 
[ST,SRActual]=solarradyear(LATD,LON,LST,LFA,LFB,SRA,SRA1,SRA2,TS
R,SWA,TSW,ASW,ASR,ASR1,ASR2,CCF_1); 
AA=altitudeangle(LATD,LON,LST); 
ast=reshape(SRActual,8760,1);   
SumSR=sum(SRActual)'; 
SumGHI=sum(GHI_1)'; 
Effective=1.0;   
%----------------SOIL AND WALL TEMPERASTURE---------------% 
for n=1:365; 
    Teo=18; 
    Tew=18; 
    for t=1:24 
       if V_O(t,n)<=1.0 
       V_O(t,n)=1.0; 
       else 
        V_O(t,n)=V_O(t,n); 
       end 
    T_s(t,n)=Tcs; 
    %-----------------North Wall------------------------% 
    Renw(t,n)=(ad*V_O(t,n)*CLnw)/visco; % Reynold number 
    h_onw(t,n)=((K2/CLnw)*0.037*(Renw(t,n)).^0.8*Pr.^0.33);  
    hinw(t,n)=(K2/CLnw)*0.1*(10.^11).^0.33; 
    Unw(t,n)=1/((Lni/Kni)+(Lns1/Kns1)+(Lns/Kns)+(1/h_onw(t,n)));  
    %------------------soil-------------------------------% 
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    hsi(t,n)=(K2/CLf)*0.15*(10.^10).^0.33; 
     
    if ST(t,n)<=0 
        Ti(t,n)=T_in; 
        else 
        Ti(t,n)=T_id;  
    end 
     
 
FSR(t,n)=(W*tand(AA(t,n)))/(HS+W*tand(AA(t,n))); 
STg(t,n)=FSR(t,n)*ST(t,n)*exp(-LEC*LAI); 
PPs(t,n)=((as*STg(t,n))+(hsi(t,n)*Ti(t,n)*A)+((K/Zs)*A*T_s(t,n))
)/(Cps*Ms); 
AAAs(t,n)=((hsi(t,n)*A)+((K/Zs)*A))/(Cps*Ms); 
QQs(t,n)=PPs(t,n)/AAAs(t,n); 
              
for i=1:3600 
    Bts(i,t,n)=QQs(t,n); 
    Ts(i,t,n)=Bts(i,t,n)*(1-exp(-AAAs(t,n)*i))+Teo*exp(-
AAAs(t,n)*i); 
     Teo=Ts(t,n); 
end 
Tsst=Ts(3600,:); 
%-------------------------Wall----------------------------% 
FSN(t,n)=SIP*(HS)/(HS+W*tand(AA(t,n))); 
STw(t,n)=FSN(t,n)*ST(t,n); 
AAA(t,n)=((hinw(t,n)*ANW)+(Unw(t,n)*ANW))/(Cpw*Mw); 
  
PP(t,n)=(anw*STw(t,n)+hinw(t,n)*Ti(t,n)*ANW+Unw(t,n)*T_O(t,n)*AN
W)/(Cpw*Mw); 
QQ(t,n)=PP(t,n)/AAA(t,n); 
 
for i=1:3600 
    Btw(i,t,n)=QQ(t,n); 
    Tw(i,t,n)=Btw(i,t,n)*(1-exp(-AAA(t,n)*i))+Tew*exp(-
AAA(t,n)*i); 
    Tew=Tw(t,n); 
end 
    Twt=Tw(3600,:); 
    End 
End 
 
Counter1=1; 
for nw=1:365; 
M=nw*24; 
T_sst((1:24),nw)=Tsst(Counter1:M); 
T_wt((1:24),nw)=Twt(Counter1:M); 
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Counter1=M+1; 
end 
 
for n=1:365; 
for t=1:24 
Ra(t,n)=200*(1+(1/(exp(0.05*(TSR*0.9*SRActual(t,n)-50))))); 
%---------------------Sidewall-------------------------%      
Resw(t,n)=(ad*V_O(t,n)*CLsw)/visco; % Reynold number 
hisw(t,n)=(K2/CLsw)*0.1*(10.^11).^0.33;    
h_osw(t,n)=((K2/CLsw)*0.037*(Resw(t,n)).^0.8*Pr.^0.33);  
Usw(t,n)=1/((1/hisw(t,n))+(Lsw/Ksw)+(Lswi/Kswi)+(Lsws/Ksws)+(1/h
_osw(t,n)));     
%------------------------North Roof--------------------------% 
Renr(t,n)=(ad*V_O(t,n)*CLnr)/visco; % Reynold number 
hinr(t,n)=(K2/CLnr)*0.1*(10.^11).^0.33; 
h_onr(t,n)=((K2/CLnr)*0.037*(Renr(t,n)).^0.8*Pr.^0.33); 
Unr(t,n)=1/((1/hinr(t,n))+(Lnr/Knr)+(Lnri/Knri)+(Lnrs/Knrs)+(1/h
_onr(t,n))); 
%------------------------Cover temperature--------------------% 
T_c(t,n)=T_O(t,n)+1/8*(Ti(t,n)-T_O(t,n));      
T_ck(t,n)=T_c(t,n)+273.16; 
vt(t,n)=abs(Ti(t,n)-T_c(t,n)); 
      
if vt(t,n)<=1; 
             vt(t,n)=1.0; 
             else 
             vt(t,n)=vt(t,n); 
end 
%-------------------------south Roof---------------------------% 
Rer(t,n)=(ad*V_O(t,n)*CLr)/visco;  
Grr(t,n)=(9.8*vc*CLr.^3*vt(t,n))/(visco).^2;   
Rayr(t,n)=Grr(t,n)*Pr; 
hir(t,n)=(K2/CLr)*0.15*(Rayr(t,n)).^0.33;     
h_or(t,n)=((K2/CLr)*0.037*(Rer(t,n)).^0.8*Pr.^0.33);      
%-------------------Sky temperature----------------------------%   
TD(t,n)=(RH_O(t,n)/100).^0.125*(112+0.9*(T_O(t,n)))+0.1*(T_O(t,n
))-112; %Dew point temperature C 
ec_sky(t,n)=0.787+0.764*log((TD(t,n)+273.16)/273); % Clear sky 
emissivity  
e_sky(t,n)=(1+0.0224*(CCF_1(t,n))-
0.0035*(CCF_1(t,n))^.2+0.00028*(CCF_1(t,n)).^3)*ec_sky(t,n); 
e_sky(e_sky>1)=0.9; 
Tsk(t,n)=(T_O(t,n)+273.16)*e_sky(t,n).^0.25; 
%-----------------------Perimeter heat loss--------------------% 
q_p(t,n)=F*P*(Ti(t,n)-T_O(t,n))*3.6; % 
%--------------------Transpiration heat loss-------------------% 
 Re(t,n)=Ra(t,n)+Rs; 
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 pws(t,n)=(exp(-5.80002206e3/(Ti(t,n)+273)+1.3914993-48.640239e-
3*(Ti(t,n)+273)+41.764768e-6*(Ti(t,n)+273)^2-14.452093e-
9*(Ti(t,n)+273)^3+6.5459673*log(Ti(t,n)+273)))/1000; 
 pw(t,n)=pws(t,n)*RH;    
 w(t,n)=(0.62198*pw(t,n))/(101.325-pw(t,n)); 
 ws(t,n)=(0.62198*pws(t,n))/(101.325-pws(t,n)); 
 Mt(t,n)=(Ap*ad*(ws(t,n)-w(t,n)))/Re(t,n); 
 q_re(t,n)=(Mt(t,n)*LV)*3.6;    
%--------------------Heat gain/loss from soil and wall-------% 
 q_soil(t,n)=(hsi(t,n)*A*(T_sst(t,n)-Ti(t,n)))*3.6; 
 q_wall(t,n)=(hinw(t,n)*ANW*(T_wt(t,n)-Ti(t,n)))*3.6; 
 q_solar(t,n)=Effective*(ST(t,n)-STg(t,n)-STw(t,n)); 
 
if ST(t,n)<=0                          
R(t,n)=(1/hir(t,n)+(Ln/Kn)+NPR*(L1/K1)+(NPR-
1)*(1/ha)+1/h_or(t,n));  
Ur(t,n)=1/R(t,n);                          
q_tr(t,n)=(Ur(t,n)*TAR*(Ti(t,n)-T_O(t,n))+Unr(t,n)*ANR*(Ti(t,n)-
T_O(t,n))+Usw(t,n)*TASW*(Ti(t,n)-T_O(t,n)))*3.6; 
%----------------------------Infiltration----------------------% 
Al(t,n)=TAR*CFn; 
AE(t,n)=Al(t,n)*sqrt(WF.^2*(V_O(t,n)).^2+TF.^2*abs(Ti(t,n)-
T_O(t,n))); 
AEE(t,n)=(AE(t,n)*3600)/V;             
q_vi(t,n)=(ad*AE(t,n)*Cpa*(Ti(t,n)-T_O(t,n)))*3.6;  
%------------------------Long-wave radiation-------------------% 
curtain(t,n)=curtain_on; 
q_rc(t,n)=(BC*emis*TLR*A*Fsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
Tsk(t,n).^4)); 
q_rc1(t,n)=(BC*emc*TAR*Fgsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_r(t,n)=(q_rc(t,n)+q_rc1(t,n))*3.6; 
q_co2(t,n)=3.6*((C*NHV*MFRN*A)/PR);                   
q_m(t,n)=NFR*(Pwn/Em)*MLF*MUF*3.6;    
else 
%--------------------------south Roof--------------------------% 
R(t,n)=(1/hir(t,n)+NPR*(L1/K1)+(NPR-1)*(1/ha)+1/h_or(t,n));            
Ur(t,n)=1/R(t,n);                      
q_tr(t,n)=(Ur(t,n)*TAR*(Ti(t,n)-T_O(t,n))+Unr(t,n)*ANR*(Ti(t,n)-
T_O(t,n))+Usw(t,n)*TASW*(Ti(t,n)-T_O(t,n)))*3.6;            
%------------------------Infiltration-------------------------% 
Al(t,n)=TAR*CF; 
AE(t,n)=Al(t,n)*sqrt(WF.^2*(V_O(t,n)).^2+TF.^2*abs(Ti(t,n)-
T_O(t,n))); 
AEE(t,n)=(AE(t,n)*3600)/V;           
q_vi(t,n)=(ad*AE(t,n)*Cpa*(Ti(t,n)-T_O(t,n)))*3.6;            
%-----------------------Long-wave radiation-------------------% 
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curtain(t,n)=curtain_off; 
q_rc(t,n)=(BC*emis*TLR*A*Fsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
Tsk(t,n).^4)); 
q_rc1(t,n)=(BC*emc*TAR*Fgsr*curtain(t,n)*((Ti(t,n)+273.16).^4-
T_ck(t,n).^4)); 
q_r(t,n)=(q_rc(t,n)+q_rc1(t,n))*3.6; 
%--------------------Heat gain from motor and CO2--------------% 
q_co2(t,n)=3.6*((C*NHV*MFR*A)/PR);      
q_m(t,n)=NFR*(Pw/Em)*MLF*MUF*3.6;   
%---------------------Supplemental lighting option-------------% 
STSL(t,n)=ST(t,n)/A; 
     if STSL(t,n)<250 
           SW(t,n)=IW; 
           q_sl(t,n)=SW(t,n)*A*F_hc*F_sa*3.6; 
     else  
           SW(t,n)=IWZ; 
           q_sl(t,n)=SW(t,n)*A*F_hc*F_sa*3.6; 
     end 
     if t>=22 
         q_sll(t,n)=0; 
     elseif t<=7 
         q_sll(t,n)=0; 
          
     else 
         q_sll(t,n)=q_sl(t,n); 
     end 
 
 q=q_tr+q_r+q_p+q_vi+q_re-q_soil-q_wall-q_solar-q_co2-q_sll-q_m; 
     
    q_trsum=sum(q_tr.*(q_tr>0))'; % only sum the positive value 
    q_rsum=sum(q_r.*(q_r>0))'; 
    q_psum=sum(q_p.*(q_p>0))'; 
    q_resum=sum(q_re)'; 
    q_visum=sum(q_vi.*(q_vi>0))'; 
    q_solarsum=sum(q_solar.*(q_solar>0))'; 
    q_soilsum=sum(q_soil.*(q_soil>0))'; 
    q_wallsum=sum(q_wall.*(q_wall>0)) 
    q_slsum=sum(q_sl)'; 
    q_co2sum=sum(q_co2)'; 
    q_msum=sum(q_m)'; 
    q_heatsum=sum(q.*(q>0))'; 
    end 
end 
 
 
for i=1:365; 
    if i==1; 
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        Q_T=q(:,i); 
        AEE_T=AEE(:,i); 
    else 
        Q_T=[Q_T;q(:,i)]; 
        AEE_T=[AEE_T;AEE(:,i)]; 
    end 
     waitbar(0.5,h,'Halfway there...') 
end 
Q=(Q_T); 
tt=[1:365*24]; 
HH=tt; 
plot(HH,Q/1000,'r','linewidth',0.1); 
xlabel('Time,hr','fontweight','bold') 
ylabel('Energy Requirement,MJ/hr','fontweight','bold') 
close(h) 
 
Solar radiation sub-model 
 
function 
[ST,SRActual]=solarradyear(LATD,LON,LST,LFA,LFB,SRA,SRA1,SRA2,TS
R,SWA,TSW,ASW,ASR,ASR1,ASR2,CCF_1)      
SC=1368;            %Solar constant (W/m^2) 
SASR=0; 
SASW=0; 
pg=0.5;             %reflectivity of the ground 
%--------------Loop over year------------------------------% 
for n=1:365; 
B(1,n)=(n-1)*(360/365); 
IO(1,n)= SC*(1+0.033*cosd(360*(n-3)/365));       %    ET(1,n)= 
229.2*(0.000075+0.001868*cosd(B(1,n))-0.032077*sind(B(1,n))-
.014615*cosd(2*B(1,n))-0.04089*sind(2*B(1,n)));        
DA(1,n)=23.45*sind(360*(n+284)/365);            
    if n<=31 && n>=1 
        TR(1,n)=2.2; 
    elseif n>=32 && n<=59 
        TR(1,n)=2.2; 
    elseif n>=60 && n<=90 
        TR(1,n)=2.5; 
    elseif n>=91 && n<=120 
        TR(1,n)=2.9; 
    elseif n>=121 && n<=151 
        TR(1,n)=3.2; 
    elseif n>=152 && n<=181 
        TR(1,n)=3.4; 
    elseif n>=182 && n<=212 
        TR(1,n)=3.5; 
    elseif n>=213 && n<=243 
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        TR(1,n)=3.3; 
    elseif n>=244 && n<=273 
        TR(1,n)=2.9; 
    elseif n>=274 && n<=304 
        TR(1,n)=2.6; 
    elseif n>=305 && n<=334 
        TR(1,n)=2.3; 
    else 
        TR(1,n)=2.2; 
    end 
%------------------------Daily loop--------------------------% 
for h=1:24 
    p=24*(n-1)+h; 
    tttt(1,p)=p; 
    AST(h,n)=h+(ET(1,n)/60)+(LON-LST)/15; 
    HA(h,n)=15*(AST(h,n)-12);      
coz(h,n)=sind(LATD)*sind(DA(1,n))+cosd(LATD)*cosd(DA(1,n))*cosd(
HA(h,n));           
ZAD(h,n)=acosd(coz(h,n)); % Zenith angle in degree 
coisr(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA)-
sind(DA(1,n))*cosd(LATD)*sind(SRA)*cosd(SASR)+cosd(DA(1,n))*cosd
(LATD)*cosd(SRA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(SRA
)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA)*sind(SASR)*si
nd(HA(h,n)); 
 
coisr1(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA1)-
sind(DA(1,n))*cosd(LATD)*sind(SRA1)*cosd(SASR)+cosd(DA(1,n))*cos
d(LATD)*cosd(SRA1)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(S
RA1)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA1)*sind(SASR
)*sind(HA(h,n)); 
 
coisr2(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SRA2)-
sind(DA(1,n))*cosd(LATD)*sind(SRA2)*cosd(SASR)+cosd(DA(1,n))*cos
d(LATD)*cosd(SRA2)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(S
RA2)*cosd(SASR)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SRA2)*sind(SASR
)*sind(HA(h,n)); 
 
coisw(h,n)=sind(DA(1,n))*sind(LATD)*cosd(SWA)-
sind(DA(1,n))*cosd(LATD)*sind(SWA)*cosd(SASW)+cosd(DA(1,n))*cosd
(LATD)*cosd(SWA)*cosd(HA(h,n))+cosd(DA(1,n))*sind(LATD)*sind(SWA
)*cosd(SASW)*cosd(HA(h,n))+cosd(DA(1,n))*sind(SWA)*sind(SASW)*si
nd(HA(h,n)); 
    RBSR(h,n)=coisr(h,n)/coz(h,n); 
    RBSR1(h,n)=coisr1(h,n)/coz(h,n); 
    RBSR2(h,n)=coisr2(h,n)/coz(h,n); 
    RBSW(h,n)=coisw(h,n)/coz(h,n); 
    ab(h,n)=90-ZAD(h,n); 
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    abc(h,n)=(0.9+9.4*sind(ab(h,n))); 
    abcd(h,n)=-TR(1,n)/abc(h,n); % Problem in this section 
    std(h,n)=exp(abcd(h,n)); 
    IN(h,n)=IO(1,n)*std(h,n); 
    IN(IN>1360)=0; 
    IN(IN<1)=0; 
    IN(IN<0)=0;  % kick out negative values 
    IB(h,n)=IN(h,n)*coz(h,n); 
    IB(IB<0)=0;  % kick out negative values 
    ID(h,n)=(1/3)*(IO(1,n)-IN(h,n))*coz(h,n); 
    ID(ID<0)=0;  % kick out negative values 
    SR(h,n)=IB(h,n)+ID(h,n); 
    SRActual(h,n)=SR(h,n)*(1-LFA*(CCF_1(h,n)/8)^LFB); 
    IDActual(h,n)=SRActual(h,n)*(0.3+0.7*(CCF_1(h,n)/8)^2); 
    IBActual(h,n)=SRActual(h,n)-IDActual(h,n); 
    IBSR(h,n)=IBActual(h,n)*RBSR(h,n); 
    IBSR(IBSR<0)=0; 
    IBSR1(h,n)=IBActual(h,n)*RBSR1(h,n); 
    IBSR1(IBSR1<0)=0; 
    IBSR2(h,n)=IBActual(h,n)*RBSR2(h,n); 
    IBSR2(IBSR2<0)=0; 
    IBSW(h,n)=IBActual(h,n)*RBSW(h,n); 
    IBSW(IBSW<0)=0; 
   
TotalBeam(h,n)=IBSR(h,n)*(ASR*TSR*3.6)+IBSR1(h,n)*(ASR1*TSR*3.6)
+IBSR2(h,n)*(ASR2*TSR*3.6)+IBSW(h,n)*(ASW*TSW*3.6); 
    % Diffused 
    IDSR(h,n)=IDActual(h,n)*((1+cosd(SRA))/2); 
    IFSR(h,n)=pg*SRActual(h,n)*((1-cosd(SRA))/2); 
    IDSR1(h,n)=IDActual(h,n)*((1+cosd(SRA1))/2); 
    IFSR1(h,n)=pg*SRActual(h,n)*((1-cosd(SRA1))/2); 
    IDSR2(h,n)=IDActual(h,n)*((1+cosd(SRA2))/2); 
    IFSR2(h,n)=pg*SRActual(h,n)*((1-cosd(SRA2))/2); 
    IDSW(h,n)=IDActual(h,n)*((1+cosd(SWA))/2); 
    IFSW(h,n)=pg*SRActual(h,n)*((1-cosd(SWA))/2); 
    
TotalDiffuse(h,n)=(IDSR(h,n)+IFSR(h,n))*(ASR*TSR*3.6)+(IDSR1(h,n
)+IFSR1(h,n))*(ASR1*TSR*3.6)+(IDSR2(h,n)+IFSR2(h,n))*(ASR2*TSR*3
.6)+(IDSW(h,n)+IFSW(h,n))*(ASW*TSW*3.6); 
    %%%%%%%%%%%%%%%%%%%% 
    ST(h,n)=TotalBeam(h,n)+TotalDiffuse(h,n); 
end 
end 
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