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Abstract

In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications.
The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem.
Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times,
travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with mul-
tiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles.
The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go
from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement
approaches based on the idea of changing the neighbourhood structure during the search.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study a rich vehicle routing
problem incorporating various complexities found
in real-life applications. The General Vehicle Rout-
ing Problem (GVRP) is a combined load acceptance
and routing problem which generalises the well-
known Vehicle Routing Problem (VRP) and Pickup

and Delivery Problem (PDP). Among the real-life
requirements are time window restrictions, a hetero-
geneous vehicle fleet with different travel times, tra-
vel costs and capacity, multi-dimensional capacity

constraints, order/vehicle compatibility constraints,
orders with multiple pickup, delivery and service
locations, different start and end locations for vehi-
cles, and route restrictions for vehicles.

This work is motivated by a practical problem
arising in air-cargo transport. Within Europe most
of the air-cargo is transported by so-called Road

Feeder Services (RFS), i.e., the transport is done
on roads, see Heckmann (2002). Although schedules
for air-cargo transport are made long before the
transport has to begin, the actual demand is not
known until shortly before. Therefore, airlines
request additional transportation resources or can-
cel transportation requests only shortly before they
are supposed to begin. As a result, operators of RFS
not only have to consider the various real-life
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requirements, but also the fact that input data may
change dynamically. Algorithms used in interactive
dynamic planning systems to support the dispatch-
ers must have very fast response times, i.e., the time
an algorithm needs for one iteration must be very
short. Otherwise, a new solution for a dynamic
problem can not be applied if the problem data have
changed during the time required for calculation.
The heuristics presented in this paper are character-
ised by very fast response times and can be used in
interactive dynamic planning systems.

This paper is organised as follows. First, we dis-
cuss related work in Section 2. In Section 3 we ver-
bally describe the GVRP and give a mathematical
formulation in Section 4. Then, we present iterative
improvement approaches based on the idea of
changing the neighbourhood structure during the
search. In Section 5 we propose a Reduced Variable
Neighbourhood Search approach which is based on
various elementary neighbourhood operators. In
Section 6 we propose a Large Neighbourhood
Search approach which uses fast insertion methods
in order to guarantee fast response times required
in dynamic planning. Eventually, we present com-
putational results in Section 7.

2. Related work

The problem considered in this paper is a gener-
alisation of the Vehicle Routing Problem (VRP) and
the Pickup and Delivery Problem (PDP), see Cor-
deau et al. (2004), Mitrović-Minić (1998) and sec-
ondary literature given there. The most widely
studied vehicle routing problems are the capacitated
VRP and the Vehicle Routing Problem with Time

Windows (VRPTW) which are surveyed by Laporte
and Semet (2002), and Cordeau et al. (2002).

Efficient methods for handling complex side con-
straints in insertion methods are presented in Camp-
bell and Savelsbergh (2004). Comprehensive surveys
on construction methods, neighbourhood search
methods, and metaheuristics for the VRPTW are
given by Bräysy and Gendreau (2005a), and Bräysy
and Gendreau (2005b).

Variable Neighbourhood Search (VNS) is a
metaheuristic based on the idea of systematically
changing the neighbourhood structure during the
search, see Mladenović and Hansen (1997), and
Hansen and Mladenović (2003). VNS systematically
exploits the following observations: (a) a local opti-
mum with respect to one neighbourhood structure is
not necessary so for another; (b) a global optimum

is a local optimum with respect to all possible neigh-
bourhood structures; (c) for many problems local
optima with respect to one or several neighbour-
hoods are relatively close to each other. A recent
example of a VNS algorithm for vehicle routing
problems is the algorithm for the multi-depot
VRPTW presented by Polacek et al. (2004). Large
Neighbourhood Search (LNS) has been introduced
for the VRPTW by Shaw (1997) and can be inter-
preted as a special case of VNS. Kilby et al.
(2000) have shown that LNS is well suited for rich
VRP.

In many cases it is assumed that transportation
requests are accepted before planning begins and
tours are generated assuming that all accepted
transportation requests must be served. Work
regarding load acceptance issues for the Travelling

Salesman Problem (TSP) has been surveyed by Feil-
let et al. (2005), but only few attempts have been
made to tackle extensions of this problem, for exam-
ple, by Schönberger et al. (2002). VRP with multiple
pickup and delivery locations have been studied by
Savelsbergh and Sol (1995), Savelsbergh and Sol
(1998), and Hasle (2003).

A comprehensive discussion of dynamic vehicle
routing can be found in Psaraftis (1988), and Psaraf-
tis (1995). Dynamic real-life problems often require
rich models, in most of the literature on dynamic
routing problems, however, some simplifying
assumptions are made. For example, in the dynamic
full-truckload PDP, which recently has received
increasing attention, see Fleischmann et al. (2004),
Yang et al. (2004), and Powell et al. (2000), each
vehicle can only carry one transportation request
at a time and cannot load further shipments until
all currently loaded shipments are unloaded. The
only work known to the authors regarding rich
VRP in a dynamic context is presented by Savels-
bergh and Sol (1998). A column generation
approach is used to solve the General Pickup and

Delivery Problem (GPDP) presented by Savelsbergh
and Sol (1995).

3. Problem formulation

In the General Vehicle Routing Problem (GVRP)
a transportation request is specified by a nonempty
set of pickup, delivery and/or service locations
which have to be visited in a particular sequence
by the same vehicle, the time windows in which
these locations have to be visited, and the revenue
gained when the transportation request is served.
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Furthermore, some characteristics can be specified
which constrain the possibility of assigning the
transportation requests to certain vehicles due to
compatibility constraints and capacity constraints.
At each of the locations some shipment(s) with sev-
eral describing attributes can be loaded or
unloaded. In contrast to many other commonly
known routing problems, not all transportation
requests have to be assigned to a vehicle. Instead,
a so-called make-or-buy decision is necessary to
determine whether a transportation request should
be assigned to a self-operated vehicle (make) or
not (buy).

A fleet of heterogeneous vehicles is available to
serve the transportation requests. The vehicles can
have different capacities, as well as different travel
times and travel costs between locations. The vehi-
cles can transport shipments which require some
of the capacity the vehicle supplies. Instead of
assuming that each vehicle becomes available at a
central depot, each vehicle is given a start location
where it becomes available at a specific time and
with a specific load. Furthermore, the vehicles do
not have to return to a central depot and for each
vehicle a final location is specified, which has to be
reached within a specific time and with a specific
load. Each vehicle may have to visit some locations
in a particular sequence between leaving its start
and reaching its final location. All locations have
to be visited within a specific time window. If the
vehicle reaches one of these locations before the
begin of the time window, it has to wait.

A tour of a vehicle is a journey starting at the
vehicles start location and ending at its final loca-
tion, passing all other locations the vehicle has to
visit in the correct sequence, and passing all loca-
tions belonging to each transportation request
assigned to the vehicle in the correct respective
sequence. A tour is feasible if and only if for all
orders assigned to the tour compatibility constraints
hold and at each point in the tour time window and
capacity restrictions hold. The objective is to find
distinct feasible tours maximising the profit, which
is determined by the accumulated revenue of all
served transportation requests, reduced by the accu-
mulated costs for operating these tours.

4. Mathematical formulation

Let O denote the set of transportation requests
(orders) and V denote the set of vehicles. For all
o 2 O let lðo;1Þ; . . . ; lðo;koÞ denote the locations

belonging to order o 2 O and for 1 6 l 6 ko let
nðo;lÞ denote a node corresponding to lðo;lÞ. For all
v 2V let lðv;1Þ; . . . ; lðv;kvÞ denote the locations which
have to be visited by vehicle v 2V, i.e., the start
and end location of the tour as well as possible
interim locations. For 1 6 l 6 kv let nðv;lÞ denote a
node corresponding to lðv;lÞ. Let

N :¼
[
o2O
fnðo;lÞj1 6 l 6 kog [

[
v2V
fnðv;lÞj1 6 l 6 kvg

and

A :¼N�N n fðn; nÞjn 2Ng:
Note that different nodes n 2N may correspond to
the same geographical location.

For each node n 2N lower and upper bounds
specifying the time windows are denoted by tmin

n

and tmax
n . For each vehicle v 2V the travel time

for an arc ðn;mÞ 2A including some possible ser-
vice time at node n is denoted by dv

nm. For each vehi-
cle v 2V the cost for travelling from node n 2N to
node m 2N is denoted by cv

nm. For each order
o 2 O the revenue gained when the order is served
is denoted by po. Let dov denote whether order
o 2 O may be served by vehicle v 2V ðdov ¼ 1Þ,
or not ðdov ¼ 0Þ. Every vehicle supplies some (typi-
cally multi-dimensional) non-negative resource rv

(the capacity). At every node some shipments may
be loaded or unloaded which require or release a
certain amount of the resource the vehicle supplies.
For every n 2N let rn denote the (typically multi-
dimensional) amount of resource requirements for
the shipments loaded or unloaded at the node. All
operations on resource requirements and supply like
summation or comparison can be understood ele-
ment wise. If a shipment is loaded rn is non-nega-
tive, if it is unloaded rn is non-positive.

Definition. A sequence of distinct nodes
h ¼ ðn1; . . . ; nkÞ is a tour of a vehicle v 2V if and
only if

• n1 ¼ nðv;1Þ and nk ¼ nðv;kvÞ,
• there exists a subset Oh � O with

fn1; . . . ; nkg ¼ fnðv;1Þ; . . . ; nðv;kvÞg

[
[

o2Oh

fnðo;1Þ; . . . ; nðo;koÞg

• there exist times tn1
; . . . ; tnk

such that

tni þ dv
niniþ1
6 tniþ1

for all 1 6 i < k

and
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tnðv;iÞ 6 tnðv;iþ1Þ for all 1 6 i < kv

and

tnðo;iÞ 6 tnðo;iþ1Þ for all o 2 Oh; 1 6 i < ko:

Definition. A tour h ¼ ðn1; . . . ; nkÞ of a vehicle
v 2V is feasible if and only if

• tmin
ni
6 tni 6 tmax

ni
for all 1 6 i 6 k,

• 0 6
Pi

j¼1rnj 6 rv for all 1 6 i 6 k and
• dov ¼ 1 for all o 2 Oh.

The GVRP is the problem of finding distinct
feasible tours maximising the profit determined by
the accumulated revenue of all orders served by a
vehicle reduced by the cost for operating the tours.

The GVRP can be modelled using the binary
variables xv

nm and yv
n. xv

nm indicates whether m 2N
is visited immediately after node n 2N by vehicle
v 2V ðxv

nm ¼ 1Þ, or not ðxv
nm ¼ 0Þ. yv

n indicates
whether node n 2N is visited by vehicle v 2V
ðyv

n ¼ 1Þ, or not ðyv
n ¼ 0Þ. For each node n 2N

the GVRP contains the variables tn and qn. If node
n 2N is visited by a vehicle tn specifies the arrival
time and qn specifies the current load of the vehicle.
If no vehicle visits node n 2N both tn and qn are
without any meaning.

The contribution of each vehicle v 2V to the
objective function isX
o2O

yv
nðo;1Þ

po �
X
ðn;mÞ2A

xv
nmcv

nm:

The first term represents the accumulated reve-
nue of served orders, the second term represents
the accumulated costs for vehicle movements.

The GVRP is

maximise
X
v2V

X
o2O

yv
nðo;1Þ

po �
X
ðn;mÞ2A

xv
nmcv

nm

 !
ð1Þ

subject toX
ðn;mÞ2A

xv
nm ¼

X
ðm;nÞ2A

xv
mn for all v 2V; n 2N

ð2Þ

yv
n ¼

X
ðn;mÞ2A

xv
nm for all v 2V; n 2N ð3aÞ

X
v2V

yv
n 6 1 for all n 2N ð3bÞ

for all v 2V; ðn;mÞ 2A with n 6¼ nðv;kvÞ :
if xv

nm ¼ 1 then tn þ dv
nm 6 tm ð4aÞ

tmin
n 6 tn 6 tmax

n for all n 2N ð4bÞ

tnðv;lÞ 6 tnðv;lþ1Þ for all v 2V; 1 6 l < kv ð5aÞ
tnðo;lÞ 6 tnðo;lþ1Þ for all o 2 O; 1 6 l < ko ð5bÞ

yv
nðv;lÞ
¼ 1 for all v 2V; 1 6 l 6 kv ð6aÞ

Xko

l¼1

yv
nðo;lÞ
¼ koyv

nðo;1Þ
for all o 2 O; v 2V ð6bÞ

qnðv;1Þ
¼ rnðv;1Þ for all v 2V ð7aÞ

for all v 2V; ðn;mÞ 2A with n 6¼ nðv;kvÞ :

if xv
nm ¼ 1 then qm ¼ qn þ rm ð7bÞ

for all v 2V; n 2N : if yv
n ¼ 1 then 0 6 qn 6 rv

ð7cÞ

yv
nðo;1Þ
6 dov for all o 2 O; v 2V ð8Þ

xv
nm 2 f0; 1g for all v 2V; ðn;mÞ 2A; ð9Þ

yv
n 2 f0; 1g for all v 2V; n 2N ð10Þ

The objective function is represented by (1). Eq.
(2) represents the flow conservation constraints
which impose that each vehicle which reaches a
node n 2N also departs from the node. Con-
straints (3a) and (3b) impose that each node is vis-
ited at most once. Inequality (4a) imposes that
each node which is not the starting point of a tour
is reached no earlier than the preceding node plus
the time required to travel from the preceding node
to the node. Inequality (4b) impose that each arrival
time is within the time windows of the node. Con-
straints (5a) and (5b) are the precedence constraints
imposed on the sequence in which nodes associated
to vehicles and orders are visited. Eq. (6a) imposes
that all nodes which must be visited by a vehicle
are visited by this vehicle. Eq. (6b) represents the
grouping constraint which imposes that, if the first
node of an order is visited by some vehicle, all other
nodes belonging to the order are visited by the same
vehicle. Constraints (7a) to (7c) are the capacity
constraints which impose that the load at each node
equals the load at the preceding node plus the addi-
tional load at the node and that at each node the
load is below the capacity of the vehicle and non-
negative. Inequality (8) represents the compatibility
constraint which imposes that orders are only
assigned to vehicles capable of serving the order.
Finally, constraints (9) and (10) impose that the val-
ues of xv

nm and yv
n are binary.

The purpose of this mathematical formulation is
to give a precise description of the problem. For
many practical instances the number of variables
and constraints is obviously too large to solve the
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instance with a standard mixed integer program-
ming solver. For example, an instance of a vehicle
routing problem with 10 vehicles and 100 customers
has jNj ¼ 120 nodes and jAj ¼ jNj � ðjNj � 1Þ ¼
14280 arcs. Therefore, it has 142800 binary vari-
ables xv

nm and even more constraints. As standard
mixed integer programming solver cannot be used
to solve problems of this size, this paper presents
heuristic approaches for determining feasible solu-
tions of high quality by iteratively improving the
current (feasible) solution. The heuristics presented
in this paper make use of the following assumptions:

for all v2V : ðnðv;1Þ;nðv;2Þ . . . ;nðv;kvÞÞ is a feasible tour

ðA1Þ

and

for all o 2 O :
Xi

l¼1

rnðo;lÞ P 0 for all 1 6 i 6 ko:

ðA2Þ

Assumption (A1) guarantees that all initial tours
are feasible. Assumption (A2) guarantees that all
loads which are delivered to a location belonging
to some order o 2 O are picked up at a preceding
location belonging to the same order.

5. Reduced Variable Neighbourhood Search

This section presents an algorithm following the
Reduced Variable Neighbourhood Search (RVNS)
scheme described in Hansen and Mladenović
(2003). The RVNS algorithm changes the neigh-
bourhood structure during the search by selecting
different neighbourhoods defined by the following
elementary neighbourhood operators:

INSERT: The INSERT-operator randomly
chooses an unscheduled order and inserts
it to the tour of the vehicle with lowest
incremental costs. If the order cannot be
feasibly inserted the current solution is
not changed.

REMOVE: The REMOVE-operator randomly
chooses a scheduled order and removes it
from the tour it is assigned to.

RELOCATE: The RELOCATE-operator ran-
domly chooses a scheduled order and re-
moves it from the tour it is assigned to.
The order is inserted to the tour of the vehi-
cle with lowest incremental costs.

REPLACE: The REPLACE-operator randomly
chooses an order o1 and removes it from
its tour if it is scheduled. Another order
o2 assigned to a vehicle v is chosen and re-
moved from its tour. Then, order o1 is in-
serted to the tour of vehicle v. If o1

cannot be feasibly inserted the current solu-
tion is not changed.

SWAP: The SWAP-operator randomly chooses
two scheduled orders o1 and o2. It removes
both from their tour and inserts them to the
respective other tour. If either o1 or o2 can-
not be feasibly inserted the current solution
is not changed.

Given the neighbourhood structures defined by
these operators, the RVNS algorithm can be out-
lined as illustrated in Fig. 1.

The algorithm starts with the determination of an
initial solution s. Until a stopping criterion is met,
e.g. the maximum computing time, the RVNS algo-
rithm repeats the following steps. First, the next
neighbourhood NVNS

k ðsÞ to be considered is chosen
randomly. Then, a new solution s� 2 NVNS

k ðsÞ is gen-
erated. This new found solution s� is accepted as the

Fig. 1. Reduced Variable Neighbourhood Search.
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next current solution if the objective value is
improved.

6. Large Neighbourhood Search

This section presents a Large Neighbourhood
Search (LNS) algorithm for the GVRP. Let s denote
a feasible solution of the GVRP and let jOsj denote
the number of transportation requests which are
assigned to the tour of some vehicle. For each solu-
tion s let NLNS

k ðsÞ denote the kth neighbourhood of s

which is defined by removing k transportation
requests from their tours. The LNS algorithm can
be outlined as illustrated in Fig. 2.

The algorithm starts with an initial solution s

which can be obtained by any tour construction
method. In each iteration the number k of transpor-
tation requests to be removed is chosen. Then, k

transportation requests are removed from the tours
they are currently assigned to. A new solution s� is
generated by re-inserting unscheduled transporta-
tion requests. The new solution is accepted as the
next current solution if the objective value is
improved. If no stopping condition is met, the algo-
rithm continues with the next iteration.

The choice of the next neighbourhood is, differ-
ently as proposed in Hansen and Mladenović
(2003), completely undetermined. The probability
that a better solution can be found is strongly con-
nected to the choice of the neighbourhood N LNS

k ðsÞ.
If k is too small, the solutions which can be found
by an LNS move will be very similar to the current
solution. If k is too large, the insertion method may
need too much time and the new solution found
may not be much better than a solution generated
from scratch. As the problem considered in this
paper is dynamic, data may have changed between
two iterations. Therefore, it is not clear how to

change k effectively and we choose it randomly in
our implementation.

6.1. Removals

The goal of removing transportation requests in
step 2 of the LNS method is to generate an auspi-
cious interim solution such that the insertion method
can find a new solution with better quality. Trans-
portation requests can be removed randomly from
the tours, but in this case, some of them may not
be related to each other in any way. Hence, the re-
insertions of these transportation requests are inde-
pendent of another and the same effect can be
achieved by removing less transportation requests
and performing the re-insertions sequentially.

For the VRP Shaw (1997) propose a relatedness
measure based on geographical closeness of cus-
tomer locations. A concept similar to geographical
closeness in the VRP, however, does not exist for
the GVRP, as transportation requests may have
multiple pickup, delivery and/or service locations.
If geographical closeness cannot be used, the ques-
tion is how to define a relatedness measure for our
problem. We want to increase the probability that
a transportation request which is removed from
the tour of a vehicle allows another transportation
request to take its ‘‘place’’. Therefore, we propose
a tour dependent relatedness measure. An order
assigned to the tour of a vehicle which is not suited
for an unscheduled order cannot be regarded related
to the latter. An order assigned to the tour of a vehi-
cle which is suited for an unscheduled order can be
regarded related if the unscheduled order o ‘‘fits’’ to
the part of the tour currently occupied by the
former.

We propose to determine the relatedness measure
as illustrated in the examples in Fig. 3. In the illus-

Fig. 2. Large Neighbourhood Search.
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tration represents node nðo;1Þ and represents
node nðo;koÞ. To determine the relatedness value of
a scheduled order (represented by nodes and

in the illustration), we do not directly regard
the scheduled order itself, but its preceding and suc-
ceeding point in the tour. Let n� and nþ denote the
predecessor and successor of the scheduled order.
Now determine all sequences h ¼ ðn1; . . . ; nkoþ2Þ
containing the subsequences ðn�; nþÞ and ðnðo;1Þ;
. . . ; nðo;koÞÞ such that there exist arrival times
tn1
; . . . ; tnkoþ2

with

tni þ dv
niniþ1
6 tniþ1

for all 1 6 i < ko þ 2

and

tmin
ni
6 tni 6 tmax

ni
for all 1 6 i 6 ko þ 2:

Obviously, there may be various such sequences.
Let us consider the sequence h ¼ ðn1; . . . ; nkoþ2Þ with
least costs

ch :¼
Xi<koþ2

i¼1

cv
niniþ1

:

If, as in examples 1–3 of Fig. 3, nþ is visited after
nðo;1Þ and n� is visited before nðo;koÞ the relatedness
value is

relatedness value :¼ ch � cv
n1nkoþ2

:

Otherwise, n� is visited after nðo;koÞ or nþ is visited
before nðo;1Þ, as shown in example 4 of Fig. 3. If nþ is
visited before nðo;1Þ the scheduled order is not
regarded related to the unscheduled order if the
removal from the tour would not allow nþ to be vis-
ited earlier. Analogously, if n� is visited after nðo;koÞ
the scheduled order is not regarded related to the
unscheduled order if the removal from the tour
would not allow n� to be visited later. Otherwise,
the relatedness value is the cost for travelling from
nþ to nðo;1Þ or from nðo;koÞ to n�.

A small relatedness value indicates that the
unscheduled order would be an auspicious candi-

Fig. 3. Determination of relatedness values.

Fig. 4. Removal of transportation requests using the relatedness measure.
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date for insertion if the considered scheduled order
was removed from the tour. Using this relatedness
measure we can implement step 2 of the LNS
method as illustrated in Fig. 4.

First, a randomly chosen transportation request
is removed from some tour. Then, an unscheduled
transportation request is chosen randomly and for
all scheduled transportation requests the relatedness
value is determined. The related transportation
requests are ranked according to their relatedness
value and some of them with high rank are chosen
to be removed from the tour.

6.2. Insertions

In order to guarantee fast response times
required in dynamic planning, we propose to use
fast insertion heuristics to generate new solutions
in step 3 of the LNS method. The auction method
for the VRPTW proposed by Antes and Derigs
(1995) can be easily modified in order to consider
the various real-life requirements found in the
GVRP.

The (local) efficiency of an insertion is deter-
mined by the difference between the revenue of the
inserted order and the incremental cost for inser-
tion. We say that an insertion possibility is efficient

if the incremental cost is smaller than the revenue of
the order. If no feasible insertion is possible an infi-
nite incremental cost is assumed.

Each iteration of the auction method can be
divided into three phases which are illustrated in
Fig. 5. In the first phase all unscheduled orders
request and receive from each suitable vehicle an
insertion possibility and the efficiency of insertion.
In the second phase each unscheduled order, which
did receive an efficient insertion possibility, chooses

a vehicle with low incremental costs and sends a
proposal for insertion to this vehicle. In phase three
each vehicle which received a proposal chooses an
order with high efficiency to be inserted to the tour.
The method stops if no order can be efficiently
inserted and continues otherwise with the next
iteration.

7. Computational experiments

In order to evaluate our algorithms, test prob-
lems have been generated incorporating most of
the complexities found in the dynamic real-life
problem. In our problem the carrier has to transport
shipments between European airports. We assumed
a frequency distribution of pickups and deliveries at
these airports as illustrated in Fig. 6. The frequency
of pickups and deliveries at the airports is indicated
by the size of the circle. Most of the shipments have
to be picked up or delivered to an airport in the
region between Paris, Düsseldorf, and Frankfurt.
Some shipments, however, have very remote origins
or destinations, for example Florence, Dublin,
Gothenburg, and Helsinki.

A heterogeneous vehicle fleet has been generated
where some of the vehicles have refrigerated cargo
bodies and some are manned by two drivers. We
assume that all vehicles are en-route when planning
starts and each vehicle becomes available at one of
the airports during some time of the day. All vehi-
cles eventually have to return to the depot in
Frankfurt.

We randomly generated shipments such that the
frequency distribution illustrated in Fig. 6 is
achieved. Transportation requests have been gener-
ated by choosing one full or half truckload shipment
or by combining two half truckload shipments with

Fig. 5. Illustration of the auction method.
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identical pickup or delivery location. Some of the
transportation requests require a vehicle with refrig-
erated cargo body, some require a vehicle manned
by two drivers.

Travel distances are based on the direct distances
between the airports. As in the real-life problem,
they are multiplied by 1.3 to consider the average
deviation occurring in road transport. Travel costs
are proportional to the travel distance. Vehicles
with refrigerated cargo bodies and vehicles manned
by two drivers are more expensive than vehicles with
standard cargo bodies and those manned by one
driver. The revenue of the transportation requests
is set to double the costs of the cheapest vehicle
capable of transporting the shipments. That is, the
shippers are not only willing to pay for the transport
itself, but also for the return trip to the start
location.

For our test cases we generated jVj vehicles and
transportation request which become known at
some time during our simulation of 10 hours. In
the beginning only jO0j orders are known to the car-
rier and every hour jOtj new orders become known.
For all orders we set the length of the time windows
at each location to the same value s, i.e., either
2 hours or 12 hours.

In our simulations the algorithms were only
allowed 60 seconds of computing time per timestep
(representing one hour in our simulation scenario)
on a personal computer with Intel Pentium 4 pro-
cessor with 3.00 GHz. All decisions taken in a pre-

ceding timestep may be revised in a subsequent
timestep. However, at the end of each timestep all
unscheduled transportation requests are assumed
to be rejected or subcontracted by external carriers,
i.e., whenever a transportation request is not
assigned to the tour of a vehicle at the end of a time-
step the transportation request is removed from the
model. With the beginning of a new timestep the
start location of every vehicle is updated in order
to consider the vehicle’s movement. Whenever the
first location belonging to a transportation request
is visited by a vehicle the transportation request is
removed from the model and the corresponding
locations are added to the sequence of locations
the vehicle must visit before reaching the final loca-
tion of the tour. New transportation requests are
added to the model in the beginning of each time-
step and are inserted to the tours by the auction
method before the Reduced Variable Neighbour-
hood Search or Large Neighbourhood Search
method is invoked.

Table 1 shows the results of our computational
experiments on the instances p1–p24. The average
values of the objective function values obtained by
multiple runs of our heuristics are listed in column
AVG(f) and the standard deviation in column r.
The LNS method using unrelated removals is
denoted by LNS-U. The LNS method using related
removals is denoted by LNS-R. In each iteration of
the LNS algorithms the number k 2 ½2; 30� of trans-
portation requests to be removed was chosen
randomly.

We can see that neither RVNS nor LNS-U
clearly dominate each other. While LNS-U seems
to perform better for small problems, RVNS seems
to perform better for the large instances. The use of
the relatedness criterion significantly improves the
performance of the LNS method and LNS-R pro-
duces the best average results in almost all cases.
However, in some cases the RVNS still performs
slightly better.

Response times of all algorithms were below a
few seconds and average response times were mostly
below one second. Due to the smaller size of the
neighbourhoods to be explored, the RVNS algo-
rithm has much smaller response times than the
LNS algorithms.

As the GVRP generalises the classical models
VRP and PDP, the heuristics presented in this paper
may also be used for instances of these problems.
However, in these problems all transportation
requests must be served. Therefore, the revenues
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Fig. 6. Distribution of pickup and delivery locations.
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po of all orders o 2 O must be set to very large val-
ues, such that the heuristics are encouraged to only
produce solutions in which all orders are served.
The RVNS method will not be very effective as only
the neighbourhood operators RELOCATE and
SWAP allow to move from one solution in which
all transportation requests are served to another
solution in which all transportation requests are
served. Furthermore, our heuristics do not aim at
reducing the number of vehicles used, as this is usu-
ally not a goal in dynamic planning where the num-
ber of available vehicles is fixed. Note that highly
specialised algorithms developed for the classical
vehicle routing problems can exploit problem-spe-
cific knowledge and should have better performance
than any method developed for the GVRP. The goal
of this work, however, was to develop algorithms
that can be used for dynamic problems considering
a variety of practical complexities that are not con-
sidered by the classical models.

8. Conclusions

Many practical routing problems encounter com-
plexities which are not considered in the classical
models. In this paper we presented the General

Vehicle Routing Problem (GVRP) which is capable
of handling a variety of real-life requirements. It
generalises the well-known and well-studied classi-
cal models VRP and PDP. Furthermore, it amal-
gamates some extensions of the classical models
which, up to now, have only been treated
independently.

As the GVRP is highly constrained, the search
space is likely to contain many solutions such that
it is impossible to go from one solution to another
using a single neighbourhood structure. Therefore,
we propose iterative improvement approaches based
on the idea of changing the neighbourhood structure
during the search. To avoid getting trapped in a local
optimum with respect to one neighbourhood struc-
ture, the RVNS algorithm changes between various
elementary neighbourhood operators and the LNS
approach uses nested neighbourhoods of different
size. We have proposed a tour dependent relatedness
measure for the LNS, as geographical closeness can-
not be used in the GVRP. Our computational exper-
iments have shown that this relatedness measure
significantly outperforms random removals.

Our algorithms perform well concerning
response times for problems with hundreds of vehi-
cles and several hundreds of transportation

Table 1
Results

Nos. Problem RVNS LNS-U LNS-R

jVj jO0j jOtj s AVG(f) r AVG(f) r AVG(f) r

p1 100 300 20 2 181038.00 2267.39 186550.44 482.69 193658.71 1221.44
p2 100 300 20 2 197575.33 1334.72 205134.57 2524.10 219957.12 824.21
p3 100 300 20 2 188633.12 1295.13 196017.53 2445.82 198857.20 1501.96
p4 100 300 20 2 185183.01 1329.64 191217.30 3238.03 196001.81 2157.83
p5 100 300 20 12 289579.38 1985.62 297616.97 1577.71 299628.28 1977.18
p6 100 300 20 12 273997.70 1742.22 278874.72 2889.00 289026.76 1303.75
p7 100 300 20 12 262702.54 1415.41 268784.42 1229.85 272337.89 1037.70
p8 100 300 20 12 271150.15 1564.48 281425.79 951.06 287839.02 2907.92
p9 250 750 50 2 505072.76 5866.67 506442.17 2300.82 527543.21 6252.58

p10 250 750 50 2 487759.72 2217.41 488689.09 1678.84 497543.61 3330.79
p11 250 750 50 2 502367.70 2341.00 498615.52 3114.95 511879.04 3732.24
p12 250 750 50 2 526699.71 7271.28 518665.58 3433.58 532709.90 5678.19
p13 250 750 50 12 713547.18 4454.70 717727.04 2492.39 738878.17 5546.93
p14 250 750 50 12 722309.20 2690.77 712107.92 5874.45 721670.85 3626.29
p15 250 750 50 12 689475.10 3151.38 679460.74 2079.40 692698.84 3795.64
p16 250 750 50 12 702658.55 7443.01 682183.45 3281.88 692122.23 1583.69
p17 500 1500 100 2 1083725.74 4825.70 1069182.97 3426.54 1106940.06 11194.71
p18 500 1500 100 2 1062635.10 9685.07 1065859.76 10432.19 1089812.91 3170.01
p19 500 1500 100 2 1022168.34 7713.50 1022978.35 4348.34 1032741.35 4922.99
p20 500 1500 100 2 1059648.63 9481.78 1026574.20 5672.72 1065159.95 15579.42
p21 500 1500 100 12 1395467.83 9011.79 1377983.56 13635.94 1399397.98 5951.14
p22 500 1500 100 12 1430855.62 7125.78 1400686.31 5552.82 1439543.12 10026.49
p23 500 1500 100 12 1432836.25 5338.43 1415294.39 8211.29 1430347.23 7313.15
p24 500 1500 100 12 1431020.98 3362.37 1434010.56 9408.59 1438788.69 9012.45
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requests. As average response times were mostly less
than a second our algorithms may be used in inter-
active dynamic planning systems.
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Mitrović-Minić, S., 1998. Pickup and delivery problem with time
windows: A survey. Technical report TR 1998-12, School of
Computing Science, Simon Fraser University, Burnaby, BC,
Canada.
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