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Abstract. Generalized principal curves are capable of representing com-
plex data structures as they may have branching points or may consist of

disconnected parts. For their construction using an unsupervised learning

algorithm the templates need to be structurally adaptive. The present
algorithm meets this goal by a combination of a competitive Hebbian

learning scheme and a self-organizing map algorithm. Whereas the Heb-
bian scheme captures the main topological features of the data, in the

map the neighborhood widths are automatically adjusted in order to sup-

press the noisy dimensions. It is noteworthy that the procedure which is
natural in prestructured Kohonen nets could be carried over to a neural

gas algorithm which does not use an initial connectivity. The principal

curve is then given by an averaging procedure over the critical uctua-
tions of the map exploiting noise-induced phase transitions in the neural

gas.

1 Introduction

Analogous to principal components, principal curves represent essential data

features if the underlying functional relation is non-linear. Each point of a prin-

cipal curve represents the local centroid of the data in the orthogonal directions

and provides thus an estimation of a one-dimensional relation in noise-corrupted

data. To construct principal curves constitutes an elementary task in non-linear

statistics which may be approached in simple cases [2, 3, 4] non-parametrically

using suitably modi�ed Kohonen maps with a chain-like topology. Whereas in

statistics the centroid condition is accompanied by a loosely de�ned smoothness

requirement for the principal curve, in self-organizing maps both smoothness

and local averaging are combined in a most natural way.

In the present contribution we will address this task in a more general man-

ner. The algorithm proposed here goes beyond Kohonen maps as network struc-

tures are generated in a self-adaptive manner. This allows to extract generalized

principal curves which may have branching points or may be disconnected, while

exhibiting the typical averaging properties in the non-exceptional regions. Thus,

non- or multiply connected data structures can be represented without any prior



knowledge of the number of components and their respective structure. In this

framework a representation of principal curves is given in terms of a discrete

set of reference vectors which are updated by a special self-organizing map algo-

rithm which combines adaptation schemes for the reference vectors, for the map

parameters and for the network structure. The smoothness condition is included

by intrinsic elasticity properties of self-organizing maps which are adaptively

modi�ed in dependence on the local variance of the noise. Structure adaptation

is performed by a simple Hebbian learning rule, and the reference vectors form-

ing the principal curve arise as averages over uctuations of the maps at the

border of stability.

In the next section the main achievement of the present work, an adaptation

scheme for the network topology, is derived. The following sections present the

algorithm and results for several typical examples.

2 Collaboratively learning vector quantizers

In on-line learning vector quantizers, reference vectors wr are adjusted towards

a current input datum v 2 V,

wr(t + 1) = wr(t) + "hr(v;w)(v �wr(t)); (1)

where w = (wr jr 2 A), " is the learning rate, wr is a vector in the input space

V, the range of the indices r is a discrete output (code) space A, and hr(v;w)

involves the interaction among the units. In Kohonen's algorithm the interaction

is formulated by the neighborhood function

hr(v;w) � hrs = exp

�
�
kr � sk2

2�2

�
; s = argmin

r

kwr � vk; (2)

where kr� sk is the distance between neurons r and s according to the topology

of the neuron space. For a topology preserving mapping, this topology has to

be known, which is the main disadvantage of Kohonen's algorithm. Instead, one

has to infer this topology from the data. The neural gas algorithm [6] is suitable

for this purpose while otherwise (cf. the following section) exhibiting similar

properties as Kohonen's learning rule. Namely, instead of (2) the neighborhood

function relies on the rank R(r) in the ordered sequence of distances kwr � vk.
For the best matching unit s0 we have R(s0) = 0, the second-best has R(s1) = 1

and so on. Thus,
hr(v;w) = exp (�R(r)=�) (3)

and the weights are learned according to (1) while decreasing �. Eventually, the

topology is represented in terms of a connectivity matrix arising from a simple

Hebbian learning rule, cf. eq. (5) below.

However, the topology learnt in this way is that of the noisy data and not of

the generalized principal curve to be constructed. A principal curve is obtained

from the neural gas by keeping the interaction width � su�ciently high so that

the weights are forced into chain-like structures. The algorithm given below will

self-consistently adapt these widths locally to obtain the desired principal curve

representation of the data set.



3 Phase transitions in the neural gas

In self-organizing maps evolving according to Kohonen's algorithm, phase tran-

sitions due to dimensional conicts between the input topology and that of the

output lattice of neurons are well investigated. A generic example (cf. [7]) is

the mapping of a rectangular data distribution onto a one-dimensional lattice of

neurons.

Viewing the rectangle as a straight line corrupted by noise, the height s of

the rectangle measures the variance of the noise. For low noise, s < sc = 2:02�

where � is the neighborhood width, the chain of neurons is mapped onto the

original data distribution, i. e. the straight line.

At s = sc the noise induces a phase transition to a new stable con�guration

corresponding to a folding of the map into the input space. There is a coex-

istence between two phases of similar shape where one of the two phases still

conserves topology whereas the other one is topology violating. The latter is the

more stable one so that the phase transition is signaled usually by the topology

violations.

In the neural gas scenario there is no �xed topology (like that of the chain

in the example above). Nevertheless one observes phase transitions very similar

to the one described above. The point is that for su�ciently large � the neurons

are mapped chain-like into the rectangular input space. This is an immediate

consequence of the cooperativity in learning introduced by the neighborhood

function. Now, for given neighborhood width � there is a critical noise level

sc = sc(�) such that for s < sc the neurons are mapped onto the median of the

rectangular data distribution while for s > sc we observe a wave like structure

very much similar as the one observed with the Kohonen map. Of course there is

no topology violation now, since there is no neighborhood between the neurons

de�ned. However it can be observed that in the \folding" phase the �rst and

second winner are no longer neighbors in input space. There are further neurons

lying between the two in the sense that their (Euclidean) distance from both the

�rst and the second winner is smaller than the distance between the �rst and

second winner themselves. The number of these neurons \in between" will serve

in the following for �xing the local value of the neighborhood function optimally.

4 Topology adaptation

We start with a modi�cation of the neural gas algorithm with real-valued con-

nectivity matrix C. The connection value Crs expresses the current belief on

whether neurons r and s are connected; it is increased each time that r and s

are the �rst and second winner while in each step all connections are weakened

simultaneously. In evaluation, a connection is considered active according to a

threshold condition. The change of topology caused by a new connection being

created is used as a criterion for topology violation which controls the learning of

an individual neighborhood width. The ranks R(r) are assigned to the units in

each step in the order of their distances kwr�ws0
k from the �rst winner (rather

than the input vector), thus enforcing a topological aspect in weight learning.



In topology adaptation, the neighborhood function (3) displays a disappoint-

ing behavior insofar as single points tend to \escape" from the adapted topology

scheme. Therefore another neighborhood function was derived from (2) by re-

placing kr � sk by the rank R(r).

Another sort of instabilities still emerges as a result of the ranking by Eu-

clidean distances. This will support clustering of neurons since for instance in a

cluster of two, the stimuli which make the two the �rst and second winner will

always move them closer together. Note that, e.g., for a linear equidistant (chain-

like) arrangement of units the rank alternates (5{3{1{0{2{4{6), thus making the

immediate neighbors of the winner learning with di�erent strength, whereas un-

der (2) both are co-learning with the same strength.

To overcome these instabilities one wishes to assign the neighborhood ranks

in analogy to the Kohonen algorithm by searching the C matrix for neighbors.

However, matrix searching is of high numerical complexity. This led us to try a

neighborhood function based on searching only immediate neighbors in the C

matrix and ranking by Euclidean distance from the winner for all other units. It

turned out that such a \mixed ranking" grants essentially all the bene�ts of a

full matrix search while preserving the lower numerical complexity of Euclidean

ranking.

As can be seen from the �gures, extra connections can be observed in some

cases near branching points. These represent an uncertainty in the position of

the branching points caused by noise. For purposes like object recognition they

can be removed in a subsequent step.

5 The algorithm

For each input signal v drawn from a distribution P (v) the �rst and second

winner s0, s1 are calculated. The neighborhood parameter � is initialized at

e.g. N=3 (with N being the number of units) and is decreased slowly later on:

�r := maxf�r � "��r; 1g: (4)

The connection values Crs develop by decreasing in each step all links simulta-

neously, followed by an increase of the link between the �rst two winners.

�Cij = �
1

N
"cCij 8i; j and �Cs0s1

= "c (5)

If in this way a new link has been created (i.e. has grown across the threshold)

the neighborhood parameter �r is increased for all neurons with pointers wr

geometrically between ws0
and ws1

, counteracting to the persistent decrease of

�. We consider those neurons as situated between the �rst and second winner

which are closer to both of them than these are to each other, i.e. for which

kwr �ws0
k < kws0

�ws1
k and kwr �ws1

k < kws0
� ws1

k: (6)



Fig. 1. This Y-shaped data distribu-

tion cannot be represented appropri-

ately by a linear chain. Instead, a gener-

alized principal curve with one branch-

ing point is constructed by adaptively

structuring a network of 50 neurons.

Fig. 2. Representation of a multiply

connected data set by a closed general-

ized principal curve with two branching

points; N = 70.

� is increased towards an estimated optimal �̂opt which is proportional to the

number of neurons satisfying (6) with a global proportionality constant.

��r = ��(�̂opt � �r) if �r < �̂opt (7)

Further, the �r must not exceed their initial value.

Next, sort the list of distances kwr � ws0
k in an ascending order and de�ne

a modi�ed neighborhood function hr(v; fwg) by assigning ranks Rr = 1 to all

units which are directly connected to the winning neuron, while using the usual

ranks otherwise. The update rule of the algorithm �nally reads

�wr = " exp

�
�

2R2

r

(�r + �s0)
2

�
(v �wr) : (8)

6 Conclusion

In the present contribution the principal curve problem was solved in a quite

general way. This task required an algorithm that combines learning at di�erent

levels, in particular of the network structure, while retaining the capabilities of

the learning mechanisms at the other levels. In the present algorithm the solution

of the principal curve problem was not given in terms of a convergent network

state, but as an average over the network's dynamical behavior in the vicinity
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Fig. 3. Solution of a two-spirals prob-

lem found in an unsupervised man-

ner by the present algorithm. The con-

structed principal curve consists of two

disconnected chains evolving from the

same initial state of the neural gas as

in the above examples. Here, N = 120.

of a topological phase transition. The algorithm is relatively e�cient since the

most time consuming stage is the averaging process.

Forthcoming work on this topic will address a theoretical analysis of the

phase transition in the neural gas algorithm analogous to the analysis in [7] as

well as a possible generalization to generalized principal manifolds of dimension

greater than one.
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