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Abstract. We study the complexity of temporal logics over concurrent systems that can be described
by Mazurkiewicz traces. We develop a general method to prove that the uniform satisfiability prob-
lem of local temporal logics is in PSPACE. We also demonstrate that this method applies to all
known local temporal logics.

1. Introduction

Antoni Mazurkiewicz introduced the notion of trace to describe the behaviors of concurrent systems
[11, 12]. This had a major influence in the studies of distributed systems. Since the pioneering work of
Mazurkiewicz, trace theory has been developed by numerous researchers and is certainly one of the most
extensively studied models of concurrency, see e.g. [5].

Temporal logics over traces have been introduced to specify the expected behaviors of concurrent
systems. Indeed, for practical applications, it is of foremost importance to have specification languages
with low complexity for the model checking or the satisfiability problem. Mazurkiewicz traces are la-
beled partial orders where the ordering describes the causality between events in the trace. This is exactly
what is needed to reason about concurrent systems but the prefix structure of traces is rather complex.
Due to that, global temporal logics [9, 14, 19, 2] which describe properties of global configurations have
a very high complexity. The satisfiability problem is undecidable when the logic is based on an existential
until [15] or non elementary when a universal until is used [20].

Local temporal logics specify properties of local events in the trace and not of global configurations.
Still, local temporal logics have a good expressive power since the simplest one based on (existential)
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next and (universal) until has the same expressive power as first order logic over traces [4]. More-
over, local temporal logics have usually a low complexity, i.e., satisfiability can be solved in PSPACE.
We cannot expect a lower complexity since already the classical temporal logic LTL over sequences is
PSPACE-complete and LTL over words is a special case of most local temporal logics over traces.

Several local temporal logics were introduced [18, 1, 8, 3] and each time the complexity was proved
to be in PSPACE or EXPTIME. Whenever a new local temporal logic was introduced, a new proof of
the complexity was needed. To circumvent this need, a general framework to study the complexity of
local temporal logics was introduced in [6] were it was shown that all local temporal logics where the
modalities are definable in monadic second order logic (MSO) are decidable in PSPACE. In this result,
we assumed that the architecture of the system is not part of the input which consists of the formula only.

Since the complexity also depends on the architecture of the system, it is important to study the
uniform satisfiability problem where the input is formed by the formula and the architecture of the system.
For systems described by Mazurkiewicz traces, the architecture is given by the dependence alphabet, i.e.,
the set of actions the system might perform together with the dependency relation between these actions.
A more concrete view of the architecture is a set of processes and a mapping from each action to the set
of processes involved in this action. Here, two actions are dependent if they share a common process and
conversely any dependence alphabet can be described with this more concrete view based on processes.

The uniform satisfiability problem was studied in [7] for general modalities that can be described
by MSO formulas. The complexity depends on the number of alternations of set quantifiers in these
formulas. Unfortunately, any alternation in the set quantifiers adds an exponent to the space complexity.
Fortunately, most local temporal logics that have been studied [18, 1, 4] can be defined without quantifier
alternation. Hence, from the general result of [7] we obtain a 2-EXPSPACE upper bound for the uniform
satisfiability of these logics.

In the present paper, we improve this result by 2 exponents for the usual temporal logics. More
precisely, we prove that the uniform satisfiability problem for the usual temporal logics is in PSPACE.
For this, we introduce a general method which is inspired from the proof technique used in [6]. More
precisely, we say that a modality is PSPACE-effective if there is a PSPACE algorithm that can compute
a Büchi automaton for the modality, given the set of processes that defines the architecture. Then,
we show that the uniform satisfiability problem is in PSPACE for all local temporal logics based on
PSPACE-effective modalities.

In Section 2 we recall some definitions on Mazurkiewicz traces and in the next section we introduce
local temporal logics over traces. The uniform satisfiability problem is defined in Section 4 and we give
a general method to prove that this problem is in PSPACE when the modalities are PSPACE-effective.

In Section 8 we show that all modalities introduced in the classical local temporal logics [18, 1, 4] are
PSPACE-effective. Some of these results are based on the interesting new notions of general and special
variance of a Büchi automaton introduced in Section 7. More precisely, assume that we are given a (non-
deterministic) Büchi automaton A for a formula ϕ(x) with one individual free variable x. We want to
construct Büchi automata for the formulas ∀x ϕ and ∀x ¬ϕ. The usual construction which is based on
∀x ϕ = ¬∃x ¬ϕ uses two complement operations for the former and one complement operation for the
latter and therefore increases the size of the automaton by two or one exponents, respectively. Instead, we
show that ‘universal’ automata for the formulas ∀x ϕ and ∀x ¬ϕ can be constructed efficiently in space
O(m log |A|) (and have therefore at most |A|O(m) many states) when the general or special variance of
A is m. We apply these results to Büchi-automata of logarithmic general or special variance in which
case this approach improves the usual construction by almost two (by one, resp.) exponent.
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This paper uses the process-based approach to Mazurkiewicz traces where the atomic actions are
identified with the set of processes involved. The alternative action-based approach starts from a set of
atomic actions and declares some of them dependent and some independent. In Section 5, we obtain
similar results in this setting.

A question related to the uniform satisfiability problem is the general satisfiability problem. It asks
whether a property (expressed by some formula) can occur at all, i.e., whether there exists a set of
processes such that the formula becomes satisfiable. In Section 6, we show this problem undecidable for
a rather restricted local temporal logic.

2. Traces

We only give very few definitions on Mazurkiewicz traces, those that are needed in this paper. We refer
the reader to [12, 5] for more details on the theory of traces.

A dependence alphabet is a pair (Σ, D) where Σ is finite alphabet of actions and D ⊆ Σ2 is a re-
flexive and symmetric relation on Σ called dependence relation. A trace over (Σ, D) is (an isomorphism
class of) a labeled, at most countably infinite partial order t = (V,�, λ) such that (V,�) is a partial order
and λ : V → Σ is the labeling function satisfying for all x, y ∈ V

• ↓x = {z ∈ V | z � x} is finite

• (λ(x), λ(y)) ∈ D implies x � y or y � x

• x ≺· y implies (λ(x), λ(y)) ∈ D,

where ≺·= ≺ \ ≺2 is the immediate successor relation. The alphabet of the trace t is alph(t) = λ(V ).
The set R(Σ, D) contains all finite or infinite traces over the dependence alphabet (Σ, D).

A linearization of a trace t = (V,�, λ) is a linear order ≤ on V that extends the partial order � and
is at most of order type ω (i.e., also with respect to ≤, any node of V dominates only finitely many other
nodes). Such a linearization can naturally be identified with a finite or infinite word over Σ. For any
linearization w = a0a1 . . . of t, the trace t is isomorphic to [w] = (V ′, E∗, λ) with V ′ = {i ∈ N | 0 ≤
i < |w|}, λ(i) = ai, and E = {(i, j) ∈ V ′2 | i < j and (ai, aj) ∈ D}.

For m ∈ N, an m-extended trace over (Σ, D) is a trace (V,�, λ) together with m sets of positions
X1, . . . , Xm ⊆ V . The set of m-extended traces is denoted Rm(Σ, D). If w = a0a1a2 · · · ∈ Σ∞ is a
finite or infinite word and X1, . . . , Xm ⊆ {i ∈ N | 0 ≤ i < |w|}, then we denote by ([w], X1, . . . , Xm)
the corresponding m-extended trace.

Alternatively, the dependence alphabet can be defined with the more concrete notion of processes.
Let Π be a finite set of process names. The dependence alphabet induced by Π is (Σ, D) where Σ is the
set of nonempty subsets of Π and the dependence relation D is defined by (a, b) ∈ D iff a ∩ b 6= ∅. We
denote by R(Π) the set of finite or infinite traces over the dependence alphabet (Σ, D) induced by Π. We
also write Rm(Π) for the set of m-extended traces over Π.

We are interested in the complexity of problems where the architecture, i.e., the dependence alphabet,
is part of the input. Using Π instead of the induced dependence alphabet (Σ, D) may allow an exponen-
tially more concise description of the architecture and therefore yields stronger results. Hence, we state
and prove our results with the architecture described by Π. Indeed, they also hold when the architecture
is presented by an arbitrary dependence alphabet (Σ, D) as explained in Section 5.
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3. Local temporal logics

We fix a countably infinite set P of process names. The syntax of a local temporal logic TL(B) is given
by a set B of modality names with associated arities. Then the syntax of the logic TL(B) is defined by
the grammar

ϕ ::= M(ϕ, . . . , ϕ︸ ︷︷ ︸
arity(M)

) | p

where M ranges over B and p over the infinite alphabet P . The size |ϕ| of a formula ϕ is the number of
its subformulas, so, e.g., |M(p, p)| = 2 since the only subformulas are p and the formula itself.

To define the semantics of a temporal logic, we associate with any modality name M of arity m and
any finite set of processes Π a set of (m+ 1)-extended traces [[M ]]Π ⊆ Rm+1(Π) over Π. When there is
no ambiguity, we simply write [[M ]] for [[M ]]Π.

Let t = (V,�, λ) be a trace over some set of processes Π and ϕ be a formula of TL(B). The
semantics ϕt of ϕ in t is the set of positions in V where ϕ holds. The inductive definition is as follows.
If ϕ = p ∈ P , then ϕt = {v ∈ V | p ∈ λ(v)}. If ϕ = M(ϕ1, . . . , ϕm) where M ∈ B is of arity m ≥ 0,
then

ϕt = {v ∈ V | (t, ϕt1, . . . , ϕtm, {v}) ∈ [[M ]]Π}.

We also write t, v |= ϕ for v ∈ ϕt.

Boolean connectives The simplest modalities allow to model Boolean connectives: for Π ⊆ P finite,
set

[[∨]]Π = {(V,�, λ,X, Y, {z}) ∈ R3(Π) | z ∈ X ∪ Y }
[[¬]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | y /∈ X} .

Then (ϕ ∨ ψ)t is the set of positions that satisfy ϕ or ψ. Similarly, (¬ϕ)t is the set of positions in t that
do not satisfy ϕ.

Strict universal until. The simplest logic TL(∨,¬,SU) studied in [4] uses, apart from Boolean con-
nectives, only one modality SU of arity 2. The strict universal until ϕ SU ψ claims the existence of a
vertex y in the proper future of the current one z such thatψ holds at y andϕ holds for all vertices properly
between z and y. This intuition is captured by the following definition of the language [[SU]]Π ⊆ R3(Π):

[[SU]]Π = {(V,�, λ,X, Y, {z}) ∈ R3(Π) | ∃y ∈ Y : z ≺ y ∧ ∀x : z ≺ x ≺ y → x ∈ X} .

Clearly, this is a first-order definition and it was proved in [4] that TL(∨,¬,SU) and first-order logic for
traces are equally expressive.

From the strict universal until, we can derive several interesting modalities. Intuitively, EXϕ (exists-
next) means that there is an immediate successor of the current vertex where ϕ holds. Therefore, we have
EXϕ = ⊥ SU ϕ (where ⊥ means false) and the semantics of EX is inherited from the semantics of SU.
It can also be given directly by

[[EX]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | ∃x ∈ X : y ≺· x} .
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Universal until. ϕ U ψ is another modality which can be defined as an abbreviation for the formula
ψ∨(ϕ∧(ϕSUψ)). Alternatively, in our framework, it is given by the following language [[U]]Π ⊆ R3(Π):

[[U]]Π = {(V,�, λ,X, Y, {z}) ∈ R3(Π) | ∃y ∈ Y : z � y ∧ ∀x : z � x ≺ y → x ∈ X} .

Even though the logic TL(∨,¬,EX,U) is as expressive as TL(∨,¬,SU) (see [4]), we do not know any
direct way to express SU with EX and U.

The classical modalities eventually and always are obtained from the universal until by Fϕ = >Uϕ
and Gϕ = ¬F¬ϕ.

Existential until. The temporal logic for causality TLC was introduced in [1]. In our framework, it
can be defined by TL(¬,∨,EX,EY,Eco,EG,EU,ES). Intuitively, Ecoϕ claims that ϕ holds for some
vertex concurrent to the current one. The formula ϕEUψ holds if there is a path in the Hasse-diagram
of the trace starting in the current vertex such that ϕ holds along the path until ψ holds (and ψ holds
somewhere along this path). Similarly, EGϕ claims the existence of a maximal such path, starting from
the current vertex, where ϕ always holds. Finally, EY and ES are the past versions of EX and EU, resp.
Then the semantics of TLC is obtained with the following modalities

[[EY]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | ∃x ∈ X : x ≺· y}
[[Eco]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | ∃x ∈ X : ¬(x � y ∨ y � x)}
[[EU]]Π = {(V,�, λ,X, Y, {z}) ∈ R3(Π) | ∃n ≥ 0,∃x0 ≺· x1 ≺· · · · ≺· xn :

z = x0 ∧ x0, x1, . . . , xn−1 ∈ X ∧ xn ∈ Y }
[[ES]]Π = {(V,≤, λ,X, Y, {z}) ∈ R3(Π) | ∃n ≥ 0,∃x0 ·� x1 ·� · · · ·� xn :

z = x0 ∧ x0, x1, . . . , xn−1 ∈ X ∧ xn ∈ Y }
[[EG]]Π = {(V,�, λ,X, {y}) ∈ R3(Π) | ∃P ⊆ X : P maximal path in (V,≺·) starting in y}

For cograph dependence alphabets, TLC has the same expressive power as first-order logic [3], but
due to the claim of the existence of a path in the modalities EU, ES or EG it can express properties that
are not expressible in first-order logic for some other dependence alphabets.

Process-based modalities. We conclude the section by considering temporal logics where the modal-
ities are linked to processes. The first such logic was introduced by Thiagarajan [18] but this logic is not
pure future and we still do not know its expressive power. An alternative was given in [4] and shown to
be expressively complete for FO. It is based on the modalities Xp and Up for p ∈ P . Intuitively, Xp ϕ
claims that ϕ holds on the first vertex of process p which is strictly above the current one. Hence, we
have Xp ϕ = (¬p) SU (p ∧ ϕ). Similarly, ϕ Up ψ says that the sequence of vertices of process p which
are above the current one satisfy ϕ until ψ. Therefore, ϕ Up ψ = (p→ ϕ) U (p ∧ ψ).

Finally, we show that the temporal logic over traces TrPTL introduced by Thiagarajan [18] can also
be dealt with in our framework. It is based on modalitiesOp and Up (p ∈ P) of arity 1 and 2 respectively.

The semantics given in [18] is that of a global temporal logic. Hence it may come as a surprise
that we can deal with it in our framework. But actually, apart initially, formulas are evaluated at prime
configurations, i.e., configurations having exactly one maximal element. By identifying a prime config-
uration with its maximal vertex we see that the logic is actually local. Intuitively, Op ϕ means that ϕ
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holds at the first vertex of process p which is not below the current one. Similarly, ϕ Up ψ means that we
have ϕ until ψ on the sequence of vertices located on process p and that are not below the current vertex
(actually, it is slightly more complex since the sequence includes the last vertex of process p which is
below the current one if it exists). Formally, the semantics is defined as follows:

[[Op]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | ∃x ∈ X :
p ∈ λ(x) ∧ x 6� y ∧ ∀z : (z ≺ x ∧ p ∈ λ(z)) → z � y}

[[Up]]Π = {(V,�, λ,X, Y, {z}) ∈ R3(Π) | ∃y ∈ Y : p ∈ λ(y)
∧ ∀x : (p ∈ λ(x) ∧ x � z) → x � y

∧ ∀x : (p ∈ λ(x) ∧ x ≺ y ∧ ¬∃x′ : (p ∈ λ(x′) ∧ x ≺ x′ � z)) → x ∈ X}

Since the logic TrPTL is defined by FO-formulas, it is contained in FO but the precise expressive
power of TrPTL is still unknown.

4. Uniform satisfiability problem for local temporal logics

Let TL(B) be a local temporal logic. The uniform satisfiability problem for TL(B) is the following:

input: a finite set of processes Π and a formula ϕ of TL(B)

question: Is there a trace t ∈ R(Π) and a vertex v in t with t, v |= ϕ?

For an alphabet Σ and m ∈ N, we will denote Σm = Σ × {0, 1}m. Let w = a0a1 · · · ∈ Σ∞ be a
word over Σ and Xi ⊆ {j | 0 ≤ j < |w|} be sets for 1 ≤ i ≤ m. Then (w,X1, · · · , Xm) denotes the
word b0b1 . . . over Σm with bi = (ai, x1

i , x
2
i , . . . , x

m
i ) and xji = 1 iff i ∈ Xj .

In order to decide this satisfiability problem, we need some effectiveness assumptions on the modali-
ties fromB. Here, we assume that the semantics of each modality can be described by a finite automaton
which can be constructed in PSPACE.

We use automata B = (Q,Γ, I, T, F,R) accepting both finite and infinite words. Here Q is the
finite set of states, Γ the input alphabet, I ⊆ Q the subset of initial states, T ⊆ Q × Γ × Q the (non-
deterministic) transition relation, F ⊆ Q defines the acceptance condition for finite runs and R ⊆ Q
defines the Büchi acceptance condition for infinite runs. We simply call them Büchi automata.

Definition 4.1. A modality M of arity m is PSPACE-effective if there exists a PSPACE algorithm
with the following specification

input: a finite set of processes Π

output: a Büchi-automaton CM,Π that accepts the word language over Σm+1 (with Σ the set of nonempty
subsets of Π) defined by

{(w,X1, . . . , Xm+1) ∈ (Σm+1)∞ | ∀x : x ∈ Xm+1 ↔ ([w], X1, . . . , Xm, {x}) ∈ [[M ]]Π} .

A temporal logic TL(B) is PSPACE-effective if its modalities are uniformly PSPACE-effective (i.e.,
the automata CM,Π can be constructed in PSPACE on input M and Π).
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Note that, since the automaton CM,Π can be constructed in polynomial space, it can have at most
2poly(|Π|) many states.

The atomic propositions p ∈ P and the Boolean connectives are easy to deal with. More precisely,
for each p ∈ P , there is a one state automaton Cp,Π accepting the words (w,X) ∈ Σ∞

1 such that
X = p[w] = {x | 0 ≤ x < |w| and p ∈ λ(x)}. Also, there is a one state automaton C¬,Π accepting the
words (w,X, Y ) ∈ Σ∞

2 such that Y = {x | 0 ≤ x < |w|} \X and there is a one state automaton C∨,Π
accepting the words (w,X, Y, Z) ∈ Σ∞

3 such that Z = X ∪ Y .
Although Definition 4.1 might look rather restricted, as it turns out, all the temporal modalities

mentioned in Section 3 fall into this setting. We show this in Section 8 using some general results that
we prove in Section 7.

Here, we describe the general method, inspired from [6], to solve the uniform satisfiability problem
of the logic TL(B) when automata CM,Π can be computed for each modality M ∈ B.

Let TL(B) be some PSPACE-effective temporal logic and let Π be some finite set of processes.
Since Π is fixed throughout the construction, we will abbreviate CM,Π by CM for any modality name
M ∈ B. We still denote by Σ the set of nonempty subsets of Π. For formulas ϕ and ψ, we write
ϕ ≤ ψ if ϕ is a subformula of ψ (this includes the case ϕ = ψ). Let ξ be a formula from TL(B)
and let Sub(ξ) = {ϕ ∈ TL(B) | ϕ ≤ ξ}. Let w ∈ Σ∞ and, for ϕ ≤ ξ, let Xϕ be sets of positions
in w. As explained above, the tuple (w, (Xϕ)ϕ≤ξ) can be considered as a word w over the alphabet
Σ = Σ× {0, 1}Sub(ξ). For ψ = M(ϕ1, . . . , ϕm) ≤ ξ, let w�ψ = (w,Xϕ1 , . . . , Xϕm , Xψ) ∈ (Σm+1)∞.

The construction. For a formula ϕ ∈ TL(B), let top(ϕ) be the outermost modality name of ϕ.
Formally, we set top(p) = p for p ∈ P and top(M(ϕ1, . . . , ϕm)) = M . Let Q =

∏
ϕ≤ξ Qtop(ϕ) be the

set of states of the automaton Aξ where Qtop(ϕ) is the set of states of the Büchi-automaton Ctop(ϕ). The
alphabet of Aξ is Σ. For a letter a ∈ Σ and states p = (pϕ)ϕ≤ξ and q = (qϕ)ϕ≤ξ, we have a transition

p
a−→ q in Aξ if and only if, for all ϕ ≤ ξ, we have pϕ

a�ϕ−−→ qϕ in the automaton Ctop(ϕ). Note that a
sequence of states p0, p1, . . . defines a run of Aξ for a word w ∈ Σ∞ if and only if for each ϕ ≤ ξ, its
projection p0

ϕ, p
1
ϕ, . . . on ϕ is a run of Ctop(ϕ) for the word w�ϕ. A run of Aξ is accepting if and only

if for each ϕ ≤ ξ, its projection on Ctop(ϕ) is accepting (here we use a generalized Büchi acceptance
condition).

Lemma 4.1. Let w = (w, (Xϕ)ϕ≤ξ) ∈ Σ∞. Then, w ∈ L(Aξ) if and only if for each ϕ ≤ ξ we have
Xϕ = ϕ[w] = {x | [w], x |= ϕ}.

Proof:
Assume w ∈ L(Aξ). We show that Xϕ = ϕ[w] by structural induction on ϕ ≤ ξ. This is clear for
ϕ = p ∈ P . So let ϕ = M(ϕ1, . . . , ϕm) ≤ ξ. Assume by induction that ϕ[w]

i = Xϕi holds for
1 ≤ i ≤ m. Since w is accepted by the automaton Aξ, the word w�ϕ = (w,Xϕ1 , . . . , Xϕm , Xϕ) is
accepted by CM . Hence, using the definition of CM and the hypothesis we get

Xϕ = {x | ([w], Xϕ1 , . . . , Xϕm , {x}) ∈ [[M ]]Π} = ϕ[w].

For the other direction, assume that ϕ[w] = Xϕ for all ϕ ≤ ξ. Clearly, for ϕ = p ∈ P , the word
w�ϕ ∈ Σ∞

1 is accepted by Cp. Let ϕ = M(ϕ1, . . . , ϕm) ≤ ξ. Then Xϕi = ϕ
[w]
i and therefore
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ϕ[w] = {x | ([w], ϕ[w]
1 , . . . , ϕ

[w]
m , {x}) ∈ [[M ]]Π} = {x | ([w], Xϕ1 , . . . , Xϕm , {x}) ∈ [[M ]]Π} = Xϕ.

Since w�ϕ = (w,Xϕ1 , . . . , Xϕm , Xϕ) we deduce from the definition of CM that w�ϕ is accepted by CM .
Since this holds for each ϕ ≤ ξ we obtain w ∈ L(Aξ). ut

Proposition 4.1. The formula ξ ∈ TL(B) is satisfiable by some trace over Π if and only if there exists
w = (w, (Xϕ)ϕ≤ξ) ∈ L(Aξ) with Xξ 6= ∅.

Proof:
Assume that ξ is satisfiable by some trace t. Consider any linearization w ∈ Σ∞ of t and a position x in
w with [w], x |= ξ. Let w = (w, (ϕ[w])ϕ≤ξ) ∈ Σ∞. By Lemma 4.1 we get w ∈ L(Aξ). Moreover, we
have x ∈ ξ[w] = Xξ 6= ∅.

Conversely let w = (w, (Xϕ)ϕ≤ξ) ∈ L(Aξ) with Xξ 6= ∅. By Lemma 4.1 we get ∅ 6= Xξ = ξ[w] =
{x | [w], x |= ξ}. Therefore, ξ is satisfiable by the trace [w]. ut

Theorem 4.1. The uniform satisfiability problem for any PSPACE-effective temporal logic TL(B) is
in PSPACE.

Proof:
Let ξ be some formula from TL(B) whose satisfiability in R(Π) we want to check. By Proposition 4.1,
we have to decide whether Aξ accepts some word w = (w, (Xϕ)ϕ≤ξ) with Xξ 6= ∅. In order to do so,
we have to store in memory a bounded number of states of Aξ and to decide whether there is a transition
between two such states.

Since the temporal logic TL(B) is PSPACE-effective, the number of states of any of the automata
CM is in 2poly(|Π|). Recall that the states of Aξ are |ξ|-tuples of states from the automata CM . Hence,
a state of Aξ can be stored in space |ξ| · log(2poly(|Π|)) hence in poly(|ξ| + |Π|). Also, the transition
function of CM can be checked in space poly(|Π|) and we deduce that the transition function of Aξ can
also be checked in space poly(|ξ|+ |Π|). ut

5. Action-based temporal logics

We explain now the slight changes that arise when the architecture is presented by an arbitrary depen-
dence alphabet (Γ, D) instead of a set of processes Π and its induced dependence alphabet. In this
action-based approach, we fix a countably infinite set A of action names. The syntax of the local tempo-
ral logic TLact(B) is defined by the grammar

ϕ ::= M(ϕ, . . . , ϕ︸ ︷︷ ︸
arity(M)

) | a

where M ranges over the set B of modality names and a over the infinite set A of action names. With
any modality name M of arity m and any dependence alphabet (Γ, D), we associate a set [[M ]](Γ,D) ⊆
Rm+1(Γ, D) of (m + 1)-extended traces over (Γ, D). Then ϕt is defined as before for formulas ϕ ∈
TLact(B) and traces t = (V �, λ) ∈ R(Γ, D). The only difference is for constants a ∈ A where we let
at = {v ∈ V | λ(v) = a}.

The uniform satisfiability problem for the temporal logic TLact(B) now becomes:
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input: a dependence alphabet (Γ, D) and a formula ϕ of TLact(B)
question: Is there a trace t ∈ R(Γ, D) and a vertex v in t with t, v |= ϕ?

To solve this problem efficiently in this context, we adopt the notion of a PSPACE-effective temporal
logic as follows: A modality M of arity m is PSPACE-effective if there exists a PSPACE algorithm
with the following specification

input: a dependence alphabet (Γ, D)
output: a Büchi-automaton CM,Γ,D that accepts the language over Γm+1 = Γ× {0, 1}m+1 defined by

{(w,X1, . . . , Xm+1) ∈ (Γm+1)∞ | ∀x : x ∈ Xm+1 ↔ ([w], X1, . . . , Xm, {x}) ∈ [[M ]](Γ,D)} .

A temporal logic TLact(B) is PSPACE-effective if its modalities are uniformly PSPACE-effective, i.e.,
the automata CM,Γ,D can be constructed in PSPACE on input M and (Γ, D).

We will show that the uniform satisfiability problem for any PSPACE-effective action-based tem-
poral logic can be solved in polynomial space. This is achieved by a reduction to Theorem 4.1.

First, the set of process names associated with the set of action names A is P = {{a, b} | a, b ∈ A}.
A dependence alphabet (Γ, D) uniquely defines a finite set of processes Π = {{a, b} | (a, b) ∈ D}.
Note that not all finite subsets of P are induced by some dependence alphabet. Let, as before, Σ be the
set of nonempty subsets of Π. Identifying c ∈ Γ with the set {p ∈ Π | c ∈ p} ∈ Σ, we obtain Γ ⊆ Σ and
R(Γ, D) ⊆ R(Π). Furthermore, a trace t = (V,�, λ) ∈ R(Π) is in R(Γ, D) iff λ(v) ∈ Γ for all v ∈ V .

Now, for each modality M , we infer its process semantics from its action semantics: [[M ]]Π =
[[M ]](Γ,D) if Π is defined by some dependence alphabet (Γ, D), and [[M ]]Π = ∅ otherwise.

Now let ϕ ∈ TLact(B) be a formula. Then ϕ may contain subformulas of the form a with a ∈ A.
For a /∈ Γ, replace any of these occurrences by ⊥, otherwise, replace them by

∧
p∈a p ∧

∧
p∈Π\a ¬p.

These replacements result in a process-based formula ϕ ∈ TL(B). Then it is an easy exercise to prove
that for all t ∈ R(Γ, D) and v in t we have t, v |= ϕ (where the modalitiesM are evaluated by [[M ]](Γ,D))
iff t, v |= ϕ (where the modalities M are evaluated by [[M ]]Π).

Consider now the PSPACE-effective unary modality everywhere whose semantics is given by

[[E]](Γ,D) = {(V,�, λ,X, {y}) ∈ R2(Γ, D) | ∀x : x ∈ X}.

Then, ϕ is satisfiable over R(Γ, D) iff ϕ ∧ E
∨
a∈Γ a is satisfiable over R(Γ, D) iff ϕ ∧ E

∨
a∈Γ a is

satisfiable over R(Π). Thus, we reduced the instance (ϕ,Γ, D) of the uniform satisfiability problem of
TLact(B) to the instance (ϕ ∧ E

∨
a∈Γ a,Π) of the uniform satisfiability problem of TL(B ∪ {E}). By

Theorem 4.1, the latter can be decided in space polynomial in |Π| + |ϕ ∧ E
∨
a∈Γ a|. Since |Π| ≤ |Γ|2,

we proved

Corollary 5.1. The uniform satisfiability problem of any PSPACE-effective temporal logic TLact(B)
is in PSPACE.

6. General satisfiability

Let TL(B) be a local temporal logic. The general satisfiability problem for TL(B) is the following:
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` . . .
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Figure 1. Shape of pointed trace (t, v)

input: a formula ϕ of TL(B)
question: Is there a finite set of processes Π, a trace t ∈ R(Π) and a vertex v in t with t, v |= ϕ?

We show that this general satisfiability problem of the simple temporal logic TL(∨,¬,SU,EY) is
undecidable. Recall that formulas of this logic can also use the derived modalities universal until U,
always G, and existential next EX. For this undecidability to hold, it is important that there is no bound
on the size of the set Π.

To prove this undecidability, we reduce the halting problem (with empty input) of Turing machines to
the general satisfiability problem. So letM be a Turing machine with sets of statesQ, of tape symbols Γ,
and let $ be an additional symbol. Furthermore, fix two symbols ` and r. Now define the following sets
of processes

Π` = {`} × (Q ∪ Γ ∪ {$}),
Πr = {r} × (Q ∪ Γ ∪ {$}), and

Π0 = {`, r} ∪Π` ∪Πr .

Consider the following formula

ϕ0 = r ∧ G
(
(`↔ ¬r) ∧ EX(r ∧ EY `) ∧ EX(` ∧ EY r)

)
.

Let Π be some set of processes, let t = (V,�, λ) ∈ R(Π) and v ∈ V . Then t, v |= ϕ0 if and only
if {`, r} ⊆ Π and the pointed trace (t, v) has the shape indicated in Fig. 1. In that figure, solid arrows
denote the covering relation and dotted arrows its transitive closure, i.e., the strict order. Furthermore, all
the nodes in the first row belong to process ` and all those in the second to process r.

Now, consider the formula

ϕ1 = G

[
`→

∨
p∈Π`

(p ∧
∧
q∈Πr∪Π`\{p} ¬q)

∧ r →
∨
p∈Πr

(p ∧
∧
q∈Π`∪Πr\{p} ¬q)

]
Let t = (V,�, λ) ∈ R(Π) and v ∈ V such that t, v |= ϕ0 ∧ ϕ1. The pointed trace (t, v) has the
form described above. Moreover, the formula ϕ1 expresses that the events in the first row of t (i.e., the
events on process `) that are in the future of v encode some word from Πω

` and therefore some word u`
from (Q ∪ Γ ∪ {$})ω. Similarly, the events from process r that are above v encode some word ur from
(Q ∪ Γ ∪ {$})ω.

Next, consider the following formula

ϕ2 = (r, $) ∧ G
((

(r, $) → EX(`, $)
)
∧

(
(`, $) → EX(r, $)

))
∧ ¬

(
(¬`) SU (r, $)

)
.
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The first two conjuncts express that the events that are marked by filled circles belong to process (`, $)
and (r, $), resp. By the last conjunct, none of the events between v and the next filled event on process r
belongs to (r, $). Hence, again by the second conjunct, the filled events are precisely those that belong
to (`, $) and (r, $), respectively. Hence the two infinite words u` and ur over Q∪Γ∪{$} can be written
as

u` = $u0
`$u

1
`$u

2
` . . . and ur = $u0

r$u
1
r$u

2
r . . .

with ui`, u
i
r ∈ (Q ∪ Γ)∗ and such that |ui`| = |vjr | for all i, j ≥ 0.

It remains to express by a formula ϕM that

(1) u0
r is the initial configuration of the Turing machine M on the empty word,

(2) uir = ui`,
(3) ui` `M ui+1

r or ui` = ui+1
r , and

(4) ur contains an accepting state.

Since all this is rather standard, we leave to the interested reader the task of writing the formula ϕM.
Let ϕ = ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕM. We show that ϕ is generally satisfiable iff the Turing machine M

accepts the empty word.
Assume first thatM accepts the empty word and let n be larger than the maximal size used by the tape

during the accepting computation ofM starting from the empty word. Let u0, u1, . . . , um ∈ (Q∪Γ)n be
words encoding the accepting computation: u0 is the initial configuration on the empty word, ui ` ui+1

for 0 ≤ i < m and um contains the accepting state. Let Π = Π0 ∪ {p0, p1, . . . , pn}. Then, there exists
a pointed trace (t, v) over Π whose shape is described by Figure 1 and where the words encoded on
process ` and r are

u` = ur = $u0$u1$ · · · $um$um$um$ · · ·

Note that we need the processes p0, p1, . . . , pn to get the slanted arrows in Figure 1: the k-th vertices on
process ` or r after a filled node belong to process pk. By construction, we have t, v |= ϕ, hence ϕ is
generally satisfiable.

Conversely, if there exists a finite set of processes Π, a trace t = (V,�, λ) ∈ R(Π), and a node
v ∈ V such that t, v |= ϕ then we show easily that the Turing machine M accepts the empty word.

Since the formula ϕ can be constructed from M, we showed

Theorem 6.1. The general satisfiability problem for the local temporal logic TL({SU,EY,∧,¬}) is
undecidable.

7. Universal first order quantification and Büchi automata

Let B be a Büchi-automaton over the alphabet Σ1 = Σ× {0, 1}. It is the aim of this section to construct
a “small” automaton for the language

{(w,X) ∈ Σ∞
1 | ∀x : x ∈ X ↔ (w, {x}) ∈ L(B)} .

We show in Section 7.4 that this is useful to prove that a modality M is PSPACE-effective. Indeed, if
we start with an automaton BM,Π accepting the language [[M ]]Π then we obtain the automaton CM,Π as
defined in Definition 4.1.
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We first show how to construct a “small” automaton C for the universal language of B defined as
L∀(B) = {w ∈ Σ∞ | ∀x : (w, {x}) ∈ L(B)}. The standard approach would use the definition of the
universal quantifier ∀ = ¬∃¬. Hence, the number of states of the resulting automaton C could be doubly
exponential in that of B. Here, we will show that a single exponential suffices in general.

We are also interested in an automaton C for the universal language of the complement ofB: L∀(B) =
{w ∈ Σ∞ | ∀x : (w, {x}) /∈ L(B)}. The standard approach yields an automaton C with exponentially
many states.

Moreover, we show that if the pebble x has only little influence (in two related senses to be made
precise below) on the behavior of B, then we can build even smaller automata C and C.

7.1. Complementation of Büchi automata

We first revisit the complementation construction for Büchi automata in order to infer precise bounds on
the space complexity and the number of states obtained.

Let B = (Q,Σ, I, T, F,R) be a Büchi-automaton. For w ∈ Σ∗ and p ∈ Q, let p ·w denote the set of
states q ∈ Q with p w−→ q in B. Also, let P · w =

⋃
p∈P p · w for P ⊆ Q.

Proposition 7.1. LetB = (Q,Σ, I, T, F,R) be a Büchi-automaton such that |I ·w| ≤ m for anyw ∈ Σ∗.
Then, in spaceO(m log |Q|), one can compute a Büchi-automaton C over Σ such thatL(C) = Σ∞\L(B).

Proof:
This complexity result can be obtained by a careful inspection of several constructions for the com-
plement of Büchi automata. For finite runs, we simply use the classical subset construction yielding a
deterministic automaton. By the hypothesis, each reachable subset contains at most m states from Q and
therefore can be encoded with m log |Q| bits. Hence, the subset construction can be carried out in space
O(m log |Q|).

For infinite runs, our first proof was based on alternating automata following the constructions of
[10, 13]. More precisely, the non-depterministic Büchi automaton B yields immediately an alternating
co-Büchi-automaton B1 for the complement. By our hypothesis, the number of distinct states that appear
at a level i in a run-tree of B1 is bounded by m. Then, B1 is transformed into an equivalent weak
alternating automaton B2 [10]. The key point to obtain the complexity is that we can restrict to run-trees
of B2 such that the number of distinct states that appear at some level i is also bounded by m. Then, the
translation of B2 to a Büchi automaton C [13] yields |Q|O(m) many states and can be performed in space
O(m log |Q|).

Another possibility is to use Safra’s determinization construction as suggested by an anonymous
referee. Following the construction described, e.g., in [16, Chap. I, Sec. 9], we obtain a deterministic
Rabin automaton C1 whose states are labeled trees. Here the key observation is that, by our hypothesis,
the set of states that label the root of a tree is of size at mostm. It follows that the Safra-trees have at most
m nodes that can be choosen from a set V of size 2m. ForX ⊆ Q, let TX be the set of Safra-trees labeled
X at the root. Then, the set of Safra-trees in C1 is the union of all TX with |X| ≤ m. Next, following the
proof of [16, Chap. I, Prop. 10.4] we get |TX | ≤ (4m)2m. The number of subsets X of Q with at most
m elements is bounded by |Q|m. Hence the number of Safra-trees in C1 is at most |Q|m · (4m)2m. The
space needed to store such Safra-trees is therefore O(m log |Q|) and the construction of C1 can be done
in space O(m log |Q|). We still have to complement the acceptance condition and to turn it into a Büchi
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condition. The Rabin automaton C1 has 2m pairs, one for each node from V . The pair associated with
node v ∈ V claims that v is marked infinitely often and that it is ultimately present in all Safra-trees of
the run. To check the complement, we guess a subset U ⊆ V and we check that ultimately only nodes
in U are marked and that each node in U is infinitely often not present in the Safra-trees of the run.
This multiplies the number of states by (m+ 1)2m+1 and yields a Büchi automaton C which can still be
constructed in space O(m log |Q|). ut

7.2. Universal language and general variance

Now let B = (Q,Σ1, I, T, F,R) be a Büchi-automaton. We aim at a small Büchi-automaton for the
universal language of the complement of B

L∀(B) = {w ∈ Σ∞ | ∀x : (w, {x}) /∈ L(B)}
= Σ∞ \ {w ∈ Σ∞ | ∃x : (w, {x}) ∈ L(B)}.

The standard approach first projects to Σ∞ the language L(B) restricted to the words (w,X) where
X is a singleton and then complements the resulting automaton. Hence, the language in question can
be accepted by a Büchi-automaton with |Q|O(|Q|) many states. The following criterion on the Büchi-
automaton B allows to avoid this exponential blow-up.

The general variance of B, denoted GenVar(B), is the maximal size of a set

I · (w, ∅) ∪
⋃

0≤x<|w|

I · (w, {x})

for w ∈ Σ∗. In other words, it is the maximal number of states one can reach reading w ∈ Σ∗ indepen-
dently from the position of the pebble x (and this pebble need not be placed in w at all).

Proposition 7.2. Let B = (Q,Σ1, I, T, F,R) be a Büchi-automaton over the alphabet Σ1 with general
variance GenVar(B) ≤ m. Then one can construct a Büchi-automaton C with L(C) = L∀(B) in space
O(m log |Q|).

Proof:
Doubling the number of states if necessary, we can transform B so that it has no run on a word (w,X) ∈
Σ∞

1 with |X| ≥ 2 and it only accepts words (w,X) ∈ Σ∞
1 where X is a singleton. Note that the general

variance is not changed by this transformation.
Let B′ = (Q,Σ, I, T ′, F,R) be the projection of the automaton B to the alphabet Σ, i.e., T ′ =

{(p, a, q) | (p, (a, 0), q) ∈ T or (p, (a, 1), q) ∈ T}. We have L(B′) = {w ∈ Σ∞ | ∃x : (w, {x}) ∈
L(B)}. Since B does not allow any run on a word (w,X) with |X| ≥ 2, the set I · w in B′ equals
I · (w, ∅)∪

⋃
0≤x<|w| I · (w, {x}) in the old automaton B, i.e., I ·w contains at most m elements. Hence

the result follows from Proposition 7.1. ut

7.3. Universal language and special variance

We still assume that B = (Q,Σ1, I, T, F,R) is a Büchi-automaton. Here, we want to build a small
Büchi-automaton for the universal language L∀(B) = {w ∈ Σ∞ | ∀x : (w, {x}) ∈ L(B)} of B itself.
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Let w ∈ Σ∞, u be a prefix of w of length i, and p ∈ Q. Provided B is complete, p ∈ I · (u, ∅) ∪⋃
0≤x<|u| I · (u, {x}) iff B can reach p after i steps in some run on (w, {x}) for some position x in

w. The set states(B, w, i) ⊆ Q is defined analogously disregarding all non-successful runs, i.e., p ∈
states(B, w, i) iff B can reach p after i steps in some successful run on (w, {x}) for some position x in
w. The special variance of B, denoted SpeVar(B), is the maximum of all values |states(B, w, i)| for
w ∈ Σ∞ and i ∈ N. Note that the special variance is always bounded by the general variance.

Proposition 7.3. Let B = (Q,Σ1, I, T, F,R) be a Büchi-automaton with SpeVar(B) ≤ m. Then, in
space O(m log |Q|), one can compute a Büchi-automaton C over Σ such that L(C) = L∀(B).

The proof of this proposition, that uses the following two lemmas, can be found on page 184.
For simplicity, we write Σ(i) = Σ × {i} for i = 0, 1 such that Σ1 = Σ(0) ∪ Σ(1). The canonical

projection from Σ∞
1 onto Σ∞ is denoted π. Doubling the number of states of B if necessary, we can

assume that if (w,X) ∈ L(B) then X is a singleton. Hence, L(B) ⊆ Σ(0)∗Σ(1)Σ(0)∞. A word
w ∈ Σ∞ belongs to L∀(B) iff each word v ∈ Σ(0)∗Σ(1)Σ(0)∞ with π(v) = w is accepted by B. To
accept L∀(B), we first construct an alternating automaton1 as follows

• The set of states Q′ equals Q ] {B ⊆ Q | 0 ≤ |B| ≤ m}

• The initial condition is
∨
{J ⊆ I | 0 ≤ |J | ≤ m}

• F ′ = F ∪ {∅} and R′ = R ∪ {B ⊆ Q | 1 ≤ |B| ≤ m}

• For p ∈ Q and a ∈ Σ, we have δ′(p, a) =
∨
{q ∈ Q | (p, (a, 0), q) ∈ T}

• For A ⊆ Q with 1 ≤ |A| ≤ m and a ∈ Σ, we set

δ′(A, a) =
∨
{B ⊆ Q | 1 ≤ |B| ≤ m and ∀q ∈ B, ∃p ∈ A : (p, (a, 0), q) ∈ T}

∧
∨
{q ∈ Q | ∃p ∈ A : (p, (a, 1), q) ∈ T}

• Finally, for a ∈ Σ we set δ(∅, a) = ⊥.

This finishes the construction of the alternating automaton B′ = (Q′, ι′, δ′, F ′, R′).

Lemma 7.1. L∀(B) ⊆ L(B′)

Proof:
Let w = a0a1a2 · · · ∈ L∀(B). We call a word v ∈ Σ(0)∗Σ(1)Σ(0)∞ relevant if π(v) = w. Since
w ∈ L∀(B), any relevant word is accepted by B, i.e., for any relevant word v = b0b1b2 . . . , there exists a

successful run qv0
b0−→ qv1

b1−→ . . . of B on v. Using these runs, we define a successful run tree of B′ on w:

• the set of nodes is V = {u ∈ Σ(0)∗ ∪ Σ(0)∗Σ(1)Σ(0)∗ | π(u) is a prefix of w}.

• the set of edges E is given by E = {(u, ub) | ub ∈ V and b ∈ Σ1}.

1Similarly to our Büchi-automata that accept finite and infinite words, our (Büchi-)alternating automata have two sets of ac-
cepting states, one for infinite runs and one for finite runs.
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• to define the labeling ρ : V → Q′, let u ∈ V . First assume that u ∈ Σ(0)∗Σ(1)Σ(0)∗. Then u can
be extended uniquely to some relevant word v. Recall that qv0 , q

v
1 . . . is a successful run of B on v.

We set ρ(u) = qv|u|.

Now assume that u ∈ Σ(0)∗. If |u| < |w| then u can be extended to some relevant word, but
this time, the extension may not be unique. On the other hand, if |u| = |w| then u is not a prefix
of any relevant word. So let ρ(u) = {qv|u| | v is a relevant extension of u}. In particular, ρ(u) is
a set of states that occur as state number |u| in some successful run of B on some (w, {x}) with
|u| ≤ x < |w|. Hence, by the assumption on B, the set ρ(u) contains at most m elements and is
therefore a state of the alternating automaton B′.

We first prove that this is indeed a run tree. To this aim, let u ∈ V be an inner node with n = |u| < |w|.
We have to show

{ρ(ub) | ub ∈ V and b ∈ Σ1} |= δ′(ρ(u), an+1) . (1)

First consider the case u ∈ Σ(0)∗Σ(1)Σ(0)∗. Then, the unique successor of u in the tree (V,E) is
u′ = u(an, 0). Let v be the unique extension of u′ to a relevant word. Since v is also the unique
extension of u to a relevant word, we have ρ(u) = qvn and ρ(u′) = qvn+1. Since the sequence of states qvi
forms a run of B on the word v, this implies (ρ(u), (an, 0), ρ(u′)) ∈ T . Hence (1) follows.

Next suppose u ∈ Σ(0)∗ with |u| = n. Then the successors of u in the tree (V,E) are the words
u0 = u (an, 0) ∈ Σ(0)∗ and u1 = u (an, 1) ∈ Σ(0)∗Σ(1). Then we have

ρ(u) = {qvn | v is a relevant extension of u}
ρ(u0) = {qvn+1 | v is a relevant extension of u0}

Since any relevant extension v of u0 is also a relevant extension of u, for all q ∈ ρ(u0) we find p ∈ ρ(u)
such that (p, (an, 0), q) ∈ T . Let v be the unique relevant extension of u1 so that qvn+1 = ρ(u1). As
above, since v is also a relevant extension of u, we have qvn ∈ ρ(u) and (qvn, (an, 1), qvn+1) ∈ T . Thus,
(1) follows.

It remains to be shown that the run tree (V,E, ρ) is successful. Clearly, its root ε is labeled ρ(ε) ⊆ I
since all the successful runs on relevant words start in I . Since ρ(ε) ∈ Q′, this implies 1 ≤ |ρ(ε)| ≤ m
and therefore ρ(ε) satisfies the initial condition of B′. Now consider a maximal branch in (V,E). Assume
first that all its nodes belong to Σ(0)∗. If the branch is finite then its last label is ∅ ∈ F ′. If it is infinite
then all its labels belong to {B ⊆ Q | 1 ≤ |B| ≤ m}. Hence the branch is accepting. Alternatively, there
exists a relevant word v ∈ Σ(0)∗Σ(1)Σ(0)∞ such that the nodes of the branch are the finite prefixes of
v. Let n be the position of the letter from Σ(1) in v. The sequence of labels of the branch ends with
qvn+1, q

v
n+2, . . . . Since this is a suffix of a successful run on v, the branch is accepting. ut

Lemma 7.2. L(B′) ⊆ L∀(B)

Proof:
Let (V,E, ρ) be a successful run tree of the alternating automaton B′ on the wordw = a0a1a2 · · · ∈ Σ∞.
Furthermore, let n ≥ 0 be some position in w. We have to prove that the relevant word

v = (a0, 0) (a1, 0) . . . (an−1, 0) (an, 1) (an+1, 0) (an+2, 0) . . .

is accepted by the Büchi-automaton B.
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Inductively, we construct a maximal branch x0, x1, . . . such that ∅ 6= ρ(xi) ⊆ Q for 0 ≤ i ≤ n and
ρ(xi) ∈ Q for i > n. The node x0 is the root of the run tree (V,E, ρ). Now suppose that xiwith i < |w|
has been chosen. Then

{ρ(x) ∈ Q′ | (xi, x) ∈ E} |= δ′(ρ(xi), ai) . (2)

Choosing xi+1, we distinguish three cases.

1. Suppose i < n. Because of ∅ 6= ρ(xi) ⊆ Q and (2), there exists a node xi+1 ∈ V with (xi, xi+1) ∈
E and ρ(xi+1) ⊆ {q ∈ Q | ∃p ∈ ρ(xi) : (p, (ai, 0), q) ∈ T}. Since i + 1 ≤ n < |w| the node
xi+1 is not a leaf. Using δ(∅, an) = ⊥, we deduce that ρ(xi+1) 6= ∅.

2. Now suppose i = n. Because of ∅ 6= ρ(xi) ⊆ Q and (2), there exist a node xi+1 ∈ V with
(xi, xi+1) ∈ E and a state p ∈ ρ(xi) such that the triple (p, (ai, 1), ρ(xi+1)) is a transition from T .

3. Finally, suppose i > n. Because of ρ(xi) ∈ Q and (2), there exists xi+1 ∈ V with (xi, xi+1) ∈ E
and (ρ(xi), (ai, 0), ρ(xi+1)) ∈ T .

To obtain a successful run of the Büchi-automaton B on v, we first set qi = ρ(xi) for i > n.
By construction of xn+1, there exists qn ∈ ρ(xn) with (qn, (an, 1), qn+1) ∈ T . Now, if i < n and
qi+1 ∈ ρ(xi+1) has been chosen, there exists qi ∈ ρ(xi) with (qi, (ai, 0), qi+1) ∈ T by construction of
xi+1. This defines a run q0, q1, . . . of B on v with qi ∈ ρ(xi) for i ≤ n and qi = ρ(xi) for n < i ≤ |w|.
With i = 0, we obtain q0 ∈ ρ(x0) ⊆ I , i.e., the run starts in some initial state of B. Since the maximal
branch x0, x1, x2 . . . is accepting and ultimately labelled by states inQ, the run is successful as well. ut

Proof of Proposition 7.3:
By Lemmas 7.1 and 7.2, L∀(B) can be accepted by an alternating automaton with state set Q′ = Q ]
{B ⊆ Q | 0 ≤ |B| ≤ m}. Let (V,E, ρ) be some minimal (with respect to set inclusion) accepting
run tree of the alternating automaton B′ on w ∈ Σ∞. Consider level n in this run tree. First observe
that this level contains exactly one node x with ρ(x) ⊆ Q. Now let x be some node on level n with
ρ(x) ∈ Q. Consider some maximal branch of the run tree that contains x. As we saw in the proof of
Lemma 7.2, ρ(x) is state number n in some accepting run of B on some relevant word. This shows
that the set {ρ(x) | x is some node on level n of the run tree} equals {B} ∪ C for some B,C ⊆ Q with
|B|, |C| ≤ m. For infinite runs, adopting the proof from [13], one can construct an equivalent Büchi-
automaton C whose states consist of such sets {B} ∪ C together with an (m+ 1)-tuple of binary values
{0, 1}. To store one element of Q, space log |Q| suffices, hence any state of C can be stored in space
O(m log |Q|). For finite runs, the situation is even simpler since we do not need the (m + 1)-tuple of
binary values. ut

7.4. Polynomial variance and PSPACE-effectiveness

Let B be a Büchi-automaton over the alphabet Σ1. As announced at the beginning of Section 7, we show
here how to construct a “small” automaton for the language

{(w,X) ∈ Σ∞
1 | ∀x : x ∈ X ↔ (w, {x}) ∈ L(B)} .

Since this property can be expressed in monadic second order logic, such an automaton C exists, but its
number of states is in general doubly exponential. Using the notion of general and special variance, we
present two special cases where this increase can be avoided.
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Lemma 7.3. Let B be a Büchi-automaton over the alphabet Σ1 with n states and general variance m.
Then we can construct in space O(m log n) a Büchi-automaton C over the alphabet Σ1 such that

L(C) = {(w,X) ∈ Σ∞
1 | ∀x : x ∈ X ↔ (w, {x}) ∈ L(B)}.

Proof:
There is a Büchi-automaton B1 over Σ2 with 2n+ 1 states such that

L(B1) = {(w,X, {x}) ∈ Σ∞
2 | x ∈ X → (w, {x}) ∈ L(B)} .

The automaton checks whether (w, {x}) ∈ L(B) and also whether the second set is a singleton (this
requires doubling the number of states of B) and goes into a new accepting state if the second set is not
contained in the first, otherwise, it accepts if B accepts (w, {x}). The general variance (and therefore
the special variance) of this automaton is at most m + 1. By Proposition 7.3, we can construct in space
O(m log n) a Büchi automaton C1 such that L(C1) = L∀(B1).

There is also a Büchi-automaton B2 with 2n states and general variance m such that

L(B2) = {(w,X, {x}) ∈ Σ∞
2 | x /∈ X ∧ (w, {x}) ∈ L(B)} .

By Proposition 7.2, we can construct in space O(m log n) a Büchi automaton C2 such that L(C2) =
L∀(B2) = {(w,X) ∈ Σ∞

1 | ∀x : x /∈ X → (w, {x}) /∈ L(B)}. Still in space O(m log n) we can
construct the automaton C accepting the intersection L(C1) ∩ L(C2) = {(w,X) ∈ Σ∞

1 | ∀x : x ∈ X ↔
(w, {x}) ∈ L(B)}. ut

As a corollary, we obtain a sufficient condition based on the general variance to ensure PSPACE-
effectiveness of a modality.

Proposition 7.4. LetM be a modality of aritym. Assume that there exists a PSPACE algorithm which,
given a finite set of processes Π, computes a Büchi-automaton BM,Π with GenVar(BM,Π) ∈ poly(|Π|)
accepting the language

L(BM,Π) = {(w,X1, . . . , Xm, {x}) ∈ Σ∞
m+1 | ([w], X1, . . . , Xm, {x}) ∈ [[M ]]Π} .

Then, the modality M is PSPACE-effective.

Proof:
Since the automaton BM,Π can be constructed by a PSPACE algorithm, its number of states is in
2poly(|Π|). We deduce from Lemma 7.3 that the automaton CM,Π as defined in Definition 4.1 can be
constructed by an algorithm working in space O(GenVar(BM,Π) log(2poly(|Π|))) = poly(|Π|). ut

In some cases, e.g. for the modality Op, we were not able to obtain a Büchi automaton BM,Π with
general variance polynomial in |Π|. In these cases, our proof of PSPACE-effectiveness is based on the
special variance.

Lemma 7.4. Let B1 and B2 be Büchi-automata over the alphabet Σ1 such that (w, {x}) ∈ L(B2) iff
(w, {x}) /∈ L(B1) for all (w, {x}) ∈ Σ∞

1 . If B1 and B2 have at most n states and special variance at
most m then we can construct in space O(m log n) a Büchi-automaton C over the alphabet Σ1 such that

L(C) = {(w,X) ∈ Σ∞
1 | ∀x : x ∈ X ↔ (w, {x}) ∈ L(B1)}.



186 P. Gastin, D. Kuske / Uniform satisfiability for local temporal logics

Proof:
As in the proof of Lemma 7.3 we can construct two Büchi-automata B′1 and B′2 over Σ2 with at most
2n+ 1 states and special variance at most m+ 1 such that

L(B′1) = {(w,X, {x}) ∈ Σ∞
2 | x ∈ X → (w, {x}) ∈ L(B1)}

L(B′2) = {(w,X, {x}) ∈ Σ∞
2 | x /∈ X → (w, {x}) ∈ L(B2)}

= {(w,X, {x}) ∈ Σ∞
2 | x /∈ X → (w, {x}) /∈ L(B1)}.

where the last equality holds by the hypothesis on B1 and B2.
By Proposition 7.3, we can construct in spaceO(m log n) two automata C1 and C2 such that L(C1) =

L∀(B′1) and L(C2) = L∀(B′2). We conclude as in the proof of Lemma 7.3 since the desired language is
L(C1) ∩ L(C2). ut

As a corollary, we deduce another sufficient condition based on the special variance to ensure
PSPACE-effectiveness of a modality.

Proposition 7.5. Let M be a modality of arity m. Assume that there exist PSPACE algorithms which,
given a finite set of processes Π, compute Büchi-automata BM,Π and BM,Π with special variances in
poly(|Π|) accepting the languages

L(BM,Π) = {(w,X1, . . . , Xm, {x}) ∈ Σ∞
m+1 | ([w], X1, . . . , Xm, {x}) ∈ [[M ]]Π}

L(BM,Π) = {(w,X1, . . . , Xm, {x}) ∈ Σ∞
m+1 | ([w], X1, . . . , Xm, {x}) /∈ [[M ]]Π}.

Then, the modality M is PSPACE-effective.

Proof:
Since BM,Π and BM,Π can both be constructed by PSPACE algorithms, their number of states are in
2poly(|Π|). We deduce from Lemma 7.4 that the automaton CM,Π as defined in Definition 4.1 can be
constructed by an algorithm working in space poly(|Π|). ut

8. Examples of PSPACE-effective modalities

The aim of this section is to show that all modalities described in Section 3 are PSPACE-effective.
Throughout this section, let Π denote some finite set of processes and let Σ be the set of nonempty
subsets of Π.

8.1. Derived modalities

As a preliminary, we indicate how to construct more involved PSPACE-effective modalities from sim-
pler ones. This will be used repeatedly in the following sections. For instance, the modality Xp is derived
from the strict until SU and the Boolean connectives: Xp ϕ = (¬p) SU (p ∧ ϕ).

Let TL(B) be some local temporal logic. The set of terms of TL(B) is defined by the grammar

τ ::= M(τ, . . . , τ︸ ︷︷ ︸
arity(M)

) | p | X
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where M ranges over B, p over the infinite alphabet P , and X over the set variables {X1, X2, . . . }. For
instance, (¬p) SU (p ∧X1) is a term of TL(¬,∧,SU).

Recall that the semantics of a formula is a set of positions in a trace. Similarly, the semantics of
a term τ with free variables Free(τ) ⊆ {X1, . . . , Xk} is a set of positions in a k-extended trace. Let
t = (V,�, λ) be a trace over some set of processes Π and V1, . . . , Vk ⊆ V be sets of positions. For
p ∈ P , the semantics of the term p is p(t,V1,...,Vk) = {v ∈ V | p ∈ λ(v)}. For 1 ≤ i ≤ k, we set
X

(t,V1,...,Vk)
i = Vi. The induction then proceeds as in the case of formulas: if τ = M(τ1, . . . , τm) where

M ∈ B is of arity m ≥ 0, then

τ (t,V1,...,Vk) = {v ∈ V | (t, τ (t,V1,...,Vk)
1 , . . . , τ (t,V1,...,Vk)

m , {v}) ∈ [[M ]]Π}.

Definition 8.1. Let TL(B) be some local temporal logic and let M be some m-ary modality. Then M
is a derived modality if there exists a term τ of TL(B) with m free variables such that for any finite set
of processes Π, we have

[[M ]]Π = {(t, V1, . . . , Vm, {v}) ∈ Rm+1(Π) | v ∈ τ (t,V1,...,Vm)} .

If M is a derived modality, then we also say that it can be expressed with the modalities from B.

Proposition 8.1. Let TL(B) be some PSPACE-effective temporal logic and let M be some derived
m-ary modality. Then M is PSPACE-effective.

Proof:
We use the notations from Section 4, adapted naturally from formulas to terms. Let τ be the term
that defines the modality M . Then, the automaton Aτ from Section 4 can be constructed from Π
in PSPACE. Note that its alphabet is Σm = Σm × {0, 1}Sub(τ). Then, by Lemma 4.1, a word
(w, V1, . . . , Vm, (Vσ)σ≤τ ) is accepted by Aτ iff, for any subterm σ of τ , we have Vσ = σ([w],V1,...,Vm).
Hence the projection of the automaton Aτ to the alphabet Σm × {0, 1} where we project away all com-
ponents associated with proper subterms of τ can serve as automaton CM,Π from Definition 4.1. ut

8.2. Universal modalities

This section is concerned with the strict universal until SU and its past version, the strict universal
since SS and with the modalities that can be derived from them. To this aim, we will construct au-
tomata BSU,Π and BSS,Π whose general variances are polynomial in the size of Π. Both these automata
are based on the following automaton B.

Construction. The alphabet of the automaton B is Σ3 and B will accept a word (w,X, Y, Z) iff there
are i ∈ X and k ∈ Z with i ≺ k and such that j ∈ Y for all j with i ≺ j ≺ k. Note here, that we have
two orders: the natural linear order ≤ on the positions of the word w as well as the partial order � of the
trace [w].

The set of states of the automaton B is Q = {init,OK} ] (2Π × 2Π), init is the unique ini-
tial state and OK is the only accepting state both for finite runs and for infinite runs. We first de-
scribe intuitively the expected behaviour of B. Let w = a1a2 · · · ∈ Σ∞. Now, let (w,X, Y, Z) =
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(a1, x1, y1, z1)(a2, x2, y2, z2) · · · ∈ Σ∞
3 . If there is a run

init = q0
(a1,x1,y1,z1)−−−−−−−−→ q1

(a2,x2,y2,z2)−−−−−−−−→ q2 . . .

of B then either qn = init for all n ≥ 0 or with i = min{n ≥ 0 | qn 6= init} we have i ∈ X and for all
n ≥ i, if qn 6= OK then qn = (An, Bn) with

An =
⋃
{aj | i � j ≤ n} (3)

Bn =
⋃
{aj | ∃j′ /∈ Y : i ≺ j′ � j ≤ n} . (4)

Moreover, if qn = OK for some n then with k = min{n ≥ 0 | qn = OK} we have i ≺ k and k ∈ Z and
j ∈ Y for all i ≺ j ≺ k.

To this aim, a triple (p, (a, x, y, z), q) is a transition iff one of the following conditions holds

p = init ∧ q = init
or p = init ∧ x = 1 ∧ q = (a, ∅)
or p = (A,B) ∧ a ∩A = ∅ ∧ q = (A,B)
or p = (A,B) ∧ a ∩A 6= ∅ ∧ a ∩B = ∅ ∧ z = 1 ∧ q = OK
or p = (A,B) ∧ a ∩A 6= ∅ ∧ a ∩B = ∅ ∧ z = 0 ∧ y = 0 ∧ q = (A ∪ a,B ∪ a)
or p = (A,B) ∧ a ∩A 6= ∅ ∧ a ∩B = ∅ ∧ z = 0 ∧ y = 1 ∧ q = (A ∪ a,B)
or p = (A,B) ∧ a ∩A 6= ∅ ∧ a ∩B 6= ∅ ∧ q = (A ∪ a,B ∪ a)
or p = OK ∧ q = OK .

Note that the non-determinism in B reduces to the choice of whether we leave the state init or not when
we are in a position from X (i.e., when x = 1).

Lemma 8.1. The automaton B accepts a word (w,X, Y, Z) ∈ Σ∞
3 iff there exist i ∈ X and k ∈ Z with

i ≺ k and such that j ∈ Y for all i ≺ j ≺ k.

Proof:
We first show that B satisfies the intuition described above. So we consider a run of B on (w,X, Y, Z) =
(a1, x1, y1, z1)(a2, x2, y2, z2) · · · ∈ Σ∞

3 :

init = q0
(a1,x1,y1,z1)−−−−−−−−→ q1

(a2,x2,y2,z2)−−−−−−−−→ q2 . . .

and we assume that qn 6= init for some n ≥ 0. Let i = min{n ≥ 0 | qn 6= init}. From the second line
of the definition of the transition relation we deduce that i ∈ X and qi = (ai, ∅). Hence (3,4) holds for
n = i. Now, let n > i be such that qn 6= OK. Then we must have qn−1 6= OK and by induction we may
assume that (3,4) holds for n− 1. We have An−1 ∩ an 6= ∅ iff aj ∩ an 6= ∅ for some i � j < n iff i ≺ n.
By definition of the transition relation, we have An = An−1 if An−1 ∩ an = ∅ and An = An−1 ∪ an
otherwise. We deduce that (3) holds for n. Now, if an ∩ Bn−1 6= ∅ then we find j′ /∈ Y and j < n
such that j′ � j and an ∩ aj 6= ∅. We deduce that j′ ≺ n and Bn = Bn−1 ∪ an satisfies (4). Similarly,
if yn = 0 and an ∩ An−1 6= ∅ then i ≺ j′ = n /∈ Y and Bn = Bn−1 ∪ an satisfies (4). Finally, if
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an ∩ Bn−1 = ∅ then there is no j′ /∈ Y with i ≺ j′ ≺ n and if in addition yn = 1 then there is no
j′ /∈ Y with i ≺ j′ � n. We deduce that in this case (4) holds with Bn = Bn−1. Moreover, assume that
qn = OK for some n and let k = min{n ≥ 0 | qn = OK}. Since qi = (ai, ∅) we have k > i and (3,4)
holds for n = k − 1. By definition of the transition relation we have zk = 1 and ak ∩ Ak−1 6= ∅ and
ak ∩Bk−1 = ∅. We deduce that k ∈ Z and i ≺ k and j ∈ Y for all i ≺ j ≺ k.

Now, assume that (w,X, Y, Z) is accepted by B and consider an accepting run of B using the same
notations as above. Since the run is accepting, it starts in state init and eventually loops on state OK. Let
i and k be minimal with qi 6= init and qk = OK, resp. We have seen above that i ∈ X , i ≺ k, k ∈ Z
and j ∈ Y for all i ≺ j ≺ k.

Conversely, assume that there are i ∈ X , k ∈ Z with i ≺ k and j ∈ Y for all i ≺ j ≺ k. Consider
the unique run

init = q0
(a1,x1,y1,z1)−−−−−−−−→ q1

(a2,x2,y2,z2)−−−−−−−−→ q2 . . .

of B with qn = init for all n < i and qi = (ai, ∅), which is indeed possible since i ∈ X . If qk−1 = OK
then the run is accepting. So assume that qk−1 6= OK. Then, from the property of B we have qk−1 =
(Ak−1, Bk−1) and (3,4) holds for n = k − 1. Now, from i ≺ k we deduce that ak ∩ Ak−1 6= ∅. Using
j ∈ Y for all i ≺ j ≺ k we deduce that ak ∩ Bk−1 = ∅. Since k ∈ Z the definition of the transition
function implies qk = OK. Therefore, the run is accepting. ut

From the following lemma we will deduce that the general variance of the two automata BSU,Π and
BSS,Π derived from B is polynomial in |Π|.

Lemma 8.2. Let w = a1a2 . . . an and Y ⊆ {1, . . . , n}. Then the set⋃
{init · (w,X, Y, Z) | X,Z ⊆ {1, . . . , n}}

contains at most 2 + |Π|2(|Π|+ 1) many elements.

Proof:
Let X,Z ⊆ {1, 2, . . . , n} and consider a run

init = q0
(a1,x1,y1,z1)−−−−−−−−→ q1 · · · qn−1

(an,xn,yn,zn)−−−−−−−−→ qn .

Then, either qn ∈ {init,OK} or we have qn = (A(i), B(i)) with i minimal such that qi 6= init and

A(i) =
⋃
{aj | i � j ≤ n} and B(i) =

⋃
{aj | ∃j′ /∈ Y : i ≺ j′ � j ≤ n} .

Therefore, the set
⋃
{init · (w,X, Y, Z) | X,Z ⊆ {1, . . . , n}} is contained in H = {init,OK} ∪

{(A(i), B(i)) | 1 ≤ i ≤ n}. Towards a contradiction, suppose the set in question and therefore this
set H contains properly more than 2 + |Π|2(|Π| + 1) states. Then there exist 0 < i0 < i1 < · · · <
i|Π|2(|Π|+1) ≤ n such that the tuples (A(ij), B(ij)) are pairwise distinct. Since the positions on process
p are totally ordered for the causal ordering≺, there are at least 1+ |Π|(|Π|+1) positions totally ordered
for ≺. Therefore, after renaming if necessary, we can assume that i0 ≺ i1 ≺ · · · ≺ i|Π|(|Π|+1) ≤ n. We
easily see that i � i′ implies A(i) ⊇ A(i′). Therefore, we obtain

A(i0) ⊇ A(i1) ⊇ · · · ⊇ A(i|Π|(|Π|+1)) .
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Since all these are nonempty subsets of Π, among the remaining positions, there are at least |Π| + 2
positions with equal sets. Again, after renaming if necessary, we can assume that i0 ≺ i1 ≺ · · · ≺
i|Π|+1 ≤ n and

A(i0) = A(i1) = · · · = A(i|Π|+1) .

Finally, i � i′ also implies B(i) ⊇ B(i′). Therefore,

B(i0) ⊇ B(i1) ⊇ · · · ⊇ B(i|Π|+1) .

We deduce that among these subsets of Π, at least two are equal, which is a contradiction. ut

We show now that the universal modalities are PSPACE-effective. The strict universal until SU was
already defined in Section 3. Here we deal simultaneously with its past version, the strict universal since
SS whose semantics [[SS]]Π is defined by

{(V,�, λ,X, Y, {z}) ∈ R3(Π) | ∃y ∈ Y : y ≺ z ∧ ∀x : y ≺ x ≺ z → x ∈ X} .

Proposition 8.2. The modalities SS and SU are PSPACE-effective.

Proof:
We start with the strict universal since. Let (w,X, Y, {z}) ∈ Σ∞

3 . Then ([w], X, Y, {z}) ∈ [[SS]]Π iff
the word (w, Y,X, {z}) is accepted by B. The automaton BSS,Π is thus the automaton B where the two
lines for X and Y have been exchanged and which checks in addition that the set Z is a singleton. The
automaton B can be constructed in PSPACE, hence also the automaton BSS,Π. The general variance
of BSS,Π is polynomial in Π by Lemma 8.2. Hence the result follows from Proposition 7.4.

We turn now to the strict universal until. With the same notations, we have ([w], X, Y, {z}) ∈ [[SU]]Π
iff the word (w, {z}, X, Y ) is accepted by B. Hence, we can conclude as above. ut

We have already seen that the Boolean connectives are PSPACE-effective, hence the temporal logic
TL(∨,¬,SU) is PSPACE-effective. Also, since the modalities EX and U can be expressed with SU
we deduce that the logic TL(∨,¬,EX,U) is also PSPACE-effective. Similarly, the pure future pro-
cess based modalities Xp and Up can be expressed with SU, hence the process based temporal logic
TL(∨,¬,Xp,Up) is PSPACE-effective.

The past versions EY, S, Yp and Sp of EX, U, Xp and Up can be expressed using SS. Hence they
are also PSPACE-effective. Therefore, we can enhance the PSPACE-complete logics mentioned above
by past versions of their modalities. The uniform satisfiability problem of the resulting logics is still in
PSPACE.

8.3. Modalities used in TrPTL

We show here that the modalitiesOp and Up are also PSPACE-effective. Recall that these modalities are
neither pure future nor pure past. We will define non-deterministic automata with small special variances
in order to use Proposition 7.5.

Proposition 8.3. The modality Op is PSPACE-effective.
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Proof:
We first define a non-deterministic automaton A with 2Π as set of states, where all states except ∅ are
initial and ∅ is the only accepting state. Even though A is non-deterministic, it will have a unique ac-
cepting run on any word (w, {k}) ∈ Σ∞

1 . If we write (w, {k}) = (a1, y1)(a2, y2) . . . then the accepting
run will be the sequence (An)0≤n≤|w| such that

An =
⋃
{aj | n < j � k} . (5)

We have a transition A
(a,y)−−−→ A′ iff the following holds:

y = 1 ∧A = a ∧A′ = ∅
or y = 0 ∧ a ∩A′ = ∅ ∧A = A′

or y = 0 ∧ a ∩A′ 6= ∅ ∧A′ ∪ a = A .

We first show that the sequence (An)n≥0 defined in (5) forms a successful run on (w, {k}). If n = k

then we have yn = 1 and An = ∅ and An−1 = an hence An−1
(an,yn)−−−−→ An is a transition of A. If n > k

then An−1 = An = ∅ and yn = 0 hence again An−1
(an,yn)−−−−→ An is a transition of A. If 0 < n < k then

yn = 0 and either an ∩ An = ∅ in which case n 6� k and An−1 = An, or an ∩ An 6= ∅ in which case

n � k and An−1 = An ∪ an. In both cases we have An−1
(an,yn)−−−−→ An.

Conversely, let (An)n≥0 be a successful run of A on (w, Y ). Let k = min{n | An = ∅}. We have
yk = 1 and Ak−1 = ak hence (5) holds for k−1. From the definition of the transition function, it is easy
to see that An = ∅ and yn = 0 for all n > k hence (5) holds also for n ≥ k. Now, assume that (5) holds

for some 0 < n < k. Since An−1
(an,yn)−−−−→ An is a transition, we have yn = 0. Since (5) holds for n we

have n � k iff an ∩ An 6= ∅. Hence, An−1 = An ∪ an if n � k and An−1 = An otherwise. We deduce
that An−1 satisfies (5).

Now, we define the automaton B = BOp,Π over the alphabet Σ2 whose first component will be A.
Its set of states is 2Π × {0, 1, 2} and the initial states are (2Π \ {∅}) × {0}. The only accepting state is

(∅, 1). We have a transition (A, q)
(a,x,y)−−−−→ (A′, q′) if A

(a,y)−−−→ A′ is a transition of A and

q′ =


0 if q = 0 ∧ (p /∈ a ∨ a ∩A′ 6= ∅)
1 if q = 0 ∧ p ∈ a ∧ a ∩A′ = ∅ ∧ x = 1
2 if q = 0 ∧ p ∈ a ∧ a ∩A′ = ∅ ∧ x = 0
q if q 6= 0.

We have seen above that there is only one successful run for the first component. Moreover, the sec-
ond component of the automaton B is deterministic once the first component of the run is fixed. Let
(w,X, {k}) = (a1, x1, y1)(a2, x2, y2) · · · ∈ Σ∞

2 and consider the unique run (An, qn)n≥0 of B such that
the first component is successful. Let i = min{j | p ∈ aj ∧ j 6� k} with the convention i = ∞ if this
set is empty. Then, we can check that for all n ≥ 0,

qn =


0 if n < i

1 if i ≤ n ∧ i ∈ X
2 if i ≤ n ∧ i /∈ X.
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We deduce that L(B) = {(w,X, {k}) | ([w], X, {k}) ∈ [[Op]]Π}. Moreover, if we change the accepting
states to {∅} × {0, 2} then we obtain the complementary automaton BOp,Π.

Finally, we show that SpeVar(B) ≤ 2|Π|(|Π| + 1). Fix a word (w,X) and n ∈ N and assume
towards a contradiction that |states(B, (w,X), n)| > 2|Π|(|Π|+ 1). For each k > 0, let (An(k), qn(k))
be the state reached on the successful run of B on (w,X, {k}). Note that in a successful run of B,
the value q = 2 cannot occur. Then we find k0 < k1 < · · · < k|Π|(|Π|+1) such that the sets An(ki)
are pairwise distinct and the values qn(ki) are all equal. Since the positions on a process q are totally
ordered for the causal ordering ≺, there are at least |Π|+ 2 among these positions totally ordered for ≺.
Therefore, after renaming if necessary, we can assume that k0 ≺ k1 ≺ · · · ≺ k|Π|+1. We deduce that
An(k0) ⊆ An(k1) ⊆ · · · ⊆ An(k|Π|+1) which contradicts the fact that these sets are pairwise distinct.
The same arguments yield the analogous result for the automaton BOp,Π.

Using Proposition 7.5 we deduce that Op is PSPACE-effective. ut

Next, we turn to the modality Up. Recall that ϕ Up ψ means that we have ϕ until ψ on the sequence
of vertices located on process p and starting from the last vertex of process p which is in the past of the
current vertex if it exists and starting from the first vertex of process p which is not in the past of the
current vertex otherwise. To deal with Up we introduce another unary modality O′

p. Intuitively, O′
pϕ

means that ϕ holds at the last vertex on process p which is in the past of the current vertex (and that this
vertex exists). Formally, its semantics is defined by

[[O′
p]]Π = {(V,�, λ,X, {y}) ∈ R2(Π) | ∃x ∈ X :

p ∈ λ(x) ∧ x � y ∧ ∀z : (z � x ∧ p ∈ λ(z)) → z � y} .

Then, we have ϕ Up ψ = O′
p(ϕ Up ψ) ∨ (¬O′

p> ∧ Op(ϕ Up ψ)). Recall from Section 8.2 that Up is
PSPACE-effective since it can be expressed with SU. Hence, it remains to show that O′

p is PSPACE-
effective. The proof is almost the same as the one of Proposition 8.3 for the modality Op. The only
difference is in the definition of the transition relation for the second component. We replace the defini-
tion by:

q′ =


0 if q = 0 ∧ (p /∈ a \A′ ∨ a ∩A′ = ∅)
1 if q = 0 ∧ p ∈ a \A′ ∧ a ∩A′ 6= ∅ ∧ x = 1
2 if q = 0 ∧ p ∈ a \A′ ∧ a ∩A′ 6= ∅ ∧ x = 0
q if q 6= 0.

8.4. The modality Eco

We can show that the modality Eco is PSPACE-effective using an idea similar to the one used for
Op. Indeed, let (w,X, {y}) ∈ Σ∞

2 and let z > 0 be any position. Thanks to the non-deterministic
automaton A from the proof of Proposition 8.3 we can check whether z � y. It is also easy to construct
a deterministic automaton A′ which allows to check whether y � z. It suffices to compute, after reading
the prefix of length n of (w,X, {y}) the set A′n =

⋃
{aj | y � j ≤ n}. Using these two automata A

andA′ it is easy to check whether ([w], X, {y}) ∈ [[Eco]]Π. Thus, we get the automata BEco,Π and BEco,Π

and we can show as in the previous proofs that their special variance is in poly(|Π|).
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8.5. Path modalities

In this section, we show that the remaining modalities from the temporal logic for causality TLC are
PSPACE-effective. The proof is based on Proposition 7.4, in particular on the notion of general variance.

Since the modalities EU, ES and EG claim the existence of a path for the causal successor relation≺·,
we need to know what are the positions that are covered by a new letter. Let w = a1a2 · · · ∈ Σ∞ and
let i, n be positions in w. Then, i ≺· n iff for some process p ∈ ai ∩ an we have aj ∩ an = ∅ for all
i ≺ j < n.

This motivates the definition of the following deterministic automaton A. The set of states is Q1 =
(2Π × 2Π)Π and the initial state is init1 = (∅, ∅)p∈Π. We first specify the expected behavior of A. For
each word w = a1 . . . an ∈ Σ∗, there is a unique run init1

w−→ (Apn, B
p
n)p∈Π where for each process p, if

{j ≤ n | p ∈ aj} = ∅ then (Apn, B
p
n) = (∅, ∅) and otherwise, with i = max{j ≤ n | p ∈ aj}, we have

Apn =
⋃
{aj | i � j ≤ n} and Bp

n =
⋃
{aj | i ≺ j ≤ n} . (6)

To achieve this goal, we define transitions (Ap, Bp)p∈Π
a−→ (A′p, B′p)p∈Π if for all p ∈ Π we have

(A′p, B′p) =


(a, ∅) if p ∈ a
(Ap, Bp) if a ∩Ap = ∅
(Ap ∪ a,Bp ∪ a) otherwise.

Note that the number of states of A is in 2poly(|Π|) and that we can compute the transition function of A
in space poly(|Π|).

We show by induction that the specification ofA is satisfied. Assume that p ∈ an. Then, by definition
of the transition function, we haveApn = an andBp

n = ∅. Since in this case n = max{i ≤ n | p ∈ ai}we
deduce that (6) holds. Assume now that p /∈ an. If p /∈

⋃
{aj | j ≤ n− 1} then also p /∈

⋃
{aj | j ≤ n}

and we get (Apn, B
p
n) = (Apn−1, B

p
n−1) = (∅, ∅) as desired. Otherwise, i = max{j ≤ n− 1 | p ∈ Aj} =

max{j ≤ n | p ∈ Aj}. If a ∩ Apn−1 = ∅ then using the inductive hypothesis, we deduce that i 6� n.
Therefore, (6) holds with (Apn, B

p
n) = (Apn−1, B

p
n−1). On the other hand, if a ∩ Apn−1 6= ∅ then i ≺ n

and we also obtain (6) with (Apn, B
p
n) = (Apn−1 ∪ an, B

p
n−1 ∪ an).

As explained above, the automaton A is important since it allows us to know which positions are
covered by a new letter, i.e., when a new letter an arrives, which are the positions i < n such that i ≺· n.
This is the case iff there exists p ∈ ai ∩ an such that p /∈ aj for all i < j < n and an ∩Bp

n−1 = ∅. Note
that we only use the sets Bp to check this property, while the sets Ap are used to define the transitions of
the automaton A.

Lemma 8.3. There is a PSPACE algorithm which, given a finite set of processes Π, computes a Büchi-
automaton B that accepts a word (w,X, Y, Z) ∈ Σ∞

3 iff there exists a path i0 ≺· · · · ≺· i` in [w] such that
` > 0, i0 ∈ X , i` ∈ Z and i1, i2, . . . , i`−1 ∈ Y .

Moreover, if init is the initial state of B then for each w ∈ Σ∗, we have∣∣∣⋃{init · (w,X, Y, Z) | X,Y, Z ⊆ {1, . . . , |w|}}
∣∣∣ ≤ |Π|+ 2.

Proof:
The automaton B has two components. The first one is A and the set of states of the second component
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is Q2 = {init2,OK} ] Π. The initial state of B is init = (init1, init2) and the accepting states are

F = Q1 × {OK}. There is a transition ((Ap, Bp)p∈Π, q)
(a,x,y,z)−−−−−→ ((A′p, B′p)p∈Π, q

′) if in A we have
the transition (Ap, Bp)p∈Π

a−→ (A′p, B′p)p∈Π and one of the following holds

q = init2 ∧ q′ = init2
or q = init2 ∧ x = 1 ∧ q′ ∈ a
or q /∈ a ∧ q′ = q

or q ∈ a ∧ a ∩Bq = ∅ ∧ y = 1 ∧ q′ ∈ a
or q ∈ a ∧ a ∩Bq = ∅ ∧ z = 1 ∧ q′ = OK
or q = OK ∧ q′ = OK .

Let (w,X, Y, Z) = (a1, x1, y1, z1)(a2, x2, y2, z2) · · · ∈ Σ∞
3 . Assume that we have a path i0 ≺· · · · ≺· i`

in [w] such that ` > 0, i0 ∈ X , i1, i2, . . . , i`−1 ∈ Y , and i` ∈ Z. Then xi0 = 1, yij = 1 for 0 < j < `,
and zi` = 1. Let (Apn, B

p
n)p∈Π be the state reached by A after reading the prefix of w of length n. For

0 ≤ j < `, we have ij ≺· ij+1. Hence we find qij ∈ aij ∩ aij+1 such that qij /∈ an for all ij < n < ij+1

and aij+1∩B
qij
ij+1−1 = ∅. Now, let qn = init2 for n < i0, qn = qij for ij ≤ n < ij+1 with 0 ≤ j < `, and

qn = OK for n ≥ i`. We can easily check that the sequence ((Ap0, B
p
0)p∈Π, q0), ((A

p
1, B

p
1)p∈Π, q1), . . .

defines an accepting run of B on the word (w,X, Y, Z).
Conversely, assume that (w,X, Y, Z) ∈ L(B). Let ((Ap0, B

p
0)p∈Π, q0), ((A

p
1, B

p
1)p∈Π, q1), . . . be

an accepting run of B on (w,X, Y, Z) = (a1, x1, y1, z1)(a2, x2, y2, z2) · · · ∈ Σ∞
3 . Since the run is

accepting, q0 = init2 and qn = OK for all but finitely many n.
We construct inductively a sequence i0 ≺· · · · ≺· i` such that i0 ∈ X and i` ∈ Y ∪ Z if ` > 0

and ij ∈ Y for 0 < i < ` and qij ∈ aij ∩ aij+1 for 0 ≤ j < `. To start the induction, we let i0
be minimal with qi0 6= init2. Then, from the transition relation, we deduce i0 ∈ X and qi0 ∈ ai0 .
Now, assume we have already constructed a sequence i = i0 ≺· · · · ≺· i` with the above property. If
i` ∈ Z, then the construction stops. Otherwise, we claim that qi` ∈ ai` . This is clearly the case if
` = 0. So assume that ` > 0. For 0 ≤ j < `, we have qij ∈ aij ∩ aij+1 and ij ≺· ij+1. Hence, for
ij < n < ij+1, we have qij /∈ an and qn = qij . In particular, qi`−1 = qi`−1

∈ ai` and since i` /∈ Z we
have qi` 6= OK and qi` ∈ ai` by definition of the transitions, which concludes the proof of our claim.
Now, let i`+1 = min{n > i` | qi` ∈ an} (this is well-defined since otherwise the run would stay forever
in state qi` 6= OK and would not be successful). Thus, qi` ∈ ai` ∩ ai`+1

and qi` /∈ an for i` < n < i`+1.
The definition of the transitions also implies that i`+1 ∩B

qi`
i`+1−1 = ∅ and i`+1 ∈ Y ∪Z. We deduce that

i` ≺· i`+1 and we have extended the sequence. Finally, the run being successful, we eventually reach a
state qn = OK and the sequence cannot be extended forever. Therefore, we eventually get i` ∈ Z which
implies the existence of a path as required.

The last property of B is trivial to check. Indeed, the first component of B, i.e., the deterministic
automaton A, only depends on the word w ∈ Σ∞ and not on the sets X,Y, Z. The second component
can take at most |Π|+ 2 values.

Finally, given Π, the automaton B can be constructed in PSPACE. ut

Proposition 8.4. The modalities EU and ES are PSPACE-effective.

Proof:
Let (w,X, Y, {z}) ∈ Σ∞

3 and let B be the automaton from Lemma 8.3. Then
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• ([w], X, Y, {z}) ∈ [[EU]]Π iff z ∈ Y or the word (w, {z}, X, Y ) ∈ L(B).

• ([w], X, Y, {z}) ∈ [[ES]]Π iff z ∈ Y or the word (w, Y,X, {z}) ∈ L(B).

The necessary changes to B can be done in polynomial space and the general variances of the resulting
automata are in poly(|Π|). Hence the result follows from Proposition 7.4. ut

Proposition 8.5. The modality EG is PSPACE-effective.

Proof:
First, note that EGϕ = EG(ϕ ∧ EX>) ∨ (ϕEU(ϕ ∧ ¬EX>)). The first conjunct claims the existence
of an infinite ≺·-path satisfying ϕ while the second conjunct claims the existence of a finite and maximal
≺·-path satisfying ϕ. We have already seen that EU and EX are PSPACE-effective hence it remains to
deal with EG(ϕ ∧ EX>).

The construction parallels that from the proof of Lemma 8.3. The main difference is that the ac-
ceptance conditions is now some flag-construction checking that the path is indeed infinite. The new
automaton B has two components. The first one is A and the set of states of the second component is
Q2 = ({init2} ]Π)×{0, 1}. The initial state of B is init = (init1, init2, 0) and the accepting states are
F = Q1 ×Π× {1}.

There is in B a transition ((Ap, Bp)p∈Π, q, ε)
(a,x,y)−−−−→ ((A′p, B′p)p∈Π, q

′, ε′) if in A we have the
transition (Ap, Bp)p∈Π

a−→ (A′p, B′p)p∈Π and one of the following hold

q = init2 ∧ y = 0 ∧ q′ = init2 ∧ ε′ = 0 (7)

or q = init2 ∧ x = 1 ∧ y = 1 ∧ q′ ∈ a ∧ ε′ = 1 (8)

or q /∈ a ∧ y = 0 ∧ q′ = q ∧ ε′ = 0 (9)

or q ∈ a ∧ a ∩Bq = ∅ ∧ x = 1 ∧ y = 0 ∧ q′ ∈ a ∧ ε′ = 1 . (10)

Let (w,X, Y ) ∈ L(B). Then, Y = {i0} is a singleton. Let i1, i2, . . . be the positions where a transition
of the form (10) is taken. As in the proof of Lemma 8.3 we can show that i0 ≺· i1 ≺· i2 . . . and that
ij ∈ X for all these positions. Now, the run being successful, infinitely many transitions of type (10) are
taken and the path is infinite.

Conversely, let (w,X, {i0}) ∈ Σω
2 be such that there exists an infinite path i0 ≺· i1 ≺· i2 . . . with

ij ∈ X for all j ≥ 0. As in the proof of Lemma 8.3 we can build an accepting path in B for (w,X, {i0})
where transition (8) is taken at position i0 and transitions (10) are taken at the positions i1, i2, . . .

Finally, the general variance of B is at most 2(|Π|+ 1). Hence, we deduce from Proposition 7.4 that
the modality EG(ϕ ∧ EX>) is PSPACE-effective. ut
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