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Phylogenetic footprints are short pieces of non-coding DNA sequence in the vicinity of a
gene that are conserved between evolutionary distant species. A seemingly simple problem
is to sort footprints in their order along the genomes. It is complicated by the fact that
not all footprints are co-linear: they may cross each other. The problem thus becomes
the identification of the crossing footprints, the sorting of the remaining co-linear cliques,
and finally the insertion of the non-colinear ones at “reasonable” positions. We show that
solving the footprint sorting problem requires the solution of the “Minimum Weight Vertex
Feedback Set Problem”, which is known to be NP-complete and APX-hard. Nevertheless
good approximations can be obtained for datasets of interest. The remaining steps of the
sorting process are straight forward: computation of the transitive closure of an acyclic
graph, linear extension of the resulting partial order, and finally sorting w.r.t. the linear
extension. Alternatively, the footprint sorting problem can be rephrased as a combina-
torial optimization problem for which approximate solutions can be obtained by means
of general purpose heuristics. Footprint sortings obtained with different methods can be
compared using a version of multiple sequence alignment that allows the identification of
unambiguously ordered sub-lists.

1 INTRODUCTION

Phylogenetic Footprints are short pieces of non-coding DNA
sequence in the vicinity of a gene that are conserved be-
tween evolutionary distant species [1]. Automatic proce-
dures for phylogenetic footprinting such as footprinter

[2] or tracker [3] can produce large amounts of data that
require automatized analysis tools. A seemingly simple
problem is to sort footprints in their order along the genomes.
It is complicated by the fact that not all footprints are
co-linear: they may cross each other. The problem thus
becomes to identify the crossing footprints, to sort the
remaining co-linear cliques, and finally to insert the non-
colinear ones at “reasonable” positions. In this contri-
bution we show that the footprint sorting problem is in
fact a hard combinatorial optimization problem for realis-
tic data and we describe an implementation that produces
exact results in acceptable time for data sets of practical
interest.

Mathematically speaking, we are given N intervals X
i,

i = 1, . . . , N representing the DNA sequences. Let us
denote by [i; a, `] the sub-interval [a, a+ `− 1] ⊆ X

i where
i identifies the DNA sequence, a is the initial position of
the sub-interval, and ` is the length of the interval. A
footprint clique J is a collection of sub-intervals with the
property that α = [i; a, `] ∈ J and α′ = [i′; a′, `′] ∈ J
implies either α = α′ or i 6= i′, i.e., a footprint clique

contains at most one sub-interval from each sequence X
i.

The output of a footprinting program is a collection J of
M footprint cliques Jk, k = 1, . . . , M .

Since not all footprint cliques are of equal importance
(or have been determined with equal certainty) it is useful
to assign a weight ω : J → [0, 1] to each footprint clique.
For instance, one might use

ω([i; a, `]) =
`

maxj `j

(1)

where the maximum is taken over all intervals in all foot-
print cliques. More sophisticated weight functions, that
e.g. take the sequence conservation into account, might
also be useful. For each subset I ⊆ J we define the weight
of the subset

ω(I) =
∑

α∈I

ω(α) (2)

For two sub-intervals α = [i; a, l] and α′ = [i; a′, `′] on
the same sequence i we have the (trivial) order relation

α < α′ ⇐⇒

{

a < a′

` < `′ and a = a′ (3)

Clearly, the ordering (3) implies an order-like relation ≺∗

on J:

Definition 1 For J, J ′ ∈ J we set J �∗ J ′ if and only if
for all i ∈ {1, . . . , N} for which there is an α = [i; a, `] ∈ J
and an α′ = [i; a′, `′] ∈ J ′ we have α ≤ α′.
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Figure 1: (a) Phylogenetic footprints (small balls) of different
sequences (vertical lines) belonging to the common footprint

clique are connected by lines. (b) Directed graph ~G describ-
ing their relative locations (not all arcs are shown for clarity).
2-connected components, i.e., obstructions to partial ordering
are shown by boxes. (c) A well-ordering on a maximal set of
co-linear cliques. The diagram also indicates the obstructing
cliques at positions with a minimal number of conflicts.

Our task is hence to find a well-order on J that is consistent
with the order of the sub-intervals on each sequence, i.e.,
that is an extension of ≺∗ on J.

Recall that a relation ≤ on a set X is a partial order
if the following three axioms are satisfied

(O1) x ≤ x for all x ∈ X (reflexivity).

(O2) x ≤ y and y ≤ x implies x = y (antisymmetry).

(O3) x ≤ y and y ≤ z implies x ≤ z (transitivity).

A partial order is totally ordered if in addition we have

(O4) x ≤ y or y ≤ x for all x, y ∈ X .

A total order consistent with any given partial order (a
so-called linear extension) can be computed efficiently, see
e.g. [4]. As a necessary condition, the transitive closure
≺∗ of ≺∗ must therefore be a partial order. In general,
however, this is not the case for realistic data. Consider
the following two simple examples:
(1) J = {[1; a1, `1], [2; a2, `2], [3; a3, `3]} and
J ′ = {[1; a1, `1], [2; a2, `2], [4; a4, `4]}. In this case we have
J �∗ J ′ and J ′ �∗ J but J 6= J ′, i.e., antisymmetry (O2)
is violated.
(2) J1 = {[1; a1, `1], [2; a2, `2]}, J2 = {[1; a′

1, `
′
1], [3; a3, `3]},

and J3 = {[2; a′
2, `

′
2], [3; a′

3, `
′
3]}, such that a1 < a′

1, a′
2 <

a2, a3 < a′
3. This implies by definition J1 �∗ J2, J3 �∗ J1,

and J2 �∗ J3. For the transitive closure, hence, we have
J1�∗J3 and J3 �∗ J1 but J1 6= J3, again violating (O2).

The relation �∗ therefore is not antisymmetric in gen-
eral. Our task therefore becomes to identify a maximal
subset I ⊆ J of footprint cliques that can be well-ordered.
Maximality is defined conveniently w.r.t. some weight func-
tion such as equ.(2). The remaining footprint cliques that

have to be removed from J are those that are called “non-
colinear” in [3]. We remark that in the case of just two
sequences the maximum increasing subsequence algorithm
[5, 12.5.1] can be used.

2 MINIMUM FEEDBACK-VERTEX SETS

The set J can be regarded as the vertex set of a directed
graph ~G with arcs α→ β if and only if α �∗ β and α 6= β.
The following result is obvious from the definition of a
partial order:

Lemma 1 The transitive closure of the relation �∗ is a
partial order if and only if the associated graph ~G is acyclic.

Proof. The relation �∗ is anti-symmetric if and only if for
any two vertices x and y with a direct path from x to y
there is no directed path from y to x, i.e., no two vertices
in ~G are contained in a circuit. �

The problem of detecting non-colinear footprint cliques
can therefore be rephrased as follows:
Given the vertex-weighted directed graph ~G = (V, A) with
vertex set V and arc-set A, find a maximal (w.r.t. ω) subset

of vertices U ⊆ V such that the induced subgraph ~G[U ] is
acyclic.
In other words, we want to remove a set W = V \ U of
non-colinear footprints with minimal total weight. This
problem is known as the Minimum Feedback-Vertex Set
Problem [6], see [7] for a recent review. It is known to be
NP-hard [8] and has applications in many diverse areas,
including program verification [9] and Bayesian inference
[10].

Unfortunately, the exact algorithm described in [11] is
not fast enough for large examples with a larger number of
non-colinear footprints. Well-tested heuristics based on a
greedy randomized adaptive search procedure are available
[12]. For the purpose of this study we have re-implemented
both the exact and the heuristic algorithms in C.

3 TOPOLOGICAL SORTING

For the next step we have two options: (1) We may sort the
acyclic subset U and then re-insert the feedback set W at
appropriate positions. (2) Alternatively, we may modify
~G = (V, A) by removing some of the arcs incident with
the feedback vertex set W in order to obtain an acyclic
graph G(V, A′) with A′ ⊂ A. Superficially, this suggest
to consider the feedback arc set problem, i.e., to find a
maximal subset A′ ⊂ A such that ~G′ = (V, A′) is acyclic.
In the present context, however, we are interested in the
set of non-colinear cliques W , while the feedback arcs A \
A′ do not seem to have an interpretation in terms of the
phylogenetic footprints.

In both cases we compute the transitive closure of the
acyclic graph by connecting two vertices with an arc from
i to j if and only if there is a directed path from i to
j. This can be achieved e.g. by Warshall’s algorithm in
O(|U |3) time [13]. The resulting graph ~G• is again acyclic
and represents a partial order.
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The computation of a well-ordering of the vertex set
of a directed acyclic graph ~G (such that arcs go only from
vertices with smaller labels to vertices with larger labels)
is known as topological sorting and can be solved in O(|A|)
time [14, 15].

4 SORTING AS OPTIMIZATION PROBLEM

A completely different approach starts with the observa-
tion that the standard sorting problem can be reformu-
lated as a combinatorial optimization problem. Let (X, <)
be a finite ordered set, which, without loosing generality,
we can identify with the set {1, 2, . . . , |X |} endowed with
the standard order on N. Furthermore let U = (uij) be
a symmetric weight matrix with uij = uji > 0. We use
uij = (ω(i)+ω(j))/2 in terms of the footprint weights (1).
Write π(i) for the X-element at the i-th position in the
sorted list and set

fij(π) =







uπ(i)π(j) if i < j and π(i) > π(j)
uπ(i)π(j) if i > j and π(i) < π(j)

0 otherwise
(4)

The quantity fij(π) = 0 if π(i) and π(j) are correctly
sorted with respect to each other in the particular ordering
(permutation) π, while fij(π) > 0 if π(i) and π(j) are
missorted. Thus the total cost of a particular ordering π
is conveniently defined as

f(π) =
∑

ij

fij(π) (5)

which can be interpreted as the total weight of all conflict-
ing pairs. It can be interpreted as a weighted variant of
Kendall’s τ parameter [16].

The problem of sorting an n-element set (given that
the comparison of two elements can be evaluated in con-
stant time) is solved in O(n log n) by standard algorithms
such as quick sort, implemented e.g. in the C standard li-
brary function qsort. It is clear therefore, that a heuristic
approach based on minimizing f will not be computation-
ally efficient. In contrast to classical sorting algorithms,
however, we can generalize the combinatorial optimiza-
tion approach as we shall see below. Let us first consider
the properties of equ.(4) for well-orders and partial orders,
however.

Theorem 1 If (X, <) is well-ordered then every adaptive
walk that makes use of the canonical transpositions reaches
the correct sorting.

Proof. If π is not the correct sorting then there is m ∈ X
such that π(m) < π(m − 1). It is convenient to define to
fk(π) =

∑

i fik(π), the total weight of the conflicts of the
k-th object in the list. Let π′ be the ordering obtained by
exchanging m and m−1, i.e, π′(i) = π(i) for i 6= m, m−1,
π′(m) = π(m − 1) and π′(m − 1) = π(m). One easily
verifies that fk(π) = fk(π′) for k 6= m − 1, m. Tedious
but straightforward computation shows that fm−1(π

′) +
fm(π′)− fm−1(π) + fm(π) = −2uπ(m−1)π(m) < 0, i.e, ev-
ery canonical transposition that exchanges a mis-sorted

pair of adjacent objects strictly decreases the cost func-
tion f . Therefore there is no local minimum of f with the
exception of the correct sorting (where a mis-sorted object
m does not exist by definition). �

It follows immediately that adaptive walks using arbitrary
transpositions and/or reversals are also guaranteed to find
the correct sorting because these movesets contain the
canonical transpositions.

In this formulation the sorting problem can be ex-
tended in an obvious way to an arbitrary relation ≺ on
X which need not be complete or even antisymmetric.
Clearly, there is a perfect solution π satisfying f(π) = 0
if and only if (X,≺) is a partially ordered set. A permu-
tation thus satisfies f(π) = 0 if and only if π codes for a
linear extension of ≺.

Theorem 2 If (X,≺) is a partially ordered set then every
adaptive walk that makes use of the (general) transposi-
tions reaches a correct topological sorting.

Proof. The argument in the proof above can be modi-
fied in the following form in the case of partial orders.
We first observe that if π is not a linear extension of
≺ then there are m, m′ ∈ X such that π(m) ≺ π(m′)
while π(k) is incomparable with π(m) and π(m′) for all
m < k < m′. In the extreme case m 6= m′ − 1. Now
consider the permutation π′ defined by π′(m) = π(m′),
π′(m) = π(m′), and π′(j) = π(j) for j 6= m, m′. Since
the positions k between m and m′ are uncomparable with
both m and m′ we have fj(π) = fj(π

′) for all j < m,
j > m′, and m < j < m′. Furthermore fm(π′)− fm(π) =
−uπ(m)π(m′) < 0 since these terms differ only by the con-
tribution from comparing π(m) and π(m′). By the same
argument fm′(π′) − fm′(π) = −uπ(m′)π(m) < 0. Thus
f(π′) < f(π). �

Let us now turn to the general case where we are given
a directed graph ~G = (V, A) that is not acyclic in general.
Let U = (uij) be a symmetric weight matrix satisfying
uij = uji > 0 whenever (i, j) ∈ A or (j, i) ∈ A is an arc in
~G. Furthermore we define the cost function f as

fij(π) =







uπ(i)π(j) if i < j and (π(j), π(i)) ∈ A
uπ(i)π(j) if i > j and (π(i), π(j)) ∈ A

0 otherwise
(6)

Equ.(6) reduces to (4) provided (x, y) ∈ A if and only if
x < y and < is a partial order. We can hope to obtain
a useful ordering π of the nodes of ~G by minimizing f .
We do not know of an exact solution to this problem. It
would be easy to use adaptive walks or other simple local
search algorithms such as simulated annealing [17], how-
ever. Given the two theorems above, it appears that trans-
positions, and possibly also reversals of permutations, will
be a good move set at least as long as the graph is nearly
acyclic.

Given the permutation π that represents our best ap-
proximation to the true ordering of the vertices, we would
also like to identify a minimum feedback vertex set. It is

3
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not clear whether this can be done exactly. A heuristic ap-
proximation proceeds by iteratively removing the vertex k
with largest total weight

gk(π) =
∑

i







ω(i) if k < i and (π(i), π(k)) ∈ A
ω(i) if k > i and (π(k), π(i)) ∈ A
0 otherwise

(7)

of all those objects with which it conflicts in the given
ordering π.

More formally we have the following algorithm:

Input: ~G = (V, A), U, π
Output: W /∗ feedback vertex set ∗/

1: W ← ∅
2: while f(π) > 0 do

3: ` := arg maxgk(π).
4: W ←W ∪ {π(`)}.
5: uπ(`)i, uiπ(`) ← 0 for all i.

Clearly, this procedure produces a feedback vertex set; its
minimality is not guaranteed even if π minimizes f .

5 COMPARISON OF SORTED LISTS

In order to assess the quality of the orderings π obtained
from the different approaches and variants described above
we need a systematic way of comparing ordered lists. Since
these lists are represented as permutations, π′ and π′′, of
the same set n of objects, it seems natural to use dis-
tance measures d(σ, τ) on the symmetric group Sn. Nat-
ural metrics on Sn are associated with a length function
that measures how much a group element is “different”
from the identity element: d(σ, τ) = L(σ ◦ τ−1) [20]. For
instance, the minimum number of transpositions that are
necessary to generate π from the identity permutation sat-
isfies Lt(π) = n − cyc(π), where cyc(π) is the number
of cycles in the cycle representation of π. Length func-
tions associated with sorting by canonical transpositions
(in terms of so-called inversions) and reversals can also be
computed [21].

Another possibility, which allows a more convenient
comparison of the two lists, is to align the two permuta-
tions π′ and π′′ of n elements such that the number D
of insertions and deletions is minimized, Fig. 2. This can
be achieved by a simple dynamic programming scheme
orginally invented by Needleman & Wunsch [22] for the
alignment of two protein sequences. Starting from the ini-
tialization D0i = Di0 = i we have to compute

Dij = min







Di,j−1 + 1
Di−1,j + 1
Di−1,j−1 whenever π′(i) = π′′(j)

(8)

The optimal number of insertions and deletions is then
given by D = Dnn. The alignment of the orderings is
then reconstructed from matrix (Dij) by a standard back-
tracking procedure. Alignments of more than two lists can
be computed by means of the iterative procedure familiar
from popular multiple sequence alignment programs such

as clustalw [23]. We note in passing that such list align-
ments can be used as an alternative approach to the Top-k
List Comparison problem discussed in [24].

Figure 3 shows an example of a manually sorted foot-
print list in comparison with the exact solution of the
MFVS-based procedure and the optimization heuristic de-
scribed above. These data are fairly noisy containing a
significant number of non-colinear footprints. The result-
ing sortings and assignments of non-colinearities are rather
different: the manual list differs by 16 and 21 indels from
the exact and the optimization results, the two automatic
sortings differ by 26 indels, i.e., the manually sorted list
is much closer to the exact MFVS-based listing than to
the result of the simple optimization procedure. This is
not surprising since we cannot expect adaptive walks to
produce good results in problems with a large number of
order conflicts. More sophisticated heuristics such as sim-
ulated annealing [25] or genetic algorithms [26] will have
to be used for such data sets.

6 AN APPLICATION

For some applications a properly sorted list of phyloge-
netic footprints is not only a convenience but a necessary
prerequisite for further data analysis. Fortunately, many
datasets, in particular those with fewer input sequences,
are much less noisy then the one shown in Fig. 3 so that
non-colinear cliques can be identified (almost) unambigu-
ously. In this section we briefly consider an example of an
application where unambiguity is important.

The total size of a genome varies over evolutionary
time scales. These variation can be caused by large scale
changes such as gene and chromosome duplications and by
the accumulation of small-scale, local insertion, deletions,
and inversions. Length variations of the non-conserved
sequences between adjacent homologous footprints in dif-
ferent sequences can be used to estimate the local changes.
Clearly, this requires a reliable method for excluding non-
colinear (and hence non-homologous) footprints and a proper
ordering of the footprints so that adjacency can be deter-
mined.

Recent analysis showed that chromosome 10 of the rat
differs by several chromosome rearrangements from both
the mouse and the human homologs [27], see also [28].
Here we report on the evaluation of the insertion/deletion
pattern in a sample consisting of immune genes (with all
intron sequences and with 5000nt of flanking sequence on
each side) from human, mouse, and rat.

Let `h
j and `k

j be the lengths of the intervening se-
quences between two adjacent footprints that are common
to the input sequences h and k. Given a reference se-
quence, say human h, we are interested in the differences
between the distributions of αk

j = log `k
j /`h

j for different
species k, say mouse and rat. We assume that the total
length of insertions and deletions will be approximately
proportional to the length `h

j of the piece of the reference
sequence, hence we consider the length ratio rather than
the length difference. (Depending on the mechanism that
one envisages for the insertion and deletion processes a dif-
ferent scaling might be more appropriate, however.) Here
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Figure 2: Alignment of two permutations. We use here the first 15 cliques from the comparison of eight HoxA clusters of various
vertebrates discussed in [18]. The two rows on the top display the alignment of the exact ordering derived from an exact solution
of the minimum feedback vertex set problem and the ordering obtained by optimizing equ.(6). The feedback vertices are indicated
in grey. Below the positions of the underlying footprints on the 8 nucleotide sequences are shown.
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Figure 3: Some footprint datasets are quite noisy and contain many non-colinear entries. The example shown here is the Hox-
10 region from the lamprey Petromyzon marinus (Pm), human (Hs), the hornshark Hetrodontus francisci (Hf), the pufferfish
Takifugu rubripes (Tr), and the tunicate Ciona intestinalis (Ci). The first column gives the manual sorting based on the raw
tracker output [19], the second column is the sorting based on solving the MFVS problem exactly, and the third column was
obtained using the optimization approach. The + signs indicate footprint cliques that are identified as non-colinear; one match
was removed from two footprints in [19] after visual inspection, indicated by a = sign. The two exons of the Hox-10 gene itself
are indicated by a ∗. Footprints are marked by •.
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Figure 4: Comparison of length rations of N1 = 1122 hu-
man/rat and N2 = 1404 human/mouse non-conserved sequence
fragment located between homologous footprints in the vicin-
ity of various immune genes. The maximum difference between
the two cummulative probability density functions is D∗ =
0.05659, compared to the threshold value D95% = 0.05438
for the Kolmogorov-Smirnov test with effective sample size
Neff = N1N2/(N1 + N2) ≈ 623.6. The two distributions are
therefore (just barely) significantly different.

we use the logarithm of the length ratio because it pro-
duces a distribution that is symmetric if there is no bias
between insertions and deletions.

Figure 4 summarizes the results. The effect of dele-
tions and insertions appears to be slighly increased in the
rat compared to the mouse. The difference is very small
however: the Kolmogorov-Smirnov test just barely yields
a 95% confidence for a significant difference of the distri-
bution of rat/man and mouse/man sequence length ratios.

7 DISCUSSION

We have shown here that the seemingly trivial task of
sorting a list of phylogenetic footprints properly by their
location along the sequences in fact gives rise to a com-
plex optimization problem. As a chemical application one
might for instance consider the problem of sorting a list
of samples of complex mixtures according to their com-
positions in the presence of missing data, i.e., when not
all components are measured in all samples. In this case,
simpler approaches such as lexicographic sorting cannot
be applied.

Here we have described two approaches to solving this
task. An exact algorithm that requires the solution of
the NP-complete minimum feedback vertex set problem
and a formulation as a combinatorial optimization problem
that essentially generalizes a “landscape version” of bubble
sort.

The “Footprint Sorting Problem” can also be viewed
abstractly as a multi-objective optimization problem. Given
a directed graph ~G(V, A), a vertex weight function ω :
V → R

+, and an edge weight function u : AR
+ find a per-

mutation π : V → V and a “feedback set” W ⊂ V such
that both the weight

∑

i∈W ω(i) of W and weight total of
conflicts

u(V \W ) =
∑

i,j∈V \W

fij(π)

among the remaining vertices is minimized.
This rather general version of a topological sorting

problem arises in many different contexts. For example
we might want to sort the results from different database
queries for the same topic. In this case uij is e.g. confi-
dence or score-difference with which a particular database
ranks the results i better than j and ω(i) measures how
much information the result contains. The goal would be
to rank the results as good as possible in accordance with
rankings from the individual queries and to focus on the
most detailed results.
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