
Increased hepcidin in transferrin-treated thalassemic mice 
correlates with increased liver BMP2 expression and decreased
hepatocyte ERK activation

by Huiyong Chen, Tenzin Choesang, Huihui Li, Shuming Sun, Petra Pham, Weili Bao, 
Maria Feola, Mark Westerman, Guiyuan Li, Antonia Follenzi, Lionel Blanc, Stefano Rivella,
Robert Fleming, and Yelena Ginzburg 

Haematologica 2015 [Epub ahead of print]

Citation: Chen H, Choesang T, Li H, Sun S, Pham P, Bao W, Feola M, Westerman M, Li G, Follenzi A,
Blanc L, Rivella S, Fleming R, and Ginzburg Y. Increased hepcidin in transferrin-treated thalassemic mice 
correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.  
Haematologica. 2015; 100:xxx
doi:10.3324/haematol.2015.127902

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science.
Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that
have completed a regular peer review and have been accepted for publication. E-publishing
of this PDF file has been approved by the authors. After having E-published Ahead of Print,
manuscripts will then undergo technical and English editing, typesetting, proof correction and
be presented for the authors' final approval; the final version of the manuscript will then
appear in print on a regular issue of the journal. All legal disclaimers that apply to the
journal also pertain to this production process.

 Copyright 2015 Ferrata Storti Foundation.
Published Ahead of Print on December 3, 2015, as doi:10.3324/haematol.2015.127902.



1 

 

Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver 

BMP2 expression and decreased hepatocyte ERK activation 

 

Huiyong Chen1, Tenzin Choesang1, Huihui Li1,2, Shuming Sun1, Petra Pham3, Weili Bao1, Maria 

Feola1,4, Mark Westerman5, Guiyuan Li2, Antonia Follenzi4, Lionel Blanc6, Stefano Rivella7, 

Robert Fleming8, Yelena Ginzburg1* 

 

1-Erythropoiesis Laboratory, LFKRI, New York Blood Center, New York, NY; 2-Central South 

University, Changsha, PR China; 3-Flow Cytometry Core Laboratory, LFKRI, New York Blood 

Center, New York, NY; 4-University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy; 5-

Intrinsic Lifesciences, LLC, La Jolla, CA; 6-The Feinstein Institute for Medical Research, 

Manhasset, NY; 7-Weill Cornell Medical College, New York, NY; 8-Saint Louis University, St 

Louis, MO  

 

*Address Correspondence to: Yelena Ginzburg, MD, Erythropoiesis Laboratory, LFKRI, New 

York Blood Center, 310 East 67th Street, New York, NY 10065, Tel (212) 570-3463. Email: 

yginzburg@nybloodcenter.org 

 

Scientific Category: Red cells, Iron, and Erythropoiesis 

Short Title: Hepcidin regulation in transferrin-treated mice 

Key Words: 1) ERK1/2 inhibition correlates with increased hepcidin expression in WT and 

thalassemic hepatocytes in vivo and in vitro. 2) Transferrin decreases ERFE expression, 

induces liver BMP2 expression, and increases circulating BMP2, resulting in more hepcidin in 

thalassemic mice. 



2 

 

ABSTRACT  

Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient 

hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to 

increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-

transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in 

Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of 

exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin 

regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo 

despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 

mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin treated mice 

demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and 

hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced 

by neutralizing anti-BMP2/4 antibodies and suppressed by BMP2 in vitro, resulting in converse 

effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in 

combination with BMP2 exhibit a more than additive increase in hepcidin expression. Lastly, 

bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic 

mice but increased in apo-transferrin injected wild type mice.  These findings suggest that 

increased hepcidin expression after exogenous apo-transferrin is in part independent of 

erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice 

increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 

activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.  
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INTRODUCTION 

β-thalassemia is characterized by anemia, expanded erythropoiesis, and iron overload 

with iron overload principally causing morbidity and mortality in these patients.1 Although iron 

overload primarily results from transfused erythrocytes, transfusion-independent patients also 

develop iron overload from increased dietary iron absorption. Iron absorption, and iron recycling, 

is regulated by hepcidin, a peptide hormone produced predominantly in the liver. Hepcidin binds 

ferroportin (FPN1), the iron exporter on enterocytes, hepatocytes, and reticuloendothelial 

macrophages,2 and results in FPN1 degradation and decreased release of cellular iron, down-

regulating dietary iron absorption, iron release from stores, and tissue iron recycling. Despite 

iron overload, hepcidin is inappropriately low and thus implicated as the cause of iron overload 

in patients with and mouse models of β-thalassemia.3-7 This lack of appropriate hepcidin 

response, despite increased parenchymal iron stores, in β-thalassemia suggests that a 

competing hepcidin suppressing signal.6-8 In diseases of concurrent iron overload and 

ineffective erythropoiesis, hepcidin suppression results from secretion of bone marrow factors 

(e.g. growth differentiation factor 15 (GDF15), twisted gastrulation 1 (TWSG1), GDF11, and 

erythroferrone (ERFE)).9-12 These erythroid regulators of hepcidin and their signaling pathways 

are active areas of investigation targeted for development of novel therapeutics in iron 

disorders.  

We previously demonstrated that exogenous apo-transferrin (apoTf) in Hbbth1/th1 

(thalassemic) β-thalassemia intermedia mice markedly ameliorates ineffective erythropoiesis 

and increases hepcidin expression.13 Mechanisms of hepcidin regulation involve bone 

morphogenetic proteins (BMPs). Several BMP  signaling molecules up-regulate hepcidin 

expression in vitro3,13-16 by binding BMP receptors. BMP6 is a principal endogenous BMP 

regulating hepcidin expression,16,17 and Bmp6 knockout mice exhibit hepcidin suppression with 

iron overload.17,18 Bmp6 mRNA is up-regulated in mouse liver following dietary iron overload, 
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suggesting that transcriptional regulation of hepcidin by iron involves an autocrine or paracrine 

BMP6 effect.3 However, increased hepcidin in chronically iron loaded Bmp6 knockout mice 

suggests that other pathways stimulate hepcidin expression in response to iron overload.19 

Furthermore, when normalized to liver iron content, Bmp6 expression is not increased in β-

thalassemic mice,5 suggesting that hepcidin regulation in conditions of chronic iron overload, 

such as β-thalassemia, may involve additional molecules. Other BMPs, including BMP2 and 4, 

also induce hepcidin regulation in vitro20 and neutralizing BMP2/4 antibodies suppress hepcidin-

responsiveness to serum and/or holoTf similar to noggin (BMP receptor blocker) response.21 

Lastly, BMP2 injection results in increased hepcidin expression in vivo,14 but its physiological 

role in hepcidin regulation has not been fully determined.  

 Regulation of hepcidin expression in hepatocytes is dependent on the decapentaplegic 

(Smad) signaling pathway. BMP receptor binding induces phosphorylation of intracellular 

Smad1/5/8, the association of pSmad1/5/8 with Smad4, and the complex translocation to the 

nucleus where binding to regulatory elements induces hepcidin expression. Recent evidence 

suggests that BMP receptor signaling is complex and Smad signaling may integrate with other 

signaling pathways.22 Specifically, MAP kinase modulates Smad signaling,23 and, although the 

details have not been worked out, may regulate nuclear translocation or transcriptional activity 

of pSmad1/5/8.24 Most studies examining such crosstalk used transformed epithelial cell lines, 

with MEK/ERK1/2 pathway reported to enhance25 or inhibit26 Smad activity depending on cell 

type- or target gene-specificity. Several studies provide indirect evidence that hepatic 

MEK/ERK1/2 is involved in hepcidin regulation.21,27,28 In particular, MEK/ERK1/2 inhibition did 

not suppress hepcidin expression in HepG2 cells28 despite parallel increases of MEK/ERK1/2 

and Smad signaling in response to BMP2 and holoTf. Thus, the physiologic relevance of the 

interactions between these signaling pathways in iron homeostasis remain incompletely 

understood.  
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We postulate that apoTf systemically affects hepatocyte hepcidin expression via the 

purported “erythroid regulator”. In addition, we evaluate the role of addition BMPs in systemic 

and cellular iron regulation of hepcidin in apoTf-treated mice. Lastly, we hypothesize that 

MEK/ERK1/2 suppression in hepatocytes is involved in stimulating hepcidin expression in 

apoTf-treated mice. To understand the mechanisms of hepcidin regulation from these 

perspectives in apoTf-treated thalassemic mice, we explore iron-related parameters in 

circulation, in the liver, and in hepatocytes. Our findings demonstrate that reversal of ineffective 

erythropoiesis and increased hepcidin in apoTf-treated thalassemic mice correlate with 

decreased hepatocyte MEK/ERK1/2 signaling, increased circulating BMP2, and decreased 

ERFE expression in erythroid precursors, supporting the hypothesis that exogenous apoTf 

influences hepcidin expression both via erythropoiesis- and iron-related pathways.  

 

METHODS 

Mice 

Hbbth1/th1 (thalassemic) mice were backcrossed onto a C57BL6 background as previously 

described.13 Age- and gender-matched 8-10 week old thalassemic and C57BL6 (WT) mice were 

bred and housed in the animal facility under AAALAC guidelines. The experimental protocols 

were approved by the Institutional Animal Care and Use Committee. Standard Mouse Chow 

was used for all experiments (Lab Diet #5001, 270 ppm iron). All mice had access to food and 

water ad libitum. 

Transferrin regimen  

Mice were treated with 10 mg (400 mg/kg/day) of human apoTf (Kamada, Israel) or same 

volume of PBS via intraperitoneal injections daily for 20 days. This course yielded results 
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consistent with previously published 60 days of injections13 (Supplemental Figure 1A/1B). 

Mice were sacrificed on day 3 after the last injection and samples processed for analyses.  

Serum parameter analyses 

Mouse serum was separated and analyzed using ELISA kits for hepcidin (Hepcidin-Murine 

CompeteTM competitive ELISA, Intrinsic LifeSciences, LLC, La Jolla, CA), BMP2 (Abnova, 

Taiwan), and the Integra 800 Automated Clinical Analyzer (Roche Diagnostics, IN) for other 

circulating iron-related parameters.  

Non-heme iron spectrophotometry  

Iron quantification was performed using the Torrance and Bothwell method.29 Briefly, desiccated 

tissue samples were digested in acid-digestion mixture, diluted, and mixed with chromogen 

reagent. Absorption was measured at 540 nm on a spectrophotometer (Multiskan MCC 

Microplate Reader, Fisher Scientific). 

Primary culture of hepatocytes 

WT and thalassemic mouse livers were perfused with PBS followed by Liberase TM (Roche 

Diagnostics, IN) or filtered collagenase type 1 (Worthington, NJ) using two-step liver perfusion. 

Live cells were purified by Percoll (Sigma) and plated as previously described.15 Cells were 

allowed to attach, starved for 18 hours, and treated for 24 hours with 5% mouse serum with or 

without 20 μg/mL monoclonal anti-human BMP2/4 antibody (R&D systems). Alternatively, WT 

serum-treated primary mouse hepatocytes were incubated with increasing doses of 

MEK/ERK1/2 inhibitor, U0126 (freshly diluted in DMSO (Promega)) or DMSO (Sigma) 2-2.5 

hours prior to cell harvest. Lastly, primary mouse hepatocytes were incubated with 5% FBS and 

increasing doses of BMP2 (Sigma) for 24 hours with and without U0126.  

Western Blot 
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Liver was homogenized with Protease and Phosphatase Inhibitor Cocktail (Sigma) and total 

protein extracted. Freshly isolated or cultured hepatocytes were directly lysed by Cell Lysis 

Buffer (Cell Signaling). Nuclear protein was prepared using NE-PERTM Nuclear and 

Cytoplasmic Extraction Reagents (Thermo Scientific) as per manufacturer’s instructions. In 

short, samples were homogenized, stained with 0.4% trypan blue, and analyzed by Western 

blot using sub-fraction specific controls. Specifically, membranes were incubated with primary 

antibodies (Smad1, pSmad1/5/8, Smad4, Ferritin H, ERK1/2, pERK1/2, and TBP (TATA box 

binding protein, Cell Signaling); Smad7 (Sigma); TGIF, and Lamin B (Santa Cruz); GAPDH and 

β-actin (Thermo Scientific); and BMP2 (Novus Biologicals)) as well as HRP-conjugated 

secondary antibodies (Thermo Scientific) and detected using the SuperSignal West Dura 

Extended Duration Substrate (Thermo Scientific). The results were quantified using Image J 

(v1.45q, NIH, USA).  

Immunofluorescence 

Samples were fixed in 4% paraformaldehyde, washed, permeabilized, blocked, and incubated 

overnight with primary rabbit anti-pSmad1/5/8 antibody. Control slides were incubated with 

Rabbit IgG. Slides were washed and stained with goat anti-Rabbit secondary antibody (Alexa 

Fluor® 488 conjugate (Molecular Probes)). Coverslips were mounted and slides viewed using 

Zeiss LSM 510 Meta Laser Scanning Confocal microscope. 

Fluorescence-activated Cell Sorting Analysis  

Bone marrow cells were processed and analyzed as described previously.30 Briefly, cells were 

incubated with anti-CD45 magnetic beads and CD45 negative cells collected, counted, and 

incubated with anti-mouse TER119-phycoerythrin-Cy7 (PE-Cy7) and CD44-allophycocyanin 

(APC). Erythroid precursors were identified and sorted using TER119, CD44, and forward 

scatter on MoFlo® XDP High-Speed Cell Sorter (Beckman Coulter, Miami, FL) using Summit 
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Software (Beckman Coulter, Miami, FL). Post-sort target population purity was confirmed by 

microscopic morphology evaluation of cytospins. 

RNA extraction and Quantitative real-time RT-PCR 

RNA from hepatocytes or livers was purified using PureLink RNA Mini Kit (Ambion, Life 

Technology) and analyzed with SuperScript III Platinum SYBR Green One-Step qRT-PCR Kit 

(Invitrogen, Life Technology). Hepcidin and ERFE mRNA was detected as previously reported.12 

Primers for mouse BMP6 was designed and confirmed (Supplemental Table I). We normalized 

mRNA concentrations to GAPDH8.  

Statistical Analyses  

All data are reported as mean ± standard error (SEM). Analysis for statistically significant 

differences was performed using the Student unpaired t-test. 

 

RESULTS 

Increased hepcidin and improved iron-related parameters in apoTf-treated thalassemic 

mice  

To evaluate apoTf effect’s on iron metabolism, we measure circulating and cellular iron-

related parameters in WT, thalassemic, and apoTf-treated thalassemic mice. Serum iron 

concentration is higher in thalassemic compared to WT mice (P=0.02), and significantly 

decreases in apoTf-treated mice (Figure 1A). As previously demonstrated,13 WT and 

thalassemic mice exhibit similar transferrin saturations which significantly decrease in apoTf-

treated mice (Figure 1B and Supplemental Figure 1B). Serum hepcidin concentration (Figure 

1C) and liver Hamp1 mRNA expression (Supplemental Figure 2A) exhibit similar patterns; 

although no difference in hepcidin is observed between WT and thalassemic mice, apoTf 

increases hepcidin expression (Figure 1C and Supplemental Figure 2A). Furthermore, Id1 
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mRNA expression is significantly increased in apoTf-treated thalassemic mice (Supplemental 

Figure 2A). No differences are observed in other genes relevant to hepcidin regulation (e.g. 

Tfr2, HFE, HJV, and Tfr1) either between WT and thalassemic mice or between PBS-injected 

and apoTf-treated thalassemic mice (Supplemental Figure 2B/2C). 

Hepcidin concentration is similar in WT and thalassemic mice despite increased liver 

iron concentration in thalassemic mice (Figure 1D). Importantly, increased hepcidin in apoTf-

treated thalassemic mice occurs despite decreased liver iron concentration (Figure 1D), 

consistent with previously published work on thalassemic mice.13 ApoTf injections increase 

hepcidin expression relative to liver iron in both WT and thalassemic mice (Supplemental 

Figure 2D). These findings prompted the evaluation of known iron-responsive regulators of 

hepcidin expression, including the BMP/SMAD pathway.  

 

Nuclear pSmad1/5/8 and Smad4 increased in apoTf-treated thalassemic hepatocytes  

No changes in pSmad1/5/8:Smad1:GAPDH are observed between freshly isolated 

primary hepatocytes from WT, thalassemic, and apoTf-treated mice (Figure 2A/2B). Although 

thalassemic mice exhibit a greater iron concentration, both in the liver (Figure 1D) and in 

isolated hepatocytes (Figure 2A), pSmad1/5/8:Smad1:Ferritin H is reduced compared to WT 

mice and increased by apoTf treatment (Supplemental Figure 2E). This finding suggests that 

exogenous apoTf partially restores Smad pathway responsiveness to hepatocellular iron stores 

and that activation of Smad1/5/8 is inappropriately low in thalassemic mice, consistent with 

previous findings.5 No difference in total cellular Smad4 is observed (Figure 2A). 

To further assess the Smad pathway, we analyzed positive (Smad 1/5/8 and Smad 4) 

and negative (TGIF and Smad7) regulatory Smads in hepatocyte nuclear fractions.31, 32 Nuclear 

pSmad1/5/8 and Smad4 are suppressed in thalassemic mice and increased in apoTf-treated 
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thalassemic mice (Figure 3A/3B/3C). Increased hepcidin mRNA expression in apoTf-treated 

thalassemic mice occurs despite increased Smad7 mRNA expression (Supplemental Figure 

2A) and independent of Smad7 protein concentration as no changes are observed in either total 

cellular or nuclear fractions (Figure 2A/3A). TGIF remains unchanged in hepatocyte nuclear 

fractions from WT, thalassemic, and apoTf-treated thalassemic mice (Figure 3A). Taken 

together, these findings demonstrate that hepatocellular nuclear pSmad1/5/8 and Smad4 

increase in apoTf-treated thalassemic mice despite decreased circulating and tissue iron 

concentrations.  

 

MEK/ERK1/2 pathway inhibition in vivo and in vitro correlates with increased hepcidin 

expression  

Because MEK/ERK1/2 signaling has been proposed in hepcidin regulation, we 

investigate pERK1/2 in primary mouse hepatocytes. Both pERK1/2 and 

pERK1/2:ERK1/2:GAPDH are increased in freshly isolated hepatocytes from thalassemic mice 

(Figure 2A/2C). Both pERK1/2 and pERK1/2:ERK1/2:GAPDH are decreased in apoTf-treated 

mice (Figure 2A/2C), suggesting that increased hepcidin in apoTf-treated mice is a 

consequence of ERK1/2 pathway suppression. No changes in MEK/ERK1/2 signaling were 

observed using liver tissue (data not shown), consistent with prior results in iron overloaded 

mice.33  

To confirm that ERK1/2 signaling inhibits hepcidin expression, we evaluated serum-

treated primary WT and thalassemic hepatocytes and demonstrate a dose-dependent decrease 

in pERK1/2 and increase in hepcidin expression in response to MEK/ERK1/2 inhibitor, U0126 

(Figure 4A/4B/4C). U0126 treatment did not change total cellular pSmad1/5/8 (Figure 4B), but 

nuclear pSmad1/5/8 increased in U0126-treated hepatocytes (Figure 4D), suggesting that 

increased hepcidin expression in apoTf-treated mice is related to decreased hepatocellular 
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pERK1/2 (Figure 1C and Supplemental Figure 2A) and functions through increased nuclear 

Smad. 

 

BMP2 is associated with increased hepcidin expression in apoTf-treated thalassemic 

mice 

Because BMPs regulate hepcidin via Smad signaling, we investigate BMPs in PBS-

injected and apoTf-treated mice. We utilized whole liver samples for Bmp6 mRNA analysis, in 

light of evidence that BMP6 induction by dietary iron occurs primarily in liver non-parenchymal 

cells, rather than hepatocytes.34 In agreement, hepatocytes exposed in vitro to mouse serum 

exhibit unchanged Bmp6 expression (data not shown). Although liver Bmp6 expression is 

significantly increased in thalassemic mice (Figure 5A), consistent with higher non-heme liver 

iron in these mice (Figure 1D), serum hepcidin and liver hepcidin mRNA expression are 

unchanged from WT mice (Figure 1B and Supplemental Figure 2A). Liver Bmp6 expression 

relative to iron concentration is also suppressed in thalassemic mice (Figure 5B).  

However, no significant change in Bmp6 expression (either absolute (Figure 5A) or 

relative to liver iron (Figure 5B)) is observed in apoTf-treated thalassemic mice despite a 

decrease in liver iron (Figure 1D) and increased Bmp6 expression in apoTf-treated WT mice 

(Figure 5A/5B). We therefore evaluated the potential role of other BMPs in hepcidin regulation 

in apoTf-treated thalassemic mice. Serum and liver BMP2 concentration are lower in 

thalassemic mice and increased in apoTf-treated thalassemic mice (Figure 5C/5D/5E); BMP2 is 

also increased in apoTf-treated WT mice (Figure 5D/5E). BMP2 mRNA and protein expression 

are undetectable in sorted bone marrow erythroid precursors (data not shown), and BMP2 

expression in hepatocytes is lower relative to liver with no difference between PBS-injected and 

apoTf-treated WT and thalassemic mice (Supplemental Figure 3). No differences in serum 

BMP4 concentration (Supplemental Figure 4A) or mRNA expression in the liver or 



12 

 

hepatocytes (Supplemental Figure 4B/4C) are observed, and liver as well as bone marrow 

BMP4 are undetectable by Western Blot (data not shown). These findings suggest that like 

BMP6, non-parenchymal cells are the main source of BMP2 in the liver, correlating with the 

increased hepcidin expression in apoTf-treated mice.  

To further evaluate the role of BMP2 in apoTf-mediated hepcidin regulation, we analyzed 

the effect of neutralizing anti-BMP2/4 antibody on serum-treated cultured primary WT 

hepatocytes. To test the validity of this in vitro method, we demonstrate suppressed hepcidin 

expression and pSmad1/5/8 (Figure 6A/6B/6C) with unchanged Smad4 and Smad7 

concentrations (data not shown) in hepatocytes treated with serum from thalassemic relative to 

WT mice, providing evidence of a robust culture system.35 Hepcidin expression is also 

increased in serum-treated relative to untreated cells (Figure 6A). No differences are observed 

in apoTf-treated relative to untreated hepatocytes or those treated with serum from apoTf- 

relative to PBS-treated mice (Figure 6A/6B), providing evidence of non-parenchymal cell 

involvement via BMP2 and BMP6 on hepcidin expression. Primary hepatocytes concurrently 

treated with serum and neutralizing anti-BMP2/4 antibody exhibit suppressed hepcidin 

expression in each condition relative to serum alone conditions (Figure 6A), suggesting again 

the importance of extra-cellular BMP2 in hepcidin regulation. Similar pattern of pSmad1/5/8 

mRNA and protein suppression is seen in cells exposed to serum with and without anti-BMP2/4 

antibody (Figure 6A/6B/6C). As expected, Id1 mRNA expression mimics changes in hepcidin 

expression (Supplemental Figure 5). Surprisingly, MEK/ERK1/2 pathway activation is 

increased in hepatocytes treated by the neutralizing antibody (Figure 6B), suggesting that 

BMP2 is involved in hepcidin regulation via MEK/ERK1/2 pathway.  

To further explore the relationships between BMP-Smad and MEK/ERK1/2 pathways, 

mouse primary hepatocytes were treated with different doses of BMP2 and U0126. In response 

to BMP2, we observe dose-dependent increases in hepcidin expression and pSmad1/5/8; 
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however, no consistent change in ERK1/2 pathway activation is seen (Supplemental Figure 

6A/6B). When primary hepatocytes are treated with BMP2 (20 ng/ml), U0126 (25 µM) or the 

combination, BMP2 and U0126 each induce hepcidin expression with an additive combined 

effect (Figure 6D). During these treatments, the ERK1/2 pathway is effectively suppressed by 

U0126 and by BMP2.  Total cellular pSmad1/5/8 is minimally affected by the addition of BMP2 

or U0126 individually but induced with the combination of BMP2 and U0126 (Figure 6E). 

However, BMP2, U0126, and their combination induce nuclear pSmad1/5/8 and especially 

Smad4 by Western Blot (Figure 6F) and immunofluorescence (Figure 6G and 6H). These 

findings demonstrate that BMP2 signaling and MEK/ERK1/2 suppression each upregulate 

hepcidin by increasing nuclear pSMAD1/5/8 and especially Smad4 concentrations in an additive 

way.  

 

ApoTf-induced hepcidin increase correlates with ERFE suppression only in thalassemic 

mice 

We evaluate candidate “erythroid regulators” in apoTf-treated thalassemic mice. No 

differences are observed in GDF15 (data not shown), TWSG1 (Supplemental Figure 7), or 

GDF11 (Supplemental Figure 7) between bone marrow erythroblasts from WT, thalassemic, 

and apoTf-treated mice. However, ERFE expression is increased in bone marrow erythroblasts 

in thalassemic mice and normalized in apoTf-treated thalassemic mice but is surprisingly 

increased in apoTf-treated WT mice (Figure 1E). These findings support the importance of 

ERFE as an erythroid regulator in thalassemic mice, suggest that the effect in th1/th1 mice and 

th3/+ mice12 is comparable, and provide data consistent with our previously published evidence 

that apoTf treatment reverses ineffective erythropoiesis in thalassemic mice.13 Similar results 

have recently been reported in apoTf-treated th3/+ mice.36 Lastly, increased hepcidin 

expression in apoTf-treated WT mice occurs despite an increase in ERFE, suggesting that 
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increased liver BMP2 in apoTf-treated WT and thalassemic mice functions, at least in part, 

through suppression of MEK/ERK1/2 pathway.  

 

DISCUSSION 

Thalassemia provides a model system for investigating the dual and competitive 

regulation of hepcidin by iron and erythropoiesis. Based on prior observations, we proposed that 

exogenous apoTf provides a window into the mechanisms responsible for this dual regulation. 

We found that in apoTf-treated thalassemic mice, hepcidin expression is increased despite a 

decrease in circulating and parenchymal iron; ERFE expression is decreased in the bone 

marrow, likely responsible for hepcidin de-repression; increased BMP2 but not BMP6 

expression are also involved; and MEK/ERK1/2 pathway activation inversely correlates with 

hepcidin expression. 

As previously reported,13 apoTf-treated mice did not exhibit any toxicity in our 

experiments, and exogenous apoTf’s effect on iron and erythropoiesis is similar whether 

administered to older (9-10 months)13 or younger (8-10 weeks) mice. Furthermore, 20 days of 

daily apoTf injections result in similar effects (Supplemental Table II) relative to 60 days of 

injections (Supplemental Figure 1A/1B). ApoTf-treated thalassemic mice exhibit a decrease in 

systemic iron overload. In addition, hepcidin mRNA expression is again unchanged in 

thalassemic relative to WT mice and increased in apoTf-treated thalassemic mice.13 A mouse 

serum hepcidin ELISA has recently been developed37 and demonstrates a strong correlation 

with hepcidin mRNA. Increased hepcidin expression in apoTf-treated thalassemic mice occurs 

despite decreased serum or liver iron, cytosolic Ferritin H, and circulating transferrin saturation, 

as previously reported13 and thus does not reflect changes in iron status.  
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Although BMP6 is important in hepcidin regulation, we previously demonstrate that 

Bmp6 expression is insufficiently increased relative to liver iron in th3/+ mice.5 Our current data 

further demonstrate that liver Bmp6 mRNA expression is unchanged in apoTf-treated 

thalassemic mice. Furthermore, Bmp6 is suppressed relative to liver iron, and although total 

pSmad1/5/8 is unchanged, nuclear pSmad1/5/8 and Smad4 are suppressed in thalassemic 

mice, together suggesting that BMP receptor stimulation is dampened and unable to increase 

nuclear pSmad despite increased Bmp6 expression. Similar findings have been demonstrated 

in th3/+ mice.38 Lastly, because liver Bmp6 mRNA expression is increased in apoTf--treated WT 

but not thalassemic mice, we hypothesize that BMP6 is involved in hepcidin regulation in 

response to more acute changes in iron status and not to chronic iron overload in thalassemic 

mice.  

Because other BMPs are involved in Smad1/5/8 activation and hepcidin expression in 

vitro,15 we explore the role of BMP2 in hepcidin regulation of apoTf-treated thalassemic mice. 

Our results demonstrate that BMP2 is decreased in the sera and livers of thalassemic mice and 

increased in sera and livers from apoTf-treated thalassemic mice. These findings are consistent 

with previously published work on BMP2 expression in human liver tissue and hepatoma-

derived cell lines20, and non-parenchymal cells in the rat liver.39 We hypothesize that increased 

hepcidin in apoTf-treated mice is at least in part due to liver-secreted BMP2 because 1) BMP2 

protein is not detectable in hepatocytes, suggesting that non-parenchymal cells in the liver are 

involved; 2) non-parenchymal cells in the liver are mesenchymal origin, the same cells 

previously implicated in BMP6 secretion;34 3) BMP2 secretion has been demonstrated from 

mesenchymal origin cells (e.g. vascular and skeletal cells).40,41 Taken together, these data 

strongly suggest that non-parenchymal cells of the liver and other organs secrete BMP2 to 

enable paracrine and endocrine effects on hepcidin regulation in the liver.  
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Prior publication reveals that exogenous BMP2 increases hepcidin expression and 

lowers serum-iron levels in mice14 and that BMP inhibitor, noggin, as well as neutralizing anti-

BMP2/4 antibodies block hepcidin response to serum and transferrin.21 The increased BMP2 in 

human sera activates hepcidin expression in vitro, is blocked by BMP2 immunodepletion,42 and 

hepcidin suppression correlates with BMP2 suppression in mice.43 This prior publication 

supports BMP2’s role in apoTf-induced hepcidin up-regulation. To further evaluate BMP2’s 

effect on hepcidin expression, we treated primary hepatocytes with mouse serum and 

neutralizing BMP2/4 antibody. Although neutralizing anti-BMP2/4 antibodies suppress hepcidin 

expression and pSmad1/5/8 as expected, pERK1/2 is increased in neutralizing anti-BMP2/4 

antibody-treated hepatocytes relative to serum alone. These findings further support our finding 

increased MEK/ERK1/2 signaling in thalassemic mice and suppressed in apoTf-treated mice.  

Transferrin in primary hepatocyte cultures demonstrates complex changes in 

MEK/ERK1/2 signaling and relationship to Smad signaling. In vitro, transient induction of 

MEK/ERK1/2, Smad1/5/8, and hepcidin expression are observed in serum and/or transferrin 

treated primary WT mouse hepatocytes, all blocked by U0126.21 In vivo, neither acute nor 

chronic iron induced increases in liver pERK1/2 in WT mice,4 despite associated changes in 

hepcidin expression. Taken together, these reported observations leave considerable 

uncertainty regarding the relationship between transferrin, pERK1/2, and hepcidin expression. 

We demonstrate for the first time increased pERK1/2 in hepatocytes from thalassemic relative 

to WT mice, and decreased pERK1/2 in apoTf-treated thalassemic mice. Hepatocellular 

pERK1/2 is inversely correlated with hepcidin expression and nuclear Smad in thalassemic 

mice. In primary hepatocytes, U0126 results in the expected dose-response inhibition of 

MEK/ERK1/2 and increased hepcidin expression. These in vitro experiments reveal, despite 

unchanged cellular or cytosolic pSmad1/5/8, increased nuclear pSmad1/5/8 and Smad4 when 

MEK/ERK1/2 is suppressed. In addition, BMP2- and U0126-treated primary mouse hepatocytes 
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reveal an additive increase in hepcidin expression relative to treatment with either agent alone, 

suggesting a cross-acting function between BMP2-Smad1/5/8 and MEK/ERK1/2 pathways. 

Supporting these observations, a screen using small-molecule kinase inhibitors found that 

MEK/ERK1/2 pathway inhibitors increase hepcidin in primary hepatocytes44 and MEK/ERK1/2 

activators decrease BMP-dependent nuclear Smad.28,44,45 Taken together, our data suggest that 

activation of hepatocyte MEK/ERK1/2 pathway inhibits hepcidin expression by decreasing 

nuclear Smad, and that these effects are attenuated by treatment with apoTf. 

 In thalassemic mice, exogenous apoTf reverses ineffective erythropoiesis and increases 

hepcidin expression13 likely by reducing circulating “erythroid regulator” suppression of hepcidin. 

Prior reports demonstrated that GDF15 does not play a role in erythroid regulation of hepcidin in 

mice.38,46 We also analyzed TWSG1 and GDF11 mRNA and did not observe any differences in 

erythroid precursors between PBS- and apoTf-treated thalassemic mice. However, ERFE 

mRNA expression is increased in thalassemic mice and normalized in apoTf-treated 

thalassemic mice. Because ERFE expression is dependent on STAT5 signaling via 

erythropoietin receptor,12 decreased ERFE expression in apoTf-treated thalassemic mice is 

likely a consequence of improved erythroid maturation and RBC survival, leading to a decrease 

in serum erythropoietin and reversal of splenomegaly.13 This finding confirms the importance of 

ERFE and its role in the reversal of ineffective erythropoiesis in apoTf-treated thalassemic mice. 

Furthermore, ERFE expression is increased in apoTf-treated WT mice, consistent with 

increased erythropoietin13 and reticulocyte counts (Supplemental Table II). Thus, hepcidin 

expression in apoTf-treated WT mice is increased despite increased ERFE, suggesting that 

BMP2 provides a dominant effect to increase hepcidin expression and that increased hepcidin 

expression in apoTf-treated thalassemic mice is a combined effect of increased BMP2 and 

decreased ERFE. Reagents are currently in development to elucidate ERFE regulation of 

hepcidin in apoTf-treated thalassemic mice.  
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 We hypothesize that liver and/or serum BMP2 is a previously unexplored upstream 

suppressor of MEK/ERK1/2 pathway, inducing hepcidin expression (Figure 7). The mechanism 

by which this occurs is not yet clear. One possibility is that changes in BMP binding endothelial 

cell precursor derived regulator (BMPER) affects BMP signaling. Indeed, the concept of BMPER 

regulation of hepcidin via BMP2 has recently been published.47 Smad-independent signaling for 

TGFβ family of ligands, including BMPs, has been proposed.22 BMP2 exerts its function through 

both MEK/ERK1/2 and Smad pathways in primary cultured osteoblasts48,49 and it has been 

proposed that mesenchymal origin cells exhibit enhancement while epithelial origin cells exhibit 

inhibition of Smad signaling by MEK/ERK1/2 pathway.25 The details of a potentially significant 

cell autonomous cross-talk between the MEK/ERK1/2 and BMP/Smad pathways remain to be 

elucidated.  

Further studies are necessary to explore the potential use of exogenous apoTf to 

reverse ineffective erythropoiesis in β-thalassemia and other diseases of concurrent anemia and 

iron overload. Our data present mechanisms for hepcidin de-repression in apoTf-treated 

thalassemic mice, provide additional therapeutic targets in this pathway, and support our 

hypothesis that reversal of ineffective erythropoiesis and iron overload require concurrent 

management in β-thalassemia. 
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FIGURE LEGEND 

Figure 1: Effect of apo-transferrin injection on iron-related parameters. Serum iron (A)  

and transferrin saturation (B) (measured in the serum as a ratio of serum iron and total 

transferrin binding capacity) in PBS-injected WT (n = 8), PBS-injected thalassemic (n = 6), 

apoTf-treated WT (n = 13), and apoTf-treated thalassemic (n = 6) mice. (C) Serum hepcidin 

concentration measured by ELISA in PBS- injected WT (n = 24), PBS- injected thalassemic (n = 

13), apo-transferrin-treated WT (n = 22), and apoTf-treated thalassemic (n = 14) mice. (D) Liver 

non-heme iron concentration measured using spectrophotometry (n = 12-14 mice per group). 
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(E) ERFE mRNA expression in sorted bone marrow orthochromatophilic erythroblasts (n = 4 

sorted samples per group, each sorted sample from 2-3 mice). (Tf = transferrin; apo = apo-

transferrin; WT = wild type; thal = thalassemic (Hbbth1/th1); ERFE = erythroferrone) 

 

Figure 2: Effect of apo-transferrin treatment on Smad and ERK1/2 signaling to hepcidin in 

hepatocytes. (A) Phosphorylated Smad1/5/8, Smad1, Smad4, and Smad7, phosphorylated 

ERK1/2, total ERK1/2, and Ferritin H in fresh hepatocytes detected by Western Blot 

(representative gel; n = 6-7 mice per group). (B) Statistical analysis of phosphorylated 

Smad1/5/8:total Smad1:GAPDH in fresh hepatocytes performed using ImageJ, presented as 

mean ± SEM (n = 6-7 mice per group). (C) Statistical analysis of phosphorylated ERK1/2:total 

ERK1/2 relative to GAPDH in fresh hepatocytes performed using ImageJ, presented as mean ± 

SEM (n = 6-7 mice per group). (apo = apo-transferrin; WT = wild type; thal = thalassemic 

(Hbbth1/th1))  

 

Figure 3: Effect of apo-transferrin injection on nuclear Smad signaling in hepatocytes. (A) 

Phosphorylated Smad1/5/8, Smad4, Smad7, and TGIF in hepatocyte nuclei detected by 

Western Blot (representative gel; n = 4-6 mice per group in each experiment). Statistical 

analysis of phosphorylated Smad1/5/8 (B) and Smad 4 (C) relative to Lamin B (lower band) in 

hepatocyte nuclei performed using ImageJ, presented as mean ± SEM (n = 4-6 mice per group). 

(apo = apo-transferrin; WT = wild type; thal = thalassemic (Hbbth1/th1)) 

 

Figure 4: Effects of MEK/ERK1/2 inhibitor U0126 and combination with BMP2 on hepcidin 

expression in vitro. Hepcidin mRNA expression (A) as well as ERK1/2 and Smad1/5/8 

signaling (B,C)  in primary hepatocytes from WT and thalassemic mice. Cells were cultured with 
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WT mouse serum in the presence of 0, 2, 10, or 50 µM U0126 added 2.5 hours prior cell 

harvest, normalized to DMSO treated control cells. (D) Nuclear pSmad1/5/8 and Smad4 in WT 

primary hepatocytes treated with escalating doses of U0126 as above. These in vitro results 

represent 3-6 independent experiments. (WT = wild type; TBP = TATA box binding protein) 

 

Figure 5: Effect of apo-transferrin treatment on hepcidin regulators BMP2 and BMP6. (A) 

Liver BMP6 mRNA expression measured by q-RT PCR relative to GAPDH mRNA and 

normalized to PBS-injected WT mice (n = 8-12 mice per group). (B) Statistical analysis of BMP6 

mRNA relative to non-heme liver iron, presented as mean ± SEM (n = 8-12 mice per group). (C) 

Serum BMP2 concentration measured by ELISA (n = 6-9 mice per group). Western Blot (D, 

representative gel) and statistical analysis (E) of liver BMP2 protein concentration (n = 6-9 mice 

per group) . (apo = apo-transferrin; WT = wild type; thal = thalassemic (Hbbth1/th1)) 

 

Figure 6: Effects of mouse serum and neutralizing BMP2/4 antibody on hepcidin 

expression in vitro 

Hepcidin mRNA expression (A) and Smad and ERK1/2 pathway activation (B) in primary WT 

hepatocytes cultured with different mice sera, with and without the addition of neutralizing anti-

BMP2/4 antibodies, and compared with primary cultured hepatocytes directly treated with apo-

transferrin. Results are normalized to untreated hepatocytes in culture. Concurrent treatment 

with serum and neutralizing anti-BMP2/4 antibodies compared with serum or anti-BMP2/4 

antibody alone (*P<0.05 and **P<0.004 for each paired condition with and without added anti-

BMP2/4 antibody). (C) Quantification of phosphorylated relative to total Smad in rimary WT 

hepatocytes treated with WT or thalassemic mouse serum. Hepcidin mRNA (D) as well as 

ERK1/2 and Smad1/5/8 signaling (E) in WT primary hepatocytes treated with 20 ng/ml BMP2, 
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25 µM U0126, or the combination. These in vitro results represent 6 independent experiments. 

(F) Nuclear pSmad1/5/8 and Smad4 in WT primary hepatocytes treated with 20 ng/ml BMP2, 25 

µM U0126, or the combination as above. These in vitro results represent 2 independent 

experiments. (G) Immunofluorescence using anti-pSmad1/5/8 antibodies in WT primary 

hepatocytes treated with 20 ng/ml BMP2, 25 µM U0126, or the combination as above. (H) 

Results were quantified using mean nuclear fluorescence intensity in ImageJ. These in vitro 

results represent 4 independent experiments. (UT = untreated; apo = apo-transferrin; WT = wild 

type; thal = thalassemic (Hbbth1/th1); RPL4 = ribosomal protein L4; TBP = TATA box binding 

protein) 

 

Figure 7: Proposed working model of hepcidin regulation in apo-transferrin treated 

thalassemic mice. Apo-transferrin treatment induces circulating BMP2, decreases circulating 

ERFE, and decreases activation of ERK1/2 in hepatocytes, resulting in increased nuclear Smad 

signaling and hepcidin expression. (ERFE = erythroferrone; apo = apo-transferrin) 

 

















Gene Forward primer (5'->3') Reverse primer (5'->3') 

BMP6 CAGCTTGCAAGAAGCATGAG GGAACACTCTCCATCACAGTAG 

HJV TATGGGCCAGTCCCCTAGTC ATCTTGCACTGGGAGTGAGC 

Tfr2 CCTGATCACCCTGCTAATCTTC TCTTCATCGACCACCAACAC 

HFE CACCGCGTTCACATTCTCTA AAAGAGCTGGTCATCCACATAG 

TWSG1 CACTCTGTGCCAGCGATGTGA CACAGCATGCACTCCTTACAG 

BMP2 GACTGCGGTCTCCTAAAGGTCG CTGGGGAAGCAGCAACACTA 

BMP4 GAGGAGTTTCCATCACGAAGAA ATGCTGCTGAGGTTGAAGAG 

Supplemental Table I: Mouse specific primers used for qRT-PCR 



RBCs  

(x10^6 

cells/L) 

Hb (g/dL) MCV    

(fL) 

Retics       

(x 10^9 

cells / L) 

CHr (pg) RDW (%) 

WT - PBS (n=7) 10.5±0.2 14.5±0.3 48±0.3 345±34 15±0.2 13±0.4 

thal - PBS (n=6) 8.5±0.3* 7.1±0.3* 36±1.1* 2514±186* 12±0.2* 34±0.7* 

WT - apo (n=8) 10.5±0.4 10.6±0.6** 41±0.3** 374±21 12±0.1** 15±0.4** 

thal - apo (n=6) 13.3±0.5*** 10±0.4*** 29±0.7*** 907±141*** 10±0.1*** 25±0.8*** 

Supplemental Table II: RBC parameters in transferrin-treated mice 

Data represented as mean ± s.e.m. *P<0.0002 thal-PBS versus WT-PBS; **P<0.003 WT-apo 
versus thal-apo; ***P<0.0002 thal-apo versus thal-PBS; WT = wild type; thal = thalassemic 
(Hbbth1/th1); apo = apo-transferrin; RBCs = red blood cells; Hb = hemoglobin; MCV = mean 
corpuscular volume; Retics = reticulocyte count; CHr = corpuscular hemoglobin of 
reticulocytes; RDW = red cell distribution width. 



SUPPLEMENTAL METHODS 

In vivo experiments All mice were treated with 10 mg (400 mg/kg/day) of human apoTf 

(Kamada, Israel) or same volume of PBS via intraperitoneal injections daily for 20 or 60 days as 

described previously.1 Blood and tissues were processed for analyses. Erythroid precursors 

were collected from bone marrow as reported.2 Serum BMP4 was measured using ELISA kits 

(US Biological, MA).  

Ex vivo experiments Primary hepatocytes were isolated using two-step liver perfusion and 

cultured as previously described.3 After 12 hours of starvation, cells were treated for 24 hours 

with 5% mouse serum or combined with 20 μg/mL monoclonal anti-human BMP2/4 antibody 

(R&D systems), or incubated with 5% FBS and 0, 5, 10, 20 ng/ml BMP2 (Sigma) for 24 hours. 

After treatments, cells were harvested for RNA and protein analyses. 

Quantitative real-time RT-PCR Total RNA were extracted using PureLink RNA Mini Kit 

(Ambion, Life Technology) and analyzed with SuperScript III Platinum SYBR Green One-Step 

qRT-PCR Kit (Invitrogen, Life Technology). Primers of HFE, HJV, TfR1, TfR2 TWSG1, BMP2, 

and BMP4 were shown in Supplemental Table I. Smad7 and GDF11 mRNA levels were 

detected using primers as previously reported.4,5 mRNA concentrations were normalized to 

GAPDH.6  

Western Blot Proteins were separated on 10% SDS-polyacrylamide gels by electrophoresis and 

transferred onto nitrocellulose membranes (Bio-Rad). Membranes were processed and 

incubated with primary antibodies (Smad1, pSmad1/5/8, Ferritin H, ERK1/2, and pERK1/2 (Cell 

Signaling); GAPDH (Thermo Scientific)) as well as HRP-conjugated secondary antibodies 

(Thermo Scientific). 
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SUPPLEMENTAL FIGURE LEGENDS 
 

Supplemental Figure 1: Comparison of 20 and 60 days of apo-transferrin injections in 

thalassemic mice.  (A) Spleen size (measured as a ratio of spleen to body weight) and (B) 

transferrin saturation (measured in the serum as a ratio of serum iron to total transferrin 

binding capacity). n=5-18 mice per group (Tf = transferrin; apo = apo-transferrin; WT = wild 

type; thal = thalassemic (Hbbth1/th1)) 

  

Supplemental Figure 2: Effect of apo-transferrin injection on hepcidin, Id1, and Smad7 

expression, other genes related to hepcidin regulation in the liver and Smad 

phosphorylation in hepatocytes. Liver hepcidin, Id1, and Smad7 (A); Tfr2, HFE and HJV 

(B); as well as TfR1 (C) mRNA expression relative to GAPDH and normalized to PBS-injected 

WT mice (n = 8-12 per group). (D) Hepcidin mRNA normalized to non-heme iron (n = 8-12 per 

group). (E) Statistical analysis of phosphorylated Smad1/5/8 relative to Smad1 normalized to 

Ferritin H in primary hepatocytes performed using ImageJ, presented as mean ± SEM (n = 6-7 

mice per group). (apo = apo-transferrin; WT = wild type; thal = thalassemic (Hbbth1/th1)) 

 

Supplemental Figure 3: BMP2 mRNA expression in the liver and hepatocytes. Values 

shown are the means ± SEM of −ΔCt values (Ct GAPDH − Ct hepcidin). (n = 4-6 mice per 

group; apo = apo-transferrin; WT = wild type; thal = thalassemic (Hbbth1/th1)) 

 

 



Supplemental Figure 4: Effect of apo-transferrin treatment on BMP4 serum concentration 

and mRNA expression in the liver and hepatocytes. (A) Serum BMP4 concentration 

measured by ELISA (n = 6-9 mice per group). Liver (B) and hepatocyte (C) BMP4 mRNA 

expression relative to GAPDH normalized to PBS-injected WT mice (n = 8-12 mice per group). 

(WT = wild type; thal = thalassemic (Hbbth1/th1); apo = apo-transferrin) 

 

Supplemental Figure 5: Id1 mRNA expression in primary hepatocytes in vitro. Primary 

WT hepatocytes treated with serum from WT or thalassemic mice after PBS or apo-transferrin 

injection, normalized to untreated hepatocytes in culture. Concurrent treatment with serum and 

neutralizing anti-BMP2/4 antibodies compared with primary hepatocytes treated with serum or 

anti-BMP2/4 antibody alone. These in vitro results represent 4-6 independent experiments. (* 

P=0.04 serum alone vs. serum + Ab) (UT = untreated; apo = apo-transferrin; WT = wild type; 

thal = thalassemic (Hbbth1/th1); Ab = anti-BMP2/4 neutralizing antibody) 

 

Supplemental Figure 6: Effects of BMP2 on hepcidin expression as well as Smad1/5/8 

and ERK1/2 signaling in vitro. Hepcidin mRNA expression (A) as well as ERK1/2 and 

Smad1/5/8  signaling (B) in WT mouse primary hepatocytes treated with 0, 5, 10, and 20 ng/ml 

BMP2. These results represent 3 independent experiments. 

 

Supplemental Figure 7: Effect of apo-transferrin treatment on bone marrow GDF11 

expression. TWSG1 (A) and GDF11 (B) in sorted bone marrow orthochromatophilic 

erythroblasts (n = 4 sorted samples per group, each sorted sample from 2-3 mice). (WT = wild 

type; thal = thalassemic (Hbbth1/th1); apo = apo-transferrin; TWSG1 = twisted gastrulation factor 

1; GDF11 = growth differentiation factor 11) 
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