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Abstract

Heart disease is one of the leading causes of death in Canada, claiming thousands of lives each year.

Cardiac electrophysiology that studies the electrical activity in the human heart has emerged as an active

research field in response to the demand for providing reliable guidance for clinical diagnosis and treatment to

heart arrhythmias. Computer simulation of electrophysiological phenomena provides a non-invasive way to

study the electrical activity in the human heart and to provide quantitative guidance to clinical applications.

With the need to unravel underlying physiological details, mathematical models tend to be large and

possess characteristics that are challenging to mitigate. In this thesis, we describe numerical methods for

solving widely used mathematical models: the bidomain model and its simplified form, the monodomain

model. The bidomain model is a multi-scale cardiac electrophysiology model that includes a set of reaction-

diffusion partial differential equations (PDEs) with the reaction term representing cardiac cell models that

describes the chemical reactions and flows of ions across the cell membrane of myocardial cells at the micro

level and the diffusion term representing current propagation through the heart at the macro level. We use

the method of lines (MOL) to obtain numerical solution of this model. The MOL first spatially discretizes

the system of PDEs, resulting in a system of ordinary differential equations (ODEs) at each space point,

and we obtain fully discrete solutions at each space-time point using time-integration methods for ODEs.

In this thesis, we propose innovative numerical methods for the time integration of systems of ODEs based

on the Runge–Kutta–Chebyshev (RKC) method. We implement and compare our methods with those used

by current research on time integration of ODEs on three problems: time integration of individual cardiac

cell models, time integration of the cell model of a monodomain problem, and time integration of spatially

discretized tissue equation in a monodomain benchmark problem proposed by S. Niederer et al. in 2011.

Numerical methods in cardiac electrophysiology research for solving ODEs include the forward Euler (FE)

method, the Rush–Larsen (RL) method, the backward Euler method, and the generalized RL method of first-

order. We introduce multistage first-order RKC methods and multistage first-order RL methods that are

constructed by replacing the FE method with multistage first-order RKC methods. We implement all the

aforementioned methods and test their efficiencies in time integration of 37 cardiac cell models. We find

introducing the multistage RKC and RL methods allows larger step sizes to meet prescribed numerical

accuracy; the increased time steps sped up time integration of 19 cell models. We replace the FE method

with two-stage RKC method in time integration of cell model in a monodomain model. We find the increased

time step introduced by applying this method improved the entire solving process by up to a factor of 1.4. We

also apply the RKC(2, 1) method to time integration of the tissue equation from a monodomain benchmark

problem. Results show we have decreased the execution time of this benchmark problem by a factor of two.

We note the increase of time step is from stability improvement brought by the numerical method. We finally

give a quantitative explanation of stability improvement from introducing multistage RKC and RL methods

for solving systems of ODEs considered in this thesis.
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Chapter 1

Introduction

Heart disease is one of the leading causes of death in Canada. According to the most recent report, it

claims more than 48,000 lives in 2012 [45]. One of the crucial factors contributing to normal heart function

is the electrical activity in the heart. The study of electrical activity in the heart has emerged as an active

research field — cardiac electrophysiology.

During clinical diagnoses and treatments, it is usually desirable to avoid invasive experiments on a live

human heart in research studies. To mitigate these difficulties, researchers from physiology, mathematics, and

computer science collaborate together to develop mathematical models describing physiological phenomena

using knowledge and data from clinical practice and research. The confluence of physiology and computing

science brings cardiac simulation — simulating cardiac electrical activity using numerical simulation methods

— into the academic spotlight.

Cardiac electrical activity can be simulated using different methods, including cellular automata, the

Eikonal mapping, and the bidomain or monodomain model [6]. One common practice adopted in this thesis

is to solve the bidomain model, or alternatively, its simplified form, the monodomain model. The bidomain

model is a multi-scale physiology model that couples a set of partial differential equations (PDEs) describing

chemical reactions in myocardial cell, which are finally reduced to ordinary differential equations (ODEs)

upon spatial discretization, and ion transport through cell membrane with a set of PDEs describing current

propagation throughout the heart.

Success in mathematical modelling stimulates the development of numerical methods for solving math-

ematical models of cardiac electrophysiology, especially with special characteristics (as we mention in Sec-

tion 3.1). However, due to the intrinsic large scale of problems as demanded by clinical applications, it is not

presently possible to simulate the electrical activity of a meaningful piece of heart tissue in real-time. As of

2012, the fastest result for solving the monodomain model with spatial resolution of 0.1 mm on 370 million

grid cells was on a supercomputer with 1,572,864 cores [36], but only nine heartbeats per CPU wall clock

minute were obtained, compared with 60 to 100 heart beats in a healthy adult heart that consists of two

billion cells [27]. Advanced numerical methods have a pronounced importance in facilitating computations

and moving researchers towards real-time cardiac simulation.
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1.1 Contributions of the thesis

In this thesis, we investigated the time integration to cardiac cell models in cardiac simulations by using

the Runge–Kutta–Chebyshev (RKC) methods and the new methods by replacing the forward Euler (FE)

method in the Rush–Larsen (RL) method with multistage RKC methods. We refer to the new methods as

multistage Rush–Larsen–Chebyshev (RLC) methods. The s-stage first-order RKC methods and multistage

RLC methods are denoted as RKC(s, 1) and RLC(s, 1), where s = 2, 3. In this experiment, all these methods

are implemented in MATLAB, along with other widely used existing methods for cardiac simulation. While

specifying prescribed numerical accuracy over time integrations of a wide range of cardiac cell models, we find

and compare the methods’ largest step sizes and corresponding execution times. Our findings indicate that

the multistage RKC and RLC methods reduce the total execution time in time integration of 19 out of 37

selected cell models compared with single step methods. As well as providing a quantitative analysis relating

to these improvements, we apply the RKC(2, 1) to the time integration of cardiac cell models of a monodomain

problem. By implementing the RKC(2, 1) method in C++, this experiment contributes to a simulation toolkit

for cardiac simulation named CHASTE [35]. With the hope of pushing the research boundary towards real-time

cardiac simulation, we also test the capability of the RKC method by applying the RKC(2, 1) method to

time integration of a spatially discretized tissue equation in a monodomain benchmark problem. Replacing

the FE method used in previous research [36] with the RKC(2, 1) method reduces the computing time by a

factor of two.

1.2 Structure of the thesis

In Chapter 2, we briefly introduce cardiac simulation and the electrophysiological models relevant to this

thesis, specifically presenting those models concerned with individual cardiac cell and myocardial tissue.

Chapter 3 introduces numerical methods for time integration and spatial discretization of the aforemen-

tioned electrophysiological models used by cardiac simulation research. We propose our innovative numerical

methods for time integration of systems of ODEs, as well as presenting a special note on numerical stability,

a crucial factor in determining the applicable numerical method. This presentation is followed by an intro-

duction to the method of lines (MOL) used to solve the bidomain/monodomain model. The MOL includes

the spatial discretization of a system of PDEs and time integration of spatially discretized PDEs that results

a system of ODEs, which can be solved using numerical methods for ODEs. In Chapter 4, we present results

from numerical experiments for solving the following three problems: the time integration of individual car-

diac cell models, the time integration of the cell model of a monodomain problem, and the time integration

of a spatially discretized tissue equation in a monodomain benchmark problem proposed by S. Niederer et

al. in 2011 [36]. A theoretical explanation for the improvements on step sizes seen in our numerical is also

provided. Chapter 5 summarizes the conclusions and offers suggestions for future work.
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Chapter 2

Electrophysiological Background

In this chapter, we give a brief introduction to the electrophysiological background used in this thesis. We

begin by giving a brief overview on cardiac electrophysiology and the motivation of cardiac simulation — using

computer simulation to study cardiac electrophysiology in Section 2.1. We further present electrophysiological

details on specific cardiac cells and mathematical models describing cellular electrical activity in Section 2.2.

We conclude this chapter by describing tissue-scale modeling in Section 2.3.

2.1 Introduction to cardiac simulation

2.1.1 Overview of electrical activity in the heart

The heart is a precise machine that controls blood pumping, which is the result of a rhythmic cycle of

contraction and relaxation of billions of muscle cells. Those muscle cells are controlled by the pattern

of electrical activity. Abnormalities and disturbance of the electrical activity may result in serious heart

problems.

A popular non-invasive method in clinical practice for diagnosing heart conditions is the ECG (electro-

cardiogram), which is based on the link between electrical activity and potential heart problems. By treating

human body as a volume conductor, the ECG reflects electrical potential difference that results from elec-

trical activity in the heart. Pathological conditions, such as rhythm disturbance, can be detected through

abnormal patterns from the ECG report. We refer to [25] for a detailed discussion on this topic.

2.1.2 Computer simulation of cardiac electrophysiology

Despite advances in understanding electrophysiological mechanisms, more knowledge of quantitative methods

is needed to guide drug research and clinical treatment. To study the hearts physiological reactions under

extreme conditions, such as those during defibrillation, physicians are increasingly turning to virtual hearts

in both academic and settings. These models of the heart use today’s computing power and sophisticated

mathematical algorithms to simulate electrical activity in the heart and diagnose complex heart problems.

A widely used cardiac cell model in cardiac electrophysiology research is the Luo–Rudy model (1991) [29].

The Luo–Rudy model (1991) is based on developments in the ventricular cell model proposed by Beeler and

3



Reuter [3].

Cardiac simulation, characterized by its non-invasive nature and providing quantitative information, has

pronounced its importance in guiding drug research [36] and in understanding heart arrhythmias [2]. Real-

time cardiac simulation affords us a promising future in diagnosing and predicting heart disease in a drop-

in clinic, and it makes the drug research that requires investigating long-term electrical activity possible.

However, with the intrinsic complex and complicated structure the heart has, the computing workload for

real-time cardiac simulation is still formidable.

With the rapid development from semiconductor industries, computing facilities on the market is becoming

more and more powerful. The development of parallel computing facilities enables us to tackle larger scale

problems than before. However, those facilities are driven by mathematical algorithms that make full and

efficient utilization of computing resources. Algorithm development thus has a significant impact in reducing

the overall computing time given fixed facilities.

This thesis concerns the improvement of algorithms designed to move the field closer to real-time cardiac

simulation.

2.2 Cellular electrophysiology

To describe electrical activity of a single cell, several mathematical models have been proposed. These models

can be classified into three categories:

Phenomenological models These models describe cellular electrophysiology via fitting of observed be-

haviours of cells. An example is the cubic polynomial model [26]:

Iion = f(v) = A2(v − vrest)(v − vth)(v − vpeak),

where A, vrest, vth, and vpeak are constants for this model.

First-generation models These models, such as the Luo–Rudy model (1991) [29] described later in this

section, are a first attempt to describe electrical activity using the underlying electrophysiology. How-

ever, the electrophysiology being used is much simplified thus hides details of the real electrophysiology.

Second-generation models Benefitting from further observations and advanced experimental techniques,

these models provide substantial amount of details for descriptions of the electrophysiology of the cells,

such as the improved Luo–Rudy model (1994) [30].

The transmembrane potential of a single cell is affected by the ionic currents, which consist of ions carrying

electric charges passing through the cell membrane, and any external stimulus exciting the cell; this can be

written as the following ordinary differential equation (ODE):

Cm
dv

dt
= −Iion + Istim, (2.1)

4



where Cm, v, t, and Iion are the capacitance of the cell membrane, the transmembrane potential, time, and

the ionic current through cell membrane, respectively. Istim denotes a stimulus current to excite the cell.

The transmembrane ionic currents can be written as

Iion =

nion∑
j=1

Ij ,

where j stands for a specific kind of ion, such as sodium or potassium, and nion is the total number of ionic

currents. Each ionic current is controlled by several state variables, denoted by an m-component vector s:

Ij ≡ Ij(s, v, t),
ds

dt
= f(s, v, t). (2.2)

The state variables s, depending on v and t, can be categorized into two groups: mg gating variables g and

mc non-gating variables c, with m = mg +mc. The gating variables describe electrophysiological behaviours

of ion channels, which are proteins controlling specific kind of ions transported through cell membrane (as

shown in Figure 2.1). The non-gating variables describe dynamic variations of intracellular concentrations of

ions. This effect can be written as

dgj
dt

= αj(1− gj)− βjgj , j = 1, 2, · · · ,mg, (2.3)

dcj
dt

= hj(cj , gj , v, t), j = 1, 2, · · · ,mc, (2.4)

αj , βj , and hj are functions depending on v and t. In (2.3), αj and βj are nonlinear functions of v.

Figure 2.1: Schematic illustration of cell membrane showing an ion channel controlling ion trans-
port [56].

The Luo–Rudy model (1991)

A widely used cardiac cell model in cardiac electrophysiology research is the Luo–Rudy model (1991) [29].

The Luo–Rudy model (1991) is based on further development of the ventricular cell model proposed by Beeler

and Reuter [3].
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This model includes seven gating variables controlling six ionic currents (as shown in Figure 2.2) and

takes the form:

−Cm
dv

dt
= INa + Isi + IK + IK1 + IKp + Ib + Istim,

d[Ca]i
dt

= −0.0001Isi + 0.07(0.0001− [Ca]i),

dg

dt
= αg(1− g)− βg,

with terms listed in Table 2.1.

Figure 2.2: In the Luo–Rudy model (1991), different ion channels control different ionic currents [1].

Table 2.1: Parameters of the Luo–Rudy model (1991).

[Ca]i intracellular calcium concentration

g = m,h, j, d, f,X,Xi gating variables

αg and βg parameters for the gate g

INa normal fast sodium current

Isi slow inward current of calcium

IK and IK1 time-dependent and time-independent potassium current

IKp plateau potassium current

Ib passive background current

6



We refer to Appendix A for a complete form of the Luo–Rudy model (1991).

2.3 Tissue-scale modelling

Individual cells form the heart tissue. We describe mathematical models that couple the electrical activity

of the individual cells together and describe current propagation throughout a slab of heart tissue.

Several mathematical models have been proposed by the research community focusing on cardiac electro-

physiology in the past decades. In this thesis, we focus on a model that is widely used by several simulation

toolkits (for example, CHASTE [35] developed by the Oxford University and Nektar++ [24] developed by the

Imperial College London) called the bidomain model. We also introduce a simplified (but still practically

useful) form of the bidomain model known as the monodomain model.

2.3.1 The bidomain model

Originally proposed by Tung in 1978 [59], the bidomain model treats every point of myocardial tissue as

being in two continuous domains: the intracellular domain and the extracellular domain. The two domains

are separated by cell membrane, which is treated as an insulator — no ion shall pass through except via ion

channels as described in Section 2.2.

Suppose the currents in the two domains are given by [56]

J i = −σi∇ui, (2.5a)

Je = −σe∇ue, (2.5b)

where σi and σe are the conductivity tensors in the intracellular and extracellular domains, J i and Je denote

currents in these two domains, and ui and ue are the respective potentials. By definition, the transmembrane

potential v satisfies

v = ui − ue. (2.6)

Because the cell membrane is thin, the total charge accumulation at any point in the membrane is zero.

This implies

∂

∂t
(qi + qe) = 0, (2.7)

where qi and qe are the intracellular and extracellular charges, respectively.

In each domain, the net current into a point equals the sum of the rate of charge accumulation at that

point and the existing ionic current in the domain at that point. This implies

−∇ · J i =
∂qi
∂t

+ χIion, (2.8a)

−∇ · Je =
∂qe
∂t
− χIion, (2.8b)
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where Iion is ionic current through cell membrane, χ represents area of cell membrane per unit volume, Iion is

measured per unit area of the cell membrane and is considered to be positive towards extracellular domain,

and densities of charge qi and qe and currents J i and Je are measured per unit volume.

From (2.7) and (2.8), we have

∇ · J i +∇ · Je = 0. (2.9)

Substituting (2.5a) and (2.5b) into (2.9) gives us

∇ · (σi∇ui) +∇ · (σe∇ue) = 0.

Because capacitance equals charge divided by potential, if we further define total amount of charge as

q =
1

2
(qi − qe), (2.10)

we thus have

v =
q

χCm
. (2.11)

Taking partial derivative with respect to t on both sides of (2.11) and using (2.10), we have

χCm
∂v

∂t
=

1

2

∂(qi − qe)
∂t

.

From (2.7), we also have
∂qi
∂t

= −∂qe
∂t

= χCm
∂v

∂t
.

Combining with (2.8) and adding on external stimulus Istim gives us

−∇ · J i = χCm
∂v

∂t
+ χIion + Istim.

Using (2.5a) and (2.6) gives us

χCm
∂v

∂t
+ χIion + Istim = ∇ · (σi∇v) +∇ · (σi∇ue), (2.12a)

0 = ∇ · (σi∇v) +∇ · ((σi + σe)∇ue). (2.12b)

If we assume the heart is surrounded by a non-conductive insulator, on the boundary we have

n̂ · J i = 0,

n̂ · Je = 0,

where n̂ is the outward unit normal of the surface of the heart. According to (2.5), we have the boundary

conditions for the bidomain model:

n̂ · (σi∇v + σi∇ue) = 0, (2.13a)

n̂ · (σe∇ue) = 0. (2.13b)

8



The bidomain equations (2.12) is a multi-scale cardiac electrophysiology model. They are reaction dif-

fusion partial differential equations (PDEs) with the reaction term Iion from cardiac cell models describing

the chemical reactions and flow of ions across the cell membrane of individual myocardial cells at the micro

level, which are ODEs at every grid points, and the diffusion term describing current propagation through

the heart at the macro level. Because the bidomain model is a continuum-based model, the electrical activity

of a single cell is not captured; rather, the average effect round a spatial point is included. This can be

illustrated in Figure 2.3.

Figure 2.3: Schematic illustration of the bidomain model, showing ion transport through cell mem-
brane in two domains: extracellular and intracellular domains. Φe and Φi indicate extracellular and
intracellular electric potentials; Je and Ji indicate extracellular and intracellular electric densities; Im
is the transmembrane current.

2.3.2 The monodomain model

It is common in practice to simplify the bidomain model by assuming σe = λσi. Substituting this assumption

into (2.12b) gives us

∇ · (σi∇ue) = − λ

1 + λ
∇ · (σi∇v). (2.14)

Inserting (2.14) into (2.12a) gives us

λ

1 + λ
∇ · (σi∇v) = χCm

∂v

∂t
+ χIion + Istim, (2.15)

subject to the boundary condition

n̂ · (σi∇v) = 0.
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The monodomain model is simpler to solve than the bidomain model, but it also hides some underlying

physiology because it treats the myocardial tissue as being isotropic: the conductivities are uniform along

different directions, which is not the case in real life. The parameter λ is also hard to specify [56].
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Chapter 3

Numerical Methods

This chapter presents the numerical methods used in this thesis. We begin by introducing potential

challenges behind solving cardiac electrophysiology models and how we determine the accuracy of a numer-

ical solution in Section 3.1. We follow by introducing the numerical methods, including the methods we

proposed to use (s-stage first-order Rush–Larsen–Chebyshev methods and the s-stage first-order Runge–

Kutta–Chebyshev methods, where s = 2, 3) for the time integration of systems of ODEs, especially targeted

at those from cardiac cell models, in Section 3.2. We also describe a crucial factor in determining the ca-

pability of a numerical method applied to a problem, called numerical stability, in this section. We turn

our focus from single cell simulation to tissue-scale modelling by introducing numerical methods for solving

the bidomain model using the method of lines in Section 3.3. We proceed by explaining the two steps in

the method of lines applied to solve the bidomain and monodomain model: spatial discretization methods

for time-dependent parabolic PDEs and time integration methods for systems of ODEs in Section 3.3.1 and

Section 3.3.2, respectively.

3.1 Challenges in cardiac simulation

The attempt to obtain numerical solutions for cardiac electrophysiology models faces several challenges:

Scale In practical applications, the scale of the intended problem must be big enough to unravel underlying

electrophysiological details of the problem, and this scale imposes high demands on computing facilities.

Advanced numerical methods help computing facilities to be capable for handling large-scale problems

more efficiently.

Stifness Models studied in cardiac simulations sometimes require special techniques to deal with their special

characteristics. One of these is called stiffness. Details on stiffness are introduced in Section 3.2.2.

In the following sections, we introduce the numerical methods widely adopted by the cardiac simulation

community, as well as those used in this study.
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3.2 Time-integration methods for systems of ODEs

We introduce numerical methods for time integration of systems of ODEs in this section, especially for

systems from cardiac cell models. In these cases, the initial values of ODEs come from the initial status of

the cell model. This brings us an initial-value problem (IVP). To illustrate this, let us consider an IVP over

t ∈ [t0,+∞):

dy

dt
= f(t,y), t0 > 0, (3.1a)

subject to initial condition

y(t0) = y0, (3.1b)

where y and f are both vector-valued functions and y0 is a vector denoting the initial condition.

Solution to system of ODEs may not always be expressed in analytical form. In these cases, we use

numerical methods to get approximate values (y1,y2, . . . ,yn) of y at t = t1, t2, . . . , tn. Numerical methods

can be categorized into two major groups: explicit methods and implicit methods. Explicit methods are

straightforward because they allow us to obtain solution at next step (from tn to tn+1) directly. Implicit

methods involve solving algebraic equations for the numerical solution at each step, and this extra solving

process leads to a relatively high computing cost per step, but implicit methods are usually more stable (the

concept of numerical stability is explained in Section 3.2.2) than their explicit counterparts. This allows

implicit methods to take a larger step size in computing and could potentially reduce execution time for some

problems. There are also methods that are neither fully explicit nor fully implicit, such as the symplectic

Euler method [8] that takes an implicit form but can be solved explicitly.

3.2.1 Runge–Kutta methods

One large family of numerical methods for solving the systems of ODEs is the family of Runge–Kutta (RK)

methods. RK methods are one-step methods, which are characterized by the fact that the solution at

current step only depends on solution at previous step. However, in the one-step time integration, auxiliary

intermediate solutions may also be computed depending on the RK method. With a large variety of the

forms they take, RK methods range from fully explicit to fully implicit.

The s-stage RK method takes the following form [20]:

yn+1 = yn + ∆t

s∑
i=1

bif(tn + ci∆t,yni), (3.2a)

yni = yn + ∆t

s∑
j=1

aijf(tn + cj∆t,ynj), (3.2b)

where aij and bi define the specific RK method, and ci =
∑s
j=1 aij .
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The simplest RK method for solving an IVP is the forward Euler (FE) method:

yn+1 = yn + ∆tf(tn,yn).

The implicit counterpart of the FE method is the backward Euler (BE) method:

yn+1 = yn + ∆tf(tn+1,yn+1). (3.3)

Because yn+1 appears at both sides of (3.3), the BE method generally requires a solution of a non-linear

algebraic equation to obtain yn+1.

3.2.2 Numerical stability and stiffness

Stability is a crucial topic in the research of numerical methods, and it plays an important role in justifying

the capability of a numerical method applied to a specific problem. To illustrate the concept of numerical

stability, let us consider the following scalar test IVP as a typical example:

dy

dt
= λy(t), y(t0) = y0, (3.4)

where λ ∈ C and Re(λ) ≤ 0. Applying the RK method (3.2) to (3.4) gives us [20]

yn+1 = R(z)yn, z = λ∆t,

where

R(z) = 1 + zbT(I− zA)−1e, e = (1, 1, . . . , 1)T,

b =


b1
...

bs

 , A =


a11 · · · a1s

...
. . .

...

as1 · · · ass

 ,

and I is the identity matrix. R(z) is called the stability polynomial and plays a central role in determining

numerical stability [20].

At each step, a perturbation error is introduced. The perturbation error derives from both finite machine

precision in the current step and from the difference between the solution trajectory and the numerical

solution in the previous step, resulting in different initial values for the current step. For each step, we

assume that at step n the exact solution is y(tn), and that the numerical solution is yn, we have

yn+1 = R(z)yn.

The perturbation error each step, denoted by en = y(tn)− yn, follows

en+1 = R(z)en,

and this implies

en = (R(z))ne0.
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To ensure the error does not grow while the computation is going on, we require

|R(z)| ≤ 1.

This imposes a restriction on the scaled eigenvalue by time step z = λ∆t: z belongs to the set

S = {z : |R(z)| ≤ 1}.

S is called the stability region.

Stability regions of the FE and BE method are shown in Figure 3.1. For example, if we are using the FE

method, we require the scaled eigenvalues z fall into the shaded unit disk in the left figure in Figure 3.1.

Figure 3.1: Stability regions of the FE and BE method.

We note that the cases with which we are dealing in this thesis involve non-linear problems, so we

generalize the above analysis from scalar test equation (3.4) to a general non-linear system (3.1).

Consider the non-linear system (3.1). If we denote the numerical solution as ỹ, the perturbation error is

e(t) = y(t)− ỹ(t).

At time-space point (t∗,y∗), we have

de

dt
=

dy

dt
− dỹ

dt

= f(t∗,y)− f(t∗,y∗)

= f(t∗,y∗) +
∂f

∂y
(t∗,y∗)(y − y∗)− f(t∗,y∗) +O(| y∗ − y |2)

Dropping the second-order term O(| y∗ − y |2), the perturbation error e satisfies

de

dt
=
∂f

∂y
(t∗,y∗)e.

The matrix J ..= ∂f(t∗,y∗)/∂y is called the Jacobian matrix of the system (3.1).
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Jacobian matrix J of a vector-valued function f = (f1, . . . , fm) with respect to variable y = (y1, . . . , ym)

is defined by

J =
∂f

∂y
=


∂f1

∂y1
· · · ∂f1

∂ym
...

. . .
...

∂fm
∂y1

· · · ∂fm
∂ym

 .

The eigenvalues of Jacobian matrix provide a lot of information we need in choosing numerical methods.

In the experiments considered in this thesis, we find the Jacobian matrix J ..= ∂f(t∗,y∗)/∂y is always

diagonalizable. Therefore, there exists a non-singular matrix V with columns being eigenvectors of J such

that V−1JV = Λ, with Λ being a diagonal matrix with eigenvalues of J on its diagonal. Let ẽ = V−1e;

then we have

dẽ

dt
= Λẽ.

For each component ẽi in ẽ, we have

dẽi
dt

= λiẽi,

where λi is diagonal element i of Λ. The analysis and illustrations of stability regarding (3.4) further

apply to (3.1): for an m-dimensional system, we require step time scaled eigenvalues z1, z2, . . . , zm fall into

the stability region of the respective numerical method. We further investigate the relationship between

eigenvalues and how these affect our choosing numerical methods in Section 4.4.

When determining suitable numerical methods to apply to a problem, one factor to consider is stiffness.

Stiffness refers to the phenomenon of a numerical method for the solution of a differential equation requiring

smaller step sizes than necessary to achieve a given accuracy [17]. A stiff problem’s Jacobian matrix tends

to contain eigenvalues with large negative real parts [32], which, in turn, restricts the step sizes needed to

satisfy stability requirements: the scaled eigenvalues z = λ∆t belong to the stability region (3.2.2). To

satisfy prescribed accuracy, eigenvalues with large negative real parts result in step sizes that are smaller

than expected. Furthermore, as seen in Figure 3.1, an implicit method, such as the BE method, has a much

larger stability region than its explicit counterpart, the FE method. Thus, the BE method helps address the

step size restrictions of stiff problems.

The above analysis that uses eigenvalues to justify stiffness of a problem holds most of the time in practice

(and in this thesis), but there are exceptions. We refer to [17] for further discussions on this topic.

3.2.3 Runge–Kutta–Chebyshev methods

As shown in Figure 3.1, the stability region of the BE method is larger than that of its explicit counterpart,

so the BE method can take a comparatively larger step size than the FE method while still being stable;

however, satisfying its requirement for a solution of a non-linear algebraic equation each step is expensive

in practical computations. On the other hand, the FE method suffers from step size restriction from small

stability region especially on stiff problems. This process results in significant computing time and hence
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sometimes is prohibitive. Exploiting the characteristics of the problem, eigenvalues of Jacobian matrix of

the cell systems tend to cluster around negative real axis, and to balance the trade-off between reducing

computational workload and satisfying numerical stability, we propose to use an explicit multistage method,

the Runge–Kutta–Chebyshev (RKC) method, which belongs to the family of RK methods. We denote the

s-stage first-order RKC methods by RKC(s, 1). The FE method can be viewed as the RKC(1, 1) method

according to the form RKC methods take below.

RKC methods have extended stability regions along the negative real axis compared with other explicit

RK methods. It can be proved [60] that for any s-stage explicit RK methods applying to the scalar test

problem (3.4), the optimal stability polynomial is the shifted Chebyshev polynomial of the first kind:

Ps(z) = Ts

(
1 +

z

s2

)
, βr = 2s2,

where [−βr, 0] is the longest segment of the negative real axis contained in the stability region S, s is a

positive integer, and Ts(z) is the Chebyshev polynomial defined by

Ts(z) = cos(s arccos(z)), z ∈ C.

Using the Chebyshev polynomial as the stability polynomial, an s-stage RKC method is written as

yn0 = yn,

yn1 = yn + µ̃1∆tfn0,

ynj = (1− µj − νj)yn + µjyn,j−1 + νjyn,j−2 + µ̃j∆tfn,j−1 + γ̃j∆tfn0,

yn+1 = yns,

where j = 2, 3, . . . , s, fnk
..= f(tn + ck∆t,ynk), and

µ̃1 = b1w1, µj =
2bjw0

bj−1
, νj =

−bj
bj−2

,

µ̃j =
2bjw1

bj−1
, γ̃j = −aj−1µ̃j , aj = 1− bjTj(w0).

For an s-stage first-order RKC method, we introduce damping parameter ε, and the quantities w0 and w1

satisfy

w0 = 1 + ε/s2, w1 = Ts(w0)/T ′s(w0),

and

bj =
1

Tj(w0)
,

Damping parameters applied to the RKC method are designed to widen the stability region along the negative

real axis with a small penalty of shortening the intersection of the stability region with the negative real axis,

as shown in Figure 3.2. In practical implementations, a suitable choice for ε discussed in [20] is 0.05.
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Figure 3.2: Stability regions of first-order RKC methods, showing two and three stages with and
without damping parameter 0.05.

3.2.4 The Rush–Larsen method

As being specified in Section 2.2, systems of equations of the cardiac cell model can be split according to

gating and non-gating variables. Exploiting this fact, Moore and Ramon developed a new numerical method

by treating gating and non-gating equations using exponential Euler integrator and the RK4 method [37].

Experiment has shown the new method outperformed applying the FE method or the RK method solely to

the whole system. Inspired by their research, Rush and Larsen proposed the Rush–Larsen (RL) method [50].

This method splits cell systems by treating gating equations with the exponential Euler integrator and

treating the remaining equations with the FE method.

Consider the gating equation (2.3) of gate g; it can be reformulated as

dg

dt
=
g∞ − g
τg

, (3.7)

where

g∞ =
αg

αg + βg
, τg =

1

αg + βg
,

with αg and βg being functions of only v.

The RL method freezes the transmembrane potential v at each time step. This allows (3.7) to be a linear

equation. This equation has exact solution gn at tn:

gn = g∞ + (gn−1 − g∞)e
−∆t
τg .
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Advantages of the RL method come from its easy implementation and improved stability properties when

dealing with stiff problems where stiffness is captured by gating variables. Previous studies [33] have shown

that the RL method is then the most efficient method for the majority of the cardiac cell models in this

thesis.

We consider replacing the FE method in the RL method with multistage RKC(s, 1) methods. We denote

these new methods with s-stage first-order Rush–Larsen–Chebyshev (RLC(s, 1)) method, where s = 2, 3.

3.2.5 The Generalized Rush–Larsen method

Several extensions of the RL method have been proposed, including the generalized first-order Rush–Larsen

(GRL1) method and the generalized second-order Rush–Larsen (GRL2) method [55].

GRL1

Unlike the RL method that treats non-gating variables with the FE method, GRL1 decouples and linearizes

the whole system at (tn,yn) and integrates it with an exponential integrator. We write this procedure as

follows:

Local linearization
dyi
dt

= fi(yn) +
∂fi(yn)

∂yi
(yi − yn,i), i = 1, 2, . . . ,m, (3.8)

where yi(tn) ..= yn,i, subscript i denotes the component i of y and f that have m components.

Exponential integration

yn+1,i = yn,i +
a

b
(eb∆t − 1), i = 1, 2, . . . ,m, (3.9)

where a = fi(yn) and b = ∂fi(yn)/∂yi. In practical implementation, if |∂fi(y)/∂yi| < δ, where δ

is a small number relative to the double-precision of the calculations, we can treat |∂fi(y)/∂yi| = 0,

and (3.9) degenerates to yi(t) = yn,i + a(t− tn).

Previous experiments show that the GRL1 method outperformed the RL method on the stiffest cardiac cell

models by taking significantly larger step size while maintaining stability and meeting a prescribed numerical

accuracy [33].

GRL2

The GRL2 method is a two-stage second-order method. It also decouples and linearizes an ODE system at

(tn,yn) to get (3.8), but it uses two steps to achieve second-order accuracy:

yn+1/2,i = yn,i +
a

b
(eb∆t/2 − 1), i = 1, 2, . . . ,m,

yn+1,i = yn,i +
ā

b̄
(eb̄∆t − 1), i = 1, 2, . . . ,m,
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where

ā = fi(ȳn+1/2), b̄ = ∂fi(ȳn+1/2)/∂yi,

with ȳn+1/2 = yn+1/2 but the component i being yn,i.

Implementation of GRL methods requires computing Jacobian matrix ∂f/∂y. This costly process can be

reduced by only computing diagonal elements of Jacobian matrix as needed [32]. The diagonal elements are

computed by

∂fi(y)

∂yi
≈ fi(y1, . . . , yi−1, yi + δ, yi+1, . . . , ym)− fi(y)

δ
.

3.3 The method of lines

In this thesis, the multi-scale cardiac electrophysiology models we use are the bidomain model or the mon-

odomain model. One of the predominant frameworks used by the cardiac simulation community to solve the

bidomain model is the method of lines (MOL).

The MOL refers to a general procedure for numerically solving systems of time-dependent PDEs, which

include the bidomain equations (2.12) (or the monodomain equation (2.15)). The MOL discretizes the system

of PDEs in all but one dimension (usually leaving the time dimension undiscretized, and this procedure

is usually referred to as the spatial discretization). The resulting system is only continuous in the time

dimension and can be viewed as a system of ODEs. A time-integration method is then required to obtain the

final numerical solution in fully space-time discretized form. We introduce methods for spatial discretization

of systems of time-dependent PDEs in Section 3.3.1 and time-integration methods for systems of ODEs from

spatial discretization of bidomain equations in Section 3.3.2. In solving the bidomain model with tissue

equations (2.12) and state variables of cell models determined by (2.2), the reaction term Iion is computed by

solving cell models with transmembrane potential v obtained from tissue equations. Updated state variables

s are fed back into tissue equations to advance the transmembrane potential v and extracellular potential ue.

We note that we introduce numerical methods by using examples from the bidomain model. In Chapter 4,

we use the monodomain model for our numerical experiments. Refer from Section 2.3.2, the monodomain

model is a simplified form of the bidomain model. Accordingly, although the results from applying numerical

methods to the monodomain model differ from those from the bidomain model, we expect the results from

the experiments on the monodomain model to apply equally well to the bidomain model.

3.3.1 Spatial discretization of time-dependent parabolic PDEs

We use two simplified examples to explain spatial discretization of time-dependent parabolic PDEs using the

finite element method and the finite volume method.
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The finite element method

To illustrate the spatial discretization for time-dependent parabolic PDEs using the finite element method (FEM),

we consider the following example [56], where u(x, t) is defined on Ω× [0,+∞):

∂u

∂t
−∇2u = f(x), x ∈ Ω, t > 0, (3.11a)

u(x, 0) = u0(x), x ∈ Ω, (3.11b)

u = 0, x ∈ ∂Ω, t > 0. (3.11c)

The FEM requires finding a numerical approximation to a weak solution of (3.11). Defining a Hilbert

space V , the weak solution u ∈ V of (3.11) is a solution of the following integral equation with boundary

conditions (3.11b) and (3.11c): ∫
Ω

∂u

∂t
φ dΩ−

∫
Ω

∇2uφdΩ =

∫
Ω

fφdΩ, (3.12)

where φ is any function in V that satisfy boundary conditions. We can verify the solution of (3.11) satis-

fies (3.12), and we can prove solution of (3.12) with second-order smoothness also satisfies (3.11) [23].

Applying Stokes’s theorem to both sides of (3.12) gives∫
Ω

∂u

∂t
φ dΩ +

∫
Ω

∇u · ∇φdΩ−
∫
∂Ω

n · ∇uφdΩ =

∫
Ω

f φ dΩ. (3.13)

With φ being any function in V satisfying the boundary conditions, the third term of (3.13) vanishes. We

obtain the following variational formulation problem:

Find u ∈ V such that

∫
Ω

∂u

∂t
φ dΩ +

∫
Ω

∇u · ∇φdΩ =

∫
Ω

f φ dΩ, for anyφ ∈ V. (3.14)

The solution u is a continuous function; thus the solution space V has infinite dimension. For the purposes

of numerical computation, we need to find a solution that is discrete. We achieve this by finding a numerical

approximation uh of u in a finite-dimensional subspace Vh ⊂ V . Vh is a finite-dimensional function space

with basis functions φ1, φ2, · · · , φm ∈ Vh defined on a discretized domain Ωh of Ω (domain being divided into

non-overlapping sub areas). The solution uh ∈ Vh can be expressed as

uh =

m∑
j=1

ujφj , (3.15)

with uj being coefficients of basis functions. We then obtain the discretized form of the variational formulation

problem (3.14):

Find uh ∈ Vh such that

∫
Ωh

∂uh
∂t

φh dΩh +

∫
Ωh

∇uh · ∇φh dΩh =

∫
Ωh

f φh dΩh, for anyφh ∈ Vh. (3.16)

It is easy to prove the solution uh satisfies (3.16) if and only if∫
Ωh

∂uh
∂t

φi dΩh +

∫
Ωh

∇uh · ∇φi dΩh =

∫
Ωh

f φi dΩh, for allφi ∈ Vh, i = 1, 2, · · · ,m. (3.17)
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Substituting (3.15) into (3.17) gives us∫
Ωh

 m∑
j=1

∂uj
∂t

φj

φi dΩh +

∫
Ωh

∇

 m∑
j=1

uj φj

 · ∇φi dΩh =

∫
Ωh

f φi dΩh, i = 1, 2, · · · ,m.

This can be reformulated to
m∑
j=1

∂uj
∂t

∫
Ωh

φj φi dΩh +

m∑
j=1

uj

∫
Ωh

∇φj · ∇φi dΩh =

∫
Ωh

f φi dΩh, i = 1, 2, · · · ,m. (3.18)

The basis functions φi are known, so we can write (3.18) into a system of ODEs:

M
du

dt
+ Au = f , (3.19)

where u = (u1, u2, . . . , um), and elements on row i and column j of A, M and element i of f are given by

A(i, j) =

∫
Ωh

∇φi · ∇φj dΩh, M(i, j) =

∫
Ωh

φi φj dΩh, f(i) =

∫
Ωh

f φi dΩh

This system is subject to the initial condition given by (3.11b).

The boundary condition (3.11c) can be applied to the linear system (3.19) by constructing V (and Vh)

accordingly. If (3.11c) is not satisfied, we need to adjust the linear system (3.19). Detailed discussions can

be found in [56].

We note that the above process is a general framework of FEM and is independent of choosing the

discretization Ωh of domain Ω and basis functions φi. The spatial discretization can be chosen based on the

shape of the problem domain and characteristics of the problem. The basis functions can be chosen according

to the required accuracy. For a one-dimensional problem, a useful yet simple form is the linear basis functions

(piece-wise linear functions) on a triagulation of the domain:

φj(xi) =

1 if j = i,

0 if j 6= i,

where xi are mesh points. We refer to [56] for a detailed discussion.

Spatial discretization of problem (3.11) using the FEM yields a system of ODEs (3.19). A time-integration

method is required to discretize this system in the time dimension and to produce the final solution in fully

discretized form.

The finite volume method

Another spatial discretization method for time-dependent parabolic PDEs used in this thesis is the finite

volume method (FVM) [20]. We introduce this method by looking at the following 1D problem.

Consider a time-dependent parabolic PDE u(x, t) defined on (x, t) ∈ [0, 1]× [0,∞):

∂u

∂t
−∇(k(x)∇u) = f(x, t), 0 < x < 1, t > 0, k(x) > 0, (3.20a)

u(x, 0) = u0(x), 0 < x < 1, (3.20b)

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0. (3.20c)
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We first equally divide the interval [0, 1] into N subintervals (called “cells” in FVM terminology) denoted by

I0, I1, . . . , IN−1. The length h of each cell is h = 1/N . So the center xj of the cell Ij is xj = h/2 + jh. We

also denote the left and right endpoint of Ij by xj−1/2 and xj+1/2, respectively. In the FVM, we intend to

approach the solution by approximating the average of the solution over a cell. We denote the approximation

to the real solution u as q. Then in each cell Ij , q follows

qj(t) ..= q(xj , t) ≈ uj(t) ..=
1

h

∫ xj+1/2

xj−1/2

u(x, t) dx. (3.21)

We integrate equation (3.20a) over cell Ij and take the average:

1

h

∫ xj+1/2

xj−1/2

∂u

∂t
(x, t) dx =

1

h

∫ xj+1/2

xj−1/2

∇(k∇u) dx+
1

h

∫ xj+1/2

xj−1/2

f(x, t) dx (3.22a)

=
k(xj+1/2)∇u(xj+1/2)− k(xj−1/2)∇u(xj−1/2)

h
+

1

h

∫ xj+1/2

xj−1/2

f(x, t) dx. (3.22b)

We define the flux Fj(t) through Ij and corresponding source fj by

Fj(t) ..= F (xj , t) = −k(xj)∇u(xj , t), (3.23)

and

fj(t) =
1

h

∫ xj+1/2

xj−1/2

f(x, t) dx.

Based on (3.22), we get the following equation for uj in every cell j:

duj(t)

dt
= −

Fj+1/2(t)− Fj−1/2(t)

h
+ fj(t). (3.24)

We now approximate the flux (3.23) using a second-order central difference scheme:

Fj−1/2(t) = −k(xj−1/2)∇u(xj−1/2, t) (3.25a)

= −k(xj−1/2)
uj(t)− uj−1(t)

h
+O(h2). (3.25b)

Substituting (3.25) into (3.24) and omitting the second-order term, we have the approximation qj(t) of uj(t)

at midpoint xj of Ij that satisfies

dqj(t)

dt
=
kj+1/2qj+1 − (kj+1/2 + kj−1/2)qj + kj−1/2qj−1

h2
+ fj(t), (3.26)

where kj ..= k(xj), qj ..= qj(t), and j = 1, 2, . . . , N − 2.

We now consider boundary condition (3.20c). We extend the solution to x < 0 by adding a cell I−1 =

[−1/N, 0], and we denote the midpoint of this interval with x−1. The boundary condition (3.20c) implies

0 = ∇u(t, 0) =
u0(t)− u−1(t)

h
+O(h2).

We thus have

u−1(t) = u0(t) +O(h3).

22



The approximation qj satisfies

q−1(t) = q0(t).

Then for j = 0, we have

dq0

dt
=
k1/2q1 − (k1/2 + k−1/2q0 + k−1/2q−1)

h2
+ f0 = k1/2

q1 − q0

h2
+ f0. (3.27)

Following the derivation of (3.27), we can also derive

dqN−1

dt
= kN−3/2

qN−2 − qN−1

h2
+ fN−1. (3.28)

Putting (3.26), (3.27), and (3.28) together, we have a system of ODEs of q:

dq(t)

dt
= Aq(t) + F (t), (3.29)

where

q =


q0

...

qN−1

 , F =


f0

...

fN−1

 , q,F ∈ R,

and

A =
1

h2



−k1/2 k1/2

k1/2 −(k1/2 + k3/2) k3/2

. . .
. . .

. . .

kN−5/2 −(kN−5/2 + kN−3/2) kN−3/2

−kN−3/2 kN−3/2


.

The initial condition of this system of ODEs is derived from (3.20b):

qj(0) = u0(h/2 + jh).

Similar to Section 3.3.1, spatial discretization of a time-dependent parabolic PDE system using the FVM

results in a system of ODEs. We need time-integration methods for systems of ODEs to obtain a fully

discretized numerical solution. Such methods targeted at the spatially discretized bidomain/monodomain

model are introduced in Section 3.3.2.

3.3.2 Time-integration methods for the bidomain model

The spatial discretization of bidomain equations (2.12) results in systems of ODEs at every space point in the

problem domain. We need a time-integration method to obtain the fully discretized form to get numerical

solutions at each space-time point.
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The semi–implicit method

Originally proposed by Whiteley [62] in 2006, the semi–implicit (SI) method is used in some cardiac simulation

toolkits as default, for example, CHASTE and FEniCS [39].

At spatial mesh point x and time t ∈ [tn, tn+1], the SI method applies the BE method to (2.12) but with

Iion evaluated at tn instead of tn+1 and applies the FE method to (2.2). With ∆t being time step, the SI

method is written by

sn+1 − sn
∆t

= f(sn, vn, tn),

χCm
vn+1 − vn

∆t
+ χIion(sn+1, vn, tn) + Istim(x, t) = ∇ · (σi∇vn+1) +∇ · (σi∇ue,n+1),

0 = ∇ · (σi∇vn+1) +∇ · ((σi + σe)∇ue,n+1).

As an example, we consider applying the SI method after spatial discretization of the bidomain model

using the FEM to obtain a fully discretized form [53]:χCm
∆t A + Ai Ai

Ai Ai+e

 vn+1

ue,n+1

 =

χCm
∆t Avn − χAI ion(Sn+1,vn, tn)

0

 ,

where S, v, and ue are vectors of values of s, v, and ue in spatially discretized domain; A, Ai, and Ai+e are

matrices with elements on row i and column j given by

A(i, j) =

∫
Ω

φiφj dΩ,

Ai(i, j) =

∫
Ω

σi∇φi · ∇φj dΩ,

Ai+e(i, j) =

∫
Ω

(σi + σe)∇φi · ∇φj dΩ,

where imax · jmax = M , imax and jmax are maximum values of row and column indices, M is the number of

mesh points, and φ are the finite element basis functions.

The Godunov operator-splitting method

When applying to the bidomain problem, Spiteri and Torabi tested the Godunov operator-splitting (OS)

method [53], which takes the following form:

sn+1 − sn
∆t

= f(sn, vn, tn), (3.31a)

v̂n+1 − vn
∆t

= − 1

Cm
Iion(sn, vn, tn), (3.31b)

χCm
vn+1 − v̂n+1

∆t
+ Istim(x, t) = ∇ · (σi∇vn+1) +∇ · (σi∇ue,n+1), (3.31c)

0 = ∇ · (σi∇vn+1) +∇ · ((σi + σe)∇ue,n+1). (3.31d)
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The Godunov OS method couples the Iion term from (2.12a) with systems of ODEs of cell models (2.2)

to form a new system of ODEs. The new system is solved using the FE method to obtain an interim solution

v̂n+1. The interim solution from (3.31b) is substituted into the tissue equations (3.31c) to obtain vn+1 by

applying the BE method. Numerical experiments from Spiteri and Torabi have shown that the Godunov OS

method permits us to take a larger time step size than the SI method but still satisfies a prescribed numerical

accuracy widely used in related researches (the numerical accuracy is given by 5% mixed root mean square

error, which is explained in Section 4.1). Because the cost per step of the Godunov OS method is comparable

to that of the SI method, Spiteri and Torabi propose that in solving bidomain problems, the Godunov OS

method should generally be favoured over the SI method given the above accuracy requirement.
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Chapter 4

Numerical Experiments

This chapter presents numerical experiments showing applications of the theory introduced in Chapter 3.

In Section 4.1, we introduce how we determine the quality of the numerical solutions. In Section 4.2, we extend

research in [33] by implementing more numerical methods (specifically, RKC(s, 1) methods and RLC(s, 1)

methods where s = 2, 3) to the time integration of cardiac cell models. We compare their efficiency by

specifying a numerical accuracy. We also test the RKC(2, 1) method by applying it to the time integration

of cardiac cell models in a pre-defined monodomain problem. In Section 4.3, we consider the application of

the RKC(2, 1) method to the time integration of a spatially discretized monodomain tissue equation using

the FVM. In Section 4.4, we give a quantitative analysis of the improvement of computational efficiency

attributed to numerical stability from proposed numerical methods.

4.1 Numerical accuracy

To determine the accuracy of numerical solutions produced by different numerical methods applied to the

same problem, we usually generate a reference solution that serves as a gold standard for numerical solutions

to compare against. The reference solution is generated by comparing a sequence of solutions by taking

decreasing time steps and increasing spatial resolutions (if applicable) until they have sufficiently converged.

Sometimes the Richardson extrapolation [49] is used to obtain higher-order accuracy.

To compare numerical solutions with the reference solution, we use the mixed root mean square (MRMS)

error [33] given by

[MRMS]y =

√√√√ 1

N

N∑
i=1

(
ȳi − yi
1 + |ȳi|

)2

,

where ȳi and yi denote the reference solution and the numerical solution at space-time point i, respectively,

and N denotes the number of solution points. If the reference solution has more solution points than the

numerical solution, we sample the reference solution at respective solution points from the numerical solution;

otherwise we sample only at those points of the reference solution. Linear interpolation is also used when

necessary.

The MRMS error was chosen to provide a pointwise global error measure in space-time that is sensitive

to large-scale pointwise errors. In the experiments outlined in Section 4.2.1 and 4.2.2, we treat solutions with

less than 5% MRMS error as reliable. We chose a 5% MRMS error threshold because this figure represents a
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balance between a faithful solution to the mathematical model and uncertainties in the model. The 5% MRMS

error has been used in other cardiac simulation research related to this thesis, such as [52] and [53]. Recent

research tends to favour a lower MRMS error, such as 1%, which may provide more confidence than higher

errors in the electrophysiology model. We refer to [13] and [28] as examples.

4.2 Time integration of cardiac cell models

This section presents numerical experiments on different numerical methods applied to the time integration

of cardiac cell models. In Section 4.2.1, we apply different numerical methods to the time integration of

individual cardiac cell models. In Section 4.2.2, we apply the RKC(2, 1) method to the time integration of

cell models in a monodomain problem.

4.2.1 Individual cell simulations

This experiment is an extension of the study [33]. The cell models selected by [33] are from the CellML

project [1], which is an online repository for mathematical models of cellular biological functions. A brief

summary of the cell models used is presented in Table 4.1. The cell models we have chosen are based on

previous studies in [33] and cover a range of stiffness, from the non-stiff model of Noble (1962) [40], to the

moderately stiff model of Courtemanche et al. [7], to the stiff model of Pandit et al. (2003) [47]. The cell

models used in this thesis are considered to be “validated” according to specifications provided by the CellML

project — cell models that have successfully reproduced published results and are compatible with certain

environments (e.g., the OpenCell [1]) working with the CellML code.

We perform time integration on the aforementioned cardiac cell models using various first-order numerical

methods implemented in MATLAB. The methods are the FE method, the RL method, the GRL1 method, the

RKC(2, 1) method, the RKC(3, 1) method, the RLC(2, 1) method, and the RLC(3, 1) method. The multistage

RKC methods and RKC methods in RLC methods use a damping parameter of 0.05. For each cell model, we

report the largest step sizes that produce solutions with less than 5% MRMS error and their corresponding

execution times. The reference solutions are generated using the MATLAB built-in ODE solver ode15s. We

compute solutions with decreasing tolerances until the solutions have seven to ten matching digits at 100

equally spaced points spanned over the targeted integration interval. We then pick the solution from using

the smallest step size as the reference solution.

The experiments are performed on a personal computer with an Intel Quad core i7 processor (with hyper-

threading turned on) and 16 GB memory running Ubuntu Linux 16.04 LTS. We turn on the MATLAB profiler

during the experiment because we find this eliminates unwanted optimizations introduced by MATLAB. We

report execution times as the minimum of 20 runs. We find our results to be slightly different from the

previous study [33], but we believe our results are more reliable because of the elimination of unwanted

optimization from MATLAB.
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Table 4.1: Details on 37 validated cardiac cell models [32]. Models labeled with an asterisk (*) indicate
three cell variants (endocardial cell, epicardial cell, and M-cell). The model referred as Winslow31 is
a reduced model with 31 variables compared to its original form.

Model Reference Number of variables Description

Beeler–Reuter (1977) [3] 8 Mammalian ventricular model

Bondarenko et al. (2004) [4] 41 Mouse ventricular model

Courtemanche et al. (1998) [7] 21 Human atrial model

Demir et al. (1994) [10] 27 Rabbit sinoatrial node model

Demir et al. (1999) [9] 29 Rabbit sinoatrial node model

DiFrancesco–Noble (1985) [11] 16 Mammal Purkinje fibre model

Dokos et al. (1996) [12] 18 Rabbit sinoatrial node model

Faber–Rudy (2000) [14] 19 Guinea pig ventricular model

FitzHugh–Nagumo (1961) [15, 38] 2 Nerve membrane model

Fox et al. (2002) [16] 13 Canine ventricular model

Hilgemann–Noble (1987) [18] 15 Rabbit atrial model

Hund–Rudy (2004) [19] 29 Canine ventricular model

Jafri et al. (1998) [22] 31 Guinea pig ventricular model

Luo–Rudy (1991) [29] 8 Guinea pig ventricular model

Maleckar et al. (2008) [31] 30 Human atrial model

McAllister et al. (1975) [34] 10 Canine Purkinje fibre model

Noble (1962) [40] 4 Mammal Purkinje fibre model

Noble–Noble (1984) [41] 15 Rabbit sinoatrial node model

Noble et al. (1991) [42] 17 Guinea pig ventricular model

Noble et al. (1998) [43] 22 Guinea pig ventricular model

Nygren et al. (1998) [44] 29 Human atrial model

Pandit et al. (2001) [46] 26 Rat left-ventricular model

Pandit et al. (2003) [47] 26 Rat left-ventricular model

Puglisi–Bers (2001) [48] 17 Rabbit ventricular model

Sakmann et al. (2000)* [51] 21 Guinea pig ventricular model

Stewart et al. (2009) [54] 20 Human Purkinje fibre model

Ten Tusscher et al. (2004)* [57] 17 Human ventricular model

Ten Tusscher et al. (2006)* [58] 19 Human ventricular model

Wang–Sobie (2008) [61] 35 Neonatal mouse ventricular model

Winslow31 (1999) [63] 31 Canine ventricular model

Zhang et al. (2000) [64] 15 Rabbit sinoatrial node model
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We report step sizes and corresponding execution times of numerical methods applied to the cell models

in Table 4.2. We summarize the number of cell models according to which numerical method takes the

smallest execution time in this experiment and previous research [33] in Figure 4.1. We note that previous

research [33] does not introduce multistage RKC and RLC methods (RKC(2, 1) and RKC(3, 1), RLC(2, 1),

and RLC(3, 1)).

Figure 4.1: Counts on cell models out of 37 that a specific numerical method, while specifying solution
less than 5% MRMS error, takes the smallest execution in the study from previous research [33] (blue)
and in this study (red).

We make several conclusions based on the above experiment:

1. Referring to Figure 4.1, the RL method still wins (takes the smallest execution time) on the majority

of the 37 cell models. This echoes the argument presented in [33] that because the selected models are

mostly non-stiff or moderately stiff for a 5% MRMS error, and the stiff parts are captured by gating

variables that are integrated using an exponential integrator, the RL method is the most efficient

method in dealing with those cell models.

2. Referring to Table 4.2 and Figure 4.1, we note that, for all models considered, multistage RKC methods

increase the largest step sizes, hence reduced the total computing steps for obtaining numerical solutions

with less than 5% MRMS error. However, additional computing stages bring extra computing costs

each step. The trade-off between reduced computing steps and increased computing costs each step

determines the optimal numerical method for a cell model. For example, considering the model of

Demir et al. (1994) [10], the RKC(2, 1) method takes step size three times larger than that of the FE

method. Because computing costs each step for the RKC(2, 1) method are roughly twice that that of

the FE method, the RKC(2, 1) method beats the FE method by reducing execution time by a factor

of 1.6. We expect that the RKC(2, 1) method to outperforms on cell models where it takes step size

over two times larger than that of the FE method; however, introducing one more stage (the RKC(3, 1)

method) only slightly increases the step size in solving this model but increases computing costs by a
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Table 4.2: Step sizes and corresponding execution times for different numerical methods applying
to various cell models. For each model, the largest step size (∆t, in milliseconds) producing solution
below 5% MRMS error is marked with a dagger (†), and the smallest execution time (CPU time in
seconds) is in a shaded table cell. Note that the model of FitzHugh–Nagumo (1961) [15, 38] does not
have gating variables; thus it is not feasible to apply RLC methods (RL, RLC(2, 1), and RLC(3, 1)).

Model
FE RL GRL1 RKC(2,1) RLC(2,1) RKC(3,1) RLC(3,1)

∆t (ms) Time (s) ∆t (ms) Time (s) ∆t (ms) Time (s) ∆t (ms) Time (s) ∆t (ms) Time (s) ∆t (ms) Time (s) ∆t (ms) Time (s)

Beeler–Reuler (1977) 2.53e-02 6.88e-01 6.78e-01 2.94e-02 8.08e-01 4.71e-02 9.87e-02 2.48e-01 7.90e-01 2.89e-02 2.14e-01 1.60e-01 8.34e-01† 3.62e-02

Bondarenko et al. (2004) 2.13e-04 4.06e+01 2.13e-04 4.17e+01 7.47e-03† 4.19e+00 8.34e-04 2.02e+01 8.33e-04 1.96e+01 1.86e-03 1.44e+01 1.85e-03 1.36e+01

Courtemanche et al. (1998) 1.94e-02 2.63e+00 8.37e-02 5.77e-01 9.60e-02 1.41e+00 7.97e-02 1.25e+00 8.93e-02 9.03e-01 1.63e-01† 9.19e-01 1.01e-01 1.10e+00

Demir et al. (1994) 5.95e-05 2.85e-01 5.32e-05 3.06e-01 1.18e-04 4.92e-01 1.96e-04 1.72e-01 5.71e-05 8.93e-01 2.10e-04† 2.29e-01 5.79e-05 7.18e-01

Demir et al. (1999) 5.96e-05 3.21e-01 4.73e-05 4.46e-01 9.99e-05 6.67e-01 1.66e-04 2.35e-01 5.10e-05 6.83e-01 1.78e-04† 3.32e-01 5.16e-05 9.45e-01

DiFrancesco–Noble (1985) 7.73e-05 1.47e+00 1.95e-04 6.49e-01 2.07e-04 1.66e+00 2.99e-04 7.25e-01 2.27e-04 6.65e-01 5.34e-04† 5.54e-01 2.34e-04 1.10e+00

Dokos et al. (1996) 7.02e-05 4.16e-01 1.22e-04 2.57e-01 8.02e-05 1.24e+00 2.70e-04 2.05e-01 1.33e-04 3.01e-01 4.39e-04† 1.79e-01 1.90e-04 3.75e-01

FitzHugh–Nagumo (1961) 2.72e-03 1.49e+00 NA NA 2.60e-03 3.04e+00 5.55e-03 9.18e-01 NA NA 8.54e-03† 7.20e-01 NA NA

Faber–Rudy (2000) 1.12e-02 2.90e+00 2.01e-02 1.64e+00 4.06e-02 2.46e+00 4.04e-02 1.57e+00 2.35e-02 2.34e+00 4.22e-02† 2.18e+00 2.43e-02 2.98e+00

Fox et al. (2002) 4.62e-03 4.61e+00 4.73e-02 4.85e-01 1.16e-01† 4.86e-01 1.80e-02 1.72e+00 8.23e-02 3.36e-01 4.02e-02 1.35e+00 9.79e-02 4.73e-01

Hilgemann–Noble (1987) 6.25e-05 4.77e-01 8.17e-05 7.53e-01 1.52e-04 6.18e-01 2.44e-04 2.02e-01 2.93e-04 3.91e-01 4.22e-04† 1.86e-01 2.97e-04 3.18e-01

Hund–Rudy (2004) 7.80e-03 4.44e+00 5.03e-03 7.19e+00 5.47e-03 2.14e+01 1.06e-02 6.46e+00 5.20e-03 1.16e+01 1.13e-02† 9.17e+00 6.10e-03 1.33e+01

Jafri et al. (1998) 5.76e-04 5.47e+01 5.77e-04 6.11e+01 1.41e-03 7.84e+01 1.75e-03 3.49e+01 1.76e-03 3.38e+01 2.42e-03 3.86e+01 2.44e-03† 3.64e+01

Luo–Rudy (1991) 1.35e-02 1.50e+00 1.23e-01 1.80e-01 3.15e-01† 1.40e-01 5.34e-02 5.81e-01 1.80e-01 1.53e-01 1.18e-01 3.67e-01 1.80e-01 2.04e-01

Maleckar et al. (2008) 5.02e-05 1.91e+00 8.90e-05 1.36e+00 4.20e-04 7.57e-01 1.90e-04 9.78e-01 3.48e-04 5.73e-01 4.03e-04 6.60e-01 7.77e-04† 3.80e-01

McAllister et al. (1975) 2.47e-02 1.17e+00 4.69e-01† 7.21e-02 2.53e-01 2.96e-01 9.60e-02 4.44e-01 3.53e-01 1.08e-01 9.66e-02 6.37e-01 3.76e-01 1.26e-01

Noble (1962) 2.02e-04 5.28e-02 1.47e-04 7.97e-02 1.10e-04 2.13e-01 5.32e-04 2.66e-02 1.56e-04 8.42e-02 5.73e-04† 3.27e-02 1.58e-04 1.03e-01

Noble–Noble (1984) 2.04e-04 1.11e-01 1.21e-04 2.04e-01 9.27e-05 6.98e-01 3.71e-04 8.98e-02 1.36e-04 2.14e-01 3.97e-04† 1.49e-01 1.40e-04 3.60e-01

Noble et al. (1991) 5.15e-05 4.62e-01 1.53e-04 1.70e-01 1.04e-04 6.53e-01 2.01e-04 2.18e-01 6.06e-04† 1.01e-01 4.50e-04 1.40e-01 6.38e-04 8.72e-02

Noble et al. (1998) 5.56e-05 8.46e-01 1.57e-04 3.30e-01 8.86e-05 1.61e+00 1.82e-04 5.02e-01 5.61e-04 1.52e-01 1.87e-04 7.12e-01 5.68e-04† 1.98e-01

Nygren et al. (1998) 5.36e-05 1.63e+00 8.88e-05 1.04e+00 2.06e-04 1.37e+00 2.03e-04 8.40e-01 2.85e-04 5.15e-01 4.54e-04† 5.31e-01 2.85e-04 7.45e-01

Pandit et al. (2001) 2.91e-07 8.28e+01 2.91e-07 8.51e+01 2.40e-05† 3.06e+00 1.13e-06 4.00e+01 1.12e-06 3.49e+01 2.54e-06 2.49e+01 2.54e-06 2.17e+01

Pandit et al. (2003) 2.65e-08 9.71e+02 2.65e-08 1.00e+03 1.57e-05† 4.67e+00 1.03e-07 4.77e+02 1.03e-07 4.18e+02 2.32e-07 3.24e+02 2.32e-07 2.55e+02

Puglisi–Bers (2001) 1.08e-02 3.73e+00 1.45e-02 3.02e+00 3.27e-02† 3.11e+00 2.28e-02 3.04e+00 1.69e-02 4.40e+00 2.50e-02 3.95e+00 1.95e-02 5.01e+00

Sakmann et al. (2000) – Endocardial 6.90e-05 8.13e-01 4.99e-05 1.23e+00 4.16e-05 4.05e+00 1.10e-04 9.89e-01 5.49e-05 1.83e+00 1.22e-04† 1.32e+00 5.70e-05 2.49e+00

Sakmann et al. (2000) – Epicardial 6.80e-05 8.27e-01 4.16e-05 1.45e+00 3.83e-05 4.41e+00 1.02e-04 1.07e+00 4.09e-05 2.48e+00 1.08e-04† 1.47e+00 4.42e-05 3.46e+00

Sakmann et al. (2000) – M-cell 6.86e-05 8.22e-01 2.32e-04 2.61e-01 4.21e-04† 4.04e-01 2.52e-04 6.84e-01 3.41e-04 2.98e-01 2.55e-04 1.01e+00 3.46e-04 4.16e-01

Stewart et al. (2009) 1.52e-02 7.05e+00 2.05e-01 5.60e-01 1.74e-01 1.89e+00 5.90e-02 3.54e+00 2.11e-01 7.89e-01 1.31e-01 2.18e+00 2.20e-01† 1.04e+00

Ten Tusscher et al. (2004) –Endocardial 1.78e-03 2.91e+01 1.25e-01 4.20e-01 1.37e-01 1.08e+00 6.98e-03 1.43e+01 1.46e-01 4.25e-01 1.55e-02 8.80e+00 1.51e-01† 7.15e-01

Ten Tusscher et al. (2006) –Endocardial 1.62e-03 2.22e+01 7.03e-02 5.22e-01 1.29e-01† 8.19e-01 6.33e-03 1.09e+01 8.97e-02 4.96e-01 1.42e-02 6.73e+00 9.34e-02 8.32e-01

Ten Tusscher et al. (2004) –Epicardial 1.78e-03 2.94e+01 1.11e-01 4.75e-01 1.19e-01 1.25e+00 6.98e-03 1.41e+01 1.29e-01 4.80e-01 1.55e-02 8.84e+00 1.33e-01† 7.93e-01

Ten Tusscher et al. (2006) –Epicardial 2.14e-03 1.70e+01 1.16e-01 3.17e-01 1.75e-01† 6.05e-01 8.36e-03 8.33e+00 1.45e-01 3.92e-01 1.87e-02 5.12e+00 1.49e-01 5.12e-01

Ten Tusscher et al. (2004) –M-cell 1.76e-03 2.19e+01 1.21e-01 3.34e-01 1.02e-01 1.09e+00 6.91e-03 1.07e+01 1.36e-01† 3.52e-01 1.54e-02 6.76e+00 1.29e-01 6.39e-01

Ten Tusscher et al. (2006) –M-cell 2.06e-03 1.75e+01 1.27e-01 2.90e-01 1.38e-01 7.66e-01 8.05e-03 8.63e+00 1.52e-01 3.74e-01 1.80e-02 5.32e+00 1.57e-01† 4.96e-01

Wang–Sobie (2008) 1.66e-02 1.01e+00 5.27e-02 3.47e-01 9.36e-02 5.93e-01 6.48e-02 5.01e-01 1.05e-01 2.89e-01 1.31e-01† 3.85e-01 1.11e-01 4.05e-01

Winslow et al. (1999) (31 equations) 1.07e-04 3.45e+02 1.07e-04 3.53e+02 9.38e-05 1.32e+03 4.14e-04 1.76e+02 4.15e-04 1.63e+02 9.25e-04 1.27e+02 9.35e-04† 1.06e+02

Zhang et al. (2000) 9.97e-05 8.09e-01 4.57e-04 1.77e-01 3.04e-04 6.79e-01 3.72e-04 4.07e-01 4.77e-04 2.05e-01 8.45e-04† 2.49e-01 4.81e-04 3.42e-01
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factor of 1.5 compared with the RKC(2, 1) method; thus the RKC(2, 1) method beats the RKC(3, 1)

method and the FE method in solving this model.

3. The above analysis also applies to the comparison of step sizes and execution times for the RL,

RLC(2, 1), and RLC(3, 1) methods, but there are several outliers. Considering the computing workload,

a typical example is the model of Maleckar et al. [31]. We note that in multistage RLC(s, 1) methods,

replacing the FE method with multistage RKC methods also helps to increase step size producing

solutions with less than 5% MRMS error. By treating gating and non-gating variables with different

numerical methods, the RL method has been successful in efficiently solving cardiac cell models. We

note that such a replacement enhances ability of multistage RLC(s, 1) methods to outperform on more

models. In Section 4.4, we further show the stability improvement from treating non-gating variables

with multistage RKC methods and give a quantitative explanation of this improvement. We note that

the computing workload of multistage RLC(s, 1) methods is not necessarily s times greater than that of

the RL method. This is because the percentage of variables that are treated by exponential integrator

affects this difference.

4. The RLC(2, 1) and RLC(3, 1) methods do not always permit a larger step size specifying 5% MRMS

error. As an example, consider the model of McAllister et al. [34]. In this model, the RL method takes

a larger step size than that of the RLC(2, 1) method. As we mentioned above, the stability region of the

RKC(2, 1) method is only partially included in that of the FE method. Thus, because the locations of

scaled eigenvalues vary to different cell models, there is no theoretical guarantee that multistage RKC

methods permit increased step sizes for producing numerical solutions that meet a prescribed numerical

accuracy.

5. Referring to Figure 4.1 and comparing the results of this thesis with those from the study in [33], the

GRL1 method is still suitable for solving the stiffest cell models. We can conclude multistage RLC

methods and multistage RKC methods are rather incapable of handling stiff problems compared to the

exponential integrator applied to locally linearized system. However, we should note that multistage

RKC methods mostly increase step sizes for solving non-stiff or moderately stiff problems. By justifying

the trade-off between increased step sizes and extra computing costs, we are able to choose suitable

numerical methods for certain cardiac cell models.

4.2.2 Applications in the monodomain simulation

We consider applying the RKC(2, 1) method to the time integration of ODE systems from cell models in a

monodomain simulation. This experiment is taken on the same computer described in Section 4.2. CHASTE

3.4 is used, and the cell model we use is from the CellML repository.

We set up a monodomain problem on an interval (from 0 cm to 1.0 cm) for 20 ms in CHASTE, and we

couple the Hilgemann–Noble model [18] with the monodomain tissue equation (2.15). We apply an artificial
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stimulus to the cells by setting transmembrane potential v at each spatial point x to v + 100 · (1 − sin(x)).

To evaluate the accuracies of our numerical solutions, we generate a reference solution for comparison with

decreasing time steps and increasing spatial resolutions until we have two solutions that matched to four

decimal places. We visualize our reference solution in Figure 4.2. The numerical solutions are not visually

distinct from the reference solution so we omit visualizations of numerical solutions. The visualization shows

a tail of propagation of a traveling wave on this 1D interval; thus we can justify our problem has a non-trivial

solution.

Figure 4.2: Visualization of the reference solution for a monodomain problem incorporating the
model of Hilgemann–Noble (1987), showing solutions from 0 ms (black) to 20 ms (red).

We apply the FE method and the RKC(2, 1) method, respectively, to time integration of cell models in

the monodomain problem. The monodomain problem is solved by using the SI method by default in CHASTE

with FEM for spatial discretization. We keep the time step for time integration of cell models the same

as that for solving the tissue equation in monodomain problem; because in CHASTE substepping on tissue

equation is not permitted. We further find tissue equation contributes most to the error in monodomain

simulation. We run the simulations in serial with using either the FE method or the RKC(2, 1) method for

time integration of cell model, and we record the largest step sizes we can take that produces solution with

less than 5% MRMS error for both using the FE or the RKC(2, 1) method, their corresponding % MRMS

errors, the total execution times, and times spent on integrating cell equations in Table 4.3.

Referring to Table 4.3, we note that we have sped up the solving process by a factor of 1.4. For this

problem, the time integration of cell model takes a large percentage of the monodomain simulation. We note

that from Section 4.2.1, the step size from using RKC(2, 1) method to solve the Hilgemann–Noble model is

more than two times than that used by FE method to satisfy prescribed numerical accuracy. Because cell

solving takes most percentage of the whole simulation process, this explains reduced execution time in solving

this monodomain problem.

Monodomain simulations, as we shall see in Section 4.3, have important applications in research on
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Table 4.3: Results from using FE/RKC(2, 1) for the time integration of a cell model in a monodomain
simulation. Step sizes in milliseconds are the largest ones that produce results less than 5% MRMS
error. The percentage of execution time (in seconds) that the cell solving process takes and the
corresponding % MRMS errors are reported.

Method Step size (ms) Execution time (s) Cell solving % % MRMS error

FE 0.10 2.52 95.70 0.80

RKC(2, 1) 0.25 1.76 91.56 2.31

cardiac electrophysiology. Our improvement on monodomain simulation helps the academic community to

move a step towards real-time cardiac simulations. We intend to provide a quantitative explanation of this

improvement in Section 4.4.

In doing this monodomain experiment, we have made contributions to CHASTE by implementing the

RKC(2, 1) method.

4.3 Improvement of the monodomain simulation

We consider applying the RKC(2, 1) method to the ODE system from the spatially discretized tissue equation

following the MOL scheme in a famous monodomain problem — the benchmark problem of S. Niederer

et al. [39].

The benchmark problem, introduced by S. Niederer et al. in 2011, was first designed to set up a gold

standard for cardiac simulation community to measure efficiency and reliability for their simulation toolkits.

The benchmark defines a set of unambiguous monodomain problems on a cuboid mesh (see Figure 4.3) with

configuration listed in Table 4.4 and model-specific parameters listed in Table 4.5.

In 2012, the benchmark was solved on a computing cluster named Sequoia using Cardioid, which is a

cardiac simulation toolkit aiming at performing high-performance simulation with detailed cell representations

and heart geometries with near-cellular spatial resolution [36]; it was developed by researchers from IBM and

the Lawrence Livermore National Laboratory. By performing an experiment using settings as similar as

possible to that in [36], we intend to reproduce the experiment and seek potential improvement to the

monodomain simulation. We attempt to replace the FE method with the RKC(2, 1) method for the time

integration of the spatially discretized tissue equation, and we expect to gain increased step size but maintain

numerical stability.

We generate the reference solution using FEM with high-order elements in Nektar++ [5]. We first generate

a set of numerical solutions in sequentially decreasing step sizes ∆tj = 2j · 10−2 ms, where j = 1, 0, · · · ,−5.

We then use Richardson extrapolation [49] on those solutions to obtain the reference solution to order seven.

The numerical simulation aimed at partially reproducing results in [36] is performed by using an unpub-

lished MATLAB code from the Numerical Simulation Research Lab. The numerical solutions are obtained by
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Figure 4.3: These figures show the cuboid mesh in the benchmark problem. S is a cuboid in which
there is an applied stimulus. P1 to P9 show points in the mesh where activation times are measured [39].

Table 4.4: Definition of the benchmark problem [39]. For variables that have a set of options, options
used in this thesis are marked in bold.

Variable Description

geometric domain cuboid

tissue equations monodomain

material transversely isotropic

PDE solver semi-implicit or fully explicit

cell model model of Ten Tusscher et al. (2006) [58]

variant epicardium cell model

cell model numerical integration scheme fully explicit (FE, RK, RKC, RL), fully implicit (BE).

mesh type hexahedral, tetrahedral

spatial discretization method FEM, FVM, and finite difference method

basis function for FEM (if applicable) Lagrange or Hermite/linear, quadratic, and cubic

pre-conditioner Jacobi, incomplete LU, and None

matrix solver conjugate gradient, generalized minimal residual, and direct method

system architecture shared memory, distributed memory, and serial
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Table 4.5: Model-specific parameters of the benchmark problem [39]. For variables that have a set
of options, options used in this thesis are marked in bold.

Variable Description

geometric domain cuboid

dimensions 20 mm×7 mm×3 mm

fibre orientation fibres are aligned in the long axis

discretization 0.5 mm, 0.2 mm, and 0.1 mm isotropic

PDE time steps 0.05 ms, 0.01 ms, 0.005 ms, and 0.15 ms

stimulation geometry 1.5 mm×1.5 mm×1.5 mm cube from a corner

stimulation protocol 2 ms at 50 000µA cm−3

surface area to volume ratio 140 mm−1

membrane capacitance 1µFcm−2

intra-longitudinal, intra-transversal, extra-longitudinal

and extra-transversal conductivities, using

σ = σiσe(σe + σi)
−1 in the monodomain (isotropic) mode

0.17 Sm−1, 0.019 Sm−1, 0.62 Sm−1, and 0.243 Sm−1

first splitting the system using the Godunov OS method, spatially discretizing using the FVM, and applying

the FE or RKC(2, 1) method for the time integration of the spatially discretized tissue equation. We point

out because the numerical solutions are generated using low-order methods with a coarse mesh, we are not

able to obtain solutions with less than 5% MRMS error. We instead visualize isosurfaces of solutions at some

time points and evaluate accuracies of solutions as follows: we first pick solutions with isosurface visualization

close to the reference solution. We note those solutions are less than 200% MRMS error. We then gradually

increase step size until one of the two following things happens: the solution obtained by increasing the step

size is visually distinct from previous solution and tends to differ significantly from the reference solution, or

the MRMS error is significantly larger. We find out given a fixed spatial resolution and the required accuracy,

the largest time step for integration of spatially discretized tissue equation is 0.05 ms. In the RKC(2, 1) case,

0.15 ms is the largest. Visualizations of isosurfaces of selected numerical solutions together with the reference

solution are shown in Figure B.1 to Figure B.4 in Appendix B.

We run simulations using the FE and RKC(2, 1) methods adopting the corresponding time step sizes

chosen above for the spatially discretized tissue equation, respectively. The step size for solving the cell

model is kept consistent throughout with step size used for the solving tissue equation. We record our results

in Table 4.6.

Referring to Table 4.6, the total execution time for solving the Niederer benchmark problem was signif-

icantly reduced by a factor of two. The reasons are two-fold: introducing the RKC(2, 1) method in solving

the tissue equation allows us to take a larger step size to produce a stable numerical solution than using the
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Table 4.6: Results on using FE/RKC(2, 1) in time integration of tissue equation in the benchmark
problem with selected step sizes. Step sizes are in milliseconds. Cell solving times and total execution
times are in seconds.

Method Step size (ms) Cell solving (s) Execution time (s)

FE 0.05 2969.88 2988.62

RKC(2, 1) 0.15 955.01 1003.32

FE method; the step size bottleneck for the benchmark is solving the tissue equation, and introducing the

RKC(2, 1) method in solving tissue equation breaks the bottleneck by ameliorating the step size restriction

from small stability region of the FE method. We also note that solving the cell model also benefits from the

increased step size from introducing the RKC(2, 1) method to time integration of tissue equation.

4.4 A theoretical explanation of the new approaches

We present a theoretical explanation of the improvements of stability brought by the multistage RKC and

RLC methods. The explanations are presented by using the model of Courtemanche et al. [7] and the model

of Maleckar et al. [31].

To explain stability improvement brought by the RKC(2, 1) and RKC(3, 1) methods, we solve the model

of Courtemanche et al. from 0 to 500 ms. We record the step sizes used for three numerical methods (the

FE, RKC(2, 1), and RKC(3, 1) methods), the corresponding % MRMS errors, and the respective execution

times in Table 4.7. In the experiments of this section, we sample the Jacobian matrix of the ODE system of

cell model 100 times during the simulation. We plot the scaled eigenvalues (λ∆t) of the sampled Jacobian

matrices with stability regions of the FE, RKC(2, 1), and RKC(3, 1) methods in Figure 4.4. Referring to

Section 3.2.2, for the ODE system in which we are interested, we require that the scaled eigenvalues of

Jacobian matrices stay within the stability region of numerical method we are using. Although eigenvalues of

the time-sampled Jacobian matrices of the system are not all included in the stability region of the numerical

method, we note these eigenvalues only cause the numerical method to be unstable for a short time, but the

method is stable in the whole interval if the scaled eigenvalues fall into the stability region sufficiently often.

We note that for the FE and RKC(2, 1) method, the largest step sizes we can take produce MRMS errors

far less than 5%. We further note that in our experiment, a slightly larger step size causes the solution to

become unbounded. This result is attributed to a constraint from stability not accuracy. We also note that

for the RKC(3, 1) method, the largest step size produces an MRMS error close to 5%. In our experiment, we

can increase the step size to get MRMS error slightly larger than 5% but still satisfy numerical stability. We

refer to Figure 4.4 for an explanation: the reason that the RKC(2, 1) method being able to take a larger step

size is from its extended stability region over negative real axis compared with the FE method, where the

36



scaled eigenvalues tend to cluster around. For the RKC(3, 1) method, we note that the eigenvalues scaled by

the RKC(3, 1) step size generally fall in the stability region of the RKC(3, 1). This indicates for 5% MRMS

error, the RKC(3, 1) method is not stiff for this problem — the step size is restricted by the prescribed

accuracy, not numerical stability. We note from the execution times in Table 4.7 that the extra computing

costs per step from multistage methods are compensated by increased step size; thus we conclude that the

RKC(2, 1) method and the RKC(3, 1) method bring us benefit over the FE method.

Table 4.7: Numerical methods, their respective largest step sizes (in milliseconds) for computing
numerical solutions that have less than 5% MRMS error, the corresponding % MRMS errors and
execution times (in seconds) for solving the model of Courtemanche et al. [7].

Numerical method FE RKC(2, 1) RKC(3, 1)

Step size (ms) 1.94e-02 7.97e-02 1.63e-01

% MRMS error 0.62 2.39 4.99

Execution time (s) 2.63e+00 1.25e+00 9.19e-01

Figure 4.4: Plots of stability region of different RKC methods and scaled eigenvalues of time-sampled
Jacobian matrices over time of the model of Courtemanche et al.

We refer to solving the model of Maleckar et al. from 0 to 1 ms for illustration on stability improvement

brought by the RLC(2, 1) and RLC(3, 1) methods. Recall that the RLC(s, 1) method treats gating and non-
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gating variables with exponential integrator and RKC(s, 1) method respectively, the exponential integrator

does not have stability issue for linear system because it integrates the system exactly. We only need to focus

on potential stability issues from time integration of non-gating variables, which are treated by the RKC(s, 1)

method. Attempting to exploit the eigenvalue analysis as in the previous example, we first identify eigenvalues

that have a strong relationship with non-gating variables by the following steps:

1. We denote eigenvalue decomposition of Jacobian matrix J of the cell system with V−1JV = Λ, where

V is a matrix with columns being eigenvectors of J and Λ is a diagonal matrix with corresponding

eigenvalues on its diagonal.

2. We identify columns vi1 , · · · ,vim of V corresponding to non-gating variables ci1 , · · · , cim .

3. For each column vik , k = 1, 2, · · · ,m, from V, we pick vik ∈ vik that has largest absolute value in vik .

4. We associate non-gating variable cik with eigenvalue ik in Λ.

We also plot the scaled eigenvalues of the sampled Jacobian matrices associated with non-gating variables

together with the stability regions of the FE, RKC(2, 1), and RKC(3, 1) methods in Figure 4.5. We summarize

the corresponding largest step sizes for obtaining solutions with less than 5% MRMS error, the % MRMS

errors, and the corresponding execution times in Table 4.8. We note that the RKC(3, 1) method takes the

largest step size to satisfy 5% MRMS error. Because the RKC(3, 1) method takes three times the step size

of the RKC(2, 1) method, this step size increase compensates for the extra computing costs it takes per step,

and the RKC(3, 1) method becomes the most efficient method for solving the model of Maleckar et al.

We note the same analysis presented above is still valid in the RL/RLC case. We have extended stability

regions from using the RKC(2, 1) and RKC(3, 1) method for dealing with non-gating variables. In [33],

Marsh, Torabi, and Spiteri pointed out the success occurs when the stiffness of the system is captured

by gating variables. We conclude from our study that the RLC(2, 1) and RLC(3, 1) methods are good at

treating moderately stiff models even when stiffness is not captured by gating variables. The model we

choose is moderately stiff when we specify 5% MRMS error and use the RL method. From Figure 4.5, we

note replacing FE part in RL method with multistage RKC methods increases stability region for numerical

methods treating non-gating variables. This explains increase in step size for obtaining 5% MRMS error in

Table 4.8.

Table 4.8: Numerical methods, their respective largest step sizes (in milliseconds) for getting numer-
ical solutions that have less than 5% MRMS error, the corresponding % MRMS errors and execution
times (in seconds) for solving the model of Maleckar et al. [31].

Numerical method RL RLC(2, 1) RLC(3, 1)

Step size (ms) 8.90e-05 3.48e-04 7.77e-04

% MRMS error 2.25 2.92 3.06

Execution time (s) 1.36e+00 5.73e-01 3.80e-01
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Figure 4.5: Plots of stability region of different RKC methods and scaled eigenvalues of time-sampled
Jacobian matrices over time of the model of Maleckar et al. The scaled eigenvalues we plot are only
relate to system components that are related to non-gating variables and are integrated by RKC
methods.
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Chapter 5

Conclusions and Future Work

Cardiac simulation research helps address the need from clinical community to provide non-invasive and

quantitative approaches to investigate electrical activity in the heart. With research on advanced computing

techniques to solve cardiac mathematical models, cardiac simulation is playing a more important role in

clinical applications.

This thesis contributes to research on cardiac simulation in four aspects:

1. We propose and implement several numerical methods for the time integration of cardiac cell models

in Section 4.2. To the best of our knowledge, some of the numerical methods (the RKC(s, 1) method

applied to cardiac cell models and the new RLC(s, 1) method where s ≥ 2) have not been investigated

by other researchers before. Compared with the study presented in [32], we find introducing new

numerical methods reduces overall computing time for 19 of 37 cardiac cell models when specifying

numerical accuracy of 5% MRMS error. We also see significant step size improvement through the use

of multistage RKC and RL methods.

2. We implement the RKC(2, 1) method in CHASTE. We use this method in the time integration of cell

equations in a pre-defined monodomain problem. The results show a reduced overall execution time by

a factor of up to 1.4 from increased step size the RKC(2, 1) method took when specifying 5% MRMS

error. With the fact that the monodomain model is an important benchmark used by the cardiac sim-

ulation community [39], we conclude that the RKC(2, 1) method is practically useful in solving cardiac

mathematical models. The implementation also extends CHASTE’s ability to solve cardiac mathematical

models.

3. With a hope to partially reproduce and seek improvement to experiment presented in [36], we also apply

the RKC method to the time integration of spatially discretized tissue equations in the benchmark

problem proposed by S. Niederer et al. [39] in Section 4.3. The tissue equations are solved by using the

FE method in [36] that is replaced with the RKC(2, 1) method in our experiment. When specifying

desired level of visual quality of the numerical solution, we are able to obtain the solution in only 1/3

of the previous execution time. This indicates that the spatially discretized tissue equations are rather

non-stiff equations for the RKC(2, 1) method compared with the FE method and are more suitable to

be tackled by the RKC(2, 1) method.
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4. We provide a theoretical explanation to improvement on time integration of cardiac cell models in

Section 4.4. This analysis is based on looking at eigenvalues, which are from the time-sampled Jacobian

matrix of the corresponding system of the cell model, scaled by the different step sizes of the numerical

methods, and the stability region of the numerical methods. The numerical method is stable when for

the majority of time-sampled Jacobian matrices, the scaled eigenvalues fall into their stability regions.

The same analysis holds valid for multistage RLC methods by associating eigenvalues with non-gating

variables that are treated by multistage RKC methods.

With a hope to extend studies in this thesis to further benefit research on cardiac simulation, we propose

some possible future work:

1. We hope to implement the proposed numerical methods, especially the RKC(s, 1) and the RLC(s, 1)

method in various cardiac simulation toolkits included in [39]. We point out the implementations from

those methods can be expected to help those toolkits in dealing with problems that are moderately

stiff.

2. We wish to explore further to the RKC(s, 1) and the RLC(s, 1) methods for s ≥ 4. We note from

Table 4.2 that the RKC(3, 1) and the RLC(3, 1) methods win on four and three models, respectively.

This indicates increasing stages might still offer benefits for some models.

3. We are interested in investigating and implementing the RKC(s, 2) method. We expect the second-order

RKC method could bring benefits over second-order RK methods in general.

4. Our study of cardiac cell models does not stop at the 37 models considered in this thesis. The research

community keeps bringing new models to the CellML project. With growing needs from clinical ap-

plications, we expect to study more cardiac cell models and provide informative guidance to research

community.

5. It is a natural idea that we can extend our study to a bidomain problem with physiological settings

close to what is desired in clinical applications. We hope to have a chance to do a large-scale bidomain

simulation similar to [36]. We believe this proposed experiment could bring useful guidance towards

understanding heart arrhythmia.
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Appendix A

The Luo–Rudy model

We present a complete form of the Luo–Rudy model [29].
Inward currents:

• Fast sodium current
INa = GNa ·m3 · h · j · (v − ENa) (A.1)

Activation gate, m

dm

dt
= αm(1−m)− βmm (A.2a)

αm =
0.32(v + 47.13)

1− e−0.1(v+47.13)
(A.2b)

βm = 0.08e−v/11 (A.2c)

Fast inactivation gate, h

dh

dt
= αh(1− h)− βhh (A.3a)

αh =

 0.135e(v+80)/−6.8 v < −40 mV

0 v ≥ −40 mV
(A.3b)

βh =


3.56e0.079v + 3.1 · 105e0.35v v < −40 mV

1
0.13(1+e(v+10.66)/−11.1)

v ≥ −40 mV
(A.3c)

Slow inactivation gate, j

dj

dt
= αj(1− j)− βjj (A.4a)

αj =


−1.2714·105e0.2444v−

1+e0.311(v+79.23) ...

3.474·10−5e−0.04391v·(v+37.78)
1+e0.311(v+79.23) v < −40 mV

0 v ≥ −40 mV

(A.4b)

βj =


0.1212e−0.01052v

1+e−0.1378(v+40.14) v < −40 mV

0.3e−2.535·10−7v

1+e−0.1(v+32) v ≥ −40 mV

(A.4c)

• Slow inward current

Isi = Gsi · d · f · (v − Esi) (A.5)

Esi = 7.7− 13.0287 · ln([Ca]i) (A.6)

Activation gate, d

dd

dt
= αd(1− d)− βdd (A.7a)

αd =
0.095e−0.01(v−5)

1 + e−0.072(v−5)
(A.7b)

βd =
0.07e−0.017(v+44)

1 + e0.05(v+44)
(A.7c)
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Inactivation gate, f

df

dt
= αf (1− f)− βff (A.8a)

αf =
0.012e−0.008(v+28)

1 + e0.15(v+28)
(A.8b)

βf =
0.0065e−0.02(v+30)

1 + e−0.2(v+30)
(A.8c)

Calcium uptake
([Ca]i)

t
= −10−4Isi + 0.07(10−4 − [Ca]i) (A.9)

Outward Currents:

– Time-dependent potassium current

IK = GK ·X ·Xi · (v − EK) (A.10)

GK = 0.282 ·
√

[K]o/5.4 (A.11)

Activation gate, X

dX

dt
= αX(1−X)− βXX (A.12a)

αX =
0.0005e0.083(v+50)

1 + e0.057(v+50)
(A.12b)

βX =
0.0013e−0.06(v+20)

1 + e−0.04(v+20)
(A.12c)

Inactivation gate, Xi

Xi =


2.837(e0.04(v+77)−1)

(v+77)e0.04(v+35) v > −100 mV

1 v ≤ −100 mV

(A.13)

– Time-independent potassium current

IK1 = GK1 ·K1∞ · (v − EK1) (A.14)

GK1 = 0.6047 ·
√

[K]o/5.4 (A.15)

Inactivation gate, K1

K1∞ =
αK1

αK1 + βK1
(A.16a)

αK1 =
1.02

1 + e0.2385(v−EK1−59.215)
(A.16b)

βK1 =

{
0.49124e0.08032(v−EK1+5.476)+

1+e−0.5143(v−EK1+4.753) ...
e0.06175(v−EK1−594.31)

1+e−0.5143(v−EK1+4.753)

(A.16c)

(A.16d)

– Plateau potassium current

IKp = GKP ·Kp · (v − EKp) (A.17)

EKp = EK1 (A.18)

Kp =
1

1 + e(7.488−v)/5.98
(A.19)
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– Background potassium current

Ib = Gb · (v − Eb) (A.20)

Total ionic current:

Iion = INa + Isi + IK + IK1 + IKp + Ib

= GNa ·m3 · h · j · (v − ENa) +Gsi · d · f · (v − Esi)

+GK ·X ·Xi · (v − EK) +GK1 ·K1inf · (v − EK1)

+GKP ·Kp · (v − EKp) +Gb · (v − Eb) (A.21)

For an individual cardiac cell we have that the transmembrane potential v is given by:

dv

dt
= − 1

Cm
(Iion + Istim), (A.22)

where Cm is the membrane capacitance and Istim is the stimulus current applied by the sinoatrial node.
The following table shows the values of the channel conductances, the reversal potentials for the ions, and

other parameters.

Table A.1: Parameters for the Luo–Rudy model; the conductances are in mS/cm2 and the reversal
potentials are in mV

Channel Reversal Other Parameters
Conductance (mS/cm2) Potential (V)

GNa = 23.0 ENa = 54.4 Resting Membrane Potential Vrest = – 84.0 mV
Gsi = 0.09 Esi = 118.7 Membrane Threshold Potential Vthreshold = – 60 mV
GK = 0.282 EK = –77 [K]o = 5.4 mM
GK1 = 0.6047 EK1 = –87.2 Membrane Capacitance Cm = 1 µF cm2

GKp = 0.0183 EKp = –87.2
Gb = 0.03921 Eb = –59.87
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Appendix B

Visualizations of isosurfaces of various solutions

We present visualizations of solution isosurfaces obtained at different times in the experiment in Section 4.3
in Figure B.1 to Figure B.4. The solutions presented are sampled at time t = 10 ms, t = 20 ms, t = 30 ms, and
t = 40 ms. For each figure, the solutions were obtained by applying the FE method, by applying the RKC(2, 1)
method with dt = 0.10 ms, by applying the RKC(2, 1) method with dt = 0.15 ms to tissue equations, and
placing the reference solution at the top-left, top-right, bottom-left, and bottom-right, respectively.
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Figure B.1: Isosurface visualizations for solutions to the benchmark problem by Niederer et al. in
Section 4.3 at t = 10 ms with different step sizes used for time integration of spatially discretized
monodomain tissue equation.
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Figure B.2: Isosurface visualizations for solutions to the benchmark problem by Niederer et al. in
Section 4.3 at t = 20 ms with different step sizes used for time integration of spatially discretized
monodomain tissue equation.
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Figure B.3: Isosurface visualizations for solutions to the benchmark problem by Niederer et al. in
Section 4.3 at t = 30 ms with different step sizes used for time integration of spatially discretized
monodomain tissue equation.
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Figure B.4: Isosurface visualizations for solutions to the benchmark problem by Niederer et al. in
Section 4.3 at t = 40 ms with different step sizes used for time integration of spatially discretized
monodomain tissue equation.
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