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Abstract 
 

Conventional ultrasonographic examination of the bovine ovary is based on a 

sequence of two-dimensional (2D) cross-section images. Day-to-day estimation of the 

number, size, shape and position of the ovarian follicles is one of the most important 

aspects of ovarian research. Computer-assisted follicle segmentation of ovarian volume 

can relieve physicians from the tedious manual detection of follicles, provide objective 

assessment of spatial relationships between the ovarian structures and therefore has the 

potential to improve accuracy. Modern segmentation procedures are performed on 2D 

images and the three-dimensional (3D) visualization of follicles is obtained from the 

reconstruction of a sequence of 2D segmented follicles.  

The objective of this study was to develop a semi-automatic 3D follicle segmentation 

method based on seeded region growing. The 3D datasets were acquired from a 

sequence of 2D ultrasound images and the ovarian structures were segmented from the 

reconstructed ovarian volume in a single step. A “seed” is placed manually in each 

follicle and the growth of the seed is controlled by the algorithm using a combination of 

average grey-level, standard deviation of the intensity, newly-developed volumetric 

comparison test and a termination criterion. One important contribution of this algorithm 

is that it overcomes the boundary leakage problem of follicles of conventional 2D 

segmentation procedures. The results were validated against the aspiration volume of 

follicles, the manually detected follicles by an expert and an existing algorithm. 

We anticipate that this algorithm will enhance follicular assessment based on current 

ultrasound techniques in cases when large numbers of follicles (e.g. ovarian 

superstimulation) obviate accurate counting and size measurement.   
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Chapter 1  

General Introduction 

 

1.1  Thesis purpose and objectives 
 

The purpose of this thesis is to develop a three dimensional segmentation algorithm for 

separating follicle volumes from other structures in ovarian ultrasound images. In the 

large animal research field, a complete understanding of ovarian dynamics is crucial for 

cattle reproduction research and management [1]. The study of the internal reproductive 

tract of large domestic animals and its dynamic activity became possible with the advent 

of real-time ultrasound imaging techniques [2]. Today, ultrasound imaging is routinely 

used to monitor the ovaries and dynamic changes in follicles during the estrous cycle [2-

12]. Most ultrasonographic ovarian analyses of morphological and position estimation of 

follicles are done using two dimensional images. In order to increase the accuracy of 

follicle counting, size measurement and improve the visualization for assessing spatial 

relationships, 3D follicle analysis is desired. Current computer-based procedures to 

separate follicle volumes from other ovarian structures (follicle segmentation) are 

applied on 2D ultrasound images which are then reconstructed to obtain 3D information 

(2D segmentation). The goal of this research is to develop a 3D follicle segmentation 

method which is applied directly to a reconstructed 3D volume of the ovary obtained 

from a series of 2D images. The specific objectives of this study are: 

(1) Develop a 3D follicle segmentation algorithm to apply on a 3D dataset 

constructed from a sequence of 2D images. 

(2) Implement the algorithm in software and evaluate its performance. 

The 3D follicle segmentation method used here is based on the seeded region growing 

method. The growth of the region starts from a manually-selected seed point inside the 

follicle and terminates based on pre-defined set of stop conditions. The hypotheses of 

this study are:  
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(1) The volume and position of follicles obtained by computer-assisted follicle 

segmentation will be similar to that obtained from the observer-defined follicle 

segmentation and aspirated follicle volume (gold standards).  

(2) There will be linear relationships between computer-segmented follicle 

volumes, observer-defined follicle volumes and aspirated follicle volumes.  

(3) There will be an agreement (perfect agreement occurs only if the points in the 

graph lie along the line of equality, which the slope of the line is close to one 

[13]) between computer-segmented follicle volumes, observer-defined follicle 

volumes and aspirated follicle volumes. 

(4) The computer-assisted follicle segmentation results will not be sensitive to the 

position of the selected seed point. 

We used the bovine model to develop the technique because this ultrasound model is 

well developed and procedures to assess the dynamics of ovarian follicles are well 

standardized [14]. However, the method developed in this study is applicable to all 

mammalian species including humans. 

The details of the segmentation method will be described in Chapter Two. A general 

discussion of the advantages and limitations of this method in ultrasonographic ovarian 

analysis is provided in Chapter Three. Finally, general conclusions and suggestions for 

future work are presented in Chapter Four. The remainder of this chapter is devoted to:  

general overview of follicular development in cow (1.2); ultrasound imaging techniques 

in ovarian follicle research (1.3); and, some background knowledge of the computer-

assisted follicle segmentation methods (1.4).  

1.2  Bovine ovary 
 

1.2.1 Ovarian anatomy 

The female reproduction system consists of the ovaries, oviduct, uterus, cervix and 

vagina [15]. The left and right bovine ovaries lie adjacent to the tips of uterine horns in 

the pelvic cavity. Two crucial functions of the ovaries are: (1) production of the egg or 

ovum; and, (2) production of estrogen and progesterone hormones [15]. The oval-shaped 

bovine ovary is small in size (the major axis is about 1.5-5cm, and the average of two 
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minor axes is about 1-3cm). The shape and size of the ovary varies during the estrous 

cycle due to follicular growth and regression, ovulation, and corpus luteum growth and 

regression [16, 17]. Figure 1.1 illustrates the anatomy of an excised bovine ovary. The 

ovary is composed of an inner medulla and outer cortex. The ovarian stroma is 

composed of connective tissue and the ovary is surrounded by surface epithelium [15]. 

The dense fibrous connective tissue beneath the surface epithelium is called tunica 

albuginea [15]. The medulla consists of irregularly arranged fibroelastic connective 

tissue, lymphatics, nervous, and vascular systems [15, 17, 18]. The cortex contains 

ovarian follicles at various stages of development and regression. The corpus luteum 

(CL) is a temporary endocrine structure formed from the remainder wall of a follicle 

following ovulation (the release of the oocyte and antral fluid by rupture of the follicle) 

[17]. 

A fully-developed follicle is a roughly spherical structure consisting of an antrum (a 

fluid-filled cavity), encircled by multiple layers of granulosa cells and theca cells (the 

wall), the oocyte (a female germ cell) is located among the granulosa cells. Follicles in 

the ovaries were first described by Regnier de Graaf (1641-1673) [19]. The importance 

of follicles and the patterns of their growth and development remained unclear until it 

was discovered that the follicles in non-pregnant cattle develop and regress in a cyclical 

pattern known as the estrous cycle in 1928 [20]. The estrous cycle or interovulatory 

interval is around 19 to 23 days in cows. Cows are polyestrous animals [15]. The period 

of estrous cycle begins and does not stop until interrupted by pregnancy after heifers 

reach puberty (first ovulation) or following the postpartum anestrous period (a period of 

no estrous cycles after calving) [1]. In one estrous cycle, after ovulation (day 0), the 

remnants of the ruptured follicle wall begin to develop into a corpus luteum (CL). The 

CL remains functional until day 16, after which the it regresses, unless a pregnancy is 

established [4]. The details of follicle development and ovulation will be described in 

the next section. 
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Figure 1.1 The structure of a bovine ovary: (a) the surface view of a bovine ovary; (b) the cut 

surface view of the ovary; (c) the histological slice of a bovine ovary; and, (d) the 
histological section of follicle enlarged from the indicated region in (c). 
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1.2.2 Follicle development    

The bovine follicle may grow from 50µm to 15-20mm in diameter [15]. Figure 1.2 

shows the different developmental stages of development of ovarian follicles. Follicles 

are formed during fetal life. They originate from primordial germ cells after they have 

migrated from the yolk sac entoderm to the genital ridge (around day 35-50 of 

pregnancy) and develop into an ovum, or oogonia. [20]. After the oogonia enter meiosis, 

they are termed as primary oocytes. Meiosis is arrested at prophase I. Primordial 

follicles are formed when a single layer of granulosa cells surrounds the oocyte. 

Approximately 150,000 primordial follicles are located in the cortex just beneath the 

tunica albuginea of the fetal bovine ovary [21]. Each primordial follicle is about 30-

40µm and they remain quiescent in the ovary for several years before re-initiation of 

growth [22]. The stages of follicular growth include an increase in the size of oocyte and 

development of granulosa cells (primary follicle). After several layers of granulosa cells 

form around the enlarged oocyte (secondary follicle), many small fluid filled cavities are 

eventually formed among granulosa cells. The fluid-filled spaces become large and join 

to form a single cavity -- the follicular antrum. At this stage, the follicle is termed a 

tertiary follicle [18]. Upon further development, the tertiary follicle becomes a Graafian 

follicle, which finally leads to the process of ovulation. During ovulation, a mature 

Graafian follicle ruptures from the ovarian surface, follicular fluid is released, and the 

oocyte is transported into the oviduct [23]. In cows, usually only one follicle ovulates 

during an estrous cycle, the others undergo atresia at different stages of development 

[15]. A detailed review of ovulation is described by Hunter [23].      
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The growth of follicles is controlled partly by endocrine events within the ovary 

(intraovarian and intrafollicular) and partly by those outside the ovary [24]. The outside 

influence is mainly derived from the pituitary gland, located at the base of the brain [18]. 

The main hormones that influence follicular differentiation include FSH (follicle 

stimulating hormone), LH (luteinizing hormone), estradiol, and progesterone [24]. These 

are glycoprotein hormones controlled by the hypothalamic hormone gonadotropin-

releasing hormone (GnRH) [18]. FSH stimulates the follicle’s growth and function, 

while LH causes the follicles to rupture and the corpus luteum to develop [3, 17, 18]. 

The intrafollicular component is derived from granulose and theca cells, which produce 

the hormone estrogen [23, 24]. The amounts of the hormone estrogen increase as the 

size of a dominant follicle increases [23]. The corpus luteum produces progesterone 

[24]. 

Growth of bovine antral follicles ≥ 1mm occurs in waves during the estrous cycle [4, 

6, 21, 25]. Rajakoski first proposed the theory of follicle waves in 1961 [26], where he 

determined that each follicle wave is characterized by the synchronous growth of 15-20 

follicles. A review of follicle wave theories is reported by Adams [27]. Most estrous 

cycles have either two or three follicle waves [27]. Each wave includes a group of 

follicles from which one is selected as a dominant follicle while the others are deemed to 

be subordinate follicles. The first wave can be detected on day 0 (day of ovulation). 

Wave 2 is detected around day 9 to10. In cattle with three-wave cycles, wave 3 happens 

on day 16. In the last wave, the dominant follicle becomes the ovulatory follicle. Waves 

can be detected when follicles are 4 to 5 mm in size. Figure 1.3 illustrates the theory of 

follicle waves.   
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1.3 Ovarian ultrasound  
 

1.3.1 Overview of ultrasound imaging 

In order to interpret an ultrasound image of the ovary, it is necessary to understand 

how acoustic wave is converted into an image, and how an ultrasound imaging system 

works. 

Ultrasound techniques were first used for measuring distance underwater using 

SONAR as early as the 19th century [28]. The use of ultrasound in medicine was 

introduced around the 1930’s and the first publication using brightness (B) – mode 

ultrasound imaging appeared in the 1950’s [28]. There has been a rapid development of 

ultrasonographic imaging techniques for clinical diagnosis in recent years. A number of 

different ultrasound imaging techniques are now available such as 2-dimensional, 3-

dimensional ultrasound, Doppler and color-flow ultrasound.  

Ultrasound waves are acoustic waves with frequencies above 20K Hz. Unlike other 

kinds of medical imaging methods such as MRI (Magnetic Resonance Imaging) and X-

rays (a form of electromagnetic radiation) imaging, ultrasound waves are mechanical 

waves [29], which transmit through the medium but with no permanent displacement of 

the medium’s particles. When the sound source is turned off, the particles go back to 

their original position [29]. That means no foreign substances need to be introduced into 

the body to interact with the waves, so ultrasound is considered a non-invasive 

technique. For this reason ultrasound has been found to be a valuable diagnostic tool in 

wide range of medical disciplines, especially in the fields of obstetrics and gynecology. 

Ultrasonography is the transmission of ultrasound waves into the body followed by the 

reception of the echoes, the signal processing, and then the display of the echoes on the 

screen. Figure 1.4 illustrates the system of a basic B-mode linear-array ultrasound 

scanner [30]. 
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The ultrasound transducer generates ultrasound waves by converting electric energy 

into mechanical vibration, it also receives the sound echoes reflected from body tissues 

and converts them back to electric signals [31]. A transducer is made of many 

piezoelectric elements, such as lead zirconate titanate (PZT), barium titanate [31]. Due 

to the different arrangement of piezoelectric elements and the different shape of the 

transducer, transducers are classified into three types: linear-array (side by side 

arrangement of the elements), convex-array (the elements are arranged into a sector-like 

field), and phased array (each element fires the sound beam in proper order) [30]. Low 

frequency transducers (e.g., 3.0-3.5MHz) are used for viewing large structures which are 

not close to the transducer. Higher frequency transducers (e.g. 5.0-10MHz) are used for 

the structures close to the transducer, or for which detailed studies are intended [12]. 

When sound beams are transmitted into the body, some of them are absorbed by the 

tissue, some of them will continue propagation into the deeper part of the body, some of 

them are diffracted or scattered into different directions and some are reflected at the 

interface of media with different acoustic impedances. The acoustic impedance Z is 

defined by the product of the density of a material ρ, multiplied by its speed of sound C: 

Z= ρC [29]. The reflected echoes from different depths of the body will be received by 

the transducer. The pulse-echo cycle is recorded by a timer. The depth of each reflector 

(the tissue interface which reflects the sound waves) can be calculated from the time 

recorded. The received sound beams are changed into electrical signals, amplified, 

processed, and converted into digital signals. Each reflected beam and the location 

information of each echo are represented on an image display screen by dots of varying 

brightness (pixels). Each pixel’s brightness is displayed as one of 256 grey levels (black 

= 0 and white = 255). White pixels represent dense tissues which reflect the major 

portion of incident sound energy, while black pixels represent fluid-filled structures. 

Ultrasound machines usually display images of 640×480 pixels on the screen. 

The ultrasound console has several control knobs which are very important to control 

the images: 

1.  Gain control: is used to adjust the sensitivity of signal. Gain is the ratio of output of  

electrical power to input [30]. The gain control determines how much amplification 
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is accomplished in the receiver of the equipment. Generally, the gain can be varied 

between 30 to 90 dB [30].  

2. Time-gain compensation (TGC): is provided to compensate for the decreased signal 

strengths of deeper tissues due to the greater attenuation over a long path [32]. 

Attenuation is dependent on the absorption and scattering of sound waves by the 

body tissues, thereby limiting the depth of penetration [30]. In the classic TGC 

model, a gain that changes similarly to the attenuation rate is applied to the echo 

signals over the penetration depth in the tissue [32].  

3. Modes: Ultrasound equipment has several modes of operation. The most commonly   

used are A-mode, B-mode and M-mode [30]. A-mode represents a one-dimensional 

display. The two axes of A-mode images are amplitude and depth. B-mode is a two-

dimensional display, or brightness modulation. The stronger the echo signal, the 

brighter the spot shown on the screen. M-mode is used to assess tissue movement 

over time. The M-mode is similar to an A-scan but the echo received is brightness 

modulated on to the screen [33]. The two axes in M-mode which show on the screen 

are depth and time [30]. Along the depth axis, M-mode uses B-mode principle to 

display the echoes. 

1.3.2 Ovarian ultrasound analysis  

Before ultrasonography was used for ovarian follicular monitoring and evaluation, the 

theory of follicle waves was just a hypothesis [26].  In 1984, Pierson and Ginther et al. 

used transrectal ultrasonography to support the wave theory of follicle development 

[11]. Now ovarian ultrasonogaphy is used to diagnose reproductive pathologies and     

monitor reproductive physiology for research, such as: estimating stage of the estrous 

cycle [4, 7, 8, 11]; detecting ovulation [5, 10, 13]; diagnosing and monitoring irregular 

structures [34]; monitoring hemorrhagic follicles [3]. A review of ovarian 

ultrasonographic analysis methods is presented by Ribadu and Nakao [35]. 

There are three types of in vivo examinations most often used in ovarian ultrasound 

imaging: transabdominal scan; transvaginal scan; and transrectal scan. Transabdominal 

ultrasound imaging means that the operator scans the body by placing the transducer in 

contact with the skin of the abdomen. This type of ovarian scanning in animals is 

particularly used for species which are too small for transrectal examination [36]. A 
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transvaginal or endovaginal ultrasound image is created by inserting a transducer into 

the vagina. This method is widely used in human examinations [37-39]. Bergfelt et al. 

and Brogliatti et al. used the transvaginal ultrasound-guided method to aspirate the 

follicles in cattle and calves as young as 10 to 16 weeks of age [40, 41]. A transrectal 

scan is a procedure in which an ultrasonographic probe is inserted into the rectum. For 

large animal studies, this technique is the preferred examination method of the 

reproductive tract, such as the visualization of the uterus, fetus, ovary, corpus 

luteum(CL), and follicles [2, 12, 30, 42, 43, 44]. Of all the in vitro or ex situ 

(examination of excised organs outside the living body) scanning techniques used in the 

animal research field, the most frequently used is water bath ultrasonography. The 

excised ovary is placed  in a water bath and a series of ultrasonographic images of the 

ovary are obtained at equal interval for reconstruction of the ovarian volume [11].   

1.3.3 Ultrasonographic characteristics of the ovary 

The ultrasonographic appearance of the ovaries is variable depending on the stage of 

the estrous cycle. A normal ovary is easily distinguished from the surrounding tissue. 

Ultrasonographic images of the ovary are represented by low-level echo pattern. The 

two important and dynamic structures in the ovary are follicles and the corpus luteum.  

Follicles are nonechogenic structures and appear on the ultrasonographic images as 

black spherical structures [30]. Sometimes if the follicles overlap with each other or are 

covered by artifacts (see subsection 1.3.4 for the details of artifacts), they are 

represented as black irregular shaped structures on the ultrasound images. In addition, 

follicles may take on an elliptical shape before ovulation [2]. The follicle wall is a thin 

and hypoechoic (a structure that reflects relatively few sound waves) area surrounding 

the follicle antrum. Sometimes, the follicle wall becomes discontinuous or absent 

because of imaging artifacts that may occur along the curved boundary of follicles. The 

high density and the morphological structure of the follicle wall change during different 

physiological phases [45]. The smallest follicles that can be detected will vary greatly 

depending on the design of ultrasound equipment. Normally, the minimal diameter of 

detected follicles is around 2mm to 3mm.  

The corpus luteum is a hypoechogenic structure and the intensity of the corpus luteum 

varies according to physiological stage [46]. The central portion of the corpus luteum 
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may show as a hypoechoic structure (formed by solid material) or an anechoic (a 

structure in which there are no echoes being reflected) structure (due to a fluid-filled 

cavity) [2].   

1.3.4 Artifacts of ultrasound images 

The ultrasound images may contain different kinds of artifacts. The definition of 

artifact is “any record or image obtained in the course of applying a medical diagnostic 

technique which is not representative of the structures under study but is adventitious” 

[47]. Some of the artifacts may arise from the design of the scanner system, while others 

are caused by human operator error. This includes incorrect selection of the gain, TGC, 

and transducer and incorrect placement of the transducer. Some are inherent to the 

nature of ultrasound waves, such as attenuation, reflection, refraction etc., while others 

are due to the ultrasound tissue effects. The details of ultrasonography artifacts are 

described by Zagzebski [33]. A review of artifacts in diagnostic ultrasound can be found 

in Kirberger’s paper [47]. Among all types of artifacts specular and nonspecular 

reflection, shadowing, enhancement, and reverberation are common occurrences in 

ovarian ultrasound images [30]. 

Specular reflection occurs when the reflector is located at the boundary of a curved 

shape of a structure especially a fluid-filled object, like a follicle, (see Figure 1.5 (a), in 

arrows). It shows on the image as a bright, smooth surface around the boundary of the 

object.  

Shadow usually happens beneath a very dense structure [30]. The dense structure can 

completely reflect or absorb the sound beams. For an ovarian ultrasound image, shadow 

usually occurs at the edge of the fluid-filled area of follicles, because all the sound 

waves are refracted from the edge of the fluid-filled area [12] (see Figure 1.5(b), in 

arrow 1).  

If sound beams pass through the follicular fluid-filled structure, the intensity of the 

sound waves are not as attenuated (weakened) as they would be if they were to pass 

through the regular soft tissue [33]. Therefore, when the echo emerges from the deep 

side of the follicle, a bright area appears on the image, compared to the same structure 

adjacent to this area. This is referred as the enhancement artifact (see Figure 1.5 (b), in 

arrow 2). 
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Another common artifact on an ovarian ultrasound image is the reverberation artifact 

[30]. A strong echo is reflected by the interface and returns to the transducer. If the echo 

is still of significant magnitude, it will bounce back and forth between the interface and 

the transducer. Bright echoes are recorded on the image in this area. Usually 

reverberations happen because the interface is parallel to the transducer and has strongly 

different density in each side [33]. (see Figure 1.5 (c), in arrow). 

 

 

 
(a) 

 
(b) 

 
                                               (c) 

 
Figure 1.5  Examples of artifacts: (a) the specular artifact at the curved edge of follicle (arrows); (b) 

the shadow artifact at the edge of the follicle (arrow heads), and the enhancement 
artifact below the follicle (arrow); (c) the reverberation artifact (arrow). 
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1.4 Follicle segmentation literature review   
 

1.4.1 Image segmentation      

Image segmentation is the division of an image into regions which are homogeneous 

with respect to some criterion [48]. Homogeneity may be defined in terms of intensity, 

color, reflectivity, texture [48]. Segmentation is one of the most important steps of 

image-based medical diagnosis and analysis. Computer-based image segmentation helps 

the physicians not only in the visualization and inspection of anatomic structures of 

animals and humans, but also in patient diagnosis, surgical planning and radiotherapy 

planning [48].  

Segmentation in medical imaging is a very difficult problem. The difficulty mainly 

depends on the quality of images and the complexity of the anatomic organs [48]. The 

ultrasound image is difficult to segment because the ultrasound images are full of 

artifacts which make the regions of interest heterogenous. Noise and artifacts can cause 

discontinuities in object boundaries; therefore a preprocessing step is usually performed 

prior to segmentation in order to reduce noise. The segmentation algorithm then works 

on the preprocessed image by separating the homogeneous objects of interest. The result 

of the segmentation is either a binary or labeled image followed by post-processing steps 

to correct mistakes in the segmentation and smoothing of object’s boundary [48]. In 

general, segmentation methods can be divided into three groups: global knowledge 

(usually represented by a histogram of image), edge–based (try to find closed boundaries 

around regions) and region-based (try to find connected regions that are homogeneous) 

[48]. A survey of 3D segmentation approaches can be found in Muzzolini’s paper [49]. 

Numerous approaches of 2D follicle segmentation have been proposed in related 

literatures. These include methods based on watershed segmentation [50], knowledge 

based segmentation [51, 52], region growing [53], cellular neural networks [54, 55], 

cellular automata [56], wavelet [57] and texture [58, 59]. In this study, we attempted to 

develop a 3D follicle segmentation method but not all of these methods can easily be 

extended to 3D segmentation. In the next subsection, previous works in follicle 

segmentation will be briefly described.  
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1.4.2 Follicle segmentation 

1) Region growing segmentation  

Region growing is an approach to image segmentation in which neighboring pixels 

around the initial region are examined and added to the region if they have similar pixel 

values, until the edge pixels are detected [48]. The initial region is determined by 

automatic methods or selected manually. Figure 1.6 illustrates the procedure of the 

region growing segmentation method.  

 

Figure 1.6 The diagram of region growing segmentation method. (a) Start of region growing on a 
follicle ultrasound image (b) Growing process after several iterations (c) Final 
segmentation result (stopped along follicle boundary). 

 

Potočnik et al. devised an automated follicle segmentation method using region 

growing [60]. First, the image was smoothed by using the same pre-processing as 

Krivanek and Sonka’s method [50], which is that the original image was smoothed by 

using adaptive neighbourhood median filter (the performance of a median filter is that  

replaces the center value in the window with the median of all the pixel values in the 

window [48]). For the pixels darker than threshold Th, a large window was used (11×11 

pixels) and a small window was used for the pixels brighter than Th (5×5 pixels). This 

smoothing step was repeated twice. Threshold Th is set to the mean grey-level value of 

the original image in this paper. Next, initial approximations for the follicles are 

determined by thresholding (threshold value Tg was set to mean grey-level decreased by 

one standard deviation of grey-levels in the smoothed image) the smoothed image, 

followed by separation of the merged follicles (by using watershed segmentation)  

determination of the similarity of pixels (if the standard deviation for the pixel in its 

11×11 neighbourhood doesn’t exceed threshold Hs and its grey-level is smaller than the 

 
(a) 

 
(b) 

 
(c) 
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mean grey-level in the image, the pixel is marked as homogeneous), and removal of the 

non-follicle regions (small regions with pixels’ number less than a threshold Np). The 

thresholds Hs and Np were set to half the standard deviation in the image and 50. Then, 

respectively, region growing is started from the resulting homogeneous regions of 

follicles controlled by average grey-level (the difference between the candidate pixel for 

merging and the mean grey-level of the current region less than α times of the standard 

deviation of the current region, and α is set to 2 in this paper) and a weighted gradient 

criterion (the difference between the weighted gradient of the candidate pixel for 

merging and the mean grey-level of the current region’s weighted gradient less than α 

times of the standard deviation of the current region’s weighted gradient, and α is also 

set to 2). This is followed by the post-processing steps to remove the non-follicle regions 

(remove non-compact structures and remove the regions with area smaller than 220). 

The final step is extracting follicles by observing the centre of gravity of each region, 

because follicles are always close to each other.  

The recognition rate (relative number of correctly labeled image pixels) of follicles 

using this algorithm is around 78%. The misidentification rate (a ratio between the 

identified regions which are not follicles and all recognized regions in the images) was 

29%. More importantly, the region growing method starts from the computer-detected 

central region of the follicle and stops based on the homogenous criteria. The program 

does not necessarily go through the whole image, which saves processing time. The only 

drawback of this method is that in the post-processing step, the non-spherical regions are 

removed, which may cause the loss of some overlapping follicles. Several methods were 

developed by combining this region growing method with other methods or algorithms 

for approaching follicle segmentation [61]. The region growing method can be easily 

extended to the 3D segmentation approach by changing the 2D neighborhood connection 

into a 3D connection.  

2) Watershed based segmentation 

The watershed transformation is a popular image segmentation method coming from 

the field of mathematical morphology [48]. The principle of the watershed 

transformation is quite easy to understand if we interpret a 2D image as a 3D landscape, 

in which the valleys of the landscape represent the low grey scale value in the image and 
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the mountains represent the high grey scale value. Then the water floods into each valley 

from each minima of the valley. When the water from two adjacent valleys would meet, 

a dam is built to avoid water flooding over from one to the other valley [62]. By doing 

this, the valleys can be successfully separated. When all the valleys are flooded by 

water, the process is stopped. As a result, the landscape is partitioned into regions 

separated by dam-line, and these lines are watershed lines (see Figure 1.7). In 1991, a 

fast and flexible watershed algorithm was introduced by Vincent and Soille [63]. Even 

though the watershed transformation has many advantages, such as being intuitive and 

always producing a complete closed contour of the object, it has quite a few important 

drawbacks [64].  

a. Oversegmentation: When the image has many local minima, the result of the 

watershed transform contains a myriad of small regions, which makes the result 

hardly useful.  

 b.  Sensitivity to noise: During the flood steps, noise can cause more small valleys and 

therefore change the results dramatically. 

 c. Poor detection of significant areas: If the boundary of interest is weak or 

discontinued, the watershed transform will be unable to detect the region 

accurately. 

 d.  Poor detection of thin structures:  When the watershed transform is applied on the 

gradient image, the thick edge layer makes it difficult to detect thin structure.  
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Figure 1.7 The principle of the watershed segmentation. 

 

An automatic follicle segmentation method based on watershed segmentation was 

reported by Krivanek and Sonka [50]. In the paper, watershed segmentation was used 

twice, first on the smoothed image, and second time on the binary image by thresholding 

from the mosaic image which is created by computing the average of the pixels of each 

corresponding region after watershed was first used. It was followed by a sequence of 

post-processing steps to separate adjacent follicles, merge the connected regions which 

belong to one follicle, remove the non tissue area on the image and remove the small 

regions and non-spherical regions.  

 
 

(a) The original ovarian ultrasonic image 
 
 

 
        (b) The illustration of the different intensity of the original image. 

 

Valleys Dam-lines (watershed lines) 
Mountains 



 21 

The advantage of this method is that it is a highly automated, accurate and seems 

sufficient for the day-to-day follicle analysis. It also has some drawbacks. (1) Watershed 

segmentation was applied to smoothed images, which leads to the merging of some 

small adjacent follicles. (2) It will fail to estimate non-spherical follicles, because all the 

non-spherical regions are removed by the post-process steps. (3) The method relies on 

several parameters that were determined experimentally. Importantly, this method can 

easily extend to 3D analysis without any big modification. However, in the post-

processing part, some object properties need to be computed, such as boundary length, 

the minor axis of the region and so on. Then the subregions are merged or split based on 

these properties to repair the oversegmentation and overlapping objects. These steps do 

not work well on 3D volumes. If a follicle connects to the background area (usually non 

tissue area), the follicle will fail to be recognized or suffers greatly reduced accuracy by 

applying this method. So it is not a good choice for 3D segmentation, especially for 

water bath ultrasound images. 

3) Multi-resolution texture segmentation: 

Multi-resolution texture segmentation (MTS) is an approach combining texture 

segmentation and texture classification to segment a class of the image [48]. MTS needs 

a priori information of texture characteristics of images. The procedure of an MTS 

approach is: first, select the best feature to determine if a region is homogeneous or not. 

If it is not homogeneous, split the texture block into four quarters. Repeat this step until 

all the regions are homogeneous. Then, merge the neighboring area by examining the 

similarity of a texture block [58]. 

This method is an efficient method for accurately segmenting the follicles. Moreover, 

it can also segment some other structures in the ovary, such as corpus luteum, stroma 

and fluid fields in the ovary, and authors were also able to achieve better results 

(mislabeling error is 1.16%) than previous methods [58]. The drawback of this method is 

that every pixel on the image needs to be detected which in turn necessitates lots of 

running time. 

In addition, this method can be transformed to work on a 3D model of an ovary 

without significant modification [59]. In paper [59], the author successfully segmented 

corpor lutea and stroma in bovine ovaries.  
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Several other segmentation methods have been utilized in 2D follicle segmentation 

implantation. The brief description of these methods is as follows. Potočnik et al. 

segmented ultrasonographic follicles based on a sequence of automatic methods: a 

despeckling filter (homogeneous region growing mean filter [66]), Kirsch’s operator (an 

edge detector), optimal thresholding, thinning, shape descriptions, and classification. 

However, the recognition rate of follicles using this method was only around 63%. The 

average misidentification rate is around 47%. Viher et al. utilized cellular automata [56] 

for follicle segmentation but lack of statistical evaluations of the results. Cigale et al. 

used cellular neural networks [54, 55] for follicle segmentation. The follicle recognition 

rate in the paper [54] was around 60%. The result in [55] is much better than in [54] 

which the recognition rate is 78%. Cigale et al. also used continues wavelet transform to 

approach follicle segmentation on real 3D ultrasound images [56]. But the heaviest 

problem of this method is that it is hard to detect non-spherical shape follicles. Sarty et 

al. determined a semi-automated method of finding the outer follicle wall border by 

using a knowledge-based segmentation with graph searching [51, 52]. However, this 

algorithm sometimes requires manual editing of an automatically defined interior 

boundary before finding the outer boundary, which is a clear drawback.  

Some 3D follicle estimations are done by constructing a sequence of images after 

segmenting follicles in each single image [60, 61]. The authors [61] reported a 

prediction-based algorithm to improve the recognition of segmented follicles in 

neighboring images slices. These results then can be amalgamated to form a smooth 3D 

image of follicles. This method modifies the segmentation result from image to image, 

which is clearly time-consuming. It can also introduce some errors when measuring the 

volume of follicles because this method considered only the neighboring slices not the 

whole volume [61].  
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Chapter 2   

3D Follicle Segmentation in Ultrasound Image Volumes of Ex-

Situ Bovine Ovaries  

2.1  Introduction 
 

Diagnostic ultrasonography is an effective tool to evaluate the development of ovarian 

follicles during various stages of the estrous cycle because it is a non-invasive, rapid and 

low-cost imaging modality. The analysis of ovarian follicles can enhance the ability to 

manipulate and manage reproductive performance [15]. At present, ovarian structures 

are examined by interpreting a series of two dimensional (2D), cross-sectional 

ultrasound images by scanning the ovary aligned with it longitudinal axis. A physician 

needs to measure the size and shape of the follicle many times over a number of days to 

determine the structures of a follicle within an ovary, which is tedious and time-

consuming. Computer-assisted follicle image analyses can segment follicles from their 

surrounding tissues automatically or semi-automatically, making physicians’ jobs much 

easier. Current methods of computer-assisted follicle segmentation are performed using 

2D images [50-60], while researchers are interested to know the morphology and the 

spatial relationships of follicles during the whole estrous cycle. Three-dimensional (3D) 

follicle images can provide those information better than 2D follicle images can do and 

thus been used to provide more information about the volume,  shape and position of 

follicles [67-70]. Furthermore, volume estimation based on 3D ultrasound images has 

been developed to increase accuracy and precision [59]. Thus, there is an increasing 

need for more accurate 3D ovarian follicle segmentation technologies. 

The task of 3D follicle segmentation is challenging. One of the primary reasons is 

because of the weak follicle boundary information on the images. There are currently 

only a few 3D follicle segmentation algorithms described in the literature [59]. Some 
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approaches to 3D follicle segmentation are based on a series of cross-section images 

[61].   

The main objective of this study is to develop an accurate 3D follicle segmentation 

method that can be applied to 3D ovarian volumes previously constructed from a series 

of 2D cross-section images. An algorithm based on 3D volumes was designed, 

implemented, and validated using standard techniques.  

The 3D follicle segmentation method used here is based on the seeded region growing 

method, which in this study the growth of the region starts from a selected seed point 

inside the follicle that is to be segmented. The hypotheses of this study are:  

(1) The volume and position of follicles obtained by computer-assisted follicle 

segmentation will be similar to that obtained from the observer-defined follicle 

segmentation and aspirated follicle volumes (gold standards).  

(2) There will be linear relationships between computer-segmented follicle 

volumes, observer-defined follicle volumes and aspirated follicle volumes.  

(3) There will be an agreement between computer-segmented follicle volumes, 

observer-defined follicle volumes and aspirated follicle volumes.  

(4) The computer-assisted follicle segmentation results will not be sensitive to the 

position of the selected seed point. 

   The background knowledge of seeded region growing method and evaluation methods 

were described in Section 2.2. The region-growing based 3D segmentation algorithm 

which was designed is detailed in Section 2.3. Section 2.4 presents the results of the 

developed segmentation algorithm on images of bovine ovaries and a discussion of the 

results can be found in Section 2.5. Finally, the conclusion and some suggestions for 

future work are presented in Section 2.6. 

2.2  Background knowledge 
 

2.2.1 3D seeded region growing (SRG) algorithm 

Seeded region growing is an efficient method for segmenting medical images [71-73]. 

The advantages of the SRG algorithm include speed and applicability to a wide range of 

data types [71, 73]. The general SRG method is discussed in Justic’s paper [71] and is 
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summarized as follows: First, seeds are generated manually by selecting subregions 

known to be within each object that is to be segmented. The seeds’ pixel addresses 

belonging to the i-th region are put into a seed set Ai. The input to the SRG algorithm 

are the sets of seed pixels (regions) A1, A2, …, An. The output image is a label image. 

Each pixel of the grown regions receives a label from 1 to n, corresponding to the region 

set to which it was assigned. The growing can either start from each seed region 

individually or start from different regions at the same time.  In an iterative process, the 

connected neighbors (generally, 4 or 8 neighboring pixels for 2D region growing, 6, 18 

or 26 neighboring pixels for 3D region growing) of one of these seed pixels Sj, Sj∈A i, 

are considered to see whether or not they can be added into set Ai as determined by one 

or more homogeneity criteria. These criteria coerce the pixels forming the region to have 

similar grey level values, texture, color, etc. If the neighbor pixel satisfies the criteria, it 

will be added into set Ai.  Each neighbor which is added into set Ai will become a new 

seed point and its neighbors then become new pixels to be considered for addition to the 

region. This is the main loop of the algorithm. The growing of this region terminates 

when no more pixels can be added into set Ai without violating the homogeneity criteria. 

One of the most common problems of follicle segmentation by using SRG algorithm is 

boundary leaking. Ultrasonographic images may contain several types of artifacts such 

as shadowing (caused by blockage of the sound beam beneath a dense structure), beam 

width artifact (caused by reflection/refraction of the sound beams on the side of a curved 

boundary of a structure) etc., which may make the edge information of follicles weak 

and discontinuous (see Chapter 1.3.4 Artifacts of ovarian ultrasound images for details). 

These unclear or uncompleted boundaries allow seed regions to grow well beyond the 

actual boundary of the structure if the image outside the structure is homogeneous with 

the seed region according to the criteria. Several methods have been reported to correct 

boundary leakage. For example, a watershed segmentation is used after region growing 

to “close off” leaked regions [74].   

2.2.2 Evaluation methods 

After a follicle segmentation algorithm is implemented, the efficiency and correctness 

of the segmentation must be evaluated. But, evaluating the segmentation results on 

medical images is a very difficult task. The main reasons of which include lack of a 



 26 

“gold standard” (for 2D single image segmentation, manually detected segmentation by 

medical experts is the only standard available), and lack of standardized statistical 

protocols. [75]. The most commonly used mathematic methods for evaluating the 

follicle segmentation results in the literature mentioned above are simple linear 

regression analyses and the evaluation procedure reported by Potočnik (evaluate the 

quality of the segmentation result by measuring with two ratios 1r  and 2r  ,where 1r  is 

the ratio between the areas of the intersection and the original object, and 2r  is the ratio 

between the areas of the intersection and the segmented region) [75]. In addition, 

Hausdorff distance, root mean squared distance, average absolute distance and the Dice 

coefficient are commonly used in follicle segmentation evaluation [50, 52, 60, 65]. In 

general, Potočnik’s method and the Dice coefficient are used to determine the follicle 

recognition rate [60, 65]. Linear regression is usually used to evaluate the correlation of 

computer assisted segmented follicular areas and/or volumes with a manual expert 

segmentation [52, 60]. The Hausdorff distance, root mean squared distance and average 

absolute distance are used to evaluate the accuracy of follicles’ boundaries and the 

position of follicles [50, 51, 60, 61]. The details of these methods are as follows: 

Linear regression is used to evaluate the linear relationship between two variables. In 

follicle segmentation evaluation, the two variables are computer-isolated follicles 

},...,,{, 21 nXXXXX =  and the operator’s detection results },...,,{, 21 mYYYYY = . Here, 

nXXX ,...,, 21 and mYYY ,...,, 21  are the parameter values that are going to be compared. 

They can be sets of region area, volume, boundaries, etc. The regression equation is: 

bXaY += . Here a  is the intercept of Y , b is the gradient or slope of the line. a  and 

b can be obtained from: 

∑ ∑
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where, n is the number of follicles to evaluate.  
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The value of slope b  and intercept a  can be used to evaluate the correlation of the 

segmentation results. A high correlation is determined if b  and a  do not differ 

significantly from one and zero, respectively.   

  In Potočnik’s evaluation method, two ratios 1r  and 2r  were measured [75]. If 1r  is 

equal to or greater than a given threshold D1, and at the same time, 2r  is equal to or 

greater than a given threshold D2, the region is marked as correctly recognized [75].  

   The Hausdorff distance is defined as the maximum of the smallest distance between 

two points on two curves (boundaries) A  and B  [76]. ia  is one point in curve A  and 

jb  is one point in curve B . A)d(bj ,  is the smallest distance from every point in B  to 

curveA : 

                                            ||||min, ij
i

j abA)d(b −=                                                    (2.3) 

As the same, B)d(ai ,  is the smallest distance from every point A  to curveB : 

                                      ||||min, ji
j

i baB)d(a −=                                                   (2.4)               

The maximum Hausdorff distance is defined as [76]: 
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For evaluating the segmentation result, ),( BAD  means that all the pixels belonging toA  

are not farther than ),( BAD from some pixels ofB . Therefore, the lower value of 

),( BAD  means the higher correlation.  

   The root mean squared distance is a measure of the average squared error between two 

curves (boundaries) },...,,{ 21 meeeE = and },...,,{ 21 nfffF =  [77]. The same as the first 

step of computing the Hausdorff distance, F)d(ej ,  is the smallest distance from every 

point in regionE  to regionF , and ),Ed(f j is the smallest distance from every point in 

regionF  to region E . The root mean squared distance is defined as [77]: 
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As with Hausdorff distance, a highly correlated boundary is indicated by a low root 

mean squared distance value.  
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The average absolute distance is defined as [60]: 
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where, },...,,{ 21 mgggG = and },...,,{ 21 nkkkK = are two boundaries. K)d(g j ,  is the 

smallest distance from every point in boundary G  to boundary K , and ),Gd(k j is the 

smallest distance from every point in boundary K  to boundary G . The lower value of 

the average absolute distance means the higher correlation. 

The Dice coefficient is defined as follows [78]: let a set },...,,{ 21 mhhhH = and 

set },...,,{ 21 niiiI =  be sets of region pixels from the automatically segmented and 

manually segmented regions, respectively. Elements ih  and ji represent coordinates of 

the pixels inside setH and setI . The Dice coefficient is calculated by: 

                                   
IH

IH
tcoefficienDice
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∩×

=
2

                                         (2.8) 

The Dice coefficient evaluates the degree of overlap for region H  and regionI . The 

result is a value smaller than one. A high correction rate is indicated if the Dice 

coefficient is close to one. 

In this study, linear regression and the Dice coefficient are the methods used here to 

evaluate the correlation of computer assisted segmented follicle with the manually 

detected segmentation and the recognition rate. 

2.3 Materials and methods 
 

2.3.1 Data acquisition 

The 3D data sets used herein are acquired from a sequence of 2D images. The series of 

ultrasonographic images is obtained from ex-situ scanning of ovaries in a water bath. 

The water bath imaging consists of putting a dissected ovary in a vat of liquid and then 

scanning along the longitudinal axis of the ovary under the liquid (see Figure 2.1) in half 

millimeter increments (around 8-9 pixels/mm). Two serials of datasets were used in this 

study – the training dataset and the test dataset. The acquisition of the training dataset is 

the same as in Singh’s paper [79]:  The dissected ovaries were placed in ice-cold 
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phosphate buffered saline (0.1 m phosphate buffer, 0.9% (w/v) sodium chloride, PH 7.2-

7.4) and transported to the laboratory within 45 minutes of ovariectomy. Then the 

ovaries were placed in a degassed phosphate buffered saline bath and imaged using a 

broad-band (5-9MHz), convex-array, ultrasound transducer (ATL Mark 9 HDI 

ultrasound machine). The test dataset was obtained in a similar manner, but the liquid 

used in the bath was water, and it was put aside for at least 24 hours before the 

experiment to reduce reverberation artifacts due to air bubbles. The imaging was carried 

out by a single operator using an Aloka SSD-900 B-scan ultrasound console equipped 

with a 7.5 MHz linear transducer (UST-5821-7.5, Aloka, Japan). The control for overall 

gain was set between 70 and 80. However, a single gain setting was used for the 

acquisition of all images of a given ovary. In both of the training dataset and the test 

dataset, the time gain compensation (TGC) slopes, which can compensate for the 

decreasing strengths of sound beams by passing through deeper tissues, were set to the 

minimum levels.   

 
Figure 2.1 Illustration set-up for the acquisition of 3D ultrasonographic dataset from an exised 

bovine ovary using water bath. The ovary sample is put in the bottom of the water basin 
and fixed by needles. The basin is settled on a movable platform with a vernier scale. 
Segmental ultrasonographic images were recorded at 0.5 millimeter intervals by moving 
the platform. A computer was connected to the ultrasound console for digitizing the 
images.    

 

To obtain a 3D dataset, the sequence of parallel image slices of an ovary is 

amalgamated to construct a 3D volume which forms the input to our segmentation. This 
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volume has some special properties: First, the distance between each slice is 0.5mm 

while the x and y axis resolution is 8~9 pixels/mm, which means the unit length along z-

axis of the volume is 4~5 times larger than in x and y axes. This makes a spherical 

follicle look more like an ellipsoid in this 3D data volume. Actually, this is a disk-

shaped (oblate spheroid) ellipsoid which has the same equatorial radii (the length of x 

and y axes), and is 4~5 times bigger than the polar radius (the length of z axes). Second, 

the way we generate the 3D data exacerbates the boundary leaking problem. The reasons 

are: (1) If there is boundary leakage on the adjacent slices at the same location on each 

image, this will become a major leaked region on the 3D volume surface; (2) the ex-situ 

imaging will make edge information even worse than in vivo imaging (where the outer 

region will be different shade of gray than the follicle antrum). The ovary sample is 

surrounded by water in this experiment, therefore, if a follicle is located close to the 

surface of the ovary on the ultrasonographic image, there may be sections of follicle wall 

that are not imaged successfully resulting in a lack of boundary between the follicle’s 

interior and the background, an example of this phenomenon can be seen in Figure 2.2 

(a). If the general 3D seeded region growing algorithm is used on this kind of data, one 

slice of the result will look like Figure 2.2 (b).  

 

             
(a)                                                                (b) 

Figure 2.2 Example of the boundary leakage image (a) and its SRG algorithm result (b). 
 

2.3.2 3D SRG based follicle segmentation algorithm          

The algorithm developed herein upgrades the general SRG algorithm [71] to overcome 

the problems caused by the characteristics of ovarian ultrasonography (noise, artifacts, 
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etc) and the constructed 3D volume. The algorithm begins by pre-processing the data to 

reduce noise. Then, a new seeded region growing algorithm is used to get the rough 

segmentation. Finally, a post-processing step is performed to obtain volumes with 

smooth surfaces. The algorithm is implemented in MATLAB, with the 3D SRG part 

written in C using mex files to interface with MATLAB.   

1) Pre-processing: Ultrasound images are characterized by speckle noise. Therefore, 

the first step of this algorithm is speckle noise reduction and image smoothing. 

Smoothing was achieved using an adaptive neighborhood median filter [60]. A large 

kernel was used (11×11 pixels) for pixels darker than threshold T, and a small kernel is 

used (5×5 pixels) for the pixels brighter than threshold T. Here, T is a preset value. In 

contrast to [60], the threshold T we selected was 60% of the mean grey-level value in the 

original image. The reason is that since there was a large dark area on the water bath 

based ultrasonographic image, the intensity of the interior region of the follicles were 

consistently below 60% of the mean intensity of the whole image.  

2) The developed SRG algorithm: In this study, the region growing begins from one 

manually selected seed point for each object (follicle) and the seed point must be 

selected close to the centre of the object. The reason is that the seed point will be treated 

as the true centroid of the follicle, and will be compared with the centroid of the grown 

region to determine whether the growing process should terminate. The algorithm begins 

from each seed point individually.  

In each iteration of the algorithm, instead of growing each immediate neighborhood of 

the seeded region (6, 18 or 26 neighbors), we used a special size of the neighborhood of 

31111 ××  pixels, because of the ellipsoid shaped follicle volume in this dataset. To 

achieve this growing procedure, a first-in-first-out (FIFO) queue is used. A queue is a 

type of data structure in which the elements are kept in order and principal operations 

are removing elements from the front of the queue and adding elements to the rear of the 

queue. The detail of the growing procedure in this study is as follows: first, the boundary 

pixels’ addresses in one slice of the current region (see Figure 2.3 (a)) were put into a 

queue. A marker (a special value) was put to the end of the queue. Each element 

removed from the queue was considered as to whether or not its two dimensional 

neighbors (8 neighbors in this study) could pass the homogeneity tests. If yes, the 
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neighbors were put to the rear of the queue. Then the next element in the queue was 

tested and removed from the queue. When the current element being tested is the 

marker, a new marker was put to the end of the queue. Actually, markers can be treated 

as the number of circles of this region growing process. If the markers show up 5 times, 

that means the growing has been done 5 circles out of the current region (see Figure 2.3 

(b)). This stage of growing terminated after 5 circles of growing were performed. This 

process was repeated in each slice of the original growing region (see Figure 2.3 (c)). 

After that, the result region will be grown using a 3D neighborhood (6 neighbors is used 

in this study) (see Figure 2.3 (d)). Due to this, the region is growing as the same 

ellipsoid shape as the entire object.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.3 Illustration of the growing procedure of the 31111 ××  pixels’ neighborhood (a) is the 

current region, (b) is the illustration of  the growing process in one slice (c) is the grown 
result after growing in each 2D slice, and (d) is the grown result after. 

 

 

 

 

 

 

       (c)                                                                         (d) 
 

(a)                                                                   (b) 
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The homogeneity tests used in our SRG are a sequence of criteria based on [53] and on  

Haralick’s region growing algorithm [78]. A formal description of the homogeneity tests 

is as follows: let the current homogeneous region, be denoted },,,,{ 210 nrrrR =  where 

nrrr ,,,, 21  are the pixels belonging to0R . Let the mean intensity of pixels in 0R  be 

)( 0RM , and let the standard deviation of pixel intensities in 0R  be )( 0Rσ . Then, the 

first criterion of homogeneity tests is: 

                                             mRMxI ≤− )()( 0                                                      (2.9) 

where x  is a potential pixel candidate adjacent to 0R , )(xI  is the intensity of x  and m  

is a preset threshold. In this study, m is set to 0.7× the mean value of the 3D ovary 

volume currently being segmented. This criterion requires that the intensity of the 

candidate pixel has intensity similar to the mean intensity of the current region. 

The second criterion is to calculate the change in standard deviation supposing that 

x is added to 0R : 

                                        ασσ ≤− )()( 01 RR                                                    (2.10)                                           

Where, 1R  is the region resulting from adding x  to 0R  and α  is another preset 

threshold. The selection of α  depends on the image quality: if the quality is poor (huge 

boundary leaking occurs and/or lots of speckle noises), α  = 2 times of the standard 

deviation of the whole ovary volume; if the quality is good enough (no or little boundary 

leaking occurs and/or little noise), α  = the standard deviation of the whole volume. The 

threshold value of  α  is manually selected and it is ovary based, it will keep the same 

for all the follicles of one ovary. )( 1Rσ  is the standard deviation of the region 1R  which 

can be computed incrementally from )( 0Rσ : 
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)( 0RN  is the number of the pixels in 0R  and )( 1RM  is the updated mean value after 

adding x  into region 0R  which can also be obtained incrementally from: 
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In addition to the intensity-based homogeneity criteria, a shape-based criterion was 

used to overcome the boundary leaking problem. This criterion is only used in the 3D 

growing process (3D neighborhood). Because of the compact structure of spherically 

shaped follicles, a compactness test is usually added to the segmentation algorithms to 

extract the follicles from other non-follicle objects [53] or to fix the identified follicle 

regions [50]. The classical measure of compactness is the ratio between the square of the 

boundary perimeter (the cube of area of enclosing surface in 3D) to the area (the square 

of volume in 3D), as defined in [53]. Due to the non-spherical shape of the follicles in 

this constructed 3D volume, a volume comparison test vC  was used instead of the 

classical compactness test. vC  is defined as the ratio between the real volume of the 

current grown region and the volume of its “best–fit” ellipsoid volume, where the 

equatorial radii of the “best-fit” ellipsoid region equals the largest distance between the 

boundary pixels and the seed point we selected; the polar radius of this approximate 

ellipsoid equals one of the equatorial radius divided by 5 (because in the dataset used in 

this study, follicles are ellipsoid shaped with the polar radius 5 times shorter than 

equatorial radius). This criterion is determined as: 

                                                        CCv ≤                                                          (2.13)                        

In this study, the thresholdC is set to 1.5. If the region 1R  passes this criterion as well, it 

can be permanently added into the list of this region set, and pixel x  receives the follicle 

label value )(RL . Then the region0R will be updated to 1R . Otherwise, if it passes the 

homogeneity tests and fails the compactness test, x  cannot receive the label value, but is 

nonetheless put into the list. After checking its neighborhoodχ , x  will be tested again 

as a non-labeled neighbor ofχ . Because during the growing procedure, the region may 

be non-compact due to the noise and artifacts, but will become compact later after 

adding more pixels into the region.      

A fourth criterion was used to solve the boundary leaking problem. As the region 

expands (growing), the surface area of the growing region should become increasingly 

larger unless most of the surface pixels already touch the edge of the object (follicle 

wall) and stop growing. If the program still has not stopped, it is possible that boundary 

leakage has happened. So a percentage value P  is set here. If %1 P− of surface pixels 
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stopped growing, the whole program stops. For different image quality, the threshold 

value P  is different, usually a small value (or zero) for the follicles which have the 

completed boundaries or have little boundary leakage, and a large value for the follicles 

which have great boundary leakage problems. The P  value of each follicle being 

segmented is automatically selected by using an iterative search algorithm. After each 

time running the whole SRG program for a follicle, the centroid of the grown region is 

calculated. If the distance between this centroid point and the pre-selected seed point is 

bigger than a threshold dT , then boundary leakage may have occurred. Then 1+= PP , 

and the SRG program is repeated for that follicle until the centroid point is close enough 

to the seed point. dT  in this study is set to 20.  

The flowchart of 3D SRG based follicle segmentation is summarized in Figure 2.4.  

3) Post-processing: All of the follicles segmented individually are added into a new 

volume which has the same size as the original ovary volume with zero grey value, 

according to their address index. The holes inside the follicles are filled. Finally, the 

resulting regions are smoothed and visualized in 3D by using the MATLAB building in 

3D smoothing and 3D visualization tools.  

2.3.3 Validation method  

Unlike other follicle segmentation research, we not only compared the segmentation 

result with the human observer-defined results, but also with follicle aspiration volumes. 

Immediately following image acquisition, follicle aspiration volumes were measured. In 

this study, 5ml syringes (MonojectTM; Tyco Health Care Group, Mansfield, 

Massachusetts) fitted with mmmm 1.382.1 × needles (MonojectTM; Tyco Health Care 

Group, Mansfield, Massachusetts) were used for aspirating the fluid in follicles with 

diameter (the diameter is measured in the slice in which the follicle shows the largest) 

bigger than 5mm in diameter; 3/10 ml insulin syringes (MonojectTM; Tyco Health Care 

Group, Mansfield, Massachusetts) fitted with 29 ga, ½ inch ( mmmm 1333.0 × ) needles 

(MonojectTM; Tyco Health Care Group, Mansfield, Massachusetts)  were used for the 

follicles with diameter smaller than 5mm. Then the volume of fluid from each follicle 

was carefully measured.  
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Figure 2.4 The flowchart of the follicle SRG algorithm. 
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The computer based follicle volume (the SRG segmented follicle volume and the 

human observer-defined follicle volume) was calculated by simply counting the number 

of voxels belonging to the detected follicle. The physical dimensions of each voxel are 

3

128
1

2
1

8
1

8
1

mmmmmmmm =××  (1 pixel in each slice equal tomm
8
1

, while the interval 

between each slice ismm
2
1

). 

We assumed that the relationship among the computer segmented follicle volume, the 

manually detected volume and the aspiration volume can be summarized as a straight-

line graph. Linear regression was used for comparing among those three results.  

The Dice coefficient was used to evaluate the position error between the computer-

based segmentation and the human observed result. 

Pearson’s correlation coefficient can be used to calculate the similarity between two 

variables. If two variables },...,{ 2,1 nXXXX =  are },...,{ 2,1 nYYYY = and, with means X  

and Y , and standard deviations xS  and yS . The Pearson correlation is [80]: 
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= ∑ −                                              (2.14)                        

The coefficient r is a number between -1 and +1. A positive value implies a positive 

correlation, while a negative value implies a negative or inverse correlation. Value 1 

means perfect positive correlation, while value -1 means perfect negative correlation. 

In this study, Pearson’s correlation coefficient was calculated to evaluate the 

difference between each two results among the aspiration results, the human observer-

defined results, and the computer segmented results.   

2.4  Results 
 

In this section, the results of our current algorithm are presented. All datasets are 

obtained from the water bath experiments. Usually, in the ultrasound images of ovaries, 

follicles with a diameter greater than 2mm can be perceived clearly. In this study, only 

the follicles of 2.5mm or more in diameter were segmented. Ovarian ultrasound images 
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are in 256 shades of grey. For pre-processing, 350× 414 sub-images were extracted 

from 640× 480 original images. The program running time is different for each follicle 

depending on the follicle size and the boundary situation. It is usually approximately 

several seconds to 30 minutes for each follicle.  

First, typical results are presented. In Figure 2.5, a sequence of original image slices 

through one ovary is demonstrated. The images shown here are 20 out of 65 images 

from the entire image sequence and determined by their slice numbers.  

 

slice 6                        slice 9                        slice 12                      slice 15 

    
slice 18                      slice 21                      slice 24                      slice 27 

    
slice 30                      slice 33                      slice 36                     slice 39 

    
slice 42                       slice 45                     slice 48                      slice 51 

    
slice 54                       slice 57                     slice 60                     slice 63 

    
 
Figure 2.5 Original image sequence of cow ovary (ovary number 68 from training dataset) 

ultrasonographic images (20 slices out of 65 slices). 
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Then the entire image sequence is constructed into a 3D ovarian volume, see Figure 

2.6.  

 
Figure 2.6 3D reconstruction result of the cow ovary (number 68 from training dataset). The 

coordinate (x,y) comes from 2D slices, and coordinate z is from the sequence of images.  
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Our follicle SRG algorithm is applied to this 3D dataset. The results are presented slice 

by slice in Figure 2.7. The segmented follicles are superimposed (outline in white) on 

the original image, and aligned in the same way as showed in the original images. From 

the Figure 2.7, we can see that boundary leakage occurred on the largest follicle in the 

image at the bottom left on slices from 27 to slice 48. The obtained results can be 

visualized in 3D, as in Figure 2.8.  

 
Figure 2.7 Sequence of the images from the SRG segmentation result, aligned in the same way as 

inFigure 2.5 (ovary number 68 from the training dataset).  

slice 6                           slice 9                        slice 12                        slice 15 

  
slice 18                        slice 21                       slice 24                       slice 27 

   
slice 30                        slice 33                       slice 36                       slice 39 

  
slice 42                         slice 45                       slice 48                      slice 51 

   
slice 54                      slice 57                       slice 60                       slice 63 
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Figure 2.8 3D vision of the follicle segmentation result (ovary number 68 from the training 

dataset). The coordinate (x,y) comes from 2D slices, and coordinate z comes from the 
sequence of images.  
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In Figure 2.9, the results are compared with manually determined follicles by an 

expert, and also aligned in the same way as shown in the original images. Finally, Figure 

2.10 shows the 3D volume of the manually determined segmentation result.  

 

slice 6                         slice 9                          slice 12                         slice 15 

    
slice 18                         slice 21                       slice 24                       slice 27 

    
slice 30                       slice 33                         slice 36                       slice 39 

    
slice 42                        slice 45                       slice 48                       slice 51 

    
slice 54                          slice 57                      slice 60                       slice 63 

    
 
Figure 2.9 Sequence images of manually determined follicles, aligned in the same way as in Figure 

2.5  (ovary number 68 from the training dataset).  
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Figure 2.10 3D vision of the manually determined follicles (ovary number 68 from the training 

dataset). The coordinate (x,y) comes from 2D slices, and coordinate z comes from the 
sequence of images.  
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Next, the best segmentation result is presented in Figure 2.11a, and its observer-

defined result is shown in Figure 2.11b 
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Figure 2.11a   The computer-segmented boundary of the best follicle segmentation result.  
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Figure 2.11b The observer-defined boundary of the best segmentation result.  In this case, the Dice 

coefficient of this follicle is 72.8%; the volume of the computer segmented result is 0.376 
ml; the aspiration volume is 0.227 ml; and the volume of the manually detected result is 
0.6571 ml. 
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The worst segmentation result is shown in Figure 2.12. 
 

(a) 
 

(b) 

 
Figure 2.12 An example of a poorly segmented follicle (a) is its computer-segmented boundary and 

(b) is the observer-defined boundary. In this case, the Dice coefficient of this follicle is 
only 29.34%; the volume of the computer segmented result is 0.2124 ml; the aspiration 
volume is 0.060 ml; and the volume of the manually detected result is 0.0914 ml. 
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All together, 16 ovaries were used as test dataset. In total, 138 follicles in the ovaries 

dataset were analyzed. Since the follicles were segmented individually, we evaluated all 

the follicles together without considering the differences of each ovary. The statistical 

analyses were conducted using the Statistical Analysis System (SAS Institute; Cary, NC, 

USA). 

The linear regression statistical comparisons of the follicles’ volumes are given in 

Figure 2.13, Figure 2.14 and Figure 2.15. In Figure 2.13, we obtained the statistical 

comparison between our SRG follicle segmentation results and the aspiration results. 

Figure 2.14 shows the statistical comparison between the SRG follicle segmentation 

result and the manually determined segmentation result. Figure 2.15 shows the statistical 

comparison between aspiration result and the manually determined segmentation result. 

The statistical analysis support one of the hypotheses that there will be linear 

relationships between the computer-segmented follicle volumes, aspirated follicle 

volumes and observer-defined follicle volumes (respectively, y = 0.857x + 0.005, R2 = 

0.946, P < 0.0001, see Figure 2.13; y = 1.512 – 0.025, R2 = 0.936, P < 0.0001, see 

Figure 2.14; y = 0.544x + 0.030, R2 = 0.931, P < 0.0001, see Figure 2.15). There was no 

perfect agreement between the aspiration result and the SRG segmentation result (slope 

= 0.857, see Figure 2.13), no agreement between the manually defined result and the 

SRG segmentation result (slope = 1.512, see Figure 2.14), and no agreement between the 

aspiration result and the manually defined result (slope = 0.544, see Figure 2.15). These 

results did not support the hypothesis that there will be an agreement between each two 

results among the SRG follicle segmentation results, the aspiration results and the 

manually determined results.  
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Simpl 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
Figure 2.13 Comparison of the computer segmentation and follicle aspiration volume (y = 0.857x + 

0.005, R2 = 0.946, P < 0.0001).  
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Figure 2.14 Comparison of the computer segmentation and observer-defined volume (y = 1.512x -

0.025, R2  =  0.936,  P<0.0001).  
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Figure 2.15 Comparison of the aspiration volume and observer-defined volume (y = 0.544x + 0.030, 

R2 = 0.931, P <0.0001).  
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In addition to the overall analysis of the follicles among the SRG segmentation results, 

the aspiration result and the manually determined segmentation result, the evaluation 

among follicles in different size categories was also considered in this study. Ten 

categories were defined here: 3mm diameter or less, 3 to 4, 4 to 5, 5 to 6, ….., 11mm or 

greater. Table 2.1 shows the difference of the aspiration result and the manually 

determined result (Mean ± Standard Error) among the categories by analysis of variance 

(ANOVA) followed by the Tukey Post-hoc test (a multiple pairwise comparisons 

procedure). The letter superscripts (a,b,c,d…) are used in the table indicate a difference. 

The results with different superscripts within the same column were significantly 

different at a significant level of 0.05 by using Tukey Post-hoc test. As the diameter 

increases, the aspiration volume and the manually determined follicular volume 

increase. Analysis with ANOVA indicated a statistically significant difference between 

follicle categories in both the aspiration volume and the manually determined volume 

(overall ANOVA, P<0.0001). By Tukey Post-hoc test, aspiration volumes of small size 

follicles (diameter of follicles ≤ 6mm, the first 4 groups of size categories) were not 

significantly different between groups. For the follicles in diameter from 6 to 8 mm, the 

aspiration volumes were not significantly different. Follicles in diameter from 8 to 10 

mm also had same volume. In manually determined follicle volume, the Tukey Post-hoc 

test revealed follicles in diameter from 4 to 8mm were not significantly different and 

follicles from 8 to 10mm had same volume.  
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Table 2.1 Mean aspiration volume and manually determined volume of the follicles within a 
follicle size category. 

 
Diameter 

categories 

Number of 

follicles 

Aspiration 

volume 

Manual 

volume 

≤  3mm 54 0.046 ± 0.005a 0.065 ± 0.005 a 

3~4mm 36 0.084 ± 0.011 a 0.118 ± 0.009 b 

4~5mm 12 0.149 ± 0.033 a 0.234 ± 0.029 c 

5~6mm 9 0.268 ± 0.060 a 0.410 ± 0.076 c 

6~7mm 7 0.516 ± 0.104 b 0.764 ± 0.080 c 

7~8mm 4 0.553 ± 0.034 b 0.929 ± 0.123 c 

8~9mm 4 1.17 ± 0.253 c 1.39 ± 0.017 d 

9~10mm 3 1.22 ± 0.124 c 2.05 ± 0.195 d 

10~11mm 7 1.56 ± 0.160 d 2.81 ± 0.203 e 

>11mm 2 2.09 ± 0.135 e 4.33 ± 0.574 f 

Overall ANOVA P-value < 0.0001 < 0.0001 

 
* Different superscripts (a,b,c,…) indicate difference in follicle category at P<0.05 using 
Tukey Post-hoc comparison. Means are presented ± standard error along with the total 
number of follicles evaluated in each size category. 
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As a result, in the future analyses, we can combine several non-significantly different 

groups into one group to evaluate the accuracy of our algorithm. Considering that the 

first three groups have 70% of the total number of follicles, we separated the138 follicles 

into 2 groups: one group of follicles with diameters no more than 5mm; the other with 

diameters bigger than 5mm. Then, the simple linear regression for these two groups was 

computed. Figure 2.16, Figure 2.17 and Figure 2.18 shows the linear regression results 

between each two results among the computer assisted follicle segmentation result, the 

manually detected follicle volume and the aspiration volume of the small size (≤ 5mm) 

follicles. Figure 2.19, Figure 2.20 and Figure 2.21 shows the linear regressions of the 

large size (> 5mm) follicles. The statistics results of the small size follicles show that 

there were statistically significant linear relationships between the aspiration result and 

the SRG segmentation result (y = 0.520x + 0.026, R2 = 0.463, P < 0.0001, see Figure 

2.16), between the manually defined result and the SRG segmentation result (y = 0.421x 

+ 0.067, R2 = 0.249, P < 0.0001, see Figure 2.17), and between the aspiration result and 

the manually determined result (y = 0.627x + 0.007, R2 = 0.480, P < 0.0001, see Figure 

2.18). In the group of large size follicles, there were significant linear relationships 

between the aspiration result and the SRG segmentation result (y = 0.832x + 0.0520, R2 

= 0.907, P < 0.0001, see Figure 2.19), between the manually defined result and the SRG 

segmentation result (y = 1.549x – 0.055, R2 = 0.901, P < 0.0001, see Figure 2.20), and 

between the aspiration result and the manually determined result (y = 0.501x + 0.134, R2 

= 0.876, P < 0.0001, see Figure 2.21). Moreover, if we compared the statistics results 

between the two groups of the small size follicles and the large size follicles, we found 

that there were better correlations between the SRG segmentation volumes, the 

aspiration volumes and the manually determined volumes in the large size follicles than 

that in the small size follicles (R2 = 0.463 in Figure 2.16 vs. R2 = 0.907 in Figure 2.19; 

R2 = 0.249 in Figure 2.17 vs. R2 = 0.901 in Figure 2.20; R2 = 0.480 in Figure 2.18 vs. R2 

= 0.876 in Figure 2.21). From the slopes of the regression lines, there was no agreement 

between each two volumes among the SRG segmentation result, the manually detected 

follicle volume, the aspiration volume. 
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Figure 2.16 Comparison of the SRG segmentation volume and follicle aspiration volume of small 

size (≤ 5mm) follicles (y = 0.520x + 0.026, R2 = 0.463, P < 0.0001). 
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Figure 2.17 Comparison of the SRG segmentation volume and observer-defined volume of small size 

(≤ 5mm) follicles (y = 0.421 + 0.067, R2 = 0.249 P < 0.0001). 
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Figure 2.18 Comparison of the aspiration volume and observer-defined volume of small size (≤ 

5mm) follicles (y = 0.627x + 0.007, R2 = 0.480, P < 0.0001). 
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Figure 2.19 Comparison of the SRG segmentation volume and follicle aspiration volume of large 

size (> 5mm) follicles (y = 0.832x + 0.052, R2 = 0.907, P < 0.0001). 
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Figure 2.20 Comparison of the SRG segmentation volume and observer-defined volume of large size 

(> 5mm) follicles (y =1.549 - 0.055, R2 = 0.901, P < 0.0001). 
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Figure 2.21 Comparison of the aspiration volume and observer-defined volume of large size (> 

5mm) follicles (y = 0.501x + 0.134, R2 = 0.876, P < 0.0001). 



 57 

 
For testing the sensitivity of the seed point selected for each follicle, two more seed 

points were generated by using the 3D Gaussian random function with the standard 

deviation equal to the one third of the radium of each follicle, as long as the generated 

seed points were located inside the follicle. All the 16 ovaries were tested two more 

times by using the new generated seed points. The SAS PROC MIXED model (a SAS 

institute’s program that allows researchers to model the covariance structure of the data, 

SAS institute, 1999) analysis with unstructured structure (covariance structures represent 

the correlations among the repeated measurements. The ‘unstructured’ structure makes 

no assumption regarding correlation [81]) was used to determine the effects of follicle 

diameter categories, the segmentation results by using three sets of different seed points,  

and the interaction of follicle categories and the segmentation results by using three sets 

of seed points. The segmented results were evaluated among each randomly selected 

seed point and the operator manually selected seed point within different size categories 

(Table 2.2). The superscripts (a,b,c,d…) have the same meaning as in Table 2.1. 

Superscripts (x,y..) indicate the difference in the same row at P<0.05. There were no 

significant differences between the segmented follicular volumes among the three sets of 

seed points (row comparison, P ≥ 0.05), except for the follicle in diameter categories 

5~6mm, 6~7mm and 8~9mm and >11mm which were sensitive to the seed point 

position. In the mean computer segmented follicle volumes of three sets of seed points, 

there was no significant difference among the diameter categories ≤ 3mm, 3~4mm, and 

4~5mm (column comparison, P ≥ 0.05), and no significant difference among the 

diameter categories 5~6mm, 6~7mm, and 7~8mm and between the categories 9~10mm 

and 10~11mm (column comparison, P ≥ 0.05). Overall, from Table 2.2, we can see the 

segmentation results are sensitive to the selected seed points. This did not support the 

hypothesis that the follicle segmentation results from the computer will not be sensitive 

to the position of the selected seed point. 
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Table 2.2 Mean computer segmented follicle volume within different size categories among the 
original manually selected seed points, the randomly selected seed points (group 1 and 
2). 

 

Randomly selected seed points Diameter 

categories 

Operator 

selected seed 

point 1 2 

Mean value by 

using three sets 

of seed points 

≤  3mm 0.065 ± 0.010 X 0.077 ± 0.013 X 0.079 ± 0.020 X 0.074 ± 0.009 a 

3~4mm 0.099 ± 0.016 X 0.112 ± 0.026 X 0.086 ± 0.015 X 0.099 ± 0.011a 

4~5mm 0.149 ± 0.033 X 0.141 ± 0.030 X 0.119 ± 0.023 X 0.136 ± 0.016 a 

5~6mm 0.365 ± 0.097 X 0.234 ± 0.061 Y 0.502 ± 0.236 Z 0.367 ± 0.087 b 

6~7mm 0.538 ± 0.111 X 0.404 ± 0.114 Y 0.547 ± 0.112 Y 0.496 ± 0.063b 

7~8mm 0.610 ± 0.065 X 0.636 ± 0.061 X 0.634 ± 0.063 X 0.627 ± 0.034 b 

8~9mm 1.24 ± 0.191 X 1.01 ± 0.119 Y 0.934 ± 0.109 Y 1.06 ± 0.086 c 

9~10mm 1.46 ± 0.151 X 1.52 ± 0.056 X 1.52 ± 0.114 X 1.50 ± 0.058 d 

10~11mm 1.63 ± 0.157 X 1.53 ± 0.300 X 1.69 ± 0.184 X 1.62 ± 0.123 d 

>11mm 2.72 ± 0.271 X 2.84 ± 0.046 X 3.32 ± 0.267 Y 2.96 ± 0.152 e 

Repeated 

Measure 

ANOVA 

Analysis (Pro 

Mixed) 

 
 

Follicle category P< 0.0001 
 Three sets of seed points P = 0.0132  

Follicle category * Three sets of seed points P = 0.0001 

 
* Different superscripts (X, Y, Z,…) indicate selection mode differences (row 
comparison) at P < 0.05.  
* * Different superscripts (a, b, c, d,…) indicate difference in follicle category (column 
comparison) at P< 0.05 
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The simple linear regression was used again to compare the mean computer 

segmentation volume of three sets of seed points with both the manually detected follicle 

volume and the aspiration volume. Figure 2.22 shows the statistical comparison between 

aspiration result and the mean computer segmented follicle volume of three sets of seed 

points. Figure 2.23 shows the linear regression result between the mean computer 

segmented follicle volume of three sets of seed points and the manually determined 

segmentation result. The statistical results show that there were significant linear 

relationships between the aspiration result and the mean computer segmented follicle 

volume (y = 0.816x + 0.017, R2 = 0.902, P < 0.0001, see Figure 2.22); and between the 

manually defined result and the mean computer segmented follicle volume (y = 1.458x – 

0.010, R2 = 0.915, P < 0.0001, see Figure 2.23). The slopes of the regression lines show 

there was no perfect agreement between the aspiration follicle volume and the mean 

value of computer segmented follicle results by using three sets of seed points; or 

between the manually detected follicle result and the mean value of computer segmented 

follicle volume.  
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Figure 2.22 Comparison of the mean value of computer segmentation volume of three sets of seed 

points and follicle aspiration volume (y = 0.816x+0.017, R2 = 0.902, P < 0.0001). 
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Figure 2.23 Comparison of the mean value of computer segmentation volume of three sets of seed 

points and manually defined follicle volume (y = 1.458 x - 0.010, R2 = 0.915, P < 0.0001). 
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Meanwhile, the Pearson correlation coefficient and P value were used to compare the 

difference between each of the two values among aspiration volume, manually 

determined volume, and the computer segmented volume, see Table 2.3. According to 

Table 2.3, the overall aspiration volume, manually determined volume, and the mean 

computer segmented volumes were significantly and positively correlated to each other 

(aspiration volume vs. manual volume: r =0.965, P=0.0001; aspiration volume vs. mean 

computer volume: r=0.950, P=0.0001; manual volume vs. mean computer volume: 

r=0.961, P=0.0001). In different size categories, those three volumes were positively 

correlated to each other, except for the diameter category of 9~10mm (aspiration volume 

vs. manual volume: r=-0.629, P=0.5669; aspiration volume vs. computer volume: r = -

0.755, P=0.4553). And in the category of follicle diameter >11mm, there was perfect 

positive correlations between each other (r =1). When follicles were classified into two 

categories, both the small size follicles (≤ 5mm) and the large size follicles (> 5mm) 

have significant correlations among aspiration volume, manually detected volume and 

mean value of computer segmented follicle volumes by using three sets of seed points 

(P<0.05); except in small size follicles’ group, there was a tendency towards significant 

correlation between aspiration volume and mean value of computer segmented results 

(P=0.0657).   
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Table 2.3 Pearson Correlation coefficient (P value) for comparison of aspiration volume, manual 
volume and mean computer volume (the operator selected seed points, the randomly 
selected seed points group 1 and 2). 

 
 

Diameter 

categories 

Number 

of 

follicles 

Aspiration 

volume VS. 

Manual volume 

Aspiration 

volume VS. mean 

computer volume 

Manual volume 

VS. mean 

computer volume 

Overall 
(including all 
categories) 

138 
0.965 

(P<0.0001) 
0.950 

(P<0.0001) 
0.961 

(P<0.0001) 

≤ 3mm 54 
0.315 

(P<0.0203) 
0.157 

(P<0.2567) 
0.413 

(P<0.0019) 

3~4mm 36 
0.383 

(P<0.0213) 
0.731 

(P<0.0001) 
0.202 

(P<0.2369) 

4~5mm 12 
0.872 

(P<0.0002) 
0.924 

(P<0.0001) 
0.793 

(P<0.0021) 

5~6mm 9 
0.947 

(P<0.0001) 
0.327 

(P<0.3908) 
0.520 

(P<0.1516) 

6~7mm 7 
0.947 

(P<0.0012) 
0.888 

(P<0.0076) 
0.906 

(P<0.0049) 

7~8mm 4 
0.575 

(P<0.3105) 
0.898 

(P<0.0387) 
0.646 

(P<0.2387) 

8~9mm 4 
0.954 

(P<0.1935) 
0.517 

(P<0.6539) 
0.750 

(P<0.4604) 

9~10mm 3 
-0.629 

(P<0.5669) 
-0.755 

(P<0.4553) 
0.985 

(P<0.1116) 

10~11mm 7 
0.895 

(P<0.0065) 
0.896 

(P<0.0063) 
0.690 

(P<0.0860) 

>11mm 2 1 1 1 
     

Small Follicles 
( ≤ 5mm) 

102 
0.478 

(P<0.0000) 
0.183 

(P<0.0657) 
0.416 

(P<0.0000) 

Large Follicles 
(>5mm) 

36 
0.986 

(P<0.0000) 
0.942 

(P<0.0000) 
0.934 

(P<0.0000) 
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We also calculated the correction of follicle segmentation with both of the aspiration 

results and the manually determined result in different size categories. The definitions of 

the corrections are as follow: 

Aspiration correction = 
volumeaspiration

volumeaspirationvolumeSRG ||
1

−−               (2.15) 

Manual correction = 
volumedefinedmanually

volumedefinedmanuallyvolumeSRG ||
1

−−         (2.16) 

Table 2.4 and Table 2.5 show the aspiration correction and the manual correction of the 

follicles in different size categories.  

 In Table 2.4, there was no significant difference among the correction values by using 

three sets of seed points (P = 0.8791). There was no significant difference among 

different size categories of follicles (P = 0.2316).  

In Table 2.5, there was no significant difference among the correction values by using 

three sets of seed points (P = 0.9400). There was no significant difference among 

different size categories of follicles (P = 0.2917).  

For the analyses of position accuracy, the Dice coefficients of the follicles were used 

to evaluate the probability of overlap for the computer segmented region and the 

manually determined region. The average Dice coefficients between the computer 

segmented results by using the operator selected seed points and the manually detected 

result was 58.43%. Table 2.6 shows the Dice coefficients of the follicles in different size 

categories by using three sets of seed points. In Table 2.6 there was no significant 

difference among the Dice coefficients by using three sets of seed points (P = 0.7245). 

The mean value of Dice coefficients by using three sets of seed points was no 

significantly different among different size categories (column comparison, P ≥ 0.05).     
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Table 2.4 Aspiration correction within different follicle categories among the three groups of seed 
points.  

 
Randomly selected seed 

points Diameter 

categories 

Operator 

selected seed 

point 1 2 

Mean value of 

corrections by using 

three sets of seed 

points 

≤  3mm -0.219 ± 0.224  -0.899 ± 0.474  -0.790 ± 0.544  -0.636 ± 0.251  

3~4mm 0.067 ± 0.271  -0.276 ± 0.460  0.126 ± 0.220  -0.027 ± 0.191 

4~5mm 0.592 ± 0.093  0.545 ± 0.104  0.679 ± 0.093  0.606 ± 0.055  

5~6mm 0.289 ± 0.514  0.716 ± 0.084  -0.710 ± 1.36  0.099 ± 0.481  

6~7mm 0.765 ± 0.073  0.676 ± 0.116  0.689 ± 0.058  0.710 ± 0.048  

7~8mm 0.835 ± 0.060  0.793 ± 0.062  0.801 ± 0.051  0.810 ± 0.031  

8~9mm 0.360 ± 0.320  0.696 ± 0.074  0.794 ± 0.052  0.617 ± 0.116  

9~10mm 0.503 ± 0.119  0.432 ± 0.048  0.439 ± 0.089  0.458 ± 0.047  

10~11mm 0.850 ± 0.027  0.658 ± 0.108  0.735 ± 0.047  0.748 ± 0.042  

>11mm 0.700 ± 0.046  0.637 ± 0.066  0.398 ± 0.231  0.578 ± 0.086  

Repeated 

Measure 

ANOVA 

Analysis 

(Pro Mixed) 

 
 

Follicle category P = 0.2316 
 Three sets of seed points P = 0.8791  

Follicle category * Three sets of seed points P = 0.9976 
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Table 2.5 Manual correction within different follicle size categories among the three groups of  
seed points.  

 
Randomly selected seed 

points Diameter 

categories 

Operator 

selected seed 

point 1 2 

Mean value of 

corrections by using 

three sets of seed 

points 

≤  3mm 0.345 ± 0.062  -0.288 ± 0.346  0.033 ± 0.260  0.030 ± 0.146  

3~4mm 0.239 ± 0.274  0.249 ± 0.229  0.365 ± 0.099  0.284 ± 0.122  

4~5mm 0.570 ± 0.064  0.576 ± 0.078  0.511 ± 0.063  0.553 ± 0.039  

5~6mm 0.553 ± 0.138  0.539 ± 0.086  0.128 ± 0.474  0.407 ± 0.165  

6~7mm 0.665 ± 0.077  0.514 ± 0.106  0.678 ± 0.083  0.619 ± 0.052  

7~8mm 0.683 ± 0.084  0.717 ± 0.082  0.716 ± 0.074  0.705 ± 0.043  

8~9mm 0.805 ± 0.056  0.728 ± 0.086  0.673 ± 0.078  0.736 ± 0.042  

9~10mm 0.712 ± 0.011  0.753 ± 0.052  0.746 ± 0.029  0.737 ± 0.019  

10~11mm 0.578 ± 0.035  0.536 ± 0.098  0.604 ± 0.060  0.573 ± 0.038  

>11mm 0.633 ± 0.021  0.667 ± 0.078  0.790 ± 0.167  0.697 ± 0.056  

Repeated 

Measure 

ANOVA 

Analysis 

(Pro Mixed) 

 
 

Follicle category P = 0.2917 
 Three sets of seed points P = 0.9400  

Follicle category * Three sets of seed points P = 0.9984 
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Table 2.6 Dice coefficient within different follicle size categories among the three groups of seed 
points.  

 
Randomly selected seed 

points Diameter 

categories 

Operator 

selected seed 

point 1 2 

Mean value of 

Dice coefficients by 

using three sets of 

seed points 

≤  3mm 0.497 ± 0.028 0.478 ± 0.032  0.473 ± 0.031  0.482 ± 0.018 a 

3~4mm 0.566 ± 0.032  0.566 ± 0.035  0.575 ± 0.033  0.569 ± 0.019 a 

4~5mm 0.651 ± 0.049  0.580 ± 0.069  0.582 ± 0.068  0.604 ± 0.036 a 

5~6mm 0.604 ± 0.056  0.624 ± 0.069  0.545 ± 0.089  0.591 ± 0.041 a 

6~7mm 0.716 ± 0.033  0.586 ± 0.101  0.716 ± 0.031  0.673 ± 0.038 a 

7~8mm 0.754 ± 0.041  0.780 ± 0.042  0.783 ± 0.039  0.772 ± 0.022 a 

8~9mm 0.781 ± 0.062  0.799 ± 0.054  0.782 ± 0.057  0.787 ± 0.029 a 

9~10mm 0.803 ± 0.007  0.812 ± 0.051  0.823 ± 0.030  0.813 ± 0.017 a 

10~11mm 0.721 ± 0.029  0.648 ± 0.110  0.713 ± 0.044  0.694 ± 0.039 a 

>11mm 0.806 ± 0.031  0.779 ± 0.038  0.801 ± 0.010  0.795 ± 0.014 a 

Repeated 

Measure 

ANOVA 

Analysis 

(Pro Mixed) 

 
 

Follicle category P <0.0001 
 Three sets of seed points P = 0.7245  

Follicle category * Three sets of seed points P = 0.9911 

 
* Different superscripts (a, b, c, d, …) indicate difference in follicle category (column 
comparison) at P< 0.05. 
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The overall Dice coefficient is defined as follows:  

21

214

RRCM

RRCM
tcoefficienDiceOverall

+++
∩∩∩×

=                            (2.17) 

where, M  is the manually determined follicle region, C  is the computer segmented 

region by using the seed points selected by the operator, 1R  is the computer segmented 

region by using the first group of randomly selected seed points, 2R is the computer 

segmented region by using the second group of randomly selected seed points. 

The overall Dice coefficient in different size categories are shown in Table 2.7. The 

superscripts (a,b.c..) have the same meaning as in Table 2.1. The differences among size 

categories were compared with ANOVA followed by Tukey Post-hoc. Analysis with 

ANOVA indicated a statistically significant difference between follicle categories 

(overall ANOVA, P<0.0001). Differences of overall Dice coefficient among follicles 

size categories were significant (Tukey Post-hoc, P<0.05).  

 
Table 2.7  The overall Dice coefficient within different follicle size categories. 

 
Diameter categories Number of follicles Overall Dice coefficient 

≤  3mm 54 0.315 ± 0.034 a 

3~4mm 36 0.500 ± 0.043 b 

4~5mm 12 0.524 ± 0.097 c 

5~6mm 9 0.457 ± 0.101 d 

6~7mm 7 0.530 ± 0.139 e 

7~8mm 4 0.797 ± 0.035 f 

8~9mm 4 0.743 ± 0.084 g 

9~10mm 3 0.811 ± 0.022 h 

10~11mm 7 0.674 ± 0.118 i 

>11mm 2 0.772 ± 0.017 j 

Overall ANOVA P-value < 0.0001 

 
*Different superscripts indicate difference at P<0.05 using Tukey Post-hoc 
comparison. 
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2.5 Discussion 
 

This experiment is an evaluation of the performance of a 3D SRG follicle 

segmentation algorithm. It can be used on in vivo images too. In Figure 2.16, the result 

of performing the same program on a transrectal image sequence is given. The 

parameters are selected as follows: the threshold of the adaptive neighborhood median 

filter is: T = 0.6 ×  the mean value of the ovary volume; the mean intensity threshold for 

the first criterion is: m  = 0.7× the mean voxel of the 3D ovary dataset; the standard 

deviation threshold for the second criterion is: α  = the standard deviation of pixel 

intensity over the whole volume; threshold of  the volume comparison test is: C  = 1.3; 

and the threshold used to test whether the boundary leakage may occur is set to dT  = 20.  

        

        
            Figure 2.24  Follicle SRG segmentation result of an in vivo ultrasonographic dataset.  

 

From the statistical evaluation results (see 2.4 Results for detail) we found our SRG 

algorithm is not an excellent algorithm. Comparing the position accuracy of our method 

with other existing 2D follicle detection methods, we see that our algorithm was worse 

than the algorithm described in Reference [50, 51, 60], see Table 2.8. The Hausdorff 

distance obtained in our study is about 30 times bigger than those in Reference [50, 51]. 

The main reason is that in our study, huge boundary leakage problem happened not only 

on each single slice (x and y directions) but may also extend to the connected slices (z 

direction), sometimes even extend to the edge of the images. The Root mean square 

distance and average absolute distance of this study are about twice the values in 

Reference [50, 51, 60]. However, in our case, different from those papers, the algorithm 
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was performed on 3D datasets based on a sequence of water bath images (with huge 

boundary leakage problem and lots of dark areas on the images). 

 
Table 2.8 Comparison of Hausdorff distance, root mean squared distance and average absolute      

distance of our SRG algorithm with the results in algorithm described in [50, 51, 60]. 
Empty entries in the table indicate that a metric was not computed in the validation 
methodology for a particular algorithm. 

 

 
Hausdorff 
distance 

Root mean squared 
distance 

Average absolute 
distance 

Our SRG algorithm 39.9 ± 5.61 1.87 ± 1.36 0.84 ± 0.82 

Krivanek’s method 
[50] 

1.47± 0.83 0.59 ± 0.28  

Sarty’s  method [51] 1.64 ± 1.92 0.63 ± 0.36  

Potočnik’s method 
[60] 

  0.8 ± 0.15 

 

Since both of our SRG algorithm and the method in Potočnik’s paper [60] (see Chapter 

1.4.2 follicle segmentation for detail) are based on region growing algorithm, it is more 

reasonable to compare these two methods by using the same dataset due to the different 

data acquisition in those two methods. Therefore we performed Potočnik’s algorithm 

[60] on each 2D image slice in the test dataset of this study, then the segmented follicles 

were amalgamated to construct 3D volumes and compared with the 3D follicle volumes 

obtained by using our SRG algorithm. In contrast to Potočnik’s paper [60], the selection 

of threshold Th of the image smoothing step was set to 80% of the mean grey-level of 

the image instead of the mean grey-level of the image, because there were larger dark 

areas (caused by the waterbath imaging) on the images of this dataset than on the images 

used in Potočnik’s paper [60]. The threshold Tg was set to 70% of the mean grey-level 

of the smoothed image instead of the mean grey-level decreased by one standard 

deviation of grey-levels in the smoothed image. Because the mean grey-level is very low 

and standard deviation is very high in water bath images, if we kept use the same 

method as in paper [60] to get the Tg, the value of Tg will become very small or even 

negative which is totally invalid. The threshold Hs was set to ¼ of the standard deviation 
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of the image instead of half of it also because of the high standard deviation value in the 

images of our dataset. The parameters in the region growing step were the same as in 

Potočnik’s paper [60]. In the post processing step, the regions with area smaller than 50 

were removed instead of 220 in Potočnik’s paper [60], because the follicle in one slice 

could be very small even though it is big in 3D. The regions with area around 220 could 

be follicles with diameter of 2mm in one single slice, but the regions with area around 

50 emerge because of speckle noise. Compared with using the same parameters in paper 

[60], the follicle segmentation results are much better by using the parameters we 

selected here (better recognition rate and the boundary of the segmented follicles are 

more close to the real follicle boundaries).  

Potočnik’s method is a good method for recognizing follicles on 2D single images, but 

when performing on our water bath based images, lots of dark area around the ovary was 

misidentified as follicle area; lots of small follicles were not recognized, and huge 

boundary leakage happened on many follicles. In the worst case, the follicle region did 

not stop growing until touch the edge of the image. Moreover, the huge dark area on the 

images caused the program to require a long running time. The longest running time was 

about 1.5 hours for one slice of the images. Figure 2.25 shows the simple linear 

regression between the segmented follicle volumes and their related manually detected 

follicle volumes. The result shows that there was statistically significant linear 

relationship between them (y = 0.145x + 0.378, R2 = 0.150, P < 0.001). But there was no 

agreement between them (the slope of the linear regression line is 0.145). If comparing 

with our SRG segmentation result, we found our SRG algorithm has better agreement 

between the computer segmented follicle volumes and the manually detected follicle 

volumes (the slope of the linear regression line is 1.512). For comparing the position 

accuracy, Table 2.9 compared the Hausdorff distance, root mean squared distance and 

Dice coefficient of our SRG segmentation results with those obtained by using 

Potočnik’s method. From Table 2.9, we found our method obtained better Hausdorff 

distance, root mean squared distance and Dice coefficient compared with Potočnik’s 

method applied to our data set. 
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Figure 2.25 Comparison of the follicle segmentation volume by using the method in paper [60] on 
our data set with   the manually detected follicle volume (y = 0.145x + 0.378, R2 = 0.150, 
P < 0.001) 

 
 
Table 2.9 Comparison of  Hausdorff distance, root mean squared distance and Dice coefficient of 

our SRG algorithm with the distances obtained by using Potočnik’s method [60] on our 
data set.  

 

 

 

 

 
Hausdorff 
distance 

Root mean 
squared distance 

Mean Dice 
Coefficient 

Our SRG algorithm 39.9 ± 5.61 1.87 ± 1.36 58.43% 

Segmentation result 
by using Potočnik’s 

method [60] 
42.5 ± 8.90 8.58 ± 5.55 27.63% 
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In General, the SRG segmentation method we developed has significant advantages as 

well as some drawbacks.  

One of the most attractive advantages is that the method performs quite well on the 

images which have significant boundary leaking problems or very weak edges 

information. The second advantage is that it is simple. The algorithm does not have any 

complicated theory or mathematic computation associated with it. The third advantage is 

that the algorithm operates quickly on follicles where boundary leaking is not a problem; 

the algorithm doesn’t need to go through every pixel in the image. The speed of 

segmentation depends on the size of the follicle. But for the follicles for which boundary 

leakage occurs, the speed of the algorithm is relative to the condition of the boundary. A 

follicle which has less boundary leakage will result in less operation time compared with 

one which has a greater boundary leakage problem. The fourth advantage is that 

judicious selection of seed points will help to separate overlapping follicles (two 

follicles adjacent to each other separated by a very weak boundary), because the shape-

based criterion and the special growing neighborhood used in the algorithm can keep the 

growing region in ellipsoid shape and therefore keep it from growing into the adjacent 

follicle.  

On the other hand, the algorithm has three weaknesses. The first and perhaps most 

important weakness is that for the follicles which have great boundary leakage problems, 

it is not a fully repeatable segmentation for one follicle; the result depends on the 

selected seed point. Different seed points in one follicle cannot get totally same result 

(see Table 2.2). Sometimes, choosing a different seed point will improve the 

segmentation result. Second, this algorithm relies on several parameters that were 

determined experimentally, however, some can be selected automatically, such as the 

threshold of the program stop criterion P , although this comes at great computational 

expense. The mean value threshold and standard deviation threshold can be determined 

from the mean value and the standard deviation of pixel intensities over the whole 

volume. However, the standard deviation threshold still needs to be determined 

manually in order to use two times the standard deviation of the whole ovary volume or 

one time of the standard deviation of the whole volume. Finally, the algorithm can be 

performed in the ultrasound images sequence with different thickness of intervals 
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between each slice and also can work on a truly 3D (isotropic) dataset, but the 3D region 

growing neighborhood has to be modified the size so that it is symmetric. 

2.6 Conclusions and future work 
 

The research in this paper represents a new SRG algorithm applied to a constructed 3D 

ultrasonographic dataset. A new growing neighborhood is created here for matching a 

special ellipsoid shaped object in each iteration of the SRG algorithm. Growing the 

initial homogeneity region is controlled with two criteria: mean grey-level and standard 

deviation. A similar 3D compactness test is used as a third criterion. A global stopping 

criterion solves the boundary leakage problem in poor quality images. Quantitative 

comparison among the SRG segmentation results, the aspiration results, and the 

manually determined results indicate there were significant linear relationships between 

the computer segmentation volumes, the aspiration volumes, and the manually detected 

volumes. This supported the second hypothesis that there will be linear relationships 

between the computer-segmented follicle volumes, observer-defined follicle volumes 

and aspirated follicle volumes. We separated the total segmented follicles into 2 groups 

– the big size follicles (follicles with diameters > 5mm), and the small size follicles 

(follicles with diameters ≤ 5mm). After the evaluation by using the same validation 

methods, we found that there were significant relationships between the SRG segmented 

follicle volumes, the aspiration volumes and the manually detected follicle volumes in 

both of the groups of the small size follicles and the big size follicles. The third 

hypothesis that there will be an agreement between computer-segmented follicle 

volumes, observer-defined follicle volumes, and aspirated follicle volumes was rejected 

because the slopes of every regression lines were not close enough to 1. The average 

overlap correction rate between the computer segmented results and the manually 

detected result is 58.43%. This did not support the first hypothesis that the volume and 

position of follicles obtained by computer-assisted follicle segmentation will be similar 

to that obtained from the observer-defined follicle segmentation and aspirated follicle 

volumes (gold standards). The segmentation results are sensitive to the selected seed 

points (P<0.05), but the overlap correction rates are not sensitive to the selected seed 

points. This did not support the last hypothesis of this study that the follicle 
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segmentation results from the computer will not be sensitive to the position of the 

selected seed point. 

Clearly, this algorithm is a semi-automatic method. Changing it to a totally automatic 

method will become the basis of a future project where the seed points are arrived at by 

an automatic method. For the follicles which have boundary leaking problem, the SRG 

program needs to run several times with increased stop control value P. This is clearly 

time-consuming. Sometime, the whole program will run around 20~30 minute for one 

follicle due to this. A step which can make the program doesn’t need to go back to the 

seed point and run all over again is desired. The algorithm used an ellipsoid shaped 

growing neighborhood. This increases the computational complexity of the method. A 

better 3D construction method which can fill the distance between each slice of the 

sequence of ovarian ultrasound images to make the constructed volume close to the 

ground truth volume is desired. Moreover, the pre-processing step used in this algorithm 

was aimed at reducing the speckle noise in images. A sequence of other pre-processing 

methods could be added to this algorithm to improve smoothing of the images, 

potentially leading to better results. 
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Chapter 3  

General Discussion 

 

   The study described in this thesis can make an analysis of follicles not only in the 

horizontal and vertical planes but also in the frontal plane based on a sequence of 

ultrasonographic ovarian images. This method makes the computer-based measurement 

of volume available without using a 3D ultrasound imaging system. In this chapter, we 

will discuss the efficiency of this study and its limitations. 

3.1 Diameter measurement versus volume measurement 
 

In most current studies, follicles status is established based on the estimation of follicle 

diameter, whereas the desired follicular measurement is the true volume of the follicle 

[82-85].  The diameter of each follicle is measured in two or three axes [82, 84]. In two 

axes, the two diameters across the follicle are measured in the slice in which the follicle 

appears the largest [82]. The third diameter is measured at approximately right angles to 

the other two diameters [84]. The volume of the follicle then can be predicted by using 

the mean value of these diameters for spherical follicles or the longest and shortest 

diameters for ellipsoidal follicles [84]. This method works better for approximately 

spherical follicles than for those of other shapes [84]. However, in clinical research, 

there are many follicles having ellipsoidal or irregular shape, especially during 

superstimulated cycles, where there can be several follicles pressing against each other 

[84]. 2D diameter based volume measurement is usually a poor approximation in such 

cases. 

Although based on 2D images, the volume measurement method in this thesis does not 

need to consider the shape of the follicle. The volume is calculated by simply counting 

the number of voxels belonging to the computer segmented follicle. The physical 
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dimensions of each voxel are 3

128
1

2
1

8
1

8
1

mmmmmmmm =×× (1 pixel in each slice equal 

to mm
8
1

, while the interval between each slice is mm
2
1

, see Chapter 2 2.3.1 Data 

acquisition for detail). The accuracy of the measurement of follicle volume depends on 

the segmentation and the ultrasound scanning method. The noise inside the follicle, the 

follicle boundary’s condition, the seed’s position selected by the operator and the 

selection of the threshold value all affect the segmentation result. Moreover, accurate 

imaging of the organ, including accurately scanning each slice and moving the organ 

equidistantly and accurately, can affect the result of volume measurement.  

3.2 2D ultrasound measurements versus 3D ultrasound measurements  
 

Recently, 3D ultrasound has become more and more commonly used in follicle 

analysis. The most important reason for applying 3D ultrasound in the analysis of 

follicles is that it can give accurate information about the number of follicles, size, 

positions and response to hormonal stimulation [86].  

The size information of a follicle consists of the measurement of the follicle volume. 

Some studies have demonstrated that volume measured by using 3D freehand ultrasound 

is more correct than the calculation based on the conventional 2D diameter based  

measurement (see Section 3.1 Diameter measurement versus volume measurement in 

this Chapter) if the aspirated follicle volume is treated as a gold standard [87, 88]. 

However, it has not been proven that will contribute to the ovarian follicular research 

[89]. The volume measurement in this thesis is different from both of these methods just 

described. Further study should evaluate the accuracy and efficiency between the 3D 

ultrasound volume measurement and volume measurement introduced in this thesis to 

see whether or not the method described in this thesis can substitute for the 3D 

ultrasound measurement. 

3.3 The limitations of this research 
 

Another important requirement in clinical research is counting the number of follicles 

in the ovary. However, the method presented in this thesis will fail to provide this 
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information automatically because manually selecting the seed points in turn 

necessitates counting the number of follicles manually. This is a clear drawback of this 

method.  
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Chapter 4  

General Conclusions  

 

4.1  Summary 
 
   In Chapter 1 the main goal of the thesis and the relative background knowledge were 

presented. Section 1.1 described the purpose, objectives and hypotheses of this thesis 

and an overview of ovary anatomy and follicle development was provided in Section 

1.2, followed by a review of ovarian ultrasound (Section 1.3). This includes: a review of 

ultrasound imaging system (Section 1.3.1), an overview of ovarian ultrasound analysis 

methods (Section 1.3.2), a description of ovarian and follicular characters on the 

ultrasound images (Section 1.3.3), and a discussion of artifacts commonly occurring on 

ovarian ultrasound images (Section 1.3.4). Finally, background knowledge and 

literatures about the computer-based follicle segmentation methods were discussed 

(Section 1.4).  

Chapter 2 provided a detailed description of the algorithm in this study – the 3D 

seeded region growing based follicle segmentation algorithm. In this chapter, a special 

introductory focus on the 2D and 3D follicle segmentation methods was given (Section 

2.1). Then background knowledge of the 3D seeded region growing algorithm, as well 

as the advantages and disadvantages of using this method to approach follicle 

segmentation was described (Section 2.2.1) followed by a description of validation 

methods for evaluating the follicle segmentation results (Section 2.2.2). This was 

followed by the description of the data acquisition method (Section 2.3.1), the detail of 

the algorithm procedure (Section 2.3.2), and the evaluation methods for evaluating the 

results of follicular volume segmentation (Section 2.3.3). Then, the results of the 

algorithm and the evaluation were presented (Section 2.4) followed by a discussion 

about this algorithm and its results was presented (Section 2.5). At the end, a conclusion 

and some suggestions of future work about the algorithm were described (Section 2.6).  
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Chapter 3 discussed the volume measurement method based on the segmentation 

results of this study, compared it both with the 2D diameter based volume calculation 

(Section 3.1) and the volume measurement based on 3D ultrasonography techniques 

(Section 3.2). Then, the limitations of the method generated in this thesis were described 

(Section 3.3). 

4.2 Contributions 
 

The first contribution of this thesis is the development of an algorithm for segmenting 

volumetric ultrasound data. The algorithm approached a region-based segmentation 

method by determining the homogeneous grey-level of the object regions in combination 

with a shape-based criterion. The emphasis of the segmentation algorithm is on 

developing a shape-based criterion to terminate the region growing program correctly.  

The second contribution of this thesis is the developed validation method for 

evaluating the follicular segmentation results. The validation method compares the 

results among the computer segmentation volume, the manually detection volume, and 

the aspiration volume, instead of only considering the computer segmented result with 

either the manually detection result or the aspiration result. In the most recent study of 

computer assisted follicle segmentation, the results were either compared against the 

manual detection result (2D single image segmentation) or compared with the aspiration 

volume (3D image segmentation). Both of these two evaluation methods have their 

weakness. The comparison with manual detection results for 2D images is hard to assess 

the accuracy of the 3D volume, and the comparison with aspiration volume is hard to 

assess the shape and location of the follicles. This study uniquely evaluated the results 

with both of these two methods, and therefore, enhances the accuracy of the assessment. 

Moreover, we also provided an evaluation between the aspiration volume and the 

manual detection volume to study the effect of follicle volume measurement methods.  

The third contribution of this thesis is the addition of a program termination criterion 

for the region-growing program. The algorithm records the outer boundary pixels of the 

present growing region. If a certain percentage of the outer boundary pixels terminate to 

grow, the whole program stops. Moreover, the percentage is variable and determined by 

the program automatically.  
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The fourth contribution of this thesis is its development of an irregular growing 

neighborhood for the region growing algorithm. An ellipsoid shaped neighborhood 

( 31111 ××  pixels) was used in this thesis instead of the regular 6, 18, or 26 pixels’ 

neighborhood. 

Finally, after testing 138 follicles in 16 ovaries, the evaluation result shows: (1) There 

were significantly linear relationships between the computer segmentation volumes, the 

aspiration volumes, and the manually determined volumes. (2) We separated the total 

segmented follicles into 2 groups – the large size follicles (follicles with diameters 

>5mm), and the small size follicles (follicles with diameters ≤5mm). After the 

evaluation by using the same methods, we found that there were significant relationship 

between the SRG segmented follicle volume, the aspiration volumes, and the manually 

detected follicle volumes in both the groups of the small size follicles and the large size 

follicles (3) There was no agreement between each two results among the among the 

SRG segmentation results, the aspiration results and the manually detected follicle 

results (the slopes of the regression lines are not close to 1). (4) The segmentation results 

(both the size and position results) are sensitive to the selected seed points (P<0.05). (5) 

The average overlap correction rate between the computer segmented results and the 

manually detected result is 58.43%.  

For testing the hypotheses in this study, we found the first hypothesis that the volume 

and position of follicles obtained by computer-assisted follicle segmentation will be 

similar to that obtained from the observer-defined follicle segmentation and aspirated 

follicle volumes is not supported. The second hypothesis that there will be statistical 

linear relationships between computer-segmented follicle volumes, observer-defined 

follicle volumes and aspirated follicle volumes is supported. The third hypothesis that 

there will be an agreement between computer-segmented follicle volumes, observer-

defined follicle volumes, and aspirated follicle volumes is rejected. The last hypothesis 

that the follicle segmentation results from the computer will not be sensitive to the 

position of the selected seed point is rejected. 

4.3 Future work 
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Although this method developed the 3D follicle segmentation techniques, there are 

still further studies and development that are required. First, in this study, we succeeded 

in segmenting the follicles, measuring their volumes, and comparing the result volumes 

with both the aspiration volume and the manually detected follicular volume. However, 

whether this result can satisfy the clinical requirements is still unclear. Second, the 

algorithm developed in this thesis is obviously a semi-automatic method. To develop 

this method to a totally automatic segmentation method (automatically select seed points 

for each follicle) is desired; such a method can count the number of follicles in the ovary 

automatically. 
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Apendix A  

More segmentation results 

 
   Below are three more segmentation results by using SRG follicle segmentation 

algorithm. In each result, it includes the 3D construction result of the original ovarian 

ultrasound images, the sequence of images of the original ovarian images, the SRG 

segmentation result, the manually detected follicles result, and the 3D vision of the 

follicles segmentation result. The first two results are typical results, and the third one is 

the result obtained from a noise image (poor image quality).  

 
 

A.1  Two more typical results 
 

 
(a) 3D construction result of the cow ovary 
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Slice 8 Slice 12 Slice 16 
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(b)  The original images relative by slice number 
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(c) The segmentation result relative by slice number 

 

 

 



 94 

Slice 8 Slice 12 Slice 16 Slice 20 

Slice 24 Slice 28 Slice 32 Slice 36 

Slice 40 Slice 44 Slice 48 Slice 52 

Slice 56 Slice 60 Slice 64 Slice 68 

Slice 72 Slice 76   

 

(d) The manually determined follicles by an expert 
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(e) The 3D vision of the follicle segmentation result 

 

                     Figure A.1 The computer segmentation result of bovine ovary number 18. 
 

 

 

 

 

 

 

 

 

 

 



 96 

 
(a) 3D construction result of the cow ovary  
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(c) The result of our algorithm relative by slice number 
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(d) The manually determined follicles by an expert 
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(e) The 3D vision of the follicle segmentation result 

 

                       Figure A.2 The computer segmentation result of bovine ovary number 15. 
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A.2  Noise image 
 

 
(a) The construction result of the cow ovary 
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(c) The result of our algorithm relative by slice number 
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(d) The manually determined follicles by an expert 
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(e) The 3D vision of the follicle segmentation result 

 

                     Figure A.3 The computer segmentation result of bovine ovary number 09. 
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Apendix B  

Software Documents 

 

Below are the codes of SRG algorithm. The contents of the software documents are as 
following: 
 
 
 

 
 

B.1  Main Program 
 

clear all 
close all 
 
% This is the program that segment each follicle from a volume of a bovine ovary. 
 
function [Lnew,Lcompare] = fsegment(Seeds)  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The input data is an array of the index of seed points. For example, the form of      % 
% input array is:  Seeds = [1751838, 1919445, 3034747, 2736132, 2465981].             %                                                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 
% Location of data files. 
 
filebase = '/tmp_mnt/student/lvq533/Desktop/1-30-01/cow ovary 010';  
 
% Load the images and construct the images into a volume of the bovine ovary. 

Region growing program 

Main Program 

Adaptive median 
filter 

The head file of the 
MATLABMEX file  

The C program of the 
seeded region growing 
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startFram = 0; 
endfram = 91; 
for i = startFram:endfram 
  if i <= 9 
    filename = filebase,num2str('0'),num2str(i,'%2d'),num2str('.BMP')]; 
  else 
    filename = [filebase,num2str(i,'%2d'),num2str('.BMP')]; 
  end 
  temp = imread(filename); 
  temp = rgb2gray(temp); 
  rect =[120 120 350 245]; 
  temp = imcrop(temp,rect); 
  j = i+1; 
  image(:,:,j) = temp; 
end 
 
%Medican filter preprocessing (see subfunction of the median filter) 
[m,n,o] = size(image); 
Imed = adamedfilt(image); 
Imed = uint8(Imed); 
 
%Calculate the mean grey level and the standard deviation of the ovary  
%volume 
Mean = mean(Imed(:))*0.7; 
Std = 20; 
 
%Calculate the number of seed points. 
a = size(Seeds,2); 
 
%Region growing, setup and run the MATLAB MEX file of the 3D region  
%growing(see subfunction of regiongrow.m and its MEX files) 
image_mod = image(:,:,1); 
mex regiongrow_vs.cpp neighborhood.cpp 
Lnew = zeros(m,n,o); 
Ltmp = zeros(m,n,o); 
volume =[]; 
 
Lnew = regiongrow(Imed,Seeds(1),40,Mean,Std,m,n,o,image_mod,0,8,6); 
if Lnew(1) == 3 || Lnew(2) == 3||Lnew(3) == 3 
  Thresh = 0; 
  while  Lnew(1) == 3 || Lnew(2) == 3||Lnew(3) == 3 
   Thresh = Thresh+1; 
   Th = 0.1*Thresh; 
   Lnew = regiongrow(Imed,Seeds(1),40,Mean,Std,m,n,o,image_mod,Th,8,6); 
  end 
end 
Lnew = imfill(Lnew,8,'holes'); 
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%post-processing part by smoothing the segmentation result (selectable) 
Lnew = smooth3(Lnew);  
 
%continue to segment the other follicles         
for i = 2:a 
   Ltmp = regiongrow(Imed,Seeds(i),40,Mean,Std,m,n,o,image_mod,0,8,6); 
   if Ltmp(1) == 3 || Ltmp(2) == 3||Ltmp(3) == 3 
      Thresh = 0; 
      while  Ltmp(1) == 3 || Ltmp(2) == 3||Ltmp(3) == 3 
         Thresh = Thresh+1; 
         Th = 0.1*Thresh; 
         Ltmp = regiongrow(Imed,Seeds(i),40,Mean,Std,m,n,o,image_mod, 
                Th,8,6); 
      end 
   end 
      Ltmp = imfill(Ltmp,8,'holes'); 
      Ltmp = smooth3(Ltmp); 
      Lnew = imadd(Lnew,Ltmp);        
End 
 
%3D segmentation result visilization. 
figure, isosurface(Lnew,0.5), title('Follicles Segmentation') 
xlabel x, ylabel y, zlabel z 
view(3), camlight, lighting gouraud 
 
%Write the result into a result fold 
filebase2 = '/tmp_mnt/student/lvq533/Desktop/1-30-01/segmentation/'; 
for k = 1:o 
    Tem = Lnew(:,:,k);     
    se1 = strel('disk',6); 
    Tem2 = imclose(Tem,se1); 
    I = image(:,:,k); 
    E = edge(Tem2,'sobel'); 
    Le = uint8(255.*E); 
    Lcom = imadd(Le,I); 
    figure,imshow(Lcom); 
    filename = [filebase2,num2str(k,'%2d'),num2str('.jpg')]; 
    imwrite(Lcom,filename,'jpg'); 
    Lcompare(:,:,k) = Lcom; 
End 
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B.2  Subfunctions 

 B.2.1 Adaptive median filter 

 
function M = adamedfilt(image) 
 
%This is a Matlab subfunction that smooth the 3D volume using adaptive  
%median filter. 
 
%Input is the 3D ovary volume. 
[x,y,z] = size(image); 
M = zeros(size(image)); 
 
for i = 1:z 
    Tem = image(:,:,i); 
    T = mean(Tem(:))*0.4; 
    Tem1 = Tem; 
    Tem2 = Tem; 
    t1 = find(Tem1 >= T); 
    Tem1(t1) = 0; 
     
    % For the pixels greater than the threshod T, a 11*11 windows is used. 
    Medt1 = medfilt2(Tem1,[11 11]); 
    t2 = find(Tem2 < T); 
    Tem2(t2) = 0; 
     
    
    % For the pixels less than the threshod T, a 5*5 windows is used. 
    Medt2 = medfilt2(Tem2, [5 5]); 
    Med1 = imadd(Medt1,Medt2); 
     
    % The median filter smoothing is proformed twice. 
    Tem3 = Med1; 
    Tem4 = Med1; 
    t3 = find(Tem3 >= T); 
    Tem3(t3) = 0; 
    Medt3 = medfilt2(Tem3,[11 11]); 
    t4 = find(Tem4 < T); 
    Tem4(t4) = 0; 
    Medt4 = medfilt2(Tem4, [5 5]); 
    Med = imadd(Medt3,Medt4); 
    M(:,:,i) = uint8(Med);     
end 
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 B.2.2 Region growing 

 
function L = regiongrow(varargin) 
 
%This is the 3D region growing based follicle segmentation program. 
% 
%L computes a label matrix identifying the grown region. The elements  
%abeled 1 belong to the ROI of the follicle. 
%L = regiongrow(A,conn) computes the growing region using the specified  
%3D connectivity.   
%   conn may have the following scalar values: 
% 
%       6     three-dimensional six-connected neighbourhood 
%       18    three-dimensional 18-connected neighbourhood 
%       26    three-dimensional 26-connected neighbourhood 
% 
%L = regiongrow(A,conn2) computes the growing region using the  
%specified 2D connectivity.   
%   conn2 may have the following scalar values:   
% 
%       4    two-dimensional 4-connected neighborhood 
%       8    two-dimensional 8-connected neighborhood 
% 
% Input-output specs 
% ================================================ 
% A     - full, real, numeric, logical 
%       +/- Inf OK, but NaNs not allowed 
%       empty OK 
%        
% Seed  - the index of seed point 
% 
% Dif   - the threshold of the difference between two adjacent pixels. 
%         In this research, it is a constant number.  
% 
% Mean0 - the threshold of the mean grey level of ROI. 
% 
% Sd0   - the threshold of the standard deviation of ROI. 
% 
% numx, numy, numz - the size of the input image A. 
% 
% A2    - a two dimension matrix, same size of each slice in volume A. 
% 
% Thresh- the parameter of the program stop crition P. 
% 
% L     - full, double array, same size as A 
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[A,Seed,Dif0,Mean0,Sd0,numx,numy,numz,A2,Thresh,conn2,conn] =       
                                                                                                    parse_inputs(varargin{:}); 
   
L = regiongrow_vs(A,Seed,Dif0,Mean0,Sd0,numx,numy,numz,A2,Thresh,conn2, 
      conn); 
 
function [A,Seed,Dif0,Mean0,Sd0,numx,numy,numz,A2,Thresh,conn2,conn] =   
                                                                                                          parse_inputs(varargin) 
   
iptchecknargin(11,12,nargin,mfilename); 
 
A = varargin{1}; 
iptcheckinput(A,{'numeric' 'logical'}, {'real' 'nonsparse'}, ... 
              mfilename, 'A', 1); 
Seed = varargin{2}; 
Dif0 = varargin{3}; 
Mean0 = varargin{4}; 
Sd0 = varargin{5};  
numx = varargin{6}; 
numy = varargin{7}; 
numz = varargin{8}; 
A2 = varargin{9}; 
Thresh = varargin{10}; 
conn2 = varargin{11}; 
 
if nargin < 12 
    conn = conndef(ndims(A), 'maximal'); 
else 
    conn = varargin{12}; 
    if isa(conn,'strel') 
        conn = getnhood(conn); 
    else 
        iptcheckconn(conn, mfilename, 'CONN', 12); 
    end 
end 

 B.2.3 The head file of the Matlab MEX file  

#include "neighborhood.h" 
#include "regiongrow_vs.h" 
#include "mex.h" 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//  
// REGIONGROW_VS MEX-file 
// 
// Input-output specs: see regiongrow.m 
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//////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void check_inputs(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{ 
    if (nrhs != 12) 
    { 
        mexErrMsgIdAndTxt("Images:regiongrow_vs:invalidNumInputs", "%s", 
                                           "REGIONGROW_VS needs 11 input arguments."); 
    } 
} 
 
////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
extern "C" 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{ 
    void *I; 
    double *L,*Seed,*Mean0,*Sd0,*Dif0,*num_x,*num_y,*num_z, *I2,  
           *Thresh; 
    int num_elements1; 
    const int *input_size, *input_size2; 
    int ndims,ndims2; 
    mxClassID class_id; 
    Neighborhood_T nhood, nhood2; 
    NeighborhoodWalker_T walker, walker2; 
 
    check_inputs(nlhs, plhs, nrhs, prhs); 
 
    if (mxIsLogical(prhs[0])) 
    { 
        I = mxGetLogicals(prhs[0]); 
    } 
    else 
    { 
        I = mxGetData(prhs[0]); 
    } 
    Seed = mxGetPr(prhs[1]); 
    Dif0 = mxGetPr(prhs[2]); 
    Mean0 = mxGetPr(prhs[3]); 
    Sd0 = mxGetPr(prhs[4]); 
    num_x = mxGetPr(prhs[5]); 
    num_y = mxGetPr(prhs[6]); 
    num_z = mxGetPr(prhs[7]); 
    num_elements1 = mxGetNumberOfElements(prhs[0]); 
    class_id = mxGetClassID(prhs[0]); 
    input_size = mxGetDimensions(prhs[0]); 
    ndims = mxGetNumberOfDimensions(prhs[0]); 
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    I2 = mxGetPr(prhs[8]); 
    input_size2 = mxGetDimensions(prhs[8]); 
    ndims2 = mxGetNumberOfDimensions(prhs[8]); 
     
    Thresh = mxGetPr(prhs[9]); 
     
    plhs[0] = mxCreateNumericArray(ndims, input_size, mxDOUBLE_CLASS,  
              mxREAL); 
    L = mxGetPr(plhs[0]); 
 
    nhood = nhMakeNeighborhood(prhs[11],NH_CENTER_MIDDLE_ROUNDDOWN); 
    walker = nhMakeNeighborhoodWalker(nhood,input_size,ndims, 
             NH_SKIP_CENTER); 
     
    nhood2 =nhMakeNeighborhood(prhs[10], 
                                                         NH_CENTER_MIDDLE_ROUNDDOWN); 
    walker2 = nhMakeNeighborhoodWalker(nhood2,input_size2,ndims2, 
                                                                       NH_SKIP_CENTER); 
     
      
    switch (class_id) 
    { 
    case mxLOGICAL_CLASS: 
        compute_regiongrow((mxLogical *)I,Seed,Dif0,Mean0,Sd0, 
                                           num_elements1,ndims,input_size,num_x, 
                                           num_y,num_z,walker,walker2, Thresh,L); 
        break;         
    case mxUINT8_CLASS: 
        compute_regiongrow((uint8_T *)I,Seed, Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x, 
                                          num_y,num_z,walker, walker2,Thresh,L); 
        break;         
    case mxUINT16_CLASS: 
        compute_regiongrow((uint16_T *)I,Seed, Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x, 
                                          num_y,num_z,walker, walker2,Thresh,L); 
        break; 
    case mxUINT32_CLASS: 
        compute_regiongrow((uint32_T *)I, Seed,Dif0,Mean0,Sd0, 
                                           num_elements1,ndims,input_size,num_x, 
                                           num_y,num_z,walker, walker2, Thresh,L); 
        break; 
    case mxINT8_CLASS: 
        compute_regiongrow((int8_T *)I,Seed, Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x,  
                                          num_y,num_z,walker, walker2, Thresh,L); 
        break; 
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    case mxINT16_CLASS: 
        compute_regiongrow((int16_T *)I,Seed, Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x, 
                                          num_y,num_z,walker, walker2, Thresh,L); 
        break; 
    case mxINT32_CLASS: 
        compute_regiongrow((int32_T *)I, Seed,Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x,   
                                          num_y,num_z,walker, walker2,Thresh,L); 
        break;         
    case mxSINGLE_CLASS: 
        do_nan_check((float *)I, num_elements1); 
        compute_regiongrow((float *)I,Seed, Dif0,Mean0,Sd0, 
                                           num_elements1,ndims,input_size,num_x, 
                                           num_y,num_z,walker, walker2, Thresh,L); 
        break; 
    case mxDOUBLE_CLASS: 
        do_nan_check((double *)I, num_elements1); 
        compute_regiongrow((double *)I,Seed, Dif0,Mean0,Sd0, 
                                          num_elements1,ndims,input_size,num_x, 
                                          num_y,num_z,walker, walker2,Thresh,L); 
        break;        
    default: 
        mxAssert(false, ""); 
        break; 
    } 
 
    nhDestroyNeighborhood(nhood); 
    nhDestroyNeighborhoodWalker(walker); 
     
    nhDestroyNeighborhood(nhood2); 
    nhDestroyNeighborhoodWalker(walker2); 
} 

 B.2.4 The C program of the Matlab MEX file  

#ifndef _REGIONGROW_VS_H 
#define _REGIONGROW_VS_H 
 
#define INIT 0 
#define FICTITIOUS -1 
 
#include "mex.h" 
#include "neighborhood.h" 
#include "queue.h" 
#include "math.h" 
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////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
template<typename _T> 
inline void do_nan_check(_T *F,int num_elements) 
{ 
    for (int p = 0; p < num_elements; p++) 
    { 
        if (mxIsNaN(F[p])) 
        { 
            mexErrMsgIdAndTxt("Images:regiongrow_vs:expectedNonNaN", 
                              "%s", 
                              "Input image may not contain NaNs."); 
        } 
    } 
}      
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//                                                                                                                                     // 
// Algorithm: see Chapter 2 3D Follicle Segmentation of Ultrasound Volume of        // 
//                                           Bovine ovary                                                                    // 
//                                                                                                                                     // 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
template<typename _T> 
void compute_regiongrow(_T *I, double *Seed,double *Dif0,double *Mean0, 
                       double *Sd0,int N,int ndims, 
                       const int *input_size,double *num_x, 
                       double *num_y,double *num_z, 
                       NeighborhoodWalker_T walker,   
                       NeighborhoodWalker_T walker2,double *Thresh, 
                       double *L) 
{  
    Queue<int32_t> SeedQueue; 
    double         Volume; 
    double         Label = (double) 1, mean, meanold, standard,  
                   standardold; 
    int            non_compact,k,p,q,dxstop=0,dystop=0,dzstop=0; 
    _T             D1,D2; 
    int            Dif,Mn,Sd,num_of_growing; 
    int            xs,ys,zs,zp,xp,yp,rp,xv,yv,zv,rv,rz,b,c,rq,  
                   A,r,circlesnumber,u,w,o; 
    double         xz,yz,zz,xq,yq,zq,zqmin,zqmax,yqmin,yqmax, 
                   xqmin,xqmax,xqmean,yqmean,zqmean,ind1,ind2,   
                   ind3,tempx,tempy,tempz,slicearea,z,v,distance, 
                   distancemax,VolumeSphere,zaxis,yaxis,xaxis,axismax, 
                   dx,dy,dz,distance2,distancemax2,VolumeSphere2, 
                   Comp,Length,Length2; 
    // If the input array is empty, there's nothing to do here.      



 116 

    if (N == 0) 
    { 
        return; 
    }     
           
  // Initialize output array. 
   for (k = 0; k <N; k++) 
   {    
       L[k] = INIT; 
   }   
    
  
  // Initialize the seed points queue.     
    SeedQueue.initialize(32);  
 
 // Get the boundary pixels of the region need to be grew.  
    Volume = 1; 
    SeedQueue.put(FICTITIOUS); 
     
    L[(int)Seed[0]] = Label; 
    mean = I[(int)Seed[0]]; 
    standard = 0; 
    SeedQueue.put((int)Seed[0]); 
         
 
//Change index value to subindex,like ind2sub in Matlab     
    slicearea = (num_x[0])*(num_y[0]); 
     
    zs = (int)Seed[0]/(int)slicearea+1; 
    ys = ((int)Seed[0]%(int)slicearea)/((int)num_x[0])+1; 
    xs = ((int)Seed[0]%(int)slicearea)%((int)num_x[0]); 
 
//Use to find the minimum axis of each direction  
    zqmin = zs; 
    zqmax = zs; 
    yqmin = ys; 
    yqmax = ys; 
    xqmin = xs; 
    xqmax = xs; 
     
    zqmean = zs; 
    yqmean = ys; 
    xqmean = xs; 
//initionalize the number of pixels who pass the homogeneous test but //doesn't pass the 
compactness test  
    
    non_compact = 0; 
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    distancemax = 1; 
     
    A = 0;         
 
// Region growing  
     
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//The code following is the region growing process  
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
while (true) 
 {       
   p = SeedQueue.get(); 
   if (p == FICTITIOUS) 
    { 
       if (SeedQueue.getSequenceLength() <= Length*Thresh[0]) 
           { 
              SeedQueue.freeSequence(); 
              break;   
           } 
           else if (SeedQueue.getSequenceLength() == non_compact) 
           { 
              SeedQueue.freeSequence(); 
              break; 
           }                     
           else 
           {  
              A++; 
              non_compact = 0;       
              SeedQueue.put(FICTITIOUS);                   
              circlesnumber = 0;   
              while(true) 
              { 
                p = SeedQueue.get(); 
                if (p == FICTITIOUS) 
                { 
                  circlesnumber++; 
                  VolumeSphere2 = 4/3*3.1415926*(distancemax2-1) 
                                  *(distancemax2-1)*(distancemax2-1)/6; 
                  Comp = Volume/VolumeSphere; 
                  if ((circlesnumber > 6) || (Comp > 2.15) 
                     ||(SeedQueue.getSequenceLength() == 0)) 
                  { 
                    SeedQueue.freeSequence(); 
                    Length2 = 0; 
                    break; 
                  } 
                    Length2 = 0; 
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                    SeedQueue.put(FICTITIOUS); 
                    p = SeedQueue.get(); 
               } 
           
               zp = (int)p/(int)slicearea+1; 
               u = p - (int)slicearea*(zp-1); 
                  
               nhSetWalkerLocation(walker2, u); 
               while (nhGetNextInboundsNeighbor(walker2, &r, NULL))  
               {   
                  w = r +(int)slicearea*(zp-1);                          
                  meanold = mean; 
                  standardold = standard; 
                  mean = (Volume*meanold + I[w])/(Volume+1); 
                  standard = standard+(I[w]-mean)*(I[w]-mean) 
                             +Volume*(mean-meanold)*(mean-meanold); 
                
                  D1 = I[w]; 
                  D2 = I[p]; 
                  Dif = abs((int)D1 - (int)D2); 
                  Mn = abs((int)I[w] - (int)meanold);             
                  Sd = abs((int)standard - (int)standardold); 
                  if ((L[w] != Label) && ((double)Dif < Dif0[0]) &&   
                     ((double)Mn < Mean0[0]) &&  
                     ((double)Sd < Sd0[0])) 
                   { 
                      distance2 = sqrt((zq-zs)*(zq-zs)+(yq-ys) 
                                  *(yq-ys)+(xq-xs)*(xq-xs)); 
                      if (distance2 > distancemax2) 
                      { 
                         distancemax2 = distance2; 
                      }                               
                      L[w] = Label; 
                      SeedQueue.put(w); 
                      Volume++; 
                      Length2++; 
                   } 
               } 
           }   
                   
           SeedQueue.initialize(32);         
                   
           for (k = 0; k <N; k++) 
           {    
              if(L[k] == Label) 
              {      
                 nhSetWalkerLocation(walker, k); 
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                 while (nhGetNextInboundsNeighbor(walker, &q, NULL)) 
                 {       
                    if(L[q] != Label) 
                    { 
                       SeedQueue.put(k); 
                       break; 
                    }   
                  }  
               } 
            }  
            Length = SeedQueue.getSequenceLength();                       
            SeedQueue.put(FICTITIOUS); 
            p = SeedQueue.get(); 
         } 
      }            
                                   
      zp = (int)p/(int)slicearea+1; 
      yp = ((int)p%(int)slicearea)/((int)num_x[0])+1; 
      xp = ((int)p%(int)slicearea)%((int)num_x[0]);  
                                     
      nhSetWalkerLocation(walker, p); 
      while (nhGetNextInboundsNeighbor(walker, &q, NULL))                         
      {    
         zq = (int)q/(int)slicearea+1; 
         yq = ((int)q%(int)slicearea)/((int)num_x[0])+1; 
         xq = ((int)q%(int)slicearea)%((int)num_x[0]); 
          
         //Only when the centroid point of growing region did not move   
         //too far away from the seed point the growing can continue. 
 
         if ((dxstop==0 && dystop==0 && dzstop==0) 
            ||( dxstop==1 && xq==xp && dystop==0 && dzstop==0) 
            ||(dystop==1 && yq==yp && dxstop==0 && dzstop==0) 
            ||(dzstop==1 && zq==zp && dxstop==0 && dystop==0) 
            ||(dxstop==1 && dystop==1 && xp==xq && yp==yq) 
            ||(dxstop==1 && dzstop==1 && xp==xq && zp==zq) 
            ||(dystop==1 && dzstop==1 && yp==yq && zp==zq)) 
         {  
            //Calculate the new mean value and mean standard  
            meanold = mean; 
            standardold = standard; 
            mean = (Volume*meanold + I[q])/(Volume+1); 
            standard = standard+(I[q]-mean)*(I[q]-mean) 
                       +Volume*(mean-meanold)*(mean-meanold);                
            D1 = I[q]; 
            D2 = I[p]; 
            Dif = abs((int)D1 - (int)D2); 
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            Mn = abs((int)I[q] - (int)meanold);             
            Sd = abs((int)standard - (int)standardold); 
                    
            if ((L[q] != Label) && ((double)Dif < Dif0[0]) 
               && ((double)Mn < Mean0[0]) && ((double)Sd < Sd0[0]))                        
            {                 
                           
               //Calculate the offset of the maximum axis of grown  
               //region in different direction x,y,z                
               dxstop = 0; 
               dystop = 0; 
               dzstop = 0;                    
                    
               if (zq < zqmin) 
               { 
                  zqmin = zq; 
               } 
               if (zq > zqmax) 
               { 
                  zqmax = zq; 
               } 
               if (yq < yqmin) 
               { 
                  yqmin = yq; 
               } 
               if (yq > yqmax) 
               { 
                  yqmax = yq; 
               } 
 
               if (xq < xqmin) 
               { 
                  xqmin = xq; 
               } 
               if (xq > xqmax) 
               { 
                  xqmax = xq; 
               }                               
               zaxis = zqmax - zqmin; 
               yaxis = yqmax - yqmin; 
               xaxis = xqmax - xqmin; 
                    
               zqmean = zaxis/2 + zqmin; 
               yqmean = yaxis/2 + yqmin; 
               xqmean = xaxis/2 + xqmin; 
               //Calculate the offset between new centroid point and  
               //seed point                   
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               dz = abs((int)zqmean - (int)zs); 
               dy = abs((int)yqmean - (int)ys); 
               dx = abs((int)xqmean - (int)xs); 
                    
               //If the offset is too big, then the whole region  
               //growing program stop q            
               if(dx >= 10) 
               { 
                  dxstop = 1; 
               } 
               if(dy >= 10)  
               { 
                  dystop = 1; 
               }                    
               if(dz >= 5) 
               { 
                  dzstop = 1; 
               } 
 
               //Calculate the maximum distance between the boundary  
               //pixel and seed point 
               distance = sqrt((zq-zs)*(zq-zs)+(yq-ys)*(yq-ys) 
                          +(xq-xs)*(xq-xs)); 
               if (distance > distancemax) 
               { 
                  distancemax = distance; 
               } 
                                                          
               //Calculate the volume of the ball which the radius   
               //equal to the maximum distance between the boundary  
               //pixel and seed point 
               VolumeSphere = 4/3*3.1415926*(distancemax-1) 
                              *(distancemax-1)*(distancemax-1)*0.15; 
                    
               //Compactness test(compare the real volume with the  
               //calculate global volume)             
               if (Volume <= 3000) 
               { 
                  if(Volume/VolumeSphere < 1.8)  
               {   
                  L[q] = Label; 
                  SeedQueue.put(q); 
                  Volume++;                        
               } 
               else 
               { 
                     SeedQueue.put(p); 
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                     non_compact++; 
                }   
          } 
          else 
          { 
              if(Volume/VolumeSphere < 1.3)  
              {   
                 L[q] = Label; 
                 SeedQueue.put(q); 
                 Volume++;                        
              } 
              else 
              { 
                 SeedQueue.put(p); 
                 non_compact++; 
              }  
           }  
        } 
        else 
        { 
            mean = meanold; 
            standard = standardold; 
        }  
     } 
  } 
} 
                        
//Use to check whether leaking happened or not, if the centroid point //move awary too 
much from the seed point, that means leak happened. 
L[0] = dxstop+2; 
L[1] = dystop+2; 
L[2] = dzstop+2; 
       
mxAssert(SeedQueue.getSequenceLength() == 0, "");  
}  
#endif //_REGIONGROW_VS_H 
 
*Note: For running the program, all of the software programs should be put in the 
same directory. Moreover, some related Matlab build in functions need to be put in 
the same directory. The functions as following: neighborhood.h, neighborhood.cpp, 
iptutil.h, iptutil_cpp.h, queue.h, sequencemex.h. 


