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Abstract

Conventional ultrasonographic examination of thevit® ovary is based on a
sequence of two-dimensional (2D) cross-section @ma@ay-to-day estimation of the
number, size, shape and position of the ovarialiclies is one of the most important
aspects of ovarian research. Computer-assistadléolegmentation of ovarian volume
can relieve physicians from the tedious manualdiiete of follicles, provide objective
assessment of spatial relationships between theaovstructures and therefore has the
potential to improve accuracy. Modern segmentagimcedures are performed on 2D
images and the three-dimensional (3D) visualizatbriollicles is obtained from the
reconstruction of a sequence of 2D segmented Ifdlic

The objective of this study was to develop a semdmatic 3D follicle segmentation
method based on seeded region growing. The 3D eatatagere acquired from a
sequence of 2D ultrasound images and the ovamantstes were segmented from the
reconstructed ovarian volume in a single step. dets is placed manually in each
follicle and the growth of the seed is controllgdtbe algorithm using a combination of
average grey-level, standard deviation of the sitgn newly-developed volumetric
comparison test and a termination criterion. Ongartant contribution of this algorithm
is that it overcomes the boundary leakage problénfiollicles of conventional 2D
segmentation procedures. The results were validaf@ihst the aspiration volume of
follicles, the manually detected follicles by arpert and an existing algorithm.

We anticipate that this algorithm will enhance ifallar assessment based on current
ultrasound techniques in cases when large numbérdolbcles (e.g. ovarian

superstimulation) obviate accurate counting and sizasurement.
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Chapter 1

General Introduction

1.1 Thesis purpose and objectives

The purpose of this thesis is to develop a threeedsional segmentation algorithm for
separating follicle volumes from other structuresovarian ultrasound images. In the
large animal research field, a complete understanaf ovarian dynamics is crucial for
cattle reproduction research and management [H.sTidy of the internal reproductive
tract of large domestic animals and its dynamiovagtbecame possible with the advent
of real-time ultrasound imaging techniques [2]. &pdultrasound imaging is routinely
used to monitor the ovaries and dynamic changésllioles during the estrous cycle [2-
12]. Most ultrasonographic ovarian analyses of molpgical and position estimation of
follicles are done using two dimensional imagesoilder to increase the accuracy of
follicle counting, size measurement and improve tiseialization for assessing spatial
relationships, 3D follicle analysis is desired. @at computer-based procedures to
separate follicle volumes from other ovarian sues (follicle segmentation) are
applied on 2D ultrasound images which are thenngtcocted to obtain 3D information
(2D segmentation). The goal of this research idaweelop a 3D follicle segmentation
method which is applied directly to a reconstrucd& volume of the ovary obtained
from a series of 2D images. The specific objectiviethis study are:

(1) Develop a 3D follicle segmentation algorithm to lgpmn a 3D dataset
constructed from a sequence of 2D images.
(2) Implement the algorithm in software and evaluatgé#rformance.

The 3D follicle segmentation method used here sg8an the seeded region growing
method. The growth of the region starts from a naljselected seed point inside the
follicle and terminates based on pre-defined sedtop conditions. The hypotheses of
this study are:



(1) The volume and position of follicles obtained bymputer-assisted follicle
segmentation will be similar to that obtained frdme observer-defined follicle
segmentation and aspirated follicle volume (gotshdards).

(2) There will be linear relationships between compsegmented follicle
volumes, observer-defined follicle volumes and epd follicle volumes.

(3) There will be an agreement (perfect agreement scoaly if the points in the
graph lie along the line of equality, which thep®oof the line is close to one
[13]) between computer-segmented follicle volumasserver-defined follicle
volumes and aspirated follicle volumes.

(4) The computer-assisted follicle segmentation reswilisnot be sensitive to the
position of the selected seed point.

We used the bovine model to develop the technigeadse this ultrasound model is
well developed and procedures to assess the dysashiovarian follicles are well
standardized [14]. However, the method developethis study is applicable to all
mammalian species including humans.

The details of the segmentation method will be dieed in Chapter Two. A general
discussion of the advantages and limitations o thethod in ultrasonographic ovarian
analysis is provided in Chapter Three. Finally, egahconclusions and suggestions for
future work are presented in Chapter Four. The metea of this chapter is devoted to
general overview of follicular development in coWwd); ultrasound imaging techniques
in ovarian follicle research (1.3); and, some backgd knowledge of the computer-
assisted follicle segmentation methods (1.4).

1.2 Bovine ovary

1.2.1 Ovarian anatomy

The female reproduction system consists of theiesaoviduct, uterus, cervix and
vagina [15]. The left and right bovine ovariesdidjacent to the tips of uterine horns in
the pelvic cavity. Two crucial functions of the oes are: (1) production of the egg or
ovum; and, (2) production of estrogen and progesgehormones [15]. The oval-shaped

bovine ovary is small in size (the major axis i®abl.5-5cm, and the average of two



minor axes is about 1-3cm). The shape and sizbeobvary varies during the estrous
cycle due to follicular growth and regression, @#ign, and corpus luteum growth and
regression [16, 17]. Figure 1.1 illustrates thetamg of an excised bovine ovary. The
ovary is composed of an inner medulla and outetegorThe ovarian stroma is
composed of connective tissue and the ovary i®8nded by surface epithelium [15].
The dense fibrous connective tissue beneath thiacguepithelium is called tunica
albuginea [15]. The medulla consists of irregulaalyanged fibroelastic connective
tissue, lymphatics, nervous, and vascular systeths 17, 18]. The cortex contains
ovarian follicles at various stages of developmamd regression. The corpus luteum
(CL) is a temporary endocrine structure formed fribra remainder wall of a follicle
following ovulation (the release of the oocyte amdral fluid by rupture of the follicle)
[17].

A fully-developed follicle is a roughly sphericargcture consisting of an antrum (a
fluid-filled cavity), encircled by multiple layersf granulosa cells and theca cells (the
wall), the oocyte (a female germ cell) is locatadbag the granulosa cells. Follicles in
the ovaries were first described by Regnier de (QE@41-1673) [19]. The importance
of follicles and the patterns of their growth anevelopment remained unclear until it
was discovered that the follicles in non-pregnatitle develop and regress in a cyclical
pattern known as the estrous cycle in 1928 [20f €ktrous cycle or interovulatory
interval is around 19 to 23 days in cows. Cowspalgestrous animals [15]. The period
of estrous cycle begins and does not stop untrinpted by pregnancy after heifers
reach puberty (first ovulation) or following thegipartum anestrous period (a period of
no estrous cycles after calving) [1]. In one estraycle, after ovulation (day 0), the
remnants of the ruptured follicle wall begin to dep into a corpus luteum (CL). The
CL remains functional until day 16, after which theegresses, unless a pregnancy is
established [4]. The details of follicle developmand ovulation will be described in

the next section.



Follicle Antrum

(d)

F— Follicle CL — CorpuLuteum S - Stroma M — Medulla
SE- Surface epithelium  TA — Tunica albuginea GL — Granulosa layer TL — Theca layer

Figure 1.1 The structure of a bovine ovary: (a) thesurface view of a bovine ovary; (b) the cut
surface view of the ovary; (c) the histological ge of a bovine ovary; and, (d) the
histological section of follicle enlarged from thendicated region in (c).



1.2.2 Follicle development

The bovine follicle may grow from 50pum to 15-20mmdiameter [15]. Figure 1.2
shows the different developmental stages of dewvedoyp of ovarian follicles. Follicles
are formed during fetal life. They originate fromnpordial germ cells after they have
migrated from the yolk sac entoderm to the genitdge (around day 35-50 of
pregnancy) and develop into an ovum, or oogonid. [®fter the oogonia enter meiosis,
they are termed as primary oocytes. Meiosis isstate at prophase |. Primordial
follicles are formed when a single layer of gramsalocells surrounds the oocyte.
Approximately 150,000 primordial follicles are lded in the cortex just beneath the
tunica albuginea of the fetal bovine ovary [21].cBEgrimordial follicle is about 30-
40um and they remain quiescent in the ovary foes#wears before re-initiation of
growth [22]. The stages of follicular growth inclidn increase in the size of oocyte and
development of granulosa cells (primary follicl&jter several layers of granulosa cells
form around the enlarged oocyte (secondary fo)licteany small fluid filled cavities are
eventually formed among granulosa cells. The ffilidd spaces become large and join
to form a single cavity -- the follicular antrumt ghis stage, the follicle is termed a
tertiary follicle [18]. Upon further developmenhget tertiary follicle becomes a Graafian
follicle, which finally leads to the process of d¢ation. During ovulation, a mature
Graafian follicle ruptures from the ovarian surfat@licular fluid is released, and the
oocyte is transported into the oviduct [23]. In spwsually only one follicle ovulates
during an estrous cycle, the others undergo ate#siifferent stages of development

[15]. A detailed review of ovulation is describeg Bunter [23].
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The growth of follicles is controlled partly by evatine events within the ovary
(intraovarian and intrafollicular) and partly byode outside the ovary [24]. The outside
influence is mainly derived from the pituitary gthdocated at the base of the brain [18].
The main hormones that influence follicular diffetiation include FSH (follicle
stimulating hormone), LH (luteinizing hormone),resliol, and progesterone [24]. These
are glycoprotein hormones controlled by the hypaiinéc hormone gonadotropin-
releasing hormone (GnRH) [18]. FSH stimulates tbkicfe’s growth and function,
while LH causes the follicles to rupture and thepos luteum to develop [3, 17, 18].
The intrafollicular component is derived from gravae and theca cells, which produce
the hormone estrogen [23, 24]. The amounts of threnbne estrogen increase as the
size of a dominant follicle increases [23]. Thep® luteum produces progesterone
[24].

Growth of bovine antral follicles 1mm occurs in waves during the estrous cycle [4,
6, 21, 25]. Rajakoski first proposed the theoryallicle waves in 1961 [26], where he
determined that each follicle wave is characterizgdhe synchronous growth of 15-20
follicles. A review of follicle wave theories is perted by Adams [27]. Most estrous
cycles have either two or three follicle waves [2Fhch wave includes a group of
follicles from which one is selected as a domirfatiicle while the others are deemed to
be subordinate follicles. The first wave can beedietd on day O (day of ovulation).
Wave 2 is detected around day 9 to10. In cattlé thitee-wave cycles, wave 3 happens
on day 16. In the last wave, the dominant follisezomes the ovulatory follicle. Waves
can be detected when follicles are 4 to 5 mm ie.dfigure 1.3 illustrates the theory of

follicle waves.
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1.3 Ovarian ultrasound

1.3.1 Overview of ultrasound imaging

In order to interpret an ultrasound image of thargyit is necessary to understand
how acoustic wave is converted into an image, aw &n ultrasound imaging system
works.

Ultrasound techniques were first used for measudigjance underwater using
SONAR as early as the 19th century [28]. The usellhsound in medicine was
introduced around the 1930’s and the first publicatusing brightness (B) — mode
ultrasound imaging appeared in the 1950’'s [28].r&lfe&s been a rapid development of
ultrasonographic imaging techniques for clinicagtiosis in recent years. A number of
different ultrasound imaging techniques are nowilabke such as 2-dimensional, 3-
dimensional ultrasound, Doppler and color-flow aswund.

Ultrasound waves are acoustic waves with frequenai®mve 20K Hz. Unlike other
kinds of medical imaging methods such as MRI (Mdéigrieesonance Imaging) and X-
rays (a form of electromagnetic radiation) imaginffrasound waves are mechanical
waves [29], which transmit through the medium bithwo permanent displacement of
the medium’s particles. When the sound source risetl off, the particles go back to
their original position [29]. That means no foremubstances need to be introduced into
the body to interact with the waves, so ultrasoumdconsidered a non-invasive
technique. For this reason ultrasound has beerdftuibe a valuable diagnostic tool in
wide range of medical disciplines, especially ie fields of obstetrics and gynecology.

Ultrasonography is the transmission of ultrasoumstes into the body followed by the
reception of the echoes, the signal processinglzemthe display of the echoes on the
screen. Figure 1.4 illustrates the system of acb&smode linear-array ultrasound

scanner [30].
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The ultrasound transducer generates ultrasoundsmMayeconverting electric energy
into mechanical vibration, it also receives thersbachoes reflected from body tissues
and converts them back to electric signals [31].trAnsducer is made of many
piezoelectricelements, such as lead zirconate titanate (PZTiyrbaitanate [31]. Due
to the different arrangement of piezoelectric eletseand the different shape of the
transducer, transducers are classified into thggeest linear-array (side by side
arrangement of the elements), convex-array (thmeis are arranged into a sector-like
field), and phased array (each element fires theddeam in proper order) [30]. Low
frequency transducers (e.g., 3.0-3.5MHz) are usediéwing large structures which are
not close to the transducer. Higher frequency ttaocers (e.g. 5.0-10MHz) are used for
the structures close to the transducer, or for Wwidietailed studies are intended [12].
When sound beams are transmitted into the bodyge swithem are absorbed by the
tissue, some of them will continue propagation it deeper part of the body, some of
them are diffracted or scattered into differenediions and some are reflected at the
interface of media with different acoustic impedasicThe acoustic impedance Z is
defined by the product of the density of a matgrjahultiplied by its speed of sound C:
Z= pC [29]. The reflected echoes from different depthshe body will be received by
the transducer. The pulse-echo cycle is recorded toyer. The depth of each reflector
(the tissue interface which reflects the sound wawan be calculated from the time
recorded. The received sound beams are changedelattrical signals, amplified,
processed, and converted into digital signals. E&flected beam and the location
information of each echo are represented on anendéplay screen by dots of varying
brightness (pixels). Each pixel's brightness ipléiged as one of 256 grey levels (black
= 0 and white = 255). White pixels represent detisgues which reflect the major
portion of incident sound energy, while black psxekpresent fluid-filled structures.
Ultrasound machines usually display images of 680xgixels on the screen.

The ultrasound console has several control knobshndre very important to control
the images:

1. Gain control: is used to adjust the sensitivity of signal. Gairhie ratio of output of

electrical power to input [30]. The gain controketenines how much amplification
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is accomplished in the receiver of the equipmemnédgally, the gain can be varied
between 30 to 90 dB [30].

2. Time-gain compensation (TGC)is provided to compensate for the decreased signal
strengths of deeper tissues due to the greatemuatien over a long path [32].
Attenuation is dependent on the absorption andesgay of sound waves by the
body tissues, thereby limiting the depth of pern&rna[30]. In the classic TGC
model, a gain that changes similarly to the attBanaate is applied to the echo
signals over the penetration depth in the tiss@g [3

3. Modes: Ultrasound equipment has several modes of operalio® most commonly
used are A-mode, B-mode and M-mode [30]. A-modeesgnts a one-dimensional
display. The two axes of A-mode images are amditaidd depth. B-mode is a two-
dimensional display, or brightness modulation. Buw®nger the echo signal, the
brighter the spot shown on the screen. M-mode &gl U8 assess tissue movement
over time. The M-mode is similar to an A-scan th& echo received is brightness
modulated on to the screen [33]. The two axes imdtle which show on the screen
are depth and time [30]. Along the depth axis, Mdmaises B-mode principle to

display the echoes.

1.3.2 Ovarian ultrasound analysis

Before ultrasonography was used for ovarian fdiéicunonitoring and evaluation, the
theory of follicle waves was just a hypothesis [2&) 1984, Pierson and Ginther et al.
used transrectal ultrasonography to support theewtheory of follicle development
[11]. Now ovarian ultrasonogaphy is used to diagnosproductive pathologies and
monitor reproductive physiology for research, sash estimating stage of the estrous
cycle [4, 7, 8, 11]; detecting ovulation [5, 10];1@iagnosing and monitoring irregular
structures [34]; monitoring hemorrhagic follicles3].] A review of ovarian
ultrasonographic analysis methods is presentedilbgd® and Nakao [35].

There are three types of vivo examinations most often used in ovarian ultrasound
imaging: transabdominal scan; transvaginal scad;temnsrectal scan. Transabdominal
ultrasound imaging means that the operator scanbdby by placing the transducer in
contact with the skin of the abdomen. This typeowérian scanning in animals is

particularly used for species which are too smail tfransrectal examination [36]. A
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transvaginal or endovaginal ultrasound image isitteck by inserting a transducer into
the vagina. This method is widely used in humanrerations [37-39]. Bergfelt et al.
and Brogliatti et al. used the transvaginal ulttesbguided method to aspirate the
follicles in cattle and calves as young as 10 toveeéks of age [40, 41]. A transrectal
scan is a procedure in which an ultrasonograplobeis inserted into the rectum. For
large animal studies, this technique is the preterexamination method of the
reproductive tract, such as the visualization oé thterus, fetus, ovary, corpus
luteum(CL), and follicles [2, 12, 30, 42, 43, 44]f all the in vitro or ex situ
(examination of excised organs outside the livingy) scanning techniques used in the
animal research field, the most frequently usedvater bath ultrasonography. The
excised ovary is placed in a water bath and &sef ultrasonographic images of the

ovary are obtained at equal interval for reconsioancof the ovarian volume [11].

1.3.3 Ultrasonographic characteristics of the ovary

The ultrasonographic appearance of the ovariesnghle depending on the stage of
the estrous cycle. A normal ovary is easily disgtisged from the surrounding tissue.
Ultrasonographic images of the ovary are repregehielow-level echo pattern. The
two important and dynamic structures in the ovaegyfallicles and the corpus luteum.

Follicles are nonechogenic structures and appeaherultrasonographic images as
black spherical structures [30]. Sometimes if thiédes overlap with each other or are
covered by artifacts (see subsection 1.3.4 for dletails of artifacts), they are
represented as black irregular shaped structuregbeomiltrasound images. In addition,
follicles may take on an elliptical shape beforailation [2]. The follicle wall is a thin
and hypoechoic (a structure that reflects relagifelv sound waves) area surrounding
the follicle antrum. Sometimes, the follicle waledomes discontinuous or absent
because of imaging artifacts that may occur altvegcurved boundary of follicles. The
high density and the morphological structure offthikcle wall change during different
physiological phases [45]. The smallest follicleattcan be detected will vary greatly
depending on the design of ultrasound equipmentmigly, the minimal diameter of
detected follicles is around 2mm to 3mm.

The corpus luteum is a hypoechogenic structuretlamdhtensity of the corpus luteum

varies according to physiological stage [46]. Tleatal portion of the corpus luteum
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may show as a hypoechoic structure (formed by swlaterial) or an anechoic (a
structure in which there are no echoes being refthcstructure (due to a fluid-filled

cavity) [2].

1.3.4 Artifacts of ultrasound images

The ultrasound images may contain different kinflsaifacts. The definition of
artifact is “any record or image obtained in theirse of applying a medical diagnostic
technique which is not representative of the stmes under study but is adventitious”
[47]. Some of the artifacts may arise from the giesif the scanner system, while others
are caused by human operator error. This inclugesriect selection of the gain, TGC,
and transducer and incorrect placement of the drayes. Some are inherent to the
nature of ultrasound waves, such as attenuatidlectien, refraction etc., while others
are due to the ultrasound tissue effects. The |detdi ultrasonography artifacts are
described by Zagzebski [33]. A review of artifaictsliagnostic ultrasound can be found
in Kirberger's paper [47]. Among all types of aatits specular and nonspecular
reflection, shadowing, enhancement, and reverlmgradire common occurrences in
ovarian ultrasound images [30].

Specular reflection occurs when the reflector sated at the boundary of a curved
shape of a structure especially a fluid-filled aljeike a follicle, (see Figure 1.5 (a), in
arrows). It shows on the image as a bright, smeatface around the boundary of the
object.

Shadow usually happens beneath a very dense s&y8fj. The dense structure can
completely reflect or absorb the sound beams. Ravarian ultrasound image, shadow
usually occurs at the edge of the fluid-filled axafollicles, because all the sound
waves are refracted from the edge of the fluicddillarea [12] (see Figure 1.5(b), in
arrow 1).

If sound beams pass through the follicular fluitk@l structure, the intensity of the
sound waves are not as attenuated (weakened) ysvthéd be if they were to pass
through the regular soft tissue [33]. Thereforeewlthe echo emerges from the deep
side of the follicle, a bright area appears onithage, compared to the same structure
adjacent to this area. This is referred as the rezdrmaent artifact (see Figure 1.5 (b), in

arrow 2).
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Another common artifact on an ovarian ultrasoundgeis the reverberation artifact
[30]. A strong echo is reflected by the interfacel aeturns to the transducer. If the echo
is still of significant magnitude, it will bounceabk and forth between the interface and
the transducer. Bright echoes are recorded on mhage in this area. Usually

reverberations happen because the interface iigydcathe transducer and has strongly

different density in each side [33]. (see Figue(t), in arrow).

Figure 1.5 Examples of artifacts: (a) the speculaartifact at the curved edge of follicle (arrows);(b)
the shadow artifact at the edge of the follicle (apbw heads), and the enhancement
artifact below the follicle (arrow); (c) the reverberation artifact (arrow).

15



1.4 Follicle segmentation literature review

1.4.1 Image segmentation

Image segmentation is the division of an image metions which are homogeneous
with respect to some criterion [48]. Homogeneityynba defined in terms of intensity,
color, reflectivity, texture [48]. Segmentation ame of the most important steps of
image-based medical diagnosis and analysis. Compaged image segmentation helps
the physicians not only in the visualization andpection of anatomic structures of
animals and humans, but also in patient diagnassigical planning and radiotherapy
planning [48].

Segmentation in medical imaging is a very difficptbblem. The difficulty mainly
depends on the quality of images and the complefityhe anatomic organs [48]. The
ultrasound image is difficult to segment because titrasound images are full of
artifacts which make the regions of interest hegenmus. Noise and artifacts can cause
discontinuities in object boundaries; thereforeagppcessing step is usually performed
prior to segmentation in order to reduce noise. 3égmentation algorithm then works
on the preprocessed image by separating the horeogsmbjects of interest. The result
of the segmentation is either a binary or labefheage followed by post-processing steps
to correct mistakes in the segmentation and smagthf object’'s boundary [48]. In
general, segmentation methods can be divided imeetgroups: global knowledge
(usually represented by a histogram of image), olgsed (try to find closed boundaries
around regions) and region-based (try to find coteteregions that are homogeneous)
[48]. A survey of 3D segmentation approaches cafotwed in Muzzolini’'s paper [49].

Numerous approaches of 2D follicle segmentationehbgen proposed in related
literatures. These include methods based on wa@rshgmentation [50], knowledge
based segmentation [51, 52], region growing [58]Jutar neural networks [54, 55],
cellular automata [56], wavelet [57] and textur8,[59]. In this study, we attempted to
develop a 3D follicle segmentation method but nbohthese methods can easily be
extended to 3D segmentation. In the next subsectwavious works in follicle

segmentation will be briefly described.
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1.4.2 Follicle segmentation
1) Region growing segmentation

Region growing is an approach to image segmentatiomhich neighboring pixels
around the initial region are examined and adddataaegion if they have similar pixel
values, until the edge pixels are detected [48]e Titial region is determined by
automatic methoder selected manually. Figure 1.6 illustrates thecpdure of the

region growing segmentation method.

@) (b) (©)

Figure 1.6 The diagram of region growing segmentatin method. (a) Start of region growing on a
follicle ultrasound image (b) Growing process after several iterations (c) Final
segmentation result (stopped along follicle bounday).

Potanik et al. devised an automated follicle segmeotatmethod using region
growing [60]. First, the image was smoothed by gsihe same pre-processing as
Krivanek and Sonka’s method [50], which is that drginal image was smoothed by
using adaptive neighbourhood median filter (thefqrerance of a median filter is that
replaces the center value in the window with theliare of all the pixel values in the
window [48]). For the pixels darker than threshdld a large window was used (11x11
pixels) and a small window was used for the pixelghter thanTh (5x5 pixels). This
smoothing step was repeated twice. Thresiblds set to the mean grey-level value of
the original image in this paper. Next, initial apgamations for the follicles are
determined by thresholding (threshold valigeawas set to mean grey-level decreased by
one standard deviation of grey-levels in the smedtimage) the smoothed image,
followed by separation of the merged follicles (bging watershed segmentation)
determination of the similarity of pixels (if théasdard deviation for the pixel in its

11x11 neighbourhood doesn’t exceed threshtd@nd its grey-level is smaller than the
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mean grey-level in the image, the pixel is markedh@mogeneous), and removal of the
non-follicle regions (small regions with pixels’ mber less than a threshdkp). The
thresholdsHs andNp were set to half the standard deviation in thegenand 50. Then,
respectively, region growing is started from thesuteng homogeneous regions of
follicles controlled by average grey-level (thefelience between the candidate pixel for
merging and the mean grey-level of the currentoredgss tham times of the standard
deviation of the current region, ands set to 2 in this paper) and a weighted gradient
criterion (the difference between the weighted mnatd of the candidate pixel for
merging and the mean grey-level of the currentarggi weighted gradient less than
times of the standard deviation of the currentarg weighted gradient, andis also
set to 2). This is followed by the post-processteps to remove the non-follicle regions
(remove non-compact structures and remove the megith area smaller than 220).
The final step is extracting follicles by observitigg centre of gravity of each region,
because follicles are always close to each other.

The recognition rate (relative number of correddieled image pixels) of follicles
using this algorithm is around 78%. The misideadifion rate (a ratio between the
identified regions which are not follicles and mtognized regions in the images) was
29%. More importantly, the region growing methodrtst from the computer-detected
central region of the follicle and stops based e tomogenous criteria. The program
does not necessarily go through the whole image&hwdaves processing time. The only
drawback of this method is that in the post-processtep, the non-spherical regions are
removed, which may cause the loss of some overgdpilicles. Several methods were
developed by combining this region growing methathwther methods or algorithms
for approaching follicle segmentation [61]. Theiogggrowing method can be easily
extended to the 3D segmentation approach by charigen2D neighborhood connection
into a 3D connection.

2) Watershed based segmentation

The watershed transformation is a popular imagenseatation method coming from
the field of mathematical morphology [48]. The piple of the watershed
transformation is quite easy to understand if werpret a 2D image as a 3D landscape,

in which the valleys of the landscape representaivegrey scale value in the image and
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the mountains represent the high grey scale valuen the water floods into each valley
from each minima of the valley. When the water frovo adjacent valleys would meet,
a dam is built to avoid water flooding over fromeoto the other valley [62]. By doing

this, the valleys can be successfully separateder\\dil the valleys are flooded by
water, the process is stopped. As a result, thdstape is partitioned into regions
separated by dam-line, and these lines are watklgies (see Figure 1.7). In 1991, a
fast and flexible watershed algorithm was introdlibg Vincent and Soille [63]. Even

though the watershed transformation has many adgas{ such as being intuitive and
always producing a complete closed contour of thjead, it has quite a few important
drawbacks [64].

a. Oversegmentation: When the image has many lodaima, the result of the
watershed transform contains a myriad of smalla®egi which makes the result
hardly useful.

b. Sensitivity to noise: During the flood stepsise can cause more small valleys and
therefore change the results dramatically.

c. Poor detection of significant areas: If the haary of interest is weak or
discontinued, the watershed transform will be ueabd detect the region
accurately.

d. Poor detection of thin structures: When tlaenshed transform is applied on the
gradient image, the thick edge layer makes itdiffito detect thin structure.
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(a) The original ovarian ultrasonic image

Dam-lines (watershed lines Valleys )
o Mountains

(b) The illustration of the different intersity of the original image.

Figure 1.7 The principle of the watershed segmentain.

An automatic follicle segmentation method basedwatershed segmentation was
reported by Krivanek and Sonka [50]. In the papetershed segmentation was used
twice, first on the smoothed image, and second timéhe binary image by thresholding
from the mosaic image which is created by computiegaverage of the pixels of each
corresponding region after watershed was first ukedas followed by a sequence of
post-processing steps to separate adjacent fallioherge the connected regions which
belong to one follicle, remove the non tissue ameghe image and remove the small

regions and non-spherical regions.

20



The advantage of this method is that it is a higllyomated, accurate and seems
sufficient for the day-to-day follicle analysis.diso has some drawbacks. (1) Watershed
segmentation was applied to smoothed images, wkatls to the merging of some
small adjacent follicles. (2) It will fail to estiate non-spherical follicles, because all the
non-spherical regions are removed by the post-peosteps. (3) The method relies on
several parameters that were determined experithentaportantly, this method can
easily extend to 3D analysis without any big madifion. However, in the post-
processing part, some object properties need twob®uted, such as boundary length,
the minor axis of the region and so on. Then theesgions are merged or split based on
these properties to repair the oversegmentationoaadapping objects. These steps do
not work well on 3D volumes. If a follicle connedtsthe background area (usually non
tissue area), the follicle will fail to be recogedzor suffers greatly reduced accuracy by
applying this method. So it is not a good choice 3® segmentation, especially for
water bath ultrasound images.

3) Multi-resolution texture segmentation:

Multi-resolution texture segmentation (MTS) is appeach combining texture
segmentation and texture classification to segraamass of the image [48]. MTS needs
a priori information of texture characteristics of imagé&ke procedure of an MTS
approach is: first, select the best feature tordete if a region is homogeneous or not.
If it is not homogeneous, split the texture bloctoifour quarters. Repeat this step until
all the regions are homogeneous. Then, merge tighbwing area by examining the
similarity of a texture block [58].

This method is an efficient method for accuratedgraenting the follicles. Moreover,
it can also segment some other structures in tlaeypguch as corpus luteum, stroma
and fluid fields in the ovary, and authors wereoa#ble to achieve better results
(mislabeling error is 1.16%) than previous meth®&®3. The drawback of this method is
that every pixel on the image needs to be detestadh in turn necessitates lots of
running time.

In addition, this method can be transformed to worka 3D model of an ovary
without significant modification [59]. In paper [h3he author successfully segmented

corpor lutea and stroma in bovine ovaries.
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Several other segmentation methods have beenedtiliz 2D follicle segmentation
implantation. The brief description of these methad as follows. Potmik et al.
segmented ultrasonographic follicles based on aeseg of automatic methods: a
despeckling filter (homogeneous region growing midger [66]), Kirsch’s operator (an
edge detector), optimal thresholding, thinning, pghaescriptions, and classification.
However, the recognition rate of follicles usingstinethod was only around 63%. The
average misidentification rate is around 47%. Vibieal. utilized cellular automata [56]
for follicle segmentation but lack of statisticaladuations of the results. Cigale et al.
used cellular neural networks [54, 55] for follidegmentation. The follicle recognition
rate in the paper [54] was around 60%. The resu[bb] is much better than in [54]
which the recognition rate is 78%. Cigale et adoalsed continues wavelet transform to
approach follicle segmentation on real 3D ultragsbimages [56]. But the heaviest
problem of this method is that it is hard to deteah-spherical shape follicles. Sarty et
al. determined a semi-automated method of findimg duter follicle wall border by
using a knowledge-based segmentation with grapiclseg [51, 52]. However, this
algorithm sometimes requires manual editing of amoraatically defined interior
boundary before finding the outer boundary, whgh clear drawback.

Some 3D follicle estimations are done by constngcta sequence of images after
segmenting follicles in each single image [60, 6The authors [61] reported a
prediction-based algorithm to improve the recognitiof segmented follicles in
neighboring images slices. These results then eaamialgamated to form a smooth 3D
image of follicles. This method modifies the segtagon result from image to image,
which is clearly time-consuming. It can also intnod some errors when measuring the
volume of follicles because this method consideyely the neighboring slices not the

whole volume [61].
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Chapter 2

3D Follicle Segmentation in Ultrasound Image Volume of Ex-

Situ Bovine Ovaries

2.1 Introduction

Diagnostic ultrasonography is an effective tooktaluate the development of ovarian
follicles during various stages of the estrous eya#cause it is a non-invasive, rapid and
low-cost imaging modality. The analysis of ovarfailicles can enhance the ability to
manipulate and manage reproductive performance ASpresent, ovarian structures
are examined by interpreting a series of two dinwrad (2D), cross-sectional
ultrasound images by scanning the ovary alignetl witongitudinal axis. A physician
needs to measure the size and shape of the falliatey times over a number of days to
determine the structures of a follicle within anaoy which is tedious and time-
consuming. Computer-assisted follicle image analyssn segment follicles from their
surrounding tissues automatically or semi-autora#ljicmaking physicians’ jobs much
easier. Current methods of computer-assisted l®liegmentation are performed using
2D images [50-60], while researchers are interegtekhow the morphology and the
spatial relationships of follicles during the wheastrous cycle. Three-dimensional (3D)
follicle images can provide those information bettean 2D follicle images can do and
thus been used to provide more information aboatvilume, shape and position of
follicles [67-70]. Furthermore, volume estimatioasked on 3D ultrasound images has
been developed to increase accuracy and preciS@n Thus, there is an increasing
need for more accurate 3D ovarian follicle segméntdgechnologies.

The task of 3D follicle segmentation is challengi@ne of the primary reasons is
because of the weak follicle boundary informationtbe images. There are currently

only a few 3D follicle segmentation algorithms désed in the literature [59]. Some
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approaches to 3D follicle segmentation are based geries of cross-section images
[61].

The main objective of this study is to develop aousate 3D follicle segmentation
method that can be applied to 3D ovarian volumesipusly constructed from a series
of 2D cross-section images. An algorithm based &nh Wwlumes was designed,
implemented, and validated using standard techsique

The 3D follicle segmentation method used here sg8an the seeded region growing
method, which in this study the growth of the reggiarts from a selected seed point
inside the follicle that is to be segmented. Thpdilgeses of this study are:

(1) The volume and position of follicles obtained bymputer-assisted follicle
segmentation will be similar to that obtained frtdme observer-defined follicle
segmentation and aspirated follicle volumes (gtdtidards).

(2) There will be linear relationships between compsegmented follicle
volumes, observer-defined follicle volumes and ietpd follicle volumes.

(3) There will be an agreement between computer-seguefdilicle volumes,
observer-defined follicle volumes and aspiratetidiel volumes.

(4) The computer-assisted follicle segmentation reswilisnot be sensitive to the
position of the selected seed point.

The background knowledge of seeded region grgwirthod and evaluation methods
were described in Section 2.2. The region-growiageld 3D segmentation algorithm
which was designed is detailed in Section 2.3.i8e@.4 presents the results of the
developed segmentation algorithm on images of wwaries and a discussion of the
results can be found in Section 2.5. Finally, tbaatusion and some suggestions for
future work are presented in Section 2.6.

2.2 Background knowledge

2.2.1 3D seeded region growing (SRG) algorithm

Seeded region growing is an efficient method fagnsenting medical images [71-73].
The advantages of the SRG algorithm include spaddapplicability to a wide range of
data types [71, 73]. The general SRG method isudsad in Justic’s paper [71] and is
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summarized as follows: First, seeds are generat@auablly by selecting subregions
known to be within each object that is to be sedgetenThe seeds’ pixel addresses
belonging to the i-th region are put into a seddAseThe input to the SRG algorithm
are the sets of seed pixels (regionsg) Ay, ..., A,. The output image is a label image.
Each pixel of the grown regions receives a lab@hfd to n, corresponding to the region
set to which it was assigned. The growing can eigtart from each seed region
individually or start from different regions at tsame time. In an iterative process, the
connected neighbors (generally, 4 or 8 neighbopimgls for 2D region growing, 6, 18
or 26 neighboring pixels for 3D region growing) aife of these seed pixelg SOA;,
are considered to see whether or not they can dedadto set Aas determined by one
or more homogeneity criteria. These criteria co¢heepixels forming the region to have
similar grey level values, texture, color, etcthé neighbor pixel satisfies the criteria, it
will be added into set AEach neighbor which is added into setwlll become a new
seed point and its neighbors then become new pigdie considered for addition to the
region. This is the main loop of the algorithm. Tgr@wing of this region terminates
when no more pixels can be added into setithout violating the homogeneity criteria.
One of the most common problems of follicle segragom by using SRG algorithm is
boundary leaking. Ultrasonographic images may corgaveral types of artifacts such
as shadowing (caused by blockage of the sound beamath a dense structure), beam
width artifact (caused by reflection/refractiontbé sound beams on the side of a curved
boundary of a structure) etc., which may make tthgeeinformation of follicles weak
and discontinuous (see Chapter 1.3.4 Artifactsvafian ultrasound images for details).
These unclear or uncompleted boundaries allow segidns to grow well beyond the
actual boundary of the structure if the image aetshe structure is homogeneous with
the seed region according to the criteria. Sevarthods have been reported to correct
boundary leakage. For example, a watershed seghoentst used after region growing

to “close off” leaked regions [74].

2.2.2 Evaluation methods

After a follicle segmentation algorithm is implented, the efficiency and correctness
of the segmentation must be evaluated. But, evalyahe segmentation results on

medical images is a very difficult task. The magagons of which include lack of a
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“gold standard” (for 2D single image segmentatim@nually detected segmentation by
medical experts is the only standard available)] &tk of standardized statistical
protocols. [75]. The most commonly used mathematiethods for evaluating the
follicle segmentation results in the literature m@med above are simple linear
regression analyses and the evaluation procedpateel by Poténik (evaluate the

quality of the segmentation result by measuringhviwto ratiosr, andr, ,wherer, is
the ratio between the areas of the intersectiontla@ariginal object, and, is the ratio

between the areas of the intersection and the segtheegion) [75]. In addition,
Hausdorff distance, root mean squared distanceageeabsolute distance and the Dice
coefficient are commonly used in follicle segmeiotatevaluation [50, 52, 60, 65]. In
general, Pottnik's method and the Dice coefficient are used ¢tednine the follicle
recognition rate [60, 65]. Linear regression isallsuused to evaluate the correlation of
computer assisted segmented follicular areas anditumes with a manual expert
segmentation [52, 60]. The Hausdorff distance, mean squared distance and average
absolute distance are used to evaluate the accwfafyilicles’ boundaries and the
position of follicles [50, 51, 60, 61]. The detailkthese methods are as follows:

Linear regression is used to evaluate the lindatioaship between two variables. In
follicle segmentation evaluation, the two variablese computer-isolated follicles
X, X ={X,X,,..,X,} and the operator's detection rest¥ ={V,,Y,,....Y,} . Here,
X X, X, and Y, Y,,..Y,, are the parameter values that are going to be amdp
They can be sets of region area, volume, boundagtes The regression equation is:

Y =a+bX. Herea is the intercept of, bis the gradient or slope of the lin@.and

b can be obtained from:

Yy XY - X)QY)
b= 2.1
nz Xi2 - (Z Xi)z ( )

and

a:—ZY‘ _nbz X .2

where, nis the number of follicles to evaluate.
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The value of slopd and intercepta can be used to evaluate the correlation of the
segmentation results. A high correlation is deteedi if b and a do not differ
significantly from one and zero, respectively.

In Pot@nik’'s evaluation method, two ratias andr, were measured [75]. If is
equal to or greater than a given threshold &nhd at the same time, is equal to or

greater than a given threshold, Ehe region is marked as correctly recognized.[75]
The Hausdorff distance is defined as the maxinafirthe smallest distance between

two points on two curves (boundarie&)and B [76]. a is one point in curveA and

b, is one point in curveB. d(b,A) is the smallest distance from every pointBrto

curveA:
d(b;, A)= miin b, —a || (2.3)
As the samed(a, B) is the smallest distance from every pofto curveB:
d(@.B)=minia =b; || 2.4)

The maximum Hausdorff distance is defined as [76]:
D(AB) = ma{mw{d(q ,B)], maxd(b,, A)] (2.5)
i j

For evaluating the segmentation resti{,A, B) means that all the pixels belongingAo
are not farther thab (A, B) from some pixels oB . Therefore, the lower value of
D(A,B) means the higher correlation.

The root mean squared distance is a measuhe @vierage squared error between two
curves (boundarieg) ={e,e,,....e, }andF ={f, f,,...,.f .} [77]. The same as the first
step of computing the Hausdorff distand(e,F) is the smallest distance from every
point in regiorE to regionF , andd(f;,E)is the smallest distance from every point in

regionF to regionE. The root mean squared distance is defined as [77]

RMSOE,F) = D d*(e,F)+ 3 d?(f.,E) (2.6)
m+n{ = =1 :

As with Hausdorff distance, a highly correlated bhdary is indicated by a low root

mean squared distance value.
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The average absolute distance is defined as [60]:

AAD(G, K) =1[12d(gi K+1Ydk ,G)J 2.7)

2\ mz n=
where,G ={g,,9,,..-,9,, }and K ={k;,k,,....k, } are two boundarie:d(g;,K) is the
smallest distance from every point in bouncG yto boundanK, andd(k;,G)is the

smallest distance from every point in bouncK yto boundan G . The lower value of
the average absolute distance means the highelatown.
The Dice coefficient is defined as follows [78]:it la setH ={h,h,,...,h  }and

setl ={i,i,,....;,,} be sets of region pixels from the automaticallgnsented and
manually segmented regions, respectively. Elembnésdi, represent coordinates of

the pixels inside sét and set . The Dice coefficient is calculated by:

Dice coefficiert = M (2.8)

[H+1]
The Dice coefficient evaluates the degree of opefta regionH and region . The
result is a value smaller than one. A high corcectrate is indicated if the Dice
coefficient is close to one.
In this study, linear regression and the Dice ¢oeeffit are the methods used here to

evaluate the correlation of computer assisted setgdefollicle with the manually

detected segmentation and the recognition rate.

2.3 Materials and methods

2.3.1 Data acquisition

The 3D data sets used herein are acquired frorqueesee of 2D images. The series of
ultrasonographic images is obtained fremsituscanning of ovaries in a water bath.
The water bath imaging consists of putting a digskovary in a vat of liquid and then
scanning along the longitudinal axis of the ovamger the liquid (see Figure 2.1) in half
millimeter increments (around 8-9 pixels/mm). Tvesials of datasets were used in this
study — the training dataset and the test datdketacquisition of the training dataset is

the same as in Singh’s paper [79]: The dissecteties were placed in ice-cold
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phosphate buffered saline (0.1 m phosphate buif8%» (w/v) sodium chloride, PH 7.2-
7.4) and transported to the laboratory within 45utes of ovariectomy. Then the
ovaries were placed in a degassed phosphate iffatee bath and imaged using a
broad-band (5-9MHz), convex-array, ultrasound twaeer (ATL Mark 9 HDI
ultrasound machine). The test dataset was obtamedsimilar manner, but the liquid
used in the bath was water, and it was put asideafdeast 24 hours before the
experiment to reduce reverberation artifacts duartbubbles. The imaging was carried
out by a single operator using an Aloka SSD-90C&asultrasound console equipped
with a 7.5 MHz linear transducer (UST-5821-7.5, kdpJapan). The control for overall
gain was set between 70 and 80. However, a singile getting was used for the
acquisition of all images of a given ovary. In baththe training dataset and the test
dataset, the time gain compensation (TGC) slopdschwcan compensate for the
decreasing strengths of sound beams by passinggihdeeper tissues, were set to the

minimum levels.

Movable
Platform

—— A
Scale @ "0yary Saniple

Figure 2.1 lllustration set-up for the acquisition of 3D ultrasonographic dataset from an exised
bovine ovary using water bath. The ovary sample iput in the bottom of the water basin
and fixed by needles. The basin is settled on a mahble platform with a vernier scale.
Segmental ultrasonographic images were recorded at5 millimeter intervals by moving
the platform. A computer was connected to the ultraound console for digitizing the
images.

To obtain a 3D dataset, the sequence of parallelgemslices of an ovary is

amalgamated to construct a 3D volume which forresitput to our segmentation. This

29



volume has some special properties: First, theancgt between each slice is 0.5mm
while the x and y axis resolution is 8~9 pixels/mwhjch means the unit length along z-
axis of the volume is 4~5 times larger than in xI gnaxes. This makes a spherical
follicle look more like an ellipsoid in this 3D d@atvolume. Actually, this is a disk-
shaped (oblate spheroid) ellipsoid which has theesaquatorial radii (the length of x
and y axes), and is 4~5 times bigger than the patiius (the length of z axes). Second,
the way we generate the 3D data exacerbates thelaguleaking problem. The reasons
are: (1) If there is boundary leakage on the adiskces at the same location on each
image, this will become a major leaked region & 3D volume surface; (2) thex-situ
imaging will make edge information even worse tivawivo imaging (where the outer
region will be different shade of gray than thelitté antrum). The ovary sample is
surrounded by water in this experiment, therefdre, follicle is located close to the
surface of the ovary on the ultrasonographic imggre may be sections of follicle wall
that are not imaged successfully resulting in & leicboundary between the follicle’s
interior and the background, an example of thisnph@non can be seen in Figure 2.2
(a). If the general 3D seeded region growing atbariis used on this kind of data, one
slice of the result will look like Figure 2.2 (b).

(b)
Figure 2.2 Example of the boundary leakage image Yand its SRG algorithm result (b).

2.3.2 3D SRG based follicle segmentation algorithm

The algorithm developed herein upgrades the ge&&6@l algorithm [71] to overcome

the problems caused by the characteristics of avarltrasonography (noise, artifacts,
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etc) and the constructed 3D volume. The algoritlegirs by pre-processing the data to
reduce noise. Then, a new seeded region growingriddg is used to get the rough
segmentation. Finally, a post-processing step idopeed to obtain volumes with
smooth surfaces. The algorithm is implemented inTMAB, with the 3D SRG part
written in C using mex files to interface with MARB.

1) Pre-processingUltrasound images are characterized by speckigendiherefore,
the first step of this algorithm is speckle noisguction and image smoothing.
Smoothing was achieved using an adaptive neighbdrimedian filter [60]. A large
kernel was used (X111 pixels) for pixels darker than threshold T, ansimall kernel is
used (55 pixels) for the pixels brighter than thresholdHere, T is a preset value. In
contrast to [60], the threshold T we selected we# 6f the mean grey-level value in the
original image. The reason is that since there avéarge dark area on the water bath
based ultrasonographic image, the intensity ofitterior region of the follicles were
consistently below 60% of the mean intensity ofiilimle image.

2) The developed SRG algorithin: this study, the region growing begins from one
manually selected seed point for each object {felJi and the seed point must be
selected close to the centre of the object. Theores that the seed point will be treated
as the true centroid of the follicle, and will bengpared with the centroid of the grown
region to determine whether the growing processilshterminate. The algorithm begins
from each seed point individually.

In each iteration of the algorithm, instead of gimgveach immediate neighborhood of
the seeded region (6, 18 or 26 neighbors), we asgmkcial size of the neighborhood of
11x11x 3 pixels, because of the ellipsoid shaped follicidume in this dataset. To
achieve this growing procedure, a first-in-first¢E&IFO) queue is used. A queue is a
type of data structure in which the elements ag ke order and principal operations
are removing elements from the front of the quenetadding elements to the rear of the
gueue. The detail of the growing procedure in stusly is as follows: first, the boundary
pixels’ addresses in one slice of the current reggee Figure 2.3 (a)) were put into a
gueue. A marker (a special value) was put to the @nthe queue. Each element
removed from the queue was considered as to whethewt its two dimensional

neighbors (8 neighbors in this study) could pass hbmogeneity tests. If yes, the
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neighbors were put to the rear of the queue. Themext element in the queue was
tested and removed from the queue. When the cuelemient being tested is the
marker, a new marker was put to the end of the gquatually, markers can be treated
as the number of circles of this region growinggess. If the markers show up 5 times,
that means the growing has been done 5 circlesfdbe current region (see Figure 2.3
(b)). This stage of growing terminated after 5 leiscof growing were performed. This

process was repeated in each slice of the origir@ling region (see Figure 2.3 (c)).

After that, the result region will be grown usin@@ neighborhood (6 neighbors is used
in this study) (see Figure 2.3 (d)). Due to thise tregion is growing as the same
ellipsoid shape as the entire object.

<

() (b)

() (d)

Figure 2.3 lllustration of the growing procedure of the 11x11x3 pixels’ neighborhood (a) is the
current region, (b) is the illustration of the growing process in one slice (c) is the grown
result after growing in each 2D slice, and (d) ishe grown result after.
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The homogeneity tests used in our SRG are a seguémriteria based on [53] and on
Haralick’s region growing algorithm [78]. A formdescription of the homogeneity tests

is as follows: let the current homogeneous reglmn,denotedr, ={r,,r,,,,r,} where

.r,.I, are the pixels belonging ® . Let the mean intensity of pixels IR, be

M(R,), and let the standard deviation of pixel inteesitin R, be o(R,). Then, the
first criterion of homogeneity tests is:
1) -M(R) |[<m (2.9)

where x is a potential pixel candidate adjacentRg |(x) is the intensity ofx andm
is a preset threshold. In this studyjs set to 0.Xthe mean value of the 3D ovary
volume currently being segmented. This criterioquiees that the intensity of the
candidate pixel has intensity similar to the medansity of the current region.

The second criterion is to calculate the changstamdard deviation supposing that
xis added tdr;:

| 0(R)-0(R,) |<a (210
Where, R is the region resulting from adding to R, and a is another preset

threshold. The selection @of depends on the image quality: if the quality i®p@huge
boundary leaking occurs and/or lots of speckle e®)izx = 2 times of the standard
deviation of the whole ovary volume; if the qualisygood enough (no or little boundary
leaking occurs and/or little noise), = the standard deviation of the whole volume. The
threshold value ofa is manually selected and it is ovary based, it kekep the same

for all the follicles of one ovaryo(R) is the standard deviation of the regiBawhich
can be computed incrementally froo{R, : )

0*(R) =0*(R) +[1 () ~M(R)I* + N(R))IM (R) M (R,)I* (2.11
N(R,) is the number of the pixels iR, and M (R, )is the updated mean value after

adding x into regionR, which can also be obtained incrementally from:

_ M(Ry)*N(Ry) +1(x) (2.12)
N(R,)+1 '

M(R)
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In addition to the intensity-based homogeneityecidt, a shape-based criterion was
used to overcome the boundary leaking problem. €hisrion is only used in the 3D
growing process (3D neighborhood). Because of trapact structure of spherically
shaped follicles, a compactness test is usuallgddd the segmentation algorithms to
extract the follicles from other non-follicle objed53] or to fix the identified follicle
regions [50]. The classical measure of compactisetbe ratio between the square of the
boundary perimeter (the cube of area of enclosimtase in 3D) to the area (the square
of volume in 3D), as defined in [53]. Due to thenrgpherical shape of the follicles in

this constructed 3D volume, a volume comparison @swas used instead of the
classical compactness te€}, is defined as the ratio between the real volumehef

current grown region and the volume of its “best-éllipsoid volume, where the
equatorial radii of the “best-fit” ellipsoid regiaqguals the largest distance between the
boundary pixels and the seed point we selectedptit@ radius of this approximate
ellipsoid equals one of the equatorial radius aidithy 5 (because in the dataset used in
this study, follicles are ellipsoid shaped with tpelar radius 5 times shorter than
equatorial radius). This criterion is determined as

C,sC (2.13)
In this study, the threshollis set to 1.5. If the regioR, passes this criterion as well, it
can be permanently added into the list of thismegiet, and pixek receives the follicle

label valudL(R). Then the regioR,will be updated td . Otherwise, if it passes the

homogeneity tests and fails the compactness tesgnnot receive the label value, but is
nonetheless put into the list. After checking igsghborhoody, x will be tested again
as a non-labeled neighbor pf Because during the growing procedure, the regiag
be non-compact due to the noise and artifacts,wilitbecome compact later after
adding more pixels into the region.

A fourth criterion was used to solve the boundagking problem. As the region
expands (growing), the surface area of the growsaggon should become increasingly
larger unless most of the surface pixels alreadyghahe edge of the object (follicle
wall) and stop growing. If the program still hag stopped, it is possible that boundary

leakage has happened. So a percentage VRliseset here. Ifl— P%of surface pixels
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stopped growing, the whole program stops. For wiffe image quality, the threshold
value P is different, usually a small value (or zero) tbe follicles which have the
completed boundaries or have little boundary leakagd a large value for the follicles
which have great boundary leakage problems. Phealue of each follicle being
segmented is automatically selected by using aatite search algorithm. After each
time running the whole SRG program for a follidlee centroid of the grown region is
calculated. If the distance between this centraiohtpand the pre-selected seed point is

bigger than a threshold,, then boundary leakage may have occurred. PreR +1,

and the SRG program is repeated for that follicigel the centroid point is close enough

to the seed pointl, in this study is set to 20.

The flowchart of 3D SRG based follicle segmentatosummarized in Figure 2.4

3) Post-processingAll of the follicles segmented individually aredst! into a new
volume which has the same size as the originalyovalume with zero grey value,
according to their address index. The holes insligefollicles are filled. Finally, the
resulting regions are smoothed and visualized irbgmsing the MATLAB building in

3D smoothing and 3D visualization tools.

2.3.3 Validation method

Unlike other follicle segmentation research, we ooy compared the segmentation
result with the human observer-defined results atat with follicle aspiration volumes.
Immediately following image acquisition, folliclesiration volumes were measured. In
this study, 5ml syringes (Monojét Tyco Health Care Group, Mansfield,
Massachusetts) fitted with.2mmx38.1mmneedles (MonojedY; Tyco Health Care
Group, Mansfield, Massachusetts) were used forraspg the fluid in follicles with
diameter (the diameter is measured in the slioghiich the follicle shows the largest)
bigger than 5mm in diameter; 3/10 ml insulin syeagMonoject”; Tyco Health Care
Group, Mansfield, Massachusetts) fitted with 29 gainch (033mmx13mm) needles
(Monoject™: Tyco Health Care Group, Mansfield, Massachuseti®re used for the
follicles with diameter smaller than 5mm. Then tledume of fluid from each follicle

was carefully measured.
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Select a seed point;Sor one of the follicles A and
give ita label value I.. P = 0.

v

Start the SRG program from seed [
point S;. Put S in the list.

P=P++
v 7 ¥
Put the adjacent neighbours of the present region N
into the list
v
calculate the number o the pixels in the new lis |<——'
_ ) The
The number of pixels is centroid
bigger than (Px10)% of point of
the one in the last list’ the
region is
close
enough
Check each pixel in thecurrent list (first 2D then 3D). to Sg

Homogeneous criteria?
(see page 31, equations
29and 210)

N Update the
region
boundary, but H
don't give the
label value L.

Volume comparison
test? (see page 32,
equation 2.19)

Update the growing region boundary, and
give this pixel the label value L

Finish all the
pixels in the

Get the entire new growing boundary of
the current region, put into a new list.

A 4

Get the segmentation result of A

Output the segmentation regions AA,,....,A,

with different label value L4,Lo,...L,,

Figure 2.4 The flowchart of the follicle SRG algotihm.
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The computer based follicle volume (the SRG segetkeifitllicle volume and the
human observer-defined follicle volume) was caltadaby simply counting the number

of voxels belonging to the detected follicle. THeygical dimensions of each voxel are

%mmX%mmX%mmzl—;emnf (1 pixel in each slice equal%(mm, while the interval

between each slice%smm).

We assumed that the relationship among the compatgnented follicle volume, the
manually detected volume and the aspiration voleare be summarized as a straight-
line graph. Linear regression was used for comgaimong those three results.

The Dice coefficient was used to evaluate the sierror between the computer-
based segmentation and the human observed result.

Pearson’s correlation coefficient can be used toutate the similarity between two

variables. If two variableX ={X,, X,,..X, areY ={Y,,Y,,..Y, Jand, with meansX

andY , and standard deviatior§ and S, . The Pearson correlation is [80]:

XL X =X -Y)

(n-1S,S, (214)

The coefficient r is a number between -1 and +Ipoaitive value implies a positive
correlation, while a negative value implies a negabr inverse correlation. Value 1
means perfect positive correlation, while valuendans perfect negative correlation.

In this study, Pearson’s correlation coefficientswaalculated to evaluate the
difference between each two results among the agpirresults, the human observer-

defined results, and the computer segmented results

2.4 Results

In this section, the results of our current aldgontare presented. All datasets are
obtained from the water bath experiments. Usuallyhe ultrasound images of ovaries,
follicles with a diameter greater than 2mm can becgived clearly. In this study, only

the follicles of 2.5mm or more in diameter werersegted. Ovarian ultrasound images
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are in 256 shades of grey. For pre-processing, X364 sub-images were extracted
from 640X 480 original images. The program running time ffedént for each follicle
depending on the follicle size and the boundamyasion. It is usually approximately
several seconds to 30 minutes for each follicle.

First, typical results are presented. In Figure a.Sequence of original image slices
through one ovary is demonstrated. The images shwmwa are 20 out of 65 images

from the entire image sequence and determineddiygtice numbers.

slice 6 slice 9 slice 12 slice 15

slice 48

slice 54 slice 60 slice 63

Figure 2.5 Original image sequence of cow ovary (awy number 68 from training dataset)
ultrasonographic images (20 slices out of 65 sliges
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Then the entire image sequence is constructedair8D ovarian volume, see Figure
2.6.

a00

Figure 2.6 3D reconstruction result of the cow ovar (number 68 from training dataset). The
coordinate (x,y) comes from 2D slices, and coorditenz is from the sequence of images.
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Our follicle SRG algorithm is applied to this 3Dtdset. The results are presented slice
by slice in Figure 2.7. The segmented follicles superimposed (outline in white) on
the original image, and aligned in the same wagtasved in the original images. From
the Figure 2.7, we can see that boundary leakagerad on the largest follicle in the
image at the bottom left on slices from 27 to si& The obtained results can be

visualized in 3D, as in Figure 2.8.

slice 6 slice 9 slice 12 slite

slice 54 '  slice 60 slice 63

Figure 2.7 Sequence of the images from the SRG segmation result, aligned in the same way as
inFigure 2.5 (ovary number 68 from the training dagset).
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Follicles Segmentation

400

Y =

Figure 2.8 3D vision of the follicle segmentation asult (ovary number 68 from the training
dataset). The coordinate (x,y) comes from 2D sliceand coordinate z comes from the
sequence of images.
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In Figure 2.9, the results are compared with mapudgtermined follicles by an
expert, and also aligned in the same way as shiowhreioriginal images. Finally, Figure

2.10 shows the 3D volume of the manually determseggimentation result.

slice 54 slice 60

Figure 2.9 Sequence images of manually determinedllicles, aligned in the same way as in Figure
2.5 (ovary number 68 from the training dataset).
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30 Manually Detected Follicles

400

Y =

Figure 2.10 3D vision of the manually determined fticles (ovary number 68 from the training
dataset). The coordinate (x,y) comes from 2D sliceand coordinate z comes from the
sequence of images.
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Next, the best segmentation result is presentellignre 2.11a, and its observer-
defined result is shown in Figure 2.11b

Slice 37 Slice 38 Slice 39 Slice 40

Slice 50

Figure 2.11a The computer-segmented boundary dfi¢ best follicle segmentation result.
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Slice 37 Slice 38 Slice 39 Slice 40

-

Slice Slice 52

Figure 2.11bThe observer-defined boundary of the dst segmentation result. In this case, the Dice
coefficient of this follicle is 72.8%; the volume bthe computer segmented result is 0.376
ml; the aspiration volume is 0.227 ml; and the volme of the manually detected result is
0.6571 ml.
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The worst segmentation result is shown in Figuie 2.

Slice 40 Slice 41 Slice 42 Slice 43

Slice 44 Slice 45

Slice 48 Slice 49 Slice 51

Slice 41 Slice 42 Slice 43

Slice 44 Slice 45 Slice 46

Slice 49 Slice 50 Slice 51

(b)

Figure 2.12 An example of a poorly segmented folle (a) is its computer-segmented boundary and
(b) is the observer-defined boundary. In this casehe Dice coefficient of this follicle is
only 29.34%; the volume of the computer segmentedesult is 0.2124 ml; the aspiration
volume is 0.060 ml; and the volume of the manuallgetected result is 0.0914 ml.
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All together, 16 ovaries were used as test datasédtal, 138 follicles in the ovaries
dataset were analyzed. Since the follicles werensated individually, we evaluated all
the follicles together without considering the drfnces of each ovary. The statistical
analyses were conducted using the Statistical Amalyystem (SAS Institute; Cary, NC,
USA).

The linear regression statistical comparisons ef fillicles’ volumes are given in
Figure 2.13, Figure 2.14 and Figure 2.15. In FigrE3, we obtained the statistical
comparison between our SRG follicle segmentatiGulte and the aspiration results.
Figure 2.14 shows the statistical comparison betwide SRG follicle segmentation
result and the manually determined segmentatiartrésgure 2.15 shows the statistical
comparison between aspiration result and the mndetermined segmentation result.
The statistical analysis support one of the hypdkethat there will be linear
relationships between the computer-segmented I®llimlumes, aspirated follicle
volumes and observer-defined follicle volumes (eesipely, y = 0.857x + 0.005, R
0.946, P < 0.0001, see Figure 2.13; y = 1.512 2%).® = 0.936, P < 0.0001, see
Figure 2.14; y = 0.544x + 0.030?R 0.931, P < 0.0001, see Figure 2.15). There was n
perfect agreement between the aspiration resulttE®&RG segmentation result (slope
= 0.857, see Figure 2.13), no agreement betweemtrially defined result and the
SRG segmentation result (slope = 1.512, see Fiya¥, and no agreement between the
aspiration result and the manually defined resltipe = 0.544, see Figure 2.15). These
results did not support the hypothesis that thellebe& an agreement between each two
results among the SRG follicle segmentation resulis aspiration results and the

manually determined results.
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Figure 2.13 Comparison of the computer segmentatioand follicle aspiration volume (y = 0.857x +
0.005, R = 0.946, P < 0.0001).
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Figure 2.14 Comparison of the computer segmentatioand observer-defined volume (y = 1.512x -
0.025, R = 0.936, P<0.0001).
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Figure 2.15 Comparison of the aspiration volume anadbserver-defined volume (y = 0.544x + 0.030,
R?=0.931, P <0.0001).
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In addition to the overall analysis of the follislamong the SRG segmentation results,
the aspiration result and the manually determineghrentation result, the evaluation
among follicles in different size categories wasoatonsidered in this study. Ten
categories were defined here: 3mm diameter or 834, 4t0 5,510 6, ..... , 11mm or
greater. Table 2.1 shows the difference of theraspn result and the manually
determined result (Mean * Standard Error) among#tegories by analysis of variance
(ANOVA) followed by the Tukey Post-hoc test (a nipik pairwise comparisons
procedure). The letter superscripts (a,b,c,d...)uaes in the table indicate a difference.
The results with different superscripts within tseame column were significantly
different at a significant level of 0.05 by usingikBy Post-hoc test. As the diameter
increases, the aspiration volume and the manuaditerchined follicular volume
increase. Analysis with ANOVA indicated a statiatig significant difference between
follicle categories in both the aspiration volumel ahe manually determined volume
(overall ANOVA, P<0.0001). By Tukey Post-hoc tess$piration volumes of small size
follicles (diameter of follicles< 6mm, the first 4 groups of size categories) were n
significantly different between groups. For thditbés in diameter from 6 to 8 mm, the
aspiration volumes were not significantly differeRollicles in diameter from 8 to 10
mm also had same volume. In manually determindithololume, the Tukey Post-hoc
test revealed follicles in diameter from 4 to 8mrarevnot significantly different and

follicles from 8 to 10mm had same volume.
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Table 2.1 Mean aspiration volume and manually detenined volume

follicle size category.

of the follicles within a

Diameter Number of Aspiration Manual
categories follicles volume volume
< 3mm 54 0.046 + 0.005% 0.065 + 0.008
3~4mm 36 0.084 +0.01F 0.118 + 0.009
4~5mm 12 0.149 + 0.033 0.234 +0.029
5~6mm 9 0.268 + 0.066 0.410 + 0.076
6~7mm 7 0.516 + 0.104 0.764 + 0.086
7~8mm 4 0.553 +0.034 0.929 + 0.128
8~9mm 4 1.17 +0.253 1.39 +0.017
9~10mm 3 1.22 +0.124 2.05 +0.19%
10~11mm 7 1.56 + 0.160 2.81+0.208
>11mm 2 2.09 +0.13% 433 +0.574
Overall ANOVA P-value < 0.0001 < 0.0001

* Different superscripts (a,b,c,...) indicate difface in follicle category at P<0.05 using
Tukey Post-hoc comparison. Means are presentedntlatd error along with the total

number of follicles evaluated in each size category
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As a result, in the future analyses, we can combaweral non-significantly different
groups into one group to evaluate the accuracyuofatgorithm. Considering that the
first three groups have 70% of the total numbeolhicles, we separated the138 follicles
into 2 groups: one group of follicles with diamete&ro more than 5mm; the other with
diameters bigger than 5mm. Then, the simple linegression for these two groups was
computed. Figure 2.16, Figure 2.17 and Figure 8H@ws the linear regression results
between each two results among the computer adddtele segmentation result, the
manually detected follicle volume and the aspiratiwlume of the small size<(Gmm)
follicles. Figure 2.19, Figure 2.20 and Figure 2skbws the linear regressions of the
large size (> 5mm) follicles. The statistics reswt the small size follicles show that
there were statistically significant linear relaships between the aspiration result and
the SRG segmentation result (y = 0.520x + 0.026=R.463, P < 0.0001, see Figure
2.16), between the manually defined result andSIR& segmentation result (y = 0.421x
+0.067, R = 0.249, P < 0.0001, see Figure 2.17), and bettreeaspiration result and
the manually determined result (y = 0.627x + 0.0R7= 0.480, P < 0.0001, see Figure
2.18). In the group of large size follicles, thewere significant linear relationships
between the aspiration result and the SRG segnmmtasult (y = 0.832x + 0.05207R
= 0.907, P < 0.0001, see Figure 2.19), betweemtneually defined result and the SRG
segmentation result (y = 1.549x — 0.055,2R0.901, P < 0.0001, see Figure 2.20), and
between the aspiration result and the manuallyrahéned result (y = 0.501x + 0.134%R
= 0.876, P < 0.0001, see Figure 2.21). Moreoveweafcompared the statistics results
between the two groups of the small size follides the large size follicles, we found
that there were better correlations between the SRGmentation volumes, the
aspiration volumes and the manually determinednaekiin the large size follicles than
that in the small size follicles {R= 0.463 in Figure 2.16 vs.’R 0.907 in Figure 2.19;
R? = 0.249 in Figure 2.17 vs.2R 0.901 in Figure 2.20;%R= 0.480 in Figure 2.18 vs.’R
= 0.876 in Figure 2.21). From the slopes of theegggjon lines, there was no agreement
between each two volumes among the SRG segmentasait, the manually detected

follicle volume, the aspiration volume.
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Small follicles computer segmentation volume (ml)

Figure 2.16 Comparison of the SRG segmentation vake and follicle aspiration volume of small
size € 5mm) follicles (y = 0.520x + 0.026, %= 0.463, P < 0.0001).
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Figure 2.17 Comparison of the SRG segmentation vale and observer-defined volume of small size
(< 5mm) follicles (y = 0.421 + 0.067,%= 0.249 P < 0.0001).
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Figure 2.18 Comparison of the aspiration volume andbbserver-defined volume of small size<(
5mm) follicles (y = 0.627x + 0.007,%= 0.480, P < 0.0001).
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Figure 2.19 Comparison of the SRG segmentation vaie and follicle aspiration volume of large
size (> 5mm) follicles (y = 0.832x + 0.0527R 0.907, P < 0.0001).
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Figure 2.20 Comparison of the SRG segmentation vatle and observer-defined volume of large size
(> 5mm) follicles (y =1.549 - 0.055,R= 0.901, P < 0.0001).
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Figure 2.21 Comparison of the aspiration volume andbserver-defined volume of large size (>
5mm) follicles (y = 0.501x + 0.134,%= 0.876, P < 0.0001).
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For testing the sensitivity of the seed point selédor each follicle, two more seed
points were generated by using the 3D Gaussianorannction with the standard
deviation equal to the one third of the radium a€tefollicle, as long as the generated
seed points were located inside the follicle. Alé t16 ovaries were tested two more
times by using the new generated seed points. A& FROC MIXED model (a SAS
institute’s program that allows researchers to rhdtecovariance structure of the data,
SAS institute, 1999) analysis with unstructureddtire (covariance structures represent
the correlations among the repeated measuremems:unstructured’ structure makes
no assumption regarding correlation [81]) was usedetermine the effects of follicle
diameter categories, the segmentation results ing tisree sets of different seed points,
and the interaction of follicle categories and skgmentation results by using three sets
of seed points. The segmented results were evdlat®ng each randomly selected
seed point and the operator manually selected paied within different size categories
(Table 2.2). The superscripts (a,b,c,d...) have tames meaning as in Table 2.1.
Superscripts (x,y..) indicate the difference in Hane row at P<0.05. There were no
significant differences between the segmentedcidbir volumes among the three sets of
seed points (row comparison,>P0.05), except for the follicle in diameter categer
5~6mm, 6~7mm and 8~9mm and >11mm which were seestth the seed point
position. In the mean computer segmented follidkimes of three sets of seed points,
there was no significant difference among the diameategories 3mm, 3~4mm, and
4~5mm (column comparison, P 0.05), and no significant difference among the
diameter categories 5~6mm, 6~7mm, and 7~8mm arvdebeatthe categories 9~10mm
and 10~11mm (column comparisonz>M®.05). Overall, from Table 2.2, we can see the
segmentation results are sensitive to the selesged points. This did not support the
hypothesis that the follicle segmentation resultenf the computer will not be sensitive

to the position of the selected seed point.
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Table 2.2 Mean computer segmented follicle volumeithin different size categories among the

original manually selected seed points, the randomlselected seed points (group 1 and

2).
Diameter Operator Randomly selected seed poirtg/I e.an value by
categories selected seed using three sets
point 1 2 of seed points
< 3mm | 0,065 +0.01¢ | 0.077 +0.013 | 0.079 + 0.02¢ | 0.074 + 0.009
3~4mm | 0,099 +0.016 | 0.112 +0.026 | 0.086 + 0.015 | 0.099 + 0.01%
4~5mm | 0,149 +0.033 | 0.141 +0.030 | 0.119 + 0.023 | 0.136 +0.018
5~6mm | 0,365 + 0.097 | 0.234 +0.061 | 0.502 + 0.236 | 0.367 + 0.087
6~/mm | 0538 +0.11% | 0.404 +0.114 | 0.547 +0.112 | 0.496 + 0.063
7/~8mm | 0610 +0.065 | 0.636 + 0.06% | 0.634 + 0.063 | 0.627 +0.032%
8~9mm | 124+0.19% | 1.01+0.119 | 0.934+0.109 | 1.06 + 0.086
9~10mm | 746 +0.15% | 1.52+0.056 | 1.52+0.114 | 1.50 +0.058
10~11mm | 1 63+0.157% | 1.53+0.300' | 1.69 +0.184 | 1.62+0.123
>11mm | 272+0.27% | 2.84+0.046 | 3.32+0.267 | 2.96 +0.153
Repeated
Measure Follicle category P< 0.0001
ANOVA Three sets of seed points P = 0.0132
Analysis (Pro Follicle category * Three sets of seed points PGO01
Mixed)

* Different superscripts X, Y, z...) indicate selection mode differences (row

comparison) at P < 0.05.
* * Different superscripts (a, b, c, d,...) indicaléference in follicle category (column
comparison) at P< 0.05
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The simple linear regression was used again to acenpghe mean computer
segmentation volume of three sets of seed poiritsvath the manually detected follicle
volume and the aspiration volume. Figure 2.22 shibvsstatistical comparison between
aspiration result and the mean computer segmeantkcld volume of three sets of seed
points. Figure 2.23 shows the linear regressionltrdsetween the mean computer
segmented follicle volume of three sets of seedtpoand the manually determined
segmentation result. The statistical results shbat there were significant linear
relationships between the aspiration result andntiean computer segmented follicle
volume (y = 0.816x + 0.017,°R- 0.902, P < 0.0001, see Figure 2.22); and betifeen
manually defined result and the mean computer setgddollicle volume (y = 1.458x —
0.010, R=0.915, P < 0.0001, see Figure 2.23). The slopé¢seofegression lines show
there was no perfect agreement between the agpir&dllicle volume and the mean
value of computer segmented follicle results byngsihree sets of seed points; or
between the manually detected follicle result dredrhean value of computer segmented

follicle volume.
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Figure 2.22 Comparison of the mean value of computesegmentation volume of three sets of seed
points and follicle aspiration volume (y = 0.816x+017, R = 0.902, P < 0.0001).
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Figure 2.23 Comparison of the mean value of computesegmentation volume of three sets of seed
points and manually defined follicle volume (y = 458 x - 0.010, R= 0.915, P < 0.0001).
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Meanwhile, the Pearson correlation coefficient Endalue were used to compare the
difference between each of the two values amongraagm volume, manually
determined volume, and the computer segmented wlsee Table 2.3. According to
Table 2.3, the overall aspiration volume, manuakyermined volume, and the mean
computer segmented volumes were significantly avsitipely correlated to each other
(aspiration volume vs. manual volume: r =0.965, BP801; aspiration volume vs. mean
computer volume: r=0.950, P=0.0001; manual volurse mean computer volume:
r=0.961, P=0.0001). In different size categoriémse three volumes were positively
correlated to each other, except for the diametergory of 9~10mm (aspiration volume
vs. manual volume: r=-0.629, P=0.5669; aspiratiolume vs. computer volume: r = -
0.755, P=0.4553). And in the category of folliclardeter >11mm, there was perfect
positive correlations between each other (r =1) edvfollicles were classified into two
categories, both the small size follicles §mm) and the large size follicles (> 5mm)
have significant correlations among aspiration w@y manually detected volume and
mean value of computer segmented follicle volumgsiding three sets of seed points
(P<0.05); except in small size follicles’ groupeté was a tendency towards significant
correlation between aspiration volume and meanevalucomputer segmented results
(P=0.0657).
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Table 2.3 Pearson Correlation coefficient (P valuefor comparison of aspiration volume, manual
volume and mean computer volume (the operator selsd seed points, the randomly
selected seed points group 1 and 2).

_ Number Aspiration Aspiration Manual volume
Diameter
) of volume VS. | volume VS. mean VS. mean
categories )
follicles | Manual volume| computer volume| computer volume
(incﬁ‘éier:g'gn - 0.965 0.950 0.961
. (P<0.0001) (P<0.0001) (P<0.0001)
categories)
<3mm 54 0.315 0.157 0.413
B (P<0.0203) (P<0.2567) (P<0.0019)
3-4mm 36 0.383 0.731 0.202
(P<0.0213) (P<0.0001) (P<0.2369)
A~5mm 12 0.872 0.924 0.793
(P<0.0002) (P<0.0001) (P<0.0021)
5-6mm 9 0.947 0.327 0.520
(P<0.0001) (P<0.3908) (P<0.1516)
0.947 0.888 0.906
6~7mm ! (P<0.0012) (P<0.0076) (P<0.0049)
7-8mm 4 0.575 0.898 0.646
(P<0.3105) (P<0.0387) (P<0.2387)
8~9mm 4 0.954 0.517 0.750
(P<0.1935) (P<0.6539) (P<0.4604)
9~10mm 3 -0.629 -0.755 0.985
(P<0.5669) (P<0.4553) (P<0.1116)
0.895 0.896 0.690
10~11mm | (P<0.0065) (P<0.0063) (P<0.0860)
>11mm 2 1 1 1
Small Follicles 102 0.478 0.183 0.416
(<5mm) (P<0.0000) (P<0.0657) (P<0.0000)
Large Follicles 36 0.986 0.942 0.934
(>5mm) (P<0.0000) (P<0.0000) (P<0.0000)
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We also calculated the correction of follicle segtaéion with both of the aspiration
results and the manually determined result in dbfie size categories. The definitions of
the corrections are as follow:

| SRGvolume- aspirationvolume]

Aspiration correction 4 - ——
aspirationvolume

(2.15)

| SRGvolume- manuallydefinedvolume]
manuallydefinedvolume

Manual correction 94— (2.16)

Table 2.4 and Table 2.5 show the aspiration cdme&nd the manual correction of the
follicles in different size categories.

In Table 2.4, there was no significant differemoeong the correction values by using
three sets of seed points (P = 0.8791). There wasignificant difference among
different size categories of follicles (P = 0.2316)

In Table 2.5, there was no significant differenogoag the correction values by using
three sets of seed points (P = 0.9400). There wasignificant difference among
different size categories of follicles (P = 0.2917)

For the analyses of position accuracy, the Dicdficoents of the follicles were used
to evaluate the probability of overlap for the cangy segmented region and the
manually determined region. The average Dice odefits between the computer
segmented results by using the operator selecesti m@nts and the manually detected
result was 58.43%. Table 2.6 shows the Dice caeffts of the follicles in different size
categories by using three sets of seed points.alleT2.6 there was no significant
difference among the Dice coefficients by usingéhsets of seed points (P = 0.7245).
The mean value of Dice coefficients by using thssts of seed points was no

significantly different among different size cateigs (column comparison,>0.05).
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Table 2.4 Aspiration correction within different follicle categories among the three groups of seed

points.
Randomly selected seed Mean value of
_ Operator _ _ )
Diameter points corrections by using
) selected see
categories ) three sets of seed
point 1 2 :
points
< 3mm | .0.219 +0.224 -0.899 + 0.474 -0.790 + 0.544  -0.636 + 0.251
3~4mm | 0067 +0.271| -0.276 + 0.460 0.126 +0.220| -0.027 +0.191
4~5mm | 0,592 +0.093| 0.545 +0.104| 0.679 + 0.093 0.606 + 0.055
5~6mm | 0.289 +0.514| 0.716 +0.084| -0.710 + 1.36 0.099 +0.481
6~7/mm | 0.765 +0.073| 0.676 + 0.116| 0.689 + 0.058 0.710 +0.048
7~8mm | 0.835+0.060| 0.793 +0.062| 0.801 + 0.051 0.810 +0.031
8~9mm | 0.360 + 0.320| 0.696 + 0.074| 0.794 + 0.052 0.617 +0.116
9~10mm | 0503 +0.119| 0.432 +0.048| 0.439+0.089|  0.458 +0.047
10~11mm| 0,850 + 0.027| 0.658 +0.108| 0.735 +0.047|  0.748 + 0.042
>11mm | 0.700 + 0.046| 0.637 +0.066| 0.398 + 0.231 0.578 + 0.086
Repeated
Measure Follicle category P = 0.2316
ANOVA Three sets of seed points P = 0.8791
. Follicle category * Three sets of seed points P3906
Analysis
(Pro Mixed)
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Table 2.5 Manual correction within different follicle size categories among the three groups of

seed points.
Randomly selected seed Mean value of
_ Operator ) _ )
Diameter points corrections by using
) selected see
categories _ three sets of seed
point 1 2 :
points
< 3mm | 0345 + 0.062 -0.288 +0.346 0.033 +0.260 0.030 £ 0.146
3~4mm | 0,239 +0.274 0.249 +0.229| 0.365 + 0.099 0.284 +0.122
4~5Smm | 0570 +0.064 0.576 +0.078| 0.511 + 0.063 0.553 £ 0.039
5~6mm | 0553 +0.138 0.539 + 0.086| 0.128 +0.474|  0.407 +0.165
6~7/mm | 0,665 +0.077| 0.514 +0.106| 0.678 +0.083 0.619 £ 0.052
7/~8mm | 0,683 +0.084 0.717 +0.082| 0.716 +0.074|  0.705 + 0.043
8~9mm | 0.805 + 0.056/ 0.728 +0.086| 0.673 +0.078 0.736 £ 0.042
9~10mm | 0,712 + 0.011] 0.753 +0.052| 0.746 + 0.029 0.737 £0.019
10~-11mm| 0,578 + 0.035 0.536 + 0.098| 0.604 +0.060| 0.573 + 0.038
>11mm | 0,633 +0.021] 0.667 +0.078| 0.790 + 0.167 0.697 £ 0.056
Repeated
Measure Follicle category P = 0.2917
ANOVA Three sets of seed points P = 0.9400
. Follicle category * Three sets of seed points P3984
Analysis
(Pro Mixed)
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Table 2.6 Dice coefficient within different follicle size categories among the three groups of seed

points.
Randomly selected seed Mean value of
_ Operator _ ) -
Diameter points Dice coefficients by
) selected see )
categories _ using three sets of
point 1 2 .
seed points
< 3mm | 0.497 +0.028 0.478 +0.032 0.473 +0.031 0.482 +0.018
3~4mm | 0566 + 0.032 0.566 +0.035| 0.575+0.033| 0.569 + 0.019
4-5mm | 0651 + 0.049 0.580 + 0.069| 0.582+0.068| 0.604 + 0.038
5~6mm | 0604 +0.056 0.624 +0.069| 0.545 + 0.089 0.591 + 0.04%
6~7/mm | 0,716 +0.033 0.586 +0.101| 0.716 + 0.031 0.673 +0.038
7/~8mm | 0,754 +0.041 0.780 +0.042| 0.783 + 0.039 0.772 +£0.022
8~9mm | 0781 +0.062 0.799 + 0.054| 0.782+0.057| 0.787 +0.028
9~10mm | 0,803 + 0.007| 0.812 +0.051| 0.823 +0.030| 0.813 +0.017
10~-11mm| 0,721 + 0.029 0.648 +0.110| 0.713+0.044| 0.694 + 0.039
>11mm | 0.806 +0.031] 0.779 +0.038| 0.801 +0.010 0.795 +0.014
Repeated
Measure Follicle category P <0.0001
ANOVA Three sets of seed points P = 0.7245
. Follicle category * Three sets of seed points P3901
Analysis
(Pro Mixed)

* Different superscripts (a, b, ¢, d, ...) indicatéfetience in follicle category (column

comparison) at P< 0.05.
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The overall Dice coefficient is defined as follows:

4x|M nCn R nR,|
[M[+[Cl+[R|+|R,|
where, M is the manually determined follicle regio@, is the computer segmented

Overall Dice coefficier =

(2.17)

region by using the seed points selected by theatme R, is the computer segmented
region by using the first group of randomly seldcteed pointsR,is the computer
segmented region by using the second group of ralydgelected seed points.

The overall Dice coefficient in different size ogoeies are shown in Table 2.7. The
superscripts (a,b.c..) have the same meaning Balle 2.1. The differences among size
categories were compared with ANOVA followed by &ykPost-hoc. Analysis with
ANOVA indicated a statistically significant diffenee between follicle categories
(overall ANOVA, P<0.0001). Differences of overallide coefficient among follicles

size categories were significant (Tukey Post-he@).65).

Table 2.7 The overall Dice coefficient within diférent follicle size categories.

Diameter categories Number of follicles Overall ®moefficient
< 3mm o4 0.315 + 0.034
3~4mm 36 0.500 + 0.043
4~5mm 12 0.524 +0.097
5~6mm 9 0.457 + 0.10f
6~7mm 7 0.530 +0.139
7~8mm 4 0.797 + 0.03%
8~9mm 4 0.743 +0.084

9~10mm 3 0.811 +0.022

10~11mm 7 0.674+0.118

>11mm 2 0.772 +0.017
Overall ANOVA P-value < 0.0001

*Different superscripts indicate difference at R38.using Tukey Post-hoc
comparison.

68



2.5 Discussion

This experiment is an evaluation of the performamafea 3D SRG follicle
segmentation algorithm. It can be usediorivo images too. In Figure 2.16, the result
of performing the same program on a transrectalgenaequence is given. The
parameters are selected as follows: the thresHoldeoadaptive neighborhood median
filter is: T = 0.6 X the mean value of the ovary volume; the mean sitgthreshold for
the first criterion is:m = 0.7Xthe mean voxel of the 3D ovary dataset; the stahdar
deviation threshold for the second criterion d@s:= the standard deviation of pixel
intensity over the whole volume; threshold of tlwdume comparison test i€ = 1.3;

and the threshold used to test whether the bouridakage may occur is setTg = 20.

Figure 2.24 Follicle SRG segmentatigasult of anin vivo ultrasonographic dataset.

From the statistical evaluation results (see 2.4uRe for detail) we found our SRG
algorithm is not an excellent algorithm. Comparthg position accuracy of our method
with other existing 2D follicle detection methodge see that our algorithm was worse
than the algorithm described in Reference [50, @, see Table 2.8. The Hausdorff
distance obtained in our study is about 30 timggdii than those in Reference [50, 51].
The main reason is that in our study, huge bounidalkage problem happened not only
on each single slice (x and y directions) but miap @xtend to the connected slices (z
direction), sometimes even extend to the edge efitiages. The Root mean square
distance and average absolute distance of thisy stwel about twice the values in

Reference [50, 51, 60]. However, in our case, dbfie from those papers, the algorithm
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was performed on 3D datasets based on a sequengat@&f bath images (with huge
boundary leakage problem and lots of dark aregh@images).

Table 2.8 Comparison of Hausdorff distance, root mem squared distance and average absolute
distance of our SRG algorithm with the results in &gorithm described in [50, 51, 60].
Empty entries in the table indicate that a metric vas not computed in the validation
methodology for a particular algorithm.

Hausdorff Root mean squaredAverage absolute
distance distance distance
Our SRG algorithm 39.9+£5.61 1.87 +1.36 0.84820.
Krivanek's method | 4 47, ( g3 0.59 +0.28
[50]
Sarty’s method [51] 1.64+1.92 0.63 +0.36
Potanik’s method
[60] 0.8 +£0.15

Since both of our SRG algorithm and the methodatodnik’s paper [60] (see Chapter
1.4.2 follicle segmentation for detail) are based@gion growing algorithm, it is more
reasonable to compare these two methods by usingaime dataset due to the different
data acquisition in those two methods. Thereforepedormed Poténik’s algorithm
[60] on each 2D image slice in the test datas¢hisfstudy, then the segmented follicles
were amalgamated to construct 3D volumes and cadpaith the 3D follicle volumes
obtained by using our SRG algorithm. In contradeadainik’s paper [60], the selection
of thresholdTh of the image smoothing step was set to 80% of taamgrey-level of
the image instead of the mean grey-level of thegamdecause there were larger dark
areas (caused by the waterbath imaging) on theamafthis dataset than on the images
used in Poténik’s paper [60]. The thresholfig was set to 70% of the mean grey-level
of the smoothed image instead of the mean grey-ldeereased by one standard
deviation of grey-levels in the smoothed image.d&8ise the mean grey-level is very low
and standard deviation is very high in water battages, if we kept use the same
method as in paper [60] to get thg, the value offg will become very small or even
negative which is totally invalid. The threshaid was set to % of the standard deviation
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of the image instead of half of it also becausthefhigh standard deviation value in the
images of our dataset. The parameters in the ragiowing step were the same as in
Potainik’s paper [60]. In the post processing step,réggons with area smaller than 50

were removed instead of 220 in Ratik’s paper [60], because the follicle in one slice
could be very small even though it is big in 3DeTegions with area around 220 could
be follicles with diameter of 2mm in one singlecsli but the regions with area around
50 emerge because of speckle noise. Compared wiitly the same parameters in paper
[60], the follicle segmentation results are muchtdyeby using the parameters we

selected here (better recognition rate and the derynof the segmented follicles are

more close to the real follicle boundaries).

Potainik’'s method is a good method for recognizing @ds on 2D single images, but
when performing on our water bath based images dbtlark area around the ovary was
misidentified as follicle area; lots of small faliks were not recognized, and huge
boundary leakage happened on many follicles. Inntbest case, the follicle region did
not stop growing until touch the edge of the imaddereover, the huge dark area on the
images caused the program to require a long rurtimmg The longest running time was
about 1.5 hours for one slice of the images. Figu25 shows the simple linear
regression between the segmented follicle volunneistheir related manually detected
follicle volumes. The result shows that there wadatigtically significant linear
relationship between them (y = 0.145x + 0.378=R.150, P < 0.001). But there was no
agreement between them (the slope of the lineaessmpn line is 0.145). If comparing
with our SRG segmentation result, we found our Sigarithm has better agreement
between the computer segmented follicle volumes taedmanually detected follicle
volumes (the slope of the linear regression lind.&12). For comparing the position
accuracy, Table 2.9 compared the Hausdorff distarczeé mean squared distance and
Dice coefficient of our SRG segmentation resultgshwihose obtained by using
Potainik’'s method. From Table 2.9, we found our methddamed better Hausdorff
distance, root mean squared distance and Diceicieetf compared with Potaik’s

method applied to our data set.
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Manually determined follicle volumes

0 2 4 6 8 10 12 14
computer segmentation volumes by using the method in paper [60].

Figure 2.25 Comparison of the follicle segmentationolume by using the method in paper [60] on
our data set with the manually detected folliclevolume (y = 0.145x + 0.378, &= 0.150,
P <0.001)

Table 2.9 Comparison of Hausdorff distance, root man squared distance and Dice coefficient of
our SRG algorithm with the distances obtained by usg Potoénik’s method [60] on our

data set.
Hausdorff Root mean Mean Dice
distance squared distance  Coefficient
Our SRG algorithm 39.9+5.61 1.87+1.36 58.43%

Segmentation result
by using Potoénik’s 42.5 +£8.90 8.58 + 5.55 27.63%
method [60]
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In General, the SRG segmentation method we dewelbpe significant advantages as
well as some drawbacks.

One of the most attractive advantages is that tethod performs quite well on the
images which have significant boundary leaking fois or very weak edges
information. The second advantage is that it igpggmThe algorithm does not have any
complicated theory or mathematic computation assediwith it. The third advantage is
that the algorithm operates quickly on follicleses boundary leaking is not a problem;
the algorithm doesn’t need to go through every Ipikethe image. The speed of
segmentation depends on the size of the follici¢.f8r the follicles for which boundary
leakage occurs, the speed of the algorithm isivelad the condition of the boundary. A
follicle which has less boundary leakage will résnilless operation time compared with
one which has a greater boundary leakage probleame. fourth advantage is that
judicious selection of seed points will help to aegte overlapping follicles (two
follicles adjacent to each other separated by @ wetak boundary), because the shape-
based criterion and the special growing neighbodhased in the algorithm can keep the
growing region in ellipsoid shape and thereforepkgerom growing into the adjacent
follicle.

On the other hand, the algorithm has three weakseSshe first and perhaps most
important weakness is that for the follicles whidve great boundary leakage problems,
it is not a fully repeatable segmentation for ooéidie; the result depends on the
selected seed point. Different seed points in afieclke cannot get totally same result
(see Table 2.2). Sometimes, choosing a differerdd spoint will improve the
segmentation result. Second, this algorithm rebesseveral parameters that were
determined experimentally, however, some can bectsal automatically, such as the
threshold of the program stop criteriéh, although this comes at great computational
expense. The mean value threshold and standardtevthreshold can be determined
from the mean value and the standard deviationixd#l pntensities over the whole
volume. However, the standard deviation threshdil seeds to be determined
manually in order to use two times the standardadiew of the whole ovary volume or
one time of the standard deviation of the wholeur@®. Finally, the algorithm can be

performed in the ultrasound images sequence witferdnt thickness of intervals
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between each slice and also can work on a trulyiSiropic) dataset, but the 3D region

growing neighborhood has to be modified the sizéhabit is symmetric.

2.6 Conclusions and future work

The research in this paper represents a new SRi@thlg applied to a constructed 3D
ultrasonographic dataset. A new growing neighbodhigocreated here for matching a
special ellipsoid shaped object in each iteratibrthe SRG algorithm. Growing the
initial homogeneity region is controlled with twateria: mean grey-level and standard
deviation. A similar 3D compactness test is used #srd criterion. A global stopping
criterion solves the boundary leakage problem iorpguality images. Quantitative
comparison among the SRG segmentation results,afipgration results, and the
manually determined results indicate there wergifsognt linear relationships between
the computer segmentation volumes, the aspiratibmnves, and the manually detected
volumes. This supported the second hypothesistti®ae will be linear relationships
between the computer-segmented follicle volumesenker-defined follicle volumes
and aspirated follicle volumes. We separated tted segmented follicles into 2 groups
— the big size follicles (follicles with diameters 5mm), and the small size follicles
(follicles with diameters< 5mm). After the evaluation by using the same \aiah
methods, we found that there were significant ietaships between the SRG segmented
follicle volumes, the aspiration volumes and thenoaly detected follicle volumes in
both of the groups of the small size follicles athe big size follicles. The third
hypothesis that there will be an agreement betweemputer-segmented follicle
volumes, observer-defined follicle volumes, andiraspd follicle volumes was rejected
because the slopes of every regression lines warelose enough to 1. The average
overlap correction rate between the computer setgderesults and the manually
detected result is 58.43%. This did not supportfitisé hypothesis that the volume and
position of follicles obtained by computer-assistellicle segmentation will be similar
to that obtained from the observer-defined follislgmentation and aspirated follicle
volumes (gold standards). The segmentation reswméssensitive to the selected seed
points (P<0.05), but the overlap correction rates reot sensitive to the selected seed

points. This did not support the last hypothesis tois study that the follicle
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segmentation results from the computer will not demsitive to the position of the
selected seed point.

Clearly, this algorithm is a semi-automatic methGtlanging it to a totally automatic
method will become the basis of a future projecesghthe seed points are arrived at by
an automatic method. For the follicles which haverary leaking problem, the SRG
program needs to run several times with increasgg control value P. This is clearly
time-consuming. Sometime, the whole program witi around 20~30 minute for one
follicle due to this. A step which can make thegyeon doesn’t need to go back to the
seed point and run all over again is desired. Tigerithm used an ellipsoid shaped
growing neighborhood. This increases the computaticomplexity of the method. A
better 3D construction method which can fill thetdnce between each slice of the
sequence of ovarian ultrasound images to make dhstrticted volume close to the
ground truth volume is desired. Moreover, the p@epssing step used in this algorithm
was aimed at reducing the speckle noise in imayegquence of other pre-processing
methods could be added to this algorithm to impreweoothing of the images,
potentially leading to better results.
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Chapter 3

General Discussion

The study described in this thesis can makeratysis of follicles not only in the
horizontal and vertical planes but also in the fabrplane based on a sequence of
ultrasonographic ovarian images. This method m#kesomputer-based measurement
of volume available without using a 3D ultrasounthging system. In this chapter, we

will discuss the efficiency of this study and itsitations.

3.1 Diameter measurement versus volume measurement

In most current studies, follicles status is esshigld based on the estimation of follicle
diameter, whereas the desired follicular measurémsetine true volume of the follicle
[82-85]. The diameter of each follicle is measuiretivo or three axes [82, 84]. In two
axes, the two diameters across the follicle aresomea in the slice in which the follicle
appears the largest [82]. The third diameter issuesl at approximately right angles to
the other two diameters [84]. The volume of thdidld then can be predicted by using
the mean value of these diameters for sphericéiclEsd or the longest and shortest
diameters for ellipsoidal follicles [84]. This meth works better for approximately
spherical follicles than for those of other shaff#4. However, in clinical research,
there are many follicles having ellipsoidal or guéar shape, especially during
superstimulated cycles, where there can be sefaliales pressing against each other
[84]. 2D diameter based volume measurement is lysagboor approximation in such
cases.

Although based on 2D images, the volume measuremetitod in this thesis does not
need to consider the shape of the follicle. Theun@ is calculated by simply counting

the number of voxels belonging to the computer seded follicle. The physical
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dimensions of each voxel a%emmx:—émmX%mm: 1—;‘Emrrf(1 pixel in each slice equal

to %mm, while the interval between each slice—gisnm, see Chapter 2 2.3.1 Data

acquisition for detail). The accuracy of the measwnt of follicle volume depends on
the segmentation and the ultrasound scanning meffiee noise inside the follicle, the
follicle boundary’s condition, the seed’s positiselected by the operator and the
selection of the threshold value all affect thensegtation result. Moreover, accurate
imaging of the organ, including accurately scannagh slice and moving the organ

equidistantly and accurately, can affect the resiMolume measurement.

3.2 2D ultrasound measurements versus 3D ultrasoundeasurements

Recently, 3D ultrasound has become more and momemomly used in follicle
analysis. The most important reason for applying d@asound in the analysis of
follicles is that it can give accurate informatiabout the number of follicles, size,
positions and response to hormonal stimulation.[86]

The size information of a follicle consists of timleasurement of the follicle volume.
Some studies have demonstrated that volume measunesing 3D freehand ultrasound
is more correct than the calculation based on tmventional 2D diameter based
measurement (see Section Diameter measurement versus volume measurement in
this Chapter) if the aspirated follicle volume iedted as a gold standard [87, 88].
However, it has not been proven that will contrébth the ovarian follicular research
[89]. The volume measurement in this thesis iseddiht from both of these methods just
described. Further study should evaluate the acgusad efficiency between the 3D
ultrasound volume measurement and volume measutantesduced in this thesis to
see whether or not the method described in thisighean substitute for the 3D

ultrasound measurement.

3.3 The limitations of this research

Another important requirement in clinical reseailtounting the number of follicles

in the ovary. However, the method presented in thesis will fail to provide this
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information automatically because manually selgctithe seed points in turn
necessitates counting the number of follicles méyuahis is a clear drawback of this

method.
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Chapter 4

General Conclusions

4.1 Summary

In Chapter 1 the main goal of the thesis andré¢fettive background knowledge were
presented. Section 1.1 described the purpose, tadgeand hypotheses of this thesis
and an overview of ovary anatomy and follicle depehent was provided in Section
1.2, followed by a review of ovarian ultrasounddi@an 1.3). This includes: a review of
ultrasound imaging system (Section 1.3.1), an aegenof ovarian ultrasound analysis
methods (Section 1.3.2), a description of ovariawl dollicular characters on the
ultrasound images (Section 1.3.3), and a discussi@mtifacts commonly occurring on
ovarian ultrasound images (Section 1.3.4). Finalgckground knowledge and
literatures about the computer-based follicle segat®n methods were discussed
(Section 1.4).

Chapter 2 provided a detailed description of thgoadhm in this study — the 3D
seeded region growing based follicle segmentatigarghm. In this chapter, a special
introductory focus on the 2D and 3D follicle segtagion methods was given (Section
2.1). Then background knowledge of the 3D seedgubmegrowing algorithm, as well
as the advantages and disadvantages of using tbeikocth to approach follicle
segmentation was described (Section 2.2.1) followgda description of validation
methods for evaluating the follicle segmentatiosutes (Section 2.2.2). This was
followed by the description of the data acquisitraethod (Section 2.3.1), the detail of
the algorithm procedure (Section 2.3.2), and tr@uation methods for evaluating the
results of follicular volume segmentation (Secti@r8.3). Then, the results of the
algorithm and the evaluation were presented (Secid) followed by a discussion
about this algorithm and its results was prese(fsedtion 2.5). At the end, a conclusion

and some suggestions of future work about the gllgnwere described (Section 2.6).
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Chapter 3 discussed the volume measurement metaseldbon the segmentation
results of this study, compared it both with the d@Bmeter based volume calculation
(Section 3.1) and the volume measurement basedDonltBasonography techniques
(Section 3.2). Then, the limitations of the metigetherated in this thesis were described
(Section 3.3).

4.2 Contributions

The first contribution of this thesis is the deysiwent of an algorithm for segmenting
volumetric ultrasound data. The algorithm approdclaeregion-based segmentation
method by determining the homogeneous grey-levéi@bbject regions in combination
with a shape-based criterion. The emphasis of #gmentation algorithm is on
developing a shape-based criterion to terminateggen growing program correctly.

The second contribution of this thesis is the dmyed validation method for
evaluating the follicular segmentation results. Taidation method compares the
results among the computer segmentation volumemiueually detection volume, and
the aspiration volume, instead of only considetimg computer segmented result with
either the manually detection result or the aspinatesult. In the most recent study of
computer assisted follicle segmentation, the reswire either compared against the
manual detection result (2D single image segmemtpbr compared with the aspiration
volume (3D image segmentation). Both of these twaluation methods have their
weakness. The comparison with manual detectioritsefsuw 2D images is hard to assess
the accuracy of the 3D volume, and the comparisith aspiration volume is hard to
assess the shape and location of the follicless $hidy uniquely evaluated the results
with both of these two methods, and therefore, Boémthe accuracy of the assessment.
Moreover, we also provided an evaluation betweean dhpiration volume and the
manual detection volume to study the effect ofi¢tdl volume measurement methods.

The third contribution of this thesis is the adutitiof a program termination criterion
for the region-growing program. The algorithm retsothe outer boundary pixels of the
present growing region. If a certain percentagthefouter boundary pixels terminate to
grow, the whole program stops. Moreover, the paeggnis variable and determined by

the program automatically.
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The fourth contribution of this thesis is its dey@hent of an irregular growing
neighborhood for the region growing algorithm. Alipsoid shaped neighborhood
(11x11x 3 pixels) was used in this thesis instead of theuleeg6, 18, or 26 pixels’
neighborhood.

Finally, after testing 138 follicles in 16 ovari¢le evaluation result shows: (1) There
were significantly linear relationships between toenputer segmentation volumes, the
aspiration volumes, and the manually determinedimek. (2) We separated the total
segmented follicles into 2 groups — the large dakcles (follicles with diameters
>5mm), and the small size follicles (follicles withiameters<Smm). After the
evaluation by using the same methods, we foundtligae were significant relationship
between the SRG segmented follicle volume, theraspn volumes, and the manually
detected follicle volumes in both the groups of ¢sheall size follicles and the large size
follicles (3) There was no agreement between eachréesults among the among the
SRG segmentation results, the aspiration results tae manually detected follicle
results (the slopes of the regression lines arelose to 1). (4) The segmentation results
(both the size and position results) are sensitvthe selected seed points (P<0.05). (5)
The average overlap correction rate between theputan segmented results and the
manually detected result is 58.43%.

For testing the hypotheses in this study, we foilnedfirst hypothesis that the volume
and position of follicles obtained by computer-atsi follicle segmentation will be
similar to that obtained from the observer-defirfellicle segmentation and aspirated
follicle volumes is not supported. The second higpsis that there will be statistical
linear relationships between computer-segmentelicl®olvolumes, observer-defined
follicle volumes and aspirated follicle volumessigpported. The third hypothesis that
there will be an agreement between computer-segmueiatlicle volumes, observer-
defined follicle volumes, and aspirated folliclelmmes is rejected. The last hypothesis
that the follicle segmentation results from the pater will not be sensitive to the

position of the selected seed point is rejected.

4.3 Future work
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Although this method developed the 3D follicle segwation techniques, there are
still further studies and development that are ireglu First, in this study, we succeeded
in segmenting the follicles, measuring their volgmand comparing the result volumes
with both the aspiration volume and the manualliedied follicular volume. However,
whether this result can satisfy the clinical reqmients is still unclear. Second, the
algorithm developed in this thesis is obviouslyemsautomatic method. To develop
this method to a totally automatic segmentationhoet(automatically select seed points
for each follicle) is desired; such a method camn¢ahe number of follicles in the ovary

automatically.
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Apendix A

More segmentation results

Below are three more segmentation results byguSRG follicle segmentation
algorithm. In each result, it includes the 3D camdion result of the original ovarian
ultrasound images, the sequence of images of tiggnal ovarian images, the SRG
segmentation result, the manually detected foBidlesult, and the 3D vision of the
follicles segmentation result. The first two resudte typical results, and the third one is
the result obtained from a noise image (poor intagsity).

A.1 Two more typical results

Ovary number 18

250

(a) 3D construction result of the cow ovary
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Slice 8 Slice 12 Slice 16 Slice 20

Slice 44

(b) The original images relative by slice number
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Slice 8 Slice 12 Slice 16 Slice 20

(c) The segmentation result relative by slice numbe
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Slice 8 Slice 12 Slice 16 Slice 20

(d) The manually determined follicles by an expert
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Follicles Segmentation
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(e) The 3D vision of the follicle segmentation resu

Figure A.1 The computer segmiation result of bovine ovary number 18.
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Ovary number 15

400

(a) 3D construction result of the cow ovary
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Slice 12 Slice 16 Slice 20 Slice 24

Slice 28 Slice 36 Slice 40

Slice 44 Slice 48 Slice 52

Slice 64 Slice 68

Slice 76

(b) The original images relative by slice number
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Slice 12 Slice 16 Slice 20 Slice 24

Slice 28

Slice 44 Slice 48

Slice 64 Slice 68

Slice 76

(c) The result of our algorithm relative by slice mmber
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Slice 12 Slice 16 Slice 20 Slice 24

Slice 28 Slice 32 Slice 36 Slice 40

Slice 44 Slice 48 Slice 52 Slice 56

(d) The manually determined follicles by an expert



Follicles Segmentation

250

(e) The 3D vision of the follicle segmentation re#u

Figure A.2 The computer segmtation result of bovine ovary number 15.
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A.2 Noise image

Ovary number 09

400

(a) The construction result of the cow ovary
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Slice 6 Slice 10 Slice 14 Slice 18

Slice 46

Slice 82

(b) The original images relative by slice number
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Slice 6 Slice 10 Slice 14 Slice 18

Slice 46

Slice 82

(c) The result of our algorithm relative by slice mmber
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Slice 6 Slice 10 Slice 14 Slice 18

Slice22

Slice 46

Slice 42

(d) The manually determined follicles by an expert
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Follicles Segmentation
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(e) The 3D vision of the follicle segmentation re#u

Figure A.3 The computer segmiation result of bovine ovary number 09.
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Apendix B

Software Documents

Below are the codes of SRG algorithm. The contehtse software documents are as
following:

Main Program

A
- N
Adaptive median Region growing program
AN
- )
The head file of the The C program of the
MATLABMEX file seeded region growing

B.1 Main Program

clear all

close all

% This is the program that segment each folliadefia volume of a bovine ovary.
function [Lnew,Lcompare] = fsegment(Seeds)

%%% %% %% % %% %% %% %% %% % %% %% %% %% % %% %% %% %% %% % %% %
% The input data is an array of the index of sesdtp. For example, the form of %
% input array is: Seeds = [1751838, 1919445, 303427361322465981]. %
%%% %% %% % %% %% %% %% %% % %% %% %% %% % %% %% %% %% % %% %% %
% Location of data files.

filebase = '/tmp_mnt/student/lvg533/Desktop/1-30c0dv ovary 010’

% Load the images and construct the images intwwane of the bovine ovary.
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startFram = 0O;
endfram = 91;
for i = startFram:endfram
ifi<=9
filename = filebase,num2str('0"),num2str(i, p2dim2str('.BMP")];
else
filename = [filebase,num2str(i,'%2d"),num24Bi(1P")];
end
temp = imread(filename);
temp = rgbh2gray(temp);
rect =[120 120 350 245];
temp = imcrop(temp,rect);
j =i+l
image(:,:,)) = temp;
end

%Medican filter preprocessing (see subfunctiorhefrnedian filter)
[m,n,0] = size(image);

Imed = adamedfilt(image);

Imed = uint8(Imed);

%Calculate the mean grey level and the standarititmv of the ovary
%volume

Mean = mean(Imed(:))*0.7;

Std = 20;

%Calculate the number of seed points.
a = size(Seeds,?2);

%Region growing, setup and run the MATLAB MEX foéthe 3D region
%growing(see subfunction of regiongrow.m and itsXVites)
image_mod = image(:,:,1);

mex regiongrow_vs.cpp neighborhood.cpp

Lnew = zeros(m,n,o0);

Ltmp = zeros(m,n,0);

volume =[];

Lnew = regiongrow(Imed,Seeds(1),40,Mean,Std,mmage_mod,0,8,6);
if Lnew(1) == 3 || Lnew(2) == 3||Lnew(3) ==
Thresh = 0;
while Lnew(1) == 3 || Lnew(2) == 3||Lnew(3) ==
Thresh = Thresh+1;
Th = 0.1*Thresh;
Lnew = regiongrow(Imed,Seeds(1),40,Mean,Stdgnimage_mod, Th,8,6);
end
end
Lnew = imfill(Lnew,8,'holes");
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%post-processing part by smoothing the segmentatgult (selectable)
Lnew = smooth3(Lnew);

%continue to segment the other follicles
fori=2:a
Ltmp = regiongrow(Imed,Seeds(i),40,Mean,Std,mimage_mod,0,8,6);
if Ltmp(1) == 3 || Ltmp(2) == 3||Ltmp(3) ==
Thresh = 0;
while Ltmp(1) == 3 || Ltmp(2) == 3||Ltmp(EF 3
Thresh = Thresh+1,
Th = 0.1*Thresh,;
Ltmp = regiongrow(Imed,Seeds(i),40,Meaa,/8tn,0,image_mod,
Th,8,6);
end
end
Ltmp = imfill(Ltmp,8,'holes’);
Ltmp = smooth3(Ltmp);
Lnew = imadd(Lnew,Ltmp);
End

%3D segmentation result visilization.

figure, isosurface(Lnew,0.5), title('Follicles Segmtation")
xlabel x, ylabel y, zlabel z

view(3), camlight, lighting gouraud

%Write the result into a result fold
filebase2 = '/tmp_mnt/student/lvg533/Desktop/1-30s@gmentation/’;
fork=1:0
Tem = Lnew(:,:,K);
sel = strel('disk',6);
Tem2 = imclose(Tem,sel);
I = image(:,:;,k);
E = edge(Tem2,'sobel");
Le = uint8(255.*E);
Lcom = imadd(Le,l);
figure,imshow(Lcom);
filename = [filebase2,num2str(k,'%2d"),num2gdg")];
imwrite(Lcom,filename,'jpg’);
Lcompare(:,:,k) = Lcom;
End
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B.2 Subfunctions

B.2.1 Adaptive median filter

function M = adamedfilt(image)

%This is a Matlab subfunction that smooth the 3iree using adaptive
%median filter.

%Input is the 3D ovary volume.
[X,y,z] = size(image);
M = zeros(size(image));

fori=1:z
Tem = image(:,:,i);
T = mean(Tem(:))*0.4;
Teml = Tem;
Tem2 = Tem,;
t1 = find(Teml1 >=T);
Teml(tl) = O;

% For the pixels greater than the threshodI1,*41 windows is used.
Medtl = medfilt2(Tem1,[11 11]);

t2 = find(Tem2 < T);

Tem2(t2) = 0;

% For the pixels less than the threshod T,5av@hdows is used.
Medt2 = medfilt2(Tem2, [5 5]);
Medl = imadd(Medt1,Medt2);

% The median filter smoothing is proformed wvic
Tem3 = Med]1,
Tem4 = Med1,
t3 = find(Tem3 >=T);,
Tem3(t3) = 0;
Medt3 = medfilt2(Tem3,[11 11]);
t4 = find(Tem4 < T);
Tem4(t4) = 0;
Medt4 = medfilt2(Tem4, [5 5]);
Med = imadd(Medt3,Medt4);
M(:,:,i) = uint8(Med);

end
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B.2.2 Region growing

function L = regiongrow(varargin)

%This is the 3D region growing based follicle segtagon program.

%

%L computes a label matrix identifying the growgiom. The elements
%abeled 1 belong to the ROI of the follicle.

%L = regiongrow(A,conn) computes the growing regirsing the specified
%3D connectivity.

% conn may have the following scalar values:

%

% 6 three-dimensional six-connected naigihood

% 18 three-dimensional 18-connected neaghtood

% 26 three-dimensional 26-connected neaghimood

%

%L = regiongrow(A,conn2) computes the growing regising the
%specified 2D connectivity.

% conn2 may have the following scalar values:

%

% 4 two-dimensional 4-connected neighbocho

% 8 two-dimensional 8-connected neighbodho

%

% Input-output specs

% A - full, real, numeric, logical

% +/- Inf OK, but NaNs not allowed

% empty OK

%

% Seed - the index of seed point

%

% Dif - the threshold of the difference between aadjacent pixels.
% In this research, it is a constant number

%

% MeanO - the threshold of the mean grey level ©f.R

%

% SdO - the threshold of the standard deviatidRQI.

%

% numx, numy, numz - the size of the input image A.

%

% A2 - atwo dimension matrix, same size of eglide in volume A.
%

% Thresh- the parameter of the program stop criion

%

% L - full, double array, same size as A
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[A,Seed,Dif0,Mean0,Sd0,numx,numy,numz,A2, Thresm@pconn] =
rea@_inputs(varargin{:});

L = regiongrow_vs(A,Seed,Dif0,Mean0,Sd0,numx,nuraga,A2, Thresh,conn2,
conn);

function [A,Seed,Dif0,Mean0,Sd0,numx,numy,numz, Afgsh,conn2,conn] =
parse_inputs(varargin)

iptchecknargin(11,12,nargin,mfilename);

A = varargin{1},

iptcheckinput(A,{'numeric' 'logical}, {'real' 'n@parse’}, ...
mfilename, 'A’, 1),

Seed = varargin{2};

Dif0 = varargin{3};

MeanO = varargin{4},

SdO = varargin{5};

numx = varargin{6};

numy = varargin{7};

numz = varargin{8};

A2 = varargin{9};

Thresh = varargin{10};

conn2 = varargin{11},

if nargin < 12
conn = conndef(ndims(A), 'maximal’);
else

conn = varargin{12};
if isa(conn,'strel’)
conn = getnhood(conn);
else
iptcheckconn(conn, mfilename, 'CONN’, 12);
end
end

B.2.3 The head file of the Matlab MEX file

#include "neighborhood.h"
#include "regiongrow_vs.h"
#include "mex.h"

T T T T ]
1

I REGIONGROW_VS MEX-file

1

/I Input-output specs: see regiongrow.m
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T T T T
T T T T
void check_inputs(int nlhs, mxArray *plhs][], inths, const mxArray *prhsl])
{

if (nrhs 1= 12)

{

mexErrMsgldAndTxt("Images:regiongrow_vsatidNumInputs”, "%s",
"REGIORGW_VS needs 11 input arguments.");
}

}

U T T T T
extern "C"
void mexFunction(int nlhs, mxArray *plhs[], int nshconst mxArray *prhs]])
{

void *I;

double *L,*Seed,*Mean0,*Sd0,*Dif0,*num_x,*num,num_z, *I2,

*Thresh;

int num_elements1,

const int *input_size, *input_size2,;

int ndims,ndims2;

mxClassID class _id;

Neighborhood_T nhood, nhood2;

NeighborhoodWalker_T walker, walker2;

check_inputs(nlhs, plhs, nrhs, prhs);

if (mxIsLogical(prhs[0]))

| = mxGetLogicals(prhs[0]);
}
else
{
| = mxGetData(prhs[0]);
}

Seed = mxGetPr(prhs[1]);

Dif0 = mxGetPr(prhs[2]);

Mean0 = mxGetPr(prhs[3]);

Sd0 = mxGetPr(prhs[4]);

num_x = mxGetPr(prhs[5]);

num_y = mxGetPr(prhs[6]);

num_z = mxGetPr(prhs[7]);

num_elementsl = mxGetNumberOfElements(prhs[0]);
class_id = mxGetClassID(prhs[0]);

input_size = mxGetDimensions(prhs|[0]);
ndims = mxGetNumberOfDimensions(prhs[0]);
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12 = mxGetPr(prhs[8]);
input_size2 = mxGetDimensions(prhs[8]);
ndims2 = mxGetNumberOfDimensions(prhs[8]);

Thresh = mxGetPr(prhs[9]);

plhs[0] = mxCreateNumericArray(ndims, input esimxDOUBLE_CLASS,
MXREAL);
L = mxGetPr(plhs[0]);

nhood = nhMakeNeighborhood(prhs[11],NH_CENTERDMLE_ROUNDDOWN);
walker = nhMakeNeighborhoodWalker(nhood,inpize :1dims,
NH_SKIP_CENTER);

nhood2 =nhMakeNeighborhood(prhs[10],
NH_CENTER_MIDDLE_ROUNDDOWN);
walker2 = nhMakeNeighborhoodWalker(nhood2,ingi#e2,ndims2,
NH_SKIP_CENTER);

switch (class_id)
{
case mxLOGICAL CLASS:
compute_regiongrow((mxLogical *)I,Seed,DM&an0,Sd0,
num_ebtts1,ndims,input_size,num_x,
num_yamwz, walker,walker2, Thresh,L);
break;
case mxUINT8_CLASS:
compute_regiongrow((uint8_T *)I,Seed, DM@&an0,Sd0,
num_elentsd ,ndims,input_size,num_x,
num_y,numywalker, walker2,Thresh,L);
break;
case mxUINT16_ CLASS:
compute_regiongrow((uintl6_T *)I,Seed, Dii@an0,Sd0,
num_elentsd ,ndims,input_size,num_x,
num_y,nunwalker, walker2,Thresh,L);
break;
case mxUINT32_CLASS:
compute_regiongrow((uint32_T *)I, Seed,Dii@an0,SdO0,
num_ebtts1,ndims,input_size,num_x,
num_ygmwz, walker, walker2, Thresh,L);
break;
case mxINT8 CLASS:
compute_regiongrow((int8_T *)I,Seed, DifG&h0,Sd0,
num_elensd ,ndims,input_size,num_x,
num_y,numywalker, walker2, Thresh,L);
break;
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}

case mxINT16_ CLASS:
compute_regiongrow((intl6_T *)I,Seed, DM@&an0,Sd0,
num_elensd ,ndims,input_size,num_x,
num_y,nunywalker, walker2, Thresh,L);
break;
case mxINT32_CLASS:
compute_regiongrow((int32_T *)I, Seed,DiM&an0,SdO0,
num_elensd ,ndims,input_size,num_x,
num_y,numywalker, walker2,Thresh,L);
break;
case mxSINGLE_CLASS:
do_nan_check((float *)I, num_elementsl);
compute_regiongrow((float *)I,Seed, Dif0,M®,SdO,
num_eb&nts1,ndims,input_size,num_x,
num_ygmw , walker, walker2, Thresh,L);
break;
case mxDOUBLE_CLASS:
do_nan_check((double *)I, num_elementsl);
compute_regiongrow((double *)I,Seed, Dif@ah0,SdO,
num_elensd ,ndims,input_size,num_x,
num_y,numywalker, walker2,Thresh,L);
break;
default:
mxAssert(false, ™);
break;

}

nhDestroyNeighborhood(nhood);
nhDestroyNeighborhoodWalker(walker);

nhDestroyNeighborhood(nhood?2);
nhDestroyNeighborhoodWalker(walker2);

B.2.4 The C program of the Matlab MEX file

#ifndef REGIONGROW_ VS H
#define  REGIONGROW_VS_H

#define INIT O
#define FICTITIOUS -1

#include "mex.h"

#include "neighborhood.h"
#include "queue.h”
#include "math.h"
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T T T T T ||
1l

T T T T ]
template<typename _T>

inline void do_nan_check(_T *F,int num_elements)

{

for (int p = 0; p < num_elements; p++)

if (mxIsNaN(F[p]))

{
mexErrMsgldAndTxt("Images:regiongrow:esgpectedNonNaN",
"0%s",
"Input image may rcontain NaNs.");
}
} }
T |||
1 1
/I Algorithm: see Chapter 2 3D Follicle Segmentatod Ultrasound Volume of I
I Boviogary Il
1 1

T T T T T T
template<typename _T>
void compute_regiongrow(_T *1, double *Seed,doutidéf0,double *MeanO,
double *Sd0,int N,int ndims,
const int *input_size,doubaim_x,
double *num_y,double *num_z,
NeighborhoodWalker_T walker,
NeighborhoodWalker_T walkeiduble *Thresh,

double *L)
{
Queue<int32_t> SeedQueue;
double Volume;

double Label = (double) 1, mean, mednstandard,
standardold;

int non_compact,k,p,q,dxstop=0,dystd dzstop=0;
T D1,D2;

int Dif,Mn,Sd,num_of_growing;

int XS,YS,ZS,ZP,XP,YP,rP,XV,yVv,zvieyb,c,rq,

A,r,circlesnumber,u,w,o0;

double XZ,YZ,2Z,Xq,Yq,2q,zgmin,zgmaryg ygmax,
xgmin,xgmax,xgmean,ygmean,zqmiedh,ind2,
ind3,tempx,tempy,tempz,sliceggedistance,
distancemax,VolumeSphere,zaaigg/xaxis,axismax,
dx,dy,dz,distance2,distancemdaRimeSphere2,
Comp,Length,Length2;

/I If the input array is empty, there's nothtoglo here.
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if (N == 0)
{

return;

}

/l Initialize output array.
for (k = 0; k <N; k++)

L[K] = INIT;
}

/I Initialize the seed points queue.
SeedQueue.initialize(32);

/I Get the boundary pixels of the region needagiew.
Volume = 1;
SeedQueue.put(FICTITIOUS);

L[(int)Seed[0]] = Label;

mean = I[(int)Seed[0]];
standard = 0;
SeedQueue.put((int)Seed[0]);

//Change index value to subindex,like ind2sub irtlda
slicearea = (num_x[0])*(num_y[0]);

zs = (int)Seed[0]/(int)slicearea+1;
ys = ((int)Seed[0]%(int)slicearea)/((int)numORf1;
xs = ((int)Seed[0]%(int)slicearea)%((int)ynumORjf

/IUse to find the minimum axis of each direction
zgmin = zs;
zgmax = zs;
ygmin = ys;
ygmax =ys,
xgmin = xs;
Xxgmax = Xs;

zgmean = zs;
ygmean = ys;
xgmean = Xs;
/linitionalize the number of pixels who pass thenlbgeneous test but //doesn't pass the
compactness test

non_compact = 0;
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distancemax = 1;
A=0;
// Region growing

T T T T T T T
/[The code following is the region growing process
T T T T T T
while (true)
{

p = SeedQueue.get();

if (p == FICTITIOUS)

if (SeedQueue.getSequencelLength() <= Lergtresh[0])
{
SeedQueue.freeSequence();
break;

}
else if (SeedQueue.getSequencelLength(lon_compact)

{
SeedQueue.freeSequence();
break;

}

else

{
A++;
non_compact = 0;
SeedQueue.put(FICTITIOUS);
circlesnumber = 0;
while(true)
{
p = SeedQueue.get();
if (p == FICTITIOUS)
{
circlesnumber++;
VolumeSphere2 = 4/3*3.14159264(dnhcemax2-1)
*(distancemax2{tl)stancemax2-1)/6;
Comp = Volume/VolumeSphere;
if ((circlesnumber > 6) || (Comf2.15)
||(SeedQueue.getSequencelL@ngt0))
{
SeedQueue.freeSequence();
Length2 = 0;
break;

}
Length2 = 0;
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SeedQueue.put(FICTITIOUS);
p = SeedQueue.get();
}

zp = (int)p/(int)slicearea+1;
u = p - (int)slicearea*(zp-1);

nhSetWalkerLocation(walker2, u);
while (nhGetNextinboundsNeighbor(keas, &r, NULL))
{
w = r +(int)slicearea*(zp-1);
meanold = mean;
standardold = standard;
mean = (Volume*meanold + I[w])gMime+1);
standard = standard+(I[w]-meakhy)?]-mean)
+Volume*(mean-meand{djean-meanold);

D1 = I[w];

D2 = I[p];

Dif = abs((int)D1 - (int)D2);

Mn = abs((int)I[w] - (int)ymeangld

Sd = abs((int)standard - (intstardold);

if (L[w] != Label) && ((double)d < Dif0O[0]) &&
((double)Mn < Mean0[0]) &&
((double)Sd < Sd0[0]))

{
distance2 = sqrt((zg-zs)*@)+(yqg-ys)

*(Y9-ys)+(xq-x£xq-xs));

if (distance2 > distancemax?2)

{

distancemax?2 = distance?2;

L[w] = Label,
SeedQueue.put(w);
Volume++;
Length2++;
}
}
}

SeedQueue.initialize(32);
for (k = 0; k <N; k++)
{

if(L[K] == Label)

{

nhSetWalkerLocation(walker, K);
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while (nhGetNextinboundsNeighbaal(ker, &g, NULL))
if(L[q] != Label)
{

SeedQueue.put(k);
break;
}
}
}

}
Length = SeedQueue.getSequencelLength();

SeedQueue.put(FICTITIOUS);
p = SeedQueue.get();
}
}

zp = (int)p/(int)slicearea+1;
yp = ((int)p%(int)slicearea)/((intynum_x[OP+
xp = ((int)p%(int)slicearea)%o((int)num_x[0]);

nhSetWalkerLocation(walker, p);
while (nhGetNextinboundsNeighbor(walker, &JLL))
{

zq = (int)g/(int)slicearea+1;

yq = ((int)g%(int)slicearea)/((intynum_XJ61;

xq = ((int)g%(int)slicearea)%((int)num_XJ0

//Only when the centroid point of growiregion did not move
/ltoo far away from the seed point thengng can continue.

if ((dxstop==0 && dystop==0 && dzstop==0)
[|( dxstop==1 && xg==xp && dystop==0 &&zstop==0)
[|(dystop==1 && yq==yp && dxstop==0 &&zstop==0)
[|(dzstop==1 && zq==zp && dxstop==0 &&ystop==0)
[|(dxstop==1 && dystop==1 && xp==xq &&P==yQq)
[|(dxstop==1 && dzstop==1 && xp==xq &&p==20Q)
[|(dystop==1 && dzstop==1 && yp==yq &&p==2Q))

{
/ICalculate the new mean value and ns¢amdard
meanold = mean;
standardold = standard;
mean = (Volume*meanold + I[q])/(VolumB+t
standard = standard+(I[q]-mean)*(I[q¢am)

+Volume*(mean-meanold)*(meaeanold);

D1 =I[q];
D2 = I[p];
Dif = abs((int)D1 - (int)D2);
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Mn = abs((int)I[q] - (int)meanold);
Sd = abs((int)standard - (int)stand&tjjo

if (L[q] != Label) && ((double)Dif < 0¥0O[0])
&& ((double)Mn < MeanO0[0]) && ((doub)Sd < Sd0[0]))
{

/ICalculate the offset of the maxmmaxis of grown
/lregion in different direction xzy,

dxstop = 0;

dystop = 0;

dzstop = 0;

if (zq < zgmin)

zgmin = zq;

}

if (zq > zgmax)

{

zgmax = zQ;
}
if (yg < ygmin)
{

}mmm=w;
if (yg > ygmax)
{

ygmax =yq;

if (xg < xgmin)

xgmin = xq;

}

if (xg > xgmax)

Xgmax = Xg;
}

zaxis = zgmax - zgmin;
yaxis = ygmax - ygmin;
xaxis = xgmax - xgmin;

zgmean = zaxis/2 + zgmin;

ygmean = yaxis/2 + ygmin;

Xxgmean = xaxis/2 + xgmin;

/ICalculate the offset between newtid point and
//seed point
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dz = abs((int)zgmean - (int)zs);
dy = abs((int)ygmean - (int)ys);
dx = abs((int)xgmean - (int)xs);

//If the offset is too big, then tivbole region
//lgrowing program stop q
if(dx >= 10)
{
dxstop = 1;

}
if(dy >= 10)
{

dystop = 1;
}
if(dz >= 5)
{

dzstop = 1;
}

/[Calculate the maximum distancenveein the boundary

/Ipixel and seed point

distance = sqrt((zg-zs)*(zg-zs)+§g)* (yg-ys)
+(xQ-XS)*(xq-Xs));

if (distance > distancemax)

{

distancemax = distance;

}

/[Calculate the volume of the balligh the radius

/lequal to the maximum distance leetwthe boundary

/Ipixel and seed point

VolumeSphere = 4/3*3.1415926*(distamax-1)
*(distancemax-1)*({@iscemax-1)*0.15;

//ICompactness test(compare thevaame with the
/[calculate global volume)
if (Volume <= 3000)

{
if(Volume/VolumeSphere < 1.8)

L[q] = Label,
SeedQueue.put(q);
Volume++;

}

else

{
SeedQueue.put(p);
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non_compact++;
}
}
else

if(Volume/VolumeSphere < 1.3)
{
L[q] = Label;
SeedQueue.put(q);
Volume++;

}

else
{
SeedQueue.put(p);
non_compact++;
}
}
}
else
{
mean = meanold;
standard = standardold;

}
}
}
}

/lUse to check whether leaking happened or ntiheifcentroid point //move awary too
much from the seed point, that means leak happened.

L[O] = dxstop+2;

L[1] = dystop+2;

L[2] = dzstop+2;

mxAssert(SeedQueue.getSequencelLength() == 0, ™);

}

#endif /_REGIONGROW_VS H

*Note: For running the program, all of the software programs should be put in the
same directory. Moreover, some related Matlab buildn functions need to be putin

the same directory. The functions as following: nghborhood.h, neighborhood.cpp,
iptutil.h, iptutil_cpp.h, queue.h, sequencemex.h.
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