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CONVERGENCE AND STABILITY OF FINITE DIFFERENCE

SCHEMES FOR SOME ELLIPTIC EQUATIONS

Murli Manohar Gupta

ABSTRACT

The problem of convergence and stability of finite difference

schemes used for solving boundary value problems for some elliptic

partial differential equations has been studied in this thesis.

Generally a boundary value problem is first replaced by a discretized

problem whose solution is then found by numerical computation.

The difference between the solution of the discretized problem

and the exact solution of the boundary value problem is called the

discretization error. This error is a measure of the accuracy of

the numerical solution, provided the roundoff error is negligible.

Estimates of the discretization error are obtained for a class of

elliptic partial differential equations of order 2m {m ~ 1) with

constant coefficients in a general n-dimensional domain. This

result can be used to define finite difference approximations with

an arbitrary order of accuracy.

The numerical solution of a discretized problem is usually

obtained by solving the resulting system of algebraic equations by

some iterative procedure. Such a procedure must be stable in order

to yield a numerical solution. The stability of such an iteration

scheme is studied in a general setting and several sufficient con­

ditions of stability are obtained.

When a higher order differential equation is solved numeri­

cally, roundoff error can accumulate during the computations. In
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order to reduce this error the differential equation is sometimes

replaced by several lower order differential equations. The method

of splitting is analyzed for the two-dimensional biharmonic equation

and the convergence of the discrete solution to the exact solution

is discussed. An iterative procedure is presented for obtaining the

numerical solution. It is shown that this method is also applicable

to non-rectangular domains.

The accuracy of numerical solutions of a nonselfadjoint

elliptic differential equation is discussed when it is solved with

a finite non-zero mesh size. This equation contains a parameter

which may take large values. Some extensions to the two-dimensional

Navier-Stokes equations are also presented.
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PREFACE

Several attempts have been made in the last decade to solve

the Navier-Stokes equations numerically (see [37] and other refer­

ences given there). In 1968, we tried to develop a computationally

efficient method to solve these equations under certain boundary

conditions describing some problems of fluid flow [37,38]. The

primary concern in the above study was to obtain the numerical

solutions for various values of a parameter, the ReYnolds number,

while the questions of convergence and stability of the finite

difference schemes remained unanswered. We also found that these

questions were not answered even for equations simpler than Navier­

Stokes equations. In this thesis we discuss the convergence and

stability of finite difference equations obtained by discretizing

various partial differential equations of elliptic type. Although

the equations treated may appear unrelated, they are all connected

with the problem of Navier-Stokes equations in some way or other.

We do not attempt to study any finite difference scheme for the

Navier-Stokes equations, but hope that the results obtained in this

thesis will give further insight into the methods of solving them

numerically. An outline of the contents of the thesis follows.

In Chapter 1, we obtain error estimates for a general class

of difference methods for the Dir:lchlet problem for an elliptic

differential equation of order 2m with constant coefficients. There
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are very few results in the literature which deal with differential

equations of order higher than two. Courant, Friedrichs and Lewy

[1] constructed a difference analogue of the Dirichlet problem for

the biharmonic equation and proved the convergence of the discrete

solution to the exact solution as the mesh width h tends to zero.

Saul'ev 12] considered the Dirichlet problem for a class of elliptic

differential equations of order 2m (m ~ 1) and defined a difference

approximation. He proved the existence of a solution of this discrete

system and proved its convergence to a weak solution of the boundary

value problem as h + O. Littman I3J also proved similar results for

another class of differential equations with a strongly elliptic

operator.

In 1964, Thomee 14J studied a general class of difference

methods for the Dirichlet problem for elliptic equations with con-

stant coefficients of order 2m (m ~ 1). He defined a finite

difference approximation of the Dirichlet problem and proved that

the solution of this approximation converges to the exact solution
!,:;

as h + 0, with a discretization error of order h 2. In Chapter 1, we

consider a modification of the difference approximation given by

Thomee and prove that the order of discretization error is increased

considerably. The method of our proof is essentially the same as

that used by Thomee. Later on we show that some of the known results

for the biharmonic equation and a general fourth order differential

equation follow from our results as special cases. We also apply

these results in Chapter 3 to the problem of the biharmonic equation.
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Once a differential equation is discretized, a system of

difference equations is obtained which is generally solved by some

iterative method. These iterative methods can also be interpreted as

resulting from the discretization of a corresponding time dependent

Cauchy problem. In order to obtain the numerical solution of the

difference equations by an iterative method, it is essential to know

a priori that the iterative scheme is stable. In Chapter 2, we

consider the stability of two-layer iteration schemes since any multi­

layer iteration scheme can be reduced to a two-layer (two-level)

scheme by introducing new variables Il1J. In order to study the

stability of these iteration schemes in general, we first put them

in the form of an operator equation using linear operators in a real

Hilbert space. It may be noted that the difference equations dis­

cussed in Chapter 1 can be put into this form and solved by iterative

methods discussed in Chapter 2.

In the last few years, the problem of stability of two-layer

iteration schemes has been studied by various authors. In particular,

Samarskii .I13J has reported various necessary and sufficient conditions

of stability for such schemes with selfadjoint operators. He extended

some of his results to the case of nonselfadjoint operators but the

conditions of stability given by him involve the inverses of certain

operators. These inverses are generally not known a priori and

therefore such conditions are not useful in practice. In Chapter 2,

we obtain several sufficient conditions of stability in the case of

nonselfadjoint operators. These conditions are expressed in terms of
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the norms of operators known a priori. In some cases we show that

these conditions are necessary, too. Finally, we demonstrate the

application of some of the results obtained in this chapter by a

numerical example.

In Chapter 3 we study some boundary value problems of the

biharmonic equation in two dimensions. Such problems often occur in

physics and engineering, for example, the motion of a viscous fluid

at low ReYnolds number, bending of an elastic plate, etc. Several

authors have tried to solve the biharmonic equation numerically using

finite difference methods, but most of these attempts have been

restricted to problems in some simple domains such as a rectangle.

One approach is to discretize the biharmonic equation directly and

solve the resulting system of algebraic equations by some iterative

method. Usually the convergence of these iterative methods is very

slow and sometimes it can not be guaranteed even for simple domains.

In order to overcome this difficulty, another approach which is

frequently adopted is to replace the biharmonic equation by two

simultaneous Poisson equations which can be more efficiently solved.

However, the simultaneous solution of two coupled Poisson equations

introduces some new problems of convergence, about which very little

is known. We study this problem in Chapter 3 and define some finite

difference schemes for solving the Poisson equations. We show the

convergence of the discrete solution to the exact solution of the

biharmonic boundary value problems as the mesh size tends to zero.

We also obtain some estimates of the discretization error for these
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difference approximations.

In Chapter 4, we consider some of the problems associated

with the computation of numerical solutions of biharmonic boundary

value problems using the discretization schemes suggested in Chapter

3. The first boundary value problem is first replaced by two coupled

Poisson equations which are discretized and solved, usually by an

iterative method. These iterations are called "inner iterations".

The solution of the whole system, with a properly chosen approximation

for the boundary conditions, is obtained by an iterative process

called "outer iterations". We show that these outer iterations

diverge as h -+ 0, irrespective of the inner iterations or the

approximation used on the boundary. A modification of the basic

outer scheme using a relaxation parameter makes it convergent. We

study the spectral radii of the matrices governing the outer itera­

tions and show the suitability of some of the approximations to be

used on the boundary. Finally, we solve some boundary value problems

using the methods developed in Chapters 3 and 4. We also compare

our results with those obtained by using some of the existing methods.

In Chapter 5 we study the problem of solving a particular

second order elliptic differential equation in a rectangular domain.

This equation is nonselfadjoint and contains a parameter A. which may

take large values. This equation has a similar character as the

Navier-Stokes equations but is easier to analyze because of its

linearity. It is discretized using two different finite difference

schemes both of which are convergent and stable, in the sense of
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Chapters 1 and 2, when the mesh size h is allowed to decrease. How­

ever, for actual computations, one has to use a finite nonzero mesh

size and one of the finite difference schemes gives divergent results

especially when used for large values of A. This result was observed

by Burns [35] for one-dimensional case who also gave some numerical

computations for the discretization error. Boughner [36] obtained

some more estimates which confirmed the above observation for the

two-dimensional case. These results were contrary to the expectations.

In this chapter we obtain the exact solution of the difference

equations and study their asymptotic behaviour for large values of

A. The behaviour of the solutions as observed by Burns and Boughner

can be easily explained by these asymptotic solutions of the dif­

ference equations. We have also obtained some stability conditions

for these equations which confirm the above results. These results

also explain, in part, why certain finite difference schemes used for

solving the Navier-Stokes equations remain stable and convergent even

for large values of the ReYnolds number.
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CHAPTER 1

DISCRETIZATION ERROR FOR DIRICHLET PROBLEMS

1.1 Introduction

In this chapter we study a class of finite difference schemes

for the first boundary value problem for elliptic differential

equations of order 2m (m ~ 1) with constant coefficients. For second

order equations, one can apply the maximum principle to both the

differential equation and its discrete analogue and thus obtain

estimates of discretization error. However, the situation is quite

different for higher order equations where the maximum principle can

not be applied in general.

In 1928 Courant, Friedrichs and Lewy [lJ constructed a

difference analogue of the Dirichlet problem for the biharmonic

equation and proved the convergence of the solution of the discrete

problem to the exact solution when the mesh width is refined. Saul'ev

[2J considered the problem of finding a weak solution of the Dirichlet

problem for a class of elliptic equations of order 2m, m ~ 1. He

defined a difference approximation and proved the existence of its

solution. He also proved that this discrete solution converges in the

mean to the weak solution (whose existence is not assumed) of the

boundary value problem as the mesh size h + O. Littman [3] considered

a generalized Dirichlet problem for a class of differential equations

with strongly elliptic operators and vanishing Dirichlet data. He
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discretized the differential equations by replacing the derivatives

with central differences and proved the existence of a unique discrete

solution. He also proved the convergence of this discrete solution

and its difference quotients to the exact solution and the corres-

ponding derivatives as h + O. The estimates of discretization error

were not obtained in any of these studies.

In 1964, Thomee I4J discussed a class of difference schemes

for the Dirichlet problem for elliptic differential equations of

order 2m with constants coefficients. He divided the set of grid

points into two subsets and called them the sets of "interior" and

"boundary" grid points. At each of the interior grid points he

defined a difference operator consistent with the differential

operator, whereas at the boundary grid points the approximate solu-

tion was obtained by interpolation using the boundary data. Thomee

proved that the difference between the solution of this finite
~

difference approximation and the exact solution is of order h 2 as

h + O.

Zlamal [5J showed by means of an example that the estimates of

Thomee as such can not be improved. Zlamal discussed the Dirichlet

problem for a fourth order elliptic differential equation with variable

coefficients. He prescribed a difference operator at each of the

interior and boundary grid points and proved the discretization error

to be of order h}'2, as h + O. He also defined another difference

analogue for the case of a rectangular domain and proved the discreti-

zation error to be of order h2 . Bramble [6] discussed the Dirichlet
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problem for the biharmonic equation and constructed a difference

approximation with discretization error of order h2 in a special
l,::

norm and of order h2 (log h-1 ) 2 in the maximum norm.

The results of Zlamal cited above suggest that it is possible

to obtain better error estimates than those of Thomee by prescribing

a suitable difference operator for the boundary grid points. Thomee

has also noted that his error estimate is of low order because of

the crudeness of approximations at the boundary. We study, in this

chapter, the Dirichlet problem for elliptic differential equations

with constant coefficients of order 2m, m ~ 1. We consider a class

of finite difference schemes and define a discrete operator at each

of the interior as well as boundary grid points, thus introducing a

modification of the difference approximation considered by Thomee.

We prove that the order of discretization error is considerably

improved by this modification. The method of our proof is essentially

similar to that of Thomee with the difference that we use different

sets and norms to include the discretization on the boundary grid

points.

The estimates given by Zlamal for the fourth order differ-

ential equations follow from our results in the case of constant

coefficients. For the same equations we define another difference

approximation which is shown to have a discretization error of order

h2 for general domains. The results of Bramble are shown to follow

from our theorems. Finally, we give an example of the Dirichlet

problem for a second order elliptic differential equation.



1.2 Mathematical Preliminaries

Let D be a bounded domain in the n-dimensional vector space

Rn with piecewise smooth boundary n. Let x be a vector in D with

components xl' x2 ' ... xn and m be a natural number. We shall

consider the differential operator

4

(1.1) Lu - L(D)u =

n

where = L
j=l

S.
J

and i=-Y:!.

In (1.1) Sand yare multi-indices and S., y. are non-negative
J J

integers. The coefficients a
SY

are real valued constants. We

assume that L(D) is an elliptic operator so the characteristic

polYnomial L (~) is positive definite:

(1.2) L(~) = E a ~S+y
~ cl~12m

Isl=lyl=m Sy

n

where ~S
SI Sn

1~12 r I~ .1 2= ~l ~n , =
j=l J

and c is a positive constant.

kLet C (M) be the set of complex valued functions which are

k times continuously differentiable on M. Let L2(Rn) be the set of

complex valued functions, square integrable in Rn and L2 (D) be the

subset of elements of L2(Rn) which vanish outside D. For u,

v £ L2(Rn) we define



5

(u,v) = hn
u(x) vex) dx ,

lIull
~

= (u, u) 2 •

We shall consider the Dirichlet problem

(1.3)

Lu(x) = F(x) , XED

.
Under the assumptions of sufficient regularity of F, f and D, the

problem (1.3) has a unique solution in ek(D) where k ~ 2m, D = DUD [4J.

We now introduce mesh points in Rn of the form ~h = (~lh, ... ,

~nh) , h > 0 and ~j are integers. A grid function is a complex valued

function defined on a set of grid points and for such a function we

write u~ = u(~h). If a grid function u~ is defined only for a subset

M of the grid points, its definition can be extended to all grid points

by setting u~ = 0, ~ ¢ M.

We consider a class of difference analogues of Lu of the form

where a-. are integers and c are complex numbers. The constants c
J a- a-

are defined for all a- but only a finite number of them are non-zero.

By a neighbor of the grid point ~ we mean a grid point ~+a- for which

ca- *O. Let Dh be the set of all grid points in D and Dh be the set

of all points of Dthat lie on the grid lines. We divide Dh into two

subsets of interior and boundary grid points. The grid point ~ belongs



to the interior set (s E Dh) if all the neighbors of s are in D. The

grid points of Dh , that do not belong to Dh, form the set Dh of

boundary grid points. Thus Dh = DhU Dh and let Dh = DhU Dh .

We quote the following definitions from Thomee [4]:

Definition:

Let Wbe a neighborhood of origin in Rn . The operator

Lh is said to be consistent with L if for u E C2m (W),

6

Definition:

= Lu(O) + 0(1) , as h + 0 .

The truncation error of Lh is said to be of order N if for

U E C2m
+
N(W),

Definition:

The characteristic polynomial of the operator Lh in (1.4) is

the trigonometric polynomial

(1.5)
i<a,8>

e ,

n

where and <0,,8> = L
j=l

0,.8.
J J

We shall study the characteristic polynomial p(8) for real 8

and because of its periodicity, it is sufficient to study p(8) on

the set



s ={e / lejl $ TI , j = l(l)n} .

The definitions of consistency and truncation error of the

difference operator Lh can be converted into the properties of its

characteristic polynomial pee).

Lemma 1.1 [4]: ~ is consistent with L if and only if

7

pee) = L(e) + 0 ( lel 2m ) , e + 0 .

The truncation error is of order N if and only if

pee) = L(e) + 0 ( lel 2m+N ) , e + 0 .

The discrete inner product and norm can be defined as:

n
(u'V)h = h

~

(u,u)h

The sum will always be finite as we shall consider functions which

vanish outside Dh . Let ej = (0,0, .. ,1, .. ,0) be the multi-index

with 1 in the j-th position and 0 elsewhere.

We define the first difference quotients

aju~
-1 - u )= (ih) (u~+e· ~J

§jU~
-1 u )= (ih) (u~ -

~-e·J

For grid functions which vanish outside Dh , we have by partial

summation



(1.6) = (u, aj v)h '

8

The discrete Sobelev norm of order m is defined as

(1.7)

where

Iluli h m =,

The maximum norm over the region Dh can be defined as

(1.8) lul h D =, h

We require the following three lemmas. These lemmas are

similar to those given by Thomee (See [4J lemmas 3.1, 3.2 and 3.3).

However, the grid function u defined in these lemmas is assumed to

vanish outside Dh while in the lemmas given by Thomee, they were

assumed to vanish outside Dho The proofs of these lemmas follow on

the same lines as given by Thomee.

Lemma 1.2: Let u be a grid function vanishing outside Dh . There

exist constants C independent of u and h such that

(1.9)

and for fixed m ~ 1

(1.10)
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Lemma 1.3: Let u be a grid function vanishing outside Dh and Lh be

a difference operator of the type (1.4) with characteristic polynomial

p(6). Then,

(1.11)

where

(1.12) ~ -i<~,6>
n(6) = ~ u~ . e .

~

Lemma 1.4: For a grid function u vanishing outside Dh there exists

a constant C, independent of u and h, such that

n

(1.13) Ilull~,m ::; C 2:
5=1

We define the following norm for functions vanishing

outside Dh :

=( h
D L lu~12 + ~ Ih.mu<IZ)

~
(1.14) Illulll h m, D" D*h h

Definition: (Property D*)m

The domain Dhas property D* if there is a natural number N
m

such that for all sufficiently small h, the following is

valid: for any point ~EDh consider all half rays through ~.

At least one of them contains m consecutive grid points

outside Dh and within the distance Nh from ~.

The above property is satisfied if D is sufficiently regular.
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For m = 1 it is always satisfied. The following lemma connects the

norms defined in (1.7) and (1.14).

Lemma 1.5: Let the domain 5 have property D*. Then, for grid
m

functions u vanishing outside Dh there exists a constant C independent

of u and h such that

(1. 15) Illulllh,m ~ C Ilullh,m .

Proof: Let ~ be a grid point of Dh and let the half ray in the

negative direction of the xl - axis contain m consecutive

grid points outside Dh within the distance Nh from~. Let

~ - (N! + 1)e1 , where N1 + m ~ N, be the first of the m

_consecutive grid points of the half ray for which u vanishes.

Then, we have the following representation:

-m
h u~ =

Using Schwarz' inequality, we get

~ C

Similar estimates hold for all other points of Dh, and by definition

of the norms (1.7) and (1.14) we get
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Illulll~ m,

~ C Ilull~m',

which proves the lemma.

The following lemma due to Thomee [4] makes it possible to

compare difference operators in terms of their characteristic

polynomials.

j=I,2 be two trigono-i<a.,e>
e ,L: c (j)

a.=Let p. (e)
J

Lemma 1.6:
a.

metric polynomials such that for any trigonometric polynomial

t (e) = L: c
a. a.

i<a.,e>
e ,

Definition:

The difference operator L
h

of (1.4) is said to be elliptic

[4] if its characteristic polynomial is positive definite:

pee) > 0 if e * 0, ess.

In particular if Lh is elliptic, then its characteristic

-polynomial pee) is real valued for real e and c = c .a. -a.

Lemma 1.7 [4]: Let Lh be a difference operator consistent with L.

Lh is elliptic if and only if there is a positive constant C such



that, for all real 8,

12

(1.16)

n

p(8) ~ C L
j=l

n(1 - Cos 8.) .
J

Theorem 1.1: Let Lh be consistent with L. Then, Lh is elliptic if

and only if there is a constant C independent of u and h such that

(1.17)

where u vanishes outside Dh .

Proof: Let Lh be elliptic, then by lemma 1.7

n

(1.18) j~l (1 - Cos ej)n $ c pee) ,

where p(8) is the characteristic polynomial of Lh · Now,

n n n

L II d~ ull~ L L -m m
= (Qhu,u)h ' Qh = d. d.

j=l j=l j=l J J

The characteristic polynomial of Qh is

q (8) =

n

= 2m 2:
j=l

(1 - Cos 8.)m
J

so that q(8) < c 1P(8), where c1 is another positive constant



independent of u or h.

From lemma 1.3, we get

13

(1.19)

n

l: 113~ull~ =
j =1 J

<

which together with lemma 1.4 gives the inequality (1.17).

Conversely, if (1.17) is satisfied then obviously (1.19) is also

satisfied. By lemmas 1.3 and 1.6, the inequality (1.18) follows.

Finally, from lemma 1. 7 it follows that Lh is elliptic.

We need to define a new difference operator

Lh u~ ~ E Dh
(1. 20) Lh,m u~

m
E D*= h Lh u~ ~ h

0 ~ ~ Dh

The following theorem relates the norm of u with the norm of L u.-h,m

Theorem 1.2: Let the domain Dhave the property D~ and let Lh be an

elliptic difference operator consistent with L. Then, for the grid

functions u vanishing outside Dh

(1. 21)

Proof: If u = 0 outside Dh , then

(Lhu,u)h = h
n

~ Lh u~.u~

• hn (56 In U<'u< + 5bLh U<'u< )

• h
n

( 56 Lh,m u<'u< + 5fi h-
m

In,m u<'u< ) ,



By Schwarz' inequality,

14

From theorem 1.1 and lemma 1.5 we get

Thus,

for the grid functions u vanishing outside Dh "

1.3 Finite Difference Approximation

We can now formulate the finite difference analogue of the

Dirichlet problem (1.3). For the interior mesh points Dhwhich have

all their neighbors in Dh , we define

(1.22)

We assume that the truncation error of Lh is of order k. The mesh

points in Dhhave at least one neighbor outside Dh . The values of

Us at these external points can be extrapolated using the boundary

data and the values of Us inside Dh . We formally form the operator

Lhu
s

at the points of Dh by inserting these extrapolated values. In

this way, we get an expression of the form Lhu
s

= LhU
s

- ~h(f) where

the operator [hus contains the terms with us' s£Dh and ~h(f) is a



linear function of the boundary data. Thus, on the grid points of

Dh we prescribe

~h(f) =FeE D*
~ ' '" h'

or,

15

(1.23)

(1. 24)

We assume that the truncation error of the difference operator Lh

thus formed on Dh is of order~. Let eh = u - ~ denote the error

function, then eh,~ satisfies

(1. 25)

=

=

= o

The operator Lh can be formed as follows:,m

Lh eh,~ = O(hk) ~ E Dh
(1. 26) L e = h

m
Lh eh,~ = O(h~+m) ~ E D*h,m h,,; h

0 , ~ ¢ Dh

The following theorems prove the existence and uniqueness

of the discrete solution and give estimates of discretization error.

Theorem 1.3: Let the difference operator Lh be consistent with Land



elliptic. The discrete Dirichlet problem (1.22) - (1.24) has exactly

one solution for arbitrary f and F.

Proof: The difference equations (1.22), (1.23) form a linear system

of equations with the same number of equations as the number of

unknowns. The discrete Dirichlet problem has a unique solution if

the homogeneous form of this linear system has only the trivial

solution u~ = O. We thus want to find u~ such that Lhu~ = 0 in Dh .

From Theorem 1.1, I lui Ih = 0, which proves the result.,m

Theorem 1.4: Let the domain Dhave the property D; and let Lh be an

elliptic difference operator, consistent with L. Let the truncation

error of Lh be of order k at the points of Dhand of order ~ at the

points of Dh. The error function eh satisfies the following estimate

16

(1.27) I lei Ih m = o(h
a

) , a = min (k, ~ + m + ~) as h + 0 .,

Proof: Since the error function eh,~ is only defined in Dh and is

zero on the boundary Dh, we have eh,~ = 0, ~ ¢ Dh . From theorem 1.2,

I lehl Ih,m ~ C I ILh,m ehl Ih . The operator Lh,m is defined in (1.26)

and with that definition

II Lh,m ehll~ hn
L: 2= (Lh,m eh,~)
~

hn 2 + hn (Lh
2

:::z::. L: (Lh,m eh,~) L eh , ~)D" D* ,m
h h

hn (0 (hk))
2

+ hn (0 (h~+m))
2

= L: L:
D" D*h h
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The number of mesh points in the set Dh is O(h-n) and the number of

mesh points in Dhis O(h-n+
1), hence

It follows that

+ o (h2R, + 2m + 1) •

Theorem 1.5: If the conditions of theorem 1.4 are satisfied, then

Proof: From the discrete Sobolev inequality [40]

max Iu~ I ~ c II u II h,p , p = [%] + 1 .
t;E:Dh ~

If m ~ p, then for the error function we have

and from theorem 1.4 the estimate (1.28) follows.

1.4 Applications

Zlamal [5] has shown by means of the following example that

the error estimate of Thomee's approximation can not be improved. In

fact, Thomee himself has stated that the reason for such a large error

estimate is the crude approximation at the boundary. The example

consists of the Dirichlet problem



Lu - !.1/lu = F in D,
(1.29)

on n,u = 0, u = 0n

where D is the square o < x,y < 1 and

F(x,y) = 24 [x2 (1_x)2 + y2(1_y)2] + 8(6x2-6x+l). (6y2_6y+1).

The exact solution is u(x,y) = [x(1-x)y(1-y)]2.

The set Dhconsists of the mesh points inside the square D at a

distance h from the boundary D. The difference approximation of

Thomee [4] is as follows:

18

U(P) = 0

The discretization error e = u-U for this approximation satisfies

2
Ilell h 2, e ~)yy

~ Ch.

Thus, for the above example

As seen from theorem 1.4, this order can be significantly improved

by defining the difference operator at every mesh point of Dh .

Zlamal [5J considered the following Dirichlet problem

(1.30)

Lu(P) = F(P) , P E: D

v •D f(P) , P E: D , v = 0,1

where Lu = (a(x,y) u) + 2(b(x,y) u) + (c(x,y) uyy)yyxx xx xy xy

and L is assumed to be a uniformly elliptic operator. The difference
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operator defined by Zlamal is

LhU = (aU -) - + (bU ) __ + (bU__) + (cU -) -
xx xx xy xy xy xy yy yy

which has a truncation error of orderh2 • The difference approxi-

mation is defined as

L
h

U (P) = F (P)

LhU(P) - Lh U (P) ,Q,h (f) = F (P)

U (P) = f (P)

P € D'"
h

The operator Lh U (P) is formed formally at the points of Dhusing

third order extrapolation formulae for the neighbors of P outside Dh .

The local truncation error of L
h

at Dh is of order hI.

In case when L has constant coefficients, theorem 1.4 can be

applied with k = 2, ,Q, = -1 and m = 2. The discretization error

satisfies the estimate

II u - UII h 2 = II e II h 2 = 0 (h3/2 ) , h + O., ,

which is the same as that obtained by Zlamal [5J.

In the case of a rectangular domain, Zlamal [5J prescribed a

higher order difference approximation for (1.30). He used a fourth

order extrapolation formula for the external neighbors of mesh points

in Dh, resulting in a truncation error of 0(1) at points of Dh. In

the case of constant coefficients this result follows from theorem 1.4

with k = 2, ,Q, = 0, and m = 2 yielding I lei Ih 2 = O(h2 ) , h + O.,
The error estimate of O(h3~) can also be improved in the case of a



general domain by taking a higher order extrapolation formula.

We consider (1.30) with
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(1.31) Lu = au + 2bu + cuxxxx xxyy yyyy

At the mesh points of Dhwe define the difference operator

aU- - + 2bU- - + cU- -xxxx xxyy yyyy

For the mesh points in Db., at least one neighbor lies outside Dh . If

(x,y) s Db. and (x-2h,y) ¢ Dh with the boundary Dintersecting in

(x-ah,y), 0 < a ~ 2, we define

(1.32a) U (x-2h,y) = 3 (a-2)2 U (x,y)
a 2

2 (a-2)2 U (x+h,y)
(a+l)2

6 (3a2 - 2a - 2) 6 (a-2)+ f (x-ah,y) + h f (x-ah,y).
a2 (a+1)2 a (a+l) x

If (x-h,y) also lies outside Dh , then with 0 < a 5 1, we define

(1.32b) U (x-h,y) = 2 (1-a)2 U (x,y) _ (1-a)2 U (x+h,y)
a2 (l+a) 2

2 (3a2 - 1) 2 (1 a) h f+ f (x-ah,y) - - (x-ah,y) •
a2 (1+a)2 a (l+a) x

The above approximations represent extrapolations of order h4 .

Similar extrapolation formulae can be used for all the mesh points

that lie outside Dh . At the mesh points of Db., we formally form the

difference operator LhU replacing the unknown functional values with
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their extrapolation formulae. The local truncation error of Lh is of

order h2 at the points of Dhand of order 1 at points of Dh. From

theorem 1.4 we get the following result with k = 2, t = 0, m = 2

II eh II h 2 = 0 (h2 ) , h -+ 0 .,

Using theorem 1.5, we get

(1.33) = o (h2), h -+ 0 .

The above result is true for the fourth order elliptic

differential equations of the type (1.31) and for any two-dimensional

bounded domain. This result holds for the biharmonic equation since

the biharmonic equation is a special case of (1.31) with a = c = b = 1.

We also note that an 0(h2 ) approximation in the maximum norm for the

Dirichlet problem of the biharmonic equation in a general domain is

the best which has so far been obtained.

Bramble [6] also discussed the Dirichlet problem for the

biharmonic equation in regions with a piecewise smooth boundary. He

defined the usual 13-point difference operator at the points of Dh
and constructed an approximate operator with truncation error of

order h-1 at the points of Dh. He obtained the following results:

II ell (2p) =

(1.34a) I lei I + I loel I ~ 0 (h2 ) , h -+ 0
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where

lie 11 2
=

The grid function e~ is assumed to vanish outside Dh . Bramble also

obtained the following result

(1.34b)

We can apply theorem 1.4 with k = 2, 2 = -1, m = 2 and obtain the

estimate

(1.35a) %o (h ) , h + 0 .

Using theorem 1.5 we obtain the following result

(1.35b)

We note that the results (1.34) obtained by Bramble follow from (1.35)

on applying a lemma given by Bramble (lemma 3.3 of [6]).

Finally, we consider the following Dirichlet problem with

constant coefficients and homogeneous boundary conditions:

(1.36)

n

Pu - - L a
J
"k a2u/ax

J
"aXk = F(x), x = (xl' ... , Xn) £ D ,

j,k=l

ajk = akj and the matrix (ajk) is positive definite.

The operator P can be approximated by the following difference
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operator [7]:

- r a .. d. 8.u + ~
j JJ J J

L a
J
' k (d. + 3.) (d k + 3k)

j fk J J
u.

Thomee [4] showed that Ph is an elliptic difference operator

and that his results can be applied to this example giving a discreti-

~ ~
zation error of order h 2 in general, i.e., I lei lh 1 = O(h 2

), h + O.,
He also showed that for certain domains made up of rectangular regions

(so that DhC Dh), the error estimate II e II h 1 = 0 (h2 ) is val id.,
Bramble [8] also discussed this problem and tried to estimate the

discretization error in I1·\ Ih 0 norm in such a way that the approxi-,
mations near the boundary are not so important. He proved the estimate

I lei Ih 0 = O(h), h + O. Bramble also stated that to his knowledge no,
second order approximations have been proved in general for this

example.

We shall show that by defining a difference operator at each

mesh point of the domain Dh , a better estimate can be obtained in

general. We note that all the neighbors of a grid point ~ are the

points ~ + a , where a. = 0, ± 1, j = 1, ... , n. If the point ~
J

is in the set Dh, then at least one of its neighbors lies outside Dh .

We assume that ~ - e1 is such a neighbor and the point ~ - Sel'

o < S ~ 1, lies on the boundary O. We use the following extrapolation

formula for u~-el :

(1.37) 2 (S-1) 2 1-S
-..;:..;,.---'~u + u +--u ,0<°<_1.

S ~ S (S+1) ~-Sel 1+S ~+el ~
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Similar extrapolations can be used for all those points that

lie outside Dh and are the neighbors of some points in Dh, The

difference operator Ph can now be formally formed at all mesh points

of Dh , The truncation error of Ph is of order h2 at the points of

Dh, Since the extrapolation (1.37) incurs an error of order h3 , the

truncation error of Ph at the points of Dhis of order h, The theorem

1,4 can now be applied with k = 2, ~ = 1, m = 1 and we obtain the

following estimate

(1.38)

We have thus proved the second order error estimate for the

Dirichlet problem (1.36) in a general domain, The result (1.38) is

the best obtainable for the second order difference operator Ph'



CHAPTER 2

STABILITY AND CONVERGENCE OF ITERATION SCHEMES

2.1 Preliminaries

In this chapter we consider a class of iteration schemes which

can be written in the form

(2.1) B u(n+1) = B u(n) - T (A u(n) -f) ,

where A and B are certain linear operators, T an iteration parameter

and n the iteration number. The scheme (2.1) can be used to obtain

the approximate solution at the (n+1)th level using the approximation

at the nth level and is called a two-level (or two-layer) iteration

scheme. When B is an identity operator, (2.1) is called an explicit

scheme.

The iteration scheme (2.1) can be used to obtain the solution

u of a system of algebraic equations written in the matrix form:

(2.2) A u = f.

The difference equations obtained by the discretization of elliptic

equations can be put in the form (2.2). The iteration scheme (2.1)

can also arise from the discretization of the abstract Cauchy problem

(2.3) au
- + L u =at f ; u(O) = uo ' 0 $ t $ to '

where L is a differential operator in the space variables.
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The iteration number n in (2.1) can be considered as repre-

senting the time level t and the following notation can be introduced

26

(2.4)
(n)

u = yet)
(n+1)

y , u

y(t+T) - yet)
T

= y(t+T) , t = nT ,

=

It may be noted that Yt represents a difference quotient throughout

this chapter. The equation (2.1) reduces to the form

(2.5) B(t) Yt + A(t) Y = f(t), yeO) = YO' 0 ~ t < to '

which is called the canonical form of the two-level iteration scheme

(2.1) [9J. We shall use the same notation as used by Samarskii [9]

and consider the iteration scheme (2.5) as an operator equation in a

real Hilbert space H where an inner product ( , ) and a norm I1·1 I
are defined related by I Iyl I =l!(y,y). The space H depends upon a

parameter h which is a vector in some normed space. The vectors

y and f belong to H; A(t) and B(t) are linear operators dependent

upon the parameters t, T and h and map H into itself for each t S wT'

where W is the set given by
T

w = {t = jT
T

j = 1 , 2 , . . . , j 0 j 0 = t 0/T} •

We shall need the following definitions:

Definitions [10J:

Let u, v be arbitrary vectors of H and A, B be linear

operators mapping H into itself. Then,



A ~ B if (Au, u) > (Bu,u) \! u E H

A is selfadjoint (A = A*) if (Au,v) = (u,Av) ;

positive (A > 0) if (Au,u) > 0 , u +0

positive definite (A ~ 8E) if (Au,u) ~ 8(u,u) , 8 > o ,

where E is the identity operator.

~ ~ 1

If B = B* > 0, then the square root B2 exists and B2 = (B::-Z) * > O.

Definition [9]: A positive operator A = A (t), dependent upon

t E W , is called Lipschitz continuous in t if
T

(2.6) r (A(t) u,u) - (A(t-T) u,u) I $ T c2 (A(t-T) u,u) ,

where c2 is a positive operator.

Definition [10]: The norm of the operator A is defined as
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IIAII = sup
x:f:O

If A is selfadjoint, then

IIAxl1

II x II
, X £ H •

IIAII = sup
x:l=O

I (Ax,x) I
----,xEH.

(x,x)

Definition [11]: If D(t) is a positive linear operator on H, then

the following energy norm can be defined

!<:II y II d (t) = (D (t) y, y) 2 ,

where the lower case letter d(t) relates to the operator D(t).



We shall now consider the following special cases of the

operator A when it is i) selfadjoint, ii) nonselfadjoint, and iii)

A is time dependent. Most of the results for the selfadjoint cases

are due to Samarskii. We have briefly reproduced them in order to

motivate our study of the nonselfadjoint cases.

2.2 Selfadjoint Operator

When A(t) is a selfadjoint positive operator, Lipschitz

continuous in t £ w ; and B(t) is a positive operator then the
T

equation (2.5) is said to belong to the initial family of two layer

schemes (IF - 2) according to Samarskii [9]. For such schemes

Samarskii gave some conditions of stability which are sufficient.

Before we quote these results, we give the following definitions:

Definition [12]: The initial value problem (2.5) is said to be

properly posed if there exists TO such that for T ~ TO' a solution

of (2.5) exists for arbitrary yo £ Hand f(t) £ H, t £ w
T

•

Definition [12]: The iteration scheme (2.5) is stable with respect

to the initial data and with respect to the right hand side if
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Ily(t) II (1) $ M1lly(0) II (1)

where I I-I I (1) and 11-\ I (2) are certain norms on Hand M1, M2 are

positive constants, independent of T and h. For f(t) = 0, the above

condition defines the stability with respect to the initial data.



Samarskii [9] proved the following results:

Theorem 2.1: If the scheme (2.5) belongs to IF - 2 and the condition

29

(2.7) B ~ 0.5 T (1 - c
I

T) A

is satisfied with a positive constant c
l

independent of T and h, then

the scheme (2.5) is stable for T ~ TO ' TO < 1/4cl .

Moreover, the solution y of (2.5) satisfies the following estimate:

Ily(t+T) II (t) S MIlly(o) 11 (0) + M max Ilf(t"') II -l(t"')
a a 2 O~t"'st a

where Mi are positive constants depending only upon c1 ' c2 and to.

Theorem 2.2: If (2.5) belongs to IF - 2 and the condition

(2.8) B ~ £ E + 0.5 T A £ > 0

is satisfied, then the solution of (2.5) satisfies the following

estimate

Remark: The results of theorem 2.2 hold if A = AO + AI' where AOCt)

is a selfadjoint, positive operator, Lipschitz continuous in t and

Al (t) is a nonse1fadjoint operator satisfying
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where c is a positive constant independent of T and h.
3

Further, Samarskii 19J proved that the condition (2.7) is

also necessary for the stability of (2.5) in the case when A and B

do not depend upon t and B is selfadjoint. In this case the operators

A and B are called "fixed" operators. If the operator B is also

~
positive, then B2 exists and the equation (2.5) can be written as

~ ~
B2 B2 Y + A ft y = ,

~
which on putting x = B2 Y becomes

~ ..J:::
B 2 x

t
+ A B 2 X = f ; or,

(2.9) + Cx = <I> , C -!:2 -!:2= B A B -!:2B f = <1>;

and Ilxll

Thus, the norm of x is equivalent to the B-norm of y and the stability

of (2.9) is equivalent to the stability of (2.5) in B-norm. First of

all, we shall discuss the stability of (2.9) with respect to the

initial data. The homogeneous form of the equation (2.9) can be

written as

(2.10) x (t+T) = S x(t) S = E - TC ,

o S t = n T< to ' x(O) = xo e: H .

The initial value problem (2.10) is stable [11] if the powers

S(T)n of the transition operator SeT) remain uniformly bounded for all



T £ (0, i). Thus (2.10) is stable if there exists a constant cO'

independent of T and the space parameter h, such that for 0 < T < T

the following bound is valid:
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(2.11) II x (t) II $ exp (cot) IIx (0) II , 0 $ t =nT < to

where x(O) is an arbitrary initial vector of H.

Samarskii [13] proved the following lennnas. Lemmas 2.1 is also

applicable to nonse1fadjoint operato~s.

Lemma 2.1: If the transition operator S is independent of t, then

the condition

(2.12)

with Co independent of T and h, is necessary and sufficient for the

stability of (2.10).

Lemma 2.2: If C = C*, then the conditions'

(2.13) (1-p) E $ TC $ (l+p) E , p > 0

are necessary and sufficient for the bound (2.12).

Lemma 2.3: If A and B are positive selfadjoint operators, then the

conditions

(2.14) (1 ) B A (1+ P) B , P = e
CoT

-p $ T $

with any constant Co are necessary and sufficient for the stability
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of (2.5) in B-norm with respect to the initial data.

2.3 Nonselfadjoint Operator

When A is a positive nonselfadjoint operator, C is also
-1

nonselfadjoint and positive. In this case C exists and Samarskii

[13] proved the following two results:

(2.15a)
-1

For p ~ 1, C ~ (T I l+p) E => Ilsi I ~ p

(2.15b) For p ~ 1, Iisil
-1

~ P => C ~ (T I l+p) E .

We also note that for p ~ 1

(2.15c)
-1

C ~ (T / l+p) E <=> Ilsll'~ 1.

The conditions (2.15a) and (2.15c) are sufficient conditions

for the stability of the explicit scheme (2.10), whereas (2.15b) is

a necessary condition. Each of these conditions involves the operator
-1 -1 -1

C which requires a knowledge of A However, the operator A is

rarely known a priori and the conditions (2.15) can not be utilized

in practice. We now derive some conditions which can be directly

checked in terms of the known operators.

If the system (2.10) is stable, then from lemma 2.1,

Ilsxll
Ilsi I ~ p => ~ P , P > 0 , O+x £ H .

Ilxll

Since II Sx 11
2

= II (E-TC) x 11
2

= II X 11
2 -2 T (Cx, x) + T 211 Cx 11

2 ,
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and (Cx,x) $ IICxll-llxll ,

therefore

or,

1~p II x II :s II CX II ~ 1~p II x II .

Since this is true for all x 8 H, it follows that

(2.16) Ilcll = sup
XfO

Ilcxll
Ilxll

1+p
<­
- T ' p> ° .

The inequality (2.16) provides a necessary condition for the stability

of (2.10).

A sufficient condition for stability can be obtained as

follows:

IIsxl1 2 = IIxl1 2 - 2 T (Cx,x) +T211Cxl1 2

~ II x11
2+ 2 T II ex II - II xII +T211 Cx 11 2

= sup
x:f:.O

lis II

~ ( I+Tllcll,,21IxI1 2 ;

II Sx II ~ 1+T Ilcll .
\I xii

For the stability, from lemma 2.1, it is sufficient that

COT
1 + T II c II ~ p , p = e or,



(2.17) p-1

Ilcll
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This is a general sufficient condition for stability and gives the

stability range which depends upon p and the norm of the operator C.

The range given by (2.17) becomes meaningless when p ~ 1. However,

this range can be improved if more information is available about the

operator C. We shall consider several possibilities.

When C = C* > 0 , S = E - ,C = S* ; and

(Sx,x)Iisil = sup -----'-
x*O (x,x)

It follows that

= sup
x;cO

(Cx,x)1-,---
(x,x)

(2.18) Iisil ~ p if and only if ,~
1+p

Ilcll
, p ~ 1 .

In the case when C is nonselfadjoint and positive definite

operator (C ~ 8E , 0 > 0), then

= 1 _ 2, (Cx,x) + ,2 IlCxl1
2

(x,x) IIxl1 2

~ 1 - 2,0 + ,211 C 11 2

For the stability it is sufficient from lemma 2.1 that

II S 11 2 ~ 1 - 2,0 + ,211 C11 2 ~ p2

which leads to the condition
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(2.19)

If the operator C is sum of a selfadjoint and a nonselfadjoint

operator, then the stability range can be further improved. We shall

use lemma 2.1 with P = 1 as the stability criterion in the following

theorems:

Theorem 2.3: Let Co and C
1

be linear operators mapping H into itself

and

(2.20)

The corresponding iteration scheme (2.10) is stable provided

(2.21) where e =
2 (1 - Po + b)

1 - P02 + 2b + a2

a = Toll C1 II , b = TO <5 and Po = liE - TO coil

and TO is any real number satisfying the conditions

(2.22) (1 - PO) 2 < a2 •

Proof:

=

By the triangle inequality

II s II $ ell E - T/ eCo II + II (1 - e) E - TC 1 II .



(2.23)
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We rescale T in terms of TO and 8 by writing T = T08, 0 $ 8 $ 1.

Moreover,

This is true for all x E H so that

II (1-8)E-TC II $. {(1-8)2_2To(1-8)+T21Ic 112}~ ,
1 1

and Ilsi I ~ f(8) , where

The value of f(8) is less than unity if

e =
2 (i-PO +b)

1-p6+2b +a2

The value of e lies in the interval [O,lJ if Po ~ l+b,

and (1-P O)2 < a2 •

Thus, Ils\1 $ f(8) ~ 1 if 0 < T = T08 $ TOe,

where TO is any real number satisfying (2.22).

Theorem 2.4: Let C = Co + C
1

such that C > 0 and



(2.25) = 1:. (C - C*) .
2
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A sufficient condition for the stability of the scheme (2.10) is

(2.26) e =
2 (1 - PO)

1 - P 2 + a2
o

and 'to is any positive real number such that Po < 1.

Proof: For any x € H, (C1x,x) = 0 since C
1

= (C - C*)/2.

From (2.23) we get

2 1:
II(l-e)E - 'tC II ~ {(1-e)2 + 't2 11c II }2,

1 1

Proceeding as in theorem 2.3, we find that

II 811 ~ 1 if o < 't

This holds for any positive real number 'to for which Po < 1.

Theorem 2.5: Let the operators Co and C
1

in theorem 2.3 satisfy the

following conditions

(2.27)

In this case the stability range is largest when 'to = 2/(Yl + Y2)

and the stability condition becomes



(2.28) 0<, ~
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The stability range (2.21) is

2'0 (i-PO + b)

o < , ~ 'Otj , '06 =1-~02 + "2b + a2 ' a = '0Yg , b = '0° .

We wish to choose 'a such that 'Oe is a maximum. There are

two cases:

Case 1: if either '0 < y;l $ y-l
1

In this case 'Oe is an increasing function of '0. Its

maximum is attained when '0 has its maximum value which is

Case 2: , y -1o 2
if either

If Yg > Y
2

' then '06 is a decreasing function of '0 and the

minimum permissible value of '0' which is 2/(Yl+Y2)' gives



In this

the maximum of TOe.

If y < Y , then we should have
3 2

in order to satisfy (2.22).

'0 £ (Y2:Y3· Y~-6)
case TO = 2/(Y2+Y3)
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gives the maximum of TOe. However, TO = 2/(y
1
+y2) gives a

larger stability range. Substituting this value of TO in

(2.21) we get (2.28).

Corollary 1: In the case of theorem 2.4, if (C1x,x) = 0 for all

x E H, then the stability condition in this case is obtained

by putting 8 =° in (2.28).

Corollary 2: When C = Co + C1 ' IIci I s Y2+Y
3

, a necessary condition

of stability is obtained from (2.16) as follows:

(2.29) 2
Y2+Y

3

When Y
3

S Y1' (2.29) becomes a necessary and sufficient

condition for the stability of (2.10). In the case when C

is selfadjoint, Y
3

= °and this condition becomes T <2/Y2

which is equivalent to (2.18) with P = 1. This condition is

the same as given in lemma 2.2.

Corollary 3: The function fee) of (2.24) assumes a minimum in the

interval (0,6). This minimum is achieved for e = e given by

(2.30) e =

~ 1
(1+b) (d-P02) 2 - Po (a2_b2)~

d (d-P
O
2)~



The iteration parameter f for the optimal convergence of the

iteration scheme is given by T = TOe, TO = 2/(y
l

+y2). The

norm of the transition operator S of the iteration scheme

(2.10) satisfies
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(2.31) p =

1 1

pO(l+b) + (a2_b2)~ (d-P02)~

d
< 1 .

When 8 = 0, b = 0 and we obtain the values of T and p for the

optimum convergence of the iteration scheme (2.10) as given

by Samarskii [14J.

One can verify the conditions of theorem 2.5 in terms of the

norms of A and B by using the following lemma:

Lemma 2.4: Let A = AO + A
1

in the iteration scheme (2.5) and the

following conditions be satisfied

(2.32)

Then,

Y1
B ~ AO S Y2 B , alE < B ~ a E

2

IIAIII s s , Al ~ aE

YI E S Co S Y E , C
1

~ 8E and II cI11 ~ Y
32 ,

Proof: Since AO = AO and Co = B-~ AO B-~,

from lemma 2.3 the following inequalities are equivalent:

Y E.
2



Moreover, since B = B* > 0, B-1 exists and the following

inequalities are equivalent:
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Now,

2.4 Time-Dependent Operators

In order to study the case when A and B depend upon t, we

assume that Bet) is a selfadjoint and positive operator and satisfies

a Lipschitz condition in t:



(2.33) I C{B(t) - B(t-T)} y,y ) I $ c1 T ( B(t-T) y,y ) ,

o < t = nT -< to ' Y E: H ,
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where c
1

is a positive constant independent of T and h.

~
Since B(t) = B*(t) > 0, the square root B2 (t) exists for each t E: W •

T

~
We put B2 (t-T) y = z in (2.33) and obtain

(2.34)

We wish to consider the stability of the initial value problem

(2.5"') B(t) y(t+T) - yet)
T

+ A(t) yet) = 0 ,

yeO) = yO ' t E: wT .

The operator equation (2.5"') can be written as

(2.35) X(t+T) = Set) x(t) , Set) = E - TC(t) ,

where

x(t)
~

= B2 (t) yet) , and C(t)



Using the estimate (2.34) we get

~

lli(t) II = IIB 2 (t) Yet) II

~ exp (c T /2) IIx (t) II , t E: W •
1 T

The following lemma is a counterpart of lemma 2.1 but gives a

sufficient condition of stability:

Lemma 2.5: The initial value problem (2.5~) with operators depending

upon t is stable if
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(2.36)

Proof:

where Co is a real number.

II X(t+T) II = II Set) x(t) II

::;IIS(t)II·lli(t)11

This demonstrates the stability of (2.35) and hence that

of (2.5~).

When A(t) is selfadj oint, Samarskii 113J obtained the
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following conditions, the first of which is sufficient for the

stability and the second is sufficient for the instability of (2.5~).

Theorem 2.6: If B(t) = B*(t) > 0, A(t) = A*(t) and (2.33) is

satisfied for B(t), then the following conditions are sufficient for

the stability of (2.5~) in the B(t)-norm:

1-p B(t) ~ A(t) ~
T

l+p B(t)
T

, p

Theorem 2.7: If A(t) = A*(t) > 0, B(t) = B*(t) > ° and A(t) satisfies

the condition (2.33), then the condition

(2.37)

with

ACt) ~ 1+p B(t) , t e w
T T

p = exp (COTY) , °~ Y < 1

is sufficient for the instability of (2.5~) in A(t)-norm.

In the case when A(t) is a nonselfadjoint operator, one can

obtain a sufficient condition of the form (2.15) if one follows the

analysis of Samarskii 113J. As this condition would involve the

inverses of ACt) and B(t), it can not be used in practice. However,

our analysis of theorems 2.3 - 2.5 is valid in this case and the

stability results (2.17) - (2.28) hold. We rewrite the theorems 2.3

and 2.5 for the present case whereas the other results can be extended

to the case of time-dependent operators in a similar manner.

Theorem 2.3~: Let CO(t) and C1(t) be linear operators on H such that
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Then the corresponding initial value problem (2.5~) is stable in

B(t)-norm ( I IS(t) II $ 1 , t £ w ) provided
l'

e =
2 (1 - Po + l' 00)

1 - P02 + 21'00 + a2

where t E W
l'

and 1'0 is a real number satisfying the conditions

Theorem 2.5~: Let the operators CO(t) and C
1

(t) satisfy the conditions

C
1

(t) ~ 0 E , II C1 (t) II s y 3 ' t E W1'

In this case I IS(t)1 I $ 1 and the stability range is largest when

T =o 2/(Yl + Y2) and the stability condition is given by (2.28).

The proofs of these theorems follow their counterparts in the

case of fixed operators. These theorems assure the uniform boundedness

of I IS(t)1 I for each t E W which, from lemma 2.5, ensures the stability
l'

of the initial value problem (2.5~).



2.5 Stability With Respect to the Right Hand Side

We shall now discuss the stability of the iteration scheme

(2.5) with respect to the right hand side f(t). Samarskii and Gulin

[15] showed that under certain conditions an iteration scheme, which

is stable with respect to the initial data, is also stable with

respect to the right hand side. When A(t) is nonselfadjoint, their

results involve the inverses of A(t) and B(t). In the following

theorem, we prove that the iteration scheme (2.5"") is stable with

respect to the right hand side if the sufficient conditions of

stability with respect to the initial data are satisfied.

Theorem 2.8: Let B(t) be a positive selfadjoint operator satisfying

a Lipschitz condition in t. Let A(t) be a nonselfadjoint operator

and let
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(2.36)

Then, the solution of (2.5) satisfies the following estimate

(2.38)

n

+ L T pn-n"" IIf(t"") llb-.1 (t"") ,
n""=O

where

Proof: From (2.5) we get

B~(t) B~(t). y(t+T) - Yet) + A(t) yet) = f(t) .
T



~ ~
Writing X(t+T) = B2(t) y(t+T) and x(t) = B2(t) yet)

we get

..J,;
X(t+T) = Set) x(t) + TB 2(t) f(t) ,

~ ~
where Set) = E - TC(t) , C(t) = B- 2(t) A(t) B- 2(t) .

It follows that

eTC T/2
~ eO. e 1· Ilx(t) II + Til f(t) Ilb-l (t)

= P Ilx(t) II + Til f(t) Ilb-l (t) , t > 0

$. p IIY(o) Jlb(o) +T Ilf(o) Ilb-l (0)

Using the above inequalities for t-- = T,2T, ... we get

n

I IX(t+T) II ~ pn ll x (T)1I + T L__ pn-n--llf(t--)llb-l(t __ )
n =1

n

$. pn+11IY(0)ll b (o) + T ~__ =opn-n--llf(t--)llb-l(t--)

t-- = n--T, t = nT .
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This inequality gives the estimate (2.38) since

II x(t + T) II = II yet + T) lib (t) .

2.6 A Numerical Example

We consider the boundary value problem
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(2.39) L u - u + A u = 0, A > 0 J 0 < X < 1xx x

u(O) = 0 , u(l) = 1 .

For the numerical solution of (2.39) we introduce the mesh points

x. = ih, i = 0,1, ... ,N J Nh = 1. Let u. denote the approximate
1 1

value of u(x.). We replace u in (2.39) by its three point differ-
1 xx

ence analogue h- 2 (u. 1 - 2u. + u. 1)' whereas the first derivative Ux1- 1 1+

can be replaced either by the central differences (2h)-1(u. 1 - u. 1)
1+ 1-

or by the forward differences h-1(u. 1 - u.).
1+ 1

The differential equation (2.39) is discretized at each

x' J i = 1 (1) N-1.
1

T
If Y denotes the vector (u1,u

2
' •.• '~-1) ,

then the difference analogue of (2.39) can be written as

1

I -2

(2.40)

where

~2 1 \::)

~1\J 1-2

= A* > 0o



o 1

-1 0 1 ~

O~l
-1 0

, f = 0
o
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for central differences;

, f = o
o

for forward differences .

Let the Hilbert space H consist of the (N-l) - dimensional

vectors (u
l

' '~_l)T with the inner product and norm defined

by

(u,v) =
N-l

L
i=l

u.v.
1 1

Ilull =1 (u,u).

Th' 1 f A 4 h-2 . 2 knh kIN 1e elgenva ues 0 0 are Sln --2--' = , ... ,- ,

so that ylE $ AO ~ y
2
E with Y

I
= 4h-2sin2 ~h and Y2 = 4h-2cos2 ~h

In the case when central differences are used, Al = -A* and
1

IIAll I S A/h. In the case of forward differences I IAll I s 2 A/h and

Al ~ eSE, cS A (1 _ cos nh )=11 2-h
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The system of difference equations (2.40) can be solved using

the following explicit scheme

(2.41)
(n+l) (n)

y - y
1"

+ A yen) + A (n) =o 1 Y f ,

where yen) is the n-th approximation and 1" is an iteration parameter.

The equation (2.41) can be written in the operator form

= f ,

where y -
(n)

y and
(n+l) (n)

y - y
1"

We obtain the following stability conditions from theorem 2.5:

For the central difference approximation,

(2.42a) < h2 (1 - cos 11" h)

sin2 7Th + A2h2/4

For the forward difference approximation,

(2.42b) < h2 (1 + AhK - cos 11" h)

sin2 11"h + A2h2 + 2 AhK

K = 0.5 ( 1 _ cos 7T h )
2-h

For the numerical computations, the conditions (2.42) are

indeed sufficient for stability. However, the stability ranges

obtained here are conservative and we give a comparison of the

stability ranges of T in the following table for the case when h = 0.1:



Parameter Forward Differences Central Differences

A
Theoretical Numerical Theoretical Numerical

1.0 0.0046 0.0047 0.005 0.005

10.0 0.0005 0.003 0.0014 0.005

100.0 0.000011 0.0008 0.00002 0.0001
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CHAPTER 3

THE BIHARMONIC EQUATION: DISCRETIZATION ERROR

3.1 Introduction

The biharmonic equation in two-dimensions can be written as

(3.1) ~~u(P) = F(P) , P € D ,

where ~ is the Laplace operator and D is a bounded region with

boundary O. If the function u and its normal derivative u are
n

prescribed on 0, i.e.,

(3.2a) u(P) = f(P) , u (P)n
.

= g(P) , P € D

then (3.1) and (3.2a) constitute the first boundary value problem of

the biharmonic equation. If u and its second derivatives are pre­

scribed on the boundary 0,

(3.2b)
.

u(P) = f(P) , ~u(P) = g(P) , P € D

then (3.1) and (3.2b) constitute the second boundary value problem.

In order to solve these boundary value problems, the domain

D is first covered by a square grid of size h. The biharmonic equation

is replaced by its finite difference approximation at each grid point

of D and the boundary conditions are replaced by some 'appropriate finite

difference analogues. This leads to a system of linear algebraic

equations which must be solved by an iterative or direct method.
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The iterative methods frequently considered are those of

the alternating direction or the relaxation type. Conte and Dames

[16,17J used an alternating direction method for solving the bihar­

monic boundary value problems in the unit square. They proved the

convergence of the iterations and also gave a method for determining

the optimum iteration parameters. However, their analysis does not

hold for arbitrary domains and for general boundary conditions.

Fairweather, Gourlay, and Mitchell 118J and Hadjidimos 119J discussed

some improvements to the convergence of the iterative scheme given by

Conte and Dames as applied to the unit square.

The iterative methods of relaxation type include the Jacobi

and successive over relaxation (S.O.R.) methods. Windsor 120J proved

that the point Jacobi and line Jacobi IDethods diverge for the second

boundary value problem (3.1) and (3.2b). He also proved that certain

extrapolated procedures converge but the rate of convergence is of the

order h4 , where h is the mesh size. Parter 121J discussed a two line ­

SOR method for the first boundary value problem (3.1), (3.2a) in a

rectangular domain. The normal derivative was discretized using

second order finite differences whereas the thirteen point difference

operator was used to discretize the biharmonic equation. The matrix

of the resulting algebraic system must be symmetric and positive

definite for this method to be applicable. The rate of convergence

strongly depends upon the choice of the relaxation factor. This makes

the method unsatisfactory since in general it is difficult to find the

optimum relaxation factor.
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Viznyuk and Molchanov have given several explicit iterative

methods for solving the first boundary value problem (3.1) and (3.2b)

[22,23J. Some of these methods are applicable to general domains.

The convergence of these iterative schemes was proved and the

estimates of the optimum iteration parameters were given. However,

these results do not have any practical value since the optimum con­

vergence itself is very slow. The values of the optimum parameters

are of the order 10+5 and 10-6 which introduces large round off errors.

Direct methods of solving the difference equations related to

the biharmonic equation also exist in the literature 124,25J and are

recommended for solving large linear sparse systems, especially when

the system is ill-conditioned. For this reason Ehrlich [26] advocated

the use of direct methods and has done a comparative study of some

iterative and direct methods used for solving the biharmonic equation.

He found that a direct method is competitive with an iterative method

so far as the arithmetic operations are concerned. He also gave a

rounding error analysis which indicated that the iterative methods

are not necessarily more accurate than the direct methods.

An alternative approach is to reduce the biharmonic equation

to two coupled Poisson equations. The two second order boundary value

problems are solved by the existing methods. This procedure is

generally used to obtain the numerical solution of problems in fluid

dynamics (see [38J and other references given there). However, this

reduction introduces some new problems of convergence related to the

simultaneous solution of the Poisson equations. This will be
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discussed in Chapter 4, while in this chapter we shall discuss the

discretization error and convergence of the discrete solution to the

exact solution, as h ~ o.

The biharmonic equation (3.1) can be reduced to the following

equations:

(3.3a)

(3.3b)

L\u(P) = vCP) , P E D UD

L\v(P) = FCP) , P ED.

Wood [27] used this technique to solve the second boundary value

problem in a rectangular domain. She discretized the equations (3.3)

and defined an iterative procedure to solve the resulting algebraic

system. The convergence of the discrete solution to the exact solution

was proved in the mean as the mesh size h ~ O. However, the analysis

of Wood is not applicable to general domains since the error functions

can not always be expanded in Fourier series as done by Wood.

The first boundary value problem for the biharmonic equation

in a rectangular domain was studied by Smith I28J who split the bihar­

monic equation (3.1) into two Poisson equations. These equations were

discretized and an "inner-outer" iteration method was devised to solve

the two coupled algebraic systems. The outer iteration scheme

involved the solution of two discrete Poisson equations at each step,

m, say. Boundary conditions were given at each stage but the con­

ditions on v varied withm. The Poisson difference equations can be

solved using various direct and iterative techniques and the term
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"inner iterations" is used to identify this procedure.

Smith proved that the spectral radius of the basic outer

iteration scheme was given by 2(hoh)-1 where 0h + 0 as h + 0, and 0

is a constant. This showed that the basic outer iteration scheme

was divergent for small values of h. The convergence was achieved

by introducing a relaxation factor in the outer iterations and the

spectral radius of the modified iteration scheme was shown to be

~ 1 - oh, h + O. We note here that Smith's analysis is valid only

for rectangular domains and for one particular approximation of the

boundary conditions for (3.3b). Ehrlich 141J has shown that the rate

of convergence of Smith's method can be improved by using two para­

meters in the outer iterations.

In the present chapter, we consider the biharmonic boundary

value problems in a general two-dimensional domain. In the first

part we study the second boundary value problem (3.1), (3.2b) and

reduce the biharmonic equation to two Poisson equations (3.3) with

Dirichlet data known on the boundary. We discretize the second order

equations and estimate their discretization errors using the maximum

principle. We define two difference approximations and prove the

overall discretization error to be of order h2 . Further, we combine

the difference approximations for the Poisson equations to obtain an

equivalent difference analogue of the biharmonic equation and show a

relation between the local truncation error of the biharmonic operator

and the overall discretization error. The results of Chapter 1 can

not be applied for this purpose since there we dealt only with the
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Dirichlet problems.

In the second part of this chapter we study the first boundary

value problem (3.1), (3.2a) in a general two-dimensional domain and

again reduce the biharmonic equation to two Poisson equations (3.3).

The boundary conditions for (3.3b) are not known a priori and have

to be approximated from the known data. We discretize the Poisson

equations and define difference approximations at every grid point of

the region of integration. In order to obtain the error estimates we

combine the two difference systems and get an equivalent difference

analogue of the biharmonic equation. We now apply the results of

Chapter 1 to estimate the discretization error. This also provides

a criterion for defining the missing boundary conditions. Finally,

we give some examples of the possible definitions of these missing

conditions and estimate the corresponding discretization error.

3.2 Discretization Error: The Second Boundary Value Problem

We consider the boundary value problem

(3.4)

~~u(P) = FCP)

uep) = f(P)

~u(P) = g(P)

P E D
.

P E D

P E D

.
where D is a bounded two-dimensional domain with the boundary D.

The equations (3.4) can be reduced to two second order Dirichlet

problems by writing ~u =v:



(3.5a)

(3.5b)

&1(P) = v(P)

u(P) = fep)

flvep) = F(P)

vCP) = g(P)

P E: D

.
P E: D

P E: D

P E: D
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The domain D is covered by a square grid of size h (h > 0).

Let Dh be the set of all mesh points in D and Dh be the set of all

points of D lying on the grid lines; i\ = Dh U Dh .

For any grid function V(x,y), we define the difference analogue 6h of

the Laplace operator as

= V - (x,y) + V - (x,y) .xx yy

This is the usual five point operator. Similarly the difference

analogue of the biharmonic operator is the usual thirteen point

operator

2l'..hV(x,y) =

We give some names for the neighborhoods of a point Po relative to the

2operators 6h and l'..h. Let ~(P) = o(P, PO)' the Kronecker delta, and

define

=

=

{P/l\ ~(P)

{P/6~ ~ CP)

* O}

'F O} .

The set N1 (PO) consists of five mesh points (the Laplace



neighbors) and N
2

(PO) consists of thirteen points (the biharmonic

neighbors of PO)'

The maximum norm is defined as
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(3.6) max \V(P) I ,
P£Qh

for any grid function V defined on the set Qh'

The set Dh of all mesh points can be divided into the

following subsets:

Dh consists of those points P such that N2 (P)C: Dh '

Dh,l consists of the points P of Dh - Dh such that N
1

(P) c::. Dh '

Dh 2 consists of the remaining mesh points of Dh .,

The Dirichlet problems (3.5) can be discretized and a finite

difference approximation defined at each mesh point of Dh . Let U, V

denote the discrete grid functions defined on Dh and correspond to

the continuous functions u, v. We define the discrete analogue of

(3.5) as

Llh U(P) = yep) P £ D....
h

(3.7a) LlhU(P) = yep) P £Dh 2,
U(P) f(P)

.
= P £ Dh ;



~ yep) F(P) P D"''''= E: h '

(3.7b) I1hyep) = F(P) P E: Dh 2,.
yep) = g(P) P E: Dh .

The operator I1h approximates the Laplace operator with a

truncation error of order h2 , and the operator I1his a suitable

approximation of 11 for the mesh points of Dh 2. We study two dif-,
ference approximations for I1h. If (x,y) is a mesh point of Dh ,2'

then at least one of its Laplace neighbors lies outside Dh . If

(x-ah,y) and (x,y-8h) lie in Dh with 0 < a , 8 ~ 1, then I1hcan be

defined by the Shortley-Weller formula

(3.8) I1hV(x,y) =2h-Z I (a+l)-1 V(x+h,y) + a-I (a+l)-1 V(x-ah,y)

+ (8+1)-1 V(x,y+h) + 8-1 (8+1)-1 V(x,y-Sh)

with the truncation error given by
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~ 2/3 h M .
3

We also study another approximation defined by

(3.9) I1hV(x,y) = h-2 I V(x+h,y) + a-I V(x-ah,y) + V(x,y+h)

The truncation error of this operator is given by
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where C is a constant and M. is defined by
1

M.
1

= sup
j+k=i

We shall show that the error of these discretizations is of

the order h2 , as h + O. We introduce the discrete analogue of the

Green's function [29J defined by

(3.10)

P £ 0 ....
h

Gh(P,Q) = o(P,Q)

for Q £ i\ .

We shall first prove some lemmas:

Lemma 3.1 (Maximum Principle) :

If ~h yep) ~ 0 , P £ 0h'" and,

~h yep) ~ 0 , P £ 0h,2

for any mesh function V defined on Dh, then yep) attains its maximum
.

on Dh "

The proof of this lemma follows from Collatz [30] using the fact that

both ~h and ~h are positive operators.
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Lemma 3.2: If V(P) is a mesh function defined on 0h' then for

any P €. 0h

(3.11)

Proof: If we denote the right hand side of (3.11) by Z(P) and use the

.
Z(P) = VCP) , P €. 0h

L\ Z(P) = L\ V(P) P €. 0h" .

Thus, for W(P) = Z(P) - V(P) we have

W(P) = 0, P €. Uh

~~ W(P) = 0 P €. 0h,2

From lemma 3.1, W(P) - 0 which proves (3.11).

Proof: For an arbitrary but fixed Q €. 0h' the function -Gh(P,Q)
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satisfies the following inequalities

Thus by lemma 3.1, Gh(P,Q) ~ 0, Q e Dh .

Lemma 3.4:

Proof: Let Z(Q) be the mesh function defined by

Z(Q) =

Then,

Ll
h

Z (Q) =

> h-2- ,

for both approximations (3.8) and (3.9).

Applying (3.11) to the function Z(Q) for Pe Dh , we get

.
If P e Dh , then the inequality is trivial.

Lemma 3.5: If d is the diameter of the smallest circumscribed circle



containing the domain D, then the discrete Green's function defined

by (3.10) with.&h defined by (3.8) satisfies
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(3.12)

Proof: Let 0 be the centre of the circumscribed circle of diameter

d and let

x(P) and yep) are cartesian coordinates of P relative to O.

Then, we have

~ W(P) = 1 , P E: D....
h

llh W(P) = 1 , P E: Dh 2,

W(P) ~ d2/16 ,
.

P E: Dh

If V(P) = h2 [ Gh (P ,Q), then
QE:Dh

llh V(P) = -1 , P E: D.....
h

ll~ V(P) = -1 , P E: Dh 2,

.
V(P) = 0 , P E: Dh

By the maximum principle, the function Z(P) = V(P) + W(P) attains its

maximum on Dh , i.e.,



Since W~ 0, (3.12) follows.

Lemma 3.6: If in lemma 3.5 ~h is defined by (3.9), then
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(3.13)

Proof: Proceeding as in the proof of lemma 3.5, we have for the mesh

function W(P) = r(p)2/4

~ W(P) = 1, P £ Dh~

~~ W(P) = (04+8+2)/4, P E Dh ,2

W(P)

If V(P) = h2 t= Gh(P,Q), then for Z(P) = V(P) + W(P) we have
QEDh

~h Z(P) = o , P E Dh~

~~ Z(P) = (04+6-2)/4 , P E Dh 2,

d2/16 ,
.

Z(P) ::: P E Dh

Since ~h Z(P) = 0 in Dh~' Z(P) attains its maximum on Dh 2 which is,
the boundary of Dh~. Thus,



(3.14) max Z(P) S Z(Q) , Q E Dh,2
PEDh"

:::; max Z(Q)
QEDh 2,
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Since ~~ Z(x,y) = h-2 Z(x+h,y) + Z(x,y+h) + a-I Z(x-ah,y)

= (a+S-2)/4 , (x,y) E Dh 2,

and Z(x-ah,y) J Z(x,y-Sh) S d2/16,

Using (3.14) we get

As this is true for all (x,y) E Dh 2' we get,

From (3.14) we obtain

max Z(Q) S d2/16 + O(h2) .
D
h
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Since W(P) ~ 0, (3.13) follows.

Now we are in a position to estimate the discretization error.

Let c
1

(P) and c
2

(P) denote the error functions defined by

C1 (P) = v(P) - V(P)

Theorem 3.1: If U is the solution of the discrete system (3.7), (3.8)

and u is the solution of (3.4), then

(3.15)

Proof: The discrete functions are defined on Dh and c
1

(P) = C (P) = 0,
2.

P C Dh. From lemma 3.2 we get for c
1

(P),

(3.16) C (P)
1

Now, !-l:Ihc
1

(Q)I = l-l:Ihv(Q) + l:IhV(Q) I

= l:Iv(Q) - l:Ihv(Q)I :s h2 /6 M
4

Q c Db."

l-l:Ihc1(Q) I = Il:Iv(Q) - l:Ihv(Q) I $ 2h/3 M3 ' Q c Dh 2 .,

From (3.16), it follows that



IE (P) I
1

5 (h2 [ Gh(P,Q)) max 1-11- E1(Q) I
0...... O......-h
h h

+ h 2 (L Gh (P, Q)) max 1-I1~E 1 (Q) I
°h,2 °h,2
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using lemmas 3.4 and 3.5.

IE 10 = max IE (p)1 5 d2/96 h2 M , h + 0 •
1 hOI 4

h

The equation (3.16) is also satisfied by E (P) and
2

= 1-I1
h

u(Q) + V(Q) I

Thus,

+ h2 (2/3 h M + IE 10- )
3 1 h



sup lu(p) - U(P) 1 $ O(h2 ) ,

i\
h -+ 0 .
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Theorem 3.2: The error bound in theorem 3.1 is valid when the

approximation (3.9) is used instead of (3.8).

Proof: The proof follows on the similar lines as in theorem 3.1.

Here we have

Q £ Dh 2 ',

and us ing 1emmas 3.4 and 3.6 we, get

Similarly,

which proves the theorem.

Thus, we have shown that the discretization error for the

biharmonic equation with boundary conditions (3.4) and the difference

approximations defined by (3.7) - (3.9) is of order h2 , as h -+ O.

We shall now combine the discrete systems for the second order

Dirichlet problems and obtain an equivalent difference approximation

for the biharmonic boundary value problem (3.4).

If (x,y) £ Dh,then N
2

(x,y) c. i\. Thus, for the mesh points



P in Dhwe have from (3.7)

~hU(P) = yep) , ~hV(P) = F(P)

which can be combined to give
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(3.17)

If (x,y) ~ Dh l' then ~hV(x.y) = F(x,y). At least one,
element of N1(x,y) lies in Dh ,2' Assuming (x-h,y) is such a mesh

point, we get from (3.7a)

- 4~hU(x,y)J = F(x,y)

which is the same as

(3.18) ~~ U(x,y) '" ~~ U(x,y) + h-2 [~h U(x-h,y)

-~h U(x-h,y)J = F(x,y) , (x,y) ~ Dh,l .

Similar expressions are valid for other mesh points of Dh l',

If (x,y) ~ Dh 2' then ~hV{x.y) = F(x,y). If the operator,
~h is defined in (3.8) and if we ~sume that the points (x,y+h) and

(x+h,y) belong to Dh~' then from (3.7a) and (3.8)

(3.19) -2
~h U(x.y)
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+

= F(x,y) , (x,y) E Dh 2,

In case the operator ~~ is defined by (3.9),

(3.20) -2
~h U(x,y) h- 2 [~U(x+h,y) + ~hU(x,y+h)

Similar expressions are valid for all mesh points of Dh 2' On the,
boundary Dh , the function U(x,y) is defined by

(3.21) U(x,y) = f(x,y)

We have thus defined two difference approximations for the

second biharmonic boundary value problem (3.4) in a general domain.

Both of these approximations have a discretization error of order h2 ,

h + 0, as proved in theorems 3.1 and 3.2. On the set of interior grid

points Dh, the biharmonic operator is replaced by its thirteen point

discrete analogue as in (3.17) which has a truncation error of order

h2 • However, on the boundary grid points Dh (Dh= Dh,lLJDh,2) the

biharmonic operator is replaced by an approximation E~ as in (3.19)

and (3.20). The truncation error of this operator is of order h- 1 if

~h is defined by (3.8) and is of order h- 2 if ~h is defined by (3.9).

It follows that in order to obtain a discretization error

bound of order h2 , it is sufficient to approximate the biharmonic



operator by its second order finite difference analogue at the

interior grid points whereas at the boundary grid points, the bihar-

monic operator can be replaced by difference analogues with a trun-

cation error of order as low as h-2 .

3.3 Discretization Error: The First Boundary Value Problem

We consider the boundary value problem
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(3.22)

t:.t:.u(P) = F(P)

u(P) = f(P)

u (P) = g (P)
n

P E D

.
P E D

P E D

where u is the outward normal derivative on Dand D is a bounded
n

two-dimensional domain with boundary n. The equations (3.22) can be

split into two second order boundary value problems by writing

t:.u :: v:

(3.23a)

(3.23b)

t:.u(P) = v(P)

u(P) = f(P)

L1v(P) = F(P)

v(P) = L1u(P)

P E D

P E D
P E D

P E D

.
In this case the values of v are undefined on the boundary D

and have to be approximated from the known data. We define the dif-

ference approximations for (3.23) as follows:
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(3.24a)

(3.24b)

lIhU(P) = yep) P £ D......
h

lIhU (P) = yep) P £ Dh 2,

U(P) f(P)
.

= P £ Dh

lIhV(P) = F(P) P £ D......
h

lI~V(P) = F(P) P £ Dh 2,

yep) = lihU(P) , P £ Dh

In the above definition lIh is the five point finite difference

analogue of the Laplace operator, lIhis the first order Shortley­

Weller formula defined in (3.8) and lih is an operator that approximates

II on the boundary D. The selection of lih will be discussed later.

Since the boundary condition for (3.24b) is undefined, we can

not apply the Green's function technique to estimate the discreti-

zation error. On the other hand, the results of Chapter 1 are

applicable to the Dirichlet problem (3.22). In order to .do so, we

first combine the difference approximations in (3.24) and obtain an

equivalent difference analogue of the Dirichlet problem (3.22).

If (x,y) £ Dh, then N
2

(x,y) eBh and we get on combining

lIhU(P) = yep) , lIhV(P) = F(P)

(3.25) = F(x,y) , (x,y) £ Dh .

If (x,y) £ Dh l' then lIhV(x,y) = F(x,y). There is at least one member,
of N

1
(x,y) that lies in Dh ,2' Assuming (x-h,y) is such an element,

we get



(3.26) ~U(x,y) - ~~U(x,y) + h-2 I~hU(x-h,y) - ~hU(x-h,y)J

= F(x,y) , (x,y) € Dh,l .
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Similar expressions are valid for other mesh points of Dh l' If,
(x,y) € Dh 2' then from (3.24b) and (3.8) we get,

From (3.24) it follows that

(3.27) ~~U(x,y) =2 h-2 I(a+l)-l ~hU(x+h,y) + (S+l)-l ~hU(x,y+h)

o < a , S s 1 .

The local truncation error of the operator ~~ at the mesh

points of Dh is of the order h2 . Since the operator ~h approximates

~ with an error of order h, the operator ~~ of (3.26) approximates

the biharmonic operator with an error of order h-1 at the points of

Dh ,1' If the operator ~~ of (3.27) also has the truncation error of

order h- 1 , then theorem 1.4 can be applied to obtain estimates for

the discretization error.



From the definition of~~ andE~ in (3.27), it follows that

Expanding in Taylor series about (x,y), we get for a sufficiently

smooth function u

(3.28) (l~ - ~~)u(x,y) = h-2 [2 a-1 (a+l)-l (~u(x,y) - lhu(x-ah,y))

-2The truncation error of~h satisfies

This truncation error is of order h- l if the operator lh is chosen

such that it approximates ~ with an error of order at least h. From

(3.28), the operator Eh must be chosen such that
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(3.29) Ilhu(x-ah,y) - ~u(x,y) I ~ O(h) , h + 0 , 0 < a ~ 1 .



With the above provisions, the biharmonic operator ~2 is

approximated with an error of order h2 at the interior mesh points
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(Dh) ofDh and with an error of order h-1 at the boundary mesh points

Dh (Dh = Dh 1UDh 2). We can apply theorem 1.5 with k = 2, ~ = -1, ,
and m = 2 and obtain the estimate

(3.30) max I u(P) - U(P) I ~ C h}2 , h + 0 .
D
h

3.4 Examples of the Boundary Operator

If D is a rectangular domain, the operator ~h reduces to ~h

and the operator ~~ of (3.26) reduces to ~~. The operator ~~ of

(3.27) takes the following form:

(3.31)

+ ~hU(x,y-h) - ~hU(x,y-h)] = F(x,y), (x,y) £ Dh ,2

The set of boundary mesh points in this case is Dh 2 and the,
truncation error of ~~ depends upon that of ~h. If the operator ~h

approximates ~ with an error of order hP, then the truncation error

of ~~ of (3.31) is of order hP- 2. Applying theorem 1.5 with k = 2,

~ = p-2 and m = 2 we get

(3.32) max I u(P) - U(P) I $ O(hq) , h + 0
Dh

q = min (2, p+1/2)

We now give several examples of ~h. If (x,y) is a mesh point

of Dh 2 and (x-h,y) lies on the left boundary of the rectangle D,,



then ~h can be approximated as follows:
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(3.33) bhu(x-h,y) = h-2 [f(x-h,y+h) + f(x-h,y-h)

- 2 f(x-h,y)] .

For a smooth function u,

bhu(x-h,y) = ~u(x-h,y) + 0(1) .

In this example p = 0 and (3.32) gives the error estimate of order

Another example of Kh is that used by Smith 128]

(3.34) bhu(x-h,y) = h-2 [2 u(x,y) - 2h g(x-h,y) + f(x-h,y+h)

+ f(x-h,y-h) - 4 f(x-h,y)] .

The truncation errof of Eh is of order h and with p = 1, (3.32) gives

~the error estimate of order h 2.

A modification of (3.34) is given by

(3.35) bhu(x-h,y) = h-2 [0.5 u(x+h,y) - h g(x-h,y)

+ f(x-h,y+h) + f(x-h,y-h) - 2.5 f(x-h,y)] .

This modification also has a truncation error of order h. In this

approximation we have used the function value at (x+h,y) instead of

at (x,y) as in (3.34).

A higher order approximation is given by
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(3.36) ~hu(x-h,y) = h-2 14 u(x,y) - 0.5 u(x+h,y)

+ f(x-h,y+h) + f(x-h,y-h) - 5.5 f(x-h,y)

- 3 h g(x-h,y)] .

The truncation error of this approximation is 0(h2 ) and from (3.32)

we get the discretization error estimate of order h2 •

A modification of (3.36) which uses the function values at

the points (x+h,y) and (x+2h,y) instead of at (x,y) and (x+h,y) is

given by

(3.37) Ehu(x-h,y) = h-2 [1.5 u(x+h,y) - 4/9 u(x+2h,y)

+ f(x-h,y+h) + f(x-h,y-h) - 55/18 f(x-h,y)

- 5/3 h g(x-h,y)J .

The truncation error of this approximation is also 0(h2). The

approximations (3.35) and (3.37) are given here for they have some

computational advantage over the approximations (3.34) and (3.36),

respectively, as will be seen in chapter 4.

In the case of a general domain we can construct a difference

operator ~h which satisfies (3.29). As an example let

(3.38) Ehu(x-ah,y) = h-2 [u(x+h,y) + u(x,y+h) + u(x,y-h)

f(x-ah,y) + (1-a-1 ) h g(x-ah,y)2a-1

a 2

+ ( (1_a-1 )2 - 4 ) u(x,y)] .

+--



With this approximation we obtain a truncation error of order h at

the mesh points of D~. Consequently the discretization error is of

order h
31

from (3.30).

Error bounds can be obtained in a similar manner when other

approximations for ~h' ~h and ~h are used in (3.24).
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CHAPTER 4

THE BIHARMONIC EQUATION: NUMERICAL SOLUTION

4.1 The Outer Iteration Scheme

In section 3.3 we presented a difference approximation for

solving the first boundary value problem. The problem is

(4.1) flflu (P) = F (P)

u(P) = f(P)

u (P) = g(P)
n

P E: D

P E: D
P E: D

The biharmonic equation is replaced by two simultaneous Poisson

equations by defining an intermediate variable v = flu (see equations

3.23). The following difference approximations are defined for

obtaining the numerical solution of these Poisson equations:

(4.2a)

(4.2b)

llhU(P) = V(P) P E: Dh~

llhU(P) = V(P) P E: Dh 2,

llhV(P) = F(P) P E: D~~

h

llhY (P) = F(P) P E: Dh 2,

The boundary condition for the discrete Poisson equation in U

(4.2a) is known

(4.3)
.

U(P) = f(P) , P E: Dh
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while for the discrete Poisson equation in V it is defined by
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(4.4) V(P) =

which involves the unknown solution U(P). Several examples of the

operator Ehu were given in section 3.4.

In order to obtain the solution of the biharmonic boundary

value problem using (4.2) - (4.4) we define the following iterative

procedure. We start with some initial approximation Uo to the

discrete solution U and obtain successive approximations

U.
1

' U , ... ,U using the following iterative scheme:
2 m· .

L1h Vm+1 (P) = FCP) , P e: D....
h

(4.Sa) L1hVm+1 (P) = F(P) , P e: Dh 2,

Vm+1(P) ~Um(P)
.

= P e: Dh

L1h Um+1(P) = V 1(P) P e: D....
m+ h

(4.5b) L1l; Um+1(P) = V 1(P) P e: Dh 2m+ ,

U 1(P) f(P)
.

= , P e: Dhm+

In the case of a rectangular domain D = {o ~ x=ih ~ Mh=a,

o ~ y=jh ~ Nh=b}, the operator L1hat the mesh points of Dh ,2 reduces

to the discrete Laplace operator L1h . If we

1 2 N-1 T jU = (U , U , ... ,U ) where U = (U1 "
,J

denote by U the vector

TU2 " ... ,UM_1 ,) , then
,J ,J
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the iteration scheme (4.5) can be written in the matrix form

where F is a constant vector arising from the values of F(x,Y) and D

arises from the values of f(x,y) and g(x,y). Moreover,

1 \j
1 -4 1

~~I
~ 1-4

-4A =

: : I~
~~I

() I A

L =

~ (D) = cjJj = j = 1 (l)N-I

N-l
cj>

<p" (D) ={ V
O

V
j = (KhD) 1 . j = o , N

,J

\
0

(::\D)2 .,J

0

vN
(KhD)M_l,j

L is a block tridiagonal matrix of order (N-I) with blocks of order

(M-I) , A is a tridiagonal matrix of order (M-I) and I is the identity

matrix of order (M-I)

The iteration scheme (4.6) can be written as



(4.7)

where
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(4.8) MO = h2 (1) (U) + 1>" (U)) .

If U is the solution of (4.7) and E = U - U is the error atm m

the m-th iteration, then

(4.9) E = H E = (H)m EO ' H = _L-2 M .m m-l

The iteration matrix is H and its spectral radius p(H) determines the

convergence of the outer iterations defined in (4.5).

An eigenvalue A of L-2M satisfies

For the real inner product we have

Thus,

A = (MU, U)
(LU ,LU)

LU f. 0

(4.10) p (L -2M) = sup
U;iO

(MOJU)
(LU,LU)

where M is defined in (4.8) and

(MO,U) = h2 L. AhU(P) . U(P-)
PeDh
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The point P is the closest neighbor of P in Dh and U is a mesh
.

function which is defined on Dh and vanishes on Dh .

When the approximation (3.34) is used to define the boundary

condition (4.4), Smith I28J proved that

=

(4.11) p(H) N 2 (crh)-l as h + 0 .

This shows that as h + 0, the outer iteration scheme defined by (4.5)

and (3.34) is divergent.

If we use a different approximation for defining V in (4.4)

(e.g. (3.35) - (3.37), the spectral radius of H will differ from (4.11).

Let Mrepresent the matrix operator of (4.8) corresponding to this

approximation. The iteration matrix in this case is H = -L-2Mand

p (H) = p (L-2 M) = sup (Mu ,U)

U;iO (LU,LU)

= sup (MU ,U) (Mu ,U)

U';'IO (LU ,LU) (MU,V)

~ sup (MU ,U) • sup (Mu ,U)
(LV,LV) (MU,V)U,O UfO

(4.12)

where

p(H) ~ 2 (h~h)-l • Yh

(MU ,V)
Yh = ~~b (MU,V)
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We shall show that p(H) in this case is bounded by 2 y(hcr)-l,

as h + 0, where y is a finite constant and depends upon the approxi-

mation used in (4.4).

4.2 Yh + Y as h + 0

(4.13) sup
U*O

(Mu ,U)
(MO,U)

where U is a mesh function that vanishes on the boundary Dh of the

rectangular domain, M is the operator defined in (4.8) and corresponds

to the approximation (3.34) while Mcorresponds to the other approxi­

mation used in (4.4). If Mis defined by (3.35), then

(4.14)

(4.15)

(MO,U) = L. 2 (U(P-)) 2

Pe:Dh

(Mu ,U) = L. 0.5 U(P-) U(P--)
Pe:Dh

The point P is the closest neighbor of P in Dh and P is the next

mesh point of Dh on the same grid line. As an example, if P is the

point (x,y) on the left boundary (x = 0 , 0 < y < b), then P is the

point (x+h,y) and P is the point (x+2h,y).

By lemma 12 of [28], a mesh function U can be extended to a

continuous function U(x,y;h) by the formula

(4.16) U(x,y;h)
M-1 N-1

= L L a u
p=l q=l pq pq



where

and

a = Iu , u Jh , u = sin p TI x/a.sin q TI y/bpq pq pq

IU,V]h = h2 ~ U(P)· V(P) .
pd5

h
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Let the four sides of the rectangle D be denoted by B
1

, B2,

B
3

, and B
4

where

B = {O < x = ih < a y = O}
1

B2 = {O < x = ih < a y = b}

B
3 = {O < y = jh < b x = O}

B
4 = {O < y = jh < b , x = a} .

We can write

(MU, U) = II + I + I + I ,2 3 4

(Mo,U) = I + I + I + I
1 2 3 4

where I. = L 2 (U(P-))2
1 Pe:B.

1

- L U(P-).U(PI. = 0.5 ) i = 1,2,3,4
1 Pe:B.

1

For the function u , we havepq

a

I = L 2 sin2 (p TI x/a) sin2 (q 1T h/b)
1 x=O



I
1

Thus,
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a

= L sin2 p 7T xla (0.5 sin (q 7T h/b). sin (2q 7T h/b)) .
x=O

(4.17a)

Similarly

I /1
1 1

= 0.5 cos q 7T h/b = I /1 .
2 2

(4.17b)

It follows that

- 0.5 $ L/I. $ 0.5 , i = 1,2,3,4
~ ~

(Mu , upq)
and - 0.5 $

pq
S 0.5(Mu upq)pq

This bound is valid for any u and thus holds for U(x,y;h) given in
pq

(4.16). Consequently

sup
U:#:O

(Mu, U)
(MU ,U)

As h + 0, i./I. + 0.5 and
1 ~

(4.18) 'Yh + 'Y = 0.5 .

If we use the second order difference approximation defined

by (3.36), the corresponding ratios are given by



I /1 = I /1 = 2 - 0.5 cos q ~ h/b
1 1 2 . 2

1/13
= 1/14

= 2 - 0.5 cos P ~ h/a

In this case, 3/2 $.
(MU,U)

$. 5/2
(MU,U)
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so that

Moreover,

3/2 $. Yh $. 5/2.

(4.19) = 3/2 , as h -+ 0 .

Similar results can be proved for other difference approxi-

mations used in (4.4). In the case of the approximation (3.37) we

have - 13/6 $. Yh $. 31/18 and Yh -+ Y = 5/6 as h -+ O.

4.3 The Modified Iterations

We have seen that the spectral radius p(H) of the iteration

scheme (4.5) is bounded by 2 Y (ha)-l, as h -+ 0, where Y and a are

finite constants. Therefore, the basic outer iteration scheme (4.5)

is divergent, as h -+ 0, irrespective of the boundary approximation

used in (4.4). However, the scheme (4.5) can be modified such that

the iterations converge. The modified iteration scheme is defined

as follows:

We start with an initial approximation Uo and put 00 = UO. The



successive approximations Ul' U2' ... ,Um and °1 ' °2' ,0 arem

computed using the following procedure:

(4.20a) lIh Vm+1(P) = F(P) P E: Dh

Kh Om (P)
.

V 1 (P) = P E: Dhm+

(4.20b) lIh Um+1 (P) = Vm+1(P) P E: Dh

f(P) ,
.

U 1(P) = P E: Dhm+
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(4.20c) ° l(P) = w 0 (P) + (l~w) U 1(P) , P E: Dh .m+ m m+

This procedure can be written in the matrix form

(4.21)

(4.22)

(4.23)

° = H° + (l-w) L-2 D ,m+l m

H = wI + (l-w) H , H = _L- 2 M

U = H 0 + L-2 D .m+l m

If E = U - U, thenm m

(4.24) - m
(H) H EO .

The convergence of outer iterations is now governed by the

spectral radius of H. If A is the largest eigenvalue of L-2M, then

the corresponding eigenvalue ~ of Hfrom (4.22) is given by



(4.25) ~ = 00 - (1-00) A •
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All the eigenvalues of H lie in the interval [-l,lJ if 00 is selected

such that ~ ~ -1, for which

(4.26) 1 > 00 > (A-1) / (A+1) .

The iteration scheme (4.20) converges for any value of 00 satisfying

(4.26). The convergence of the modified iterations is optimum if 00

is chosen such that it satisfies (4.26) and for which

(4.27) p (H (00)) = max I ~i(w)
i

iis minimum, where ~ are the eigenvalues of H(w).

We now give some examples which demonstrate the usefulness of

the above process.

We consider the square domain 0 ~ x,y ~ 1. For h = 0.1,

the largest eigenvalue of L-2M has the following approximate values:

For the first order approximation (3.34) Al ~ 4.85

For the improved approximation (3.35) A ~ 2.06
2

For the second order approximation (3.36) A3
~ 7.6

For the improved approximation (3.37) A
4

~ 3.84

Here the subscripts identify the approximation used in (4.4).

The corresponding minimum values of 00 such that p(H) < 1 are

(4.28)

For h = 0.05, the extreme eigenvalues of L-2M have the
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following approximate values

~I = 10.5 , ~2 = 4.85 , ~3 = 16.25 , A
4

= 8.7 .

The corresponding minimum values of ware

(4.29) wI ~ 0.826 , w
2

~ 0.655 , w
3

~ 0.942 , w
4

~ 0.793 .

For h = 0.025 the extreme eigenvalue of L- 2M, when (3.35) is

used, is approximately 10.67 and the corresponding range of w is

1 > w ~ 0.8285.

We note here that the use of the approximation (3.35) over

(3.34) in (4.4) results in a reduction of the spectral radius of H

by half. This also gives a larger range for w. Similarly, the use

of (3.37) over (3.36) results in a larger range for w.

A larger range for w is desirable since in practice it is

neither convenient nor economical to find the eigenvalue spectrum of

H in order to find an optimum value of w. Ordinarily, one tries some

values of w for the modified iterations (4.20) and selects the one for

which the convergence is reasonably fast. If the range of w is small,

this search becomes difficult. Thus, we choose the boundary approxi­

mation which gives a larger range for w.

The rate of convergence of (4.20) depends upon p(H) and the

smaller p(H) is, the faster is the convergence. From (4.22), the

eigenvalue spectrum of H(w) is obtained by mapping the eigenvalue

spectrum of H into the interval I-1,lJ and the zero eigenvalues of H
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are mapped into w. Consequently, p(B (w)) ~ wand we should choose

the smallest value of w for which p(A (w)) is a minimum. This is

possible if the range of w is large.

In view of these considerations, it is advantageous to choose

(3.35) over (3.34) for the first order approximation and (3.37) over

(3.36) for the second order approximation. It may be noted that the

range of w becomes smaller if one uses a higher order approximation.

An optimum choice of w depends upon the desired accuracy and the

available computing time.

4.4 Numerical Examples

In this chapter and in chapter 3 we have discussed a method

for solving biharmonic boundary value problems numerically. In order

to study its effectiveness we solved several boundary value problems.

We also solved these problems using certain other known methods. The

results of these computations are given in the present section.

First of all we considered the boundary value problem

~~u(x,y) = 8 (x,y) E D

u(x,y) (x,y)
.

= 0 E D

(4.30) u (x,y) = (1-2x) y(l-y)n

+ (1-2y) x(l-x) , (x,y) E D

where D = {(x,y) / 0 ~ x,y ~ 1}. The exact solution of this boundary

value problem is u(x,y) = xy(l-x) (l-y).

The biharmonic equation was replaced by two Poisson equations
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which were discretized as in equations (4.2) - (4.4). The systems of

algebraic equations corresponding to the discrete Poisson equations

(4.2a) and (4.2b) were then solved by using the direct method of

odd/even reduction as given by Buzbee, Golub and Nielson [31J. Thus,

the inner iterations consisted of the direct solution of discrete

Poisson equations while the procedure (4.20) was used for outer itera­

tions. The smallest values of w, the iteration parameter, needed to

make these outer iterations convergent are given in (4.28) and (4.29).

The results of these computations are given in the following

table. This table contains the order of the discretization error

corresponding to each boundary approximation used in (4.4) as well as

values of the optimum convergence factor wo' the number N of outer

iterations needed for convergence and the maximum error £ of the

discrete solution after N outer iterations.

As expected the use of the discretization (3.35) in place of

(3.34) and of the discretization (3.37) in place of (3.36) led to a

smaller value of wo for a particular order of accuracy and resulted

in a faster rate of convergence.

We also solved the problem (4.30) by discretizing the bihar­

monic operator using the thirteen point formula and solving the

resulting algebraic system by the alternating direction method as

proposed by Conte and Dames I17J. The mesh size was chosen to be

h = 0.05. We used the iteration parameters given in [17] and found

that iterations diverged. A discrete solution was obtained with

another choice of iteration parameters but the maximum discretization



Step Size Boundary Order of

h Approximation Discretization Wo N
Error

k
0.05 (3.33) h 2 * * 0.03

0.1 (3.34)
3~

0.82 6 0.0001h

(3.35)
31-

0.67 3 0.0001h

(3.36) h2 0.88 5 0.0001

{ 5 9x10- 5

(3.37) h2 0.80
20 7x10- 8

0.05 (3.34)
3~

0.91 16 0.000011h

(3.35)
3.-2

0.82 6 0.000011h

(3.36) h2 0.942 11 9x10- 5

(3.37) h2 0.88 8 7x10- 5

0.025 (3.35)
3~ 0.88 8 0.0007h

*
No iterations were required in this case.

error was found to be 0.06248 at the point x = y = 0.5.

Next we considered the following boundary value problem which

was also discussed by Greenspan 132J;

b.Lill(x,y) = 0 , (x,y) £ D
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(4.31)
u(x,y) = JC3 ... 2y 2 , (x,y) £ D



u (O,y) = u (l,y) = 3x2 0 ~ Y ~ 1x x

u (x,O) = u (x,l) = -4y , 0 ~ x ~ 1
Y Y

where D = {(x,y) / 0 ~ x,y ~ 1}. The exact solution is

u(x,y) = x3_2y2.

Greenspan solved this problem using a variational method. He

triangulated the square domain and replaced the differential equation

by a system of 361 linear algebraic equation which was solved by

successive overrelaxation with zero initial data. The mesh size was

0.05. Greenspan obtained a solution after 1101 iterations when the

maximum error was 0.00035 at x = 0.65, y = 0.5. The computing time

on CDC 3600 was 24 minutes. He also tried to compute with h = 0.01

but could not obtain any significant result even though the compu-

tations were carried out for three hours.

We applied the method of splitting to this problem with

h = 0.05 and used the improved first order approximation (3.35) with

w = 0.73 to define the boundary condition in (4.4). The outer

iterations converged to the solution of the discrete problem in 26

iterations. The computing time on IBM 360/50 was 4 minutes and the

maximum error of this solution was 0.00085 at x = 0.2, Y = 0.5.

When the improved second order approximation (3.37) was used

with w = 0.845, the convergence was achieved in 32 iterations. The

maximum error was 0.00035 at x = 0.05, y = 0.95 and computing time

was 6 minutes.

The method (4.20) is also applicable to non-rectangular

95
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domains. In order to demonstrate this we chose the following boundary

value problem. It was possible to introduce some transformation to

transform the domain D into a rectangular domain but this was not done.

The analysis of sections 4.1 - 4.3 is no longer applicable in the case

of non-rectangular domains as the difference equations can not, in

general, be written in a matrix form of the type (4.6). The example

we considered was

(4.32)

88U(X,y) = 64

u(x,y) = (1_x2_y2)2

(x,y) E: D

(x,y) E: D
u (x,y) =

n
o

.
(x,y) E: D

where D = {(x,y) / x ~ 0 , y ~ 0 , x2+y2 $ I} and u is the outward
n

normal derivative. The exact solution is u(x,y) = (1_x2_y2)2.

The biharmonic equation was split into two Poisson equations

and difference approximations were defined as in equations (4.2) -

(4.4). The boundary condition in (4.4) was defined by formulas of

the type (3.38) with a truncation error of order h. The overall

discretization error of this finite difference approximation would be
312of order h from (3.30).

We used the method of successive overrelaxation to solve the

inner iterations for the discrete Poisson equations. With h = 0.1,

the extreme eigenvalue of the basic outer iteration matrix was

~ -16.0 which showed divergence of the iteration scheme (4.5). A

modification to this scheme was introduced as in (4.20) and it was

found that w > 0.88 for the convergence of outer iterations. With
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w = 0.9 the iterations converged to a discrete solution in 26 itera-

tions with a maximum error of 0.0033 at x = y = 0.5. Zlamal [5]

computed the solution of this problem without splitting the biharmonic

equation. He used a difference approximation with discretization

error of order h3~ and found that the maximum error between the

discrete solution and the exact solution was 0.00956 at x = 0.4,

y = 0.2.

We carried out some partial computations with h = 0.05. In

this case the extreme eigenvalue of the basic outer iteration matrix

was ~ -29.0 and for convergence w ~ 0.933. The iterative procedure

was found to be convergent with w = 0.95 and after 20 outer iterations

a solution was obtained with maximum error 0.069 at x = y = 0.5.

It may be noted here that one could use the non-iterative

!.:::
solution obtained with the 0(h 2

) approximation (3.33) as a starting

approximation for the outer iterations. In many cases the discrete

Poisson equations could be solved by using direct methods that have

been published recently 133,34J and deal with the direct solution of

discrete Poisson equations on non-rectangular domains.

Finally, we solved two examples to demonstrate the application

of the method of splitting to second biharmonic boundary value problems

(see section 3.2). We first considered the boundary value problem

~~u(x,y) = 8 (x,y) E: D

(4.33) u(x,y) = 0 (x,y) E: 0

~u(x,y) = -2x(1-x)

-2y(1-y)
.

, (x,y) E: D
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where D is the square o'~ x,y ~ 1 and the exact solution is

u(x,y) = xy (i-x) (l-y).

The problem (4.33) was replaced by two Poisson equations with

well defined boundary conditions. The difference approximations were

defined as in (3.7) and discrete Poisson equations were solved by the

direct method of odd/even reduction [31J. The computations were

carried out for h = 0.05 and the discrete solution was found to be

close to the exact solution, the maximum error being smaller than

10-7 .

For the sake of comparison, the problem (4.33) was solved by

discretizing the biharmonic equation using the thirteen point formula

with h = 0.05. We used the alternating direction method proposed by

Conte and Dames 116J as well as its modifications 118,19J for solving

the resulting system of algebraic equations. The iterative scheme

diverged in each case. However, we were able to obtain the discrete

solution with a maximum error of 0.06248 at x = y = 0.5.

The second example we considered was

(4.34)

L1.6.u ex , y)

u(x,y)

~uCx,y)

=

=

=

o
(1_x2 _y2) 2

-8 +16 (x2+y2)

(x,y) E: D

(x,y) E: D

(x,y) E: D

where D = {(x,y) / x ~ 0 , y ~ 0 , x2+y2 $. 1} and the exact solution

is u(x,y) = (1_x2~y2)2

We defined finite difference approximations as in (3.7) and

solved the systems of algebraic equations corresponding to each
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Poisson equation by successive overrelaxation. The maximum error with

h = 0.1 and 0.05 was 0.0019 and 0.00049, respectively, and occurred at

x = y = 0.4.

4.5 Conclusions

In a recent paper Wood 142J has discussed the effects of a

periodicity condition on the solution of elliptic difference equations.

She used the usual thirteen point discrete analogue for solving the

biharmonic boundary value problems. This reduced the problem to the

solution of a matrix equation and several methods were analyzed for

solving it. Wood found that the alternating direction method of

Douglas and Rachford as used by Conte and Dames 116,17J with a cycle

of two parameters was superior to the Peaceman and Rachford type

alternating direction method 17J. She also discussed the k-line

successive overrelaxation method and found it to be inferior to the

Douglas-Rachford ADI method with two parameters. Thus, according to

Wood, the method used by Conte and Dames for solving the biharmonic

boundary value problems is the best available. However, from the

numerical examples (4.30) and (4.33) we conclude that the splitting

method is much better. It is applicable to non-rectangular domains

too.

Spijker 143J has studied the effect of splitting of difference

formulas on the roundoff error. He considered second order differ­

ential equations and tried to obtain a procedure for reducing the

accumulated roundoff error in the numerical solution. He showed that
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by an appropriate choice of splitting schemes, the roundoff error is

substantially reduced. For an initial value problem for a second

order ordinary differential equation, Spijker compared a fourth order

multistep difference scheme with several split schemes and found that

the roundoff error was reduced by as much as a factor of 100. In case

of a second order hyperbolic equation it was found that the accumu­

lated roundoff error of the split equations behaved like O(h-1 ) whereas

for the original difference equation it behaved like O(h- 2) .

In light of the above results, we conjecture that similar

results are also valid for higher order differential equations. In

particular, if the biharmonic equation is solved without splitting,

one would expect its solution to have a large amount of accumulated

roundoff error.

In conclusion, we can say that splitting of the biharmonic

equation into two Poisson equations and solving them by the method

discussed in chapters 3 and 4 has definite advantages over solving

the discretized biharmonic equation directly. In case of the second

biharmonic boundary value problems these advantages are much more

pronounced. In fact, higher order differential equations should be

split into several lower order equations whenever the boundary con­

ditions for the split equations are known. In case of the first

biharmonic boundary value problem, one has to select an appropriate

difference approximation for the missing boundary condition and find

a corresponding value of the iteration parameter for the convergence

of outer iterations. This appears to be a better procedure than



solving the discretized biharmonic equation directly which leads to

an ill-conditioned system of linear algebraic equations.

101



CHAPTER 5

COMPUTATIONAL PROBLEM ASSOCIATED WITH

A NONSELFADJOINT EQUATION

5.1 Introduction

In this chapter we consider the Dirichlet problem for the

following equation

(5.1) A u - u + u + A u + A u = 0xx yy IX 2y

in a rectangular domain D = {O < x < a o < y < b}; the parameters

Al and A
2

are assumed to be positive. We are interested in considering

those cases for which the parameters assume large values. In order to

obtain the numerical solution we discretize (S.l) over the mesh

Dh = {(ih,jh) i=1(1)N-1 , j=l(l)M-l , Nh=a , Mh=b} .

The equations (5.1) can be discretized using two different

finite difference approximations. In both these cases we replace the

second derivatives by their three point central difference analogues

while the first derivatives are replaced by using central differences

in one case and forward differences in the other. The resulting

difference equations are

(5.2) h2 A u ..
1 ~,]

A1h A1h
- (1+ -2) u. 1 . + (1- -2-) u. 1 .

1+ ,] 1- ,]

102

+



103

A2h A
2
h

+ (1+ -2- ) u. '1 + (1- ·-2-·) u.. 1 -4u. . = 01.,J+ 1.,J- 1.,J

(Central differences)

(5.3) h2 A2 u. . - (1+A 1h) u. 1 . + u. 1 . + (1+A
2
h) u. . 11.,J 1.+,J 1.-,J 1.,J+

+ u. . 1 - (4+A h+A h) u. . = o.1.,J- 1 2 1.,J

(Forward differences)

The operators A and A approximate the difference operator A
1 . 2

with truncation errors of order h2 and h, respectively. If we define

the difference approximation (5.2) or (5.3) at every mesh point of Dh

and apply theorem 1.5, we can conclude that the discrete solutions of

these equations converge to the exact solution with errors of order

h2 and h, respectively, as the mesh size h tends to zero. From this

analysis it is clear that (5.2) produces a better approximation to the

solution than (5.3) does, at least in principle (h ~ 0). However, in

actual computations this expectation is not realized particularly for

large values of Al or A2 • This discrepancy was observed by Burns [35J

and Boughner [36J. Similar behaviour is also observed when one tries

to solve the Navier-Stokes equations for large values of the Reynolds

number [38 J.

Burns and Boughner analyzed the one-dimensional case of (5.1)

given by



(5.1'") uxx + A Ux = 0, 0 < x < a , Uo and u
a

given.

104

The corresponding finite difference equations are

(5.2'")

(5.3'")

A'" u _ (1+ )..h ) u
n

+
1

-2 u + (1- Ah ) u = 0 , n=1(1)N-1
1 n 2 n 2 n-1

(Central differences)

A~ un - (1+Ah) un+1 - (2+)"h) un + un_1 = 0 , n=1(1)N-1

(Forward differences) .

For the difference equation (5.2'") which is obtained by using

central differences, they proved that for a fixed h and large A the

discretization error satisfies the following bound for odd values of N

where the norm I1·1 Ih is given by

(5.5) Ilell~ =
N-1

L
n=l

This shows that I leI Ih does not approach zero when A takes

large values. The following estimates were also proved by Burns and

Boughner:

c ih ()"h/2 - 1), central differences

(5.6)

, forward differences



105

from which it follows that for forward differences I lei Ih + 0 as

A + 00 whereas for central differences this is not true. Moreover,

Burns obtained some numerical results indicating that the discreti-

zation error in the case of central differences can be reduced by

choosing N odd.

5.2 Asymptotic Expansion of the Solutions: One Dimensional Case

In order to understand this behaviour completely, we first

write down the explicit solutions of the difference equations (5.2~)

and (5.3~) and then study their asymptotic behaviour for large values

of A with a fixed value of h. The solutions of (5.2~) and (5.3~)

with boundary conditions u = Uo at x = 0

given by

and u = u at x = a area

(1 - l; ) (l;n - l; )
(5.7) n N , n=1(1)N-1u = u

(1 - l; )
+ Uo (1 - l;N)n a

N

where l;n ( 2 - Ahr for central differences= 2 + Ah

and l;n = (1 + Ah)-n for forward differences .

The exact solution of (5.1~) is

(5.8) u(x ) =
n

(1 -AXn) _ (e-Aa -AX)-e ua -e n U o
1 _ e-Aa

When Ah ~ 2, one can obtain the following estimates using Taylor's
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(5.9)

where q=2 for central differences and q=1 for

forward differences.

When Ah ~ 2, we consider the special case when a = 1,

Uo = 0 and u = 1. The solution of (5.2") can be written asa

(5.10) 1 - (_l)n exp {-n (4y + 0(y3))} (Ah)-I.u = Y =n ,
1 - (_l)N exp {-N (4y + 0(y3))}

For a fixed value of hand Ah -+ ~, we obtain the following

asymptotic values for the solution (5.10)

r~N
n even

(5.lIa) If N is even, u -+n
n odd ,

C n even
(5.lIb) If N is odd, u -+

n
n odd ,

while the exact solution u(xn) approaches 1 everywhere (0 < xn < 1).

In a similar manner we find that the solution of (5.3") is given by

(5.12)

which converges to the exact solution as Ah increases.
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Dorr £39J has studied a more general problem of finding the

asymptotic behaviour of solutions to finite difference equations for

certain singular perturbation problems in ordinary differential

equations. He obtained the above estimates to illustrate the advan-

tage of one-sided differences over the central differences and his

results appeared after we had completed our study. Whereas Dorr was

interested in the ordinary differential equations, we want to extend

these results to partial differential equations of the type (5.1) and

are including them in this chapter for the sake of continuity and

completeness. Further, these results have a direct relevance in the

study of Navier-Stokes equations where similar behaviours are

observed £38J.

5.3 Two Dimensional Case

For the two-dimensional case, we consider the following

boundary value problem

u + u + A u + A u = 0 , o < x < 1 , o < y < 1xx yy 1 x 2 Y

u(O ,y) = u(l,y) = 0 , 0 ~ y ~ 1

(5.13)
u(x,O) f(x)= , 0 ~ x ~ 1

u(x,l) = 0 , 0 ~ x ~ 1

The exact solution of this boundary value problem is



(5.14) u(x,y)

00

L
n=l

f
n

sinh Y
rt

(l..,..y)

sinh Y
n
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sin n 7T x

1
where f =2[ exp (A

1
X/2) f(x) sin n 7T x dx

n 0

and
1

2)~7T •

In the case of the central difference approximation (5.2),

Boughner [36] obtained the following estimate for a fixed value of h

with large values of Al and A
2

and odd values of N

(5.15)

where the norm I1·1 Ih is defined by

(5.16)

N~l

L
i,j=l

2
e. . .

1,J

As in the one-dimensional case discretization error for the central

difference approximation does not approach zero for large values of

A.. For the forward difference equations, the following estimate was
1

obtained

(5.17)

which shows the convergence for large values of Ai'



The explicit solution of the difference equations can be

obtained by separation of variables. It is given by

N-l
(5.18) u .. E (Pn q~n + Gn q;n)

i sin (i mr/N)= p ,
1)

n=l

i,j = 1 (l)N-l

2 N N-l
q1n L -kwhere P = P f(~) sin (kmr/N) ,

n N N k=lN(q1n q2n)
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= _ ( q2n ) N P
q1n n

In the case of central differences, qln and q2n are the solutions of

]In =
Al h

- 2 + P (1+ --) cos n1f h ,
2

In the case of forward differences, qln and q2n are the solutions of

= o ,

]In =
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For a fixed value of h, the value of p for central differences

is real when Alh < 2, zero when Alh = 2 and is complex when Alh > 2.

We can expect the solution of (5.2) to be identically zero when

Alh = 2. We can also expect this solution to have an oscillatory

nature when Alh > 2.

Numerical solutions obtained by us show the same behaviour as

discussed above. As A. + 00, the exact solution (5.14) converges to
1

zero everywhere in the rectangular domain except for some grid points

near the boundary y = O. The solution of (5.3) converges to the exact

solution as A. increases whereas that of (5.2) does not. On the other
1

hand for A.h < 2, the solution of (5.2) is more accurate than that of
1

(5.3) .

5.4 Stability

We need to consider the problem of stability if we solve the

difference equations by some iterative method. We study the regions

of stability for the difference equations (5.2~) and (5.3~) when Ah

is large.

We consider the following iteration scheme

(5.19)
m+1

u
n

=
m

u
n

11. ~ urn+ T
i n

n=1(1)N-1 , i=l , 2

where T is an iteration parameter, m is the iteration number and
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A{ , A~ are the operators defined in (5.2"') and (5.3"'). The

spectrum of (5.19) will give the required conditions of stability.

The spectrum can be obtained by the method of Godunov and Ryabenkii

(see Ill]). For the finite difference equation (5.2"') using central

differences, the spectrum is enclosed by the ellipse

(5.20) s] = 1 - 2r + 2r cos e + ir Ah sin e , r = T/h2 ,

while for the equation (5.3"') using forward differences, it is

enclosed by the ellipse

(5.21) ~2 = 1 - 2r - Arh + (2r + Arh) cos e + ir Ah sin e .

For the stability of (5.19), its spectrum must lie inside the

unit circle I~I ~ 1. It follows that the central difference iteration

scheme is stable if

(5.22)

r 5 0.5 Ah 5 2

r ~ 2(~h)-2, Ah > 2

The forward difference iteration scheme is stable if

(5.23) r $ (2 + Ah)-l .

Consequently, for large values of Ah the stability range for central

difference scheme is much smaller than that for the forward difference

scheme.

We have carried out some numerical computations which confirm
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the above results. The actual stability ranges for several values

of A and h are given in the following table:

Mesh Size Parameter Stability range for T (T < .. )

h A Central differences Forward differences

0.1 10.0 0.005 0.003

100.0 0.0001 0.001

1000.0 0.000002 0.0001

0.05 10.0 0.001 0.001

100.0 0.0002 0.0003

1000.0 0.000001 0.00004

We have thus shown that the use of central differences to

discretize u and u in (5.1) leads to large discretization errorsx y

and small stability ranges when the parameters Al and A2 take large

values. Even though forward differences are less accurate than central

differences (as h + 0), they give smaller discretization errors and

better stability ranges. The non-central differences are also used

for discretizing the Navier-Stokes equations to ensure that these

equations are of "positive" type which guarantees the convergence of

the iterations. It can be said on the basis of the results of this

chapter that this also reduces the discretization error for large

ReYnolds numbers.



CHAPTER 6

EXTENSION OF THE NUMERICAL PROCEDURE TO

NAVIER-STOKES EQUATIONS

In chapters 3 and 4 we discussed a method for solving bihar-

monic boundary value problems numerically. In chapter 5 we considered

a nonselfadjoint elliptic differential equation and discussed the

behaviour of its numerical solution in actual computation when the

mesh size has a finite non-zero value. We were particularly inter-

ested in the solution for large values of the parameter appearing in

the differential equation.

In this chapter we consider the Navier-Stokes equations in

two dimensions which can be written in a nondimensional form as

(6.1) ~~1)J + R. ( £j,.". a(~1)J) _ £j,... a(~l}J)) = 0,
- ax ay ay ax

(x,y) E: D •

This is a fourth order nonlinear differential equation which describes

the flow of a viscous fluid in two dimensions. The values of 1)J along

with its first or second derivatives are prescribed on the boundary

of the domain D. The Reynolds number R is a positive parameter which

depends on the geometry of the flow and may take large values.

We note that for R = 0 the equation (6.1) reduces to the

biharmonic equation while the terms mUltiplied by R make it nonlinear

and nonselfadjoint. It was found in chapter 4 that the method of

113
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splitting the biharmonic equation into two Poisson equations is not

only convenient and efficient but it also helps in reducing the

roundoff error. A similar splitting can be applied for the Navier-

Stokes equations by introducing the vorticity wand writing (6.1) as

(6.2a)

(6.2b)

w = - f,,1JJ ,

= o.

If the values of 1JJ and its second derivatives are prescribed

on the boundary of the domain D, then the boundary conditions for

(6.2a) and (6.2b) are well defined. However, if the values of 1JJ and

its first derivatives are given as boundary conditions for (6.1),

then w is undefined on the boundary. In this case boundary conditions

for (6.2b) are approximated from the known data as in section 3.3.

A method of inner-outer iterations can be applied to obtain the

numerical solution of the equations (6.2).

We first discretize the equations (6.2) and replace the

Laplace operator in (6.2a) and (6.2b) by its five point discrete

analogue. The equation (6.2b) contains wand w multiplied by thex y

Reynolds number. We are often interested in solving equations (6.2)

for large values of R and use the results of chapter 5 to replace the

first derivatives of wby non-central difference approximations. The

central differences may be used to discretize wand w when R takes
x y

small values (Rh < 21M, where M = max {\1JJ I , 11JJ Il). As seen in
x y

chapter 5, use of central differences with large values of R leads to

a divergent solution. Several authors have been able to obtain
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numerical solutions of (6.2) using central differences for wand wx y

but these results have been restricted to small values of the ReYnolds

number [37,38]. For large values of the ReYnolds number, non-central

differences are used which makes the resulting coefficient matrix for

(6.2b) diagonally dominant I7J and the method of successive over-

relaxation can be used to solve this matrix equation. However, at

this point we emphasize the fact that use of non-central differences

is necessary in order to obtain a numerical solution which approxi-

mates the exact solution.

Once the differential equations (6.2) are discretized and a

suitable approximation for w on the boundary is defined, the two

coupled systems of algebraic equations can be solved by an iterative

procedure as discussed in chapter 4. In order to make this procedure

convergent, we need an iteration parameter which can be obtained from

section 4.3 if an estimate of the spectral radius of the basic outer

iteration matrix is known. We also know from section 4.3 that the

convergence of the outer iteration scheme can be accelerated by using

a boundary approximation for w which uses more inner points of the

discretized region. This reduces the spectral radius of the basic

outer iterations. Consequently, a smaller value of the iteration

parameter is needed which in turn gives a faster rate of convergence.

When the Navier-Stokes equations (6.2) are discretized using

non-central differences for w ,wand the discrete Laplace operator,
x y

the local truncation error at a mesh point is of order h, the mesh

size. If the boundary conditions for ware chosen judiciously, one
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can expect the overall discretization error to be of order h. This

will also prove the convergence of the discrete solution to the exact

solution as the mesh size h tends to zero.

If we are solving the non-stationary Navier-Stokes equations

which can be written as

(6.3a)

(6.3b)

W = - ~ ~

W + W ~ - W ~
t x y y x = W ,

we discretize the time derivative wt and solve the equations step by

step in the time-direction. The time derivative must be discretized

in such a way that this procedure is stable. Sufficient conditions

for the stability of operator-difference schemes are given in chapter

2 and are applicable to the cases of selfadjoint, nonselfadjoint as

well as time dependent operators. These results can be utilized to

ascertain the stability of the time-iterative procedure for solving

(6.3) numerically.

The results of chapter 1 are not applicable to elliptic

differential equations with variable coefficients as some of the

lemmas used there are only valid for constant operators. These

lemmas can possibly be modified and extended to the case of variable

coefficients. In Is], Zlamal proved discretization error estimates

for a class of linear fourth order differential equations with variable

coefficients in two dimensions. It is not clear as to how these

results can be generalized. There is also a need for obtaining
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discretization error estimates for quasi-linear and nonlinear

elliptic differential equations.

We have extended numerical procedures developed for the bihar­

monic equation and for a linear nonselfadjoint differential equation

to solve the Navier-Stokes equations which are nonlinear. In order

to handle the nonlinearity these equations are solved iteratively by

linearizing the equations at each step of the outer iterations.

Results of the previous chapter are applicable as we solve linear

equations at each step. We have not proved the convergence of this

iterative procedure to the solution of the nonlinear equations nor

have we obtained any error estimates. In this sense some of the

extensions in this chapter may be considered as heuristic but the

method has been found useful for solving certain boundary value

problems of Navier-Stokes equations numerically 137,38J. These

equations represent flow of fluids and for R > 1000 such flows are

physically unstable and are never observed. However solutions of the

Navier-Stokes equations do exist mathematically and have been obtained

for ReYnolds numbers as high as iOOOOO [37]. It is therefore not

clear whether numerical solutions for large values of R have any

physical significance nor is it clear as to how accurate these

solutions are.
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