

Abstract— In this paper, we consider the peer-to-peer transfer

of popular files between devices in a wireless mesh network. We

address the problem that occurs when multiple nodes try to access

the same file simultaneously, resulting in increased contention on

the shared wireless channel. To counteract this problem, we

propose a cooperative file transfer protocol which splits a file into

fixed-sized pieces and allows simultaneous downloads of such

pieces from multiple peers. Opposed to previous approaches, the

proposed protocol selects the potential download peers such that

the corresponding download paths possess minimum interference

among each other. In a performance study where we compare our

approach with other download schemes proposed in the

literature, we show that our cooperative protocol roughly halves

the time required for downloading a file.

Index Terms— Data dissemination, Peer-to-Peer systems,

Network applications, Performance evaluation.

I. INTRODUCTION

Support for simultaneous downloads of a file from multiple
sources is included in recent releases of many popular peer-to-
peer (P2P) file sharing systems for the Internet, e.g., KaZaA
[16] and many implementations of the Gnutella protocol [15].
Typically, such systems split a file into pieces of equal size,
commonly denoted as chunks. For exploiting a peer's entire
downlink bandwidth, multiple chunks are downloaded in
parallel from different peers, where the source for each chunk
is chosen more or less greedily. Recently, it has been observed
that a sophisticated scheme for exchanging chunks among
peers can increase the total service capacity of the system by
creating diversity. That is, each peer does not only consume
upload capacity from the system, but can also provide upload
capacity to some other peers, making the system self-scaling.
Such approaches are typically denoted as swarming
approaches.

The potential of swarming protocols encouraged the
development of second generation P2P systems like
cooperative content delivery systems [6], [21]. Due to the self
scaling property, a cooperative content delivery system is
highly efficient and even resilient to flash crowds - sudden
request burst for popular web content that make the origin
server collapse. Furthermore, cooperative content delivery
systems are self-organizing and can be deployed without
supporting infrastructure, challenging classical content

delivery networks that deploy thousands of servers around the
world. Application scenarios for cooperative content delivery
systems include providing an software update to a known set
of computers or simultaneous access to popular content by
many users [12].

The ongoing success of wireless communication technology
permanently extends the coverage to the Internet. A recent
trend for enabling cost efficient Internet access are wireless
mesh networks [1]. Figure 1 depicts the two-tier urban mesh
access network as considered in [7], which comprises a
backhaul tier of fixed mesh routers and an access tier of
mobile clients. Such networks permit sharing of digital content
among wireless devices or accessing content through the
Internet by using content delivery systems. These systems
support a wide scope of utilities, spanning applications that
need to access large multimedia files for infotainment or
programs that maintain the wireless network by providing
critical software updates. Wireless mesh networks are
particularly sensitive to flash crowd-like requests for popular
content by many devices, since all devices share a common
wireless medium. In particular, in the spatial proximity of a
gateway that connects many devices to the origin server of
popular content, severe congestion of the wireless medium
may occur. In such scenarios, cooperative file transfer among
wireless devices using a swarming approach may prove useful
for avoiding network congestion. Consistent with [7], we
assume that the wireless network runs a MANET routing
protocol, e.g., Ad hoc On demand Distance Vector (AODV,
[18]).

Internet

Mesh

Client

Mesh

Router

Mesh

Router

Mesh

Router

Mesh

Router

Gas Station

Mesh

Client

Mesh

Client

Mesh

Router

Mesh

Router

Figure 1: Two-tier urban wireless mesh network

Peer-to-Peer File Transfer in Wireless Mesh
Networks

Sherif M. ElRakabawy and Christoph Lindemann
University of Leipzig

Department of Computer Science
Augustusplatz 10-11

04109 Leipzig, Germany
http://rvs.informatik.uni-leipzig.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we present a cooperative P2P file transfer
protocol for wireless mesh networks. As major contribution,
our protocol applies a swarming approach to balance the load
in the network. Beyond recent proposals for cooperative
content delivery in wireless multihop networks, our protocol
downloads multiple chunks from several peers in parallel,
exploiting diversity and achieving a higher utilization of the
wireless channel in the proximity of the downloading peer.
Download peers are selected based on the current load on the
download paths. In fact, our protocol comprises an iterative
probing algorithm that determines a set of download peers,
which maximize aggregate goodput. The order of peers to
probe is determined by a procedure denoted as interference

dependency estimation, that ensures the selection of peers with
a minimum interference on the download paths.

In a simulation study we compare our protocol to other
approaches for cooperative content delivery. These include an
approach that do not employ parallel downloads and select a
single download peer randomly (inspired by [12]) or based on
the network proximity in hops (inspired by [17]), respectively.
The results of the simulation study show that our protocol
decreases the required time for downloading a file by more
than 50%.

The remainder of this paper is organized as follows. Section
II summarizes related work on cooperative file transfer. Our
cooperative protocol is introduced in Section III, whereas
Section IV compares the performance of our protocol with two
other approaches for cooperative file transfer. Finally,
concluding remarks are given in Section V.

II. RELATED WORK

Several studies as e.g. [2], [4], [5], [12], [19], and [22] has
extensively investigated swarming as a technique for
optimizing content delivery performance in the Internet.
Proposals of swarming-based systems include BitTorrent [6]
and Slurpie [21]. BitTorrent [6] uses either a centralized server
or a decentralized distributed hash table for discovering peers
that store chunks of a desired file. Parallel downloads are
performed from several peers selected by a tit-for-tat incentive
mechanism. Slurpie [21] features decentralized peer discovery
and an algorithm to estimate the bandwidth of the local peer's
Internet connection. Building upon the assumption that such
connection is the major bottleneck, Slurpie adjusts the number
of connections to other peers as well as the number of
simultaneous downloads according to the acquired bandwidth
estimates. Similar to BitTorrent and Slurpie, our protocol
performs parallel downloads from multiple peers. Opposed to
BitTorrent and Slurpie, our protocol selects peers with non-
interfering download paths. That is, other than the case in the
Internet, nodes in a wireless mesh network can interfere with
each other, making the need for a peer selection strategy based
on non-interfering download paths inevitable for parallel
downloads.

As a first approach for swarming in ad hoc wireless
networks, Nandan et. al presented SPAWN [17]. SPAWN is
designed for hybrid wired / wireless vehicular ad-hoc networks
with Internet connectivity, performs peer selection based on

network proximity, and downloads one chunk at a time. In
contrast, our protocol is designed for wireless mesh networks
and performs peer selection based on the current network load
on paths to potential download peers. Furthermore, our
protocol simultaneously downloads from multiple peers, given
that non-interfering paths to such peers exist. Recently,
Rajagopalan et. al proposed and adoption of BitTorrent for
wireless multihop networks denoted as BTM [20]. BTM uses a
cross-layer approach that performs peer discovery assisted by
the MANET routing protocol, while peer and content selection
are implemented according to the BitTorrent specification.
Opposed to BTM, we focus on developing a peer selection
algorithm for wireless mesh networks which accounts for the
special characteristics of such networks.

Load-based path metrics have recently been studied in the
context of routing protocols for wireless mesh networks [8],
[10]. Similar to [8], [10], our protocol makes decisions based
on the current load and interference on a path. However, while
path metrics enable discovery of an optimal path for a given
source-destination pair, our protocol aims at determining an
optimal source for a fixed destination in order to maximize the
aggregate goodput..

III. COOPERATIVE FILE TRANSFER

A. Overview

Our cooperative file transfer protocol incorporates a peer
discovery as well as a peer selection mechanisms, which are
described in this section. Subsequently, we denote a mobile
node which wants to retrieve a file as the downloader. We
assume that files have (pseudo) unique identifiers, e.g., given
by SHA-1 hash sums over the file contents. For transfer, a file
is split into chunks of fixed size. Chunks are identified by
numbering them in ascending order from the beginning to the
end of the file.

First, the downloader initiates a peer discovery procedure to
find potential download peers sharing chunks of the file.
Subsequently, the downloader runs the peer selection
algorithm to determine a set of active download peers.
Consistent with [6], [12], and [17], chunks are downloaded
following rarest-chunk-first content selection strategy. Chunks
are downloaded using the transmission control protocol, TCP,
and are explicitly requested by the downloader using the chunk
number. Our protocol monitors the performance of a download
using end-to-end goodput measurements. Since our protocol
does not require any support from the transport layer, any TCP
variant can be employed for downloading. However, we
emphasize that the TCP variant should provide good fairness
between concurrent flows in order to achieve a performance
improvement when performing simultaneous downloads.
Therefore, we employ TCP-AP [11] which has proven to
provide considerably better fairness between competing flows
in multihop wireless networks than TCP NewReno.
Nevertheless, in Section IV, we also conduct a simulation
where we compare the performance of our protocol running
TCP NewReno as transport layer protocol.

For each file that is currently downloaded, our protocol

maintains a basic data structure which is updated during the
peer discovery and selection procedures. The data structure is
denoted as file distribution table (FDT). Each entry in FDT
contains the IP address of a download peer as well as the
numbers of the chunks stored by this peer.

B. Peer Discovery

The focus of our protocol lies on the peer selection
procedure. Thus, we just include a simple peer discovery
mechanism to provide a complete system for cooperative
content delivery. To initiate the download of a given file, a
node issues a QUERY message which contains the file ID as
well as the chunk numbers of the requested chunks. For a file
consisting of C chunks, chunk numbers can be encoded by a
bit array with C bits, where bit c is set to 1, if the downloader
is interested in chunk c, and to 0 otherwise, 1 ≤ c ≤ C. The
QUERY message is transmitted to all reachable nodes by
flooding. When a download peer receives the QUERY
message, it checks whether it possess requested chunks. If it
does, it sends a RESPONSE message containing the file ID
and the chunk numbers of available chunks to the downloader
via unicast. Upon receipt of the RESPONSE message, the
downloader updates its FDT by assigning the chunks in the
RESPONSE message to the corresponding peer. The
information in FDT is used for peer selection as described
below.

Similar to [20], we use a cross-layer approach to embed
protocol-specific messages into control packets of the routing
protocol. That is, QUERY messages of our protocol are
piggybacked on route request messages (RREQ) of the routing
protocol. Similar to the QUERY/RREQ procedure,
RESPONSE messages are piggybacked on the route reply
(RREP) messages of the routing protocol and returned to the
downloader during the route reply procedure.

Opposed to [20], we do not use expanding ring search for
limiting the scope of flooding, since it is crucial for our peer
selection algorithm that potential download peers have large
distances, as we show in Section V. Using this piggyback
method instead of application layer flooding during peer
discovery has two advantages: First, a node need not run an
instance of our protocol in order to forward QUERY and
RESPONSE messages. Second, the piggyback method
significantly reduces control traffic, since both peer discovery
and route discovery can be performed in a single step.

C. Peer Selection

Previous approaches for cooperative content delivery like
SPAWN [17] and BTM [20] assume that the closest-peer
provides the highest TCP goodput and, thus, employ network
proximity as metric for peer selection. These previous
approaches are based on the observation that the TCP goodput
degrades as the number of hops increases [11], [14]. However,
such a proximity-based metric does not account for the current
link layer contention between the path to the downloader and
other flows in the network.

To demonstrate the impact of background traffic on TCP
goodput and to show that the shortest path does not always

A

C

D

B
FTP 1

FTP 2 FTP 3

A

C

D

B
FTP 1

FTP 2 FTP 3

Figure 2: Simple scenario with two chains of different lengths

provide the best goodput, we conduct a simple simulation
using the scenario depicted in Figure 2. The distance between
adjacent nodes is 200m and the interference/carrier sensing
ranges are 550m. We define three FTP flows: FTP 1 runs from
node D to node A, FTP 2 runs from node C to node A and
FTP 3 runs from node B to node C. This scenario simulates the
case where node A constitutes a downloader which wishes to
download a chunk either from node C or node D. According to
the adopted quality selection metric, node A would either
choose the nearest peer like in [17], [20] (C in this case) or the
peer which provides the best end-to-end goodput, in case the
traffic load on the paths is also considered.

To show the impact of the metric used for peer selection on
the achieved end-to-end goodput, we consider four cases:
(1) FTP 2 is the only flow active, simulating the case where

node A decides to download the chunk from node C.
(2) FTP 3 is the only flow active, simulating the case where

node A decides to download the chunk from node D.
(3) FTP 2 is active while the background flow FTP 1 is also

active, simulating the case where node A decides to
download the chunk from node C with background traffic
present.

(4) FTP 3 is active while the background flow FTP 1 is also
active, simulating the case where node A decides to
download the chunk from node D with background traffic
present.

Figure 3 shows the results for cases (1) and (2) whereas
Figure 4 shows the results for cases (3) and (4). In Figure 3,
we observe that in case there is no background traffic
produced by FTP 1, the goodput on the short path to node C
outperforms the goodput on the long path to node D by 24%.
However, as soon as there is background traffic present, the
interference on the short path increases due to the traffic of
FTP 1, which decreases the achieved goodput significantly as
shown in Figure 4. Since FTP 3, which runs on the longer path
is out of the interference range of FTP 1, it achieves around
66% more goodput than FTP 2 which runs on the short path.
This shows that the shortest path does not always provide the
best goodput. To that end, our protocol is designed to select
download peers with the least-loaded paths.

Our protocol incorporates two basic peer selection metrics

Figure 3: Goodput of FTP 2 and FTP 3 without background traffic of
FTP 1

Figure 4: Goodput of FTP 2 and FTP 3 with background traffic of

FTP 1

which account for the end-to-end load on the paths to a
potential download peer. The first metric, denoted as response
delay, is defined by the time elapsed between issuing a
QUERY and receiving a corresponding RESPONSE message
for each potential download peer. Obviously, the response
delay depends on the current link layer contention on the path
to a potential download peer due to the fact that high load
increases the number of link layer retransmissions required for
delivering the RESPONSE message.

Unfortunately, starting the first download will highly
influence the path load in the network. Thus, response delay
measurements can only be used to identify the first active
download peer. Therefore, we use end-to-end goodput
measurements as additional metric. The goodput of a
download peer is defined by the number of unique bytes
received from the peer divided by the time required for
receiving these bytes, whereas the aggregate goodput
constitutes the sum of the goodput of all active download
peers. Since goodput can only be determined while
transferring chunks from some download peers, our protocol
uses an algorithm that optimistically probes some
combinations of download peers in order to maximize the

aggregate goodput.
As a major difference to cooperative content delivery

systems for the Internet, a content delivery system for wireless
mesh networks must consider that potential download peers
use a shared channel. Therefore, simultaneous downloads from
multiple peers only increase the aggregate goodput if the
download paths do not significantly interfere with each other.
For discovering non-interfering paths, the downloader uses a
mechanism denoted as Interference Dependency Estimation
(IDE) to measure the end-to-end delay to potential download
peers while downloading from active download peers.
Specifically, IDE Echo Request (IDEREQ) packets are
transmitted back-to-back to all potential download peers. Peers
receiving such IDEREQ immediately reply with an IDE Echo

Reply (IDEREP) packet. Upon receiving the IDEREP
message, the downloader computes the delay between issuing
the IDEREQ message and receiving the IDEREP message and
assigns the delay to the corresponding peer. Recall that
network routes to potential peers are established during peer
discovery so that an IDEREQ does not trigger a new route
discovery procedure. Similar to the response delay, the IDE
delay reflects the level of interference on the download path to
a potential peer. In particular, it indicates how much starting a
download from a new download peer will interfere with
downloads from currently active download peers.

In order to improve the reliability of such end-to-end
measures, the downloader computes the end-to-end delay as
the average delay by sending five IDEREQ messages to each
potential peer. Note that the IDEREQ/IDEREP functionality is
very similar to ICMP Echo functionality. However, we choose
not to use default ICMP Ping messages, since we use the
IDEREQ/IDEREP messages to piggyback further protocol-
specific information, e.g., about newly available chunks. The
IDEREQ/IDEREP messages are always padded to the size of
1400 Bytes.

Peer Selection Algorithm

The peer selection operates iteratively in multiple rounds. In
each round, r = 0, 1, ..., it optimistically adds a new peer to the
current active download peers in order to increase the
aggregate goodput. Which peer to add is determined using the
IDE procedure described above, since an optimal peer
combination comprises peers with little mutual interference on
the corresponding download paths. The algorithm continues
probing a new peer in each round until the aggregate goodput
stops improving. Then, the algorithm terminates and returns
the set of peers which provided the highest aggregate goodput.

A set P includes all potential download peers identified
during peer discovery. Pr determines the active download
peers after round r. The priority of peer p ∈ P in round r is
denoted as δr(p), whereas pr is the peer selected for probing in
round r. A parameter αr denotes the aggregate goodput
achieved by simultaneous downloads from the active
download peers Pr in round r. RespDel(p) denotes the
response delay value for peer p ∈ P during peer discovery,
IDE(p) represents the IDE delay of peer p, and Goodput(Q)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

FTP 3
(Long Path)

FTP 2
(Short Path)

G
o

o
d

p
u

t
[K

b
it

/s
]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

FTP 3
(Long Path)

FTP 2
(Short Path)

G
o

o
d

p
u

t
[K

b
it

/s
]

Q

P1 P2 P3 P4 P5

Q

P1P1 P2P2 P3P3 P4P4 P5P5

Figure 5: Sample scenario

TABLE 1: OPERATION OF OUR PROTOCOL IN THE SAMPLE SCENARIO OF FIG. 5

Round r pr δδδδr(p) ααααr Pr

0 -
δ0(P3) < δ0(P2) < δ0(P4)

< δ0(P5) < δ0(P1)
0 ∅

1 P3
δ1(P2) < δ1(P4) < δ0(P5)

< δ0(P1)
α1 > 0 {P3}

2 P2 δ2(P4) < δ2(P5) < δ2(P1) α2 > α1 {P2, P3}

3 P4 δ3(P1) < δ3(P5) α3 > α2 {P2, P3, P4}

4 P1 δ4(P5) α4 < α3 {P2, P3, P4}

denotes the aggregate goodput of simultaneous downloads
from all peers p ∈ Q, Q ⊂ P.

After issuing a QUERY and receiving RESPONSE
messages from the download peers, for all responding peers p
∈ P, the initial priorities δ0(p) are initialized by RespDel(p) for
the first round. During each round r, chunks are continuously
downloaded from the active peers Pr-1 identified in round r - 1.
That is, as soon as an active peer p is idle, the downloader
sends a request for a chunk to p. The chunk is chosen
according to the rarest-chunk-first content selection strategy,
i.e., the missing chunk with the fewest copies available at the
potential download peers. Such a chunk can be easily
identified in FDT. While downloading simultaneously from
active peers, the algorithm chooses the peer pr with the highest
priority (i.e. the lowest delay) δr-1(p) from all non-active
download peers p ∈ P \ Pr-1. To probe if selecting pr as
additional active download peer increases the aggregate
goodput, a chunk c is downloaded from pr. Again, c is selected
according to the rarest-chunk-first strategy.

In order to determine δr(p) for a potential next round, the
IDE procedure is performed for all other download peers p ∈
P \ (Pr-1 ∪ {pr}). Since IDE is performed simultaneously while
downloading from all peers p ∈ Pr-1 ∪ {pr}, IDE delays
quantify interference with all current downloads. Recall that
information about chunk availability may be piggybacked on
IDEREQ/IDEREP messages. Thus, FDT gets updated during
the IDE procedure.

After downloading the complete chunk c from pr, the

aggregate goodput αr of all simultaneous downloads since the
beginning of round r is computed and compared to the
aggregate goodput αr-1 of the previous round. If the aggregate
goodput αr exceeds the aggregate goodput αr-1, the peer pr
improves the overall aggregate goodput and thus is added to
the set of active download peers after round r, Pr. The
algorithm continues until the aggregate goodput stops
improving, i.e., αr' < αr'-1 in a round r'. After terminating, the
algorithm returns the set of active peers with the highest
goodput, i.e., Pr'-1.

D. Sample Scenario

We illustrate the operation of our algorithm using a scenario
with multiple download peers shown in Figure 5. The
downloader Q issues a QUERY for a file f of size 100 MBytes.
Download peers P1 to P5 possess file f. The dotted circles
around the download peers indicate the interference range of a
download peer, i.e., peers P1 and P2 both interfere with each
other as well as peers P4 and P5. Relay nodes, which may also
interfere with each other, are placed randomly between
downloader Q and peers P1 to P5 such that they ensure full
connectivity.

After peers P1 to P4 receive the QUERY message for file f,
they send RESPONSE messages. Subsequently, the
downloader Q receives the RESPONSE messages in the order
P3, P2, P4, P5, and P1. For each round r, Table 2 shows the
key values of the peer selection algorithm. the potential
download peer pr, the priorities δr(p), the aggregate goodput
αr, and the set with the active download peers after the round
Pr. We observe that the aggregate goodput improves up to the
third round by including a new peer in the set Pr in each round.
Since adding an additional peer at round four does not
improve the aggregate goodput, the algorithm terminates with
{P2, P3, P4} as set of active download peers.

IV. PERFORMANCE EVALUATION

We compare the performance of our protocol with two other
approaches for cooperative content delivery in multihop
wireless networks with related peer selection strategies. The
first approach is the random-peer approach, which chooses a
download peer randomly. Such a random selection strategy is
adopted in some Gnutella implementations and delivers good
performance in the Internet compared to other peer selection
strategies [12]. The second approach is the closest-peer
approach implemented in the SPAWN protocol [17], which
chooses the closest download peer in terms of number of hops.

The simulation experiments are conducted using the
network simulator ns-2 [13] with AODV [18] as MANET
routing protocol. We deploy the IEEE 802.11g link layer
protocol which is configured to provide a transmission range
of 250m and a carrier sensing range as well as an interference
range of 550m. Consistent with [17], the Request-To-
Send/Clear-To-Send (RTS/CTS) handshake is enabled. We
consider a wireless channel bandwidth of 54 Mbit/s and set the
size of TCP data packets to 1460 Bytes. As already mentioned,
we employ TCP-AP [11] as a transport layer protocol for
reliable data delivery, since TCP-AP provides considerably

better fairness between competing flows than TCP NewReno
[11]. However, in order to study the performance gained when
running TCP-AP, we also conduct a simulation experiment
where we compare the performance of our protocol running
TCP NewReno. We assume that files are available in the
wireless domain, e.g., through Internet downloads, storage
media or self-generated pictures and videos. Thus, we do not
consider Internet gateways in our scenarios, but rather focus
on the content delivery within the wireless mesh network.

A. Sample Scenario

Figure 6 plots the aggregate goodput achieved at the
downloader for the sample scenario shown in Figure 5. We
observe that both the random-peer and closest-peer approaches
achieve almost the same aggregate goodput, whereas our
protocol achieves up to 100% more aggregate goodput than
both approaches.

Figure 7 shows the time required for downloading the
requested file for each considered variant. Consistent with the
results of Figure 6, we see that our protocol achieves around
50% less download time than the random-peer and closest-
peer variants.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Our ProtocolClosest-PeerRandom-Peer

A
g

g
re

g
a

te
 G

o
o

d
p

u
t

[K
b

it
/s

]

Figure 6: Sample scenario: Aggregate goodput at downloader

(running our protocol over TCP-AP)

 0

 50

 100

 150

 200

 250

Our ProtocolClosest-PeerRandom-Peer

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Figure 7: Sample scenario: Time required to download the requested

file (running our protocol over TCP-AP)

B. Static Scenario with Random Placement

To evaluate the performance of the considered peer
selection approaches in absence of disturbing effects caused by
mobility (e.g route failures), we consider a scenario where all
nodes in the network are stationary. The network constitutes
120 nodes which are distributed randomly on a flat area of
2500m x 1000m. According to [3], all nodes in the network
can communicate with each other over one or more hops with
probability 0.999. For this set of simulations, we perform 40
independent replicates for each experiment, each replicate with
a different random node placement. The considered
performance measures are then derived from the values of the
40 replicates with 95% confidence intervals.

In order to determine the best chunk size for which our
protocol achieves the best performance, we conduct an
experiment where we vary the chunk size from 10 KBytes up
to 1000 KBytes and plot the average download time of the file
accordingly. In this experiment, a node requests a file of 50
MBytes while there exist ten download peers which possess
this file. We plot both the original curve as well as its Bezier-
smoothed version to illustrate the smoothed gradient of the
aggregate goodput. Figure 8 shows that the average download
time is relatively high for a chunk size of 10 KBytes and drops
sharply as the chunk size increases, where it becomes stable
for a chunk size of 200 KBytes and above. The reason for such
a behavior is that for small chunk sizes below 200 KBytes, the
TCP goodput measurements are inaccurate. This is because
TCP cannot fully utilize the available bandwidth fast enough
since the growth of the TCP window as well as the adaptive
pacing rate of TCP-AP are dependent on the number of
received TCP acknowledgments. That is, small chunks lead to
a small number of TCP packets which results in a small
number of TCP acknowledgments, yielding inaccurate
goodput measurements and inappropriate selection of
download peers. For larger chunks of 200 KBytes and above,
goodput measurements get more accurate. We use a chunk size
of 200 KBytes for our protocol, since this size is large enough
to provide accurate goodput measurements, yet small enough
to grant flexibility in case the peer selection algorithm decides
to choose different download peers.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

A
v

er
a

g
e

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Chunk Size [KBytes]

Original
Bezier smoothed

Figure 8: Static random scenario: Avg. file download time vs. chunk

size (running our protocol over TCP-AP)

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

er
a

g
e

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Number of available Download Peers

Random-Peer
Closest-Peer
Our Protocol

Figure 9: Static random scenario: Avg. file download time vs.
number of initially available download peers for 1 downloader

(running our protocol over TCP-AP)

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10 11

A
v

er
a

g
e

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Number of available Download Peers

Random-Peer
Closest-Peer
Our Protocol

Figure 10: Static random scenario: Avg. file download time vs.
number of initially available download peers for 10 downloaders

(running our protocol over TCP-AP)

In a further experiment, we define a fixed number of
downloaders which request a 10 MBytes file, while varying
the number of initially available download peers. Figure 9
shows the average file download time for one downloader,
whereas Figure 10 plots the average file download time over
10 downloaders. In Figure 9 we observe that our protocol
achieves up to 60% less average download time than all other
approaches, i.e., the file can be downloaded in less than half of
the time. We make a number of interesting observation from
the curves in Figure 9: First, we see that the download time of
all considered download strategies is similar for one download
peer since there is no peer selection, i.e., only one download
peer is available. Second, we see that the download time of our
protocol decreases with increasing number of available
download peers up to three peers and then it stabilizes. From
this behavior we conclude that due to node interference and
due to the nature of the shared wireless channel, simultaneous
downloads from more than three peers does not yield any
improvement. Third, we observe that the download time of the
random-peer and closest-peer approaches decreases as the
number of available download peers increases. The reason for

such a behavior is that the probability for selecting a close peer
increases with increasing number of available download peers,
which yields more goodput and thus less download time.. The
findings in Figure 10 are consistent with our observations in
Figure 9. Note that in Figure 10, the average download time of
our protocol increases beyond three available download peers
since we consider the average download time over ten
downloaders and not only one downloader like in Figure 9.

To study the performance of our protocol over a standard
TCP variant, we conduct a further simulation where we study
the performance of our protocol using TCP NewReno and
compare it to TCP-AP [11]. Figure 11 shows the file download
time for the considered variants for one downloader and ten
initially available download peers whereas Figure 12 shows
the file download time for 10 downloaders and 10 download
peers. Note that, as consistent throughout this paper, we denote
our protocol running TCP-AP simply by "Our Protocol". In
Figure 11 we see that our protocol running TCP NewReno
yields almost the same file download time like the closest-peer
download strategy, i.e, it requires almost double the download
time compared to our protocol running TCP-AP. The reason
for such performance difference is the bad fairness of TCP
NewReno which does not allow the full utilization of the
simultaneous downloads from multiple peers. That is, due to
the aggressive window strategy of TCP NewReno, only a small
fraction of the active TCP flows acquire the available
bandwidth at cost of other flows in the vicinity [11]. On the
contrary, TCP-AP gains better fairness results, preventing
simultaneous active flows from starving due to the
aggressiveness of other flows in the vicinity.

In Figure 12 we notice that our protocol running TCP
NewReno yields slightly better performance than in Figure 11.
This is because the traffic load in the network is distributed
over more nodes since there are ten downloaders present rather
than one like the case in Figure 11. This results in less
interference between the active flows and thus better fairness
results. Nevertheless, our protocol running TCP NewReno still
requires around 40% more download time than the case when
running TCP-AP.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Our Protocol
with TCP-AP

Our Protocol
with NewReno

Closest-PeerRandom-Peer

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Figure 11: Static random scenario: Avg. file download time for 1

downloader and 10 initially available download peers

 0

 10

 20

 30

 40

 50

 60

Our Protocol
with TCP-AP

Our Protocol
with NewReno

Closest-PeerRandom-Peer

F
il

e
D

o
w

n
lo

a
d

 T
im

e
[s

]

Figure 12: Static random scenario: Avg. file download time for 10

downloaders and 10 initially available download peers

V. CONCLUSION

In this paper, we introduced a cooperative file transfer
protocol for wireless mesh networks. The proposed protocol is
designed for bulk delivery of popular digital content in
wireless mesh networks, and implements a chunk-based
swarming approach. Beyond previous proposals for cooperate
file transfer in wireless mesh networks, our protocol uses an
advanced end-to-end peer selection algorithm that selects
potential download peers based on the current load and
interference on the download paths. Furthermore, our protocol
exploits diversity by downloading multiple chunks
simultaneously such that the chosen download paths possess
minimum interference among each other.

Compared to other approaches for cooperate file transfer in
wireless mesh networks, our protocol roughly halves the time
required for downloading a file and is easily deployable since
it operates in a pure end-to-end fashion and requires no
support from lower layer protocols.

In future work, we are investigating the performance of our
protocol in presence of node mobility in order to identify
mobility-induced problems and extend our protocol
accordingly.

ACKNOWLEDGEMENTS

The authors would like to thank Oliver Waldhorst for his
suggestions which significantly improved the clarity and
presentation of this paper.

REFERENCES

[1] I. F. Akyildiz, X. Wang, and W. Wang, Wireless Mesh Networks:
a survey, Computer Networks, 47, 2005.

[2] F. Bin, D. Chiu, J. Lui, Stochastic Analysis and File Availability
Enhancement for BT-like File Sharing Systems, Proc. IEEE

IWQoS, New Haven, CT, 2006.

[3] C. Bettstetter, On the Minimum Node Degree and Connectivity
of a Wireless Multihop Network, Proc. ACM MobiHoc,
Lausanne, Switzerland, 80-91, 2002.

[4] E. Biersack, P. Rodriguez, and P. Felber, Performance Analysis
of Peer-to-Peer Networks for File Distribution, Proc. QofIS,
Barcelona, Spain, 1-10, 2004.

[5] Y. Chiu and D. Eun, Minimizing File Download Time over
Stochastic Channels in Peer-to-Peer Networks, Proc. CISS,
Princeton, NJ, 2006.

[6] B. Cohen, Incentives Build Robustness in BitTorrent, Proc. P2P

ECON, Berkeley, CA, 251-260, 2003.
[7] J. Camp, J. Robinson, C. Steger, and E. Knightly, Measurement

Driven Deployment of a Two-Tier Urban Mesh Access
Network, Proc. ACM MobiSys, Uppsala, Sweden, 96-109, 2006.

[8] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, A High-
Throughput Path Metric for Multihop Wireless Routing, Proc.

ACM MobiCom, San Diego, CA, 134-146, 2003.
[9] R. Draves, J. Padhye, and B. Zill, Comparison of Routing

Metrics for Static Multi-Hop Wireless Networks, Proc. ACM

SIGCOMM, Portland, OR, 367-378, 2004.
[10] R. Draves, J. Padhye, and B. Zill, Routing in Multi-Radio,

Multi-Hop Wireless Mesh Networks, ACM MobiCom,
Philadelphia, PA, 114-128, 2004.

[11] S. ElRakabawy, A. Klemm, and C. Lindemann, TCP with
Adaptive Pacing for Multihop Wireless Networks, Proc. ACM

MobiHoc, Urbana-Champaign, IL, 2005.
[12] P. Felber and E. Biersack, Cooperative Content Distribution:

Scalability Through Self-Organization, Self-star Properties in

Complex Information Systems, Ö. Babaoglu, M. Jelasity, A.
Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, and M. van
Steen (Eds.), LNCS 3460, Springer, 2005.

[13] K. Fall and K. Varadhan (Ed.), The ns-2 Manual, Technical
Report, The VINT Project, UC Berkeley, LBL, USC/ISI and
Xerox PARC, 2005.

[14] M. Gerla, K. Tang, and R. Bagrodia, TCP Performance in
Wireless Multi-Hop Networks, Proc. IEEE WMCSA, New
Orleans, LA, 1999.

[15] Gnutella Protocol Development. http://rfc-

gnutella.sourceforge.net/.
[16] KaZaA homepage. http://www.kazaa.com/.
[17] A. Nandan, S. Das, G. Pau, M. Gerla, and M.Y. Sanadidi,

Cooperative Downloading in Vehicular Ad-hoc Wireless
Networks, Proc. WONS, St. Moritz, Switzerland, 2005.

[18] C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-Demand

Distance Vector (AODV) Routing, IETF RFC 3561, 2003.
[19] D. Qiu and R. Srikant, Modeling and Performance Analysis of

BitTorrent-like Peer-to-Peer Networks, Proc. ACM SIGCOMM,
Portland, OR, 367-378, 2004.

[20] S. Rajagopalan, and C. Shen, A Cross-layer, Decentralized
BitTorrent for Mobile Ad hoc Networks, Proc.

MOBIQUITOUS, San Jose, CA, 2006.
[21] R. Sherwood, R. Braud, and B. Bhattacharjee, Slurpie: A

Cooperative Bulk Data Transfer Protocol, Proc. IEEE

INFOCOM, Hong Kong, 941-951, 2004.
[22] X. Yang and G. de Veciana, Service Capacity of Peer to Peer

Networks, Proc. IEEE INFOCOM, Hong Kong, 2242-2252,
2004.

