
 

Abstract— In this paper, we consider the peer-to-peer transfer 

of popular files between devices in a wireless mesh network. We 

address the problem that occurs when multiple nodes try to access 

the same file simultaneously, resulting in increased contention on 

the shared wireless channel. To counteract this problem, we 

propose a cooperative file transfer protocol which splits a file into 

fixed-sized pieces and allows simultaneous downloads of such 

pieces from multiple peers. Opposed to previous approaches, the 

proposed protocol selects the potential download peers such that 

the corresponding download paths possess minimum interference 

among each other. In a performance study where we compare our 

approach with other download schemes proposed in the 

literature, we show that our cooperative protocol roughly halves 

the time required for downloading a file. 

 
Index Terms— Data dissemination, Peer-to-Peer systems, 

Network applications, Performance evaluation. 

I. INTRODUCTION 

Support for simultaneous downloads of a file from multiple 
sources is included in recent releases of many popular peer-to-
peer (P2P) file sharing systems for the Internet, e.g., KaZaA 
[16] and many implementations of the Gnutella protocol [15]. 
Typically, such systems split a file into pieces of equal size, 
commonly denoted as chunks. For exploiting a peer's entire 
downlink bandwidth, multiple chunks are downloaded in 
parallel from different peers, where the source for each chunk 
is chosen more or less greedily. Recently, it has been observed 
that a sophisticated scheme for exchanging chunks among 
peers can increase the total service capacity of the system by 
creating diversity. That is, each peer does not only consume 
upload capacity from the system, but can also provide upload 
capacity to some other peers, making the system self-scaling. 
Such approaches are typically denoted as swarming 
approaches.  

The potential of swarming protocols encouraged the 
development of second generation P2P systems like 
cooperative content delivery systems [6], [21]. Due to the self 
scaling property, a cooperative content delivery system is 
highly efficient and even resilient to flash crowds - sudden 
request burst for popular web content that make the origin 
server collapse. Furthermore, cooperative content delivery 
systems are self-organizing and can be deployed without 
supporting infrastructure, challenging classical content 

delivery networks that deploy thousands of servers around the 
world. Application scenarios for cooperative content delivery 
systems include providing an software update to a known set 
of computers or simultaneous access to popular content by 
many users [12]. 

The ongoing success of wireless communication technology 
permanently extends the coverage to the Internet. A recent 
trend for enabling cost efficient Internet access are wireless 
mesh networks [1]. Figure 1 depicts the two-tier urban mesh 
access network as considered in [7], which comprises a 
backhaul tier of fixed mesh routers and an access tier of 
mobile clients. Such networks permit sharing of digital content 
among wireless devices or accessing content through the 
Internet by using content delivery systems. These systems 
support a wide scope of utilities, spanning applications that 
need to access large multimedia files for infotainment or 
programs that maintain the wireless network by providing 
critical software updates. Wireless mesh networks are 
particularly sensitive to flash crowd-like requests for popular 
content by many devices, since all devices share a common 
wireless medium. In particular, in the spatial proximity of a 
gateway that connects many devices to the origin server of 
popular content, severe congestion of the wireless medium 
may occur. In such scenarios, cooperative file transfer among 
wireless devices using a swarming approach may prove useful 
for avoiding network congestion. Consistent with [7], we 
assume that the wireless network runs a MANET routing 
protocol, e.g., Ad hoc On demand Distance Vector (AODV, 
[18]).  
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Figure 1: Two-tier urban wireless mesh network 
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In this paper, we present a cooperative P2P file transfer 
protocol for wireless mesh networks. As major contribution, 
our protocol applies a swarming approach to balance the load 
in the network. Beyond recent proposals for cooperative 
content delivery in wireless multihop networks, our protocol 
downloads multiple chunks from several peers in parallel, 
exploiting diversity and achieving a higher utilization of the 
wireless channel in the proximity of the downloading peer. 
Download peers are selected based on the current load on the 
download paths. In fact, our protocol comprises an iterative 
probing algorithm that determines a set of download peers, 
which maximize aggregate goodput. The order of peers to 
probe is determined by a procedure denoted as interference 

dependency estimation, that ensures the selection of peers with 
a minimum interference on the download paths. 

In a simulation study we compare our protocol to other 
approaches for cooperative content delivery. These include an 
approach that do not employ parallel downloads and select a 
single download peer randomly (inspired by [12]) or based on 
the network proximity in hops (inspired by [17]), respectively. 
The results of the simulation study show that our protocol 
decreases the required time for downloading a file by more 
than 50%. 

The remainder of this paper is organized as follows. Section 
II summarizes related work on cooperative file transfer. Our 
cooperative protocol is introduced in Section III, whereas 
Section IV compares the performance of our protocol with two 
other approaches for cooperative file transfer. Finally, 
concluding remarks are given in Section V. 

II. RELATED WORK 

Several studies as e.g. [2], [4], [5], [12], [19], and [22] has 
extensively investigated swarming as a technique for 
optimizing content delivery performance in the Internet. 
Proposals of swarming-based systems include BitTorrent [6] 
and Slurpie [21]. BitTorrent [6] uses either a centralized server 
or a decentralized distributed hash table for discovering peers 
that store chunks of a desired file. Parallel downloads are 
performed from several peers selected by a tit-for-tat incentive 
mechanism. Slurpie [21] features decentralized peer discovery 
and an algorithm to estimate the bandwidth of the local peer's 
Internet connection. Building upon the assumption that such 
connection is the major bottleneck, Slurpie adjusts the number 
of connections to other peers as well as the number of 
simultaneous downloads according to the acquired bandwidth 
estimates. Similar to BitTorrent and Slurpie, our protocol 
performs parallel downloads from multiple peers. Opposed to 
BitTorrent and Slurpie, our protocol selects peers with non-
interfering download paths. That is, other than the case in the 
Internet, nodes in a wireless mesh network can interfere with 
each other, making the need for a peer selection strategy based 
on non-interfering download paths inevitable for parallel 
downloads.  

As a first approach for swarming in ad hoc wireless 
networks, Nandan et. al presented SPAWN [17]. SPAWN is 
designed for hybrid wired / wireless vehicular ad-hoc networks 
with Internet connectivity, performs peer selection based on 

network proximity, and downloads one chunk at a time. In 
contrast, our protocol is designed for wireless mesh networks 
and performs peer selection based on the current network load 
on paths to potential download peers. Furthermore, our 
protocol simultaneously downloads from multiple peers, given 
that non-interfering paths to such peers exist. Recently, 
Rajagopalan et. al proposed and adoption of BitTorrent for 
wireless multihop networks denoted as BTM [20]. BTM uses a 
cross-layer approach that performs peer discovery assisted by 
the MANET routing protocol, while peer and content selection 
are implemented according to the BitTorrent specification. 
Opposed to BTM, we focus on developing a peer selection 
algorithm for wireless mesh networks which accounts for the 
special characteristics of such networks. 

Load-based path metrics have recently been studied in the 
context of routing protocols for wireless mesh networks [8], 
[10]. Similar to [8], [10], our protocol makes decisions based 
on the current load and interference on a path. However, while 
path metrics enable discovery of an optimal path for a given 
source-destination pair, our protocol aims at determining an 
optimal source for a fixed destination in order to maximize the 
aggregate goodput.. 

III. COOPERATIVE FILE TRANSFER 

A. Overview  

Our cooperative file transfer protocol incorporates a peer 
discovery as well as a peer selection mechanisms, which are 
described in this section. Subsequently, we denote a mobile 
node which wants to retrieve a file as the downloader. We 
assume that files have (pseudo) unique identifiers, e.g., given 
by SHA-1 hash sums over the file contents. For transfer, a file 
is split into chunks of fixed size. Chunks are identified by 
numbering them in ascending order from the beginning to the 
end of the file.  

First, the downloader initiates a peer discovery procedure to 
find potential download peers sharing chunks of the file. 
Subsequently, the downloader runs the peer selection 
algorithm to determine a set of active download peers. 
Consistent with [6], [12], and [17], chunks are downloaded 
following rarest-chunk-first content selection strategy. Chunks 
are downloaded using the transmission control protocol, TCP, 
and are explicitly requested by the downloader using the chunk 
number. Our protocol monitors the performance of a download 
using end-to-end goodput measurements. Since our protocol 
does not require any support from the transport layer, any TCP 
variant can be employed for downloading. However, we 
emphasize that the TCP variant should provide good fairness 
between concurrent flows in order to achieve a performance 
improvement when performing simultaneous downloads. 
Therefore, we employ TCP-AP [11] which has proven to 
provide considerably better fairness between competing flows 
in multihop wireless networks than TCP NewReno. 
Nevertheless, in Section IV, we also conduct a simulation 
where we compare the performance of our protocol running 
TCP NewReno as transport layer protocol. 

For each file that is currently downloaded, our protocol 



 

maintains a basic data structure which is updated during the 
peer discovery and selection procedures. The data structure is 
denoted as file distribution table (FDT). Each entry in FDT 
contains the IP address of a download peer as well as the 
numbers of the chunks stored by this peer.  

B. Peer Discovery 

The focus of our protocol lies on the peer selection 
procedure. Thus, we just include a simple peer discovery 
mechanism to provide a complete system for cooperative 
content delivery. To initiate the download of a given file, a 
node issues a QUERY message which contains the file ID as 
well as the chunk numbers of the requested chunks. For a file 
consisting of C chunks, chunk numbers can be encoded by a 
bit array with C bits, where bit c is set to 1, if the downloader 
is interested in chunk c, and to 0 otherwise, 1 ≤ c ≤ C. The 
QUERY message is transmitted to all reachable nodes by 
flooding. When a download peer receives the QUERY 
message, it checks whether it possess requested chunks. If it 
does, it sends a RESPONSE message containing the file ID 
and the chunk numbers of available chunks to the downloader 
via unicast. Upon receipt of the RESPONSE message, the 
downloader updates its FDT by assigning the chunks in the 
RESPONSE message to the corresponding peer. The 
information in FDT is used for peer selection as described 
below. 

Similar to [20], we use a cross-layer approach to embed 
protocol-specific messages into control packets of the routing 
protocol. That is, QUERY messages of our protocol are 
piggybacked on route request messages (RREQ) of the routing 
protocol. Similar to the QUERY/RREQ procedure, 
RESPONSE messages are piggybacked on the route reply 
(RREP) messages of the routing protocol and returned to the 
downloader during the route reply procedure.  

Opposed to [20], we do not use expanding ring search for 
limiting the scope of flooding, since it is crucial for our peer 
selection algorithm that potential download peers have large 
distances, as we show in Section V. Using this piggyback 
method instead of application layer flooding during peer 
discovery has two advantages: First, a node need not run an 
instance of our protocol in order to forward QUERY and 
RESPONSE messages. Second, the piggyback method 
significantly reduces control traffic, since both peer discovery 
and route discovery can be performed in a single step. 

C. Peer Selection 

Previous approaches for cooperative content delivery like 
SPAWN [17] and BTM [20] assume that the closest-peer 
provides the highest TCP goodput and, thus, employ network 
proximity as metric for peer selection. These previous 
approaches are based on the observation that the TCP goodput 
degrades as the number of hops increases [11], [14]. However, 
such a proximity-based metric does not account for the current 
link layer contention between the path to the downloader and 
other flows in the network. 

To demonstrate the impact of background traffic on TCP 
goodput and to show that the shortest path does not always  
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Figure 2: Simple scenario with two chains of different lengths 

provide the best goodput, we conduct a simple simulation 
using the scenario depicted in Figure 2. The distance between 
adjacent nodes is 200m and the interference/carrier sensing 
ranges are 550m. We define three FTP flows: FTP 1 runs from 
node D to node A, FTP 2 runs from node C to node A and 
FTP 3 runs from node B to node C. This scenario simulates the 
case where node A constitutes a downloader which wishes to 
download a chunk either from node C or node D. According to 
the adopted quality selection metric, node A would either 
choose the nearest peer like in [17], [20] (C in this case) or the 
peer which provides the best end-to-end goodput, in case the 
traffic load on the paths is also considered.  

To show the impact of the metric used for peer selection on 
the achieved end-to-end goodput, we consider four cases: 
(1) FTP 2 is the only flow active, simulating the case where 

node A decides to download the chunk from node C. 
(2) FTP 3 is the only flow active, simulating the case where 

node A decides to download the chunk from node D. 
(3) FTP 2 is active while the background flow FTP 1 is also 

active, simulating the case where node A decides to 
download the chunk from node C with background traffic 
present. 

(4) FTP 3 is active while the background flow FTP 1 is also 
active, simulating the case where node A decides to 
download the chunk from node D with background traffic 
present. 

Figure 3 shows the results for cases (1) and (2) whereas 
Figure 4 shows the results for cases (3) and (4). In Figure 3, 
we observe that in case there is no background traffic 
produced by FTP 1, the goodput on the short path to node C 
outperforms the goodput on the long path to node D by 24%. 
However, as soon as there is background traffic present, the 
interference on the short path increases due to the traffic of 
FTP 1, which decreases the achieved goodput significantly as 
shown in Figure 4. Since FTP 3, which runs on the longer path 
is out of the interference range of FTP 1, it achieves around 
66% more goodput than FTP 2 which runs on the short path. 
This shows that the shortest path does not always provide the 
best goodput. To that end, our protocol is designed to select 
download peers with the least-loaded paths.  

Our protocol incorporates two basic peer selection metrics  
 



 

 

Figure 3: Goodput of FTP 2 and FTP 3 without background traffic of 
FTP 1 

 
Figure 4: Goodput of FTP 2 and FTP 3 with background traffic of 

FTP 1 

which account for the end-to-end load on the paths to a 
potential download peer. The first metric, denoted as response 
delay, is defined by the time elapsed between issuing a 
QUERY and receiving a corresponding RESPONSE message 
for each potential download peer. Obviously, the response 
delay depends on the current link layer contention on the path 
to a potential download peer due to the fact that high load 
increases the number of link layer retransmissions required for 
delivering the RESPONSE message. 

Unfortunately, starting the first download will highly 
influence the path load in the network. Thus, response delay 
measurements can only be used to identify the first active 
download peer. Therefore, we use end-to-end goodput 
measurements as additional metric. The goodput of a 
download peer is defined by the number of unique bytes 
received from the peer divided by the time required for 
receiving these bytes, whereas the aggregate goodput 
constitutes the sum of the goodput of all active download 
peers. Since goodput can only be determined while 
transferring chunks from some download peers, our protocol 
uses an algorithm that optimistically probes some 
combinations of download peers in order to maximize the 

aggregate goodput. 
As a major difference to cooperative content delivery 

systems for the Internet, a content delivery system for wireless 
mesh networks must consider that potential download peers 
use a shared channel. Therefore, simultaneous downloads from 
multiple peers only increase the aggregate goodput if the 
download paths do not significantly interfere with each other. 
For discovering non-interfering paths, the downloader uses a 
mechanism denoted as Interference Dependency Estimation 
(IDE) to measure the end-to-end delay to potential download 
peers while downloading from active download peers. 
Specifically, IDE Echo Request (IDEREQ) packets are 
transmitted back-to-back to all potential download peers. Peers 
receiving such IDEREQ immediately reply with an IDE Echo 

Reply (IDEREP) packet. Upon receiving the IDEREP 
message, the downloader computes the delay between issuing 
the IDEREQ message and receiving the IDEREP message and 
assigns the delay to the corresponding peer. Recall that 
network routes to potential peers are established during peer 
discovery so that an IDEREQ does not trigger a new route 
discovery procedure. Similar to the response delay, the IDE 
delay reflects the level of interference on the download path to 
a potential peer. In particular, it indicates how much starting a 
download from a new download peer will interfere with 
downloads from currently active download peers. 

In order to improve the reliability of such end-to-end 
measures, the downloader computes the end-to-end delay as 
the average delay by sending five IDEREQ messages to each 
potential peer. Note that the IDEREQ/IDEREP functionality is 
very similar to ICMP Echo functionality. However, we choose 
not to use default ICMP Ping messages, since we use the 
IDEREQ/IDEREP messages to piggyback further protocol-
specific information, e.g., about newly available chunks. The 
IDEREQ/IDEREP messages are always padded to the size of 
1400 Bytes. 

Peer Selection Algorithm 

The peer selection operates iteratively in multiple rounds. In 
each round, r = 0, 1, ..., it optimistically adds a new peer to the 
current active download peers in order to increase the 
aggregate goodput. Which peer to add is determined using the 
IDE procedure described above, since an optimal peer 
combination comprises peers with little mutual interference on 
the corresponding download paths. The algorithm continues 
probing a new peer in each round until the aggregate goodput 
stops improving. Then, the algorithm terminates and returns 
the set of peers which provided the highest aggregate goodput. 

A set P includes all potential download peers identified 
during peer discovery. Pr determines the active download 
peers after round r. The priority of peer p ∈ P in round r is 
denoted as δr(p), whereas pr is the peer selected for probing in 
round r. A parameter αr denotes the aggregate goodput 
achieved by simultaneous downloads from the active 
download peers Pr in round r. RespDel(p) denotes the 
response delay value for peer p ∈ P during peer discovery, 
IDE(p) represents the IDE delay of peer p, and Goodput(Q)  
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Figure 5: Sample scenario 

TABLE 1: OPERATION OF OUR PROTOCOL IN THE SAMPLE SCENARIO OF FIG. 5 

Round r pr δδδδr(p) ααααr Pr 

0 - 
δ0(P3) < δ0(P2) < δ0(P4) 

< δ0(P5) < δ0(P1) 
0 ∅ 

1 P3 
δ1(P2) < δ1(P4) < δ0(P5) 

< δ0(P1) 
α1 > 0 {P3} 

2 P2 δ2(P4) < δ2(P5) < δ2(P1) α2 > α1 {P2, P3} 

3 P4 δ3(P1) < δ3(P5) α3 > α2 {P2, P3, P4} 

4 P1 δ4(P5) α4 < α3 {P2, P3, P4} 

 
denotes the aggregate goodput of simultaneous downloads 
from all peers p ∈ Q, Q ⊂ P. 

After issuing a QUERY and receiving RESPONSE 
messages from the download peers, for all responding peers p 
∈ P, the initial priorities δ0(p) are initialized by RespDel(p) for 
the first round. During each round r, chunks are continuously 
downloaded from the active peers Pr-1 identified in round r - 1. 
That is, as soon as an active peer p is idle, the downloader 
sends a request for a chunk to p. The chunk is chosen 
according to the rarest-chunk-first content selection strategy, 
i.e., the missing chunk with the fewest copies available at the 
potential download peers. Such a chunk can be easily 
identified in FDT. While downloading simultaneously from 
active peers, the algorithm chooses the peer pr with the highest 
priority (i.e. the lowest delay) δr-1(p) from all non-active 
download peers p ∈ P \ Pr-1. To probe if selecting pr as 
additional active download peer increases the aggregate 
goodput, a chunk c is downloaded from pr. Again, c is selected 
according to the rarest-chunk-first strategy. 

In order to determine δr(p) for a potential next round, the 
IDE procedure is performed for all other download peers p ∈ 
P \ (Pr-1 ∪ {pr}). Since IDE is performed simultaneously while 
downloading from all peers p ∈ Pr-1 ∪ {pr}, IDE delays 
quantify interference with all current downloads. Recall that 
information about chunk availability may be piggybacked on 
IDEREQ/IDEREP messages. Thus, FDT gets updated during 
the IDE procedure. 

After downloading the complete chunk c from pr, the 

aggregate goodput αr of all simultaneous downloads since the 
beginning of round r is computed and compared to the 
aggregate goodput αr-1 of the previous round. If the aggregate 
goodput αr exceeds the aggregate goodput αr-1, the peer pr 
improves the overall aggregate goodput and thus is added to 
the set of active download peers after round r, Pr. The 
algorithm continues until the aggregate goodput stops 
improving, i.e., αr' < αr'-1 in a round r'. After terminating, the 
algorithm returns the set of active peers with the highest 
goodput, i.e., Pr'-1. 

D. Sample Scenario 

We illustrate the operation of our algorithm using a scenario 
with multiple download peers shown in Figure 5. The 
downloader Q issues a QUERY for a file f of size 100 MBytes. 
Download peers P1 to P5 possess file f. The dotted circles 
around the download peers indicate the interference range of a 
download peer, i.e., peers P1 and P2 both interfere with each 
other as well as peers P4 and P5. Relay nodes, which may also 
interfere with each other, are placed randomly between 
downloader Q and peers P1 to P5 such that they ensure full 
connectivity. 

After peers P1 to P4 receive the QUERY message for file f, 
they send RESPONSE messages. Subsequently, the 
downloader Q receives the RESPONSE messages in the order 
P3, P2, P4, P5, and P1. For each round r, Table 2 shows the 
key values of the peer selection algorithm. the potential 
download peer pr, the priorities δr(p), the aggregate goodput 
αr, and the set with the active download peers after the round 
Pr. We observe that the aggregate goodput improves up to the 
third round by including a new peer in the set Pr in each round. 
Since adding an additional peer at round four does not 
improve the aggregate goodput, the algorithm terminates with 
{P2, P3, P4} as set of active download peers. 

IV. PERFORMANCE EVALUATION 

We compare the performance of our protocol with two other 
approaches for cooperative content delivery in multihop 
wireless networks with related peer selection strategies. The 
first approach is the random-peer approach, which chooses a 
download peer randomly. Such a random selection strategy is 
adopted in some Gnutella implementations and delivers good 
performance in the Internet compared to other peer selection 
strategies [12]. The second approach is the closest-peer 
approach implemented in the SPAWN protocol [17], which 
chooses the closest download peer in terms of number of hops. 

The simulation experiments are conducted using the 
network simulator ns-2 [13] with AODV [18] as MANET 
routing protocol. We deploy the IEEE 802.11g link layer 
protocol which is configured to provide a transmission range 
of 250m and a carrier sensing range as well as an interference 
range of 550m. Consistent with [17], the Request-To-
Send/Clear-To-Send (RTS/CTS) handshake is enabled. We 
consider a wireless channel bandwidth of 54 Mbit/s and set the 
size of TCP data packets to 1460 Bytes. As already mentioned, 
we employ TCP-AP [11] as a transport layer protocol for 
reliable data delivery, since TCP-AP provides considerably 



 

better fairness between competing flows than TCP NewReno 
[11]. However, in order to study the performance gained when 
running TCP-AP, we also conduct a simulation experiment 
where we compare the performance of our protocol running 
TCP NewReno. We assume that files are available in the 
wireless domain, e.g., through Internet downloads, storage 
media or self-generated pictures and videos. Thus, we do not 
consider Internet gateways in our scenarios, but rather focus 
on the content delivery within the wireless mesh network.  

A. Sample Scenario 

Figure 6 plots the aggregate goodput achieved at the 
downloader for the sample scenario shown in Figure 5. We 
observe that both the random-peer and closest-peer approaches 
achieve almost the same aggregate goodput, whereas our 
protocol achieves up to 100% more aggregate goodput than 
both approaches. 

Figure 7 shows the time required for downloading the 
requested file for each considered variant. Consistent with the 
results of Figure 6, we see that our protocol achieves around 
50% less download time than the random-peer and closest-
peer variants.  
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Figure 6: Sample scenario: Aggregate goodput at downloader 

(running our protocol over TCP-AP) 
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Figure 7: Sample scenario: Time required to download the requested 

file (running our protocol over TCP-AP) 

B. Static Scenario with Random Placement 

To evaluate the performance of the considered peer 
selection approaches in absence of disturbing effects caused by 
mobility (e.g route failures), we consider a scenario where all 
nodes in the network are stationary. The network constitutes 
120 nodes which are distributed randomly on a flat area of 
2500m x 1000m. According to [3], all nodes in the network 
can communicate with each other over one or more hops with 
probability 0.999. For this set of simulations, we perform 40 
independent replicates for each experiment, each replicate with 
a different random node placement. The considered 
performance measures are then derived from the values of the 
40 replicates with 95% confidence intervals.  

In order to determine the best chunk size for which our 
protocol achieves the best performance, we conduct an 
experiment where we vary the chunk size from 10 KBytes up 
to 1000 KBytes and plot the average download time of the file 
accordingly. In this experiment, a node requests a file of 50 
MBytes while there exist ten download peers which possess 
this file. We plot both the original curve as well as its Bezier-
smoothed version to illustrate the smoothed gradient of the 
aggregate goodput. Figure 8 shows that the average download 
time is relatively high for a chunk size of 10 KBytes and drops 
sharply as the chunk size increases, where it becomes stable 
for a chunk size of 200 KBytes and above. The reason for such 
a behavior is that for small chunk sizes below 200 KBytes, the 
TCP goodput measurements are inaccurate. This is because 
TCP cannot fully utilize the available bandwidth fast enough 
since the growth of the TCP window as well as the adaptive 
pacing rate of TCP-AP are dependent on the number of 
received TCP acknowledgments. That is, small chunks lead to 
a small number of TCP packets which results in a small 
number of TCP acknowledgments, yielding inaccurate 
goodput measurements and inappropriate selection of 
download peers. For larger chunks of 200 KBytes and above, 
goodput measurements get more accurate. We use a chunk size 
of 200 KBytes for our protocol, since this size is large enough 
to provide accurate goodput measurements, yet small enough 
to grant flexibility in case the peer selection algorithm decides 
to choose different download peers. 
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Figure 8: Static random scenario: Avg. file download time vs. chunk 

size (running our protocol over TCP-AP) 
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Figure 9: Static random scenario: Avg. file download time vs. 
number of initially available download peers for 1 downloader 

(running our protocol over TCP-AP) 
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Figure 10: Static random scenario: Avg. file download time vs. 
number of initially available download peers for 10 downloaders 

(running our protocol over TCP-AP) 

In a further experiment, we define a fixed number of 
downloaders which request a 10 MBytes file, while varying 
the number of initially available download peers. Figure 9 
shows the average file download time for one downloader, 
whereas Figure 10 plots the average file download time over 
10 downloaders. In Figure 9 we observe that our protocol 
achieves up to 60% less average download time than all other 
approaches, i.e., the file can be downloaded in less than half of 
the time. We make a number of interesting observation from 
the curves in Figure 9: First, we see that the download time of 
all considered download strategies is similar for one download 
peer since there is no peer selection, i.e., only one download 
peer is available. Second, we see that the download time of our 
protocol decreases with increasing number of available 
download peers up to three peers and then it stabilizes. From 
this behavior we conclude that due to node interference and 
due to the nature of the shared wireless channel, simultaneous 
downloads from more than three peers does not yield any 
improvement. Third, we observe that the download time of the 
random-peer and closest-peer approaches decreases as the 
number of available download peers increases. The reason for 

such a behavior is that the probability for selecting a close peer 
increases with increasing number of available download peers, 
which yields more goodput and thus less download time.. The 
findings in Figure 10 are consistent with our observations in 
Figure 9. Note that in Figure 10, the average download time of 
our protocol increases beyond three available download peers 
since we consider the average download time over ten 
downloaders and not only one downloader like in Figure 9. 

To study the performance of our protocol over a standard 
TCP variant, we conduct a further simulation where we study 
the performance of our protocol using TCP NewReno and 
compare it to TCP-AP [11]. Figure 11 shows the file download 
time for the considered variants for one downloader and ten 
initially available download peers whereas Figure 12 shows 
the file download time for 10 downloaders and 10 download 
peers. Note that, as consistent throughout this paper, we denote 
our protocol running TCP-AP simply by "Our Protocol". In 
Figure 11 we see that our protocol running TCP NewReno 
yields almost the same file download time like the closest-peer 
download strategy, i.e, it requires almost double the download 
time compared to our protocol running TCP-AP. The reason 
for such performance difference is the bad fairness of TCP 
NewReno which does not allow the full utilization of the 
simultaneous downloads from multiple peers. That is, due to 
the aggressive window strategy of TCP NewReno, only a small 
fraction of the active TCP flows acquire the available 
bandwidth at cost of other flows in the vicinity [11]. On the 
contrary, TCP-AP gains better fairness results, preventing 
simultaneous active flows from starving due to the 
aggressiveness of other flows in the vicinity.  

In Figure 12 we notice that our protocol running TCP 
NewReno yields slightly better performance than in Figure 11. 
This is because the traffic load in the network is distributed 
over more nodes since there are ten downloaders present rather 
than one like the case in Figure 11. This results in less 
interference between the active flows and thus better fairness 
results. Nevertheless, our protocol running TCP NewReno still 
requires around 40% more download time than the case when 
running TCP-AP. 
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Figure 11: Static random scenario: Avg. file download time for 1 

downloader and 10 initially available download peers 
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Figure 12: Static random scenario: Avg. file download time for 10 

downloaders and 10 initially available download peers 

V. CONCLUSION 

In this paper, we introduced a cooperative file transfer 
protocol for wireless mesh networks. The proposed protocol is 
designed for bulk delivery of popular digital content in 
wireless mesh networks, and implements a chunk-based 
swarming approach. Beyond previous proposals for cooperate 
file transfer in wireless mesh networks, our protocol uses an 
advanced end-to-end peer selection algorithm that selects 
potential download peers based on the current load and 
interference on the download paths. Furthermore, our protocol 
exploits diversity by downloading multiple chunks 
simultaneously such that the chosen download paths possess 
minimum interference among each other.  

Compared to other approaches for cooperate file transfer in 
wireless mesh networks, our protocol roughly halves the time 
required for downloading a file and is easily deployable since 
it operates in a pure end-to-end fashion and requires no 
support from lower layer protocols.  

In future work, we are investigating the performance of our 
protocol in presence of node mobility in order to identify 
mobility-induced problems and extend our protocol 
accordingly.  
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