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ABSTRACT 

 Prairie wetlands provide valuable habitat for waterfowl and wildlife and buffer 

the impacts of upland land uses.  However, their contribution to Canada’s greenhouse 

gas inventory is poorly understood.  The purpose of this study was to compare the 

spatial and temporal variation in nitrous oxide (N2O), carbon dioxide (CO2), and 

methane (CH4) emissions from Pond 1 at the St. Denis Wildlife Management Area, 

Saskatchewan and the Deep Crop Wetland (DCW) at the Manitoba Zero Tillage 

Research Association farm, Manitoba.  Nitrous oxide flux was low on all measurements 

days: at Pond 1 flux ranged from  -1.47 to 6.01 ng N2O-N m-2 s-1 in 2004 and -6.98 to 

5.74 ng N2O-N m-2 s-1 in 2005 and flux from the DCW never exceeded 2.50 ng N2O-N 

m-2 s-1 in 2005. Methane flux from Pond 1 was substantially higher in 2005 (-469.10 to 

3776.08 µmol CH4 m-2 d-1) than in 2004 (-251.55 to 191.55 µmol CH4 m-2 d-1).  This 

increase in methane from Pond 1 followed a major increase in water volume in 2005 

after snowmelt.  Methane flux in 2005 from the open water and riparian sampling points 

at the DCW ranged from -13.64 to 110.47 µmol CH4 m-2 d-1 and -4.51 to 40.23 µmol 

CH4 m-2 d-1, respectively. Carbon dioxide flux from Pond 1 and the DCW in 2005 were 

very similar: open water flux ranged from  

-96.42 to 95.42 mmol CO2 m-2 d-1 at Pond 1 and 3.21 to 38.94 mmol CO2 m-2 d-1 at the 

DCW.  Despite the similarity in CO2 flux, the DCW had 10- to 15-fold higher levels of 

macrophytes, phytoplankton and metaphyton biomass and similar levels of periphyton to 

Pond 1 in 2005.  These biomass differences were not, however, reflected in the CO2 or 

CH4 flux.  Pond 1 and the DCW were net sources for greenhouse gases but contributed 

less greenhouse gas than reports from other aquatic systems. 
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1.0 INTRODUCTION 

The prairie pothole region (PPR) of North America encompasses approximately 

780 000 km2 (Mitsch and Gosselink, 1993).  Wetlands in the PPR are often located 

within agricultural fields and are at risk of eutrophication from external nutrient sources 

(Environment Canada, 2001), drainage, and tillage of what is often marginal farm land 

(Environment Canada, 1986).  The PPR is known as the “duck factory” of North 

America, providing 10% of waterfowl nesting habitat and producing 50-80% of the 

North American waterfowl population (Smith et al., 1964; LaBaugh et al., 1996).    

Along with providing valuable habitat for wildlife, wetlands are important in 

filtering water, buffering the impacts of upland land uses, removing and storing 

greenhouse gases from the atmosphere, and reducing soil erosion (Ducks Unlimited 

Canada, 2006).  Costanza et al. (1997) attempted to put an economic value on ecosystem 

services which provide direct or indirect benefits to humans through ecosystem 

functions (i.e., the process itself).  Wetlands were valued at almost US$15 000 ha-1 yr-1, 

nearly twice the value of lakes.  The three main ecosystem services provided by 

wetlands were identified as disturbance regulation (~US$4 500 ha-1 yr-1), waste 

treatment (~US$4 200 ha-1 yr-1), and water supply (~US$3 800 ha-1 yr-1).  Culture 

(aesthetics, scientific value etc.), habitat, food production (subsistence farming or 

fishing), and gas regulation (regulation of atmospheric gases) were also considered 

ecosystem services provided by wetlands.   
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Although the value and importance of wetlands is beginning to be understood 

they are still under-studied and the role they play as greenhouse gas sinks or sources is 

only poorly understood. 

The purpose of this study was to compare the spatial and temporal variation in 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from two 

prairie wetlands. 

The primary objectives of this study were: 

 1) To determine the ice-free seasonal greenhouse gas flux from the two wetlands, 

 2) To determine the algal and macrophyte biomass in the two wetlands and 

3) To measure select biological parameters and environmental variables, and to 

determine which, if any, correlate to the greenhouse gas flux. 

The secondary objectives of this study were: 

4) To measure diurnal variability in greenhouse gas flux from the open water and 

5) To compare greenhouse gas flux from the riparian area with stacking and 

small chambers. 

 To fulfill objective 1, routine gas sampling was undertaken to inventory 

greenhouse gas emissions from two wetlands.  A general literature review is provided in 

Chapter 2 to introduce relevant topics to the reader.  Nitrous oxide flux and cumulative 

emissions will be discussed in Chapter 3.  Gaseous carbon losses (CO2, CH4) and the 

relationship between algal dynamics (objective 2) and water chemistry (objective 3) will 

be explored in Chapter 4.  Chapters 3 and 4 have been written as stand alone research 

papers and include their own literature review to provide context and to assist in 

interpretation of results.  Materials and methods sections also appear in both Chapters.  

As a result, some information will be repeated and this has been avoided when possible 
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by including a synthesis of results in Chapter 5 and placing the references at the end of 

the thesis. 
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2.0 LITERATURE REVIEW 

 

2.1 Overview 

 Wetlands are an important facet of the global greenhouse gas budget and may act 

as sinks and/or sources for CO2, CH4, and N2O (Bartlett and Harris, 1993; Freeman et 

al., 1993; Sinks Table, 1999).  Emission of CH4 and N2O are of particular concern as 

their global warming potentials are 23 and 296 times higher than CO2, respectively 

(IPCC, 2001).  The majority of past research has focused on greenhouse gas emissions 

from rice paddies and peatlands, both of which are high emitters of CH4.   The large 

amount of organic matter and often water-saturated conditions provide the potential for 

anaerobic decomposition and the production of CH4 (Aselmann and Crutzen., 1989; 

Christensen et al., 2003).  Past studies of N2O emissions from wetlands are generally 

focused on constructed wetlands (Stadmark and Leonardson, 2005) or agricultural 

wetlands that receive large inputs of nutrients from fertilizers (Hefting et al., 2003; 

Rutherford and Nguyen, 2004).    

 The Canadian System of Wetland Classification defines five classes of wetlands: 

bog, fen, swamp, marsh, and shallow water (National Wetlands Working Group, 1997).  

Bogs and fens are both peatlands differing mostly in their source of water input. 

Ombrotrophic bogs rely on inputs from precipitation while minerotrophic fens are a 

result of ground water interactions.  Swamps are forested wetlands and peatlands, while 

marsh wetlands are typically eutrophic mineral wetlands which exhibit fluctuating water 
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regimes.  This results in high amounts of dissolved salts and neutral to high alkalinity.  

Shallow water wetlands usually have a well developed profundal zone (deep water zone)

and are transitional between permanent deep water bodies and those wetlands that are 

seasonally wet (National Wetlands Working Group, 1997).   

Few studies have quantified the greenhouse gas emissions from marsh wetlands 

in the North American prairies.  These mineral soil wetlands are dominated by soils of 

the Gleysolic Soil Order.  Reducing conditions, caused by periodic or constant water 

saturation, are present during soil genesis, and these soils are defined by their colour and 

mottling (Soil Classification Working Group, 1997).  Although gleysolic soils can 

exhibit a peaty phase which contains an organic surface layer, they do not meet the 

minimum criteria established for classification in the Organic Soil Order, which includes 

peat, bog and fen soils.  The Organic Soil Order requires that the soil contain more than 

17% organic carbon (30% organic matter) and the organic material must reach a depth 

of at least 40 to 60 cm dependent on the composition of the surface layer (Soil 

Classification Working Group, 1998).   

 

2.2 Conversion of Wetlands to Agricultural Land   

The original wetland area in the PPR covers approximately 80 000 km2; more 

than half of this original wetland area has been drained for agriculture (Leitch, 1989).  

The Institute for Wetland and Waterfowl Research (IWWR) of Ducks Unlimited Canada 

has undertaken a large study of spatial and temporal variation in nest success of prairie 

ducks (SpATS) in the PPR.  A subset of the SpATS wetland survey data for 

Saskatchewan was used to determine the number and area of wetlands and the extent of 

cultivation in the study sites (Phipps et al., 2005 unpublished data).  Wetland survey data 
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was linked to soil attributes using soil survey maps of Saskatchewan.  This was done to 

determine if an association could then be made between the distribution of wetlands and 

land surface attributes in order to extrapolate these results beyond specific study sites.  

Wetland survey data from 137 quarter-sections studied was compiled and included 2733 

wetlands, 1035 of which had been tilled.  This represented 38% of the wetlands at these 

study sites.  

 The number of wetlands and extent of cultivation was variable depending on 

region and landscape.  The percentage of wetlands cultivated per study site ranged from 

1% to 80%.  When quarter-sections were described by soil attributes, slope class 3 (2 to 

5% slope) had the highest number of tilled wetlands per quarter-section and slope class 2 

(0.5 to 2% slope) had the largest mean area of tilled wetlands (~ 3000 m2 tilled wetland 

area per quarter-section).  There were no quarter-sections located in slope class 1 and the 

SpATS study did not select any study sites in areas of low duck density (< 20 pairs mi-2).  

It is expected that agricultural land located in slope class 1 is intensively managed 

resulting in a high percentage of wetland cultivation and a low duck population. 

Including these areas would increase the estimate of percentage of wetland loss due to 

cultivation.   

 

2.3 Wetland Biology 

 Bogs, fens and marsh wetlands differ markedly, not only in composition of 

developed peat or mineral soil layers but also in hydrology, pH, and nutrient status, as 

well as the type of plant and algal community (National Wetlands Working Group, 

1997; Goldsborough and Robinson, 1996).  While bogs are typically acidic and nutrient 

poor with the water table at or below the peat surface, fens range from poor to rich in 
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dissolved minerals and undergo water level fluctuations of centimeters above or below 

the peat surface (National Wetlands Working Group, 1997).  Bogs and fens (hereafter 

referred to collectively as peatlands) typically support low algal diversity and are 

dominated by single-celled green algae (Goldsborough and Robinson, 1996).  Marsh and 

shallow water wetlands (hereafter referred to as wetlands) can reach eutrophic states and 

are capable of supporting high productivity (National Wetlands Working Group, 1997).  

Wetlands are usually shallow, well mixed water-bodies with a large littoral relative to 

pelagic zone (perimeter:surface area) (Fairchild et al., 2005).   The light environment is 

variable and may change seasonally through shading by macrophytes (Brix, 1994) and 

metaphyton cover (Robinson et al., 1997a) as well as attenuation of light by algae 

(Mazumder et al., 1990) and dissolved organic carbon (DOC) (Arts et al., 2000).  

Wetland biomass is dynamic and changes seasonally.  Intense competition for nutrients 

in the water column may exist between algae and macrophytes (Robinson et al., 1997a), 

and zooplankton may exert strong grazing pressure on algae (Lampert et al., 1986). 

 The contribution of algae to total primary production in freshwater wetlands can 

be significant (Robinson et al., 1997b).  Most algae in smaller freshwater wetlands occur 

in association with submersed substrates and are together referred to as periphyton 

(Robinson et al., 2000).  Shallow wetlands with profuse littoral vegetation provide 

potential substrates for algal colonization, which may significantly increase wetland 

productivity (Sand-Jensen and Borum, 1991).  Although most studies on aquatic algae 

focus on the free-living or pelagic phytoplankton, these algae may only contribute a 

minor percentage of total algal biomass.  Benthic and periphytic algae often make up a 

large proportion of algal biomass and contribute greatly to wetland primary production 

(Robinson et al., 1997a).  For example, Robinson et al. (1997a) found that 98% of total 
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algal biomass in Delta Marsh, Manitoba was comprised of benthic algae (including 

metaphyton and periphyton).   

 

2.4 Biological Effects on pH and the Carbonate Equilibrium 

The carbonate equilibrium (the sum of dissolved inorganic carbon) is pH 

dependent and largely influenced by photosynthesis and respiration within productive 

wetland systems (Wetzel, 1983).  Algal photosynthesis assimilates CO2, consumes H+, 

and shifts the bicarbonate equilibrium to the left, resulting in an increase in pH in the 

water column (Figure 2.1).  Respiration shifts the reaction to the right, resulting in a 

decrease in pH (Kalff, 2002).  Bicarbonate (HCO3
-), some of which originates from rock 

weathering, plays an important role in buffering aquatic systems from rapid changes in 

pH (Kalff, 2002).  Bicarbonate can be further disassociated to yield carbonate (CO3 
2-).  

In low pH aquatic systems the dominant form of dissolved inorganic carbon (DIC) is 

free CO2, whereas in high pH waters the dominant form is CO3
2- (Kalff, 2002).  

Atmospheric CO2 flux across the air-water boundary can be enhanced by photosynthetic 

consumption of CO2 in productive waters (Wetzel, 1983).   
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Figure 2.1 The bicarbonate equilibrium (modified from Kalff, 2002) 

 

H2O + CO2 H2CO3 H+ + HCO3
- 2H+ + CO3

2-

< 6 pH 6-9 > 9 

CO2 input from respiration/decomposition 

CO2 removal from photosynthesis 
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2.5 Biological Effects on the Redox Sequence and Gaseous Release of CO2, CH4, 

and N2O 

The redox potential of the sediments and overlying water column is governed by 

the presence or absence of dissolved oxygen (Kalff, 2002).  Oxygen diffuses 104 times 

slower in water than air (Schlesinger, 1997).  The solubility of oxygen is inversely 

proportional to temperature and salinity, and is affected by pressure and elevation (Kalff, 

2002).  As oxygen is consumed in sediments and the water column through 

heterotrophic respiration, a sequence of reactions takes place as lower redox potentials 

are achieved.  Anaerobic metabolism is less efficient than aerobic respiration and free 

energy yielded from the reduction of inorganic substances decreases at lower redox 

potentials (i.e., more energy is produced from denitrification than methanogenesis) 

(Schlesinger, 1997).  After oxygen is depleted nitrate is used as an alternative electron 

acceptor during the oxidation of organic matter (denitrification) (Equation 2.1); the 

reduction of manganese and iron follow (Schlesinger, 1997).   

                             

When redox potentials < -220 mV are reached, sulfate then acts as an alternative 

electron acceptor in organic matter oxidation (sulfate reduction) (Schlesinger, 1997).  

Below sulfate reduction in the sediments methanogenesis occurs.  Two main pathways 

exist for the production of CH4: 1) acetate splitting (Equation 2.2), and 2) CO2 reduction 

(Equation 2.3) (Cicerone and Oremland, 1988; Schlesinger, 1997).   

 

 

Sulfate-reducing and methanogenic bacteria are competitors for the same organic 

substrates and sulfate-reducing bacteria are more efficient in the uptake of H2, resulting 

NO3
-       NO2

-      NO      N2O      N2              (Eq. 2.1)    

CH3COOH         CO2 + CH4                          (Eq. 2.2)    

CO2 + 4H2         CH4 + 2H2O                         (Eq. 2.3)    
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in little overlap between the zones of sulfate reduction and methanogenesis (Holmer and 

Storkholm, 2001).  Availability of labile organic carbon may also limit methanogenesis 

(Cicerone et al., 1992).  This results in lower amounts of CH4 production in aquatic 

systems with high concentrations of sulfate. 

Oxygen may not always be entirely depleted from wetland sediments.  A 

productive zone of benthic algae is often present in shallow wetlands and through 

photosynthesis produces an oxidized micro-zone at the sediment-water interface (Mitsch 

and Gosselink, 1993; Goldsborough and Robinson, 1996; Wetzel, 1996).  This zone may 

be extremely important in chemical transformations within the sediment, and influence 

nutrient availability in the water column (Mitsch and Gosselink, 1993).   Oxidized forms 

of elements are less mobile than reduced forms and often precipitate out of the water 

column into sediments, whereby they are reduced and become mobile again (Kalff, 

2002).  Presence of the oxidized micro-zone prevents their release back into the water 

column and their re-oxidation and immobilization (Goldsborough and Robinson, 1996).  

 

2.6 Carbon Dioxide Emissions from Wetlands 

 Carbon dioxide emissions from wetlands include CO2 from autotrophic and 

heterotrophic respiration as well as that produced through decomposition (Blais et al., 

2005).  Temperature, water table height, and quality and availability of organic 

substrates have been shown to be controlling factors of CO2 emissions from peatlands 

(Bridgham et al., 1995; Chimner and Cooper, 2003).  The effect of water table height on 

CO2 has been shown in a number of peatland studies.  Freeman et al. (1993) found that 

CO2 emissions increased during a simulated drought.  Funk et al. (1994) also found that 

CO2 emissions tripled when the water table was lowered below the peat surface in 
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microcosm cores.  Chimner and Cooper (2003) observed that CO2 fluxes were highest 

when temperature was high and also when the water table was lowered to the peat 

surface.  They attributed this to increases in mineralization of plant material in the 

aerobic environment.  Xing et al. (2005) found a negative correlation between CO2 

fluxes and net primary production (NPP) and Chlorophyll-a (Chl-a).  No high 

correlations were found between CO2 fluxes and any variable measured (depth, age, pH, 

water temperature, wind speed, transparency, etc.) in a number of lakes, rivers, and 

reservoirs across Canada (Tremblay et al., 2005).  pH and water temperature were 

significantly related to CO2 fluxes but only explained a small proportion of the variance 

(Tremblay et al., 2005).  When mean gross flux was analyzed, however, CO2 flux was 

statistically different and higher when pH < 7.9.  Additionally, Matthews et al. (2003) 

found a strong correlation between CO2 flux and wind speed in an experimental 

reservoir in Ontario.   

Unfortunately there is little research on CO2 emissions from mineral wetlands.   

Relationships found in previous research on CO2 emissions from peatlands, however, 

could provide a set of parameters to consider for possible relationships with CO2 

emissions from mineral wetlands.  The physiological differences between peatlands and 

mineral wetlands must be considered.  For example, relationships between water table 

height in peatlands and CO2 emissions may not be as evident in prairie wetlands.  Water 

table height in peatlands generally refers to water level fluctuation above or below the 

peat surface.  In prairie wetlands water level generally refers to standing water above the 

soil surface. 
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2.7 Methane Emissions from Wetlands 

Natural wetlands contribute approximately 115 Tg CH4 to the atmosphere 

annually (Bartlett and Harris, 1993).  The majority of these emissions are from tropical 

wetlands and peatlands (Bartlett and Harris, 1993).  Anaerobic conditions of peatlands 

as well as accumulation of large amounts of organic matter provide a favorable 

environment for CH4 production (Christensen et al., 2003).  Wetlands often have 

productive zones of benthic algae inhabiting surficial sediments producing an 

oxygenated micro-zone (Goldsborough and Robinson, 1996; King, 1990).  Atmospheric 

CH4 emissions are therefore a result of CH4 production in the anoxic sediments minus 

CH4 oxidation occurring at the sediment-water interface (Bussmann, 2005) and 

throughout the water column.  Methane oxidation that occurs at the sediment-water 

interface can be attributed to methanotrophic bacteria which inhabit the aerobic zone at 

the periphery of the anaerobic zone (Schlesinger, 1997).  Methanotrophs have a high 

affinity for inorganic nitrogen (N) and can reduce nitrification and denitrification rates in 

environments where significant oxidation of CH4 occurs (Topp and Hanson, 1991).  

Methane production is inhibited by sulfate as sulfate-reducing bacteria out-compete 

methanogenic bacteria for organic substrates (Schönheit et al., 1982).   

Dominant determinants of CH4 emissions from peatlands are water table 

position, soil temperature, quality and availability of substrate, and mode of gas 

transport to the atmosphere (Walter and Heimann, 2000).  These factors are not 

independent of each other but rather may exert stronger control at different times of the 

year and at different sites depending on the condition of the wetland at the time of 

sampling (Walter and Heimann, 2000).  Freeman et al. (1993) observed decreased CH4 

flux in peat microcosms during a simulated drought but poor correlations were found 
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between CH4 flux and water table height.  Similarly, Funk et al. (1994) found that peat 

cores with a high water table had high CH4 fluxes.  Matthews et al. (2003) found no 

significant relationship between CH4 flux and water depth in an Ontario reservoir, but 

did find that the reservoir was acting as a sink for CH4 while at the same time emitting 

CO2.  Strong correlations were not found between any of the variables measured (depth, 

age, pH, water temperature, wind speed, transparency, etc.) and CH4 flux in lakes, rivers, 

and reservoirs across Canada (Tremblay et al., 2005). However, when the mean gross 

flux from the entire study was analyzed CH4, flux was statistically different and higher 

when the pH < 7.9.   

Researchers have found positive correlations between CH4 flux and net 

ecosystem production (Whiting and Chanton, 1993), net primary production (Aselmann 

and Crutzen, 1989; Xing et al., 2005), and algal Chl-a (Xing et al., 2005).  Primary 

production may stimulate methanogenesis by increasing available organic substrates and 

through the production of autochthonous organic matter (Whiting and Chanton, 1993; 

Xing et al., 2005). 

 

2.8 The Role of Aquatic Macrophytes in Greenhouse Gas Emissions 

Aquatic macrophytes play an important role in the production of greenhouse 

gases and their transport to the atmosphere (Chanton et al., 1992; Sebacher et al., 1985).  

These macrophytes provide organic substrates through fine roots and litter, act as a 

conduit for gas transport to the atmosphere (Chanton et al., 1992), and produce an 

oxygenated zone around the roots (Ding et al., 2005).  As CH4 travels through the shoot 

it bypasses the sediment-water interface, which is often a zone of CH4 oxidation (King, 

1990; Ding et al., 2005).  Methane emissions from aquatic macrophytes are also 
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dependent on plant type and density (Grosse et al., 1991; Chanton et al., 1993; Thomas 

et al., 1996; Christensen et al., 2003).  Relationships have been found between CH4 

emissions and net primary production (Aselmann and Crutzen, 1989), and net ecosystem 

production (Whiting and Chanton, 1993).  Singh et al. (2000), for example, found that 

CH4 emissions from the vegetated surfaces of a water body were 17 to 24 times higher 

than from unvegetated surfaces.  Higher gas emission rates have been shown in 

monocotyledonous plants as compared to dicotyledonous plants (Grosse et al., 1991; 

Thomas et al., 1996), and in plants with active gas transport mechanisms (Sebacher et 

al., 1985; Brix et al., 1992).  Chanton et al. (1993) reported mean CH4 emissions of 8909 

µmol CH4 m-2 d-1 from Typha domingensis Pers. and 2804 µmol CH4 m-2 d-1 from 

Cladium jamaicense Crantz in a Florida peat soil, and explained the variation in CH4 

emissions by differences in above-ground biomass and productivity.  Methane emissions 

measured from the open water between plants in their study were 6% of the total 

emissions measured from Typha domingensis.  A comparison of CH4 emissions from the 

air-water interface and from Typha latifolia L. indicated that more than 50% of the CH4 

emissions from the littoral zone of the wetland were from the plants (Sebacher et al., 

1985). 

 

2.9 Gaseous Loss of Nitrogen from Wetlands 

 Denitrification has been identified as the most important process in removal of N 

from wetlands and riparian areas (Rutherford and Nguyen, 2004).  This process 

produces gaseous forms of N (N2O, N2) which in turn are emitted to the atmosphere 

(Bowden, 1987).  The role of N removal by wetlands and riparian areas has most often 

been studied in wetlands constructed for nutrient retention (Stadmark and Leonardson, 
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2005), and those located in agricultural fields which receive high loads of nitrate from 

surface and groundwater flow (Hefting et al., 2003; Rutherford and Nguyen, 2004).   

High denitrification rates have been reported for organic soil swamp and mineral 

soil stream riparian sites (Watts and Seitzinger, 2000).  Concern has arisen that high 

rates of denitrification could result in correspondingly high rates of N2O emissions 

(Freeman et al., 1997).  Groffman et al. (1998) recognized the inadequacy in the number 

of studies relating high denitrification rates and N2O emissions in riparian areas and 

further suggests that N2O emissions may be low due to the highly anaerobic conditions 

found in many riparian zone soils.  

Less attention has been given to N2O emissions from the open-water zone of 

wetlands.  Benthic and periphytic algae play an important role in wetland N cycling (An 

and Joye, 2001).  Studies have found high potential and actual denitrification rates in 

benthic and periphytic algal matrices, as they may provide important attachment sites 

and carbon sources for denitrifying bacteria (Toet et al., 2003; Sirivedhin and Gray, 

2006).  In a review by Saunders and Kalff (2001) denitrification accounted for 63% of 

total N removal in lakes.  Combined studies of denitrification and N2O emissions are 

lacking and the contribution of N2O emissions from prairie wetlands is not well defined 

but is expected to be low as the water-saturated environment would promote the 

formation of N2 rather than N2O as N2 is the dominant gas produced when the water-

filled pore space exceeds 80% (Veldkamp et al., 1998).  The few existing N2O estimates 

from water bodies come from an extensive study by Tremblay et al. (2005) in which 125 

water bodies were sampled for greenhouse gases.  Their study found N2O emissions 

ranging from -10 to 23 ng N2O-N m-2 s-1 in lakes, rivers, and reservoirs across Canada. 
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3.0 NITROUS OXIDE FLUX FROM TWO OPEN WATER PRAIRIE 

WETLANDS 

 

3.1 Introduction 

Concern has arisen over the increasing concentration of atmospheric nitrous 

oxide (N2O) (IPCC, 2001).  Nitrous oxide is a potent greenhouse gas with a global 

warming potential 296 times that of carbon dioxide (CO2) (IPCC, 2001). Wetlands have 

received considerable attention in their ability to remove nitrogen (N) from ground water 

and to improve water quality (Verhoeven et al., 2006; Freeman et al., 1997).  Riparian 

areas surrounding wetlands and streams are generally thought to buffer water bodies 

from excess nutrients through immobilization of N by microbes, and plant uptake and 

removal of N through denitrification (Groffman et al., 1998).  Denitrification, the most 

important process in removal of N from wetlands and riparian areas (Rutherford and 

Nguyen, 2004), results in production of gaseous forms of N (N2O, N2) which are then 

emitted to the atmosphere (Bowden, 1987).   

Research focusing on wetland ability to remove N is most often in relation to 

wetlands which, due to their location in agricultural fields, are chronically loaded with 

nitrate from surface and groundwater flow (Hefting et al., 2003; Rutherford and Nguyen, 

2004), and wetlands constructed for nutrient retention (Stadmark and Leonardson, 

2005). Concern has arisen that high denitrification rates could result in correspondingly 

high rates of N2O emissions (Freeman et al., 1997).  Inadequacy in the number of studies 
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relating high denitrification rates and N2O emissions in riparian areas has been 

recognized (Groffman et al., 1998).  Nitrous oxide emissions may be low due to the 

highly anaerobic conditions found in many riparian zone soils (Groffman et al., 1998).  

Research on N2O emissions from soils has shown that the production of N2O declines 

beyond a water-filled pore space of 80% (proxy for O2) and dinitrogen (N2) is the 

dominant gas produced (Veldkamp et al., 1998). 

Studies focusing on N2O emissions from the open-water zone of wetlands are 

scarce.  Benthic and periphytic algae provide important attachment sites and carbon 

sources for denitrifiying bacteria (Toet et al., 2003; Sirivedhin and Gray, 2006), and play 

an important role in wetland N cycling (An and Joye, 2001).  In a review by Saunders 

and Kalff (2001) denitrification accounted for 63% of total N removal in lakes.  Studies 

combining the rates of N2O production and denitrification are lacking and prairie 

wetland contribution to N2O emissions has not been established.  Tremblay et al. (2005) 

provides the only extensive estimates of N2O emissions for water bodies.  Their study 

included estimates from 125 water bodies and reported N2O emissions ranging from -10 

to 23 ng N2O-N m-2 s-1 in lakes, rivers, and reservoirs across Canada.   

The purpose of this study was to assess the spatial and temporal variation of N2O 

emissions in two prairie wetlands.  The primary objectives were 1) to determine the ice-

free seasonal N2O flux from the two wetlands, 2) to measure select biological 

parameters and environmental variables and 3) to determine which of these, if any, 

correlated to N2O flux.  The secondary objective was to determine if there was a diurnal 

variation in the N2O flux. 
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3.2 Materials and Methods 

Greenhouse gas sampling was conducted at two research sites to inventory 

emissions of N2O from the open water and associated riparian area.  These inventory 

estimates were then used to calculate cumulative gas emissions at each site.  Gas 

sampling over a 24-hour period was undertaken to determine if there was a diurnal 

emission pattern and to correct cumulative estimates for this difference.   

 

3.2.1 Field Site  

Research was conducted at two wetlands.  Pond 1 is located in the St. Denis 

National Wildlife Area, 40 km east of Saskatoon, Saskatchewan, Canada (52º 12’N 

latitude, 106º 5’W longitude).  Pond 1 is the largest pond at the St. Denis National 

Wildlife Area (Figure 3.1).  Pond 1 is a semi-permanent wetland (Class IV), dominated 

by an open-water phase devoid of emergent vegetation (Cover Type 4), and is 

distinguished from a permanent wetland (Class V) by the submerged vegetation present 

(Ceratophyllum spp.) (Stewart and Kantrud, 1971).  The site is characterized by a 

hummocky till terrain with an unsorted calcareous till and glacio-lacustrine sediment 

parent material (Yates et al., 2006).  Slopes are strongly to moderately rolling (10 to 

15%).  Dominant soils are Orthic Dark Brown Chernozems on the mid and lower slopes 

and Calcareous Dark Brown Chernozems and Orthic Regosols on the knolls (van der 

Kamp et al., 2003).  Mean annual precipitation in Saskatoon between 1971 and 2001 

was 350 mm, of which 97 cm fell as snow (Environment Canada, 2004).  Snowmelt  
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Figure 3.1 Aerial photograph of the research site at the St. Denis  
National Wildlife Area. 
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runoff is critical to recharge water levels of prairie wetlands in the spring (LaBaugh et 

al., 1998) as evaporative loss can be 600-1000 mm, which generally exceeds 

precipitation (van der Kamp et al., 2003).  Mean annual temperature between 1971 and 

2001 was 2.2 ºC (Environment Canada, 2004).   

The second wetland was the Deep Crop Wetland (DCW), located at the 

Manitoba Zero Till Research Association farm (MZTRA) (Figure 3.2).  The study site is 

located approximately 20 km north of Brandon, Manitoba, Canada.  The DCW is 

dominated by an open-water phase at the central and deepest portion of the wetland 

surrounded by a deep-marsh zone composed of cattail (Typha spp.) and is classified as a 

semi-permanent (Class IV) wetland (Stewart and Kantrud, 1971). The site is 

characterized by a gently sloping (slope class 3: 2 to 5%), hummocky terrain formed 

over calcareous glacial till.  Soils are typically of the Newdale Association and are 

dominated by Orthic Black Chernozems in mid to upper slope positions with Rego and 

Calcareous Black Chernozems on the knolls (Podolsky and Schindler, 1994).  Mean 

annual precipitation in Brandon between 1971 and 2001 was 472 mm, of which 112 cm 

fell as snow.  Mean annual temperature was 1.9 ºC over that same time period 

(Environment Canada, 2004). 

 

.  
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Figure 3.2 Aerial photograph of the research site at the Manitoba Zero Till Research 
Association farm. 

Deep Crop 
Wetland 
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3.2.2 Water Temperature, Water Depth, and Climate Data 

 In 2004 and 2005 water depth, ambient air temperature, and water temperature at 

5-cm below the surface at Pond 1 were measured at the time of gas sampling at each pair 

of chamber locations along the dock using a Barnant DuaLogRTM (Barnant Company, 

Barrington, IL).  On July 22, 2005 a HOBO® Weather Station (Onset Computer 

Corporation, Pocasset, MA) was set up to record hourly averages of precipitation, air 

temperature, relative humidity, dew point, wind speed, photosynthetically available 

radiation (PAR), and barometric pressure.   

Water depth was measured on each sampling date at each pair of chambers at the 

DCW in 2005.  Air temperature at the surface and 5 cm above the surface was measured 

at each pair of chambers along the transect.   

 

3.2.3 Water Quality and Chemistry  

 Water samples were collected weekly from the open water at Pond 1 in 2004 and 

transported back to the laboratory on ice where they were refrigerated at 4 ºC until 

analysis.  Samples were removed from the refrigerator prior to analysis and warmed to 

room temperature.  pH was measured using a pH meter (pHITM, Beckman) and electrical 

conductivity using a conductivity meter (Radiometer, Copenhagen).  Water samples for 

nutrient analysis were collected at least three times throughout the ice-free season at 

both Pond 1 and the DCW.  Samples were analyzed by Enviro-Test Laboratories 

(Saskatoon, SK; Brandon, MB) for total nitrogen (TN), ortho-phosphorous (OP), and 

total phosphorous (TP),  bicarbonate (HCO3), sulfate (SO4), chloride (Cl), sodium (Na), 

magnesium (Mg), potassium (K), calcium (Ca), total dissolved solids (TDS), and 
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electrical conductivity (EC) (APHA, 1998).  Water samples were collected for analysis 

of dissolved organic carbon (DOC) three times throughout the ice-free season.  

In 2005, dissolved oxygen, turbidity, pH, temperature, redox, and electrical 

conductivity were logged hourly with a Hydrolab® DS 5X (HACH Environmental, 

Colorado).  The Hydrolab was deployed in Pond 1 from June 23 to October 11, 2005 

and from July 14 to Sept 13, 2005 in the DCW. 

   

3.2.4 Pond Sampling 

 Gas sampling at Pond 1 was carried out in 2004 and 2005.  Sampling was 

conducted weekly from April 7, 2004 until October 12, 2004 at Pond 1 between 1000 

and 1400 hours.  A transect of 12 chambers was located along a dock that started at the 

water’s edge.  Six acrylic, non-vented chambers with a headspace volume of 10.76 L 

covering a surface area of 0.06 m2 were located on each side of the dock.  Maximum 

water depth beneath the chambers was 105 cm.  Samples of headspace gas were taken 

with a 20-mL syringe and injected into a 12-mL evacuated tube. Twenty-milliliters of air 

were removed two times at each time step via syringe to clear the tygon tube prior to 

sampling the headspace gas.  Samples of headspace gas were collected at intervals of 0, 

20, 40, and 60 minutes.  Two riparian area transects of 12 chambers each were also 

installed.   Riparian area chambers were two-piece, closed, vented chambers 

(International Atomic Energy Agency, 1992) and were constructed from a polyvinyl 

chloride (PVC) ring base and vented cap similar to Hutchinson and Mosier (1981).  

Riparian chambers had a head space of 2.25 L covering a surface area of 0.02 m2.  At the 

time of the initial gas sample (t0) the chamber was placed on the base and sealed with a 
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rubber ring within the cap.  Samples of headspace gas were collected at time intervals of 

0, 8, 16, and 24 minutes.  

  A rapid rise in water level in 2005 after snowmelt destroyed the dock used in 

2004, thus necessitating the development of a different sampling design.  The riparian 

area was underwater in this year and no riparian sampling was completed.  Six sampling 

stations were accessed from a wooden dock that started at the water’s edge; ten 

additional chambers were accessed from two floating platforms located in the open 

water (five chambers each).  Research was conducted bi-weekly at Pond 1 from April 28 

until October 11 between the hours of 1000 and 1400 hours.  Acrylic, non-vented 

chambers with a headspace volume of 10.76 L covering a surface area of 0.06 m2 were 

used to take greenhouse gas measurements.   The maximum water depth beneath the 

chambers was 309 cm.  Platform chambers were attached with a long arm and four 500-

mL plastic bottles were bolted to the outside of the chamber for flotation.  Samples of 

the headspace gas were collected at intervals of 0, 8, 16, and 24 minutes.  Ambient air 

samples were taken at each time step.   

At the DCW greenhouse gas sampling was conducted on nine sampling dates 

between April 15, 2005 and October 2, 2005 by University of Manitoba staff.  Six soil 

chambers were located in the riparian area and six chambers were located over the open 

water.  Soil chambers were two-piece, closed, vented chambers constructed from PVC.  

Collars were 10 cm in height of which 5 cm was inserted into the ground.  The vent tube 

was 7.5 cm in length with a diameter of 0.4 cm.  Chamber lids were flat covers fitted 

with a rubber band around the edge, which was in contact with a rubber ring on the 

topside of the collar to prevent leaking.  Elastic bands were used to secure the lid to the 
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collar and were fastened to hooks on the outside of the chamber.  Chambers had a 

headspace volume of 1.62 L covering a surface area of 0.03 m2.   

Open water chambers were constructed from a similar design as the soil 

chambers and also included PVC piping which was secured around the chamber collar to 

allow the chamber to float.  Gas samples from the riparian and open-water chambers 

were collected from the headspace through a 0.13-m rubber septum using a 20-mL 

syringe at 30 and 60 minutes after chamber deployment.  Ambient air samples were 

taken and those concentrations were averaged and used as the t0 concentration for the 

day.  Sampling was conducted between 0900 and 1400 hours.  The maximum water 

depth beneath the chambers was 74 cm. 

 

3.2.5 Diurnal Variation in Greenhouse Gas Emissions 

Sampling was conducted over a 24-hour period on three dates during the ice-free 

season at Pond 1 in 2005 and one day (August 12, 2005) at the DCW.  Sampling took 

place every two hours between 1000 and 0800 the following day.  Samples were taken at 

intervals of 0, 8, 16, and 24 minutes with a 20-mL syringe.  Collection and analysis were 

as described above.  Mean emissions were calculated for each gas for each sampling 

time.   

 

3.2.6 Gas Analysis 

 For samples from Pond 1, N2O concentration was determined using a Varian CP 

3800 gas chromatograph (GC) equipped with a 63Ni electron capture detector (ECD) 

(Varian Canada Inc. Mississauga, ON).  Electron capture detector temperature was 380 

ºC, injector temperature was 70 ºC, and the column temperature was 290 ºC.  The 
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analytical column was a 1.83-m x 3.18-mm i.d., 80/100 mesh Hayesep D.  The carrier 

gas was Ar:CH4 in a 90:10 ratio, with a flow rate of 30 mL min-1.  Samples (2.5 mL) 

were drawn using a CombiPALTM autosampler (CTC Analytics AG, Switzerland) from a 

12-mL ExetainerTM into a Hamilton gastight syringe and injected into a 10-port 

sampling valve which was then transferred to two 0.5-mL sample loops.  The sample 

was then automatically injected onto the column via a 6-port sampling valve.  System 

calibration was obtained using standard gases (Praxair Gases, Edmonton, AB) composed 

of 1.11 µL L-1 N2O.   Processing of data was completed using Varian StarTM 

Chromatography Workstation (ver. 6.2) software.  

 Minimum detectable concentration difference (MDCD) was calculated using the 

standard deviation (σ) of reference gas samples in each analytical run using equation 3.1. 

 MDCD = 2σ               (3.1) 

When calculating gas flux, the MDCD was used to filter the raw data following a 

standard systematic procedure developed in our laboratory to identify and correct rogue 

points (similar to Yates et al., 2006). The absolute concentration difference between time 

steps that were < MDCD were considered not significantly different from zero and a 

flux of zero was recorded.   

Collection of gas samples at four-time intervals for each gas allowed the use of a 

polynomial relationship to describe the concentration vs. time curve.  Generally, the 2nd 

order polynomial equation was a better fit.  Gas flux at the water-atmosphere interface 

was then calculated as the slope of the line tangent to the concentration vs. time curve at 

time zero (t0).  Calculated flux (µL L-1 min-1) was then multiplied by the chamber 

volume divided by the surface area, resulting in a flux of µL m-2 min-1.  When only three 

points were available for flux calculation (because of ‘rogue’ data points) flux was 
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calculated using the linear model that described the concentration vs. time relationship 

corrected for chamber volume and area (Hutchinson and Mosier, 1981) (equation 3.2). 

 F = (V/A)m (3.2) 

Where F is flux at t0, V = chamber volume (L), A = cross sectional area of water covered 

by the chamber (m2), m = slope of the linear regression equation (µL L-1 min-1).   

Nitrous oxide in samples from the Deep Crop Wetland was determined using a 

Varian CP 3800 gas chromatograph (GC) (Varian Canada Inc. Mississauga, ON). 

Concentration of N2O was determined with an ECD (Varian Canada Inc. Mississauga, 

ON).  Electron capture detector temperature was 300 ºC and column temperature was 70 

ºC.  The analytical column was 200-cm x 0.3175-cm, 80/100 mesh Hayesep D, and 50-

cm x 0.3175-cm, 80/100 mesh Hayesep N and the carrier gas was Ar:CH4 in a 90:10 

ratio.  

Minimum detectable concentration difference was calculated as described above 

(equation 3.1) and flux calculated using the linear model following Hutchinson and 

Mosier (1981) using equation 3.2.  With collection of only three data points it was not 

possible to identify or correct rogue data points.  

 

3.2.7 Cumulative Emissions 

 Daily fluxes were interpolated between sampling dates to determine cumulative 

emissions for the sampling period.  Interpolation between sampling dates followed Yates 

(2006), where the mean flux for a gas on a particular sampling date was multiplied by 

the time interval (days) between sampling dates.  To determine the cumulative estimate, 

results were summed over the sample collection period.   
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 Carbon dioxide equivalents were calculated by multiplying N2O values by 296 

for a 100 year time horizon (IPCC, 2001). 

 

3.2.8 Statistical Analysis 

 Statistical analysis was completed using SPSS (ver. 14.0).  Nitrous oxide flux 

was not normally distributed, flux data was log transformed but a normal distribution 

was not achieved, therefore non-parametric statistics were used.  To determine if there 

were diurnal variations in emission patterns a Mann-Whitney U test was used to test for 

significant differences between daytime and nighttime N2O flux (p=0.05).  Spearman 

rank correlation analysis was used to determine if relationships exist between N2O flux 

and select environmental parameters (windspeed, air temperature, water temperature, 

pH, conductivity, turbidity, % oxygen saturation). 

  

3.3 Results 

3.3.1 Environmental Variables 

 Cumulative precipitation at Pond 1 for both the 2004 season (485 mm) and 2005 

season (450 mm) was higher than the 30-year normal.  Long-term average cumulative 

precipitation from April to October is 281 mm (including snowfall).  June was especially 

wet in both years: 165 and 216 mm in 2004 and 2005, respectively. The ice-free season 

at St. Denis in 2004 was cooler than the 30-year average climate normal for Saskatoon 

(Environment Canada, 2004).  In 2005, seasonal temperature was slightly below 

average, as was the wind speed (< 4.5 m s-1).  Average temperature from April to 

October was 9.9 ºC in 2004 and 11.2 ºC in 2005.  
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Cumulative precipitation from April to October as measured at the Brandon 

Airport was 463 mm, 80 mm greater than the average.  The average temperature of the 

2005 ice-free season at Brandon was 12.2 ºC, which was slightly warmer than the 30-

year climate normal (Environment Canada, 2004).   

 

3.3.2 Nutrients 

Mean total nitrogen (TN) and total phosphorous (TP) concentrations were 4.39 

mg L-1 (±1.69; n=5) and 0.60 mg L-1 (±0.83 STD; n=6), respectively in Pond 1 in 2004.  

Mean nutrient concentrations in Pond 1 in 2005 were lower than in 2004 (1.63 mg L-1 

TN ±0.32 STD and 0.30 mg L-1 TP ±0.17 STD; n=3).  Total phosphorous concentrations 

in April and June of 2005 were below the minimum detection limit of the lab (0.20 mg 

L-1).  The Redfield ratio describes marine phytoplankton requiring macro-nutrients in a 

molar ratio of 106C:16N:1P (Redfield et al., 1963).  If the molar ration of TN:TP is > 

16:1 (7.2:1 by mass) then algal growth may be P-limited, conversely, if the molar ratio is 

< 16:1 (7.2:1 by mass) then a N-limitation may exist.  Depending on the actual 

concentration, Pond 1 may have been P-limited (TN:TP ratio >7.2:1 by mass) in the 

spring and N-limited (<7.2:1 by mass) in mid summer. 

Total nitrogen and TP concentrations in the DCW increased through the season 

in 2005 and averaged 2.20 (±0.62 STD; n=3) and 0.28 mg L-1 (±0.19 STD; n=3), 

respectively.  The TN:TP ratio in May was 21:1 by mass indicating that the DCW was 

P-limited.  By August the wetland had switched to a slight N-limitation with a TN:TP 

ratio of 6:1 by mass.   
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3.3.3 Electrical Conductivity, Major Ions, and pH  

Pond 1 water levels in 2004 were low and declined to the point where the 

wetland was separated into three separate water bodies.  Mean EC of Pond 1 in 2004 

was 4526.67 µS cm-1 (±847.62 STD; n=6) or moderately brackish (2,000-5,000 µS cm-1) 

(Stewart and Kantrud, 1972).   Due to high water levels in 2005, conductivity decreased 

to 830.00 µS cm-1 (± 205.18 STD; n=3), but the wetland was still slightly brackish (500-

2,000 µS cm-1) (Stewart and Kantrud, 1972). 

Concentration of all major ions decreased from 2004 to 2005 in Pond 1, with the 

exception of HCO3
- which increased slightly from 175.67 (±547.62 STD; n=6) to 194.00 

mg L-1 (±67.02 STD; n=3).  In 2004 Pond 1 was dominated by magnesium (522.50 mg 

L-1 ±147.85 STD; n=6) and sulfate (3136.67 mg L-1 ±942.71 STD; n=6).  The rapid rise 

in water level in spring 2005 caused a considerable dilution effect in this year.  Water 

chemistry was dominated by calcium (72.33 mg L-1 ±19.86 STD; n=3) and sulfate 

(267.00 mg L-1 ±58.85 STD).  Mean DOC concentration in 2005 was 3.94 mg C L-1 

(±1.35 STD; n=2). 

At Pond 1 the seasonal mean pH in 2004 was 8.3 (±0.9 STD; n=21).  The pH in 

Pond 1 was highest in July and August (> 9.0 in both months).  In 2005 the pH was 

lower and the seasonal mean pH was 8.0 (±0.6 STD, n=97).  It increased seasonally 

from 7.2 (±0.2 STD; n=26) in July to 8.6 (±0.0 STD; n=11) in October.   

The percentage oxygen (O2) saturation in Pond 1 in 2005 changed throughout the 

summer.  Monthly mean percent O2 saturation in the water column was 50 (± 8 STD; 

n=6) in July and increased to almost 95% oxygen saturation in September (± 6 STD; 

n=24) and October (± 7 STD; n=11).  The water column was often super-saturated 

during the day with O2 saturation > 100%.  The high percent saturation is also reflected 
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in high redox potential of Pond 1, which was > 500 mV except for July.  Daily mean 

turbidity ranged between 5 and 10 national turbidity units (NTU) with the exception of 

October which was very turbid, monthly mean > 95 NTU. 

The EC of the DCW in 2005 was 1910.00 µS cm-1 (± 546.17 STD; n=3) and 

therefore slightly brackish (Stewart and Kantrud, 1972).  The DCW was a magnesium-

sulfate dominated wetland.  Sulfate concentration was 892.67 mg L-1 (± 315.85 STD; 

n=3), three times the concentration at Pond 1 in 2005.  Mean DOC concentration in the 

DCW was 2.38 mg C L-1 (±0.37 STD; n=3).  The water column in the DCW had very 

low percent oxygen saturation with monthly mean percent O2 saturation below 5.5 from 

July to September on dates sampled.  This is also reflected in the very low redox 

potential.  The monthly mean redox potential in July was 96 mV (±174; n=18) and 

decreased to -49 mV (±130; n=13) in September.  Of the months when turbidity was 

measured, July had the highest mean turbidity (28 NTU ±7 STD; n=18) and it decreased 

throughout the remainder of the season. 

 

3.3.4 Seasonal Patterns of Nitrous Oxide Emissions 

Nitrous oxide flux from the open water of Pond 1 in 2004 ranged from -1.47 to 

6.01 ng N2O-N m-2 s-1 and no seasonal pattern was evident (Figure 3.3a).  Nitrous oxide 

flux from the riparian area ranged from -0.51 to 8.11 ng N2O-N m-2 s-1 (Figure 3.3b).  

Fluxes were generally higher earlier in the season.  Nitrous oxide emissions from the 

open water of Pond 1 were low in 2005, ranging from -6.98 to 5.74 ng N2O-N m-2 s-1 

(Figure 3.3c).  No seasonal pattern was evident and Pond 1 appeared to act as a sink for 

N2O on most sampling days (i.e., negative flux values were observed).   
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 Mean daily emissions from the open water at the DCW were negligible and 

never exceeded 1.00 ng N2O-N m-2 s-1 (Figure 3.3d).  No seasonal pattern was evident 

for N2O flux.  Nitrous oxide flux from the riparian area did not exhibit a seasonal pattern 

either and measured fluxes were never greater than 2.50 ng N2O-N m-2 s-1 (Figure 3.3e). 

3.3.5 Diurnal Emissions 

Diurnal emission patterns were measured on three days at Pond 1 in 2005. The 

main intent was to determine if a diurnal correction should be applied to the mid-day gas 

measurements taken on all other sampling days. 

No consistent significant differences were found between daytime and nighttime 

emissions for N2O flux based on a Mann-Whitney U test at the 0.05 significance level 

(Table 3.1).  Therefore, no correction factor was applied to the cumulative emissions. 

Table 3.1 Mean daytime (0600h to 1800h) and nighttime (1800h to 0600h) nitrous oxide 
emissions from Pond 1 and the Deep Crop Wetland.  Standard deviations are in brackets   
(n=6). 

Date 0600 to 1800 1800 to 0600 
 ng N2O-N m-2 s-1 
 Pond 1 

May 31 -1.20 (14.89) -6.16  (29.09) 

July 5 1.90 (58.35) 2.98 (35.34) 

Aug 11 0.97 (27.17) 4.95 (25.24) 

   
 Deep Crop Wetland 

Aug 12   
open water -0.11 (1.62) 0.14 (1.90) 

riparian area -0.53 (1.91) 0.39 (0.85) 
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Figure 3.3  Seasonal variation in nitrous oxide flux from a) the open water of Pond 1 in 
2004, b) the riparian area of Pond 1 in 2004, c) the open water of Pond 1 in 2005, d) the 
open water of the Deep Crop Wetland in 2005 and e) the riparian area of the Deep Crop 
Wetland in 2005.  Error bars represent the standard error of the mean.  (Note change in 
scale of y axis.) 

3.3.6 Cumulative Emissions   
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Cumulative N2O emissions were 147.49 g N2O-N ha-1 194 d-1 (6.86 g CO2 eq m-2 

194 d-1) from the open water of Pond 1 in 2004.  Cumulative emissions from the riparian 

area were 203.57 g N2O-N ha-1 194 d-1 (9.47 g CO2 eq m-2 194 d-1).  In 2005 Pond 1 

appeared to be acting as a sink for N2O with cumulative emissions of -131.92 g N2O-N 

ha-1 179 d-1 (-6.14 g CO2 eq m-2 179 d-1).   

Cumulative emissions from the open water of the DCW in 2005 were 10.46 g 

N2O-N ha-1 191 d-1 (0.48 g CO2 eq m-2 191 d-1) while those from the riparian area were an 

order of magnitude greater (144.43 g N2O-N ha-1 191 d-1 ; 6.72 g CO2 eq m-2 191 d-1) and 

were similar to cumulative N2O emissions from the riparian area of Pond 1 in 2004.   

 

3.3.7 Correlation Analysis 

Spearman rank correlations were used to determine if there were correlations 

between any of the environmental variables measured (i.e., windspeed, air temperature, 

water temperature, pH, conductivity, turbidity, % oxygen saturation) and daily N2O flux 

from the open water of Pond 1 in 2004 and 2005.  Environmental variables were 

measured from July 14 to September 13 at the DCW in 2005 and the majority of gas 

sampling dates occurred prior to this, therefore correlation analysis was not undertaken 

for that data set.   

No significant correlations were found between N2O flux and any of the 

environmental variables measured at Pond 1 in 2004 and 2005. 

 

3.4 Discussion and Conclusions 

Wetlands that hold permanent water, such as Pond 1 and the DCW are not likely 

significant sources of N2O emissions.  Nitrous oxide fluxes from the two study wetlands 
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showed no consistent diurnal or seasonal patterns.  Nitrous oxide is produced when 

conditions are sub-optimal for denitrification, which is the dominant N2O producing 

process when water-filled pore space in soils is greater than 60% (van Cleemput, 1998).  

When the water-filled pore space exceeds 80% in soils N2 is the dominant gas produced 

(Veldkamp et al., 1998).  Wetlands holding permanent water would most likely facilitate 

the completion of the reaction and the formation of N2.  Nitrous oxide fluxes from Pond 

1 and the DCW were on the low side of the range of N2O fluxes (-10 to 23 ng N2O-N m-

2 s-1) observed by Tremblay et al. (2005) for 125 water bodies sampled across Canada.  

Tremblay et al. (2005) also found no significant relationships between N2O fluxes and 

the variables measured (i.e., water and air temperature, water colour and transparency, 

depth, pH, alkalinity, wind velocity).   

Highest mean daily N2O flux from the open water wetlands in this study are also 

lower than those reported from the surrounding uplands at St. Denis and other 

agricultural regions.  Highest mean daily N2O flux measured in a previously cultivated 

landscape seeded to grass at the St. Denis site was 25.3 ng N2O-N m-2 s-1 (Yates et al., 

2006).  In an agricultural region of the Alberta parkland, the highest mean flux reported 

was 97.2 ng N2O-N m-2 s-1 (Lemke et al., 1998).  Highest mean fluxes found in this 

study were 6.01 ng N2O-N m-2 s-1 from the open water and 8.11 ng N2O-N m-2 s-1 from 

the riparian area, both occurring at Pond 1 in 2004.  Cumulative N2O emissions from 

cultivated convex (i.e., hilltop) landscape units at St. Denis were 758.3 g N2O-N ha-1 

108.5 d-1  in 2003, -20.2 g N2O-N ha-1 232.5 d-1 in 2004, and 228.4 g N2O-N ha-1 231.5 

d-1  in 2005 (Yates, 2006), exceeding cumulative emissions from Pond 1 and the DCW 

in two of the three years.   
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Temporary or more ephemeral wetlands that are prone to drying seasonally may 

provide more favorable conditions for N2O emissions.  Ephemeral wetlands at St. Denis 

showed high N2O flux events during the 2005 dry-down period, but this was not evident 

at all wetlands studied (Yates, 2006).  Yates (2006) reported cumulative N2O emissions 

from cultivated depressions at the St. Denis site at 1616.7 g N2O-N ha-1 231.5 d-1 and 

2098.7 g N2O-N ha-1 231.5 d-1 from the basin center of uncultivated wetlands in 2005. 

Pond 1 and the DCW were negligible sources of N2O.  The presence of 

permanent water most likely produced conditions that allowed denitrification to proceed 

to completion forming N2 rather than N2O.  Climate may be an important variable 

regulating N2O flux from wetlands as periods of water level dry-down have shown to 

promote N2O flux events at certain times (Yates, 2006).  Although it is unlikely that 

Pond 1 or the DCW would dry-down completely it is possible that a zone or margin 

around the periphery of the wetland could dry-down seasonally dependent on the 

environmental conditions in a given year and these areas could be sources of N2O.  This 

emphasizes the importance of climate as a variable when considering greenhouse gas 

emissions and the importance of inventorying emissions from wetlands of different 

permanence classes over a number of years as there could be within and between season 

variations in environmental conditions that may affect N2O flux.  
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4.0 GASEOUS CARBON LOSSES AND RELATIONSHIP TO ALGAL 

DYNAMICS, WATER CHEMISTRY, AND ENVIRONMENTAL VARIABLES 

IN TWO PRAIRIE WETLANDS 

 

4.1 Introduction 

The prairie pothole region (PPR) of North America encompasses approximately 

780 000 km2 (Mitsch and Gosselink, 1993).  This region contains a high density of 

wetlands and is deemed one of the world’s most important wetland areas (Mitsch and 

Gosselink, 1993).  Although the value and importance of prairie wetlands is beginning to 

be recognized, they are still under-studied and the role they play as greenhouse gas sinks 

or sources is only poorly understood. 

Wetlands store carbon in living and dead organic matter and accrete organic 

carbon through primary production (autochthonous) and terrestrial inputs 

(allochthonous) (Kalff, 2002).  Carbon dioxide (CO2) emissions from wetlands arise 

from autotrophic and heterotrophic respiration as well as CO2 produced through 

decomposition (Blais et al., 2005).   Carbon transformation processes also contribute 

methane (CH4) from wetlands to the atmosphere.  Natural wetlands, mostly peatlands 

and tropical wetlands, contribute roughly 115 Tg CH4 to the atmosphere annually 

(Bartlett and Harris, 1993).  Methane is the end product in the anaerobic decomposition 

of organic matter.  Accumulation of large amounts of organic matter and anaerobic 

conditions provide a favorable environment for CH4 production (Christensen et al., 
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2003).  Wetlands often have productive zones of benthic algae inhabiting surficial 

sediments, producing an oxygenated micro-zone (King, 1990).  Methanotrophic bacteria 

inhabiting this zone are active in the consumption of CH4 and its oxidation to CO2 

(Schlesinger, 1997).  Methane emissions to the atmosphere are therefore a result of CH4 

production in the anoxic sediments minus CH4 oxidation that occurs at both the 

sediment-water interface and throughout the water column (Bussmann, 2005; 

Schlesinger, 1997).     

Researchers have found positive correlations between net ecosystem production 

(Whiting and Chanton, 1993), net primary production (Aselmann and Crutzen, 1989; 

Xing et al., 2005), algal Chlorophyll – a (Chl – a) (Xing et al., 2005) and CH4 and CO2 

fluxes.  Primary production may stimulate methanogenesis through increasing organic 

substrates and through the production of autochthonous organic matter (Whiting and 

Chanton, 1993; Xing et al., 2005).  This suggests that more productive wetlands may 

have higher CH4 emissions due to the higher algal and macrophyte biomass and that less 

productive wetlands may have lower CH4 emissions.  These relationships may not hold 

true for the eutrophic wetlands found on the prairies; high productivity during the day 

can result in diurnal changes in oxygen saturation of the water column (Kalff, 2002) and 

may result in CH4 oxidation (Schlesinger, 1997).  

The purpose of this study was to assess spatial and temporal variation in CO2 and 

CH4 emissions from two prairie wetlands and co-variation between emissions and algal 

dynamics at the two sites.  The two sites have strongly contrasting water chemistry and 

biological attributes.  The specific objectives of this study were 1) to determine the ice-

free seasonal greenhouse gas flux from the two wetlands, 2) to determine the algal and 

macrophyte biomass in the two wetlands, and 3) to measure select biological parameters 
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and environmental variables, and to determine which, if any, correlate to the greenhouse 

gas flux. 

 

4.2 Materials and Methods 

4.2.1 Field Site and Sampling Design 

 Research was conducted at two study sites: one in Saskatchewan and one in 

Manitoba.  Pond 1 is located in the St. Denis National Wildlife Area, 40 km east of 

Saskatoon, Saskatchewan, Canada (52º 12’N latitude, 106º 5’W longitude).  Pond 1 is 

dominated by an open-water phase and is classified as a semi-permanent wetland (Class 

IV), with greater than 95% open water (Cover type 4).  It is distinguished from a 

permanent wetland (Class V) by the submerged vegetation present, which was 

dominated by Ceratophyllum spp. in 2005 (Steward and Kantrud, 1971).  The 

surrounding landscape is hummocky till terrain with unsorted calcareous till and glacio-

lacustrine parent material and is dominated by Dark Brown Chernozemic soils (Yates et 

al., 2006).  Mean annual precipitation in Saskatoon between 1971 and 2001 was 350 

mm, of which 97 cm fell as snow (Environment Canada, 2004).  Snowmelt runoff is 

critical to recharge water levels of prairie wetlands in the spring (LaBaugh et al., 1998) 

as evaporative loss can be 600-1000 mm, which generally exceeds precipitation (van der 

Kamp et al., 2003).  Mean annual temperature between 1971 and 2001 was 2.2 ºC 

(Environment Canada, 2004).   

 The second study site was the Deep Crop Wetland (DCW), located at the 

Manitoba Zero Till Research Association farm (MZTRA).  The study site is 

approximately 20 km north of Brandon, Manitoba, Canada in the PPR.  The DCW is a 

semi-permanent (Class IV) wetland dominated by an open-water zone occupying the 
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central and deepest part of the wetland and is surrounded by a zone of deep-marsh 

vegetation composed of a dense cattail (Typha) ring in the littoral zone (Stewart and 

Kantrud, 1971).  The site is gently sloping (2 to 5%) hummocky terrain formed over 

calcareous glacial till and Orthic Black Chernozems are dominant (Podolsky and 

Schindler, 1994).  Mean annual precipitation in Brandon between 1971 and 2001 was 

472 mm, of which 112 cm fell as snow. Mean annual temperature was 1.9 ºC over that 

same time period (Environment Canada, 2004). 

 

4.2.2 Water Temperature, Water Depth, and Climate Data 

 Water depth, ambient air temperature, and water temperature at 5-cm below the 

surface were measured at Pond 1 at the time of gas sampling at each pair of chamber 

locations along the dock using a Barnant DuaLogRTM (Barnant Company, Barrington, 

IL).   

At the DCW in 2005 water depth was measured on each sampling date at each 

pair of chambers.  Surface temperature and temperature at 5-cm above the surface was 

measured at each pair of chambers along the transect.  Air temperature and soil 

temperature were measured at each stacking and small chamber on each sampling date 

using a ChecktempTM 1 Pocket Thermometer (Hanna Instruments, Mauritius).   

 

4.2.3 Water Quality and Chemistry  

 Water samples were collected for nutrient analysis a minimum of three times 

throughout the ice-free season in 2004 and 2005 at Pond 1 and in 2005 at the DCW.  

Samples were analyzed by Enviro-test labs (Saskatoon, SK; Brandon, MB) for total 

nitrogen (TN), ortho-phosphorous (OP), and total phosphorous (TP),  bicarbonate 
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(HCO3), sulfate (SO4), chloride (Cl), sodium (Na), magnesium (Mg), potassium (K), 

calcium (Ca), total dissolved solids (TDS), and electrical conductivity (EC) (APHA, 

1998).  In 2004, pH was measured using a pH meter (pHITM, Beckman) and electrical 

conductivity using a conductivity meter (Radiometer, Copenhagen).  A Hydrolab® DS 

5X (HACH Environmental, Colorado) logged dissolved oxygen, turbidity, pH, 

temperature, redox, and electrical conductivity on an hourly basis in both wetlands in 

2005.  The Hydrolab® was deployed in Pond 1 from June 23 to October 11, 2005 and in 

the DCW from July 14 to Sept 13, 2005. 

  

4.2.4 Macrophyte Biomass  

To assess areal macrophyte biomass (g m-2), entire above-sediment portions of 

submersed macrophytes were collected from a known surface area from each wetland in 

June, July, and August of 2005.  An open-ended plastic cylinder was used to delineate a 

known bottom area (0.23 m2) and long-handled shears were used to cut enclosed 

macrophytes at the sediment surface (McDougal, 2002).  For emergent macrophytes, the 

entire above-ground portion of the plants was harvested from a known surface area at 

their growth peak.  All macrophyte samples were dried to a constant weight at 104 °C 

for determination of dry-weight biomass per unit area.  

 

4.2.5 Algal Biomass  

 Chlorophyll-a was measured weekly during the growing season in 2005 as a 

determination of algal biomass.  Algal assemblages measured were phytoplankton (i.e., 

free floating in the water column), periphyton (i.e., attached to surfaces), and 

metaphyton (i.e., forming filamentous mats).  Phytoplankton was collected from May 12 
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to October 11, 2005 at Pond 1 and June 6 to October 11, 2005 at the DCW.  Depth-

integrated water column samples were collected with a stoppered acrylic tube (60-cm 

length, 7-cm inner diameter), and filtered in the dark onto 47-mm diameter 1.2-µm pore 

size glass microfibre filters (grade GF/C, Whatman International Ltd., England) to 

isolate the pelagic phytoplankton.  Samples were subsequently frozen to promote cell 

lysis.  Thawed filters were placed in 10 mL of 90% ethanol in a hot-water bath (80 ºC) 

and were allowed to boil for five minutes to extract the Chl-a.  Filters were discarded 

and the extract volume was measured and then transferred to a borosilicate cuvette.  

Chlorophyll-a was then determined using a Turner Designs Model 10-AU fluorometer 

(Turner Designs Inc.) (Nusch, 1980).  Chlorophyll-a was calculated as µg L-1 for 

phytoplankton. 

 Periphyton was collected by inserting pre-scored acrylic rods into the sediment 

thereby providing an artificial stratum for algae to colonize (Goldsborough et al., 1986).  

Sixty-six acrylic rods (0.64-cm diameter) were installed on May 12, 2005 at Pond 1 and 

on June 9, 2005 at the DCW.  After colonization for one week, samples were collected 

weekly until October 4, 2005 at Pond 1 and October 11, 2005 at the DCW.   Acrylic rods 

were 90 cm in length; 30 cm were inserted vertically into the sediment (50-cm apart) and 

the 30-cm sampling zone was pre-scored at 2.5-cm increments.  Rods were installed 

with 10 cm to 30 cm of water above the tip of the rod. Triplicate acrylic rods were 

sampled each week.  Three sub-samples were collected from each rod at upper, mid, and 

lower positions.  Rod sections were placed in labeled vials and transported back to the 

laboratory where they were frozen until analysis.  Acrylic rod sections did not withstand 

the boiling ethanol treatment.  Consequently, Chl-a was extracted by placing rod 

sections in 10 mL of 90% ethanol for 24-hours and then sonicating for 3 to 4 minutes to 
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detach algae.  Chlorophyll-a was then determined as for phytoplankton and is presented 

as µg cm-2. 

Metaphyton was collected when present.  A styrofoam block (530 cm2) was 

lowered into the water and was gently raised to bring metaphyton to the surface (Gurney 

and Robinson, 1988; Robinson et al., 1997a).  Triplicate metaphyton samples were 

removed with a 1.27-cm-diameter copper corer from high, medium, and low mat 

densities.  Samples were then placed in labeled vials and transported back to the lab 

where they were frozen until analysis.  Chlorophyll-a was determined using the same 

method as for phytoplankton, except that the entire core was placed in ethanol and 

biomass was calculated as µg cm-2.   

 

4.2.6 Greenhouse Gas Flux 

 Detailed information on sampling design for gas analysis and the analytical 

protocols for gas chromatography is provided in Phipps (2006) (Chapter 3).   

 

4.2.7 Pond Sampling 

 Greenhouse gas emissions at Pond 1 were sampled in 2004 and 2005.  Sampling 

took place on a weekly basis from April 7, 2004 until October 12, 2004 at Pond 1 

between 1000 and 1400 hours.  An open water transect of 12 chambers was located 

along a dock that started at the water’s edge.  Two riparian area transects of 12 chambers 

each were also installed.  Samples of headspace gas were collected at intervals of 0, 20, 

40, and 60 minutes for open water chambers and intervals of 0, 8, 16, and 24 minutes for 

riparian chambers.  
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  Snowmelt runoff caused a rapid rise in water level in 2005 and destroyed the 

dock used in 2004, necessitating a change in sampling design.  A wooden dock was used 

to access six sampling stations that started at the water’s edge and two floating platforms 

located in the open water of the pond housed five chambers each.  Sampling was 

conducted on a bi-weekly basis from April 28 until October 11.  Samples of headspace 

gas were taken as in 2004, except they were collected at intervals of 0, 8, 16, 24, 40, and 

60 minutes.   

Gas sampling was conducted on nine sampling dates at the DCW between April 

15, 2005 and October 2, 2005 by University of Manitoba staff.  Twelve chambers were 

used; six soil chambers were located in the riparian area and six chambers were located 

over the open water.  Gas samples were collected from the headspace at 30 and 60 

minutes after chamber deployment.  Ambient air samples were taken and those 

concentrations were averaged and used as the t0 concentration for the day.  Sampling 

was conducted between 0900 and 1400 hours.   

 

4.2.8 Diurnal Variation in Greenhouse Gas Emissions 

Routine sampling of greenhouse gases occurred from 0900 to 1400 hours.  If, 

however, a distinct diurnal pattern in emissions occurs then the mid-day measurements 

may need to be corrected to reflect true 24-hour emission values.  To assess diurnal 

emission patterns, sampling was conducted over 24-hours on three dates during the ice-

free season at Pond 1 in 2005.  Sampling took place every two hours between 1000 and 

0800 the following day.  Measurements of greenhouse gases over 24-hours occurred on 

August 12, 2005 at the DCW.  Five chambers were sampled, two in the open water and 
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three in the riparian area.  Sampling took place every two hours between 0800 and 0600 

the following day.  Samples were taken at intervals of 0, 8, 16, 24, 40, and 60 minutes.   

 

4.2.9 Stacking vs. Small Chambers  

 Flux measurements made from small chambers placed between emergent plants 

may underestimate total emissions if gas is emitted from the vegetation itself (Chanton 

et al., 1993).  A transect was established with both small and stacking chambers to 

assess the possible effect of this emission pathway.  This was done to determine if there 

were differences in gas flux from stacking chambers with intact riparian vegetation and 

small chambers placed in the riparian area with vegetation trimmed.  Gases were 

sampled bi-weekly from June 9, 2005 to October 11, 2005 at the DCW.  Six chambers 

were used in total, of which three were small PVC-chambers with a headspace volume 

of 1.62 L covering a surface area of 0.03 m2. Vegetation inside the chamber was 

trimmed periodically.  The remaining three chambers were made of three stackable 

pieces of PVC pipe.  Stacking chambers had a headspace volume of 14.02 L, covered a 

surface area of 0.03 m2, and were 46 cm above the soil surface.  Vegetation within the 

stacking chambers was unaltered.  Gas samples were taken at intervals of 0, 8, 16, 24, 

40, and 60 minutes.   

 

4.2.10 Gas Analysis 

 Concentration of CO2 in gas samples from Pond 1 was determined using a 

Varian CP 3800 gas chromatograph (GC) using a thermal conductivity detector (TCD) 

(Varian Canada Inc.  Mississauga, ON).   The analytical column was a 1.83-m x 3.18-

mm i.d., 80/100 mesh Porapak QS.  The carrier gas was He with a flow rate of 30 mL 
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min-1.  Concentration of CH4 was determined with a flame ionization detector (FID) 

(Varian Canada Inc, Mississauga, ON).  The analytical column was a 1.83-m x 3.18-mm 

i.d., 80/100 mesh Porapak QS.  The carrier gas was He with a flow rate of 30 mL min-1.  

Samples (2.5 mL) were drawn using a CombiPALTM autosampler (CTC Analytics AG, 

Switzerland) from a 12-mL ExetainerTM.  System calibration was obtained using 

standard gases (Praxair Gases, Edmonton, AB) composed of 385 µL L-1 CO2, and 1.46 

µL L-1 CH4.   Data processing was completed using Varian Star TM Chromatography 

Workstation (ver. 6.2) software.  

Greenhouse gas concentrations for samples from the DCW were determined 

using a Varian CP 3800 GC (Varian Canada Inc. Mississauga, ON) housed at the 

University of Manitoba.  Concentration of CO2 was determined using a TCD (Varian 

Canada Inc.  Mississauga, ON).  Concentration of CH4 was determined with a FID 

(Varian Canada Inc, Mississauga, ON).  The analytical column was a 200-cm x 0.3175-

cm, 80/100 mesh Porapak QS, and 50-cm x 0.3175-cm, 80/100 Hayesep N.   

 Minimum detectable concentration differences and curve fitting for calculation 

of flux were done following the procedures discussed in Phipps et al. (2006) (Chapter 3).   

Methane can be emitted through ebullition or “bubble” events.  Gas builds in the 

sediment pore space to a point of supersaturation and is then released as a bubble 

(Tremblay et al., 2005).  Chamber based methods of measuring greenhouse gases are 

designed to determine diffusive gas emissions over a period of time and consequently 

are not the appropriate method to measure instantaneous bubble events.  To determine 

diffusive CH4 flux, bubbles had to be defined and identified.  Methane bubbles were 

defined as an increase in concentration of ≥ 3.5 µL L-1 (i.e., greater than 2 times the 

atmospheric concentration of CH4) between time steps and an increase in concentration 
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of all subsequent time steps of < 3.5 µL L-1.  When a CH4 bubble was identified as a t0 

or t60 point then that point was dropped and the linear equation of the three remaining 

points was used to calculate flux.  If the CH4 bubble occurred in the middle of a run then 

the average slope of the line before and after the bubble was used to determine flux 

(following Matthews et al. 2003). 

 

4.2.11 Cumulative Emissions 

 Interpolation of daily fluxes between sampling dates was used to determine the 

cumulative emissions for the sampling period.  Interpolation between sampling dates 

followed Yates (2006), where the mean flux for a gas on a particular sampling date was 

multiplied by the time interval (days) between sampling dates.   To determine the 

cumulative estimate, results were summed over the sampling period.  

 Carbon dioxide equivalents were calculated by multiplying CH4 values by 23 for 

a 100 year time horizon (IPCC, 2001). 

 

4.2.12 Statistical Analysis 

 Statistical analysis was completed using SPSS (ver 14.0).  Carbon dioxide and 

CH4 flux data was not normally distributed.  Data was log-transformed and still did not 

approximate a normal distribution, and therefore non-parametric statistics were used.  To 

test for significant differences between daytime and nighttime fluxes of both gases a 

Mann-Whitney U test was performed at the 0.05 significance level.  Spearman rank 

correlation analysis was used to determine if relationships exist between daily 

greenhouse gas flux and environmental variables measured (i.e., windspeed, air and 
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water temperature, pH, redox potential, conductivity, turbidity, percent oxygen 

saturation). 

 

4.3 Results 

4.3.1 Environmental Variables 

 The 2004 and 2005 seasons at Pond 1 were particularly wet, exceeding the 30 

year precipitation normal.  Cumulative precipitation during the 2004 season was 485 

mm and 450 mm during the 2005 season.  The month of June was especially wet in both 

years:  165 and 216 mm in 2004 and 2005, respectively.  The long-term average 

cumulative precipitation for April to October is 281 mm (including snowfall).  Average 

temperature from April to October was 9.9 ºC, slightly below the seasonal normal 

(Environment Canada, 2004).   

Cumulative precipitation from April to October as measured at the Brandon 

Airport was 463 mm, exceeded the climate normal by 80 mm.  The ice-free season in 

Brandon in 2005 was slightly warmer than the 30-year climate normal with an average 

temperature of 12.2 ºC from April to October (Environment Canada, 2004). 

 

4.3.2 Nutrients 

 Total nitrogen (TN) and total phosphorous (TP) concentrations were 4.39 mg L-1 

(±1.69 STD; n=5) and 0.60 mg L-1 (±0.83 STD; n=6), respectively in Pond 1 in 2004.  

Nutrient concentrations in Pond 1 decreased from 2004 to 2005 (1.63 mg L-1 TN ±0.32 

STD; n=3 and 0.30 mg L-1 TP ±0.17 STD; n=3).  A macro-nutrient molar ratio of 

106C:16N:1P has been established for marine phytoplankton; TN:TP ratios below or 

above this ratio can result in nutrient limitations (Redfield et al., 1963).  Total 
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phosphorous concentrations in April and June of 2005 were below the minimum 

detection limit of the lab (0.20 mg L-1).  Depending on the actual concentration, Pond 1 

may have been P-limited (TN:TP ratio >7:1 by mass) in the spring and N-limited 

(TN:TP ratio <7:1 by mass) in mid summer. 

 Nutrient concentrations, TN and TP, increased through the season at the DCW in 

2005 and averaged 2.20 (±0.62 STD; n=3) and 0.28 mg L-1 (±0.19 STD; n=3), 

respectively.  The TN:TP ratio in May was 21:1 by mass indicating that the DCW was 

P-limited.  By August the wetland had switched to a slight N-limitation with a TN:TP 

ratio of 6:1 by mass.   

 

4.3.3 Electrical Conductivity, Major Ions, and pH  

Water levels in Pond 1 in 2004 were low and had declined to the point that the 

wetland was separated into three separate water bodies.  The wetland was moderately 

brackish (2,000-5,000 µS cm-1) (Stewart and Kantrud, 1972) with a mean EC of 4526.67 

µS cm-1 (±847.62 STD; n=3).   Conductivity decreased to 830.00 µS cm-1 (±205.18 

STD; n=3) in 2005 due to the high water levels in 2005, and the wetland was slightly 

brackish (500-2,000 µS cm-1) (Stewart and Kantrud, 1972). 

From 2004 to 2005 the concentration of all major ions decreased in Pond 1, with 

the exception of HCO3 which increased slightly from 175.67 (±122.61 STD; n=6) to 

194.00 mg L-1 (±67.02; n=3).  Magnesium (522.50 mg L-1 ±147.85 STD; n=6) and 

sulfate (3136.67 mg L-1 ±942.71 STD; n=6) ions dominated Pond 1 in 2004.  In the 

spring of 2005, the rapid rise in water level caused a considerable dilution effect and the 

wetland was dominated by calcium (72.33 mg L-1 ±19.86 STD; n=3) and sulfate (267.00 
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mg L-1 ±58.85 STD; n=3).  The mean dissolved organic carbon (DOC) concentration in 

2005 was 3.94 mg C L-1 (±1.35 STD; n=2). 

Seasonal mean pH in 2004 was 8.3 (±0.9 STD; n=21).  July and August had the 

highest mean pH, over 9.0 in both months.  pH was lower in 2005 and the seasonal mean 

pH was 8.0 (±0.6 STD; n=97).  It increased through the season from a mean of 7.2 (±0.2 

STD; n=26) in July to 8.6 (±0.0 STD; n=11) in October.   

The DCW was slightly brackish in 2005 with an EC of 1910.00 µS cm-1 

(±546.17 STD; n=3) (Stewart and Kantrud, 1972).  The DCW was dominated by 

magnesium and sulfate.  Sulfate concentration was 892.67 mg L-1 (±315.85 STD; n=3), 

which is three times the concentration of Pond 1 in 2005.  The mean DOC concentration 

in the DCW was 2.38 mg C L-1 (±0.37 STD; n=3).  

 

4.3.4 Macrophyte and Algal Dynamics 

 Submerged and emergent macrophyte dry-weight was substantially higher in the 

DCW than Pond 1 in 2005 (Figure 4.1).  Pond 1 was dominated by open water in 2005 

with sparse emergent vegetation made up of bulrush (Scirpus spp.).  Submerged 

macrophytes did not appear until mid-July and percent cover increased in August and 

was mainly composed of coontail (Ceratophyllum demersum).  The dry-weight biomass 

of submerged and emergent macrophytes in August was 111.3 (±25.4 STD; n=3) g m-2 

and 85.0 (±125.2 STD; n=3) g m-2, respectively. 

Open water at the DCW was surrounded by a dense ring of cattails (Typha spp.).  

Giant water moss (Fontinalis spp.) was the dominant submerged macrophyte, and ivy-

leaved duckweed (Lemna trisulca) was also present.  Submerged macrophyte dry-weight 

in August was 2168.8 (±1322.9 STD; n=3) g m-2.  Emergent macrophyte dry-
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Figure 4.1 Dry-weight biomass of submerged and emergent macrophytes in 
August 2005 at Pond 1 and the Deep Crop Wetland. Error bars represent the 
standard deviation.
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weight was 1200.2 (±605.6 STD; n=3) g m-2, 15-times greater than that at Pond 1 

(Figure 4.1). 

Seasonal mean phytoplankton biomass during the ice-free season in Pond 1 was 

4.5 µg L-1 (±4.0 STD; n=23) (Figure 4.2).  Phytoplankton biomass peaked on June 8 at 

17.6 µg L-1, followed by a rapid decline or “clear water phase”.  Phytoplankton biomass 

remained low until August 4 when it peaked again at 12.8 µg L-1, and then gradually 

declined throughout the remainder of the season.  

 Seasonal mean phytoplankton biomass in the DCW was higher than Pond 1 in 

2005 (87.3 µg L-1 ±107 STD; n=20).  Phytoplankton biomass was moderate (< 16 µg L-

1) until late July when it increased until late September, peaking at 369.6 µg L-1 (Figure 

4.2).  Phytoplankton biomass remained high until the end of the sampling season in mid-

October.   

 Seasonal mean periphyton biomass was 781.4 µg cm-2 (±943.7 STD; n=20) in 

Pond 1 in 2005 (Figure 4.2).  Periphyton biomass in Pond 1 was greatest from mid June 

to mid July after which it rapidly declined and remained low until the end of the season.  

Upper sections of periphyton rods had mean biomass concentrations greater than 

biomass concentrations on mid and lower rod segments.   

 Seasonal mean periphyton biomass was 575.2 µg cm-2 (±353.5 STD; n=19) in 

the DCW in 2005 (Figure 4.2).  Upper sections of the periphyton rod had biomass 

concentrations higher than the mid and lower rod segments.  Periphyton biomass 

gradually increased from the start of the season until late September after which it 

declined.   

Metaphyton was present on 18 of 23 sampling dates in Pond 1 in 2005.  Seasonal 

mean metaphyton biomass was 3972.6 µg cm-2 (±4129.6 STD; n=18) (Figure 4.2).  
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Figure 4.2 Seasonal algal biomass in Pond 1 and the Deep Crop Wetland (DCW) in 
2005.  Error bars represent the standard deviation.  (Note change in scale of y axis). 
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 Metaphyton biomass was low until late July.  Metaphyton biomass peaked at the end of 

September at 10 131.8 µg cm-2.  

 Metaphyton was present at the DCW on 16 of 20 sampling dates.  Metaphyton 

biomass was high throughout the season and peaked in mid August at 69 318.4 µg cm-2 

(Figure 4.2).  Seasonal mean metaphyton biomass was 31 806.3 µg cm-2 (±37 265.7 

STD; n=16), which is seven-times higher than seasonal mean metaphyton biomass in 

Pond 1. 

 

4.3.5 Diurnal Patterns of Greenhouse Gas Emissions 

 Methane and CO2 exhibited a diurnal pattern on all three 24-hour sampling dates 

at Pond 1.  Daytime emissions (0600 to 1600 h) were significantly greater than nighttime 

emissions (1800 to 0400 h) (p=0.05) (Table 4.1).  The nighttime emissions were divided 

by the daytime emissions for each 24-hour sampling date and the mean was taken as the 

correction factor.  When calculating the cumulative emissions the correction factor was 

used to account for the lower CH4 and CO2 fluxes from the open water during the 

nighttime period, nighttime flux was equal to daytime flux multiplied by 0.4958 and 

0.4706, respectively.   
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Table 4.1 Mean daytime (0600h to 1800h) and nighttime (1800h to 0600h) methane and 
carbon dioxide emissions from Pond 1 and the Deep Crop Wetland.  Standard deviations 
are in brackets (n=6). 

Date 0600 to 1800 1800 to 0600 0600 to 1800 1800 to 0600 
 µmol CH4 m-2 d-1 mmol CO2 m-2 d-1 
 Pond 1 

May 31 85.4 (236.9) 46.7 (114.9) 12.0 (39.7) 2.5 (62.5) 
Jul 5 2032.9 (6279.5) 1383.0 (5577.7) 53.2 (32.4) 36.4 (23.2) 

Aug 11 1222.2 (4725.1) 318.4 (174.7) 28.4 (30.2) 14.9 (27.3) 
     
 Deep Crop Wetland open water 

Aug 12 158.7 (48.4) 106.4 (45.2) 64.0 (26.3) 65.5 (33.6) 
 Deep Crop Wetland riparian 

Aug 12 9.2 (16.8) 5.9 (47.4) 142.1 (101.7) 147.6 (61.9) 
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4.3.6 Seasonal Methane Emissions  

Methane emission from the open water of Pond 1 in 2004 displayed a seasonal 

pattern.  Fluxes were generally higher in July and early August and lowest in September 

and October.  Fluxes ranged from -251.55 to 191.55 µmol CH4 m-2 d-1 (Figure 4.3a).  

Negative flux values observed in September and October 2004 in the open water of 

Pond 1 indicated that the wetland acted as a sink for CH4 at this time.  A seasonal pattern 

for CH4 emissions from the riparian area was not as evident but generally fluxes were 

lower later in the season.  That being said, highest CH4 flux from the riparian area 

occurred on the 7th of October.  Methane flux ranged from -80.35 to 148.65 µmol CH4 

m-2 d-1 (Figure 4.3b). 

Methane emissions from the open water of Pond 1 in 2005 displayed a seasonal 

trend with emissions peaking on July 5 (Figure 4.3c).  Methane emissions here ranged 

from -469.10 to 3776.08 µmol CH4 m-2 d-1.  Fluxes were low from April to July and 

from mid-August to the end of the sampling season. 

A seasonal pattern in CH4 emissions from the open water at the DCW was also 

evident (Figure 4.3d).  Mean daily emissions were low until mid-September when they 

peaked at 110.47 µmol CH4 m-2 d-1.  Daily CH4 flux ranged from -13.64 to 110.47 µmol 

CH4 m-2 d-1.  Methane flux from the riparian area at the DCW in 2005 ranged from -4.51 

to 40.23 µmol CH4 m-2 d-1 (Figure 4.3e).  Methane flux peaked on June 28th and declined 

until the end of the sampling season. 
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Figure 4.3  Seasonal variation in methane flux from a) the open water of Pond 1 in 2004, 
b) the riparian area of Pond 1 in 2004, c) the open water of Pond 1 in 2005, d) the open 
water of the Deep Crop Wetland 2005 and e) the riparian area of the Deep Crop Wetland 
in 2005.  Error bars represent the standard error of the mean.  (Note the change in scale 
of the y axis).
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 Cumulative CH4 emissions from the open water of Pond 1 in 2004 were 0.92 

mmol CH4 m-2 170.5 d-1 (0.34 g CO2 eq m-2 170.5 d-1) and 1.60 mmol CH4 m-2 170.5 d-1 

(0.59 g CO2 eq m-2 170.5 d-1) from the riparian area.  Cumulative emissions from the 

open water of Pond 1 in 2005 were corrected for diurnal variation in emissions.  

Cumulative emissions for the 2005 season were 94.40 mmol CH4 m-2 179 d-1 (34.90 g 

CO2 eq m-2 179 d-1) from Pond 1. 

Cumulative emissions for the open water at the DCW were low in 2005.  

Cumulative emissions from the open water were 4.61 mmol CH4 m-2 191 d-1 (1.70 g 

CO2
eq m-2 191 d-1), 20-times lower than emissions calculated for Pond 1 in the same 

year.  Methane emissions from the riparian area were also very low in 2005.  At 1.79 

mmol CH4 m-2 191 d-1 (0.66 g CO2
eq m-2 191 d-1), these emissions were similar to 

cumulative emissions from the riparian area of Pond 1 in 2004.   

 

4.3.7 Seasonal Carbon Dioxide Emissions 

Carbon dioxide emissions from Pond 1 displayed a seasonal pattern (Figure 

4.4a).  Emissions remained low (< 50 mmol CO2 m-2 d-1) until early June at which time 

emissions peaked at 95.42 mmol CO2 m-2 d-1, but then started to gradually decline. By 

late August Pond 1 acted as a CO2 sink.  Fluxes remained negative until the end of the 

sampling season. Carbon dioxide flux ranged from -96.42 to 95.42 mmol CO2 m-2 d-1.  

 Carbon dioxide emissions from the open water at the DCW also showed a 

seasonal pattern with emissions peaking on July 27 (Figure 4.4b).  Carbon dioxide flux  
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Figure 4.4 Seasonal variation in carbon dioxide flux from a) the open water of Pond 1 in 
2005, b) the open water of the Deep Crop Wetland in 2005 and c) the riparian area of the 
Deep Crop Wetland in 2005.  Error bars represent standard error of the mean.  (Note the 
change in the scale of the y axis). 
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from the open water ranged from 3.21 to 38.94 mmol CO2 m-2 d-1.  Carbon dioxide 

emissions from the riparian area were consistently higher than from the open water.  

Carbon dioxide flux from the riparian area ranged from 12.79 to 88.09 mmol CO2 m-2 d-

1, with highest fluxes occurring in late July (Figure 4.4c).   

Cumulative CO2 emissions from the open water were corrected for the diurnal 

variation in emissions. Cumulative CO2 emissions from the open water of Pond 1 in 

2005 were 3135.30 mmol CO2 m-2 179 d-1 (138.12 g CO2 m-2 179 d-1).  Cumulative 

emissions from the DCW were 2664.58 mmol CO2 m-2 191 d-1 (117.38 g CO2 m-2 191 d-

1), similar to those found at Pond 1 in 2005.  Cumulative emissions from the riparian 

area were 3.5 times greater than from the open water: 9312.54 mmol CO2 m-2 191 d-1 

(410.24 g CO2 m-2 191 d-1).   

  

4.3.8 Stacking vs. Small Chambers 

 The seasonal cumulative emission calculated using small chambers may be in 

error if significant emissions occur through plants.  Methane emissions from the stacking 

chambers with intact vegetation ranged from -752.10 to 1420.15 µmol CH4 m-2 d-1 

(Figure 4.5).  Methane emissions from the paired small chambers with trimmed 

vegetation showed a similar pattern with highest and lowest mean fluxes occurring on 

the same sampling dates.  Cumulative CH4 emissions from the stacking chambers and 

paired small chambers were similar, 13.96 and 10.55 mmol CH4 m-2 137.5 d-1, 

respectively, even though the means for the sampling dates were different. 

Carbon dioxide emissions from the stacking chambers with intact vegetation 

were consistently higher than from the paired small chambers with trimmed vegetation 

(Figure 4.5).  
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Figure 4.5 Methane and carbon dioxide flux from the stacking and small chambers at the 
Deep Crop Wetland in 2005.  Error bars represent the standard error of the mean. (Note 
the change in scale of the y axis.)
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Cumulative emissions from the stacking chambers with intact vegetation were 55 011 

mmol CO2 m-2 137.5 d-1 compared to 12 897 mmol CO2 m-2 137.5 d-1 from the paired 

small chambers with trimmed vegetation.   

 

4.3.9 Correlation Analysis 

Spearman rank correlations were used to determine if relationships exist between 

environmental variables measured (i.e., windspeed, air and water temperature, pH, redox 

potential, conductivity, turbidity, percent oxygen saturation) and daily greenhouse gas 

flux from the open water of Pond 1 in 2004 and 2005.  Environmental variables were 

only measured from July 14 to September 13 at the DCW in 2005 while the majority of 

gas sampling dates took place prior to this time; therefore correlation analysis was not 

undertaken for that data set.   

Water temperature was highly and significantly correlated to air temperature 

(rs=0.884, p<0.01; Figure 4.6a) in 2004.  Methane flux in 2005 was moderately and 

significantly correlated to pH (rs=0.481 p<0.05; Figure 4.6b), water temperature 

(rs=0.669, p<0.01; Figure 4.6c), and air temperature (rs=0.508, p<0.05; Figure 4.6d).  

In 2005, CH4 flux was significantly correlated to pH (rs=-0.900, p<0.01; Figure 

4.7a), water temperature (rs=0.800, p<0.01; Figure 4.7b), air temperature (rs=0.732, 

p<0.01; Figure 4.7c), and wind speed (rs=-0.561, p<0.05; Figure 4.7d).   

In 2005, significant correlations were found between CO2 flux and pH (rs=-

0.950, p<0.01; Figure 4.8a), water temperature (rs=0.667, p<0.05; Figure 4.8b), and 

percent saturation of dissolved oxygen (rs=-0.857, p<0.05; Figure 4.8c).  Water 

temperature was significantly correlated to air temperature (rs=0.750, p<0.05; Figure 

4.8d).   
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Figure 4.6 Scatterplots of a) air temperature vs water temperature, b) pH vs methane 
flux, c) water temperature vs methane flux and d) air temperature vs methane flux in 
Pond 1 in 2004. 
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Figure 4.7 Scatterplots of a) pH vs methane flux, b) water temperature vs methane flux, 
c) air temperature vs methane flux and d) wind speed vs methane flux in Pond 1 in 2005. 
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Figure 4.8 Scatterplots of a) pH vs carbon dioxide flux, b) water temperature vs carbon 
dioxide flux, c) percent oxygen saturation vs carbon dioxide flux and d) air temperature 
vs water temperature in Pond 1 in 2005.
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Spearman rank correlations were used to determine if there were correlations 

between the biomass of the algal assemblages (as measured by Chl-a) and daily 

greenhouse gas flux in 2005.  At Pond 1, CH4 flux was not significantly correlated algal 

biomass.  CO2 flux was significantly correlated to periphyton biomass (rs=0.741,  

p<0.01).  Periphyton biomass was inversely correlated to pH (rs=-0.905, p<0.01).  

Correlations between phytoplankton and metaphyton and pH were not significant.    

   

4.4  Discussion 

4.4.1 Overview 

 The results of this study allow greenhouse gas emissions from wetlands under 

two strongly contrasting situations to be assessed.  The first contrast is water chemistry 

and water levels in Pond 1 following the major increase in pond volume after snowmelt 

in 2005 compared to 2004.  Fluctuation in wetland water levels gave rise to large 

changes in water chemistry and changes in wetland biology and greenhouse gas 

emissions from these wetlands.  Evapoconcentration of ions and sulfate in particular 

following drought and dilution of ions following deluge may be a major factor in 

controlling greenhouse gas emissions from prairie wetlands.  The second situation is the 

strong contrast in biological productivity between Pond 1 and the DCW in 2005. 

 The approach used to assess greenhouse gas emissions and biological properties 

was a mensurative design, where emissions under prevailing environmental conditions 

were measured and no treatments were imposed.  Mensurative designs are of value 

primarily as hypothesis-generating studies that occur relatively early in the development 

of a particular field of enquiry.  Hence, the emphasis in the discussion is on documenting 

the rates of the processes measured and on suggesting linkages between the measured 
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properties. These linkages can then be more thoroughly evaluated in subsequent 

manipulative designs.  

 

4.4.2 Effects of Wetland Biology on CO2 Emissions: Pond 1 and the DCW in 2005 

Despite the substantial differences in wetland biology between Pond 1 and the 

DCW, the cumulative CO2 flux from the two wetlands was relatively similar in 2005.  

Cumulative CO2 emissions from Pond 1 and the DCW in 2005 were 3135 and 2665 

mmol CO2 m-2 season-1, respectively.  Carbon dioxide emissions from Pond 1 were 

highest from mid-June to the end of July.  This was the time of lowest phytoplankton 

biomass and may be attributed to zooplankton grazing.  Zooplankton grazing of 

phytoplankton has been linked to the stimulation of bacterial production (Jeppesen et al., 

1997; Waiser and Robarts, 2004), and potential periods of heterotrophy even in 

productive prairie wetlands that are dominated by net autotrophy during the season 

(Waiser and Robarts, 2004).  In a study of 20 temperate lakes del Giorgio et al. (1999) 

found that plankton (bacteria, microzooplankton, macrozooplankton) metabolism was a 

significant source of CO2 from unproductive lakes.  Carbon dioxide losses from bacterial 

production during the period of low phytoplankton biomass may be responsible for the 

relatively higher CO2 fluxes. This is speculative as neither bacterial production nor 

zooplankton biomass was measured in this study.   

Xing et al. (2005) found that periods of time when the lake was acting as a sink 

for CO2 corresponded to periods of maximum NPP and Chl – a in an autotrophic 

subtropical lake.  No significant correlations were found between CO2 flux and 

phytoplankton or metaphyton biomass in this study.  Periphyton biomass was positively 

and significantly correlated to CO2 flux in Pond 1 in 2005, although a negative 
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relationship would have been expected.  Periphyton is prone to cycles of accumulation 

and loss due to sloughing (Graham and Wilcox, 2000), potentially providing organic 

substrates to the water column.   

Xing et al. (2005) found a negative relationship between CO2 flux and air 

temperature and they suggest this indicated that algal activity and not mineralization of 

organic matter was related to CO2 flux.  In this study, air temperature and water 

temperature were highly correlated and CO2 flux increased with increasing water 

temperature and this may suggest a link between CO2 flux and organic matter 

mineralization. 

Carbon dioxide flux was inversely correlated to pH and Pond 1 was acting as a 

source of CO2 when pH < 8.4 and a sink for CO2 when pH > 8.4 (Figure 4.8a).  pH in 

prairie wetland systems can change dramatically from day to night and over the course 

of the season as H+ is consumed during photosynthesis and released during respiration 

(Wetzel, 1983).  Tremblay et al. (2005) found that mean gross CO2 flux was highest and 

significantly different when pH < 7.9 and lowest when pH ≥ 7.9.  The negative 

correlation between periphyton biomass and pH suggests that periphyton photosynthesis 

alone is not responsible for the changes in pH but that some other factor or combination 

of factors is governing pH in this system and there is an interaction between these biotic 

factors and CO2 flux.  This reinforces Walter and Heimann’s (2000) comment that 

factors (environmental variables and biotic factors) are not independent of each other, 

rather they may exert stronger controls at different times throughout the season.  

 Unlike Pond 1, the DCW did not act as a sink for CO2 in 2005. Carbon dioxide 

flux from the DCW steadily increased until the end of July, and phytoplankton biomass 



 

 70

was lowest during this period.  Relationships between CO2 flux and algal biomass were 

not evident.   

Lack of correlation between algal biomass and CO2 flux could be a result of 

using a concentration rather than a productivity measurement (i.e., a rate of C fixed).  

Chlorophyll-a is a useful and accurate measure of algal biomass and it is also widely 

used and hence allows for comparison among studies.  The drawback of this method is 

that it is a measurement at a single point in time.  Frequent sampling throughout the 

season allows for a better understanding of the dynamic nature of algal biomass but if 

used as a surrogate for primary production it will underestimate the actual amount of 

carbon fixed as algae can turnover quite rapidly.  Regardless of this, Pond 1 and the 

DCW had strikingly different algal biomass and relatively similar CO2 emissions. 

 

4.4.3 Water Level and Water Chemistry Effects: Pond 1 in 2004 and 2005 

Wetland water levels will have an effect on the water chemistry, which in turn 

influence the biological activity of the wetland in terms of algae and aquatic 

macrophytes (Robinson et al., 1997a).   The increase in water level in Pond 1 from 2004 

to 2005 was reflected in the chemistry of the wetland.  There was an overall dilution 

effect on solutes in the wetland and concentration of all ions decreased from 2004 to 

2005 with the exception of HCO3 which increased in 2005.  Seasonal mean 

concentrations of TN and TP were at least twice as great in 2004 as they were in 2005 

and the concentration of sulfate was 12-times higher in 2004 than in 2005.   

As oxygen is consumed in sediments and the water column through heterotrophic 

respiration, a sequence of reactions takes place as lower redox potentials are achieved.  

When low redox potentials are reached (< -220 mV), sulfate reduction takes place 
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whereby sulfate acts as an alternative electron acceptor in the oxidation of organic 

matter (Schlesinger, 1997).  Below the zone of sulfate reduction in the sediments is a 

zone of methanogenesis. Sulfate-reducing bacteria and methanogenic bacteria are 

competitors for the same organic substrates and the sulfate-reducing bacteria are more 

efficient in the uptake of H2, resulting in little overlap between the zones of sulfate 

reduction and methanogenesis (Holmer and Storkholm, 2001).  This results in lower 

amounts of CH4 production in aquatic systems with high concentrations of sulfate. 

 

4.4.4 Effects of Water Chemistry on CH4 Emissions 

In this study, CH4 emissions were negligible in the presence of high 

concentrations of sulfate, and the concentration of all ions was most likely governed by 

the inputs of water.  The high concentration of sulfate and the relationship between 

sulfate-reducing bacteria and low CH4 production is most likely responsible for 

differences in CH4 emissions in Pond 1 between 2004 and 2005.  Pond 1 in 2004 had the 

highest sulfate concentration followed by the DCW in 2005 and Pond 1 in 2005.  At 

what concentration sulfate can be present and CH4 flux can still occur in prairie wetlands 

is not known and cannot be determined from this study.  If sulfate is limiting to sulfate-

reducing bacteria then methanogenic bacteria may be able to successfully compete for 

hydrogen and acetate (Lovley et al., 1982); if sulfate is not limiting to sulfate-reducing 

bacteria then CH4 should not be produced (Lovley and Klug, 1983).   This limitation of 

sulfate on CH4 flux was less apparent in 2005 in Pond 1 following the major increase in 

water level that occurred after snowmelt in the spring of 2005.  Methane was highest in 

Pond 1 in 2005 on days when the water temperature was warm and the wind speed was 

low (< 2 m s-1).  
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4.4.5 Seasonal Algal Dynamics and their Relationship to CH4 Emissions: Pond 1 and 

the DCW in 2005 

A major focus of this thesis was to assess the seasonal patterns of algae and of 

CH4 and to determine if there was any correlation between them.  Algal biomass 

generally follows a seasonal pattern starting with a spring bloom when temperature 

starts to rise and nutrients become available in the water column (Crumpton, 1989), 

often followed by a clear water phase once zooplankton grazers start to feed on the algae 

(Lampert et al., 1986).  It is a combination of the top down (predation) and bottom-up 

(resource) control that shapes the seasonal succession of algal biomass (Carpenter et al., 

1985) in individual wetlands. There has been no information to date on the possible 

linkages between carbon fixation into and release from the algal biomass and the 

seasonal pattern of CH4 emissions from prairie wetlands.  

At Pond 1 in 2005 phytoplankton biomass peaked at the beginning of June which 

may have represented the spring bloom (Figure 4.2).  Following this peak in biomass 

there was a rapid decline in phytoplankton biomass that persisted until early August.  

This sustained decrease in phytoplankton biomass may have been due to intense grazing 

of phytoplankton by zooplankton until the zooplankton became food-limited and 

phytoplankton biomass could recover or were replaced with larger bodied algae 

(Lampert et al., 1986).  

 At the Deep Crop Wetland there was no spring bloom evident and 

phytoplankton biomass remained low until early August.  A P-limitation (TN:TP ratio of 

21:1 by mass) may have contributed to the low phytoplankton biomass early in the 

season, or it may just be that the spring bloom was missed because algal sampling did 

not start until May 30.  Other studies in prairie wetlands have seen similar patterns of 



 

 73

mid-summer and fall maxima occurring with no evidence of a spring bloom in wetlands 

with high productivity (Crumpton, 1989; Waiser and Robarts 2004).   

In Pond 1, periphyton biomass was low at the beginning of the season and did 

not start to increase until phytoplankton biomass decreased in mid June.  Periphyton 

biomass in the DCW was lower than in Pond 1 and this may be due to shading effects by 

emergent macrophytes.  The immobile nature of periphyton makes them prone to 

grazing and light limitations caused by the dense cattail ring.  For example, 

photosynthetically available radiation reaching the periphytic community was reduced 

up to 85% in a cattail stand in the Florida Everglades (Grimshaw et al., 1997).  When the 

acrylic rods were installed in the DCW they were placed just outside the dense cattail 

ring which may have contributed to the shading effect.   

Although metaphyton blooms were not common in Pond 1, metaphyton biomass 

started to increase when periphyton biomass starts to decline (July 15).  Due to the size 

of the wetland and lack of emergent vegetation, conditions may have been sub-optimal 

for metaphyton as there is little refuge from wind and wave action in this wetland.   

Large metaphyton blooms were common in the DCW and the seasonal 

metaphyton biomass was seven-times higher than in Pond 1.  Areas of the DCW were 

probably well sheltered by the dense cattail stand, providing refuge for metaphyton.  

Robinson et al. (1997b) observed metaphyton at a maximum in July and persisting until 

late August.  This was not the case at the DCW where metaphyton biomass peaked at the 

end of the season; however, there was a smaller peak in mid-July that persisted until 

mid-August in which metaphyton may have been sequestering nutrients (Turner et al., 

1995).  McDougal et al. (1997) speculated that the greatest loss of N and P from the 

water column was through uptake by metaphyton.  Senescence of the initial metaphyton 
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mat in early to mid-August may have contributed nutrients to the water column, 

resulting in increases in phytoplankton biomass.  Dense metaphyton mats may have 

altered the under-water light environment decreasing the transmission of light (Turner et 

al., 1995; McDougal et al., 1997) and further inhibiting the phytoplankton biomass until 

senescence of the initial metaphyton mat.   

No significant correlations were found between periphyton, phytoplankton or 

metaphyton biomass and CH4 flux at Pond 1 in 2005, although periphyton biomass did 

follow a similar pattern to CH4 flux.  The negative correlation between CH4 flux and pH 

and lack of correlation between the three algal assemblages measured and CH4 flux 

could be a result of oxygen saturation of the water column during the day due to high 

rates of photosynthetic activity and an increase in CH4 oxidation.  Tremblay et al. (2005) 

found that mean gross CH4 flux across their whole Canadian data set was significantly 

higher at pH < 7.2.   

Relationships between primary production (Whiting and Chanton, 1993; 

Aselmann and Crutzen, 1989; Xing et al., 2005) and CH4 flux have demonstrated that 

higher productivity tends towards higher CH4 emissions.  This would suggest that the 

higher algal and macrophyte biomass of the DCW should correspond to high CH4 flux, 

and that Pond 1 should have low CH4 flux to correspond to lower productivity.  The 

seasonal mean phytoplankton biomass in the DCW was 19-times higher than in Pond 1, 

but CH4 emissions from Pond 1 were 20-times higher than from the DCW.  

Relationships between CH4 flux and primary production may only exist when the 

wetland is not sulfate dominant.  The dominance of sulfate may have pre-empted any 

relationships between CH4 flux and biological activity in 2004 in Pond 1 and the DCW 

in 2005. 
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Lack of correlation between CH4 flux and algal biomass may also be a result of 

the limitation of the technique used.  Algal biomass as determined by the concentration 

of Chl-a provides a measure at a single point in time and does not reflect the high 

turnover rate of the algae.  A measure of productivity (rate of C fixed) and CH4 flux 

(rate of gas emissions) over the same time period may have resulted in stronger 

correlations.  Bearing this in mind, it might be expected that a “lag time” effect would be 

present with higher CH4 flux occurring a length of time after senescence of the algae. 

 

4.4.6 Comparison of CO2 and CH4 Fluxes in Prairie Wetlands and other Wetland 

Types 

 Overall the fluxes of CO2 and CH4 from the open water and riparian area are well 

within the range of fluxes measured from other sources such as peatlands and reservoirs 

(Chimner and Cooper, 2003; Dalva et al., 2001; Matthews et al., 2003; Tremblay et al., 

2005; Rask et al., 2002).  Seasonal mean fluxes from this study were below 25 mmol 

CO2 m-2 d-1 for both wetlands.  The ranges in CO2 flux from Pond 1 and the DCW were 

much lower than found in a study by Chimner and Cooper (2003), where CO2 emissions 

from a Colorado fen were between 40 to 950 mmol CO2 m-2 d-1.  Carbon dioxide fluxes 

were also on the low end of the range reported by Matthews et al. (2003) of 24 to 137 

mmol CO2 m-2 d-1 in an Ontario reservoir.  As well, CO2 fluxes in this study were below 

the mean flux found in two years of study in a Nova Scotia bog where seasonal mean 

emissions were 116 mmol CO2 m-2 d-1 and 73 mmol CO2 m-2 d-1 (Dalva et al., 2001).  In 

an extensive study on Canadian boreal aquatic ecosystems between 1993 and 2003, over 

2500 diffusive fluxes were calculated and mean CO2 emissions from these lakes and 

reservoirs was 23 mmol CO2 m-2 d-1 (Tremblay et al., 2005).   
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Methane flux from Pond 1 and the DCW was well within the range reported by 

Matthews et al. (2003) of -2056 to 9657 µmol CH4 m-2 d-1 and well below the yearly 

emissions of 38 to 2250 mmol CH4 m-2 y-1 (dependent on position within the fen) 

reported by Rask et al. (2002) from a minerotrophic fen in Saskatchewan.  

 

4.5 Conclusions 

The two wetlands in this study were net sources of greenhouse gases.  The 

dominant greenhouse gas in 2005 was CO2.  When wetlands hold water on a more 

permanent basis and sulfate is the dominant ion it is likely that the environment is 

unfavorable for the production of CH4.  Low sulfate concentrations may increase the 

potential for CH4 emissions.  Cumulative CH4 emissions when converted to CO2 

equivalents (CO2 eq) from the open water of Pond 1 in 2004 and the DCW in 2005 are 

less than 1 g CO2 eq m-2 d-1 and from the open water of Pond 1 in 2005 are 34.9 g CO2 eq 

m-2 d-1, and are generally below the total emissions in CO2 eq reported by Tremblay et al. 

(2005) for lakes, rivers, and reservoirs across Canada which ranged from 1.2 to 39.5 g 

CO2 eq m-2 d-1.   

Fluctuations in wetland water levels give rise to large changes in water chemistry 

and resulted in changes in wetland biology and greenhouse gas emissions from these two 

prairie wetlands.  Evapoconcentration of ions and sulfate in particular following drought 

and dilution of ions following deluge may be a major factor in controlling CH4 from 

prairie wetlands.  Relationships do exist between CO2 flux and environmental and biotic 

variables as seen in the high correlations with pH.  Methane flux also exhibits strong 

relationships with environmental and biotic variables under conditions of low sulfate 

concentrations.  Significant relationships with pH demonstrate interactions with the 
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biological activity of the wetland, but which aspect of the biology was not evident in this 

study.  Carbon dioxide emissions were the largest contributor to total greenhouse gases 

in 2005 and these wetlands were much lower CH4 emitters than emissions from 

peatlands and reservoirs.  Studies of prairie wetlands over a wide range of productivities, 

wetland permanence classes and water chemistries would provide a more complete 

assessment as to the role that prairie wetlands play in the global greenhouse gas budget 

and the factors controlling those emissions. 
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5.0 SYNTHESIS AND CONCLUSION 

 

5.1 Contribution of Open Water Prairie Wetlands to Greenhouse Gas Emissions  

The two wetlands in this study were sources of greenhouse gases (Table 5.1).  

Only N2O and CH4
 were measured in 2004. After conversion to CO2 eq it can be seen that 

the contribution to the total greenhouse gas emissions from N2O was greater than CH4 

from the open water of Pond 1 in 2004 (Table 5.2).  In 2005 the dominant greenhouse 

gas (in CO2 eq) emitted from these wetlands was CO2 followed by CH4 and N2O.   

When wetlands hold water on a more permanent basis and sulfate is the 

dominant ion, it is likely that the environment is unfavorable for the production of CH4 

and N2O.  Low sulfate concentrations may increase the potential for CH4 emissions.  

Temporary or more ephemeral wetlands that are prone to drying through the season may 

provide more favorable conditions for N2O emissions. Wetlands that do not experience 

dry-down during the summer season are unlikely to have the necessary combination of 

oxygen, carbon, and nitrogen availability to produce significant N2O emissions.  

Ephemeral wetlands at the St. Denis site have shown high N2O flux events during the 

period of dry-down of the wetland in 2005, but this was not evident at all wetlands 

studied (Yates, 2006).  These small ephemeral wetlands were located in the upland, were 

freshwater wetlands and were also higher emitters of CH4 in 2005 (Pennock, 

unpublished data, 2006).   
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Table 5.1 Summary of cumulative emissions at Pond 1 and the Deep Crop Wetland. 

1 Period is the number of days the mean daily flux is interpolated over to estimate the 
cumulative flux for the sampling season. 
 
 
 

  Methane Carbon dioxide Nitrous oxide 
Year period 

(days)1 
mmol CH4 m-2 y-1 mmol CO2 m-2 y-1 g N2O-N ha-1 y-1 

 Pond 1 Open Water 
 

2004 170.5 CH4  
194 N2O 

0.92 - 147.49 

 Pond 1 Riparian Area 
 

2004 170.5 CH4  
194 N2O 

1.60 - 203.57 

 Pond 1 Open Water 
 

2005 179 94.40 3135.30 -131.92 
 

 Deep Crop Wetland Open Water 
 

2005 191 4.61 2664.58 10.46 
 

 Deep Crop Wetland Riparian Area 
 

2005 191 1.79 9312.54 144.43 
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Table 5.2 Cumulative emissions for Pond 1 and the Deep Crop Wetland in carbon 
dioxide equivalents. 

1 Period is the number of days the mean daily flux is interpolated over to estimate the  
cumulative flux of the sampling season. 
2 CO2 equivalents are the cumulative emissions multiplied by the global warming 
potential of 23 for CH4 and 296 for N2O for a 100 year time horizon (IPCC, 2001).
 

 
  Methane  Carbon 

dioxide 
Nitrous oxide Total 

Year period 
(days)1 

g CO2 eq m-2 y-1 g CO2 m-2 y-1 g CO2 eq m-2 y-1 in CO2 eq 

  Pond 1 Open Water 
 

2004 170.5 CH4 
194 N2O 

0.34 - 6.86 7.20 

  Pond 1 Riparian Area 
 

2004 170.5 CH4 
194 N2O 

0. 59 - 9.47 10.06 

  Pond 1 Open Water 
 

2005 179 34.90 138.12 -6.14 166.88 
      
  Deep Crop Wetland Open Water 

 
2005 191 1.70 117.38 0.48 119.44 

      
  Deep Crop Wetland Riparian Area 

 
2005 191 0.66 410.24 6.72 417.62 
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5.2 Conversion of Wetlands to Agricultural Land 

Conversion of wetlands to agriculture may have a profound effect on greenhouse 

gas emissions from the wetlands.  Pond 1 and the DCW are both located within 

hummocky till landscapes of the prairie pothole region (PPR).  This region is dominated 

by agricultural landuse, resulting in a high potential for wetland drainage and tillage 

(Mitsch and Gosselink, 1993).  Wetlands located in gently sloping terrain (2 to 5%) as is 

the DCW have a higher number of tilled wetlands per quarter-section than other slope 

classes (Phipps et al., 2005 unpublished data).  In the more strongly to moderately 

sloping terrain (10 to 15%) it is likely that the smaller wetlands (< 200 m2) are targeted 

for tillage, due to ease of tillage.  In the more gently sloping terrain (2 to 5%), the mean 

area of the largest tilled wetland can reach 840 m2 and in very gently sloping terrain (0.5 

to 2%) can reach 1615 m2 (Phipps et al., 2005 unpublished data).   

Implications of wetland landuse conversion on greenhouse gas emissions were 

not directly measured in this study.  Presumably converted wetlands would no longer act 

as sinks for CO2 or N2O as was seen during periods of time during the summer in Pond 1 

in 2005.  Conversion of wetlands to agricultural land may also result in a loss of soil 

organic carbon (SOC) of over 80 Mg ha-1 (Bedard-Haughn et al., 2006).  Potential for 

the wetland to dry-down may increase with landuse conversion and dependent on the 

environmental conditions in a given year, N2O emission events could be significant.  

 

5.3 Conclusion 

Pond 1 and the DCW were net sources of greenhouse gases in both years of 

study.  These two wetlands, however, contributed less greenhouse gas than other aquatic 

systems reported in the literature.  This study was necessary to quantify greenhouse gas 
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emissions from these two open water prairie wetlands and to try and establish links with 

the biological activity of the wetlands.  The lack of strong relationships between 

greenhouse gases and biological parameters measured is an indicator that there is a 

component of these systems that was not measured or that the strong relationships found 

in other studies do not hold true for prairie wetlands.  This study also demonstrated the 

importance of climate as a variable governing the water chemistry of the aquatic system. 

The structure and function of prairie wetlands is unique and should not be inferred from 

the knowledge of lakes, rivers, reservoirs or peatlands.  An effort should be made to 

further study these aquatic systems as they are an important component of the PPR and 

are continually being lost and degraded without quantitative knowledge of effects.   

Further research on greenhouse gas emissions from prairie wetlands should focus 

on an emissions inventory from wetlands of different trophic levels, salinities, water 

chemistries, and wetland permanence classes.  Researchers from other studies at the St. 

Denis site have shown that different types of wetlands within the same geographical 

region have very different dynamics in relation to greenhouse gas emissions (Pennock, 

unpublished data, 2006; Yates, 2006).  Furthermore, these studies should also include 

components of zooplankton and bacterial biomass to determine the importance and 

interaction of each with algal dynamics in eutrophic aquatic ecosystems and to 

strengthen the knowledge of the relationship with periods of net heterotrophy and the 

potential for these periods to produce CO2, as this was the dominant gas in Pond 1 and 

the DCW in 2005.  A focused study on the rates of primary production and greenhouse 

gas emissions from prairie wetlands will assist in understanding the relationship between 

the two factors in eutrophic prairie wetlands.  It is extremely important that relationships 

in these wetlands are identified and understood in order to guide future research as these 
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systems are unique in their structure and function and are an integral component of the 

Prairie Pothole Region.

 



 

 84

6.0 REFERENCES 

An, S., and S.B. Joye.  2001.  Enhancement of coupled nitrification-denitrification by 
benthic photosynthesis in shallow estuarine sediments.  Limnol. Oceanog.  46:62-74. 

APHA 1998. Standard methods for the examination of water and waste water. 20th ed. 
American Public Health Association. Washington, D.C. 

Arts, M.T., R.D. Robarts, F. Kasai, M.J. Waiser, V.P. Tumber, A.J. Plante, H. Rai, and 
H. J. de Lange.  2000.  The attenuation of ultraviolet radiation in high dissolved 
organic carbon waters of wetlands and lakes on the Northern Great Plains.  Limnol. 
Oceanog.  45:292-299. 

Aselmann, I., and P.J. Crutzen. 1989. Global distribution of natural and freshwater 
wetlands and rice paddies, their net primary productivity, seasonality, and possible 
methane emissions.  J. Atmos. Chem. 8:307-358. 

Bartlett, K.B., and R.C. Harris.  1993.  Review and assessment of methane emissions 
from wetlands.  Chemopshere  26:261-320. 

Bedard-Haughn, A., F. Jongbloed, J. Akkerman, A. Uijl, E. de Jong, T. Yates, and D. 
Pennock.  2006.  The effects of erosional and management history on soil organic 
carbon stores in ephemeral wetlands of hummocky agricultural landscapes.  
Geoderma  (in press). 

Blais, A., S. Lorrain, and A. Tremblay.  2005.  Greenhouse Gas Fluxes (CO2, CH4, and 
N2O) in Forests and Wetlands of Boreal, Temperate and Tropical Regions.  p.87-
127.  In A. Tremblay et al. (ed.) Greenhouse Gas Emissions – Fluxes and Processes: 
Hydroelectric Reservoirs and Natural Environments.  Springer, Germany. 

Bowden, W.B. 1987.  The biogeochemistry of nitrogen in freshwater wetlands. 
Biogeochem. 4:313-348.  

Bridgham, S.D., C.A. Johnston, P. Pastor, and K. Updegraff.  1995.  Potential feedbacks 
of northern wetlands on climate change.  Bioscience 45:262-274. 

Brix, H.  1994.  Function of macrophytes in constructed wetlands.  Water Sci. Technol.  
29:71-78. 

Brix, H., B.K. Sorrell, and P.T. Orr.  1992.  Internal pressurization and convective gas 
flow in some emergent freshwater macrophytes.  Limnol. Oceanog.  37:1420-1433.  

Bussmann, I.  2005.  Methane release through resuspension of littoral zone sediment.  
Biogeochem.  74:283-302. 

Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson.  1986.  Cascading trophic interactions 
and lake productivity: Fish predation and herbivory can regulate lake ecosystems.  
Bioscience  35:634-639.

 



 

 85

Chanton, J.P., G.J. Whiting, J.D. Happel, and G. Gerard. 1993. Contrasting rates of 
diurnal patterns of methane emission from emergent aquatic macrophytes. Aquat. 
Bot.  46:11-128. 

Chanton, J.P., G.J. Whiting, W.J. Showers, and P.M. Crill.  1992.  Methane flux from 
Peltandra Virginica: stable isotope tracing and chamber effects.  Global 
Biogeochem. Cycles  6:15-31. 

Chimner, R.A., and D.J. Cooper.  2003.  Influence of water table levels on CO2 
emissions in a Colorado subalpine fen: an in situ microcosm study.  Soil Biol. 
Biochem. 35:345-351. 

Christensen, T.R., N. Panikov, M. Mastepanov, A. Joabsson, A. Stewart, M. Oquist, M. 
Sommerkorn, S. Reynaud, and B. Svensson.  2003.  Biotic controls on CO2 and CH4 
exchange in wetlands – a closed environment study.  Biogeochem. 64:337-354. 

Cicerone, R.J., C.C. Delwiche, S.C. Tyler, and P.R. Zimmerman.  1992.  Methane 
emissions from California rice paddies with varied treatments.  Global Biogeochem. 
Cycles 6:233-248. 

Cicerone, R.J., and R.S. Oremland. 1988. Biogeochemical aspects of atmospheric 
methane. Global Biogeochem. Cycles 2:299-328. 

Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. 
Naeem, R.V. O’Neill. J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt.  
1997.  The value of the world’s ecosystem services and natural capital.  Nature  
387:253-260. 

Crumpton, W.G.  1989.  Algae in Northern Prairie Wetlands. p. 189-203. In A. van der 
Valk (ed.)  Northern Prairie Wetlands.  Iowa State University Press. 

Dalva, M., T.R. Moore, P. Arp, and T. Clair.  2001.  Methane and soil and plant 
community respiration from wetlands, Kejimkujik National Park, Nova Scotia: 
Measurements, predictions, and climatic change.  J. Geophys. Res.  106(D3):2955-
2962. 

del Giorgio, P.A., J.J. Cole, N.F. Caraco, and R.H. Peters.  1999.  Linking planktonic 
biomass and metabolism to net gas fluxes in northern temperate lakes.  Ecology.  
80:1422-1431. 

Ding, W., Z. Cai, and H. Tsuruta.  2005.  Plant species effects on methane emissions 
from freshwater marshes.  Atmos. Environ.  39:3199-3207. 

Ducks Unlimited Canada.  2006.  Information on the benefits of wetland habitats for 
people and wildlife.  http://www.ducks.ca/conserve/wetland values/.  02/23/06. 

Environment Canada.  1986.  Wetlands in Canada: a valuable resource.  Fact Sheet 86-4.  
Ottawa, Ontario: Lands Directorate. 

Environment Canada.  2001.  Threats to Sources of Drinking Water and Aquatic 
Ecosystem Health in Canada.  72 pp.  National Water Research Institute, Burlington, 
Ontario.  NWRI Scientific Assessment Report Series No. 1. 

Environment Canada.  2004.  Canadian climate normals or averages 1971–2000.  
http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html.  
Reviewed 2004-02-25. 



 

 86

Fairchild, G.W., J.N. Anderson, and D.J. Velinsky.  2005.  The trophic state ‘chain of 
relationships’ in ponds: does size matter?  Hydrobiol.  539:35-46. 

Freeman, C., M.A. Lock, and B. Reynolds. 1993.  Fluxes of CO2, CH4, and N2O from a 
Welsh peatland following simulation of water table draw-down: potential feedback 
for climate change. Biogeochem. 19:51-60. 

Freeman, C., M.A. Lock, S. Hughes, and B. Reynolds. 1997.  Nitrous oxide emissions 
and the use of wetlands for water quality amelioration.  Environ. Sci. Technol.  31: 
2438-2240. 

Funk, D.W., E.P. Pullam, and K.M. Peterson.  1994.  Influence of water table on carbon 
dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms.  Global 
Biogeochem. Cycles  8:271-278. 

Goldsborough, L.G., G.G.C. Robinson, and S.E. Gurney. 1986. An enclosure/substratum 
system for in situ ecological studies of periphyton. Arch. Hydrobiol. 106:373-393. 

Goldsborough, L.G., and G.G.C. Robinson.  1996.  Pattern in wetlands. p. 78-117.  In J. 
Stevenson et al. (ed.)  Algal ecology: Freshwater benthic ecosystems.  Academic 
Press. 

Graham, L.E., and L.W. Wilcox.  2000.  Algae.  Prentice-Hall Inc. Upper Saddle River. 
NJ. 

Grimshaw, H.J., R.G. Wetzel, M. Brandenburg, K. Segerblom, L.J. Wenkert, G.A. 
Marsh, W. Charnetzky, J.E. Haky, and C. Carraher.  1997.  Shading of periphyton 
communities by wetland emergent macrophytes: Decoupling of algal photosynthesis 
from microbial nutrient retention.  Arch. Hydrobiol.  139:17-27. 

Groffman, P.M., A.J. Gold, and P. Jacinthe.  1998.  Nitrous oxide production in riparian 
zones and groundwater.  Nutr. Cycl. Agroecosyst. 52:179-186. 

Grosse, W., H. Bernhard Buchel, and H. Tiebel. 1991. Pressurized ventilation in wetland 
plants.  Aquat. Bot. 39:89-98. 

Gurney, S.E., and G.G.C. Robinson. 1988. Small water bodies and wetlands. Verh. 
Internat. Verein. Limnol. 23:1032-1040. 

Holmer, M., and P. Storkholm.  2001.  Sulphate reduction and sulphur cycling in lake 
sediments: a review.  Fresh.  Biol.  46:431-451. 

Hefting, M.M., R. Bobbink, and H. de Caluwe.  2003.  Nitrous oxide emission and 
denitrification in chronically nitrate-loaded riparian buffer zones.  J. Environ. Qual.  
32:1194-1203. 

Hutchinson, G.L., and A.R. Mosier.  1981.  Improved soil cover method for field 
measurement of nitrous oxide fluxes.  Soil Sci. Soc. Am. J.  45:311-316. 

International Atomic Energy Agency. 1992.  Manual on measurement of methane and 
nitrous oxide emissions from agriculture.  IAEA-TECDOC-674.  INIS  
Clearinghouse, Vienna. 

IPCC.  2001.  Climate change 2001:  The scientific basis.  Contribution of Working 
Group I to the Third Assessment Report of the Intergovernmental Panel on Climate 
Change.  Cambridge University Press, Cambridge, UK. 

 



 

 87

 
Jeppesen, E., M. Erlandsen, and M. Søndergaard.  1997. Can simple empirical equations 

describe the seasonal dynamics of bacterioplankton in lakes: An eight-year study in 
shallow hypertrophic and biologically highly dynamic lake Søbygård, Denmark.  
Microb.  Ecol. 34:11-26. 

Kalff, J.  2002.  Limnology: inland water ecosystems.  Prentice-Hall Inc.  Upper Saddle 
River, NJ. 

King, G.M.  1990.  Regulation by light of methane emissions from a wetland.  Nature  
345:513-515. 

LaBaugh, J.W., T.C. Winter, G.A. Swanson, D.O. Rosenberry, R.D. Nelson, and N.H. 
Euliss Jr. 1996. Changes in atmospheric circulation patterns affect mid-continent 
wetlands sensitive to climate. Limnol. Oceanog 41:864-870. 

LaBaugh, W.L., T.C. Winter, D.O. Rosenberry.  1998.  Hydrological functions of prairie 
wetlands.  Great Plains Research.  8:17-37. 

Lampert, W., W. Fleckner, H. Rai, and B.E. Taylor.  1986.  Phytoplankton control by 
grazing zooplankton: A study of the spring clear-water phase.  Limnol.  Oceanog.  
31:478-490. 

Leitch, J.A.  1989.  Politicoeconomic overview of prairie potholes. p. 3-14. In A. van der 
Valk (ed.)  Northern Prairie Wetlands.  Iowa State University Press. 

Lemke, R.L., R.C. Izaurralde, and M. Nyborg.  1998.  Seasonal distribution of nitrous 
oxide emissions from soils in the parkland region.  Soil Sci. Soc. Am. J.  62:1320-
1326. 

Lovley, D.R., D.F. Dwyer, and M.J. Klug.  1982.  Kinetic analysis of competition 
between sulfate reducers and methanogens for hydrogen in sediments.  Appl. 
Environ. Microbiol.  43:1373-1379. 

Lovley, D.R., and M.J. Klug.  1983.  Sulfate reducers can out compete methanogens at 
freshwater sulfate concentrations.  Appl. Environ. Microbiol.  45:187-192. 

Matthews, C.J.D., V.L. St. Louis, and R.H. Hesslein. 2003. Comparison of three 
techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. 
Environ. Sci. Technol. 37:772-780. 

Mazumder, A., W.D. Taylor, D.J. McQueen, and D.R.S. Lean.  1990.  Effects of fish 
and plankton on temperature and mixing depth.  Science  247:312-315. 

McDougal, R.L. 2002. Algal primary production in prairie wetlands: The effects of 
nutrients, irradiance, temperature, and aquatic macrophytes. Ph.D. diss, University of 
Manitoba, Canada. 290 pp. (Pub Number AAT NQ79866) ISBN 0-612-79866-6. 

McDougal, R.L., L.G. Goldsborough, and B.J. Hann.  1997.  Responses of a prairie 
wetland to press and pulse additions of inorganic nitrogen and phosphorus: 
production by plankton and benthic algae.  Arch. Hydrobiol.  140:145-167. 

Mitsch, W.J., and J.G. Gosselink. 1993. Wetlands. 2nd ed. Van Nostrand Rheinhold, 
New York.  



 

 88

National Wetlands Working Group.  1997.  The Canadian wetland classification system.  
2nd ed.  B.G. Warner and C.D.A. Rubec. (ed.)  Wetlands Research Centre, 
University of Waterloo, ON. 

Nusch, E.A.  1980.  Comparison of different methods of chlorophyll and phaeopigment 
determination.  Arch. Hydrobiol. Beih. Ergebn. Limnol.  14:14-36. 

Podolsky, G.P., and D. Schindler.  1994.  Soils of Manitoba Zero Tillage Research 
Association Farm.  Manitoba Land Resource Unit, Agriculture and Agri-Food 
Canada.  Report No. 94-3. 

Rask, H., J. Schoenau, and D. Anderson.  2002.  Factors influencing methane flux from 
a boreal forest wetland in Saskatchewan, Canada.  Soil Biol. Biochem.  34:435-443. 

Redfield, A.C., B.H. Ketchum, and F.A. Richards.  1963.  The Influence of Organisms 
on the Chemical Composition of Seawater.  p.26-77.  In M.N. Hill (ed.)  The Sea: 
Ideas and Observations on Progress in the Study of the Season, Vol. 2: The 
Composition of Seawater, Comparative and Description Oceanography.  
Interscience, New York. 

Robinson, G.G.C., S.E. Gurney, and L.G. Goldsborough. 1997a. Response to benthic 
and planktonic algal biomass to experimental water-level manipulation in a prairie 
lakeshore wetland. Wetlands 17:167-181. 

Robinson, G.G.C., S.E. Gurney, and L.G. Goldsborough. 1997b. The primary 
productivity of benthic and planktonic algae in a prairie wetland under controlled 
water level regimes. Wetlands 17:182-194. 

Robinson, G.G.C., S.E. Gurney, and L.G. Goldsborough.  2000.  Algae in Prairie 
Wetlands. p. 163-188. In H. R. Murkin et al. (ed.)  Prairie Wetland Ecology: The 
Contribution of the Marsh Ecology Research Program.  Iowa State University Press, 
Ames, IA, USA. 

Rutherford, J.C., and M.L. Nguyen.  2004.  Nitrate removal in riparian wetlands: 
Interaction between surface flow and soils.  J. Environ. Qual.  33:1133-1143. 

Sand-Jensen, K., and J. Borum.  1991.  Interactions among phytoplankton, periphyton, 
and macrophytes in temperate freshwater estuaries.  Aquat. Bot.  41:137-175. 

Saunders, D.L., and J. Kalff.  2001.  Nitrogen retention in wetlands, lakes and rivers. 
Hydrobiologia  443:205-212. 

Sebacher, D.I., R.C. Harriss, and K.B. Bartlett.  1985.  Methane emissions to the 
atmosphere through aquatic plants.  J. Environ. Qual. 14:40-46.  

Schlesinger, W.H.  1997.  Biogeochemistry: an analysis of global change. 2nd ed.  
Academic Press, New York. 

Schönheit, P., J.K. Kristjansson, and R.K. Thauer.  1982.  Kinetic mechanism for the 
ability of sulfate reducers to out-compete methanogens for acetate.  Arch. Microbiol.  
132:285-288. 

Singh, S.N., K. Kulshreshtha, and S. Agnihotri.  2000.  Seasonal dynamics of methane 
emission from wetlands.  Chemo. – Global Change Sci. 2:39-46. 



 

 89

Sinks Table.  1999.  Sinks Table Options Paper:  Land-use, land-use change and forestry 
in Canada and the Kyoto Protocol.  National Climate Change Process Sinks Table.  
September 1999. 

Sirivedhin, T., and K.A. Gray.  2006.  Factors affecting denitrification rates in 
experimental wetlands: Field and laboratory studies.  Ecol. Eng.  26:167-181. 

Smith, R., H.F. Dufresne, and H.A. Hanson. 1964.   Northern watersheds and deltas. 
p.51-66. In J. P. Linduska (ed.) Waterfowl tomorrow U.S. Fish and Wildlife Service, 
Washington, D.C.  

Soil Classification Working Group.  1998.  The Canadian System of Soil Classification.  
Agric. and Agri-Food Can. Publ. 1646 (Revised) 187pp.  NRC Research Press, 
Ottawa. 

Stadmark, J., and L. Leonardson.  2005.  Emissions of greenhouse gases from ponds 
constructed for nitrogen removal.  Ecol. Eng.  25:542-551. 

Stewart, R.E., and H.A. Kantrud.  1971.  Classification of natural ponds and lakes in the 
glaciated prairie region.  Resource Publication 92, Bureau of Sport Fisheries and 
Wildlife, U.S. Fish and Wildlife Service, Washington, D.C.  Jamestown, N.D.: 
Northern Prairie Wildlife Research Center Online.  
http://www.npwrc.usgs.gov/resource/wetlands/pondlake/pondlake.htm (Version 
16APR1998).  

Stewart, R.E., and H.A. Kantrud.  1972.  Vegetation of prairie potholes, North Dakota, 
in relation to quality of water and other environmental factors.  U. S. Geol. Surv. 
Prof. Paper 585-D. 

Thomas, K.L., J. Benstead, K.L. Davies, and D. Lloyd. 1996.  Role of wetland plants in 
the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol. Biochem.  28:17-23. 

Toet, S., L. Huibers, R. Van Logtestijn., and J. Verhoeven.  2003.  Denitrification in the 
periphyton associated with plant shoots and in the sediment of a wetland system 
supplied with sewage treatment plant effluent.  Hydrobiol.  501:29-44. 

Topp, E., and R.S. Hanson.  1991.  Metabolism and radiatively important trace gases by 
methane-oxidizing bacteria. p. 71-90.  In J.E. Rogers and W.B. Whitman (ed.)  
Microbial production and consumption of greenhouse gases: methane, nitrous oxides 
and halomethanes.  American Society for Microbiology, Washington, D.C. 

Tremblay, A, J. Therrien, B. Hamlin, E. Wishmann, and L.J. Le Drew.  2005.  GHG 
Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems.  p. 209-232.  In  
A. Tremblay et al. (ed.)  Greenhouse Gas Emissions-Fluxes and Processes: 
Hydroelectric Reservoirs and Natural Environments.  Springer, Germany.  

Turner, M.A., G.G.C. Robinson, B.E. Townse, B.J. Hann, and J.A. Amaral.  1995.  
Ecological effects of blooms of the filamentous green algae in the littoral zone of an 
acid lake.  Can. J. Fish. Aquat. Sci.  52:2264-2275. 

van Cleemput, O.  1998.  Subsoils: chemo- and biological denitrification, N2O and N2 
emissions.  Nutr. Cycl. Agroecosyst.  52:187-194. 

van der Kamp, G., M. Hayashi, and D. Gallen.  2003.  Comparing the hydrology of 
grassed and cultivated catchments in the semi-arid Canadian prairies.  Hydrol. 
Process.  17:559-575. 



 

 90

Veldkamp, E., M. Keller, and M. Nunez.  1998.  Effects of pasture management on N2O 
and NO emissions from soils in the humid tropics of Costa Rica.  Global 
Biogeochem. Cycles  12:71-79. 

Verhoeven, J.T.A., B. Arheimer, C. Yin, M.M. Hefting.  2006.  Regional and global 
concerns over wetlands and water quality.  Trends Ecol. Evol.  21:96-103. 

Waiser, M.J., and R.D. Robarts.  2004.  Net heterotrophy in productive prairie wetlands 
with high DOC concentrations.  Aquat. Microb. Ecol.  34:279-290. 

Walter, B.P., and M. Heimann.  2000.  A process-based, climate-sensitive model to 
derive methane emissions from natural wetlands: Applications to five wetland sites, 
sensitivity to model parameters, and climate.  Global Biogeochem. Cycles  14:745-
765. 

Watts, S.H., and S.P. Seitzinger.  2000.  Denitrification rates in organic and mineral soils 
from riparian sites: a comparison of N2 flux and acetylene inhibition methods.  Soil 
Biol. Biochem.  32:1383-1392. 

Wetzel, R.G. 1983. Limnology. 2nd ed. Saunders College, Philadelphia, PA. 
Wetzel, R.G.  1996.  Nutrient cycling in lentic freshwater ecosystems. p. 641-667.  In J. 

Stevenson et al. (ed.)  Algal ecology: Freshwater benthic ecosystems.  Academic 
Press. 

Whiting, G.J., and J.P. Chanton. 1993.  Primary production control of methane from 
wetlands.  Nature 364:794-795. 

Xing, Y., P. Xie, H. Yang, L. Ni, Y. Wang, and K. Rong.  2005.  Methane and carbon 
dioxide fluxes from a shallow hypereutrophic subtropical lake in China.  Atmos. 
Environ.  39:5532-5540. 

Yates, T.T.  2006.  Spatial and temporal patterns of nitrous oxide and their relationship 
to soil water and soil properties.  Ph.D. diss.  154pp. University of Saskatchewan, 
Saskatoon. 

Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock.  2006.  Probability distribution and 
spatial dependence of nitrous oxide emission:  temporal change in a hummocky 
terrain.  Soil Sci. Soc. Am. J.  70:753-762. 

 


