
Simulation and Performance Evaluation of Hadoop

Capacity Scheduler

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Jagmohan Chauhan

c©Jagmohan Chauhan, November/2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

MapReduce is a parallel programming paradigm used for processing huge datasets on certain classes of

distributable problems using a cluster. Budgetary constraints and the need for better usage of resources in a

MapReduce cluster often make organizations rent or share hardware resources for their main data processing

and analysis tasks. Thus, there may be many competing jobs from different clients performing simultaneous

requests to the MapReduce framework on a particular cluster. Schedulers like Fair Share and Capacity have

been specially designed for such purposes. Administrators and users run into performance problems, however,

because they do not know the exact meaning of different task scheduler settings and what impact they can

have with respect to the resource allocation scheme across organizations for a shared MapReduce cluster. In

this work, Capacity Scheduler is integrated into an existing MRPERF simulator to predict the performance

of MapReduce jobs in a shared cluster under different settings for Capacity Scheduler.

A few case studies on the behaviour of Capacity Scheduler across different job patterns etc. using inte-

grated simulator are also conducted.

ii

Acknowledgements

I would like to take this opportunity to thank and express my gratitude to the people who helped me and

made the successful completion of this thesis possible. First and foremost, I would like to express my genuine

gratitude and sincere appreciation to my supervisors Dr. Dwight Makaroff and Dr. Winfried Grassmann

who helped me all the way from the beginning of my study at U. of S. When I started my program at U.

of S., I had very little idea about doing research. Both of my supervisors guided me in the right directions

from the beginning of my program and helped me understanding the art of research. They provided me with

lots of support, encouragement, motivation and ideas. They extended their helping hands whenever I needed

any suggestions. I also appreciate their efforts in correcting my thesis which took a lot of their valuable time

and yet they were patient. Besides my supervisors, I would like to thank the rest of the members of my

thesis committee: Dr. Derek Eager, Dr. Nate Osgood and Dr. Keith Willoughby for their suggestions and

insightful comments. I am very thankful to the DISCUS lab friends and also friends at U of S who provided

unconditional support and encouragement for the successful completion of my thesis. I also thank the HPC

team at the University of Saskatchewan to provide access to the Socrates cluster to do the real cluster and

simulation experiments. Last but not the least, I would like to express my sincere gratitude to the almighty,

my parents, siblings and my fiance who were always there for me.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Data Intensive Computing . 2
1.2 MapReduce . 2
1.3 Hadoop . 4
1.4 Thesis Motivation . 5
1.5 Thesis Statement . 5
1.6 Thesis Contributions . 6
1.7 Thesis Organization . 6

2 Background and Related Work 7
2.1 Background . 7

2.1.1 Hadoop Structure . 7
2.1.2 Definitions . 8
2.1.3 Task Schedulers in Hadoop . 10

2.2 Alternative Task Schedulers for MapReduce . 13
2.2.1 Delay Scheduling . 13
2.2.2 Quincy . 14
2.2.3 Dynamic Priority Scheduler . 14
2.2.4 Other Research Efforts . 15

2.3 MapReduce Performance Modeling . 15
2.4 Simulation of Distributed Systems . 16
2.5 Simulators for MapReduce . 17

2.5.1 Starfish . 17
2.5.2 MRPERF . 18
2.5.3 Mumak . 18
2.5.4 SimMR . 19
2.5.5 HSim . 20
2.5.6 MRSim . 21
2.5.7 SimMapReduce . 22

2.6 Summary . 23

3 Design and Implementation of
Capacity Scheduler simulator 24
3.1 MRPERF Design . 24

3.1.1 Architecture of MRPERF . 25
3.1.2 Working Mechanism in MRPERF . 26

iv

3.1.3 Assumptions in MRPERF . 27
3.2 Reasons for Choice of MRPERF . 28
3.3 Integration of the Capacity Scheduler into MRPERF . 28

3.3.1 Data Structures and Config Files . 29
3.3.2 Capacity Scheduler Implementation . 30

4 Experiments 34
4.1 Hardware Environment . 34

4.1.1 Sensitivity Analysis Experiments . 34
4.1.2 Simulator Validation Experiments . 35
4.1.3 Simulation Experiments . 35

4.2 Definitions . 35
4.2.1 Same-reduce-node Effect . 35
4.2.2 Delayed Map Execution . 36
4.2.3 Performance Measures . 36

4.3 Parameters . 37
4.3.1 Sensitivity Analysis Experiments . 37
4.3.2 Simulator Validation Experiments . 37
4.3.3 Simulations . 38

4.4 Factors Varied . 39
4.4.1 Sensitivity Analysis Experiments . 39
4.4.2 Simulator Validation Experiments . 39
4.4.3 Simulation . 39

5 Sensitivity Measurement Results
and
Simulator Validation 43
5.1 Sensitivity Measurement Analysis . 43

5.1.1 Impact of Resource Allocation Parameters . 44
5.1.2 Impact of Job Initialization Parameters . 50
5.1.3 Makespan . 52
5.1.4 Discussion . 55

5.2 Simulator Validation . 55
5.2.1 Comparison of Results with one Reduce Slot per Node 56
5.2.2 Two Reduce Slots per Node . 61
5.2.3 Stragglers . 68

5.3 Analysis/Summary . 68

6 Characterization of the Effect of
Capacity Scheduler Parameter Settings
using Simulation 70
6.1 Equal Queue Capacity: Job Types Separated . 70

6.1.1 Data Locality . 70
6.1.2 Response Ratio . 72
6.1.3 Execution Time and Variation . 74
6.1.4 Makespan . 76

6.2 Differential Queue Capacity: Job Types Separated . 77
6.2.1 Data Locality . 77
6.2.2 Response Ratio . 77
6.2.3 Execution Time and Variation . 83
6.2.4 Makespan . 83

6.3 Interleaved Jobs . 84
6.3.1 Data Locality . 84
6.3.2 Response Ratio . 84
6.3.3 Execution Time and Variation . 86

v

6.3.4 Makespan . 86
6.4 Separate Queue Jobs . 87

6.4.1 Data Locality . 87
6.4.2 Response Ratio . 87
6.4.3 Execution Time and Variation . 88
6.4.4 Makespan . 90

6.5 Analysis . 90
6.5.1 Question 1 . 91
6.5.2 Question 2 . 91
6.5.3 Question 3 . 91

7 Conclusions 93
7.1 Thesis Summary . 93
7.2 Thesis contribution . 94
7.3 Future Work . 95

7.3.1 Improvement in MRPERF simulator . 95
7.3.2 Improvement in Capacity Scheduler simulation . 95
7.3.3 Experimental Design . 96

References 97

vi

List of Tables

12
4.1 Job Types For The Experiments . 38
4.2 Parameter Settings For The Experiments . 41
4.3 Parameter Settings For The Experiments. 42

5.1 Makespan For All Experiments . 54
5.2 Isolated-Paired Reduce Runs For All Jobs In Real Cluster Experiments 61
5.3 Isolated-Paired Reduce Runs For All Jobs In Simulation Experiments 61
5.4 Stragglers For All Experiments . 68

6.1 Percentage Of Rack-Local Tasks For All Job Types Across The Experiments 71
6.2 Response Ratio For All Job Types For The Experiments . 72
6.3 Response Ratio For Small Job Types For The Experiments 74
6.4 Coefficient Of Variation For Short Job Types . 76
6.5 Makespan For Both Queues Across All The Experiments . 77
6.6 Percentage Of Rack-Local Task For All Job Types For Queue 1 (70%) 78
6.7 Percentage Of Rack-Local Task For All Job Types For Queue 2 (30%) 78
6.8 Response Ratio For All Job Types For The Experiments For Queue 1 (70%) 78
6.9 Response Ratio For All Job Types For The Experiments For Queue 2 (30%) 79
6.10 Coefficient Of Variation For Short Job Types For Queue 1 (70%) 83
6.11 Coefficient Of Variation For Short Job Types For Queue 2 (30%) 83
6.12 Makespan For Both Queues Across All The Experiments . 84
6.13 Percentage Of Rack-Local Task For All Job Types Across The Experiments 85
6.14 Response Ratio For All Job Types For The Experiments - Interleaved Scenario 85
6.15 Coefficient Of Variation For Short Job Types For Queue 1 . 86
6.16 Makespan For All Experiments - Interleaved Scenario . 86
6.17 Percentage Of Rack-Local Task For All Job Types Across The Experiments In Queue 1 And

Queue 3 . 87
6.18 Response Ratio For All Job Types For The Experiments - Separate Queue Scenario 88
6.19 Coefficient Of Variation For Short Job Types For Queue 1 And Queue 3: Separate Queues . . 90
6.20 Makespan For All Experiments - Separate Queue Scenario . 90

vii

List of Figures

1.1 High-Level MapReduce Pipeline . 4

2.1 Hadoop Framework . 8
2.2 HSIM Architecture [24] . 20
2.3 MRSim Architecture [17] . 21
2.4 SimMapReduce Architecture [30] . 23

3.1 MRPERF Architecture. [36] . 25
3.2 Control Flow In The JobTracker. [36] . 26
3.3 Control Flow When Running Map and Reduce Tasks. [36] 27

5.1 Effect Of NumberofQueues And QueueCapacity . 45
5.2 Effect Of Maximum-Capacity On Running Time Of Jobs. 46
5.3 Effect Of Minimum-User-Limit-Percent . 48
5.4 Effect Of User-Limit-Factor . 49
5.5 Effect Of Priority Settings . 50
5.6 Effect Of Maximum-System-Jobs On Running Time Of Jobs. 51
5.7 Effect Of Maximum-Initialized-Active-Tasks On Running Time Of Jobs. 53
5.8 Effect Of NumberofQueues (2 Users/Queue and 2 Jobs/User) 57
5.9 Effect Of Maximum-Capacity (2 Users/Queue And 2 Jobs/User) 59
5.10 Effect of Minimum-User-Limit-Percent (2 Users/Queue and 2 Jobs/User) 60
5.11 Effect Of Maximum-System-Jobs (2 Users/Queue And 2 Jobs/User) 60
5.12 Effect Of NumberofQueues (2 Users/Queue And 2 Jobs/User) 63
5.13 Effect Of Maximum-Capacity (2 Users/Queue And 2 Jobs/User) 65
5.14 Effect Of Minimum-User-Limit-Percent (2 Users/Queue and 2 Jobs/User) 66
5.15 Effect Of Maximum-System-Jobs (2 Users/Queue and 2 Jobs/User) 67

6.1 Elapsed, Execution And Wait Times For Job Types 2 And 4 73
6.2 Elapsed, Execution And Wait Times For Job Types 5 And 7 75
6.3 Elapsed, Execution And Wait Times For Job Types 2,4,5 And 7 80
6.4 Waiting Time For All Jobs In Exp 12 . 81
6.5 Waiting Time For All Jobs In Exp 14 . 82
6.6 Waiting And Execution Times For All Job Types: Separate Queues 89

viii

List of Abbreviations

ARIA Automatic Resource Inference and Allocation
DFS Distributed File System
FIFO First In First Out
GFS Google File System
HDFS Hadoop Distributed File System
HTTP Hyper Text Transfer Protocol
LATE Longest Approximate Time to End
MRPERF MapReduce Performance Simulator
RAID Redundant Array of Independent Disks
TCL Tool Command Language
XML Extensible Markup Language

ix

Chapter 1

Introduction

MapReduce is a parallel programming paradigm used for processing big datasets on certain classes of

distributable problems using a cluster [13]. Budgetary constraints and the need for better usage of resources

in a MapReduce cluster often motivate different organizations to rent or share hardware resources for their

big data processing and analysis tasks. Thus, there may be many competing jobs from different clients

performing simultaneous requests to the MapReduce framework on a particular cluster. Schedulers like Fair

Share1 and Capacity2 have been specially designed for such purposes. Capacity Scheduler offers a number

of configuration parameters to control the scheduler behaviour in the cluster. The administrators have to

often make decisions about changing these parameters to suit different organizational needs. In such cases,

running the actual workload on the cluster and then fine tuning the cluster is a daunting task. Often, the

administrators do not know how changing a certain set of parameters will affect the overall performance of

the workload which normally runs in the cluster. Similarly, a cluster may be reduced or extended in terms

of the number of nodes or their capabilities. In such cases as well, it is difficult for an administrator to

predict the performance of MapReduce workload without actually running the jobs on the desired cluster.

Hence, designing a Capacity Scheduler simulator which can help administrators in the above mentioned tasks

without actually running the jobs will save both time and money, and will be a cost effective solution.

The other major benefit of having a simulator is that it can help to test new configuration parameters

and/or functionalities if any are added in future in Capacity Scheduler to see their effect on MapReduce jobs.

Further, there exist no studies which characterize the behaviour of Capacity Scheduler across different job

submission patterns, and data layout scheduling algorithms, etc. The simulator designed in this work is used

to undertake such a study. Interesting and important information is revealed about how Capacity Scheduler

works under different scenarios. The rest of the chapter discusses the background, the thesis motivation,

thesis statement, thesis contributions, and rest of the thesis organization.

1http://hadoop.apache.org/common/docs/r0.20.2/fairscheduler.html (5 June, 2013)
2http://hadoop.apache.org/common/docs/r0.20.2/capacityscheduler.html (5 June, 2013)

1

1.1 Data Intensive Computing

Companies, research and government organizations are producing huge amount of data along with World

Wide Web and social networking sites [12]. The amount of such data is terabytes or petabytes in size

and is often referred to as Big Data [1]. The applications working on Big Data in a parallel manner to

produce meaningful information are called data intensive computing applications. Such applications devote

most of their time to disk activity and network activities such as the movement and manipulation of data.

Movement of data is quite common in data intensive applications where data is to be carried over the network

between different nodes for further processing. For example, a MapReduce data intensive application needs

a high bandwidth data access rate between the nodes placed on different racks. Manipulation of data is

also often done in data intensive applications. For example, a MapReduce data intensive application invokes

map and reduce functionality on huge amounts of data to produce the final output data. The analysis and

processing of Big Data is crucial for the success of many organizations and data intensive computing is

intended to address this need. Over the years, a number of system architectures have been developed for

data-intensive computing. One such architecture is parallel and distributed relational databases [14], which

is serving the industry for the last 20 years using clusters of nodes that perform no sharing. However, with

the explosion of unstructured data, new processing frameworks were required. Several solutions emerged

including the MapReduce architecture. MapReduce was developed by Google. An open source framework

based on MapReduce called Hadoop3 emerged in 2007 and is used by premier organizations like Yahoo!,

Facebook, and others.

1.2 MapReduce

MapReduce was developed by Google in 2004. The power of MapReduce lies in its ease of use. The user

defines a map and reduce function using languages like Java, Python etc. The other key components of

distributed parallel processing environment like partitioning of the input data, scheduling and executing the

tasks in the cluster and networking between the cluster nodes are automatically done and hidden from the

user.

The map function operates on input data, which is in the form of key/value pairs. The map function

produces output data in the form of a set of intermediate key/value pairs. All the values associated with

a same intermediate key are grouped together and send to the reduce function. The reduce function takes

intermediate key value pairs and merge these values to form a smaller set of values. Typically just at most

one output value is produced per reduce invocation. For example, if the application is Sort, then the output

after map and reduce processing will be of same size as the input. In Sort, the mapper is the predefined

IdentityMapper and the reducer is the predefined IdentityReducer, both of which just pass their inputs

3http://hadoop.apache.org (5 June, 2013)

2

directly to the output. Grep is an application, where one has to find all the occurrences of a text string in a

given input. If that text string does not exist in the given input, the output of map processing will be zero

bytes. This will result in a reduce phase with no processing, as there will be no map output.

Example: For a word counting problem in a collection of documents, a user would write code similar to

the following pseudo-code:

map(String key, String value):

key: document name

value: document contents

Parse the document content, word by word.

For each word, emit intermediate key value pair as (word,1).

reduce(String key, Iterator values):

key: a word

values: a list of counts

Count all the occurrences of every unique word and sum them up.

Output the result which shall contain every unique word with its number of occurrences.

A MapReduce job consists of the following processing stages and a typical execution is shown in Figure

1.1:4

1. Map Operations: Map tasks involve the following actions: 5

(a) Map Processing: HDFS is the user level filesystem present in Hadoop. HDFS splits the large input

data set into smaller data blocks (64 MB by default). Data blocks are provided as an input to

the map function. The block data is split into key value pairs based on the Input Format. The

map function is invoked for every key value pair in the input. The output generated by the map

function is written in a circular memory buffer, associated with each map. Before writing to the

disk, the background thread divides the data into partitions (based on the partitioner used). Each

map function output is allocated to a particular reducer by the application’s partition function.

(b) Spill: A background thread spills the contents to the disk when the buffer size reaches a threshold.

During the spill process, Map continues to write data to the buffer unless it is full.

(c) Sorting: An in-memory sort is performed on keys. The sorted output is provided to a combiner

function (if used in the program). Combiners is a function which works to aggregate the Map

output before it goes to the reducer. This minimizes the amount of data which will be shuffled

across the network.

4http://developer.Yahoo!.com/hadoop/tutorial/module4.html (15th May, 2013)
5http://hadoop-toolkit.googlecode.com/files/White%20paper-HadoopPerformanceTuning.pdf (15th May, 2013)

3

(d) Merging: Before the map task is finished, the spill files are merged into a single partitioned and

sorted output file.

(e) Compression: The map output can be compressed before writing to the disk to save disk space,

and to minimizes the data which will be shuffled across the network. By default compression is

not enabled.

Figure 1.1: High-Level MapReduce Pipeline

2. Reduce Operations: The Reducer has three phases:

(a) Shuffle: The map outputs are transferred across the network to the reducers. The map output

is copied to the reducer’s memory buffer. When the data to be copied reaches above a certain

threshold, it is merged and spilled to disk.

(b) Sort or Merge: This phase starts when all the map tasks have been completed and their output

has been copied. Map outputs are merged and their sorting order is maintained.

(c) Reduce: In this phase, reduce function is invoked for each key in the sorted output. The output

of this phase is written to the HDFS.

1.3 Hadoop

Hadoop is an open source platform that was designed to support data intensive applications by Yahoo!.

Hadoop is based on Google’s MapReduce and Google File System (GFS) [16]. A Hadoop cluster consists of

3 main components: a dedicated NameNode server to provide file system support, a secondary NameNode,

which generates snapshots of the NameNode’s metadata and a JobTracker server to manage job scheduling

decisions. The architecture and job scheduling in Hadoop is explained in more detail in Chapter 2.

4

1.4 Thesis Motivation

The Task Scheduler is an important part of the MapReduce framework. Initially, MapReduce was designed

to handle batch-oriented jobs and a FIFO task scheduler was suited to handle such jobs. However, later

the need to have better data locality, better response time for short jobs and the need to share clusters

among different organizations or between different groups of the same organizations led to the development

of various other schedulers, like FairShare, 6 Delay aware [38], Capacity,7 Quincy [21], etc.

The Capacity Scheduler was specially designed to share the capacity of the cluster among the different

organizations fairly. Different organizations may be forced at times, due to budgetary constraints for example

to, to change the resource allocation scheme in the cluster. Different configuration parameters exist in the

Capacity Scheduler for the administrators to vary. The settings affect how the resources in the cluster are

shared among different queues and users of the organization.

Preliminary investigating experiments were conducted on the Capacity Scheduler and found that these

task scheduler settings can have significant impact on the performance of MapReduce jobs [9]. This is

considered an important finding, because changing the resource allocation scheme for a cluster can have a big

impact on the performance of running jobs of different organizations and hence it is important to estimate it

before making any such changes. Therefore, one of the major motivations of this work is to design a Capacity

Scheduler simulator to provide administrators with a tool to help them to find the estimated performance of

MapReduce jobs if the resource allocation scheme is changed for a cluster.

Some of the other motivations which prompted this work are the following:

1. Organizations often do not have adequate resources to build a real cluster to test the Capacity Scheduler.

Running jobs on a real cluster using the Capacity Scheduler to check their performance is also time

consuming. In both these cases, the Capacity Scheduler simulator can be a handy tool which saves

time and cost.

2. The Capacity Scheduler simulator also helps to characterize the behaviour of running jobs on a MapRe-

duce cluster using the Capacity Scheduler across different job submission patterns, different job mixes,

different network topologies and different cluster configurations.

1.5 Thesis Statement

The aim of this thesis is to determine how the MapReduce Capacity Scheduler parameter settings influence

the performance of MapReduce applications and to create a Capacity Scheduler simulator. This is achieved

through performance measurement, integration of the Capacity Scheduler into a MapReduce Simulator, and

scalability experiments in the simulation environment.

6http://hadoop.apache.org/common/docs/r0.20.2/fairscheduler.html (19th May, 2013)
7http://hadoop.apache.org/common/docs/r0.20.2/capacityscheduler.html (19th May, 2013)

5

1.6 Thesis Contributions

This thesis explores the Capacity Scheduler and its parameters in detail. It makes the following contributions:

• This thesis is the first systematic study to understand Capacity Scheduler parameters and their impact

on the performance of MapReduce applications.

• This thesis contributes a component of the simulator which can simulate Capacity Scheduler.

• The simulator developed in this thesis was verified against real cluster results on representative

MapReduce applications.

• A large scale simulation was done in the thesis under different job submission patterns. The findings

gathered from this simulation study can be used by the administrators to effectively manage a shared

cluster using Capacity Scheduler.

1.7 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes related work. Chapter 3 discusses the design

and implementation of the Capacity Scheduler integration into MRPERF (an existing MapReduce simulator).

Chapter 4 contains the experimental design used in the thesis. Chapter 5 presents the initial results of the

performance of MapReduce applications on a real cluster under varying the Capacity Scheduler parameters

settings along with validation results, where simulation results are compared with real world experimental

results for a small set of jobs. Chapter 6 contains the detailed analysis of a large scale simulation done on a

31 node cluster with different job submission pattern on a MapReduce workload containing a heterogeneous

job mix. Finally, chapter 7 presents the conclusions along with future work.

6

Chapter 2

Background and Related Work

This chapter describes Hadoop in a more detailed fashion to give adequate background to the reader.

Firstly, the architecture of Hadoop and its important components like JobTracker, NameNode, etc, are

described. The discussion then moves on to the different task schedulers which exist in Hadoop, and in

particular, on the Capacity Scheduler with its inner working mechanisms and its important properties. Nu-

merous job schedulers have been designed by different research groups to optimize MapReduce task scheduler

decisions in addition to the task schedulers present in Hadoop. Such job schedulers are also discussed. The

remainder of this chapter contains evaluations of other research into performance modeling of MapReduce

and simulation of distributed systems, including Grid and MapReduce.

Various efforts have been made in simulating the MapReduce framework. Mumak, Starfish, MRPERF

etc. are a few examples. Some of these simulators are discussed in the final part of the chapter. The pros

and cons and the different approaches taken by different MapReduce simulators are described.

2.1 Background

2.1.1 Hadoop Structure

Hadoop is an open source platform that supports the MapReduce parallel programming data model. Hadoop

mainly consist of two components: MapReduce Engine and HDFS. These two components are briefly de-

scribed below.

• The MapReduce Engine consists of a JobTracker and several TaskTrackers. The JobTracker primarily

deals with scheduling the jobs’ tasks on the TaskTrackers and monitoring them at regular intervals.

The JobTracker also re-executes the tasks which get failed due to errors. The TaskTrackers execute

the tasks as specified by the JobTracker according to some task scheduling algorithm. They also report

periodically to the JobTracker when they finish executing a task and send a periodic heartbeat signal

to inform the JobTracker to let it know that they are alive.

• HDFS: The Hadoop Distributed File System (HDFS) [26] provides global access to files in the cluster.

The HDFS is coded in Java as a user level filesystem. The files in HDFS may be big and hence are

7

split into smaller blocks of 64 MB. Each block is stored as a separate file in the local filesystem. HDFS

is implemented by two services: the NameNode and the DataNode.

The NameNode maintains the HDFS directory tree. Like JobTracker, the NameNode is a single node

in the cluster. Clients contact the NameNode to perform common filesystem operations. The NameN-

ode keeps a mapping between HDFS file to a list of blocks in the file, and between blocks and the

DataNode(s).

The Secondary NameNode task is to periodically perform checkpoints on the NameNode’s persistent

state. All other nodes in the cluster serve the purpose of DataNodes. Data blocks are stored in

DataNode. A sample Hadoop architecture is shown in Figure 2.1. M1 and M2 are mappers. R1 and

R2 are reducers. Mappers and Reducers are executed on TaskTrackers (TT). Split 1, 2 and 3 are splits

of 64 MB from a HDFS input file.

Figure 2.1: Hadoop Framework

2.1.2 Definitions

Data Locality

In the MapReduce framework, data locality is an important performance criterion. The system aims to reduce

data transfer by processing distributed data as close as possible to the current storage location. Tasks have

varying relationships with the data: node-local tasks have the data on the same machine’s local disk, rack-

local tasks have the data on a machine in the same rack and network data transfer to the local switch/router

is necessary to complete the task, and, finally, remote tasks are neither node-local nor rack-local. Remote

tasks incur greater latency, as the network transmission may be across multiple network links. Therefore,

8

if a TaskTracker has to do map processing on the chunk of data which is available in its local storage, the

processing will be fast. Otherwise, the TaskTracker has to fetch the required chunk of data from another node

(may be on the same rack or on a different rack), that has the data over the network, increasing response

time.

Off-Switch Task

An off-switch task is defined as a task in which data has to be fetched over the network. In the Capacity

Scheduler, off-switch means remote.

Delay Scheduling in Capacity Scheduler

In Capacity Scheduler, delay scheduling is implemented for map tasks to achieve high data locality. There

is one counter called scheduling opportunities for each job that gets incremented every time it gets the

opportunity to schedule its map task. If node-local or rack-local tasks can be scheduled for the job, the

scheduling opportunities counter is reset to zero. Initially, jobs can only schedule node-local or rack-local

task. Hence, their map task scheduling is delayed if the data is not node-local to the TaskTracker from which

the JobTracker gets the heartbeat to schedule the job’s map tasks. Delay also occurs if no rack-local task can

be found. However, the job’s map task cannot be indefinitely delayed. So, after the scheduling opportunities

counter becomes greater than the number of nodes in cluster, a remote task is scheduled for the job.

Straggler

A Straggler is a task (map or reduce) that takes an unusually long time to complete. This lengthens the total

time for a MapReduce job to get finished. The reasons which contribute to stragglers , include static aspects

such as hardware faults, heterogeneous hardware and dynamic aspects like CPU time variability, network

traffic, disk contention, etc. [2].

MapReduce Slots

MapReduce Slots defines the maximum number of map and reduce tasks that can run in parallel on a cluster

node. The number of slots on each cluster node can be different and depend on the node’s hardware capacity.

Speculative Execution

Stragglers are a major issue in Hadoop. They cause a few cluster nodes to slow down the rest of the

MapReduce application. “Hadoop does not try to diagnose and fix slow-running tasks. Instead, it tries to

detect when a task is running slower than expected and launches another, equivalent, task as a backup. This

is termed speculative execution of tasks. It is important to note that speculative execution does not work

by launching two duplicate tasks at the same time. This would be wasteful of cluster resources. Rather, a

speculative task is launched only after all the tasks for a job have been launched, and then only for tasks

9

that have been running for some time and have failed to make as much progress, on average, as the other

tasks from the job. When a task completes successfully, any duplicate tasks that are running are killed since

they are no longer needed. So, if the original task completes before the speculative task, then the speculative

task is killed. On the other hand, if the speculative task finishes first, then the original is killed [37]”.

2.1.3 Task Schedulers in Hadoop

The task scheduler runs on the JobTracker and plays an important role in deciding where the tasks of a

particular job will be executed in the cluster. There are three different well-known schedulers in Hadoop:

FIFO

Initially Hadoop was intended such as web indexing and log mining. All the users submit jobs to a single

queue, and the FIFO task scheduler runs them sequentially in first in first out order. Jobs are executed as

they arrive in the queue (as long as they have the same priority). However, FIFO does not strictly mean

that the next job will wait until the current job is done. In cases where the current job does not completely

consume the cluster capacity, the next job can run using the unused capacity of the cluster. FIFO jobs may

not finish in the order they arrive. If there are multiple slots, and a small job arrives, it may get a slot or

two and finish before a large job.

Fair Scheduler

Facebook’s need to share its data warehouse between multiple users lead to the development of Fair Scheduler.

Facebook initially used Hadoop to generate daily reports from the data it accumulated daily. Sooner other

groups within Facebook started to use Hadoop as well and this increased the number of production jobs. In

addition, analysts started using the data warehouse for short interactive jobs like Hive queries. Hive [31] is

a data warehouse system for Hadoop that helps to analyse the large datasets stored in Hadoop-compatible

file systems. Hive uses HiveQL to query the data. Hence, Facebook built the Fair Scheduler. Fair Scheduler

allocates resources evenly between multiple jobs and also supports capacity guarantees for the different jobs.

The Fair Scheduler is based on three concepts:

1. Jobs are placed into pools according to certain attribute like user name or group.

2. Each pool have a guaranteed capacity. Guaranteed capacity provides a minimum number of map slots

and reduce slots to be given to the pool.

3. Excess capacity that is not used to satisfy the pool minimum is allocated between jobs using fair sharing.

Fair Share is part of the Hadoop open source code.

10

Capacity Scheduler

The Capacity Scheduler from Yahoo! is similar to the Fair Scheduler. In Capacity Scheduler, a number of

named queues are configured. Each queue has a guaranteed capacity in the form of map and reduce slots.

The capacity is given to the queue when it contains jobs. Otherwise, any unused capacity is shared between

the queues. FIFO scheduling with priorities is used in each queue. Limits can be placed on the percent

of running tasks per user, so that users share a cluster equally. Both Capacity and Fair Share schedulers

offer various configuration parameters, that allow administrators to tune scheduling parameters for the jobs.

Table 2.1 shows the configurable parameters for the Capacity Scheduler. There are two types of parameters

in the configuration settings:

1. Resource allocation: These parameters relate to the number of queues, their allocated capacity,

Maximum-Capacity and per user limit within the queues. The first five parameters listed in Table 2.1

belong to this category.

2. Job initialization: These parameters are related to the number of jobs which can be in the system

at a time, queue limit and the user limit on the number of tasks which can be spawned concurrently,

etc. The last six parameters listed in the Table 2.1 belong to this category.

There are 2 other major parameters which affect the working of Capacity Scheduler, but these parameters

are hidden in the code and not exposed to the users/administrators in the configuration file. These parameters

are the following:

1. maximum-tasks-per-heartbeat: It specifies the maximum number of tasks which can be scheduled

in a heartbeat. Typically, one map and one reduce task can be assigned per heartbeat by the JobTracker

to the TaskTracker who sends the heartbeat, but with this parameter, multiple tasks of the same type

can be assigned to the TaskTracker per heartbeat. One reason to not expose this parameter is that

the number of tasks a TaskTracker can handle is defined by its hardware configuration. So, in certain

cases, a user may give this parameter a huge value when the actual configuration on the TaskTracker

cannot really support it. For example, if this parameter was exposed to the user, they could potentially

set the value of maximum-tasks-per-heartbeat to 4 when a TaskTracker is configured to support only

2 map slots. In such cases, the values specified by the user could not be handled by the TaskTracker

and will have no effect.

2. MaxTasksToAssignAfterOffSwitch: It defines the maximum number of tasks to schedule, per

heartbeat, after an off-switch task has been assigned. Clearly, the more the off-switch tasks can be

assigned, the more latency will be added to the MapReduce application execution time. One possible

reason for not exposing this parameter to the user is that it is not well known how data locality affects

the MapReduce applications performance under Capacity Scheduler. Setting this parameter to a large

11

Table 2.1: Configurable Parameters For Capacity Scheduler

Parameter Name Brief Description and Use Default

Value

queue.queue-name.capacity Percentage of the number of slots in the cluster available

for jobs in this queue.

1 queue with

100%

queue.queue-name.Maximum-Capacity Limit beyond which a queue cannot use the capacity of the

cluster. This provides a means to limit how much excess

capacity a queue can use. -1 means no limits are imposed

on the maximum-capacity.

-1

queue.queue-name.Minimum-User-

Limit-Percent

Each queue enforces a limit on the percentage of resources

allocated to a user at any given time, if there is competition

for them.

100

queue.queue-name.User-Limit-Factor Allows user to acquire more slots than the queue’s config-

ured capacity if the cluster is idle.

1

queue.queue-name.Supports-Priority Is priority considered in scheduling decisions. False

Maximum-System-Jobs Maximum number of concurrently initialized jobs 3000

queue.queue-name.Maximum-

Initialized-Active-Tasks

Maximum number of concurrently initialized tasks in the

queue for all the jobs.

200000

queue.queue-name.Maximum-

Initialized-Active-Tasks-Per-User

Maximum number of concurrently initialized tasks per user

in the queue.

100000

queue.queue-name.init-accept-jobs-

factor

Multiple of (Maximum-System-Jobs*queue-capacity). De-

termines the number of jobs accepted by the scheduler.

10

init-poll-interval Time interval between job initializations. 5000 ms

init-worker-threads Number of worker threads used to initialize jobs. 5

12

value means more remote tasks can be scheduled for a job, which will increase the execution time of

the job.

The Capacity Scheduler works according to the following principles:

1. The existing configuration is read from capacity-scheduer.xml at cluster startup. It contains all the

Task scheduler settings. The queues and other parameters are set using this information.

2. An initialization poller thread is started and worker threads are also initialized. The poller thread wakes

up at specified intervals (“init-poll-interval”), distributes the work to worker threads and then goes to

sleep. The number of worker threads is set up as min(number of queues, init-worker-threads).

A single thread can handle multiple queues. Not all the jobs admitted into the system are initialized

instantly to reduce the memory footprints on JobTracker.

3. When a job is submitted to the cluster, the scheduler checks for job submission limits to check whether

the job can be accepted for the queue and user.

4. If the job can be accepted, the initialization poller checks the job against initialization limits (e.g.

“maximum-initialized-active-tasks”). If the job can be initialized, it is submitted to the assigned worker

thread for the queue, which initializes the job.

5. Whenever the JobTracker gets the heartbeat from a TaskTracker, a queue is selected from all the

queues whose jobs can be executed. A queue is selected by sorting the queues according to number

of running tasks/capacity of the queue. Queue- and user- specific limits are checked to see if they are

under appropriate limits (e.g. Maximum-Capacity). After selecting the queue, the first job is chosen

from the queue unless its user is over the user limit. Next, a task is picked up from the job and the

preference is given to node-local tasks over rack-local task s. This procedure is repeated until all the

jobs complete execution.

2.2 Alternative Task Schedulers for MapReduce

In order to improve the performance of the jobs in MapReduce, different types of task schedulers were

designed by different research groups. Some of the most prominent ones are discussed in this section.

2.2.1 Delay Scheduling

The Delay scheduler [38] has been designed to optimize the Fair share scheduler algorithm. The Fair share

algorithm works effectively when it comes to fairness in sharing the resources amongst users. However, a

strict implementation of fair sharing compromises locality, because the job to be scheduled next according to

fairness might not have its data on the nodes that are currently free. Two locality problems that arise with

naive fair sharing are the following: head-of-line scheduling and sticky slots. Head of Line scheduling refers to

13

an issue where a job’s task is launched on the next slot that has become free without considering job’s data

locality. The issue of sticky slots refers to the problem where there is a tendency for a job to be assigned the

same slot repeatedly. In both cases, to maintain fairness, the scheduler is forced to launch a task from a job

without local data on a node. These two issues in naive fair share scheduling algorithm influence throughput

and response time for MapReduce jobs.

This problem of data locality is attacked by a simple technique called delay scheduling. In delay scheduling,

the head-of-line job is not allowed to launch a task if it is not node local. The job is skipped and an attempt

is made to search a node local task in the subsequent jobs. However, to avoid starvation, a job is allowed to

launch a non-local task if that job has been skipped for a long time. The wait time to launch a non-local

task is based on the rate at which slots free up in the cluster and the desired level of locality.

2.2.2 Quincy

Quincy [21] is another approach to accomplish data locality and fairness with multiple jobs on the Dryad

clusters at Microsoft. It adopts flow-based scheduling and is a graph-based framework for cluster scheduling.

The primary data structure used in this approach is a graph that encodes both the structure of the cluster’s

network and the set of waiting tasks along with their locality metadata. Appropriate weights and capacities

are assigned to the edges in the graph to obtain, a declarative description of the scheduling policy. After

this, Min-cost flow [4] is used as a standard solver to convert this declarative policy to a set of scheduling

assignments. The scheduler updates the graph whenever an important event occurs (a task completes, a

new task is submitted, etc.), and at regular timer events. Whenever the graph is updated, The scheduler

computes a new min-cost flow on updation of the graph. The scheduler uses new flow to start or kill tasks.

2.2.3 Dynamic Priority Scheduler

The Dynamic Priority Scheduler [25] was designed by HP Labs. As seen with the Fair Share and the Capacity

Scheduler, the administrator has to configure the parameters manually and start the cluster. Different

organizations have to negotiate with other organizations or administrators if they need more resources.

Sometimes this may be inconvenient (as it has to be done manually) and may not be possible. If a user’s

individual jobs vary in importance (critical if certain deadlines must be met) over time and between job

types, severe allocation inefficiencies may occur. For example, a user with a high allocated capacity may run

large, low- priority test jobs starving more important jobs from other users.

To solve this issue, the concept of dynamic regulated priorities was introduced in the Dynamic Priority

Scheduler. In this scheme, each user is given a certain quota called budget over all the jobs at all times.

However, this budget is not static, meaning that budget is not mapped to a particular capacity share value.

Instead, users are allowed to specify how much of their budget they are willing to spend on each job at any

given point in time, called the spending rate. Spending rates denote the willingness to pay a certain amount

of the budget per map or reduce task slot per time unit. The time unit is configurable, and is referred to

14

as an allocation interval. The share allocated to a specific user is calculated as their spending rate over the

spending rates of all users. In each allocation interval, the scheduler performs the following operations:

• aggregates all spending rates s from all current users to calculate the cluster price, p.

• allocates (si/p) × c task slots (both mappers and reducers) to user i, where si, is the spending rate of

user i, and c is the aggregate slot capacity of the cluster. This is done for all the users.

• deducts si × ui from budget b, where ui, is the number of slots used by user i. This is done for all the

users.

The scheduler allows task preemption to guarantee the shares. However, at the same time, users can

exceed their share if no other tasks are running. Furthermore, the users are only charged for the fraction of

the shares they actually use. So if they don’t run any jobs, their spending goes to 0. A single user is assigned

a single queue due to security issues. However, queues can be shared between different users.

2.2.4 Other Research Efforts

There are numerous other attempts to create new scheduling algorithms in MapReduce. In ARIA (Au-

tomatic Resource Inference and Allocation) [33], a job can be submitted with a desirable job completion

deadline. The scheduler then estimates and allocates the appropriate number of map and reduce slots to the

job so that it meets the required deadline. The LATE (Longest Approximate Time to End) [39] scheduler has

been developed to handle MapReduce jobs in the heterogeneous environment present in clouds. It was made

to improve the speculative execution task scheduling in Hadoop, which performs poorly in a heterogeneous

environment. The LATE algorithm uses a SlowTaskThreshold parameter to prevent unnecessary speculation.

The LATE algorithm ranks tasks by estimated time remaining and starts a copy of the highest ranked task

that has a progress rate lower than the SlowTaskThreshold. The advantage of the LATE algorithm is

robustness to node heterogeneity, since only some of the slowest (not all) speculative tasks are restarted.

Chao et al. [32] designed a new triple-queue scheduler which consist of a workload predict mechanism MR-

Predict and three different queues (CPU-bound queue, I/O-bound queue and wait queue). They classified

MapReduce workloads into three types, and their workload prediction mechanism automatically predicts the

class of a new incoming job based on this classification. On the basis of the classification, jobs are assigned

to the CPU-bound or I/O-bound queue.

2.3 MapReduce Performance Modeling

Krevat et al. [23] developed an optimistic performance model that predicts the idealized lower-bound runtime

of a MapReduce workload. The model assumes that the data distribution is even, that data is perfectly

pipelined through sequential operations, and that the underlying I/O resources are utilized at their full

bandwidths. The model’s input parameters describe basic characteristics of the job (e.g., amount of input

15

data), the hardware (e.g., per-node disk and network throughput), and the framework configuration (e.g.,

replication factor). The goal of the model is not to accurately predict the runtime of a job on any given

system, but to indicate what the runtime theoretically should be. The output is the idealized runtime.

Evaluation shows that MapReduce implementations from both Google and Hadoop are far from optimal

values estimated using the model. They also developed a minimal framework to run the applications to

prove that the estimates are indeed achievable. The model works for one job rather than for a workload

of jobs. The sources of inefficiency were straggler tasks, which arise due to disk-to-disk variability and

network slowdown effects. Song [27] describes a model for MapReduce applications using queuing theory.

The workload considered is homogeneous, with many instances of the same job, and the model focuses on

predicting waiting time for map and reduce tasks. Another model [19] used by Starfish [20] divides tasks into

stages and models each stage with a different model. It is further discussed in Section 2.5.1.

2.4 Simulation of Distributed Systems

A closely related large-scale distributed computing paradigm to MapReduce is Grid computing. Grid com-

puting is well-known and has been used to solve large-scale problems using distributed resources. It addresses

similar issues as MapReduce, but with a wider scope. In Grid computing a large computer network is formed

by interconnecting lots of computer systems such that their resources are shared. A variety of simulators

have been developed to model and simulate the performance of Grid systems, including Bricks [29], Microgrid

[28], Simgrid [7], and GridSim [6].

Bricks [29] is a performance evaluation system based on simulation that allows analysis and comparison

of various global computing systems under reproducible, and controlled environments. Its main focus was to

evaluate different scheduling algorithms and schemes in global computing systems by simulating the network

behaviour and resource scheduling algorithms. Bricks uses a queuing network model in which servers and net-

works are modeled as queuing systems. Bricks allows easy construction of a specific global computing system

configuration because the users can specify network topologies, server machine architectures, communication

models and scheduling framework components using the Bricks script.

MicroGrid [28] was the first notable effort to simulate and model large scale Grid structures. This

project was conducted at the University of California at San Diego and was modeled after Globus [15].

MicroGrid creates a controlled virtual grid emulated environment. The main focus of MicroGrid was to

allow researchers to run actual Grid applications on virtual Grid resources. The emulation was precise in

producing results. However, the emulation of realistic applications was time consuming as applications run

on emulated resources. Also, scheduling algorithms designers generally work with application models instead

of constructing actual applications.

The Simgrid toolkit [7], was developed at the University of California at San Diego. It is a C language

based toolkit for the application scheduling simulation, which can be used in large scale distributed systems

16

like Grid. It supports modeling of resources that are time-shared and the load can be injected as constants

or from real traces. Simgrid is a powerful event driven simulator that allows creation of tasks in terms of

their execution time and resources with respect to a standard machine capability. Simgrid has been used for

a number of real studies, and demonstrates the power of simulation. However, Simgrid is limited in scope

due to its applicability to single scheduling entity and time-shared systems only. It is difficult to simulate

multiple competing users, applications, and schedulers, each with their own policies in the toolkit.

GridSim [6] is Java-based toolkit for modelling and the simulation of computational resources for design

and evaluation of schedulers and scheduling algorithms for network based high-performance clusters and

Grid computing. It provides a comprehensive facility for the simulation of different classes of heterogeneous

resources, users, applications, resource brokers, and schedulers. The GridSim toolkit resource modeling

facilities are used to simulate the worldwide Grid resources managed as time- or space-shared scheduling

policies.

2.5 Simulators for MapReduce

According to Babu [3] there exists one big problem with MapReduce: the large number of configuration

parameters. The user has to configure these parameters manually to get optimized performance for their jobs.

To run even a single job in MapReduce, the user has to set the parameters or rely on default settings, which

may not be optimal. It has been proven that job configuration parameter settings can have a significant

impact on the performance of the job. This issue makes the easy adoption of MapReduce difficult. For

example, if the settings have to be done manually, then soon the need for special system administrators will

arise, as happened for databases [8].

2.5.1 Starfish

Starfish [20] aimed to solve the problem of managing huge number of configuration parameters in the MapRe-

duce framework by doing cost-based optimization of MapReduce programs. Starfish involves three compo-

nents:

• Profiling: The Profiler is responsible for collecting job profiles. A job profile consists of the dataflow

and cost estimates for a MapReduce job j = (p, d, r, c), where p is a MapReduce program which runs

on input data d on a set of cluster resources r using job configuration parameters c. The dataflow

estimates represent information regarding flow of the data, while cost estimates represent resource

usage and execution time. BtTrace1 is used to collect profiles. The profiler can be turned off or on as

demanded.

1http:://kenai.com/projects/btrace

17

• What-If Engine: This component predicts the performance statistics for any job which was executed

previously and profiled but is now being run under different settings. The difference in settings can be

in terms of input data, cluster configuration or job configuration parameters. The beauty of the What-if

Engine lies in the fact that the job does not have to be executed on a cluster. Using its previous profile,

a new virtual profile is created for this new job and white box models [19] are used to estimate new cost

and dataflow related information. This is then fed into the simulator to get all run time performance

metrics for the job. Dataflow proportionality and the cluster node homogeneity assumptions allow the

new virtual profile to inherit the dataflow and cost statistics associated with the previous job profile.

• Cost Based Optimization: Here the optimal settings of different MapReduce configuration param-

eters is searched for a job. As searching a large parameter space is difficult, the approach taken here

is of divide and conquer. The large search space is first divided into lower dimensional subspaces, and

then each smaller subspace is solved independently to get approximately globally optimal values. The

authors borrow techniques from simulated annealing [22] to solve this problem.

Starfish is one of a first kinds of tools which try to do self-optimization for MapReduce programs. However,

currently it only supports FIFO based scheduling. So, the simulator used in Starfish can simulate only one

running job at a time. Moreover, the changes in cluster settings (to see performance from the What-if Engine

for the same job under different cluster settings) are only allowed in terms of adding and deleting the nodes

of the same type.

2.5.2 MRPERF

MRPERF [35] aims to provide a fine-grained simulation of MapReduce setups throughout different phases.

MRPERF is based on the popular ns-2 network simulator [5]. It models inter- and intra-rack task communi-

cations over the networks to simulate correct network behaviour. Some of the important motivations behind

MRPERF were to find the performance of jobs running times under varying cluster configurations, different

network topologies, different data placement algorithms and different task schedulers in MapReduce. FIFO,

Fair Share and Quincy schedulers are present in MRPERF. For map/reduce task modeling, MRPERF cre-

ates a number of simulated nodes, where each node might have several processors and a single disk. There

is a simplifying assumption about the application behaviour: a job has simple map and reduce tasks with

compute time requirements that are proportional to the data size but not to the content of the data.

2.5.3 Mumak

Yahoo! has developed a discrete event simulator named Mumak,2 which can estimate performance of MapRe-

duce applications under different schedulers. It takes a job trace derived from production workload and a

2https://issues.apache.org/jira/browse/MAPREDUCE-728/

18

cluster definition as input, and simulates the execution of the jobs as defined in the trace in the virtual cluster.

The detailed job execution trace (recorded in relation to virtual simulated time) is the output, which can

be analyzed to understand various traits of individual schedulers (turn around time, throughput, fairness,

capacity guarantee, etc.).

Mumak consists of the following components:

• Discrete Event Simulator Engine with an event-queue: It manages all the discrete events in

virtual time and fires the appropriate handlers when the events occur.

• Simulated JobTracker: The JobTracker takes responsibility of simulating the MapReduce Scheduler.

• Simulated Cluster (set of TaskTrackers): The simulated cluster consists of an appropriate number

of simulated TaskTrackers, which respond to events generated by the simulation engine.

• A Client for handling job-submission: The client responds to job related events sent by the Engine

and submits the appropriate jobs to the JobTracker.

The simulator is effective for analyzing different task scheduler behaviours. At the same time, it has some

serious limitations. Mumak needs input traces from real production clusters to work upon and cannot predict

the performance for jobs when the cluster configuration is changed. It also does not simulate the shuffle phase,

which hinders its accuracy. These limitations restricts the applicability of this tool.

2.5.4 SimMR

SimMR [34] is yet another simulator which has been designed by HP Labs to evaluate different schedulers

and different provisioning strategies. SimMR is comprised of three inter-related components:

• A Trace Generator which creates a replayable MapReduce workload. It can replay original JobTracker

logs or a synthetic workload.

• A Simulator Engine which emulates the JobTracker functionality based on discrete event simulation. It

manages all the discrete events in simulated time and performs the appropriate action on each event.

The simulator engine fires events and runs the corresponding event handlers.

• A pluggable scheduling policy that controls the decisions on job ordering and resources allocation to

different jobs over time.

SimMR focuses on simulating the JobTracker decisions and task/slot allocations among different jobs. It

does not simulate the details of Tasktrackers like their hard disks or network packet transfers. It is not open

source and hence cannot be extended by the research community.

19

Figure 2.2: HSIM Architecture [24]

2.5.5 HSim

Hsim [24] is another simulator for MapReduce applications. It can simulate the dynamic behaviours of

Hadoop environments and model a large number of Hadoop parameters such as Node parameters, which are

related to processors, memory, hard disk, network interface, map and reduce instances, Cluster parameters,

which include the number of nodes, node configurations, network routers, job queues and schedulers, and

Hadoop system parameters. Figure 2.2 shows the architecture for HSIM.

To perform a simulation, the Cluster Reader component reads the cluster parameters from the Cluster

Spec to create a simulated Hadoop cluster environment. A specified number of nodes are initialized and

arranged using a certain type of topology. When the simulated cluster is ready, incoming jobs are retrieved

from the job queue using a job scheduler. The Job Spec is processed by the Job Reader component and

jobs are submitted to HSim for simulation. HSim follows a masterslave model. The simulated map instances

(MapperSim), reduce instances (ReducerSim), JobTracker and TaskTrackers are located on Master and Slave

nodes. The Master node performs the role of both NameNode and JobTracker. The Slave nodes serve as

Datanodes and TaskTrackers. On Slave nodes, map instances and reduce instances perform data processing

tasks.

As with previous work in the area, HSIM does not have a Capacity Scheduler component. There is also

no support for load balancing. HSIM capabilities of supporting fair share scheduling, running multiple jobs

20

in a cluster and supporting heterogeneous nodes in a cluster setup are debatable as the work lacked support

in terms of experiments done.

2.5.6 MRSim

MRSim [17] is a MapReduce simulator based on discrete event simulation. The aim of MRSim is to measure

scalability of MapReduce based applications easily and quickly and to capture the effects of different con-

figurations of Hadoop setup on MapReduce based applications behaviour in terms of job completion times

and hardware utilization. MRSim models and simulates network topology and traffic using GridSim. On the

other hand, it models the rest of the system entities using SimJava discrete event engine. Figure 2.3 shows

the architecture for MRSim.

Figure 2.3: MRSim Architecture [17]

The system is designed using object-oriented models. CPU, Disk and Network Interface models were

designed to be the basic blocks which can be grouped in a PC machine entity. Each machine is a part

of network topology model. Each machine host a JobTracker process and a Task Tracker Process. The

main component of the simulator is JobTracker that controls generating map and reduce tasks, monitors

when different phases complete, and produces the final results. The user input needed by MRSim is divided

into two different parts defined in text files of JSON format: cluster topology file and job specification file.

The Topology file consists of several rack parts. Each rack consists of a group of machines linked with one

router. The Job specifications file is comprised of a number of map and reduce tasks, data layout, algorithm

description and the job configuration parameters. The data layout describes the location and the replications

of the data splits on the simulated nodes. The input data for a map task is divided into 64 MB partitions and

stored on different nodes. An algorithm description provides information about the MapReduce application,

21

such as the number of CPU instructions per record, average record size in MapReduce tasks etc. The

description helps the simulator to calculate how much time each task in the simulator would take.

MRSim is developed by the same people who developed HSIM. MRSim lacked capabilities to include new

schedulers. There is no load capability. It only support one job in a system at a time and, similar to HSIM,

it drew inspiration from MRPERF.

2.5.7 SimMapReduce

SimMapReduce [30] is a MapReduce simulator based on GridSim. It allows researchers to evaluate different

scheduling algorithms and resource allocation policies. SimMapReduce has a multi-layer architecture as

shown in Figure 2.4. SimMapReduce make use of existing packages as separate components. This makes the

codes reusable, which save time and energy. SimMapReduce works on discrete events. At the lowest layer,

SimJava serves to process the discrete events. A chain of events between different entities keep simulation

going. Gridsim supports the basic provision of system components, such as grid resource, broker, gridlet,

workload trace, networks and simulation calendar. SimMapReduce layer models the different entities of

MapReduce. MRNode represents a MapReduce node in the cluster. MRBroker takes care of allocating nodes

to the arriving users. After the user get nodes to execute their jobs, the job scheduler dispatches map/reduce

tasks for user jobs to a specific node and monitors their execution. Each job has one corresponding MRMaster.

FileManager is responsible for handling file activities. On the top layer, the description of system parameters,

network topology and scheduling algorithms are described in XML files.

At the start of the simulation, nodes in the cluster report their characteristics to MRBroker. Every user

has their own job sequences, and sends jobs sequentially depending on the arrival rate to the system. Each

job has MapTask, ReduceTask, and a master, acting on behalf of the job. When a job starts, its master

asks for the needed number of nodes from MRBroker. When MRBroker finds the requested number of nodes

for the job, it allocates them to the job’s MRMaster. MRMaster picks idle nodes on which to schedule

job MapTasks. MapTask is executed on the scheduled node. When all MapTasks are finished for the job,

MRMaster groups all key/value pairs and sends data with the same key to one ReduceTask. The reduce

phase is carried out in ReduceTask and results are written to a final output file. MRMaster reports job

completion to the user and gets destroyed when all the MApTasks and ReduceTasks are completed for the

job. The simulation is finished when there are no more jobs present in the system.

This simulator supports multiple jobs but supports the FIFO scheduler only. There was no support to

tune multiple Hadoop parameters. It is a very basic simulator which can run and execute incoming jobs in

a FIFO manner on a simulated cluster setup.

22

Figure 2.4: SimMapReduce Architecture [30]

2.6 Summary

Simulation has been used widely for performance prediction and characterization in different areas of com-

puter science. MapReduce has been established as a preferred choice of framework for data intensive

computing. Hence, a lot of different simulator tools have been developed over the last few years to model

MapReduce. MRPERF, Starfish etc. are some examples. These simulator tools save time and help in

performance prediction. However, one of the major drawbacks of all these simulators (except Mumak) is

that they all support only the FIFO scheduler. By and large, the schedulers designed to support sharing of

cluster resources among multiple users and organizations have been ignored in existing simulation tools for

MapReduce, with Mumak being an exception. Mumak also has severe limitations like inaccurate performance

modeling and the need for production level traces. One other important fact is that, despite the presence of

the Capacity Scheduler for a long time, its behaviour has not been studied according to my knowledge.

23

Chapter 3

Design and Implementation of

Capacity Scheduler simulator

MRPERF is an existing MapReduce simulator that is based on discrete event simulation. The first

major work conducted in this thesis is to integrate the Capacity Scheduler in the MRPERF simulator tool.

Therefore, in this chapter, the detailed design of MRPERF and the reasons to choose MRPERF are presented.

Finally, the modifications for integrating the Capacity Scheduler into MRPERF are described in detail in the

rest of the chapter.

3.1 MRPERF Design

MRPERF [36] is the earliest simulator tool for the MapReduce data processing paradigm. It was developed

at Virginia Tech to capture various performance aspects of MapReduce setup and to then use this information

to predict application performance. MRPERF was made open source to be used by the research community

to enable it to explore design issues, validate new algorithms and optimization in MapReduce. Studying

different aspects of MapReduce is very difficult due to the high cost in setting up a real cluster. Not everyone

can afford speculative cluster implementations and hence a simulator of MapReduce can be of great use.

For example, if a company is thinking of increasing the cluster size, it would be beneficial to see how much

performance benefits they are going to obtain using a simulator.

MRPERF was designed to incorporate/study the following features in MapReduce:

• Cluster configuration: This includes exploration of performance when new nodes are added or

deleted from the cluster, and node characteristics are changed in terms of cpu, and disks.

• Network topologies: This includes exploration of performance of MapReduce with different network

topologies, (eg. tree, star, etc.)

• Task Scheduling Algorithm: Researchers can plug in a new algorithm for task scheduling and check

resulting performance on MapReduce jobs. This is the aspect of MRPERF which is being leveraged to

do the work in this thesis.

24

• Data placement Algorithms: Researchers can test new data placement algorithms that decide where

to place data blocks in the cluster to enhance the performance of MapReduce applications.

3.1.1 Architecture of MRPERF

Figure 3.1 shows the high-level architecture of MRPERF. The user input needed by MRPERF can be classified

into three parts: cluster topology specification, application job characteristics, and the data layout of the

application input data. XML file is used to specify the topology of the cluster. The XML file is translated

by MRPERF into a TCL file to be used by ns-2. The cluster topology consists of processor configuration

(type and speed), memory configuration, disk bandwidth, number of DataNodes, racks and network topology.

Specifying the processor type provides the name of the processor like Intel or ARM and its speed determines

how much processing time an event would require to finish during the simulation. Each job to be executed

in MRPERF has a configuration file that specifies different parameters such as Cycles per byte, filter ratio,

etc., that are used during the map and reduce phase of that specific job. The fixed overheads, like connection

setup times, are captured by measuring the overhead and using it in the simulator. Finally, the data layout

deals with the NameNode’s location, the location of data blocks on the simulated DataNodes, and replication

factor, etc. All the different input files are read by their respective reader’s modules. The ns-2 driver module

simulates the network. Similarly, the disk simulator module models disk I/O. MapReduce Heuristics module

(MRH) simulates Hadoops behaviour and all the other modules interacts with MRH.

Figure 3.1: MRPERF Architecture. [36]

25

3.1.2 Working Mechanism in MRPERF

The main component of the simulator is a JobTracker. The JobTracker creates map and reduce tasks, lookout

for different phase completions, and produces the final results. Figure 3.2 shows the control flow diagram

for the JobTracker. MRPERF uses a heartbeat trigger to initiate JobTracker activities. This value is a

parameter and can be set in the simulator. The default value is 300 milliseconds for small clusters. The

heartbeat signals are sent every 300 milliseconds by the TaskTracker to tell the JobTracker that it has idle

slots.

Figure 3.2: Control Flow In The JobTracker. [36]

“When the simulator receives a message to start a map task from the JobTracker, the following sequence

of events happens, as shown in Figure 3.3 [35].

• A Java VM is started for the map task.

• Data access on a node is simulated through a separate process called the Data Manager. The main job

of the Data Manager is to read data (input or intermediate) from the simulated local disk in response

to a data request, and send the requested items back to the requester.

• Application-specific map, sort, and spill operations are simulated on the input data until all data has

been consumed.

• A merge operation, if necessary, is simulated on the output data.

• A map task finished message is sent to the JobTracker to indicate completion of the map Task. The

process then waits for the next assignment from the JobTracker.

26

Figure 3.3: Control Flow When Running Map and Reduce Tasks. [36]

When simulator receives a message to start a reduce task from the JobTracker, the following sequence of

events happens, as shown in Figure 3.3.

• A message is sent to all the corresponding map tasks to request intermediate data.

• Intermediate data is processed as it is received from the various map tasks. If the amount of data

exceeds a pre-specified threshold, an in-memory or local file system merge is performed on the data.

These two steps are repeated until all the associated map tasks finish, and the intermediate data has

been received by the reduce task.

• The application-specific reduce function is performed on the combined intermediate data.

• A reduce task finished message is send to the JobTracker to indicate completion of the reduce task.

The process then waits for the next assignment from the JobTracker.”

3.1.3 Assumptions in MRPERF

MRPERF has some underlying assumptions to simplify its design. A job is restricted to having simple map

and reduce tasks, and that the computing requirements are dependent on the size, and not content of the

data. There is a single storage device per node. The job output data is proportional to the input data.

The tasks assigned concurrently to use the resources of a node get equal share. MRPERF does not model

27

OS-level asynchronous prefetching. All the assumptions mentioned simplifies the design of MRPERF but

pose some limitations. MRPERF cannot be used to run jobs which are complex and whose job output data

is not proportional to the input size of data. The assumption to give equal share to all the tasks for a shared

resource and absence of prefetching leads to prediction inaccuracy. The MRPERF limitation to only model

a single disk per node does not allow it to work for RAID systems.

3.2 Reasons for Choice of MRPERF

There were various reasons to choose MRPERF as the framework to work upon in this thesis. It is open

source and was made public by the developers to facilitate research. The code can be changed and tailored

to meet specific research needs. MRPERF does not need actual logs from a production cluster. This is a

huge advantage because getting the production cluster traces is not easy for everyone and companies often

do not make their traces public. MRPERF supports synthetic jobs and also provides a mechanism to plug

in a scheduler and see how it performs.

The main motivation of this work is to analyze the behavioural characteristics of job execution using the

Capacity Scheduler – a task which is facilitated by MRPERF. MRPERF provides an appropriate framework

to test the Capacity Scheduler under different cluster configurations, network topologies, job submission

patterns, and data placement strategies.

3.3 Integration of the Capacity Scheduler into MRPERF

This section explains how the Capacity Scheduler is integrated into MRPERF, which constitutes the main

implementation work of this thesis. This includes 1) setting up queues, 2) setting up the initialization poller

3) launching the jobs 4) job initialization, 5) logic for the main scheduler driver and 6) removing the jobs

from the system. The ns-2 interfaces with TCL and hence each configuration file has to be converted into a

TCL file to be used in simulator.

Integrating the Capacity Scheduler into MRPERF involves a lot of tasks. Capacity Scheduler is an

already existing scheduler and is open source. The code consists of 4000 lines in 6 files and is written in Java.

Two components – speculative execution and resource based scheduling parameter settings – were not to be

included in the integration. Careful analysis of the Capacity Scheduler code and efforts to understand the

exact requirements was undertaken. Speculative execution was left out because MRPERF does not support

the modeling of task stragglers. Resource based scheduling parameters only work for Linux. Thus, these

parameters were not incorporated in the simulator.

The integration activity also involves understanding how MRPERF works and its code. MRPERF consists

of 4000 lines of code in 3 different languages: Python, TCL and C++. The front end consists of Python,

XML and TCL files. The configuration related to cluster and jobs is contained in the XML files. A file

named capsim.xml was created. This file contains the parameter settings for the Capacity Scheduler. The

28

XML files are translated to TCL files by a python program. As ns-2 interfaces with TCL, such conversions

are necessary. Changes were undertaken on existing python files to convert newly added capsim.xml to

capsim.tcl. Changes were made in existing TCL files to support new job types and multiple users. The

existing main logic in MRPERF is contained in the file named hsim.tcl which interfaces with the scheduler

code (present in the back end). The various stages of MapReduce processing are coded as TCL files in

the front end and hsim.tcl also interfaces with them. Hence, code was added in the hsim.tcl file to

interface with newly added Capacity Scheduler code. Code was also changed in hsim.tcl to process multiple

heartbeats for reduce tasks.

One of the major issues with the MRPERF simulator was the lack of variability in simulation runs. A

fixed set of jobs on a cluster setup with unchanged Capacity Scheduler parameter settings always produced

the same results. The reason for this behaviour was that the heartbeat arrival time at the JobTracker in every

simulation run was at fixed times and in same order of the DataNodes (first heartbeats from DataNodes).

As there is some initial ordering of heartbeat arrival times, which never changes, the subsequent heartbeat

arrivals are also unchanged in different simulation runs. Such a behaviour was not acceptable as there is always

some randomness in heartbeat arrivals to the JobTracker in real cluster experiments. To add randomness

in the simulator, a random delay was added to the time at which a node can generate its first heartbeat.

This change added randomness in the system in two ways: a node can provide an initial heartbeat to the

JobTracker at some random time, and no fixed order was placed on the nodes as to when they can generate

the initial heartbeat. It should be noted, however, that after the first heartbeat, the subsequent heartbeat

from a node comes after precisely 300 milliseconds if it is idle.

The Capacity Scheduler was implemented at the back end of MRPERF. 500 lines of code were written

for the implementation at the front end in Python and TCL and 2000 lines at the back end in C++. The

following sections describe the main logic of the implementation and what was integrated into MRPERF

from the Capacity Scheduler.

3.3.1 Data Structures and Config Files

The Capacity Scheduler supports the following parameters in Capacity-scheduler.xml regarding queues:

• QueueCapacity

• Maximum-Capacity

• Minimum-User-Limit-Percent

• User-Limit-Factor

• Supports-Priority

• Maximum-System-Jobs

29

• Maximum-Initialized-Active-Tasks

• Maximum-Initialized-Active-Tasks-Per-User

• Init-Accept-Jobs-Factor.

A python program is then used to convert the XML into TCL file capsim.tcl. The capsim.tcl data file

contains all the queue-related parameter information. This is later read during setting up of the queues

by the simulator. The job-related configuration information is read from a TCL file job.trace.tcl before

starting the simulator. Each job contains its submit time. This allows the simulator to launch these jobs at

the correct time when the simulator runs. Each job also has an assigned user and queue.

The queue and initialization poller data structure forms the core of the simulator. Each queue in the

system is represented by a queue data structure. Each queue data structure contains lists of waiting and

initialized jobs. The queue data structure also contains a structure for map and reduce slot usage (Capacity,

number of running tasks, number of slots occupied, maximum capacity, active users list, number of slots

occupied by each user), and a list of users containing user information (like name and job count and number

of active tasks). For each user in the queue data structure, a user info data structure is maintained. The

user info structure contains information such as, the list of waiting jobs, running jobs and initializing jobs,

and the number of active tasks.

The poller data structure represents the initialization poller and is created in the simulator after setting

up of the queues. It maintains a list of jobs that are initialized and also simulates the logic to initialize the

jobs from the different queues.

3.3.2 Capacity Scheduler Implementation

The step by step procedure of the Capacity Scheduler simulator inner workings is described next. It is

divided into 6 main stages. Initially, all the queues and the initialization poller are created and initialized.

The users then submit their jobs to their respective queues where they are launched and initialized. The

main scheduler algorithm picks a task from a job and assigns the task a map/reduce slot. Finally, at the end,

a job is completely removed from the system.

Queue Setup

Setting up the queues is done before actual simulation runs by reading capsim.tcl. One queue is cre-

ated for each queue name defined in capsim.tcl. Each queue is checked for consistency in parameter

settings. For example, the capacity should be between 1 and 100, Maximum-Capacity should be less than

100, Minimum-User-Limit-Percent should be less than 100 but greater than 0, etc. The added capacities

of the queues in the system should be less than 100. In case any of the checks fail, the simulation stops.

After this, other values from capsim.tcl are read for each queue and a queue structure is created. How-

ever, there are initial values for some queue state variables that are computed from the values read from

30

capsim.tcl. For example: maxjobstoinit = ceil(Maximum−System−Jobs×QueueCapacity/100). Simi-

larly, maxjobsperusertoinit = ceil(Maximum−System−Jobs×QueueCapacity/100×Minimum−User−

Limit− Percent/100).

Setting up initialization poller

This module initializes the jobs in the simulator. In the Capacity Scheduler, not all the jobs are initialized as

they are submitted. This is done to reduce the memory footprints on the JobTracker node. An initialization

poller wakes up at regular time intervals and initializes the jobs. A periodic timer is initialized in the simulator

to trigger the invocation of the initialization poller. As mentioned previously, the interval at which the poller

does its work is called poll time and is configurable in the simulator.

Launching jobs

The following steps take place in the simulator to place the job into the waiting list of an assigned queue:

• The first step is to check if the job can be accepted into the system after it is submitted. For example,

if jobtotaltasks > maxactivetasksperuser or queueinitialized+queuewaitingjobs ≥ maxjobstoaccept

or userinitialized+userwaitingjob ≥ maxjobsperusertoaccept, then the job cannot enter the system.

• The job is added to the queue’s waiting list.

• The user list of the job’s queue is updated by adding the user to the list (if the user is not already

present in the list). The user info structure of the queue is initialized.

• The job is added to the waiting list of the user info data structure.

• The job count of the user is initialized to 1 if it is 0 and also initialize number of slots occupied by this

user to be 0 for both map and reduce slots. Increase the job count otherwise.

At this moment, the job is waiting in its queue to be initialized by the initialization poller.

Initializing jobs

At each polling interval, the initialization poller does the following work to initialize the jobs and remove the

already initialized jobs:

• Remove the job from the initialized jobs list of the poller if it was already initialized during the last

wakeup period (when poller last scheduled the jobs to be initialized).

• Select jobs which can be initialized from each queue waiting list and perform following actions on each

one of them:

31

– Check if queueinitializedjobcount > maxjobstoinit. If true, than next queue is considered for

selection.

– Check if user is not allowed to have more jobs (user initialized jobs > max job per user to init).

If true, then next job in the same queue is considered for selection.

– The job is placed in initialized jobs list of the poller.

– The job is placed in initialized job list of the queue.

– The active task for the queue is incremented by the job’s total (map and reduce) tasks.

– The user info structure is updated. The job is added to the initialized job list of user info and

the number of active tasks in user info is updated.

– The job is removed from the waiting list of queue and user info data structure.

Then, the poller sleeps till the next poll time after initializing the jobs from every queue.

Main Task Scheduler algorithm

When a heartbeat is received by JobTracker from TaskTracker in MRPERF, it picks up and schedules a job

using the following algorithm:

• The queues are sorted according to the number of running tasks in the queue/queue capacity.

• In sorted queue list, the queue’s admissibility to get a cluster slot is checked. The admissibility criterion

requires the queue’s new slot usage (old slot usage + 1) to be less than the Maximum-Capacity of the

queue. If admissibility criteria fails, then the next queue is considered.

• After picking up the queue, the user and queue limit are checked for each job sequentially in that queue.

The sequential checking continues until a suitable job is found under the limits. The next step is to

find a suitable task from the selected job.

• The highest preference is given to a node or rack-local task for the job. If no such task is found, then

a remote task is scheduled. At each heartbeat, only one task from remote can be scheduled. A second

remote task is not scheduled even if slots are available. The search for a task continues to the next job

if a task cannot be found from the current job. The search continues to the next queue if no task can

be scheduled with the current queue.

• If a task is found, it is scheduled to run. The different structure and variables associated with the queue

are updated.

32

Removing completed jobs

When the jobs are completed, the following steps are taken:

• Remove the job from the queue’s initialized job list. Remove it from user info data structure as well.

• The user is removed from the system if he/she does not have any more active tasks. The number of

active tasks in queue and user info data structure is updated.

• The slot usage information for the user in the queue is updated.

33

Chapter 4

Experiments

This chapter contains the experimental design used in the thesis. It discusses the hardware setup, the

parameters and factors varied in different experiments done for sensitivity analysis, the validation of the

simulator and the simulation/scalability analysis. The experiments done in the thesis were conducted in 3

stages: Sensitivity Analysis Experiments, Simulator Validation Experiments and Simulation Experiments.

Sensitivity Analysis Experiments were conducted as a preliminary investigation into Capacity Scheduler

settings and their impact on a few representative MapReduce applications on a real cluster. Simulator

Validation Experiments were conducted next to check the accuracy of simulator results (built in the thesis)

versus real cluster results. Finally, a large simulation was performed to identify the impact of Capacity

Scheduler parameters on jobs under different job submission patterns.

4.1 Hardware Environment

This section describes the hardware setup used in different experimental scenarios. The number of nodes and

information about the processor, disk and network capabilities is provided.

4.1.1 Sensitivity Analysis Experiments

Socrates is a cluster which consists of 37 Sun Microsystem computers. The cluster has 28 capacity nodes and

each node contains 8 cores with 8 GB of RAM. There are 8 capability nodes and each node contains 8 cores

with 32 GB of RAM. Capability nodes have higher RAM than capacity nodes. Capacity nodes have higher

storage than capability nodes. There is one head node which submits jobs to the other 36 compute nodes

in the cluster. Socrates is used as a High Performance Computing (HPC) platform for teaching, training,

and research assistance at the University of Saskatchewan. Exclusive access to the Socrates cluster was

provided for a small time frame by the HPC team at the University to conduct the initial sensitivity analysis

experiments.

The experiments were conducted on an isolated 6-node Socrates cluster. One node was designated as the

JobTracker and NameNode. The other 5 nodes carried out the tasks of DataNode and TaskTracker. All the

nodes had 128 Gb of hard disk with 2xQuad core Intel Xeon L5420 processors at 2.5 GHz, 8 GB of RAM and

a 1 Gbps network connection. RedHat 5.3 Linux was the OS on all the nodes, executing Hadoop 0.20.203.

34

4.1.2 Simulator Validation Experiments

The real experimental cluster used for validation experiments consists of 5 nodes on local Discus lab machines

at the University of Saskatchewan. One node was designated as JobTracker and NameNode while the other

nodes served as TaskTracker and DataNodes. Each node consisted of a 2.4 Ghz processor, 4 GB of RAM and

250 GB hard disk. Ubuntu 10.04 Linux was the OS on all the nodes, executing Hadoop 0.20.203. All the

nodes were on same rack and connected through a 1 Gbps switch. The validation experiments could not be

done on Socrates Cluster as it was not possible to get exclusive access to the cluster for a very long period of

time. The simulator validation was conducted on a laptop. The simulator contained the exact setup as the

real cluster setup.

4.1.3 Simulation Experiments

The experiments with different configurations were done by simulation. The setup consists of 31 nodes where

one node served as NameNode and JobTracker. The other 30 nodes act as DataNodes and TaskTrackers.

Each node is modelled as a quad core processor with 2 CPUs, a single disk and 4 GB of memory. The amount

of memory seems to be small for a quad core machine. However, it did not make a difference in the simulator.

It turned out to be the case that although memory is a configurable parameter in the simulator, it is not

used in the code. All the nodes are connected to same switch on one rack. All the nodes have 4 map and 4

reduce slots. The simulation was done on the Socrates cluster.

4.2 Definitions

4.2.1 Same-reduce-node Effect

The same-reduce-node effect describes the situation in which reduce tasks for two jobs are scheduled on same

TaskTracker node. This leads to an increase in the reduce execution time for the following reasons: increased

competition for network, cpu and disk resources. The major reasons tends to be the competition for disk

and network. In a cluster, if each node has the same number of slots as the number of cores, then cpu is

not a bottleneck. The same-reduce-node effect occurs due to the randomness present in the real system.

The TaskTrackers send periodic heartbeats to the JobTracker if they have empty map/reduce slots. So, the

JobTracker schedules the next pending map/reduce task for a job depending on when it gets the heartbeat

and does not differentiate how many reduce/map tasks are already running on that particular TaskTracker.

For example, if all the nodes in the cluster have 2 reduce slots, then every node can send at most 2 heartbeats

for reduce tasks. Thus, in some cases when the JobTracker gets the 1st heartbeat for a reduce slot from

a TaskTracker, it schedules a job’s reduce task on that slot. If that same TaskTracker then sends a 2nd

heartbeat and if the JobTracker has another pending reduce task for another job, then it will be scheduled

on the same TaskTracker. So, it is a matter of chance as to which TaskTracker’s heartbeat the JobTracker

35

gets when it has a map/reduce task for a job to be scheduled.

4.2.2 Delayed Map Execution

In general (except Minimum-User-Limit-Percent setting), if there is a job 1 which is submitted before job

2, then job 2 map tasks do not start execution until job 1’s map tasks are finished or there are extra slots

remaining idle. However, in some runs, job 2 gets one or two map slots quickly (even though job 1’s map

tasks were not finished, because of a temporary condition where a slot was idle and the “wrong” job was

selected). It means job 2 map execution started as soon as it was submitted to the system. Later, when

the JobTracker received new heartbeats from the TaskTracker to assign jobs to the map slots, job 1 took

preference as it was submitted earlier and until job 1 completes all its map tasks, there were no job 2 map

tasks scheduled. This leads to unusually longer map times than expected in some cases. This effect is called

delayed map execution in the rest of the thesis. Delayed Map Execution is not to be confused with Delay

Scheduling. They both are different concepts.

4.2.3 Performance Measures

The various performance metrics used in the experiments are described next:

• Data locality: plays an important role in MapReduce environments. When more node-local tasks are

scheduled over rack-local and remote tasks, performance of the jobs is better because of the reduced

network activity.

• Map time for jobs: The time taken by map processing for each job.

• Reduce time for jobs: The time taken by reduce processing for each job.

• Waiting time: The waiting time in the queue for each job in the cluster until it gets its first map task

started.

• Execution time: The execution time for each job in the cluster, excluding waiting time.

• Elapsed time: The turnaround time for each job in the cluster, including waiting time.

• Response Ratio: It is measured as elapsedtime÷ executiontime for each job. It is a fairly standard

term in the Operating Systems performance community [18] and is frequently used as a metric in

scheduling. The higher the value of the response ratio, the more relative waiting time for the job. For

jobs whose execution time is 1000 seconds, a waiting time of 20 seconds would not affect its performance

much. However, the same waiting time for a job whose execution time in only 40 seconds, can make a

big difference. Hence, for better performance of the cluster, it is important to have short response time

for the short jobs and thus, a lower response ratio.

36

• Makespan: The time in which all jobs are finished. ”Makespan is a useful metric to understand the

overall throughput of the cluster, and it is used to verify that improvements in response ratios do not

come at the expense of being able to run fewer jobs per hour on the shared cluster [21].

Throughput is another very important metric to be measured in a performance evaluation study. However,

because of time limitations it was not studied.

4.3 Parameters

This section describes the parameters which do not change in a given experimental scenario. Some of the

things, like job types, number of jobs, number of queues, number of users, etc. remain constant and are

presented in this section.

4.3.1 Sensitivity Analysis Experiments

In these experiments, each queue has 3 users and each one of them submits one job, one after another, at

the interval of one second. Multiple queues were supported. Each user submits a specific job. The first

user in each queue submits application Sort, the second submits TeraSort and third submits WordCount.

TeraGen, RandomWrite and RandomTextWrite1 were used to generate the input data for TeraSort, Sort and

WordCount, respectively. In all executed MapReduce applications, the size of the input data file was 5 GB.

The Sort application uses the MapReduce framework to sort the input file into the output file. TeraSort

is a MapReduce application which reads the input data and uses MapReduce to sort the data into a total

order. It is different from Sort in the sense that it uses a custom partitioner rather than a default partitioner.2

WordCount application reads text files and counts the total number of words in the files. The RandomWriter

application writes random data to the HDFS using MapReduce. It is used to generate input data for the Sort

application. The Randomtextwriter application uses MapReduce to generate files containing large random

words. It is used to generate the input data for the WordCount application. TeraGen is used to generate

the input data set for TeraSort.

4.3.2 Simulator Validation Experiments

In all the experiments, Sort and TeraSort were used as the jobs as their output data is proportional to the

input data (a requirement for MRPERF). Two queues are used in the experiments, with 4 users per queue.

Jobs in each queue were submitted with an inter-arrival time of 5 seconds, while jobs of same type in different

queues were submitted at the same time. TeraGen and RandomWriter were used to generate the input data

for the TeraSort and Sort jobs, respectively. TeraSort used 2 GB of input data, while Sort used 1 GB of

1http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/examples/ (22nd May, 2013)
2http://sortbenchmark.org/YahooHadoop.pdf (22nd May, 2013)

37

input data so as to have different input data sizes for different type of jobs. The workload generator generates

the jobs in the following order:

• TeraSort submitted for user 1 and user 3 in Queue 1 and Queue 2, respectively.

• TeraSort submitted for user 2 and user 4 in Queue 1 and Queue 2, respectively, after 5 seconds.

• Sort submitted for user 1 and user 3 in Queue 1 and Queue 2, respectively, when their TeraSort job is

finished.

4.3.3 Simulations

100 jobs of 5 different types were used. Every job has a different user. Existing research [10, 11] shows that

in clusters used by Yahoo! and Facebook, the small jobs dominate the workload. Their percentage share is

found to be 80%. The description of the jobs is shown in Table 4.1.

Table 4.1: Job Types For The Experiments

Job

Type

Nature of

job

Percent

in job

mix

Num

of

Maps

Num of

reducers

Shuffle

ratio

Output

ratio

Map com-

pute

Reduce

compute

1 Data trans-

formation

8 100 15 1 1 5 40

2 Aggregate

and expand

6 200 1 0.025 3 40 5

3 Expand and

aggregate

4 400 30 3 0.025 40 40

4 Data sum-

mary

2 800 8 0.075 0.0005 20 20

5 Small job 48 1 1 1 1 1 1

6 Small job 24 2 1 1 1 1 1

7 Small job 8 10 1 1 1 1 1

Small jobs have a small amount of input data and hence a small number of maps. The shuffle ratio for

each job describes the amount of data which is produced after the map stage and serves as the amount of

data for the reduce stage. The shuffle ratio is the ratio between the size of the map output data and size

of the map input data. In the simulation, the total input data generated after the map stage is equally

divided among the number of reducers for the job. The output ratio for the job types describes the final

output data size after the reduce stage is done. The output ratio is the ratio between reduce output data and

reduce input data. Long jobs, (those with more than 10 map tasks) are divided among 4 different categories.

38

For Data Transformation jobs, the data ratio remains similar at all stages. TeraSort is a good example of

a Data Transformation job. The ratios for Data Summary type jobs are low, and decrease greatly at each

stage (shuffle ratio for map and output ratio for reduce). In Aggregate and Expand, the data is aggregated

during the map and thus generates comparatively small amounts of shuffle data, but expands during the

reduce stage, producing a larger amounts of reduce output data. The process is reversed for the expand and

aggregate job type. The number of maps and reduce tasks for each job was chosen to keep the cluster busy

most of the time.

4.4 Factors Varied

This section contains the discussion abut the nature of the experiments and what was done in the experiments.

The Capacity Scheduler settings changed for the experiments are listed. It also presents the main motivational

ideas to undertake the simulation/scalability analysis.

4.4.1 Sensitivity Analysis Experiments

Single factor Experiments were done to determine if parameter settings had any effect and to estimate

the magnitude of that effect. In these experiments, the Capacity Scheduler configuration settings were

changed one by one and their impact on the job execution time was observed. The factors changed in

the experiments are the following: NumberofQueues, QueueCapacity, Maximum-Capacity, Minimum-User-

Limit-Percent, User-Limit-Factor, Supports-priority, Maximum-System-Jobs, Maximum-Initialized-Active-

Tasks and Maximum-Initialized-Active-Tasks-Per-User. These experiments provide empirical evidence sup-

porting the claim that these parameter settings influence performance and that the default parameters do

not necessarily provide the desired performance.

4.4.2 Simulator Validation Experiments

These experiments were done after the implementation and integration of the Capacity Scheduler in MR-

PERF. The main motive of these experiments was the verification of the real cluster results versus simulator

results on representative MapReduce applications. The factors changed in the experiments are the fol-

lowing: NumberofQueues, QueueCapacity, Maximum-Capacity, Minimum-User-Limit-Percent, User-Limit-

Factor, Maximum-System-Jobs, Maximum-Initialized-Active-Tasks and Maximum-Initialized-Active-Tasks-

Per-User. Two different types of node configurations were used: One reduce slot per node and two reduce

slots per node.

4.4.3 Simulation

These experiments were done on a cluster of 31 simulated nodes with different job submission patterns. There

are three major questions of interest and the experiments were designed based on those questions:

39

• Question 1: How do the short jobs behave when they come after a long sequence of long jobs? What

Capacity Scheduler settings can optimize the performance of short jobs under such conditions?

• Question 2: What are the effects of Capacity Scheduler settings for a job submission pattern where

long job and a series of short jobs arrive in an interleaved fashion? Does it follow the results from

previous question or not?

• Question 3: Does providing different queues for short and long jobs improve the performance of the

system? Does it impact the performance of short jobs?

The 4 most important Capacity Scheduler parameters were changed under the experiments: Queue Ca-

pacity, Maximum-Capacity, Minimum-User-Limit-Percent and User-Limit-Factor.

To answer Question 1, all the long jobs were submitted to the cluster first, followed by all short jobs in the

experiments. There were two queues, each containing 50 jobs and job mix as described in the Table 4.1. In

both the queues, the jobs were submitted in same order and at the same time instant. The time gap between

each job submission was 1 second. Full factorial experiments with 10 simulations were done. Description of

the settings changed during each experiment is given in Table 4.2. For parameter definitions, please refer to

Table 2.1.

To answer Question 2 and Question 3, two types of job submission patterns were submitted to the

simulator. In the first type, 4 short jobs were submitted and then a long job followed by the same pattern.

2 queues with equal capacity (Queue 1 and Queue 2) of 50% were used. Each user has a single job in the

system. 50 jobs were submitted to the first queue and 50 to the second. The inter-arrival time between the

jobs was 1 second. In the second type of job submission pattern, short and long jobs were given separate

queues. Queue 1 was divided into two sub-queues and its capacity of 50% was divided between them. Long

jobs need more slots. So, 40% capacity was allocated to long job queue and 10% to the short job queue. The

same allocation was applied to queue 2. The time of arrival for the jobs was kept as it was in interleaved

case. The experiments conducted in first type of job submission pattern are refereed to as the “interleaved

scenario” while the second type will be refereed as the “separate queue scenario” in the rest of the thesis.

Description of the settings changed during each experiment is given in Table 4.3.

Experiments in the interleaved scenario and with separate queues further try to answer a few important

questions:

• How does response ratio change between the two job submission patterns? Which Capacity Scheduler

parameters improves response ratio for the jobs?

• How does Makespan (throughput) change between the two job submission patterns? Which Capacity

Scheduler parameters improve Makespan for the jobs?

• Does allocating separate queues improve response ratio for short jobs?

• Does allocating separate queues improve Makespan for short jobs?

40

Table 4.2: Parameter Settings For The Experiments

Experiment

No

number of

queues

Capacity Maximum-

Capacity

User-

Limit-

Factor

Minimum-

User-

Limit-

Percent

1 2 50-50 -1 1 100

2 2 50-50 50 1 100

3 2 50-50 -1 2 100

4 2 50-50 -1 1 25

5 2 50-50 50 2 100

6 2 50-50 50 1 25

7 2 50-50 -1 2 25

8 2 50-50 50 2 25

9 2 70-30 -1 1 100

10 2 70-30 50 1 100

11 2 70-30 -1 2 100

12 2 70-30 -1 1 25

13 2 70-30 50 2 100

14 2 70-30 50 1 25

15 2 70-30 -1 2 25

16 2 70-30 50 2 25

41

Table 4.3: Parameter Settings For The Experiments.

Experiment

No

number of

queues

Capacity Maximum-

Capacity

User-

Limit-

Factor

Minimum-

User-

Limit-

Percent

17 2 50-50 -1 1 100

18 2 50-50 50-50 1 100

19 2 50-50 -1 2 100

20 2 50-50 -1 1 25

21 2 50-50 50-50 2 100

22 2 50-50 50-50 1 25

23 2 50-50 -1 2 25

24 2 50-50 50-50 2 25

25 4 40-40-10-10 -1 1 100

26 4 40-40-10-10 40-40-10-10 1 100

27 4 40-40-10-10 -1 2 100

28 4 40-40-10-10 -1 1 25

29 4 40-40-10-10 40-40-10-10 2 100

30 4 40-40-10-10 40-40-10-10 1 25

31 4 40-40-10-10 -1 2 25

32 4 40-40-10-10 40-40-10-10 2 25

42

Chapter 5

Sensitivity Measurement Results

and

Simulator Validation

Before implementing the Capacity Scheduler simulator in MRPERF, it was important to establish the

fact that Capacity Scheduler parameters have an impact on the performance of MapReduce applications.

The initial part of this chapter contains the single factor sensitivity measurement analysis. The experiments

were conducted on a real world cluster with representative MapReduce applications and focusing on every

single parameter present in the Capacity Scheduler. This analysis was necessary to give an initial insight

into the working mechanism of Capacity Scheduler and to understand the significance of the parameters. In

the second part of this chapter, the accuracy and functionality of the simulator components designed in this

work are validated by comparing the simulator results against the real world cluster results.

5.1 Sensitivity Measurement Analysis

Measurements directly on hardware allows clear isolation and identification of the performance variations

caused by the task scheduler settings. TeraSort, Sort, and WordCount were used as benchmark MapReduce

applications for the experiments. End users are interested in the overall execution time of their jobs rather

than individual map or reduce phase timings. Hence, execution time was used as the performance metric in

the experiments. The individual map, reduce and wait times are also shown. The time shown in the results

is an average of 3 runs. In all the runs for a particular setting, there was a small variation except while

testing the Minimum-User-Limit-Percent, where results were not uniform. The experiments were designed

while keeping in mind the Capacity Scheduler configuration settings. Multiple users started their jobs at the

same time. A simple workload generator was created which submitted the job in each defined queue of the

scheduler. In these experiments, the Capacity Scheduler configuration settings were changed one by one and

their impact on the job execution time was observed. The number of queues ranged from 1 to 3. The first

user in each queue submits application Sort, the second submits TeraSort and third submits WordCount.

Users 1-3 are in queue 1, users 4-6 are in queue 2 and users 7-9 are in queue 3 in all the experiments done.

Subsequent experiments use the same settings in terms of the number of users per queue and their job

43

submission pattern, unless stated otherwise. There are 3 users per queue (except the User-Limit-Percent

experiment) and each user has exactly one job to submit. In the User-Limit-Percent experiment, a single

queue with 4 users were supported. The number of map tasks depended on the size and type of input. The

Hadoop framework decides at runtime how many map tasks to create. In the experiments, each job had

between 70-80 map tasks. Each job has one reduce task. The number of reduce tasks for a job is a job

configuration parameter and its default value is 1. In almost all the experiments (unless specified otherwise),

the default values of the job configuration parameters were used. The results graphs show the 2 components

of execution time: map time and reduce time. The execution time is not the sum of the 2 components, since

there is overlap between the map and reduce phases of a job. Wait time is shown as well.

5.1.1 Impact of Resource Allocation Parameters

In these experiments, the parameters of the Capacity Scheduler related to cluster resources were changed,

such as the number of queues, their capacity and user related queue configuration settings.

NumberofQueues and QueueCapacity

The time for each job increases with NumberofQueues due to increased contention for shared resources like

disk and network bandwidth. Figure 5.1 shows the execution times for the various jobs under different

NumberofQueues. To check the impact of increasing NumberofQueues, compare Figure 5.1(a) and 5.1(c).

The execution time for all jobs increase almost by a factor 2. This is a natural outcome when the workload

is doubled for the same set of resources.

QueueCapacity is the guaranteed capacity which a queue will have at any time. The effect of QueueCa-

pacity can be clearly seen between Figure 5.1(a) and 5.1(b). For the same number of jobs, different execution

time were observed. The jobs being executed in queue 1 get more slots, and hence a reduction in their

execution time. Note that this improvement is mainly because more map slots are available for that queue.

The number of reduce tasks for each job is 1, requiring one reduce slot. More capacity means more map

and reduce slots, decreasing map execution time for jobs in queue 1 and subsequently reduce time as well.

However, sometime, the improvement may not be clearly visible because of stragglers as with TeraSort for

user 2 in Figure 5.1(b). Due to stragglers in the map phase, tasks in the reduce phase do not continue

smoothly and have to wait a lot before they finish, which eventually also affects total execution time. Under

default settings, the jobs are executed in FIFO fashion. Hence, there is increasing waiting time according to

the job arrival time. A job cannot start its execution until the earlier jobs in the queue have finished map

processing. However, sometime this does not happen because of delayed map execution, as in Figure 5.1 (c).

Maximum-Capacity

This parameter allows a queue to use unused capacity of other queues, if available. A queue can use resources

in the cluster between the value of QueueCapacity and Maximum-Capacity (100% when the default value

44

(a) 2 queue: 50% each capacity

(b) 2 queue: 90%-10% capacity

(c) 3 queue: 33% each capacity

Figure 5.1: Effect Of NumberofQueues And QueueCapacity

45

of -1 is used). The value of Maximum-Capacity has to be at least QueueCapacity. Figure 5.2 shows the

execution times for the various jobs under different settings. Figure 5.2 (a) shows the execution time for 2

queues, each having 50% capacity, while 5.2 (b) has 2 queues with first having 90% and other queue having

10% Maximum-Capacity. In both cases, Maximum-Capacity is equal to QueueCapacity.

Comparing Figure 5.2 (a) with Figure 5.1(a), setting Maximum-Capacity equal to QueueCapacity does

not make much difference. No queue can use more than 50% of the map and reduce slots. In this case, no

queue’s jobs can interfere with jobs from another queue. This leads to slightly better map execution time.

The reduce time is not affected by this change, as each job needs 1 reduce slot. A single reduce slot is

available in both 50% configurations without or with Maximum-Capacity enforcement. In Figure 5.2 (b), the

execution time for jobs in queue 1 remains similar to Figure 5.1(b) for the reasons explained before. However,

for the second queue, the execution time increases for all jobs as it is allocated only 10% of the allocated

capacity (1 map and 1 reduce slot) and cannot take more than its allocated capacity.

(a) 50-50% queues

(b) 90-10% queues

Figure 5.2: Effect Of Maximum-Capacity On Running Time Of Jobs.

Figure 5.2 shows that the map phase execution time is greater than reduce phase execution time for the

subsequent jobs after the first job for a smaller capacity queue. This is because a job typically has multiple

map tasks, but one reduce task. When there is only one map slot present (as is the case with 90-10% queue),

46

it takes more time for map tasks to finish. The other reason for this phenomenon is that when a queue has

only one reduce slot, the second job cannot start its reduce phase until the first job is finished. However, the

second job’s map phase is started when the first job finishes its map phase. Thus, by the time the second

job gets its reduce slot, most of its map tasks are already finished. As a result, the reduce phase gets most

of the data it needs to proceed immediately and does not have to wait much for map tasks to finish, which

leads to faster reduce time. This also affects the total execution time.

Minimum-User-Limit-Percent

This parameter allows limits to be defined on per user allocation of resources for a given queue. To check

the impact of this parameter, a single queue, 100% capacity and 4 users was used. Each user simultaneously

submitted one TeraSort job. Figure 5.3 shows the execution times for the various jobs. The map execution

time for all jobs increases significantly when Minimum-User-Limit-Percent is changed from 100% to 25%.

This is because when Minimum-User-Limit-Percent is 100%, the first job gets executed on all the map slots

and when its map phase is finished, the map phase for the second job starts and so on. When Minimum-

User-Limit-Percent is 25%, however, each job starts the map phase at the same time, which also leads to an

increase in map execution time, as there are fewer map slots per job. Setting Minimum-User-Limit-Percent

value to 25% improves waiting time for the jobs.

Completely unexpected results for the reduce time were seen in Figure 5.3 (b). The reduce execution times

were not uniform for the different users as observed in the results. The reduce execution time hovered around

14 minutes for the jobs in one set of execution and in the other, the reduce time hovered around 28 minutes.

A closer look at the logs revealed that this disparity was caused by scheduling two jobs simultaneously on two

different slots on the same cluster node. Recall that every node has 2 map and 2 reduce slots. At times when

the Capacity Scheduler selects a job’s reduce phase to run on a node where no other job’s reduce phase is

running, then the job’s running time was lower (i.e. 14 minutes). In the other case, however, as two jobs were

running on the same cluster node, the reduce time increased, mainly due to increase in shuffle and sorting

time. The shuffle time was increased because both jobs share network bandwidth and the sorting time was

increased due to sharing of disk bandwidth.

In the experiments, job 3’s reduce task (refer to Figure 5.3(b)) was never executed in parallel with some

other job’s reduce task on a cluster node. Hence, there was a decrease in reduce time, compared to Figure

5.3(a). In Figure 5.3(a), the reduce task of job 3 was sometimes scheduled with other jobs on same cluster

node. It can be considered as a stochastic effect, because apart from the exception for job 3 in Figure 5.3(b),

the reduce phase of all other jobs were scheduled with another job’s reduce task on same node at some time.

In Figure 5.3(c), the interaction between job configuration parameters (number of reduce tasks) and

scheduling parameters (User-Limit-Factor) is shown. It is shown to emphasize that job execution time in

MapReduce is not only dependent on job configuration but also on scheduling parameters. With more reduce

tasks, the execution time of jobs is reduced as more parallelism is achieved. Shorter reduce time improves the

47

(a) Minimum-User-Limit-Percent 100%

(b) Minimum-User-Limit-Percent 25%

(c) Minimum-User-Limit-Percent 25%, 5 reduce tasks/job

Figure 5.3: Effect Of Minimum-User-Limit-Percent

48

overall execution time of the jobs. Waiting time was small for all the jobs when Minimum-User-Limit-Percent

setting was used. Under this setting, more jobs can execute concurrently, which leads to low waiting time.

User-Limit-Factor

This parameter allows a single user to acquire more slots than the configured queue capacity. Figure 5.4

shows the execution times for the various jobs.

(a) 2 queues 50% each, ulf=2, 1 reduce task

(b) 2 queues 90%-10%, ulf=1, 2 reduce tasks

(c) 2 queues 90%-10%, ulf=2, 2 reduce tasks

Figure 5.4: Effect Of User-Limit-Factor

The number of reduce tasks per job and User-Limit-Factor was varied in these experiments. There is no

change in execution time of jobs between Figure 5.4(a) and 5.1(a). This is because although User-Limit-

49

Factor is 2, it does not help as the number of reduce tasks for each job is 1. Each job needs one reduce slot

and it was obtained through its allocated queue capacity. User-Limit-Factor was not relevant.

However, there is a big difference between Figure 5.4(b) and 5.4(c). The execution times for jobs in the

second queue are much higher in 5.4(b) than in 5.4(c). The reason is the value of User-Limit-Factor. In

Figure 5.4(b), the user from queue 2 cannot use more than 1 map and reduce slot as User-Limit-Factor is 1

and queue capacity is 10% (1 map and 1 reduce slot). In Figure 5.4(c), however, the user from queue 2 can

get twice the queue capacity and hence it can get 2 reduce slots (from the other queue because the jobs in

queue 1 only need 6 reduce slots and 4 are free) which leads to a substantial reduction in execution time.

Supports-priority

This parameter allows priority to be given to the users of any queue. The values of priority are of the

following types: VERY LOW, LOW, NORMAL, HIGH and VERY HIGH. High priority jobs have shorter

execution time than lower priority jobs, depending on the priority type. Sort was assigned VERY LOW

priority. TeraSort was given the NORMAL priority. WordCount was given VERY HIGH priority. Figure

5.5 shows the execution times for the various jobs. Compared with Figure 5.1(a), it can be see that priorities

clearly affect job execution time.

Figure 5.5: Effect Of Priority Settings

5.1.2 Impact of Job Initialization Parameters

In the next set experiments, the job initialization parameters in the Capacity Scheduler were changed. These

parameters determine the number of system jobs, tasks per queue and tasks per user which can be executed

concurrently on the cluster.

Maximum-System-Jobs

In this experiment, the number of Maximum-System-Jobs was varied from 2 to 4, respectively, to observe the

impact on the execution time of the jobs. Figures 5.6 shows the execution times for the various jobs under

different settings.

50

(a) Maximum-System-Jobs=2

(b) Maximum-System-Jobs=4

Figure 5.6: Effect Of Maximum-System-Jobs On Running Time Of Jobs.

51

When the value of Maximum-System-Jobs is 2, only a single job from each queue gets executed in parallel.

As a result, the first Sort job in both queues has a better execution time than in Figure 5.6 (b). When one

job in a queue finishes execution, the next job starts executing, causing a long launching time for subsequent

jobs. They have to wait a lot before they start executing. That is why there are large waiting times for the

other two types of jobs. In the second scenario, the number of jobs which are being executed in each queue

in parallel is 2. This leads to more resource contention among the running jobs and affects their execution

time. The Sort job execution time increases because more parallel jobs can run in the system and each runs

slower.

Alternatively, TeraSort and WordCount have faster real execution time because they do not have to wait

as long as in the previous scenario. Real execution time does not include waiting time. The real execution

time for WordCount was similar in both scenarios and the difference observed is due to waiting time.

Maximum-Initialized-Active-Tasks and Maximum-Initialized-Active-Tasks-Per-User

These parameters are related. Maximum-Initialized-Active-Tasks defines the maximum number of tasks which

can be executed concurrently for any queue, serving as an upper limit for maximum initialized active tasks

per user. Maximum-Initialized-Active-Tasks-Per-User cannot be greater than Maximum-Initialized-Active-

Tasks. Figure 5.7 shows the execution times for the various jobs under different settings. The same trends

were observed for all the jobs in both the figures for the same reasons as explained earlier for Maximum-

System-Jobs.

The reason for choosing 80 active tasks per user was that all the jobs had between 75 and 80 map tasks.

In Figure 5.7 (a), when Maximum-Initialized-Active-Tasks for a queue is 100, then only a single job can be

run from that queue as
⌊
100
80

⌋
= 1. Hence, there are large waiting times for all jobs after the first job, but

short real execution time. In 5.7 (b), the number of jobs which can be executed simultaneously from any

queue is
⌊
160
80

⌋
= 2. This leads to smaller waiting times for the jobs but large real execution time, due to

contention of resources, except WordCount which was the last job to run in both of the scenarios.

5.1.3 Makespan

Makespan is an important metric to understand and merits discussion. It was found out that Makespan

value was affected by the Capacity Scheduler settings across different experiments. But it did not change

much when Capacity Scheduler settings were changed for the same workload. Table 5.1 shows the Makespan

values for different experiments. The lower capacity queue has higher Makespan value than the larger

capacity queue because jobs have fewer slots to execute on. In experiments with Maximum-System-Jobs and

Maximum-Initialized-Active-Tasks, the Makespan value is determined by the jobs which executes at the end

(as the jobs run sequentially and not in parallel).

52

(a) maximum-initialized-active-tasks=100, maximum-initialized-active-tasks-per-user=80

(b) maximum-initialized-active-tasks=160, maximum-initialized-active-tasks-per-user=80

Figure 5.7: Effect Of Maximum-Initialized-Active-Tasks On Running Time Of Jobs.

53

Table 5.1: Makespan For All Experiments

Experiment Description Queue 1

Makespan

Queue 2

Makespan

Queue 3

Makespan

2 queue: 50% each capacity 1127 1123 -

2 queue: 90%-10% capacity 1131 1921 -

3 queue: 33% each capacity 1811 1866 1939

50-50% queues Maximum-Capacity 1149 1161 -

90-10% queues Maximum-Capacity 1292 2195 -

User-Limit-Factor 100% 1388 - -

User-Limit-Factor 25% 1671 - -

User-Limit-Factor 25%, 5 reduce tasks/job 691 - -

2 queues 50% each, ulf=2, 1 reduce task 1234 1165 -

2 queues 90%-10%, ulf=1, 2 reduce tasks 1030 1899 -

2 queues 90%-10%, ulf=2, 2 reduce tasks 847 1249 -

Priority Settings 1454 1436 -

Maximum-System-Jobs=2 1774 1851 -

Maximum-System-Jobs=4 1724 1648 -

maximum-initialized-active-tasks=100, maximum-

initialized-active-tasks-per-user=80

1852 1730 -

maximum-initialized-active-tasks=160, maximum-

initialized-active-tasks-per-user=80

1262 1302 -

54

5.1.4 Discussion

Careful selection of scheduler configuration parameters is crucial to reduce the execution time of jobs in an

environment where the Capacity Scheduler is used. The different values for Capacity Scheduler configuration

parameters may have different impacts on the performance of the running jobs in the cluster as shown by the

experiments conducted. The Capacity Scheduler has been around since 2009 and is used in Yahoo! clusters,

but most Hadoop users and administrators do not know the precise meaning of the parameters and the kind

of impact they can have on the execution time of the running jobs. A number of queries have been asked

on Hadoop forums1 regarding this issue. Finding the performance impact can be troublesome as well as

time consuming. There is need for a tool which can not only help them to identify the performance of jobs

after changing certain settings but also help them to find the optimal values of task scheduler configuration

settings for a given cluster configuration and a set of jobs.

Experiments on the local cluster show that each single parameter present in Capacity Scheduler makes

an impact on the performance of MapReduce applications, depending on the scenario. For example, User-

Limit-Factor does not impact the performance of the jobs in an equal queue capacity scenario. However,

with a 90-10% queue capacity scenario, the User-Limit-Factor shows improvement for the smaller capacity

queue. Increasing the number of queues leads to an increase in the execution time of all the jobs almost

by a factor of 2. In the Differential queue capacity scenario, the performance of smaller capacity queue

jobs is worse than for the higher capacity queue. Maximum-Capacity limits a queue from using resources

from other queues. It is beneficial if the queues in the system have continuous inflow of jobs and their

allocated capacity does not remain unused. Minimum-User-Limit-Percent lowers the waiting time for jobs at

the expense of increased execution time. Higher priority of the jobs allows them to execute and finish sooner

than lower priority jobs in the queue. Job Initialization Parameters (Maximum-System-Jobs, Maximum-

Initialized-Active-Tasks and Maximum-Initialized-Active-Tasks-Per-User) controls job admissibility into the

system and controls concurrency. Lower concurrency leads to fewer jobs running in parallel. This leads to

high waiting time, but faster execution time for the jobs arriving later in the queue.

5.2 Simulator Validation

The goal of the experiments in this section was to check the accuracy of the simulator against the real cluster

results. The expectation was to get similar trends between real world and simulator results. From the results,

the simulator was not numerically 100% accurate due to several different factors:

• Presence of straggler tasks in real world experiments. The simulator does not model the stragglers.

Only map straggler tasks are shown in all the conducted experiments.

1http://lucene.472066.n3.nabble.com/Hadoop-lucene-users-f647590.html

55

• The simulator does not model all the different sub-phases of the map/reduce phase, which leads to

some inaccuracy.

• Same-reduce-node effect as described in Section 4.2.1.

The above mentioned factors hindered the accuracy of the simulator and shall be described in detail in later

sections of this chapter. Even so, the results do confirm the accuracy of the simulator in many other aspects.

The metrics observed in validation were the map time, the reduce time, the execution time and the waiting

time for each job. Each real cluster experimentation was repeated 10 times. The graphs shows the average

of 10 runs and the standard deviation among the runs. The trends were also compared.

5.2.1 Comparison of Results with one Reduce Slot per Node

This section shows the comparison of experimental results between the real cluster and the simulator on one

reduce slot per node setup.

Effect of changing the NumberofQueues

In this first experiment, a single queue with 2 users and 4 jobs was used. In the second experiment, 2 queues

with 2 users and 4 jobs each was used. The capacity of each queue was set at 50%. The results for both real

cluster and simulator are shown in Figure 5.8.

Differences exist between the simulator and the real cluster results. The real cluster results have a large

standard deviation when there are 2 queues. This phenomenon shall be observed in all the results presented

in this section.

The results for a single queue matched well for both the simulator and the real cluster experiments. There

is a small standard deviation in single queue experiments. The reason for this was the presence of straggler

tasks in some of the job’s runs. This lengthens the total time for a MapReduce job to complete. More

information on stragglers and their occurrences is provided at the end of the chapter.

As the number of queues increased from 1 to 2, the map, reduce and total execution time increases for all

the jobs. This happened due to less cluster capacity allocated to each queue and a greater number of jobs

present in the system. The standard deviation for the map execution time for user 2’s TSort and user 4’s

TSort was high. The reason for this was the delayed map execution. This effect occurred only once for user

2’s TSort and user 4’s TSort in 10 runs. TSort for user 2 and 4 consistently exhibited delayed map execution

behaviour in the simulator except one time. Hence, one can see marked differences in behaviour between real

and simulator results for user 2’s TSort and user 4’s TSort. This also leads to huge differences in waiting

time results for both the jobs. If the simulator would have consistently displayed non-delayed map execution

behaviour, the trends would have been similar to real cluster results. The difference between the simulator

and real cluster while exhibiting delayed map execution behaviour can be attributed to the timings in which

56

(a) 1 queue 100% capacity Cluster

(b) 2 queue 50% capacity Cluster

Figure 5.8: Effect Of NumberofQueues (2 Users/Queue and 2 Jobs/User)

57

the JobTracker gets the heartbeats from the DataNodes. The other major factor for the significant standard

deviation for TSort was the straggler tasks in some of its runs (23 to be precise).

Delayed map execution also leads to increased reduce time, which causes significant standard devia-

tion in reduce execution time results. The reduce task for a job is started in MapReduce when a certain

number of map tasks are completed. By default, it is 0.05% of the total map tasks of a job and is called

default completed maps percent for reduce slowstart. Thus, Sort with 1 GB of input data will have 16 map

tasks and it will take just one map task to complete to trigger the reduce phase for it. Consider a case where

two jobs are submitted to the system with small submission time difference between them and Sort is the

second job with 16 map tasks. Initiation of the reduce phase in Sort after one map task completes will take

a reduce slot from the cluster. As it was not the turn of job Sort to get the map slots before the first job

is finished, the Sort job will not get any further map slots until the first job finishes its map tasks. Such a

scenario not only leads to prolonged reduce execution time, but also to wastage of resources (reduce slot).

Straggler map tasks yet again affect the reduce execution of all jobs, which leads to a significant standard

deviation.

The differences in timings of the results obtained between the real and simulator can be ascribed to 2

points:

• Straggler tasks. The simulator does not model the straggler tasks.

• Some of the phases of map and reduce tasks are not present or modeled in the simulator. For example,

the collect sub phase from the map phase is not present in the MRPERF simulator. During this

phase, the intermediate (map-output) data is partitioned and collected into a buffer before spilling.

MapReduce consists of multiple sub-phases. Hence, omitting any sub-phase leads to errors in the

model and simulator prediction results.

Effect of changing the Maximum-Capacity

In this experiment, the max capacity of the queue was changed. The capacity and Maximum-Capacity of

each queue was set at 50%. The results for both real cluster and simulator are shown in Figure 5.9.

The high standard deviation for map/reduce tasks is due to the presence of stragglers. The delayed map

execution effect was not present in any of the runs in the real cluster or simulator results. The map/reduce

timings for all the jobs remained the same or improved from earlier experiments done in section 5.2.1. Placing

a limit on Maximum-Capacity of the queue prevents each queue from stealing resources from the other queue’s

quota. It also helps in removing Delayed map execution behaviour from the system. This led to improved

map and reduce timings for user 2’s TSort and user 4’s TSort.

58

(a) 2 queues 50% capacity and max cap=50 % Cluster

Figure 5.9: Effect Of Maximum-Capacity (2 Users/Queue And 2 Jobs/User)

Effect of changing the Minimum-User-Limit-Percent

In this experiment, the Minimum-User-Limit-Percent of the queue was changed. The Minimum-User-Limit-

Percent was changed to 50% instead of 100%. The results for both real cluster and simulator are shown in

Figure 5.10.

Again, the high standard deviation for map/reduce tasks in the real cluster is due to the presence of

stragglers. Changing the Minimum-User-Limit-Percent to 50% means the user’s job can concurrently execute

their map tasks and does not have to wait for the other user’s job (map tasks) prior to it to finish. As a

result, the map times for all the jobs increased. This also leads to increase in the reduce and overall execution

time for the jobs. This trend was perfectly captured by the simulator as well.

Effect of changing the Maximum-System-Jobs

In this experiment, the maximum number of jobs that can be executed in parallel on the system was reduced

to 2. The results for both real cluster and simulator are shown in Figure 5.11. No more than 1 job/queue

was executing in parallel in either the real cluster or the simulator. This leads to huge waiting times for all

the jobs after the first job in their respective queues.

In conclusion, it can be seen that the simulator depicts the trends well compared to the real cluster

experiments. The accuracy of the simulator varied between 60% to 90% for map, reduce, execution and

elapsed times. It also depicts all behaviour among different scenarios that were seen on the real cluster

experiments.

59

(a) 2 queues 50% capacity and Minimum-User-Limit-Percent=50% Cluster

Figure 5.10: Effect of Minimum-User-Limit-Percent (2 Users/Queue and 2 Jobs/User)

(a) 2 queues Maximum-System-Jobs = 2 in Cluster

Figure 5.11: Effect Of Maximum-System-Jobs (2 Users/Queue And 2 Jobs/User)

60

5.2.2 Two Reduce Slots per Node

This section shows the comparison of experimental results between the real cluster and the simulator, when

the number of reduce slots per node was increased from 1 to 2. As the number of reduce slots was increased to

2 on each node, some of the jobs’ reduce tasks were simultaneously executed on the same node. Hence, in this

section, 2 different graphs are shown for the same jobs. The one shows the jobs statistics for run-time when

its reduce phase executes in isolation. The other one shows the jobs run-time statistics when it is scheduled

with another job on the same node, but on different reduce slot. Tables 5.2 and 5.3 show the number of

isolated-paired reduce slot runs for the real cluster and simulation respectively across different experiments.

The discrepancy between the simulator and real cluster behaviour can be attributed to the timings in which

JobTracker gets the heartbeat from the DataNodes.

Table 5.2: Isolated-Paired Reduce Runs For All Jobs In Real Cluster Experiments

Experiment TSort

1

Sort

1

TSort

2

Sort

2

TSort

3

Sort

3

TSort

4

Sort

4

2 queue changing

capacity

10-0 6-4 5-5 8-2 7-3 7-3 7-3 7-3

2 queue Maximum

capacity

9-1 6-4 7-3 8-2 8-2 7-3 5-5 9-1

2 queue Minimum-

User-Limit-Percent

6-4 8-2 7-3 7-3 6-4 9-1 7-3 9-1

2 queue Maximum-

System-Jobs

9-1 10-0 9-1 9-1 9-1 10-0 9-1 9-1

Table 5.3: Isolated-Paired Reduce Runs For All Jobs In Simulation Experiments

Experiment TSort

1

Sort

1

TSort

2

Sort

2

TSort

3

Sort

3

TSort

4

Sort

4

2 queue changing

capacity

2-8 4-6 3-7 7-3 3-7 5-5 5-5 4-6

2 queue Maximum

capacity

2-8 3-7 7-3 4-6 3-7 6-4 4-6 4-6

2 queue Minimum-

User-Limit-Percent

4-6 3-7 3-7 5-5 2-8 4-6 4-6 6-4

2 queue Maximum-

System-Jobs

5-5 6-4 5-5 5-5 5-5 5-5 6-4 6-4

61

Effect of changing the NumberofQueues

Two experiments were done to examine the effect of changing the number of queues in the experimental

setup. In this first experiment, a single queue with 2 users and 4 jobs in each queue was used. In the second

experiment, 2 queues with 2 users and 4 jobs in each queue were used. The capacity of each queue was set

at 50%. The results for both real cluster and simulator are shown in Figure 5.12.

Differences exist between the simulator and the real cluster results. The real cluster results have a large

standard deviation when there are 2 queues. This phenomenon was observed in all the results presented.

The results with a single queue experiments matched well for both the simulator and the real cluster. A

small standard deviation exists in single queue experiments, caused by straggler tasks in some of the real

cluster job runs. With an increasing number of queues, the map, reduce and total execution time increases

for all the jobs. Delayed map execution happened once in the real cluster experiments for TSort 2 and TSort

4. Delayed map execution occurred in all the simulation runs. This explains the significant differences in

the standard deviation as well for TSort 2 and TSort 4 between the real and simulation runs. The waiting

times for TSort 2 and TSort 4 were markedly different because of delayed map execution. In the real cluster

setup, TSort 1 and TSort 4 started when the map phase for TSort 2 and TSort 3 ended. However, in the

simulation runs, they started their map execution as soon as they were submitted.

The increase in the reduce execution time in Figure 5.12 (c) is mainly attributed to the same-reduce-node

effect. This effect also leads to bigger standard deviation on various occasions influencing each job differently.

It depends on two major factors:

• Which job executes in parallel with which job. For example, in the real cluster results (refer to Figure

5.12 (c)), TSort 3 in particular was always paired with another TSort job and as TSort jobs execute

longer, the reduce execution time for TSort 3 is much higher than all other jobs. The presence of

stragglers also make it worst for TSort 3. All other TSort jobs were paired with TSort as well as Sort

jobs during their runs, which make their reduce execution time less than TSort 3.

• When the jobs pair with each other. For instance, if two jobs start their reduce phase on the same

node at the same time, then they will be affected much more than the two jobs if they are scheduled

at different times. Consider a scenario, where the first Sort job starts executing its reduce phase on

slot 0 of node 1 at time instance 0 and it takes 100 seconds to execute the reduce phase. Later, at

time instant 5, another Sort job starts execution on node 1, slot 1. The two jobs started their reduce

execution almost simultaneously, the reduce execution time will be almost twice (200 seconds) for both

jobs (considering that the two jobs get a share of disk and network resources equally divided all the

time). In a similar situation, if the second Sort job starts reduce execution phase at time 80, the first

job’s reduce execution time gets affected by 20%. This phenomenon can also be seen in the results. For

job Sort 1, the reduce node effect was severe as it was scheduled almost simultaneously with other jobs

on the same node. This was true for job Sort 3 also. However, in the simulation runs for the same jobs,

62

(a) 1 queue 100% capacity Cluster

(b) 2 queue 50% capacity Cluster - isolated reduce phase

(c) 2 queue 50% capacity Cluster - Paired reduce phases

Figure 5.12: Effect Of NumberofQueues (2 Users/Queue And 2 Jobs/User)

63

their reduce phase time does not overlap fully with the reduce phase time of other jobs (there was a

small overlap). Such events caused the accuracy of results for these two jobs to not match accordingly

with the real cluster results. The discrepancy between the simulator and real cluster behaviour can be

attributed to the timings in which JobTracker get the heartbeats from the DataNodes.

The simulation waiting times can be higher than the real cluster waiting times for some jobs. This can

be explained with the help of an example. Consider a situation where there are three jobs submitted to the

system with job 1 in queue 1, job 2 in queue 2 and job 3 in queue 1. They execute in a FIFO basis if they

are in the same queue. Consider scenario 1, where job 1 and 2 are both victims of same-reduce-node effect

and hence take longer than usual to execute. In such a case, job 3’s waiting time will be high. In scenario

2, job 1 and job 2 execute their reduce phase on different nodes and hence job 3’s waiting time will be less

than scenario 1, as job 1 will finish its execution on time. If scenario 1 happens in simulation more often for

a job and scenario 2 happens more for that same job in a real cluster, then waiting time for the job will be

higher in simulation than real cluster results.

Effect of changing the Maximum-Capacity

In the next experiment, the capacity and Maximum-Capacity of each queue was set at 50%. The results are

shown in Figure 5.13.

The high standard deviation for map/reduce tasks is due to the presence of stragglers for isolated reduce

cases. The Delayed map execution effect was not present in any of the runs in real cluster or simulator

results. The map/reduce timings for all the jobs remained the same or improved from earlier experiment

done in section 6.3.1 for isolated reduce cases. The high standard deviation for reduce tasks in paired reduce

phase is due to the same-reduce-node effect for paired reduce cases.

Effect of changing the User-Limit-Percent

In this experiment, 2 values were used for Minimum-User-Limit-Percent: 50% and 100%. The results are

shown in Figure 5.14.

The high standard deviation for map/reduce tasks is due to the presence of stragglers for isolated reduce

cases. The reason of stragglers is the same as was present in the one reduce slot per node experiments.

Changing the Minimum-User-Limit-Percent to 50% means the users can concurrently execute their map

tasks. As a result, the map times for all the jobs increased. This also leads to an increase in the reduce time

and overall execution time for the jobs. This trend was perfectly captured by the simulator as well. The high

standard deviation for reduce tasks in paired reduce phase is due to the same-reduce-node effect for paired

reduce cases.

64

(a) 2 queues 50% capacity and max cap=50% Cluster - Isolated reduce phases

(b) 2 queues 50% capacity and max cap=50% Cluster - Paired reduce phases

Figure 5.13: Effect Of Maximum-Capacity (2 Users/Queue And 2 Jobs/User)

65

(a) 2 queues 50% capacity and Minimum-User-Limit-Percent=50% Cluster - isolated reduce phase

(b) 2 queues 50% capacity and Minimum-User-Limit-Percent=50% Cluster - paired reduce phase

Figure 5.14: Effect Of Minimum-User-Limit-Percent (2 Users/Queue and 2 Jobs/User)

66

Effect of changing the Maximum-System-Jobs

In this experiment, the maximum number of jobs that can be executed in parallel on the system was reduced

to 2. The results for both real cluster and simulator are shown in Figure 5.15.

(a) 2 queues Maximum-System-Jobs = 2 in Cluster - isolated reduce phase

(b) 2 queues Maximum-System-Jobs = 2 in Cluster - paired reduce phase

Figure 5.15: Effect Of Maximum-System-Jobs (2 Users/Queue and 2 Jobs/User)

No more than 1 job/queue was executing in parallel in either the real cluster or the simulator. It leads

to huge waiting times for all the jobs after the first job in their respective queues.

67

5.2.3 Stragglers

This section discusses the reasons as to why stragglers were observed in the simulator validation experiments.

Table 5.4 shows the number of map stragglers for both one and two reduce slots experimental scenario.

Stragglers are often caused by hardware issues and software misconfiguration [2]. In the experiments done

here, it appears likely that they are caused by resource contention as the system logs did not show any traces

of hardware or software issue. The results from Table 5.4 point to that cause. It is to be noted that with

more queues and jobs running in parallel, the number of stragglers goes up.

Table 5.4: Stragglers For All Experiments

Experiment Description No. of Stragglers

in single reduce

slot

No. of Stragglers

in double reduce

slot

1 queue 7 4

2 queue changing capacity 23 27

2 queue Maximum-Capacity 23 24

2 queue Minimum-User-Limit-Percent 29 32

2 queue Maximum-System-Jobs 8 10

5.3 Analysis/Summary

In conclusion, it can be seen that the simulator showed similar trends as the real cluster experiments. The

accuracy of the simulator varied between 60% to 90% for map, reduce, execution and elapsed times. It also

depicts all behaviour among different scenarios that were seen on the real cluster experiments. However, the

following reasons did not allow the simulator to achieve 100% accuracy are the following:

• Presence of straggler tasks in real world experiments. The simulator does not model the stragglers.

• The simulator does not model all the different sub-phases of the map/reduce phase, which leads to

some inaccuracy in the prediction mechanism of the simulator.

• The same-reduce-node effect leads to high variability in results. The jobs are affected by the same-

reduce-node effect in two different manners: Which job executes in parallel with which job, and when

the jobs pair with each other.

• Some other factors like disk access time, CPU and network contention, prefetching etc. cannot be

modeled precisely in a simulator model.

The simulator does a decent job of showing different trends among different experiments and this increases the

confidence in the simulator. Through the simulator validation, some unexpected insights into the Capacity

68

Scheduler behaviour were discovered that can help system administrators. Under default parameter settings,

some jobs can be victims of delayed map execution. In order to solve this issue, Maximum-Capacity of each

queue should be set to the capacity of the queue. Other findings show that the same-reduce-node effect can

deteriorate the execution time of jobs. This hurts even more when there are completely idle nodes in the

cluster and still the new job is scheduled on an already busy node.

69

Chapter 6

Characterization of the Effect of

Capacity Scheduler Parameter Settings

using Simulation

This chapter contains the simulation results conducted on a cluster of 31 simulated nodes with different

job submission patterns and provides more insights into the interaction of different parameters of the Capacity

Scheduler under different job submission patterns. The chapter also provides a few important findings about

the Capacity Scheduler settings, which can be used by Hadoop administrators to manage the running of jobs

in their cluster efficiently. In all the experiments done in this chapter, the focus was on three important

metrics: data locality, response ratio and Makespan. The variability and execution times for particular types

of jobs is of interest as well.

In the following sections, Section 6.1 and Section 6.2 cover the experiments for a job submission pattern

where a long sequence of large jobs is followed by a long sequence of short jobs. Section 6.3 covers the analysis

of interleaved job submission pattern. In the interleaved job submission pattern, 4 short jobs were submitted

and then a long job followed by the same pattern. In Section 6.4, the separate queue job submission pattern

is discussed. Short and long jobs were given separate queues in separate queue scenario.

The Fair Share Scheduler was specifically designed to improve the performance of short jobs in presence

of long jobs. In Section 6.1 and Section 6.2, experiments were done to see the performance of short jobs

and how the Capacity Scheduler parameters interact with each other. The main motive of these experiments

was to see under which Capacity Scheduler settings, the performance of the short jobs improves in terms of

response ratio. A more extensive description about the job types, and factors varied are presented in Chapter

4. Experiments were done with 2 queues (Queue 1 and Queue 2).

6.1 Equal Queue Capacity: Job Types Separated

6.1.1 Data Locality

Data locality plays an important role in MapReduce environments. When more node-local tasks are scheduled

over rack-local and remote tasks, performance of the jobs should be improved because of the reduced network

70

activity. The experiments in the simulation were done on a single rack and hence there were no remote tasks.

The observed metric was the percentage of rack-local tasks scheduled across different experiments.

The results shows that Data locality increases with the increasing map tasks for a job. Table 6.1 shows

the percentage of rack-local tasks scheduled in different experiments across different job types for Queue 1.

Table 6.1: Percentage Of Rack-Local Tasks For All Job Types Across The Experiments

Job

Type

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8

1 11.25 11 10.75 11.92 11.3 13.6 12.2 13.1

2 5.0 5.0 5.0 6.1 5.2 6.7 6.4 6.2

3 2.4 2.63 2.4 2.8 2.7 3.6 3.2 3.0

4 1.21 1.0 1.2 1.5 1.0 1.9 2.0 2.4

5 91 80 94 88 92 88 90 88

6 87 75 85 83 90 82 78 82

7 61 53 61 56 56 58 56 59

The observed statistics were similar for Queue 2 and hence are not shown. For small jobs (Job Type

5, 6, 7), the percentage of total map tasks scheduled which are rack-local is very large. More rack-local

tasks means less data locality (less node-local tasks). For small jobs with 1 map task, the distribution was

bi-modal (either one of its map tasks is scheduled rack-local or none). Similarly, for small jobs with 2 map

Tasks, the distribution was tri-modal, varying between 0, 50 and 100 percent. For large jobs, the percentage

of rack-local tasks is low, which indicates high data locality. This shows that the Capacity Scheduler favors

data locality for tasks having large number of maps. The main reason for this is the fact that as a job has

more map tasks, the data is more widely distributed across the cluster. This makes it easy for the JobTracker

to assign job to the nodes where the job’s map input data is locally present in the disk.

The delay scheduling present in Capacity Scheduler does not help in improving data locality for the jobs.

This is because delay scheduling comes into picture when remote tasks are scheduled (not when rack-local

task is scheduled). This severely defeats the purpose of having delay scheduling. Node-local and rack-local are

considered equivalent tasks in Capacity Scheduler and hence delay scheduling is not used. This assumption

negatively influences the performance of the jobs. A distinction must be made between node-local, rack-

local and remote tasks. Adding an extra level of delay scheduling when it comes to making a decision for

JobTracker to schedule a rack-local task may improve the data locality for jobs.

Changing settings for the Scheduler does not make a big difference in terms of data locality under the

experiments done in this section, as shown in Table 6.1. The changes in parameter settings in Capacity

Scheduler provides a stringent set of limits to ensure that a single job or user or queue cannot consume

a disproportionate amount of resources in the cluster and ensures fair sharing of resources. Data locality

depends on which TaskTracker gets the opportunity to execute a task and whether it has the data locally

71

in its disk. The decision to give a task to a TaskTracker is determined by the JobTracker running the task

scheduler algorithm, and is designed to be independent of what the Capacity Scheduler parameter settings

are at any instant of time. The delay scheduling added to have more data locality for jobs in Capacity

Scheduler is independent of such settings as well.

6.1.2 Response Ratio

Changing Minimum-User-Limit-Percent improves response ratio in all the cases (Experiment 4, 6, 7 and 8)

for the long jobs. Table 6.2 shows the response ratios across different experiments. The number in the table

represents the average response ratio for all the jobs taken together for a single job type. Setting Minimum-

User-Limit-Percent allows more users to execute their jobs concurrently. Jobs don’t have to wait longer.

Hence, the waiting time for the jobs decreases, as shown in Figure 6.1. The lower value for response ratio in

experiment 1 for Job Type 4 is an artifact of delayed map execution.

Table 6.2: Response Ratio For All Job Types For The Experiments

Job

Type

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8

1 1.2 1.21 1.2 1.01 1.21 1.01 1.01 1.01

2 1.93 1.96 1.96 1.53 1.96 1.53 1.51 1.52

3 1.24 1.51 1.51 1.14 1.51 1.15 1.14 1.14

4 2.1 6.70 6.7 1.54 6.75 1.54 1.54 1.54

End users will always be more interested in the overall execution timings, along with elapsed timings for

their jobs. As discussed, small values for the response ratio means lower waiting times for the jobs. However,

the interesting question is: Does improving the response ratio also accompany improved execution time and

elapsed time for the jobs? If not, then, improving response ratio does not mean anything for the jobs. Figure

6.1 give some insights.

The execution time increases for both the job types when the response ratio decreases (Minimum-User-

Limit-Percent changes) because of increased competition among the jobs (lending to higher map and reduce

timings and hence higher execution timings). The improvement in response ratio does not change elapsed

timings for Job Type 2 (in fact, that increases slightly). However, for Job Type 4, elapsed time decreases

significantly. The reason for this observation is the factor by which the response ratio improves for the two

job types. Inspecting Table 6.2 tells that the response ratio changes marginally for Job Type 2. Hence,

elapsed timings does not improve for it. The response ratio for Job Type 4 improves by a big factor and

hence elapsed timings improved significantly for it.

There is another way to look at this phenomenon. Elapsed time is calculated as Execution time + Waiting

time. Hence, a decrease in elapsed timing is possible under two conditions: if both the wait and execution

72

(a) Elapsed, Execution and Wait Timings for Job Type 2

(b) Elapsed, Execution and Wait Timings for Job Type 4

Figure 6.1: Elapsed, Execution And Wait Times For Job Types 2 And 4

73

time decrease for a job or one of the timing reduces significantly even if the other timing increases to offset

the increase. More information can be obtained from Figure 6.1. Job Type 2 has earlier arrivals in the

cluster and its waiting time does not improve much by changing Minimum-User-Limit-Percent. The little

benefit it would have received from slightly decreased waiting time gets offset by the increase in the execution

time. Job Type 4 arrives late in the system and hence has a very high waiting time under default settings.

Changing Minimum-User-Limit-Percent for such jobs significantly improves their waiting time, which in turn

leads to improved elapsed timings. The same logic applies for short job types.

Changing Minimum-User-Limit-Percent always improves the response ratio for the short job types too.

Table 6.3 shows response ratio across different experiments.

Table 6.3: Response Ratio For Small Job Types For The Experiments

Job

Type

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8

5 15 15 14 3 14 3.6 3.2 3.5

6 12.8 12.9 12.79 3 12.7 3 2.7 3

7 10.3 10.4 10.3 1.8 10.5 1.83 1.82 1.93

It can be seen that Minimum-User-Limit-Percent improves response ratio in all cases for the reasons

explained earlier. Figure 6.2 gives some more insights. The execution time increases for both the job

types 5 and 7, when response ratio improves, due to more competition between jobs. The improvement in

response ratio significantly reduces the elapsed timings for Job Type 5 and 7 because of reduced waiting

times. Inspecting Table 6.3 tells that the response ratio improves significantly for Job Type 5 and Job Type

7. However, as the improvement in elapsed timings also depends on the execution timing, the improvement

is much higher for Job Type 5 than 7. The huge improvement in response ratio gets offset by the increased

execution timings for Job Type 7. This discussion shows clearly that improving response ratio can bring

varying benefits for different type of jobs. The jobs which arrive late in the arrival sequence get the most

benefit.

6.1.3 Execution Time and Variation

Variability in results for same experiment across different runs can yield interesting results. This was found

to be true in this case study. The coefficient of variation for long jobs was found to be less than 0.1 for

execution timing results. However, for short jobs it lies in the range of 0.1-0.5. This required a thorough

investigation. Table 6.4 shows the variance between different experiments for short job types.

There are 3 different reasons for the large variation in short job execution time.

• Data Locality: It plays a major role in variation for short jobs with very few maps. It is the case that

when data is node-local, then the execution time is low and this yields some of the lower end values for

74

(a) Elapsed, Execution and Wait Timings for Job Type 5

(b) Elapsed, Execution and Wait Timings for Job Type 7

Figure 6.2: Elapsed, Execution And Wait Times For Job Types 5 And 7

75

Table 6.4: Coefficient Of Variation For Short Job Types

Job

Type

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8

5 0.18 0.18 0.18 0.18 0.19 0.18 0.49 0.18

6 0.14 0.12 0.14 0.41 0.12 0.31 0.31 0.25

7 0.14 0.13 0.12 0.50 0.15 0.49 0.46 0.42

the execution time for short jobs. This is especially true for jobs having 1 or 2 map tasks.

• Disk contention on local disk: The higher end values for short jobs are due to the high contention on

the disk on which a job’s map or reduce task has been scheduled. The data from the experiments reveal

that it is not always the case that a node-local map task will produce low map timings. Node-local

map tasks can take longer than rack-local tasks if the contention on the node’s local disk is too large

due to the presence of other map/reduce tasks from the same or different jobs. This leads to variable

execution timings.

• Disk contention on remote disks: Some other high end values for the execution timings of short

jobs is due to the disk contention at remote nodes from which rack-local map data has to be fetched.

The disk contention at the remote machine causes the map data to be fetched slowly. The data is to

be read from the remote node disk and then fetched over the network for local map processing.

It is also observed from Table 6.4 that variance is very high for Experiment 4, 6, 7 and 8 (when Minimum-

User-Limit-Percent is changed). This is obviously due to the change in the settings which causes one of the

last two (disk contention at local disk and disk contention at remote disk) to happen and as a result high

variability in results across different experiments is obtained.

6.1.4 Makespan

The term Makespan defines the time in which all jobs are finished. The Makespan is a useful metric to

understand the overall throughput of the cluster, and it is used to verify that improvements in response

ratios do not come at the expense of being able to run fewer jobs per hour on the shared cluster. The

Makespan is shown in Table 6.5. It is shown for both of the queues.

The Makespan is similar for both queues because they have equal capacities. It can be seen that Makespan

results forms a uniform trajectory across all the experiments. This confirms two facts:

• Improvement in response ratio for jobs due to change in Minimum-User-Limit-Percent (Experiments

4,6,7 and 8), does not come at the cost of increased Makespan time. This tells that the short jobs can

enter the system earlier and finish faster without increasing the Makespan time.

76

Table 6.5: Makespan For Both Queues Across All The Experiments

Experiment Makespan for Queue 1 Makespan for Queue 2

1 1232 1234

2 1197 1200

3 1230 1231

4 1229 1228

5 1229 1233

6 1229 1229

7 1227 1229

8 1230 1228

• The Makespan for the system is not affected by the Capacity Scheduler settings, but by the time it

takes for the longest jobs to execute and finish.

6.2 Differential Queue Capacity: Job Types Separated

This section discusses the results when the queue capacity was changed to 70-30%. The capacity for both

the queues was chosen such that smaller queue does not feel squeezed for the capacity and larger queue still

holds a reasonably big chunk of cluster slots.

6.2.1 Data Locality

Data locality patterns were the same as in the previous section. Jobs having more map tasks have the largest

data locality percentage. Tables 6.6 and 6.7 shows the data locality for the two queues. Small jobs have

extremely low data locality, while large jobs continue to have a high number of node-local tasks. Data locality

numbers were not influenced by different queue capacities due to the reasons explained in section 6.1.1.

6.2.2 Response Ratio

Minimum-User-Limit-Percent played the same role as it did in Section 6.1.2. It helps in reducing the waiting

time for the jobs and improving response ratio. However, the benefit of improved response ratio depends

on how much the execution time has been increased and how much the waiting time has been reduced for

each job. Similar to the equal queue capacity scenario, Job Types 1, 2 and 3 did not show improvement in

elapsed timings. For Job Types 4, 5, 6 and 7 there was significant improvement in elapsed timing for the

same reasons as explained in the equal queue capacity scenario. Tables 6.8 and 6.9 shows the response ratio

of the jobs for the two queues.

Maximum-Capacity plays a crucial role in the performance of the jobs in a cluster with queues having

77

Table 6.6: Percentage Of Rack-Local Task For All Job Types For Queue 1 (70%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

1 11.3 13 10.3 11.6 13.9 12.9 11.2 14.2

2 4.9 5.4 4.8 5.8 5.2 7.1 5.9 6.5

3 2.5 2.6 2.5 2.3 2.5 2.7 2.6 2.6

4 1.3 1.2 1.1 1.7 1.3 1.5 1.6 1.7

5 85 89 92 92 92 90 89 89

6 80 84 86 80 84 88 83 84

7 57 62 62 59 63 59 55 57

Table 6.7: Percentage Of Rack-Local Task For All Job Types For Queue 2 (30%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

1 11.2 11.2 10.9 11.5 10.8 13.6 12.0 12.5

2 5.3 6.7 4.5 6.0 7.5 7.7 6.1 7.7

3 2.6 3.6 2.5 2.6 2.8 3.2 2.8 3.0

4 1.2 1.9 1.2 1.6 2.2 2.4 1.6 2.3

5 88 90 91 88 92 88 90 92

6 85 88 85 83 90 81 88 86

7 58 66 59 56 68 60 55 61

Table 6.8: Response Ratio For All Job Types For The Experiments For Queue 1 (70%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

1 1.2 1.15 1.20 1.06 1.14 1.02 1.07 1.01

2 1.92 1.6 1.93 1.57 1.67 1.39 1.5 1.38

3 1.43 1.42 1.51 1.16 1.43 1.12 1.16 1.12

4 5.18 5.38 6.7 1.5 5.5 1.45 1.57 1.45

5 15 12.5 14.6 3.6 12.4 1.9 3.4 1.8

6 12.6 10.28 12.94 1.75 10.43 1.9 1.8 1.9

7 9.1 5.2 10.2 1.75 5.2 1.81 1.86 1.78

78

Table 6.9: Response Ratio For All Job Types For The Experiments For Queue 2 (30%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

1 1.14 1.32 1.20 1.02 1.32 1.01 1.01 1.01

2 1.78 2.3 1.95 1.5 2.28 1.71 1.5 1.69

3 1.2 1.87 1.51 1.16 1.86 1.22 1.16 1.22

4 3.74 10.78 6.7 1.5 10.8 1.64 1.55 1.64

5 14 26 14.6 3.6 26 6 3.4 6.1

6 13.5 22.8 13.0 2.5 22 5.3 2.6 5.3

7 10.1 14.6 10.3 1.8 14 3.3 1.84 3.4

unequal capacity. This result was different from the equal queue capacity scenario, where Maximum-Capacity

did not play a significant role in any of the experiments because both the queues have equal capacity.

The results from 70-30% queue capacity reveals the importance of setting up the Maximum-Capacity. As

discussed, with default settings of -1 for Maximum-Capacity, there is no limit as to how much cluster could be

used by a queue. Maximum-Capacity serves as a cap which forces a queue to respect its own capacity and do

not claim extra capacity from the cluster. Figure 6.3 shows the execution and elapsed timings for the different

Job Types across different experiments. The figure is shown to identify the role of Maximum-Capacity on

the various timings on different type of jobs.

In experiments 10, 13, 14 and 16, where Maximum-Capacity was set to the capacity of the queue, both

the queues did not interfere with each other. Hence, elapsed timings were better for the queue having more

capacity than the lower capacity queue. In all other experiments, the queue with lower capacity interfered

with the higher capacity queue and led to high elapsed times for the higher capacity queue jobs.

With the Minimum-User-Limit-Percent setting other than default, more users could execute tasks in

parallel. This makes elapsed timings even worse for the high capacity queue, especially for small jobs. The

lower capacity queue interferes more often with the higher capacity queue under such settings. It can be

seen that for small jobs, performance of the higher capacity queue degrades so badly that it performs worse

than the lower capacity queue. Figure 6.4 and Figure 6.5 shows the waiting time for the jobs in two different

experimental settings as they get the resources from the system.

In experiment 14, the Maximum-Capacity keeps a check on the capacity which can be used by the queue

at any time and hence the waiting time is low for high capacity queue jobs and very high for low capacity

jobs (Minimum-User-Limit-Percent is 25% in both the experiments). The waiting time for small jobs (11-50

in the graph) in experiment 12 is very high, which leads to very high elapsed time. Keeping no limit on

Maximum-Capacity in experiment 12 provides an easy opportunity for lower capacity queue to allocate itself

the resources which were at the disposal of high capacity queue and hence depriving high capacity queue of

its capacity.

79

(a) Elapsed, Waiting and Execution Timings for Job Type 2

(b) Elapsed, Waiting and Execution Timings for Job Type 4

(c) Elapsed, Waiting and Execution Timings for Job Type 5

(d) Elapsed, Waiting and Execution Timings for Job Type 7

Figure 6.3: Elapsed, Execution And Wait Times For Job Types 2,4,5 And 7

80

(a) Waiting Time for all Jobs for Queue 1 (70%) in Exp 12

(b) Waiting Time for all Jobs for Queue 2 (30%) in Exp 12

Figure 6.4: Waiting Time For All Jobs In Exp 12

81

(a) Waiting Time for all Jobs for Queue 1 (70%) in Exp 14

(b) Waiting Time for all Jobs for Queue 2 (30%) in Exp 14

Figure 6.5: Waiting Time For All Jobs In Exp 14

82

6.2.3 Execution Time and Variation

The coefficient of variation for long jobs was found to be less than 0.1 for execution timing. However, for

short jobs it was very high. Table 6.10 and 6.11 shows the variance between different experiments for short

job types. Data locality, disk contention on local disk and disk contention on remote disk are three reasons

leading to such a high coefficient of variation for short jobs. As discussed in Section 6.1.2 on response time,

with Minimum-User-Limit-Percent setting and no Maximum-Capacity limit, the short jobs in Queue 1 are

erratic in terms of execution time. On some occasions, they did not get required slot in time and had to wait.

On other occasions, they did get the slots in time. This leads to a very high variability in their execution

times.

Table 6.10: Coefficient Of Variation For Short Job Types For Queue 1 (70%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

5 0.19 0.18 0.19 0.76 0.15 0.23 0.80 0.20

6 0.15 0.15 0.13 0.23 0.14 0.1 0.36 0.11

7 0.14 0.25 0.13 0.06 0.29 0.11 0.19 0.09

Table 6.11: Coefficient Of Variation For Short Job Types For Queue 2 (30%)

Job

Type

Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 Exp 14 Exp 15 Exp 16

5 0.16 0.20 0.19 0.24 0.19 0.14 0.16 0.14

6 0.16 0.16 0.13 0.31 0.13 0.11 0.20 0.11

7 0.1 0.13 0.12 0.3 0.14 0.14 0.32 0.13

6.2.4 Makespan

Makespan shows different findings compared to the equal queue capacity scenario. Makespan is shown in

Table 6.12. The table depicts both queue 1 (higher capacity) and queue 2 (lower capacity). The Makespan is

similar for both the queues when Maximum-Capacity is not fixed. Not setting Maximum-Capacity allows the

lower capacity queue to get additional capacity from the higher capacity queue and hence both the queues

have similar Makespan times. When Maximum-Capacity limit is used, the Makespan for the high capacity

queue improves as it has more capacity and its jobs finish quickly. Both findings shown earlier for Makespan

in the equal queue capacity scenario (Section 6.1.4) regarding Minimum-User-Limit-Percent and the longest

jobs determining the Makespan time hold true here as well.

83

6.3 Interleaved Jobs

This section contains the discussion of the performance of jobs in a realistic scenario in Hadoop cluster: an

interleaving job submission pattern, where a sequence of 4 short jobs is followed by 1 long job and so on. In

the interleaved scenario, the queues are named as Queue 1 and Queue 2.

6.3.1 Data Locality

The data locality patterns were the same as Section 6.1.1. Jobs having a greater number of map tasks have

the largest data locality percentage. Table 6.13 shows the data locality for Queue 1. Queue 2 has similar

results. Small jobs have extremely low data locality, while large jobs have high data locality. Data locality

numbers were not influenced by different queue capacity due to the reasons explained in earlier sections.

6.3.2 Response Ratio

For the interleaved scenario, Minimum-User-Limit-Percent is the most important setting to lower the response

time. It helps in improving the response ratio for all the job types. Table 6.14 shows the response ratio for

all job types across different experiments. The improvement in response ratio depends on the arrival timings

of the job. A job coming earlier in the system under default settings gets minimum improvement in response

ratio as its waiting time does not change much under changed Minimum-User-Limit-Percent parameter. For

a job coming later to the system, the huge improvement in waiting time due to Minimum-User-Limit-Percent

helps to improve response ratio significantly. In a system running over the longer-term, large gains could

be expected. As discussed in previous sections, however, improved response ratio does not always mean

improved elapsed time for a job type.

Table 6.12: Makespan For Both Queues Across All The Experiments

Experiment Makespan for Queue 1 Makespan for Queue 2

1 1211 1244

2 1001 1399

3 1230 1227

4 1223 1226

5 997 1397

6 1029 1479

7 1233 1226

8 1021 1489

84

Table 6.13: Percentage Of Rack-Local Task For All Job Types Across The Experiments

Job

Type

Exp 17 Exp 18 Exp 19 Exp 20 Exp 21 Exp 22 Exp 23 Exp 24

1 11.5 10.8 10.8 12.7 11.1 12.6 12.3 12.8

2 5.2 5.4 5.1 6.4 5.2 6.7 6.4 6.8

3 2.4 2.6 2.9 2.8 2.4 3.3 2.9 3.3

4 1.0 1.0 1.2 1.5 1.0 1.8 1.8 2.4

5 88 88 90 85 92 88 90 88

6 83 84 83 83 85 86 86 83

7 52 59 57 60 60 56 60 61

Table 6.14: Response Ratio For All Job Types For The Experiments - Interleaved Scenario

Job

Type

Exp 17 Exp 18 Exp 19 Exp 20 Exp 21 Exp 22 Exp 23 Exp 24

1 1.18 1.18 1.18 1.02 1.18 1.02 1.01 1.02

2 1.90 1.94 1.93 1.46 1.91 1.46 1.47 1.47

3 1.35 1.51 1.51 1.15 1.50 1.15 1.15 1.15

4 8.46 8.70 8.91 1.79 8.48 1.79 1.77 1.80

5 2.03 2.02 2.03 1.41 2.02 1.43 1.43 1.42

6 3.19 4.16 4.24 2.47 4.10 2.53 2.53 2.48

7 4.20 6.91 6.85 1.90 6.70 1.89 1.90 1.90

85

6.3.3 Execution Time and Variation

The coefficient of variation for long jobs was found to be less than 0.1 for execution timing. However, for

short jobs, it was very high. Table 6.15 shows the variance between different experiments for short job types.

Data locality, disk contention on local disk and disk contention on remote disk are three reasons leading to

such a high of variance for short jobs.

Table 6.15: Coefficient Of Variation For Short Job Types For Queue 1

Job

Type

Exp 17 Exp 18 Exp 19 Exp 20 Exp 21 Exp 22 Exp 23 Exp 24

5 0.20 0.20 0.19 0.36 0.17 0.32 0.30 0.34

6 0.19 0.15 0.13 0.13 0.12 0.12 0.12 0.12

7 0.48 0.11 0.1 0.08 0.8 0.08 0.09 0.10

6.3.4 Makespan

The smaller value of Makespan for the same set of jobs means higher throughput. It indicates that the same

number of jobs were processed in a lower amount of time, which means more jobs were processed per unit of

time.

The Makespan for the interleaved scenario yet again shows that Makespan for both the queues is deter-

mined by long jobs. Changing Minimum-User-Limit-Percent improves the response ratios for all the jobs

but does not decrease Makespan for the queues. Table 6.16 shows the Makespan for both the queues across

different experiments.

Table 6.16: Makespan For All Experiments - Interleaved Scenario

Experiment Number Makespan for Queue 1 Makespan for Queue 2

17 1250 1251

18 1251 1254

19 1249 1249

20 1229 1232

21 1252 1256

22 1233 1234

23 1232 1232

24 1228 1229

86

6.4 Separate Queue Jobs

This section tries to answer another important question: What happens when short and long jobs get their

own respective queues? In the separate queue scenario, Queues 1 and 2 are short job queue and Queues 3 and

4 are long job queues. As short and long jobs have their own queue, Job Types 1, 2, 3 and 4 are submitted

to Queues 3 and 4. Job Types 5, 6 and 7 are short jobs and are submitted to Queues 1 and 2.

6.4.1 Data Locality

Data locality patterns were the same as in previous sections. Jobs having a greater number of map tasks

have the largest data locality percentage. Table 6.17 shows the data locality for Queue 1 and Queue 3.

Table 6.17: Percentage Of Rack-Local Task For All Job Types Across The Experiments In Queue 1
And Queue 3

Job

Type

Exp 25 Exp 26 Exp 27 Exp 28 Exp 29 Exp 30 Exp 31 Exp 32

1 10.7 10.4 11.3 12.6 10.6 12.6 11.4 12.5

2 4.8 5.6 5.2 5.7 5.0 6.7 6.9 6.5

3 2.6 2.6 2.7 2.5 2.7 3.0 3.0 2.9

4 1.4 1.3 1.0 1.6 1.5 1.5 1.6 1.6

5 88 91 88 88 89 88 95 90

6 85 84 88 86 86 86 80 82

7 60 60 57 58 55 59 63 61

The other two queues have similar results. Small jobs have extremely low data locality, while large jobs

have high data locality. Data locality numbers were not influenced by different queue capacity due to the

reasons explained in Section 6.1.1.

6.4.2 Response Ratio

Minimum-User-Limit-Percent helps in improving the response ratio in all the conducted experiments so far.

This raises an important question: Is it true for every job submission pattern? Surprisingly, the separate

queue job submission pattern reveals something different. It comes to the fore that instead of Minimum-

User-Limit-Percent, Maximum-Capacity helps in improving the response ratio for short jobs. But, for long

jobs, Minimum-User-Limit-Percent helps in improving the response ratio in separate queue job submission

pattern. Table 6.18 shows the response ratio for different Job Types across the different experiments.

It should be expected that with its own queue, short jobs will finish faster and hence their response

87

Table 6.18: Response Ratio For All Job Types For The Experiments - Separate Queue Scenario

Job

Type

Exp 25 Exp 26 Exp 27 Exp 28 Exp 29 Exp 30 Exp 31 Exp 32

1 1.14 1.23 1.25 1.01 1.25 1.01 1.02 1.02

2 1.76 2.21 1.94 1.39 2.18 1.56 1.38 1.54

3 1.19 1.59 1.51 1.12 1.58 1.16 1.12 1.15

4 2.46 9.36 6.51 1.55 9.06 1.73 1.56 1.72

5 13.05 1.2 5.85 4.84 1.18 1.06 5.0 1.08

6 14.11 1.65 7.03 5.22 1.48 1.20 5.18 1.20

7 9.04 1.53 4.18 4.88 1.45 1.27 4.87 1.25

ratio will have low values. However, in experiments 9, 11, 12 and 15 (where Maximum-Capacity limit is not

imposed), the response ratio for short jobs (Job types 5, 6, and 7) is high. The reason is the presence of long

running jobs in other queues. In absence of the Maximum-Capacity limits, the long jobs in the other queues

take the slots from short jobs queues. This leads to huge waiting time for short jobs, which in turn leads to

high elapsed timings and thus a high response ratio. Imposition of limits reverses the trend. In this case,

long jobs suffers higher response ratios. The Maximum-Capacity limit puts an upper bound on the capacity

a queue can use and hence short jobs have lower waiting time and also lower response ratio values.

Figure 6.6 shows the execution and waiting time for all job types under two different settings. Two

different situations occur. Under default settings, long jobs keep using the resources from the short job queue

and hence don’t have to wait long. This makes short jobs to wait very long. This explains the observed

waiting time in 6.6 (a) for all different job types. In fact, most of the short jobs start after most of the long

jobs finish. This leads to shorter execution time for short jobs because most of the nodes are idle (as most

of the long jobs are finished) and hence there is less contention on each node. In the second experiment,

long jobs have longer waiting times than for the default settings because of Maximum-Capacity limit. They

cannot take resources from the short job queues. All short jobs have low waiting times and execute in parallel

with long jobs, which leads to their high execution time. Also, as all short jobs finish quickly, and as long

jobs have to wait longer, the execution time for such long jobs is lower.

6.4.3 Execution Time and Variation

The coefficient of variation for long jobs was found to be less than 0.1 for execution timing. However, for

short jobs it was very high. Table 6.19 shows the variance between different experiments for short job types.

Again, data locality, disk contention on local disks and disk contention on remote disks are three reasons

leading to such a high coefficient of variation for short jobs.

88

(a) Waiting and Execution Timings for Job Types under Experiment 1 (Default Settings)

(b) Waiting and Execution Timings for Job Types under Experiment 2 (Max capacity limits)

Figure 6.6: Waiting And Execution Times For All Job Types: Separate Queues

89

Table 6.19: Coefficient Of Variation For Short Job Types For Queue 1 And Queue 3: Separate
Queues

Job

Type

Exp 25 Exp 26 Exp 27 Exp 28 Exp 29 Exp 30 Exp 31 Exp 32

5 0.20 0.20 0.19 0.36 0.17 0.32 0.30 0.34

6 0.19 0.15 0.13 0.13 0.12 0.12 0.12 0.12

7 0.48 0.11 0.1 0.08 0.8 0.08 0.09 0.10

6.4.4 Makespan

The Makespan for separate queue scenario reveals quite an interesting result. It should be expected that

jobs present in a queue should be responsible for the value of the Makespan. This happened so far in all

the earlier experiments. However, it was observed that in the separate queue scenario, the Makespan for the

short job queue was affected by the long job queue (under no Maximum-Capacity limits). Table 6.20 shows

the Makespan for all 4 queues across different experiments.

Table 6.20: Makespan For All Experiments - Separate Queue Scenario

Experiment

Number

Makespan for

Queue 1

Makespan for

Queue 2

Makespan for

Queue 3

Makespan for

Queue 4

25 1196 1196 1249 1252

26 407 409 1242 1239

27 1200 1201 1239 1235

28 1242 1232 1207 1203

29 387 383 1262 1262

30 432 418 1243 1242

31 1235 1238 1202 1205

32 414 438 1259 1262

Limiting the Maximum-Capacity does not allow long jobs in their queues to take slots from short job

queue. It also decreases the waiting time for short jobs in their queues. This makes Makespan for short job

queues small compared to other experiments (when Maximum-Capacity was not limited).

6.5 Analysis

Based on the experiments conducted in this chapter, analysis is done and presented in this section. It is

expected that the conclusions drawn here will be helpful for the Hadoop administrators.

90

6.5.1 Question 1

In presence of a long sequence of very big jobs followed by small jobs, Minimum-User-Limit-Percent plays the

most important role. It helps in decreasing the waiting time for the jobs which are late in the arrival sequence

to get the resources to run their tasks later under default settings. Changing Minimum-User-Limit-Percent

also causes more competition for resources among jobs. This leads to increased execution times for the jobs.

Changing Minimum-User-Limit-Percent improves the response ratio for all the jobs. However, the per-

formance benefits for the job depends on how much response ratio has been changed across the experiments

under different settings. For a job, better response time also means better elapsed timings if the decreased wait

timings does not get offset by the increased execution time (due to Minimum-User-Limit-Percent setting).

Data locality is not much influenced by the Capacity Scheduler settings. Data locality increases with

the number of map tasks for a job. The Capacity Scheduler treats rack-local maps and node-local tasks as

identical. Hence, adding an extra layer of delay scheduling at rack-local tasks and treating them different

can improve performance for the jobs.

For queues with unequal capacity, it is a best practice to use Maximum-Capacity limit on the queues for

real performance gains. Otherwise, the queue with lower capacity interferes more often with high capacity

queue and takes the necessary resources away from it. This affects the response ratio for jobs present in the

higher capacity queue.

6.5.2 Question 2

For the job submission pattern in which long and short jobs are submitted in an interleaved manner in the

same queue, Minimum-User-Limit-Percent is the most important factor. Minimum-User-Limit-Percent helps

in improving the response ratio for all the jobs and especially for the ones who are submitted later in the

queue. In a system running over the longer-term, large gains could be expected. Makespan for the queue is

determined by the long jobs. Data locality results are similar to those obtained in Question 1.

6.5.3 Question 3

For job submission patterns in which short jobs and long jobs are submitted in separate queues, two different

behaviours were observed. With no Maximum-Capacity limits imposed, long jobs affect the short job queue

behaviour by taking slots from them. This results in long waiting time for short jobs. Makespan and

response ratio for short queues jobs are also affected by long jobs in such case. With Maximum-Capacity

limits imposed, the short jobs are not affected by long jobs. Hence, their response time is small and their

Makespan is not affected by the long jobs.

For job submission patterns where short jobs and long jobs are submitted in separate queues, Minimum-

User-Limit-Percent helps in improving the response ratio but not as much as Maximum-Capacity. So, im-

posing Maximum-Capacity limits with Minimum-User-Limit-Percent settings can achieve the most optimal

91

results for short jobs in terms of response time and Makespan.

If a queue capacity is to be divided among short and long jobs, long jobs must be given more capacity.

This gives them more resources to run as they need more slots from the cluster.

Separating long jobs and short jobs in two different queues with Maximum-Capacity limits imposed and

Minimum-User-Limit-Percent settings provides the optimal solution and is better than submitting both short

and long jobs in the same queue. The waiting time for short jobs by maintaining separate queues improves

drastically and hence they finish faster, giving a low Makespan value. This gives the administrator the

capability to run more short jobs.

92

Chapter 7

Conclusions

The Capacity Scheduler is one of the task schedulers present in Hadoop. It is being used by a lot of

premier organizations like Yahoo! and LinkedIn. Still, little is known about the characteristics of Capacity

Scheduler and how its parameters impact MapReduce applications. This thesis helps in understanding the

Capacity Scheduler characteristics with the help of simulation. This chapter contains a discussion on thesis

contribution to the field of research, a broad summary of results and future work.

7.1 Thesis Summary

There is only limited knowledge in the published literature about the working of Capacity Scheduler and its

parameters. This thesis highlights the need to understand and identify the importance of those parameters.

It is important to understand how these parameters impact the MapReduce workload and which parameters

are the most relevant under which type of workload. Such an understanding can help administrators of

Hadoop Capacity Scheduler to fine tune the parameters according to their organizational needs.

An initial single factor sensitivity analysis on a simplistic workload consisting of a few MapReduce rep-

resentative applications shows that all the capacity Scheduler parameters have an impact. Increasing the

number of queues and changing queue capacity leads to change in the execution times of jobs. Lowering

the queue capacity increases the execution time and raising the queue capacity decreases the execution

time under the same workload. Maximum-Capacity limits a queue from using resources from other queues.

Minimum-User-Limit-Percent lowers the waiting time for the jobs at the expense of increased execution time.

Assigning a high priority to the jobs allows them to execute and finish sooner than lower priority jobs in

the queue. Job Initialization Parameters (Maximum-System-Jobs, Maximum-Initialized-Active-Tasks and

Maximum-Initialized-Active-Tasks-Per-User) controls job admissibility into the system and controls concur-

rency.

In order to study the impact of Capacity Scheduler in more detail, a simulator is needed. There exists

no Capacity Scheduler simulator in the existing research with the exception of Mumak, which has several

limitations with respect to the goals of this thesis. In particular, the need to have real workload traces from

actual production cluster was a big roadblock. Hence an existing simulator named MRPERF (MapReduce

simulator) was modified and the capability of Capacity Scheduler was integrated into it. With MRPERF

93

being open source, it was easy to change and it allows the integration of the Capacity scheduler. MRPERF

does not need real traces. After the thorough analysis of the code and its meaning, the implementation to

integrate Capacity Scheduler in MRPERF was completed. To check if the new Capacity Scheduler simulator

works, a validation study was undertaken. A simplistic workload was used on a real cluster and the impact of

Capacity Scheduler parameters was studied. Single factor experiments were done. Later, the same workload

was injected into the simulator to check the accuracy of the results vis-a-vis real cluster results. The numerical

accuracy of the simulator was not 100% because of the following factors: stragglers, same-reduce-node effects

and modeling errors already present in MRPERF. Many of these factors are random and thus unpredictable.

However, the changing trends between different experiments was perfectly captured by the simulator in

comparison to real cluster results.

In the final part of the thesis, a full blown simulation was performed to understand the impact of Capacity

Scheduler parameters on a workload under different job submission patterns. Queue Capacity, Maximum-

Capacity and Minimum-User-Limit-Percent were found to be the most relevant parameters under different

job submission patterns. Minimum-User-Limit-Percent improves the response times for the jobs by decreasing

their waiting time. This improvement is more prominent for the jobs which are submitted late in the queue.

Data locality increases with more map input data. The Capacity Scheduler does not make a big impact

on the data locality results for the same job under different settings and job submission patterns. It is

beneficial to maintain separate queues for short and long jobs with a Minimum-User-Limit-Percent setting

and Maximum-Capacity setting. This improves the response time for all the jobs and also prevents long job

to steal capacity from the short job queues. In the absence of Maximum-Capacity limit, long jobs use the

capacity from short job queues. It prevent short jobs from being executed in a timely manner.

7.2 Thesis contribution

This thesis explores Capacity Scheduler and its parameters in detail. It makes the following contributions:

• This thesis is the first systematic study to understand Capacity Scheduler parameters and their impact

on the performance of MapReduce applications. The thesis contains experimental results performed

on a real world cluster as well as simulation results. Capacity Scheduler was developed by Yahoo!

to allow efficient sharing of the cluster resources among multiple organizations. It is heavily used by

organizations like Yahoo!, LinkedIn, etc., but no study exists on its behaviour and how the various

Capacity Scheduler parameters affect MapReduce applications. Users and administrators often get

confused by the Capacity Scheduler settings in absence of such studies.

• This thesis contributes a component of the simulator which can simulate Capacity Scheduler. The

existing Capacity Scheduler code was studied and then integrated in the MRPERF simulator. Existing

MapReduce simulators that do not require detailed production traces do not permit the modeling of

94

the Capacity Scheduler. The simulator developed in this thesis does not need real production traces.

This greatly simplifies the testing of existing or new Scheduler parameters under simulation.

• The work in this thesis isolates and studies each Capacity Scheduler parameter independently and one

by one on a real cluster to see which parameters are the most important ones in affecting MapReduce

application behaviour. Representative MapReduce applications were used in experiments.

• The Capacity Scheduler component developed in this thesis was verified against real cluster results

on representative MapReduce applications. The simulator was not 100 % numerically accurate due

to various factors like stragglers, same-reduce-node effects, etc. These factors are random and thus

unpredictable. However, the trends were predicted accurately by the simulator vis-a-vis real cluster

results.

• Large scale simulations were done in the thesis under different job submission patterns with the most

important Capacity Scheduler parameters (obtained on the basis of knowledge collected from previous

experimental results). The observations from this simulation study can be used by administrators to

effectively manage a shared cluster using Capacity Scheduler.

7.3 Future Work

Future work can be divided into three broad categories: improvement in the simulator, improvement in the

integrated Capacity Scheduler simulation and in the experimental design space.

7.3.1 Improvement in MRPERF simulator

Many a lot of additional features and modifications can be realized in MRPERF. It was implemented based on

ns-2, a packet-level network simulator, and its performance is much worse than other simulators. Simulating

a 30 node cluster with 100 jobs takes 4 hours. By porting the existing MRPERF framework onto a faster

network simulator, it can be made faster. MRPERF can also be extended to have multiple-disk support on a

single node. Memory configuration can also be implemented in MRPERF. There are a couple of sub phases

which are not modeled in MRPERF, such as Collect. Such sub-phases omissions leads to prediction errors

in the simulator. MRPERF can be extended to include omitted sub-phases. Straggler support can be put

into MRPERF.

7.3.2 Improvement in Capacity Scheduler simulation

The integration performed to include Capacity Scheduler into MRPERF does not contain code for speculative

execution. Speculative execution helps to reduce lost time due to stragglers. Since MRPERF does not support

stragglers, speculative execution was not integrated. Hadoop developers found out the same problem with low

95

data locality as described in this thesis. Surprisingly, the timings of the finding of this issue 1 was coincidental

with this thesis work. Hadoop developers fixed the issue with a new level added for delay scheduling at the

rack level. This fix can be added to the existing Capacity Scheduler simulation to test if it improves the

data locality for the jobs. As observed in the experimental results, allocating separate queues to small and

large jobs with Maximum-Capacity limits imposed gives optimal results. In such a scenario, small jobs finish

faster. The queue capacity of small jobs queue remains unused after they finish execution, as long jobs cannot

use small jobs queue capacity. A new improvement can be made to the simulator code by allowing large

jobs to use the small jobs queue capacity when the small job’s queue does not have any more jobs. This will

involve changing of the Capacity Scheduler parameters on the fly.

7.3.3 Experimental Design

The experimental design can be extended to include measuring Capacity Scheduler characteristics under

different network topologies, and data layout algorithms. The workload can include new types of jobs such as

map only jobs. Experiments can be performed having job submission patterns with bursty workloads. The

simulation can be conducted under different cluster configurations to check the impact of Capacity Scheduler

settings under changing cluster sizes. The cluster can vary in terms of the number of nodes, map slots and

reduce slots. Steady state simulation and experiments with different job arrival patterns can be undertaken

as future work.

Future work can also be extended in the area of optimization. What and how values should be assigned

to multiple Capacity Scheduler parameters to get the best running time for jobs will be a good research

question to pursue. For example, how to determine how much more capacity should be allocated to the long

job queue?

1https://issues.apache.org/jira/browse/MAPREDUCE-4305

96

References

[1] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud computing: new wine or just
new bottles? Proceedings of the VLDB Endowment, 3(1-2):1647–1648, September 2010.

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and
Edward Harris. Reining in the outliers in map-reduce clusters using mantri. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, pages 1–16, Vancouver, BC,
Canada, 2010.

[3] Shivnath Babu. Towards automatic optimization of MapReduce programs. In SoCC ’10, pages 137–142,
Indianapolis, IN, June 2010.

[4] Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti. Applied Mathematical Programming.
Addison-Wesley, 1977.

[5] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly Huang,
Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in network simulation. Computer,
33(5):59 –67, May 2000.

[6] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for grid computing. Concurrency and Computation:
Practice and Experience, 14(13-15):1175–1220, January 2002.

[7] Henri Casanova. Simgrid: a toolkit for the simulation of application scheduling. In Proceedings of the
1st IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 430–437, Brisbane,
Australia, May 2001.

[8] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architecture: Towards a self-
tuning risc-style database system. In Proceedings of the 26th International Conference on Very Large
Data Bases, pages 1–10, Cairo, Egypt, September 2000.

[9] Jagmohan Chauhan, Dwight Makaroff, and Winfried Grassmann. The impact of capacity scheduler
configuration settings on MapReduce jobs. In Proceedings of the 2012 Second International Conference
on Cloud and Green Computing, pages 667–674, Xiangtan, China, November 2012.

[10] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing in big data systems: a
cross-industry study of mapreduce workloads. Proceedings of the VLDB Endowment, 5(12):1802–1813,
August 2012.

[11] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The case for evaluating mapreduce
performance using workload suites. In Proceedings of the 2011 IEEE 19th Annual International Sym-
posium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, pages
390–399, Singapore, 2011.

[12] Jeffrey Cohen, John Eshleman, Brian Hagenbuch, Joy Kent, Christopher Pedrotti, Gavin Sherry, and
Florian Waas. Online expansion of largescale data warehouses. Proceedings of the VLDB Endowment,
4(12):1249–1259, August 2011.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, January 2008.

97

[14] David DeWitt and Jim Gray. Parallel database systems: the future of high performance database
systems. Communications of the ACM, 35(6):85–98, June 1992.

[15] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. International Journal
of Supercomputer Applications, 11:115–128, 1996.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, Bolton Landing, NY,
October 2003.

[17] Suhel Hammoud, Maozhen Li, Yang Liu, Nasullah K. Alham., and Zelong Liu. MRSim: A discrete
event based MapReduce simulator. In Proceedings of the 7th International Fuzzy Systems and Knowledge
Discovery (FSKD) Conference, volume 6, pages 2993–2997, Yuntai, China, August 2010.

[18] Per Brinch Hansen. Operating System Principles. Upper Saddle River, NJ, 1973.

[19] Herodotos Herodotou. Hadoop Performance Models. Technical Report CS-2011-05, Duke CS, 2011.

[20] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, and
Shivnath Babu. Starfish: A Self-tuning System for Big Data Analytics. In Proceedings of the 5th Biennial
Conference on Innovative Data Systems Research, pages 261–272, Asilomar, CA, January 2011.

[21] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.
Quincy: fair scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pages 261–276, Big Sky, Montana, October 2009.

[22] Scott Kirkpatrick, Charles D. Gelatt, and Mario P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[23] Elie Krevat, Tomer Shiran, Eric Anderson, Joseph Tucek, Jay J Wylie, and Gregory R Ganger. Applying
simple performance models to understand inefficiencies in data-intensive computing. Technical report,
UC Berkeley CS, 2011.

[24] Yang Liu, Maozhen Li, Nasullah Khalid Alham, and Suhel Hammoud. Hsim: A MapReduce simulator
in enabling cloud computing. Future Gener. Comput. Syst., 29(1):300–308, January 2013.

[25] Thomas Sandholm and Kevin Lai. Dynamic proportional share scheduling in hadoop. In Proceedings of
the 15th International Conference on Job Scheduling Strategies for Parallel Processing, pages 110–131,
Atlanta, GA, May 2010.

[26] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop Distributed
File system. In Proceedings of the 26th IEEE Symposium on Massive Storage Systems and Technologies,
pages 1–10, Incline Village, NV, May 2010.

[27] Hou Song. Performance analysis of MapReduce computing framework. Masters thesis, National Univer-
sity of Singapore, 2011.

[28] HyoJung Song, Xin Liu, Denis Jakobsen, Ranjita Bhagwan, Xianan Zhang, Kenjiro Taura, and An-
drew A. Chien. The microgrid: a scientific tool for modeling computational grids. In Proceedings of the
13th International Conference On Supercomputing, pages 53–53, Dallas, TX, November 2000.

[29] Atsuko Takefusa, Satoshi Matsuoka, Hidemoto Nakada, Kento Aida, and Umpei Nagashima. Overview
of a performance evaluation system for global computing scheduling algorithms. In Proceedings of the 8th
International Symposium on High Performance Distributed Computing, pages 97–104, Redondo Beach,
CA, August 1999.

[30] Fei Teng, Lei Yu, and Frederic Magoules. Simmapreduce: A simulator for modeling MapReduce frame-
work. In Proceedings of the 5th FTRA International Conference on Multimedia and Ubiquitous Engi-
neering, pages 277–282, Crete, Greece, June 2011.

98

[31] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu,
Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution over a MapReduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, August 2009.

[32] Chao Tian, Haojie Zhou, Yongqiang He, and Li Zha. A dynamic MapReduce scheduler for heterogeneous
workloads. In Proceedings of the 8th International Conference on Grid and Cooperative Computing, 2009,
pages 218–224, Lanzhou, China, August 2009.

[33] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Aria: automatic resource inference and
allocation for MapReduce environments. In Proceedings of the 8th ACM International Conference on
Autonomic Computing, pages 235–244, Karlsruhe, Germany, June 2011.

[34] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Play it Again, SimMR! In Proceedings of
the IEEE CLUSTER 2011, pages 253–261, Austin, TX, September 2011.

[35] Guanying Wang, Ali R. Butt, Prashant Pandey, and Karan Gupta. A simulation approach to evaluating
design decisions in MapReduce setups. In Proceedings of the 2009 IEEE 17th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, pages
1 –11, London, UK, September 2009.

[36] Guanying Wang, Ali R. Butt, Prashant Pandey, and Karan Gupta. Using realistic simulation for per-
formance analysis of MapReduce setups. In Proceedings of the Large-Scale System and Application
Performance Workshop, pages 19–26, Garching, Germany, June 2009.

[37] Tom White. Hadoop: The Definitive Guide. O’Reilly, 2009.

[38] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion
Stoica. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In
Proceedings of the 5th European Conference on Computer Systems, pages 265–278, Paris, France, April
2010.

[39] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Improving MapRe-
duce performance in heterogeneous environments. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, pages 29–42, San Diego, CA, December 2008.

99

