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Abstract. We argue that none of the existing epistemic logics can ad-

equately serve the needs of agent theories. We suggest a new concept of

knowledge which generalizes both implicit and explicit knowledge and

argue that this is the notion we need to formalize agents in Distributed

Arti�cial Intelligence. A logic of the new concept is developed which is

formally and practically adequate in the following sense: �rst, it does not

su�er from any kind of logical omniscience. Second, it can account for

the intuition that agents are rational, though not hyper-rational. Third,

it is expressive enough. The advantages of the new logic over other for-

malisms is demonstrated by showing that none of the existing systems

can ful�ll all these requirements simultaneously.

1 Introduction

In recent years a number of approaches have been proposed in (Distributed)

Arti�cial Intelligence to specify rational agents in terms of mental qualities

like knowledge, belief, want, goal, commitment, and intention. (See [15] for an

overview of some recent agent theories.) There is no clear consensus in the DAI

community about precisely which combination of mental attitudes is best suited

to characterizing agents, yet it seems to be an agreement that belief (or knowl-

edge1) should be taken as one of the basic notions of the agent theory (see, e.g.,

[2], [11], [12], [13], [14], [15].)

Since agents need to act upon what they actually know, and not what they

merely possibly know, agent theories must be based on logics that can capture

what agents actually know. Although DAI researchers are aware that the modal

approach to epistemic logic does not capture actual knowledge properly, they

still use modal systems most frequently for modeling knowledge in their agent

theories | for the lack of suitable alternatives. We shall argue that the use of

modal epistemic logic is only justi�ed in some very restricted domains, but for

the more knowledge-intensive applications, other logics of knowledge are needed.

1 For the purposes of the paper the distinction between knowledge and belief is irrel-

evant. We use the two terms interchangeably.
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In the sequel I shall present a novel approach to epistemic logic which over-

comes the weaknesses of the existing formalisms. The main idea is to combine

epistemic logic with a complexity analysis: we consider how long an agent will

need to compute the answer to a certain query. We shall show that our approach

o�ers an intuitive solution to the logical omniscience problem while preserving

the intuition that agents are rational. In the next section we shall review briey

the epistemic concepts which have been discussed in the literature and argue

that none of them is suitable for formalizing the informational aspect of intel-

ligent agents. Then we shall present the main intuitions underlying our novel

approach, introduce a new concept of knowledge which generalizes both implicit

and explicit knowledge, and develop formal theories of this new concept.

2 Implicit knowledge, explicit knowledge, and agent

action

Originally, epistemic logic was developed to formalize the concept of knowledge

as it is used in normal discourse, to describe what agents (actually) know. It was

soon realized that this concept cannot be described by any \interesting" logic: it

does not seems to obey any (nontrivial) logical law. From the information that

an agent knows certain sentences one cannot infer what else he knows. It cannot

be reliably assumed that agents know even the most elementary logical conse-

quences of what they knows. To make epistemic logic possible, idealizations must

be made concerning the reasoning capacities of the agents, and modal systems

have been proposed to describe such idealized agents. However, the idealizations

made by modal epistemic logic are too strong for any realistic agent: it is as-

sumed that agents know all logical consequences of what they know, including

all logical truths. Such perfectly rational, logically omniscient agents are non-

existent. Thus, to save modal logic as logic of knowledge, a new interpretation of

epistemic logic has been proposed: the concept of implicit knowledge is invented,

and modal epistemic logic is now interpreted as as describing this concept. That

is, epistemic logic is not taken as describing what an agent actually knows, but

only what is implicitly represented in his information state, i.e., what logically

follows from his actual knowledge. What an agent actually knows is called his

explicit knowledge.

From the viewpoint of agent theories, actual (explicit) knowledge is clearly

more important than implicit knowledge: it is the former kind of knowledge

that agents can act upon, but not the latter. The mere implicit knowledge that

some path connecting all towns in a region is the shortest one is useless for a

traveling salesman who seeks to maximize his pro�t | he must make this implicit

knowledge explicit in order to choose what path to travel. The mere implicit

knowledge that a certain strategy leads to victory is useless for a chess player

who must make the next move within a short time. An information agent whose

knowledge is represented as a knowledge base must normally make complex and

time-consuming inferences before he can answer a query.



Because of the importance of explicit knowledge for agents' action, the search

for logics of explicit knowledge still continues, and a number of systems have been

proposed for that purpose. (For overviews and discussions see, e.g., [4] and [7,

Chapter 9].) Although the concrete solutions are very di�erent, the main strat-

egy is the same in most cases: the reasoning capacities of agents are restricted

by some ad hoc postulates. Most approaches following this strategy can in fact

avoid logical omniscience to some extent, and logics of explicit knowledge can be

constructed, which, like Eberle's system ([5]), can even \[provide] for total igno-

ramusses (ones who knows nothing), complete idiots (ones who cannot draw even

the most elementary inferences), and ultimate fools (ones who believe nothing

but contradictions) . . . "2.

Why are modal epistemic logics still widely used in agent theories despite

the facts that implicit knowledge is useless when agents need to act and logics

of explicit knowledge are readily available? The answer is simple: because we

want to model rational, intelligent agents, and not \complete idiots". Logics

of explicit knowledge avoid logical omniscience, but they cannot o�er anything

what can account for the rationality of agents. Surely agents are not perfectly

rational, yet they are rational. Facing the dilemma between \perfectly rational

agents" and \complete idiots", agent theorists understandably opt for the former

and use logics of implicit knowledge for modeling their agents, hoping that such

logics can describe \almost correctly" what agents actually know.

The assumption underlying the use of modal epistemic logics may be justi�ed

in some simple domains (\small worlds", \toy examples"), where the reasoning

tasks involved are quite simple, where the decision process is not very complex,

or when the time available is unlimited. In such simple domains, it can be as-

sumed that whenever an agent needs some (implicitly available) information, he

can perform the necessary inferences to have the information explicitly. However,

such an assumption is not justi�ed in more complex applications. Agents nor-

mally have to act under tight time constraints, their decisions what actions to be

performed depend heavily on their actual knowledge, and the reasoning needed

for making correct choices can be very complex and time-consuming. Take the

aforementioned examples: calculating the shortest tour linking all towns in a

region, computing the winning strategy in chess, and inferring the answer to a

query from a given database are all very hard problems. It is obvious that modal

epistemic logics and other logics of implicit knowledge cannot describe correctly

what agents actually know in such applications. To describe agents realistically

in knowledge-intensive applications, we simply need other logics of knowledge.

What properties should a logic of knowledge have if it is to be useful for de-

scribing realistic, implementable agents? The �rst obvious requirement is that it

2 Other logics of explicit knowledge could be developed, e.g., within the \impossible

worlds" framework ([10]) or by using an \awareness �lter" ([6]). Strictly speaking,

Levesque's logic of \explicit" belief ([9]) and Konolige's deduction model ([8]) must

be viewed as logics of implicit belief, because what is believed by an agent in these

models is not immediately available to the agent, but must be inferred using some

(classical or relevant, complete or incomplete) deduction mechanism.



must not su�er from the LOP. However, solving the LOP does not automatically

make a logic suitable for reasoning about knowledge. There are other require-

ments that the logic must ful�ll. It is important that the logic can do justice to

the intuition that agents are rational: although the agents do not automatically

know all consequences of their knowledge, they are in principle able to do so.

Because of this rationality the agents are able to act upon their knowledge: they

can answer questions based on their knowledge, they can plan their actions in

advance, they can predict what other agents can and will do, and so on. If a logic

cannot account for the agents' rationality, then there is hardly any justi�cation

at all to call it a logic of knowledge. Another important requirement is that the

logic be expressive enough to formalize \interesting" situations. This condition

must remain somewhat vague, because di�erent applications will require di�er-

ent expressive powers of the logic. However, we should keep in mind that the

complexity of a logic generally increases with its expressive power, so we must

try to �nd a good trade-o� between expressiveness and simplicity.

3 Knowledge, reasoning, and time

The existing systems of epistemic logic try to deal with either implicit knowledge

or explicit knowledge. The former concept is not very helpful when agents must

act, while the latter is not governed by any non-trivial logic. To develop useful

alternatives to existing epistemic logics we suggest to consider another notion of

knowledge. The main intuition is the following. An agent's action depends not

only on what he knows now, but also on what he can infer within some speci�c

amount of time (intuitively, the time within which a decision must be made |

a classical example being the time available to make the next move in chess.)

An agent may not know a sentence now, but he may possess a procedure to

'prove' that sentence within a certain amount of time, where the amount of time

needed depends on the complexity of the sentence, the agent's reasoning power,

etc. If an agent knows that another agent must act under some time constraint,

he may infer what the second agent can or cannot know within this constraint

and predict his action accordingly. Therefore, it is worth considering what the

agents can know within 1; 2; 3; : : : time units, and not just what they currently

know, i.e., what they know within 0 unit of time.

We want to represent not only what agents know or can know, but also when

they are expected to know what they can know. The �rst question is answered

by specifying the logic used by agents in their reasoning, and the second by

a complexity analysis. What time structure do we need in modeling that kind

of knowledge? Temporal logics have been dealing with linear and branching,

point-based and interval-based, qualitative and quantitative time structures. Our

obvious choice is a point-based, linear structure with a metric de�ned on it,

because temporal constraints are usually given in quantitative terms and over

a linear time line. For simplicity we assume time to be isomorph to the natural

numbers (with the usual ordering and metric.)



The language we consider extends the usual language of the propositional

calculus by n two-place knowledge operators K1; : : : ;Kn, each for one agent,

such that Kx
i � is a formula whenever x is a natural number and � is a formula.

The formula Kx
i � can be read \agent i knows � within x units of time" and is

interpreted: \if agent i chooses to 'derive' � from his current knowledge, then

after at most x time units he will succeed", or alternatively, \if asked about

�, i is able to derive reliably the answer 'yes' within x units of time". That

is, we require not only that i has at least one procedure to 'prove' �, but also

that i be able to choose the correct procedure leading to � under the given time

constraint, namely, to arrive at the conclusion � after at most x time units3. The

word 'prove' (or 'derive') should not be interpreted too narrowly as 'deductive

proof': the procedure to gain the knowledge of � may be any acceptable method,

e.g., sensing the environment, looking up in a standard reference book, or asking

some expert.

Formally, our language is de�ned as follows:

De�nition 1. Let N be the set of natural numbers and V ar be a set of number

variables. Let Agent be a �nite set of agents and At be a countably in�nite set

of atomic formulae.

1. The set of temporal terms is the least set Term such that N � Term,

V ar � Term, and t1; t2 2 Term implies t1 + t2 2 Term

2. The set of formulae is the least set Fml such that At � Fml, f�; �g � Fml

implies f:�; � ^ �g � Fml, x 2 V ar and � 2 Fml imply 8x� 2 Fml, and

i 2 Agent, t 2 Term, � 2 Fml imply Kt
i� 2 Fml.

The other propositional connectives (_;!) and the existential quanti�ers (9)

are de�ned as usual.

Our notion of knowledge could be called \algorithmic knowledge": knowledge

is tied up with an algorithm to establish it. But the term should be used with

care: \algorithmic knowledge" has been used with di�erent meanings elsewhere

([1], [7]). In our framework, \i knows � explicitly" can be de�ned as K0
i �. Im-

plicit knowledge can be de�ned as what follows logically from explicit knowledge

(relative to some suitable logic.) Another useful concept of implicit knowledge

can be de�ned as what can be reliably established by the agent: \i knows �

implicitly" means 9xKx
i �. The rationality of agents is expressed through two

capacities: �rst, the ability to draw logical consequences from what is already

known, and second, the ability to compute the complexities of certain reasoning

problems in order to infer when something can be known. Note that these too

capacities are implementable. It turns out that we can develop quite rich theories

of the notion of knowledge we have introduced.

3 This reading does not imply that agent i will know � at time tnow + n, where tnow

is the current time. If the agent is not asked to provide the information �, then she

has no reason to waste her resources in order to �nd a useless answer: The aspect of

goal-directedness is implicit in our concept of knowledge.



To develop logics of algorithmic knowledge we try to establish logical rela-

tionships among the formulae of the language we have de�ned. This is done by

developing our earlier framework ([3], [4]) a step further. In [3] and [4] we have

suggested a new approach to epistemic logic which overcomes the drawbacks of

existing approaches. The idea is to consider the evolution of one's knowledge

over time: at one moment an agent may or may not know (explicitly) a certain

consequence of his knowledge; however, he can perform some reasoning steps to

know it at some moment in the future. We have argued that the traditional ap-

proaches fail to capture the concept of actual knowledge correctly because they

do not take the cost of inferring new information into account: they assume that

whenever an agent knows all premises of a valid inference rule then she auto-

matically knows the conclusion. We have shown that axioms for epistemic logics

must have the form: \if the agent knows all premises of a valid inference rule, and

if she performs the correct inference step, then she will know the conclusion".

Following this idea we have developed logics that can solve all forms of the logi-

cal omniscience problem and at the same time can account for the intuition that

agents are rational beings. However, the systems presented (and indicated) in [3]

and [4] have too little expressive power: they are not able to describe situations

where introspective reasoning or reasoning about the reasoning of other agents is

required. Moreover, they are based on a non-metrical branching time structure,

which makes it very di�cult to deal with time constrains. These problems are

avoided in the present paper.

Our logics of knowledge will be built up step by step from some basis logic. We

shall take classical logic as our basis logic. As we assume the natural numbers

as our time structure, we shall also assume some laws of number theory. For

our purposes it su�ces to assume Presburger arithmetic (i.e., additive number

theory.) Our epistemic systems will be obtained by adding (proper) epistemic

laws to this basis. Now let us see how such laws may look like.

Suppose that an agent i knows � within x units of time, i.e., he needs x

time units to infer � if needed. Then it is plausible to assume that he is able

to do it when even more time is available. So we can take as axiom all ground

instances of the formula Kx
i � ! K

y
i �, where x < y. Note that this axiom does

not say that knowledge is persistent in the sense that once established it will be

available henceforth. In this aspect our present approach makes a more realistic

assumption than the persistence axiom in [4].

Now let us assume that an agent i knows explicitly �1; : : : ; �n and that

�1 ^ : : : ^ �n ! � is valid (i.e., � follows logically from the premises �1; : : : ; �n).

What can be said about agent i's information state? Of course we cannot as-

sume that i knows � automatically, even if � can be deduced from �1; : : : ; �n

algorithmically: perhaps i just does not care about � and does not even try to

prove it. If he wants to know � then he has to perform some inferences, which

can be very hard and time-consuming. His reasoning takes some time, so we

can only say reliably that he will know � after some time if he chooses to de-

rive it: 9xKx
i �. So, if �1 ^ : : : ^ �n ! � is a theorem then we can assume that

K0
i �1 ^ : : : ^K0

i �n ! 9xKx
i � is valid.



In the preceding paragraph we have considered the case when the premises

�1; : : : ; �n are explicitly available to the agent, so that he can use them imme-

diately to derive the conclusion �. Consider now the more general case where

the premises �1; : : : ; �n are not immediately available but need to be inferred

separately, i.e., Kx1
i �1; : : : ;K

xn
i �n for some x1; : : : ; xn. Because xj < x1 +

: : : + xn for all j = 1; : : : ; n we may assume that i can derive every premise

within x1 + : : : + xn units of time. Once the premises are available they can

be used to infer the conclusion �. Thus, it is plausible to adopt the principle

9x1K
x1
i �1; : : : ; 9xnK

xn
i �n ! 9yK

y
i �, provided that �1 ^ : : : ^ �n ! � is valid.

As a special case of this general principle we have the axiom 9xKx
i � ^

9yK
y
i (� ! �) ! 9zKz

i �, which say that agent i can use modus ponens in

his reasoning: if he can derive both � and �! � then he is also able to derive �.

Another special case allows us to infer 9xKx
i � from �. This inference rule says

that all logical truths can in principle be known, though they are not known

immediately as required by modal epistemic logic. We shall use this inference

rule and the mentioned axiom schema to axiomatize our basic logic.

De�nition 2. The logic LAK0 (Logic of Algorithmic Knowledge) consists of

all propositional tautologies (in the language Fml), the theory of Presburger

arithmetic (with respect to the numerical part of the language), and the following

axioms and rules of inference:

KA1. 9xKx
i � ^ 9yK

y
i (� ! �)! 9zKz

i �

KA2. Kx
i � ! K

y
i �, for all pairs x; y such that x < y.

KR. From � infer 9xKx
i �

MP. From � and �! � infer �

The notions of a proof, of theoremhood etc. are de�ned as usual.

It is easy to see that LAK0 is consistent and that it solves all variants of

the logical omniscience problem. To see this it su�ces to observe that the set

f:K0
i �j� 2 Fmlg is consistent with LAK0, i.e., LAK0 can describe agents who

(at some of their information states) know nothing explicitly. (However, they

always know something implicitly.) Likewise, it is easy to see that what an agent

explicitly knows (i.e., what she knows in 0 unit of time) needs not be closed under

logical consequences or even under any logical law, e.g.,K0
i �^K

0
i (� ! �)^:K0

i �

is perfectly LAK0-consistent. On the other hand, agents described by our logic

are rational: they can draw all logical consequences of their knowledge if the

necessary resources are available, as the following lemma shows.

Lemma 3. The following rule of inference is valid:

� ! �

9xKx
i �! 9yK

y
i �

In particular, from � ! � one can infer K0
i �! 9xKx

i �.



Proof. Suppose that �! � is a theorem. By (KR) we can infer 9zKz
i (� ! �).

The formula 9zKz
i (� ! �) ! (9xKx

i � ! 9yK
y
i �) is equivalent to (KA1) and

is therefore a theorem of LAK0. Applying modus ponens we get the desired

result.

4 Knowledge and complexity

Now we have developed LAK0, a basic logic of algorithmic knowledge which can

account for rational, but not hyper-rational agents. The set of LAK0-theorems

is recursively enumerable and so can be generated algorithmically. If � follows

from � and an agent i knows � then he can employ a theorem prover for LAK0

to deduce �, so he will know � after some time.

But how long will the agent need to infer a formula which follows logically

from his knowledge base? Recall that our aim is to represent not only what

agents know or can know, but also when they are expected to know what they

can know. Our analyses up to now can only answer the �rst question. To answer

the the second question, a complexity analysis is needed. The underlying idea is

simple: if an agent i receives a query of length l and the complexity of computing

answers to queries of that class is a function f , then after at most cif(l) units

of time he is expected to have the answer, where ci is a number that measures

the computation speed of i.

It is still an open question what is the exact complexity of the decision prob-

lem for LAK0. It is well-known that Presburger arithmetic is decidable, but we

still do not know whether or not the system LAK0 is decidable. Therefore a

complexity analysis for the whole system LAK0 seems to be impossible. How-

ever, there are problem classes which can be expressed in LAK0 and whose

complexities are known. Hence we can analyze such problems and estimate the

amount of time an agent would need to infer some piece of information. With

the help of complexity theory we can obtain epistemic principles for speci�c

problem classes. Adding those principles to the basic system LAK0 will yield

more powerful logics of algorithmic knowledge. Let us consider some examples.

Assume that currently an agent i's explicit knowledge (his knowledge base)

is a set  = f�1; : : : ; �ng of sentences. Let � be a propositional consequence of .

We cannot assume that i automatically knows �, however simple the derivation

of � from  may be. To know �, i has to perform some inferences, which take

some time. The amount of time needed to answer the query � can be estimated

with the help of complexity theory. Let m = k�1k+ : : :+ k�nk be the size of 

and l = k�k be the size of �. To determine if � is in fact a consequence of , our

agent may check if every truth-value assignment which falsi�es � also falsi�es

. There are at most 2l such assignments, and the time needed to check if an

assignment satis�es  is polynomial to the size of . Hence, i can reliably know �

in some time proportional to P (m)2l for some polynomial P . Let ci be a number

that measures the computation speed of i. Then the time the agent i needs to

infer � is t = ciP (m)2l, hence K0
i �1 ^ : : :K0

i �n ! Kt
i� is valid.



Interestingly, the previous analysis can be used by an agent within the system

in order to reason about other agents, provided that he has a built-in mechanism

to calculate the complexity of reasoning problems. An agent k can reason about

another agent i exactly like we did to expect i to know � within t = ciP (m)2l

time units. But to estimate the time i would need to derive �, k does not have

to actually derive it. He has only to calculate the complexity of �, which can be

accomplished in a short time. So if �1 ^ : : : ^ �n ! � is a propositional tautology

then we may infer K0
kK

0
i (K

0
i �1 ^ : : :K0

i �n)! K
tk
k Kt

i�, where tk is some fairly

small number (which depends on k's capacities).

What about self-introspection? Positive introspection is relatively easy, so

for any formula � we may adopt the axiom 8x(Kx
i � ! Kx+1

i Kx
i �), which says

that after proving �, agent i may introspect his knowledge and discovers that

he knows �. For negative introspection we cannot expect to have any axiom of

that generality, but we may still have some rules for special cases.

It is sometimes important to know not only what an agent knows, but also

what he does not know within a certain time limit. For instance, when we use

public-key cryptography to encrypt a message, we want to be sure that someone

without the secret key will not be able to know its content within reasonable

time | although he can in principle infer it from the public key. The expectation

that our message cannot be quickly decrypted is based on the complexity of the

reasoning required: we use lower complexity bounds to estimate the least amount

of time that an agent would need to infer some sentence, and so to infer what

he cannot reliably know within some given limit of time.

5 Conclusions

We have argued that existing agent theories are developed on inadequate epis-

temic foundations. We have then proposed a new epistemic concept, the concept

of algorithmic knowledge, which generalizes both notions of knowledge consid-

ered in the literature: that of explicit and that of implicit knowledge. Logics

of our concept of algorithmic knowledge have been developed following a clear

methodology. The main idea is to combine epistemic logic with a complexity

analysis: we consider how long an agent will need to compute the answer to a

certain query. It is shown that our approach can account adequately for our in-

tuitions about knowledge and that it solves the problems associated with other

approaches. In contrast to logics of implicit knowledge such as modal systems

or the deduction model, our logics can describe realistic, entirely non-omniscient

agents. But unlike logics of explicit knowledge, our systems are capable of de-

scribing rational agents, who can use their reasoning capacities to infer new

information from what they know. Moreover, our systems have a greater ex-

pressive power than most existing logics. For example, time constraints can be

expressed easily in our framework.

Currently there still exists a wide gap between agent theories and agents

existing in practice. Our work is an attempt to bridge this gap. We are trying to

develop theories of mental concepts that make much more realistic assumptions



about agents than other theories. Our work is guided by the principle that the

capacities attributed to agents must be implementable. Much remains to be done

to develop our framework further. But we �rmly believe that our framework is

a very useful one, which can be used to represent the kind of knowledge needed

by agent theories better than any other existing logic of knowledge.
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