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Abstract

We propose in the paper a new solution to the so-called Logical Omniscience

Problem of epistemic logic. Almost all attempts in the literature to solve this

problem consist in weakening the standard epistemic systems: weaker systems

are considered where the agents do not possess the full reasoning capacities of

ideal reasoners. We shall argue that this solution is not satisfactory: in this

way omniscience can be avoided, but many intuitions about the concepts of

knowledge and belief get lost. We shall show that axioms for epistemic logics

must have the following form: if the agent knows all premises of a valid inference

rule, and if she thinks hard enough, then she will know the conclusion. To

formalize such an idea, we propose to \dynamize" epistemic logic, that is, to

introduce a dynamic component into the language. We develop a logic based

on this idea and show that it is suitable for formalizing the notion of actual, or

explicit knowledge.

Keywords: Logics of knowledge and belief, Logical omniscience, Resource

bounded reasoner, Dynamic epistemic logic, Knowledge and time

1 Introduction and Preliminaries

Epistemic logic, or the logic of the concepts of knowledge and belief, has established

as an autonomous branch of logic since the work of Hintikka ([13].) The subject has

been studied extensively by philosophers, linguists, economists, and, more recently,

computer scientists.1 In computer science and arti�cial intelligence epistemic logic

has been used for analyzing distributed systems, for knowledge representation, or for

the speci�cation of multi-agent systems.

However, it is a very controversial matter whether epistemic logic is suitable for

these purposes. Most systems of epistemic logic have been developed in analogy to

1For recent reviews and extensive bibliographies on the subject, see e.g., [9], [10], [24], [7].
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modal logic. This approach has clearly some advantages. Many results and methods

of modal logic can be transferred to epistemic logic, notably the techniques of the

possible worlds semantics. There are, however, severe objections against the modal

approach in epistemic logic. The most serious problem of this approach is perhaps

the so-called \logical omniscience problem (LOP)." It can be described informally as

follows. According to the standard approach, the agent should be an ideal logician

and reasoner in the following sense: she knows all logical truths, can (actually) draw

all consequences of a certain sentence and can identify all logical equivalences of a

given sentence. Such requirements are clearly too strong for a real agent, human

or non-human. Thus, the standard systems cannot capture the notion of knowledge

and belief adequately. The problem of logical omniscience is a severe obstacle for the

applicability of epistemic logic. For that reason, many attempts have been undertaken

to solve this problem. The goal of our paper is to assess how successful these attempts

can be and then to propose another solution to the LOP.

Before going on, let us state the problem more precisely. In the paper we consider

the concept of knowledge only, but the main arguments apply to the concept of

belief, too. By \modal epistemic logic" we mean, as proposed by Wuttich in [25],

those systems of epistemic logic which are developed in the modal tradition. Let us

assume a set Agt of n agents. The language of modal epistemic logic is built up

from a set At of propositional letters using the usual Boolean connectives of negation

and implication and the operators Ki, each for one agent i. In the AI community

the systems S4n and S5n are most often considered as logics of rational knowledge

for the case of n agents. They consist of n copies of the modal systems S4 and S5,

respectively. Formally:

De�nition 1 (The language of epistemic logic) Let At be a set of atomic for-

mulae and Agt = f1; : : : ; ng a set of agents. LE is the least set such that

1. At � LE

2. If A 2 LE then :A 2 LE

3. If A 2 LE and B 2 LE then (A! B) 2 LE

4. If A 2 LE and i 2 Agt then KiA 2 LE

The intended interpretation of the formula KiA is that the agent i knows that A.

The other truth-functional connectives are de�ned as usual. An objective formula is

one that does not contain any knowledge operator. We adopt the standard conventions

concerning the use of parentheses.

De�nition 2 (The logics S4n and S5n) The modal epistemic logic S5n (for the

case of n agents) has the following axiom schemata:

PC. All theorems of the propositional calculus (PC).

K. Ki(A! B)! (KiA! KiB)

T. KiA! A

4. KiA! KiKiA
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5. :KiA! Ki:KiA

The rules of inference are:

MP. Modus ponens: if A and A! B are theorems then B is a theorem.

NEC. Necessitation: if A is a theorem then so is KiA.

The logic S4n is obtained by dropping the axiom schema 5 from the above axiom-

atization of S5n.

The notions of proof, of theoremhood etc. with respect to a system S of modal

epistemic logic is de�ned as usual. The symbol `S A is used to denote the fact that

A is a theorem of S. A formula A is said to be an S-consequence from a set X of

formulae, denoted X `S A, just in case there are some B1; : : : ; Bm 2 X such that

B1 ^ : : :^Bm ! A is a theorem of S. If the system under consideration is clear from

the context, we can omit the index and write X ` A instead.

Axiom K says that an agent's knowledge is closed under modus ponens. Axiom

T states that knowledge implies truth. (It follows that an agent's knowledge is con-

sistent.) The axioms 4 and 5 are called positive and negative introspection axioms,

respectively. They say that an agent is aware of what she knows and what she does

not know. It is generally accepted that negative introspection is a more demanding

condition than positive introspection. Therefore many researchers argue that it is

more reasonable to adopt S4n as the logic of knowledge. In case one needs to distin-

guish between knowledge and belief, one can drop the schema T or replace it by the

weaker axiom D, that is, the schema KiA! :Ki:A. The system obtained from S5n
by replacing the schema T by the schema D is known as KD45n and is considered by

many researchers as the standard logic of rational belief. Besides these three systems

sometimes other systems are also considered. The minimal normal modal system,

containing K as the only modal axiom, is called the system Kn, or just K in the case

of one agent.

It is well-known that the most common systems of modal epistemic logic can be

determined by suitable classes of Kripke models with n accessibility relations. In

particular, the accessibility relations of S5n-models are equivalence relations, those of

S4n-models are reexive and transitive, and KD45n-models are serial, transitive, and

Euclidean (cf. [2], [8], [11], [7].)

The logical omniscience problem for modal epistemic logic can be stated as follows.

The following inference rules are valid for S5n and related systems:

NEC. If A is a theorem then so is KiA

MON. If A! B is a theorem then so is KiA! KiB

CGR. If A$ B is a theorem then so is KiA$ KiB

The three rules NEC, MON, CGR are called necessitation rule, monotony rule,

and congruence rule, respectively. They are derivable when the schema K and the

necessitation rule are assumed, that is, in the minimal modal system Kn already. An

agent who is described by such a logic is said to be logically omniscient, because

she knows all logical truths (according to NEC), she knows all logically consequences
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of a sentence that she knows (according to MON), and she can identify all logical

equivalent sentences of a given sentence, according to CGR. Such an agent cannot be

a real one. No human agent has such reasoning capacities. We cannot build arti�cial

agents that possess the reasoning power described by S5n and related systems. If

we consider real agents and ask what they actually know, we can check empirically

that an agent's knowledge is often not closed any logical law. Realistic agents may

know a very restricted set of logical laws. They know only some, but not all logical

consequences of their knowledge. We cannot realistically expect an agent's knowledge

to be closed under even very elementary logical laws, e.g., modus ponens. That is,

even the axiom schema K is a strong idealization. Modal epistemic logics do not

capture the notions of knowledge and belief adequately.

If we agree that modal epistemic logics do not describe what agents actually know,

we can ask the question: what do they describe then? Well, they are logics of a related,

but di�erent concept. It is remarked by several authors that the laws of these systems

are much more acceptable if the formulaKiA is read \the agent i knows A implicitly"

([18], [6],) \A follows from i's knowledge" ([7]), \the agent i carries the information

A" ([1],) or \the agent i possibly knows A", instead of \the agent i knows A". Modal

epistemic logics should be interpreted as logics of possible, or implicit knowledge, and

not as logics of actual, or explicit knowledge.

For reasoning about agents the concept of actual knowledge is much more impor-

tant than that of possible knowledge. In order to predict or to explain an agent's

actions we need to know what the agent actually knows, and not what she possibly

knows. For modeling realistic agents we need other logics which are capable of cap-

turing the concept of actual knowledge. Such logic may not su�er from the LOP. In

the next section we shall discuss some common ways to solve this problem. After

showing that the strategy of weakening epistemic logic has many disadvantages we

shall propose an alternative approach to the problem. The intuitions of our strategy

will be explained in section 3. A formal system which can cope with the problems of

the traditional approaches will be developed in section 4 following the new strategy.

The paper closes with a discussion of related works, open problems and directions for

future work.

2 Strategies to Avoid Logical Omniscience

An obvious strategy to solve the logical omniscience problem is to weaken epistemic

logic. One denies the universal validity of the mentioned inference rules NEC, MON,

and CGR, or one of the essential axioms like K. In fact, almost all attempts to solve the

LOP have in common that they consider systems that are weaker than the standard

modal epistemic logics (cf. [3], [5], [6], [14], [18], [21], [22], [23], [25].) One can

construct systems that falsify either the inference rules or the axioms of the standard

modal systems. For example, modal systems which are not normal can be used to

describe an agent who does not know all logical truths. If we use neighborhood

semantics instead of Kripke semantics, we can get weaker modal systems (the so-

called classical systems) for which neither the rule NEC nor the axiom schema K is

valid, therefore the agents' knowledge is not closed under logical consequence (cf. [2],

[22].) In this way, the original version of the LOP could be solved. But here some

care is needed: some systems solve the original version, but not other versions of the
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LOP. If the monotony rule and/or the congruence rule are valid for a system, or if an

agent does not know all theorems of classical logic, but knows all theorem of another

(nontrivial) logic, then the agent in this system must still be viewed as ideal: real

agents simply never achieve such reasoning capacities which can be described by such

a system. For example, the agent described by the minimal classical modal system

E (cf. [22], [2]) knows all logical equivalences of a sentence she knows. An agent in

Levesque's logic ([18]) does not know all truths of classical logic, but she knows all

theorems of a relevance logic. In the same way, an agent in Ho Ngoc Duc's system

([3]) does not know all classical theorems, but knows all theorems of a three-valued

logic. Such attempts cannot be considered satisfactory solutions to the LOP.

A number of systems have been proposed which assume still more restricted rea-

soning capacities of the agents. To construct such a system we can postulate, for

example, that the agent only knows some \obvious" logical truths, but not neces-

sarily the \more complicated" ones. We can assume that the agent can draw all

\obvious" consequences, but not any arbitrary consequence of a certain sentence. We

can do it by postulating that the deduction mechanism of the agents is not complete,

that is, it is not powerful enough to allow the agents to draw all logical consequences

of their knowledge. The regularities of an agent's knowledge could be formalized by

a set of suitable axioms. The more axioms are postulated, the more rational is the

agent. With the aid of weak epistemic logics we can classify the agents according to

their logical capacities. This approach is pursued by Stelzner in his \parameterized

epistemic logic" ([23],) or Konolige in his \deduction model"([16].) If the agent's

inference mechanism is kept very weak, then logical omniscience could be avoided.

Besides this axiomatic approach we can also pursue a more semantical approach. One

can show that logical omniscience can be avoided if one allow \impossible possible

worlds" in which the valuation of the sentences of the language is arbitrary. In other

words, the logical laws do not hold in the \impossible possible worlds" ([22], [21]).

Another solution is to introduce a new operator of awareness into the language and

to require that belief include awareness ([6].) Because it is possible that the agent is

aware of some sentence but she is not aware of its logical consequences or its equiv-

alent sentences, the theorems and inference rules of modal epistemic systems do not

hold in general.

Although the deduction model, the approach with impossible possible worlds and

the approach with the awareness operator solve the LOP technically, they cannot

be regarded satisfactory. New problems arise in these approaches besides the old

problems of the possible worlds approach. Here we shall not discuss these problems

in details, nor shall we try to improve any of these approaches. We shall rather present

a more fundamental criticism of the common strategy of all these approaches, namely

the strategy of weakening epistemic logic.

The discussion of the logical omniscience problem in the literature has concen-

trated mainly on the issue: in which way can logical omniscience be avoided. But the

LOP has another aspect which is often overlooked in the discussion: what is left if one

restricts the reasoning capacities of the agents, for example by denying the validity of

the rules NEC, MON and CGR or of the axiom schema K? Is there still a reasonable

way to describe an agent's knowledge if the regularities of the agent's knowledge is

too weak to be described by these axioms and rules?

An attempt to cope with this challenge is to postulate axioms which describe the
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regularities of the agent's knowledge. Such axioms shall express the intuitive idea

that the agent is somehow rational, or logical. The axioms are generally of the form:

the belief set of the agent is closed under a certain valid rule of inference of logic,

i.e., if all premises of the rule are known, then the conclusion is known. (This is

also the general form of a theorem of a standard epistemic logic.) In this way we

can get subsystems of the logic K which do not su�er from the LOP. The strategy of

weakening epistemic logic allows us to consider agents who are very restricted in their

reasoning capacities. We can describe and classify them according to their rationality.

We would have a hierarchy of agents: some agents are ideal, who are modeled by the

logic K or its extensions, others are less ideal and can be described by its subsystems.

The strategy of weakening epistemic logic solves the logical omniscience problem.

However, the disadvantages cannot be overlooked. First, this approach is only suited

to analyze static knowledge, that is, we can at most describe the knowledge sets at

one single time point. This is of course not a de�ciency of these logics alone, but

of most epistemic logics developed up to now. Second, the categories of agents we

describe and classify by our logics are merely imaginary: they do not exist in reality.

It is very implausible to assume that there are agents who always think in some �xed

patterns which can be captured by one of our logics. Each agent represents rather

some mixture of several logics, at some time point they can be described by one, at

other time points by another, and still at other by none of our logics at all. Third,

however weak our postulates may be, they may still be too strong for some agents.

Given the information that an agent's knowledge includes a set X of sentences, in

reality we can never infer reliably that the agent knows all sentences of the deductive

closure clS(X) of X with respect to a deductive system S, even if we suppose S to

be very weak (but not degenerate in the sense that clS(X) = X.) This point has

led many people to raise the question if epistemic logic is possible at all, or do we

have to leave the realm of logic when reasoning about knowledge and belief ([15], [1].)

Fourth, we have the feeling that our logics are too weak. Surely, we want to avoid

logical omniscience. On the other hand, we are interested in having epistemic logics

which are strong enough to allow su�ciently many conclusions from a given set of

facts we know about the agent's propositional attitudes. We want to have agents who

do know at least a (su�ciently) large class of logical truths, and can draw su�ciently

many conclusions from their knowledge. This is the dilemma on logical omniscience

on the one side and logical ignorance on the other side. That is why we ask the

question before: what is left from epistemic logic if we deny the validity of the axiom

K or of the congruence rule and stronger principles? What we need is something

between two extremes. Can we have some reasonable thing like that?

Our goal is to show that we can solve this dilemma. We shall now propose another

strategy to solve the logical omniscience problem which also solves the problem of

logical ignorance. Our strategy starts with the observation that the laws of (classical)

logic are not sentences about the world, they do not tell us anything about what is

the case in the world. If we say that the epistemic agent knows the laws of logic, we

do not mean that she knows some facts about the world, but rather that she is able to

use these laws to draw conclusions from what she already knows. The laws of logic are

what the agent knows implicitly; she does not need to possess them permanently. It

su�ces if she can recall them when she needs them in order to infer new information

from her explicit data base. At a given time the set of logical laws that the agent
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has in her memory is restricted, and so is the set of logical consequences of all what

she knows explicitly. In this way we can achieve a good tradeo� between logical

omniscience and logical ignorance: the agent is surely not omniscient with respect to

her actual or explicit knowledge, but neither is she logically ignorant. Our task is to

�nd a suitable way to express this idea formally.

3 Dynamizing Epistemic Logic

Let us consider an inference rule, say R. It can be a valid inference rule of classical

logic, or some other (non-classical) logic, for example, intuitionist logic, conditional

logic or relevant logic. Assume that an agent accepts R as valid and she can use R.

What does it mean? In the modal approach we formalize this idea by an axiom saying

that the knowledge set of the agent is closed under this rule, that is, if all premises

of the rule are known then the conclusion of R is also known. However, as we noted

above, it is only true of implicit knowledge. In the context of explicit knowledge it

must mean something di�erent. It means rather that, if the agent knows all premises

of the rule, and if she perform the inference according to the rule R, then she will know

the conclusion. The agent does not know the conclusion automatically, but rather as

the result of some action, viz. the (mental) action of performing the corresponding

inference. If she does not perform this action, then we cannot require her to know

the conclusion, although this conclusion may seem to be an obvious consequences of

the sentences under consideration. Especially, a logical axiom can be viewed as an

inference rule without any premises. We cannot require the agent to know all axioms

automatically and permanently, she must rather carry out some action before she can

acquire knowledge of a certain axiom. It is possible that the agent knows all logical

truths, but merely in principle. This knowledge is only implicit. Factually she never

knows them all at once explicitly.

For formalizing the reasoning actions it is natural to use (a form of) dynamic logic

(cf. [12], [8].) Thus, we can add a set of basic actions to the language of epistemic

logic. The set of formulae now includes formulae like [Ri]KiA or hRiiKiA with the

intended meaning: \always after using rule R (or sometimes after using R) the agent

i knows A". The formalization of the idea that an agent accepts and is able to use

an inference rule is straightforward. For example, the idea that the agent i accepts

modus ponens can be formalized by the axiom: KiA ^ Ki(A ! B) ! hMPiiKiB.

This axiom says no more than if agent i knows A and she also knows that A implies

B, then after a suitable inference step she will know B.2

As the axioms can be viewed as special inference rules we can introduce an action

corresponding to each agent and each axiom of the basis logic, which describes the

ability of the agent to use this axiom in her reasoning. (In general, di�erent agents

may have di�erent logics, so that the sets of basic actions are di�erent for di�erent

agents. However, in the paper we assume a set of homogeneous agents, for the sake

of simplicity.) By means of the familiar program connectives for dynamic logic (such

as composition or iteration) we can formalize the idea that the agent may know the

2Instead of KiA ! hRiiKiB we could also introduce a binary operator KiAhRiiKiB with the

interpretation \in a state where the agent i knows A, after the application of the rule R she may

know B". However, the former notation is closer to that of dynamic logic, whereas the latter one

does not o�er any obvious advantage.

7



consequences of some sentence which she already knows explicitly, provided that she

performs the right reasoning steps. For example, assume that the agent i knows

the conjunction of A and A ! B, that is, Ki(A ^ (A ! B)). In all normal modal

systems we can deduce Ki(A ^ B). However, this inference is not sound for realistic

agents. There is no guarantee that the agent will know A ^ B automatically, as

the modal approach suggests. We can only say that if the agent reasons correctly,

then she will know A ^ B. In our concrete case, let CE, CI, MP be the conjunction

elimination rule, the conjunction introduction rule, and modus ponens, respectively,

and let the symbol \;" denote the composition of actions. We write (CE;MP ;CI)i
as an abbreviation for CEi;MPi;CIi (\agent i performs CE, then MP , and then

CI".) Then our theorem must be: Ki(A^ (A! B)) ! h(CE;MP ;CI)iiKi(A ^B),

and not Ki(A ^ (A! B)) ! Ki(A ^B) as in the standard modal approach.

In general, suppose that B follows from A in some basis logic (which is accepted

by the agent) and that the agent knows A. For explicit knowledge we cannot assume

that the agent automatically knows B. Let a proof of B from A be given, where

the axioms and inference rules used in the proof are R1,...,Rn (in this order, where

the same axiom or inference rule may occur at di�erent places in the sequence.)

Then, instead of the monotonicity rule in the standard modal approach we have the

axiom: KiA ! h(R1; : : : ;Rn)iiKiB. This axiom says that if the agent i performs

the sequence of actions corresponding to the rules from R1 to Rn (in this order)

then she may know B under the given circumstances. Whether or not the agent

can come to this conclusion depends crucially on her logical ability. In this way we

see that the logical omniscience problem can be solved easily in a natural way: we

can describe agents whose knowledge may or may not be closed under logical laws.

On the other hand we can still say that the agent thinks rationally, that she is not

logically ignorant. Theoretically she may produce all logical truths, and all logical

consequences of her knowledge, but only if she is interested in doing so, if she has

enough time and memory, et cetera.

In the above argumentation we have made an implicit assumption. We have

assumed that all premises, once known by the agent, are still available after the agent

performs a reasoning step. In the previous example, if the agent forgets the premise

A immediately after using modus ponens, then she cannot apply the conjunction

introduction rule to come to the conclusion A ^ B. Thus, we have to postulate that

the agent does not forget what she previously knows after performing some reasoning

action. This assumption can be formalized using persistence axioms for knowledge,

for example, KiA! [Ri]KiA.

Are such persistence axioms reasonable? Only under two conditions. First, the

truth value of A should not change over time. If A becomes false after i's inference

using rule R then it is not reasonable to postulate that i still knows A after the use of

R. This point should be taken into account when we formally de�ne the language of

our logic. In particular, if our language contains temporal indexicals then sentences

containing them cannot be regarded as persistent. Second, the truth value of A may

not change through the agent's actions. This excludes formulae such that :KiB:

it is possible that agent i does not know B now, but will know it as a result of

her reasoning. In general, a formula in which a knowledge operator occurs essentially

negative (i.e., within the scope of an odd number of the negation sign) is not a suitable

candidate for a persistent one. So, we may assume that persistent formulae are built

8



up from objective formulae, conjunction, disjunction, and the knowledge operators

only.

Let us now examine how the ability of the agents to introspect their knowledge

can be captured within our dynamic framework. Let Ii be i's action of introspection.
3

Consider positive introspection �rst. Suppose that i knows A. Can we infer that she

will know after introspecting her knowledge that she knows A? Not necessarily! We

can assume that i will know that she previously knows A, but to support the inference

that after her introspection action the agent knows that she knowsA we need one more

argument, namely that i's knowledge of A will not be changed through her reasoning

actions. We have argued previously that such a persistence axiom is reasonable for

a subclass of formulae. Thus, we have the following axiom of positive introspection,

which corresponds to the schema 4 in modal epistemic logic: KiA ! hIiiKiKiA,

provided that A is persistent.

The same argumentation can be used to show that the candidate for the negative

introspection axiom :KiA! hIiiKi:KiA is not acceptable. It can happen that after

a reasoning step the agent knows something what she did not know previously. If we

extend the language to include objective or absolute time, then a statement such as

:Kt

i
A! hIiiK

t+1
i

:Kt

i
A would be absolutely reasonable. However, this issue will not

be pursued further in the present paper.

In order to de�ne systems of dynamic epistemic logic formally we can �x a basis

logic and then associate with each axiom schema and each inference rule an atomic

action. The \external" language (i.e., the language in which one can speak about

agents) is then de�ned over this set of atomic actions. The \external" logic comprises

all theorems of dynamic logic and the speci�c epistemic axioms discussed above.

However, there are some problems with this approach. First, there might be

many di�erent, but equivalent axiomatizations of the basis logic, so the choice of the

basic actions must be arbitrary. Moreover, as the resulting dynamic-epistemic system

contains dynamic logic entirely, it becomes very complex and therefore unhandly.

Even more importantly, in most cases we do not need to care about what course of

actions the agents just carried out; we are only interested in the result of the actions,

so to speak. We only need to know that a certain agent has carried out some reasoning

steps, and after that she gains certain new information.

This last point leads us to another approach. We introduce an auxiliary action Fi
with the following intended reading: do any one of the atomic actions (we don't know

what action;) repeat the non-deterministic choice �nitely many times (at least once,

but we don't know how many times!) The action Fi could be interpreted as a course

of thought of the agent i. From the viewpoint of dynamic logic: if the set of all atomic

actions associated with the agent i and her basis logic is a �nite set fr1i ; : : : ; r
n
i g, then

Fi can be viewed as (r1
i
[ r

2
i
[ : : : [ r

n

i
)+, where the symbols [ and + denote choice

and non-zero iteration, respectively.4 The choice of the symbols Fi is not accidental

at all: in temporal logic it stands for the operator \Future". It turns out that our

3One may ask how seriously one can take introspectionas action. Well, it is true that introspection

may di�er from the \genuine" reasoning actions in some aspects. However, the di�erences are not

quite signi�cant. It seems reasonable to treat introspection as test of a certain kind, which is used

by the agents to reason about their own mental state.
4In dynamic logic another form of iteration is considered, viz. the one that allows for running

a program zero time, denoted by �. But one can easily extend dynamic logic to include non-zero

iteration as well.
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auxiliary action behaves in the same manner as the future operator of temporal logic:

the operator hF i satis�es all the axioms for the minimal temporal logic Kt4. It is

no surprise at all: we know that the minimal temporal logic can be embedded into

dynamic logic, and one way to do this is to take the iteration of an action to interpret

the future operator. The formal language in which our dynamic epistemic logics are

formulated is called LDE and will be de�ned in the following section.

4 Dynamic Epistemic Logic

4.1 The language of dynamic epistemic logic

De�nition 3 (The language LDE) Let Agt = f1; : : : ; ng be a set of n agents and

let LE be the language of epistemic logic as de�ned in De�nition 1. LDE is the least

set such that

1. LE � LDE

2. If A 2 LDE then :A 2 LDE

3. If A 2 LDE and B 2 LDE then (A! B) 2 LDE

4. If A 2 LDE then hFiiA 2 LDE

Conjunction, disjunction and the operator [Fi] dual to hFii are de�ned as usual.

The formula hFiiA is read: \A is true after some course of thought of i", [Fi]A

means \A is true after any course of thought of i". (We could think of hFii and

[Fi] as the modalities \at some future times" and \at all future times" of temporal

logic, but now time is subjective time, i.e., agent-dependent, generated by the agent's

actions.) Note that we do not allow the operator hFii to occur inside the scope of any

knowledge operator. The reason is that such expressions are indexicals: they contain

temporal indexicals like \later" or \always" implicitly. We want to exclude indexical

expressions from our language because they require special treatment, which could

be very involved and may obscure more important points.

De�nition 4 The sublanguage L+
E

of LE is the smallest set of formulae from LE

which contains all objective formulae and is closed under the condition: if A;B 2 L
+

E

and i 2 Agt then f(A ^B); (A _B);KiAg � L
+

E
.

4.2 The system DES4n

Now we go on to de�ne an axiomatic system for reasoning about the dynamics of

knowledge along the lines described in the previous section. We have three groups

of axioms: the usual axioms of the propositional calculus, axioms for temporal logic,

and axioms governing the interaction between knowledge and reasoning activities.

De�nition 5 (The system DES4n) The logic DES4n (Dynamic-Epistemic S4n) has

the following axiom schemata:

PC1. A! (B ! A)
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PC2. (A! (B ! C))! ((A! B)! (A! C))

PC3. (:B ! :A)! (A! B)

TL1. [Fi](A! B)! ([Fi]A! [Fi]B)

TL2. [Fi]A! [Fi][Fi]A

DE1. KiA ^Ki(A! B) ! hFiiKiB

DE2. KiA! A

DE3. KiA! [Fi]KiA, provided that A 2 L
+

E

DE4. hFiiKi(A! (B ! A))

DE5. hFiiKi((A! (B ! C))! ((A! B)! (A! C)))

DE6. hFiiKi((:B ! :A)! (A! B))

DE7. hFiiKi(KiA! A)

DE8. KiA! hFiiKiKiA, provided that A 2 L
+

E

The rules of inference are:

R1. Modus ponens: if A and A! B are theorems then B is a theorem.

R2. Necessitation: if A is a theorem then so is [Fi]A.

In these axioms and rules, the index i ranges over the whole set Agt of agents. The

axioms PC1 { PC3 together with the rule R1 axiomatize completely the propositional

calculus. Together with TL1, TL2 and R2 they form a complete axiomatization of

the minimal temporal logic of transitive time. The axioms DE1 { DE7 describe the

dynamics of knowledge. Axiom DE1 says that the agents are capable of using modus

ponens. Axiom DE2 is the well-known schema T saying that knowledge entails truth.

Axiom DE3 says that agents do not forget what they know when they are reasoning.

Axioms DE4 { DE6 state that the agents are able to use the axioms PC1 { PC3 of

classical logic in their reasoning. Axiom DE7 says that agents potentially trust their

knowledge: when thinking about themselves, they think that what they know must

be true (as opposed to what they merely believe.) Finally, DE8 says that the agents

are capable of positive introspection. Of course, only instances of these schemata

which are well-formed formulae are allowed.

The notions of a proof, a theorem, and a consistent formula or set of formulae

(with respect to the logic DES4n) are de�ned as usual. The provability relation is

denoted `DES4n , where the index may be omitted if no confusion can occur. Moreover,

we say that a formula A 2 LE is PC-provable, in symbol `PC A, just in case A can

be proved using only instances of the schemata PC1 { PC3 (in the sublanguage LE )

and modus ponens.

Of course, we can postulate that the agents can use further simple tautologies

and inference rule in their reasoning. For example, we can include axioms such that

KiA ^KiB ! hFiiKi(A ^B), or hFiiKi(A _ :A). However, this is not necessary at

all, because they can be proved, as we shall see later.

11



4.3 Some features of DES4n

Theorem 6 (Consistency) The system DES4n is consistent.

Proof To see that the system DES4n is consistent, i.e., no contradiction can be

derived from it, it su�ces to notice that all axioms and inference rules of DES4n
can be mapped to valid formulae and inference rules of the propositional calculus

by deleting all occurrences of Ki and hFii from them. Therefore, all theorems of

DES4n must become propositional tautologies when all occurrences of Ki and hFii

are deleted. Hence, a formula like A ^ :A cannot be derived.

The following theorem states that DES4n solves the logical omniscience problem.

It says that none of the rules NEC, MON, and CGR is valid. Moreover, an agent's

explicit knowledge (or her information state) at a time, i.e., the totality of all what

this agent knows at that time, needs not be closed under any nontrivial logical rule.5

Theorem 7 (Non-Omniscience) 1. The following inference rules are not deriv-

able in DES4n.

NEC. If A is a theorem then so is KiA

MON. If A! B is a theorem then so is KiA! KiB

CGR. If A$ B is a theorem then so is KiA$ KiB

2. The following formulae are not provable:

(a) Ki(A! B) ! (KiA! KiB)

(b) KiB ! Ki(A! B)

(c) Ki(A ^B)! KiA

(d) Ki(A ^B)! KiA ^KiB

(e) KiA ^KiB ! Ki(A ^B)

(f) KiA! Ki(A _B)

(g) KiA _KiB ! Ki(A _B)

(h) Ki::A! KiA

(i) KiA! KiKiA

(j) :KiA! Ki:KiA

Proof We can construct easily interpretations such that (i) all axioms of DES4n are

valid, (ii) the DES4n-rules of inference lead from valid formulae to valid ones, and

(iii) the formulae and rules listed above are invalidated. We omit the details.

5An agent's knowledge is of course closed under trivial rules likeA ` A: a formula likeKiA! KiA

should be in any case valid. But such a formula does not say anything about the agent's reasoning

capacities. It is not a genuine epistemic statement.
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An agent described by the logic DES4n is not logically omniscient. On the other

hand, we cannot say that she is not rational: the agent is rational, because she can

(at least in principle) perform actions to close her knowledge under logical laws, as

the following theorems show. Instead of the necessitation rule and monotony rule in

modal epistemic logic we have now a theorem stating that the agents can know all

classical theorems and can draw all consequences of what they know, provided that

they perform the right reasoning.

Theorem 8 Let A, B be objective formulae. The following inference rules are deriv-

able in DES4n:

R3. If `PC A then `DES4n hFiiKiA.

R4. If `PC A! B then `DES4n KiA! hFiiKiB.

Proof See the appendix.

Corollary 9 Assume that A, B are objective formulae. The following formulae are

theorems of DES4n:

1. KiB ! hFiiKi(A! B)

2. Ki(A ^B)! hFiiKiA

3. Ki(A ^B)! hFiiKiA ^ hFiiKiB

4. KiA! hFiiKi(A _B)

5. KiA _KiB ! hFiiKi(A _B)

6. Ki::A! hFiiKiA

In fact, the above rules and theorems are derivable for a larger class of formulae,

not only for objective ones. The following list comprises some more provable formulae

of DES4n. They say that if all premises of a valid inference rule are known or will be

known, then after some steps of reasoning the agents will know the conclusion. We

still assume that A and B are objective. Their proofs are found in the appendix.

Theorem 10 The following formulae are theorems of DES4n:

1. KiA ^ hFiiKi(A! B)! hFiiKiB

2. KiA ^KiB ! hFiiKi(A ^B)

3. KiA ^ hFiiKiB ! hFiiKi(A ^B)

4. Ki(A ^B)! hFii(KiA ^KiB)
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5 Conclusions and Open Problems

5.1 Summary

We have shown how to solve the logical omniscience problem of epistemic logic while

preserving the intuition that the agents are logical, rational beings. Our strategy

consists in taking the dynamic aspect of knowledge into account. We have argued that

the correct form of an axiom for epistemic should be: if an agent knows all premises

of a valid inference rule, and if she performs the right reasoning, then she will know

the conclusion as well. Our strategy can do justice to the intuition that the agents are

neither logically omniscient nor logically ignorant. They are non-omniscient, because

their actual (or explicit) knowledge at a single time point needs not be closed under

any logical law. It is even possible that they do not know any logical truth at all at

some of their information states. On the other hand, they are non-ignorant, because

they are capable of logical thinking. They can use their reasoning capacities to infer

new information from what they already know. Their rationality is not restricted by

any arti�cial, ad hoc postulate saying that their inference mechanisms are incomplete.

If an agent performs the correct inferences and if she has enough time, then she might

arrive at an ideal information state where all logical consequences of her current beliefs

have been drawn. This ideal state can never be achieved by real agents, but this is

another matter.

5.2 Related works

To our knowledge, there exists no similar work in the literature which pursues the

strategy of dynamizing epistemic logic in order to solve the dilemma of logical om-

niscience and logical ignorance. Most close to our approach are perhaps works on

\parameterized epistemic logic", proposed e.g. by Stelzner ([23],) where knowledge

is time (agent, context ...) dependent. However, in his formal systems Stelzner does

not consider the concepts of knowledge and belief, but a related concept, the concept

of a (hypothetical) obligation to defend some sentence. The latter concept is related

to the former in the following way: in a rational discourse, if an agent asserts some

sentence, then she has the obligation to defend it when it is challenged, because she

has made public through her assertion that she believes in the sentence. Stelzner

investigates axioms to describe agents in a rational discourse. These axioms say, for

example, that if an agent is obligated to defend A at t and B can be inferred from

A by one inference step, then the agent can be obligated to defend B at time t + 1.

(A time line isomorph to the natural numbers, generated by the consecutive \moves"

in the discourse, is assumed. The obligation to defend B is only hypothetical, be-

cause it does not arise if B is not challenged.) With the aid of such axioms one can

classify agents according to their rationality. Stelzner's logic could be reinterpreted

as formalizing the concept of implicit, or possible knowledge, but not the concept of

explicit, or actual knowledge: a statement such as Kt

i
(A ^ B) ! K

t+1
i

A is perhaps

more acceptable than the axiom Kt
i (A ^ B) ! Kt

i (A), but it is still a too strong

requirements for the notion of actual knowledge. In contrast, We have tried to show

how the concept of actual knowledge can be captured.

In the literature on belief revision some authors have considered belief-changing

actions. For example, Van Linder, van der Hoek and Meyer ([19], [20]) have done
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some work to formalize the change of knowledge through actions. However, they made

very strong assumptions about knowledge: their agents are logically omniscient. The

actions they consider lead from one deductively closed belief set to another. Thus,

their work should be read in terms of information dynamics, and not knowledge

dynamics.

5.3 Future directions

We can develop variants of DES4n to describe di�erent sorts of agents. For instance,

we could modify the axiom system to formalize the concept of belief. We can base

epistemic logic on another, non-classical logic. We could also add some more axioms

or drop some of the axioms of DES4n. How to do it concretely depends crucially on

our intended application. At the moment we are working to integrate our dynamic

epistemic logic into a framework for reasoning about actions in multi-agent systems.

By de�ning the proof system DES4n we have provided a procedural semantics

for the concept of knowledge. It remains unclear whether or not the system DES4n
comprises all valid formulae of the language LDE . To answer this question we need to

develop an intuitively acceptable declarative semantics for the concept of knowledge.

It is possible to develop a model theory along the lines of [4], so that we may prove

completeness of DES4n with respect to the de�ned models. However, such a model

theory is simply a reformulation of the procedural semantics, it does not provide us

with a tool to determine if all valid epistemic statements have been captured by the

proof system. A well motivated and intuitively acceptable semantics should allow us

to analyze the epistemic concepts of knowledge and belief in term of simpler and more

fundamental concepts. The appeal to the concepts of \epistemic alternatives" and

\possible worlds" does not help, as the problems of the modal approach show.

Another open issue is to �nd a way to incorporate indexical knowledge in our

framework. We have so far ignored this issue and exclude indexical expressions from

our language. However, for many applications we must be able to treat indexical

knowledge adequately. Some work has been done on this issue, e.g. by Lesp�erance

and Levesque ([17].) However, their and related works should be seen as dealing

with indexical information (or indexical possible knowledge), and not with genuine

indexical knowledge, for the reasons explained earlier. Thus, much work still remains

to be done.

So far our logic has been monotonic in two aspects. First, the consequence op-

eration of DES4n is monotonic. Second, the knowledge of the agents always grows

over time. A very interesting, still open problem is to develop dynamic epistemic log-

ics based on non-monotonic logic, where the agents can revise their knowledge when

they �nd out that their knowledge is inconsistent. We may expect to �nd interesting

connections with two other, very active �elds of AI research, viz. to non-monotonic

reasoning and to the logic of belief revision. This seems to be a promising �eld of

research and needs further investigations.
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A Formal Proofs

A.1 Proof of Theorem 8

First, note that [Fi]A ^ hFiiB ! hFii(A ^ B) and hFiihFiiA ! hFiiA are DES4n-

provable. Moreover, if A! B is DES4n-theorem then so is hFiiA! hFiiB. We shall

make extensive use of these facts in our proof without mentioning them explicitly. To

shorten the proofs we assume that all theorems and rules of PC and Kt4 have been

derived, so we do not have to write them down explicitly.

Consider rule R3. Let `PC A. We show `DES4n hFiiKiA by induction on the

length m of the proof of A. If m = 1 then A must be an instance of one of the axiom

schemata PC1{PC3. The claim follows from DE4{DE6. If m > 1 then A must be

obtained by applying modus ponens from, say, B and B ! A, which are PC-provable

in less than m steps. So we assume that there is a PC-proof of A of length m where

in the k-th and l-th lines we had proved B and B ! A. The PC-proof of A can be

extended to a DES4n-proof of KiA as follows:
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(k) B Ass.

(l) B ! A Ass.

(m) A (k), (l), R1

(m+1) hFiiKiB Ind. Hyp., (k)

(m+2) [Fi]hFiiKiB (m+1), R2

(m+3) hFiiKi(B ! A) Ind. Hyp., (l)

(m+4) Ki(B ! A)! [Fi]Ki(B ! A) DE3

(m+5) hFii[Fi]Ki(B ! A) (m+3), (m+4)

(m+6) hFii(hFiiKiB ^ [Fi]Ki(B ! A)) (m+2), (m+5)

(m+7) hFiihFii(KiB ^Ki(B ! A)) (m+6)

(m+8) hFiihFiihFiiKiA (m+7), DE1

(m+9) hFiiKiA (m+8)

Rule R4 can now be derived as follows:
(1) A! B Ass.

(2) KiA Ass.

(3) hFiiKi(A! B) (1), R3

(4) [Fi]KiA DE3, (2)

(5) hFii(Ki(A! B) ^KiA) (3), (4)

(6) hFiihFiiKiB (5), DE1

(7) hFiiKiB (6)

(8) KiA! hFiiKiB (2), (7)

A.2 Proof of Theorem 10

1. KiA ^ hFiiKi(A! B)! hFiiKiB

(1) KiA Ass.

(2) hFiiKi(A! B) Ass.

(3) [Fi]KiA DE3, (1)

(4) hFii(Ki(A! B) ^KiA) (2), (3)

(5) hFiihFiiKiB (4), DE1

(6) hFiiKiB (5)

2. KiA ^KiB ! hFiiKi(A ^B)

(1) KiA Ass.

(2) KiB Ass.

(3) [Fi]KiA DE3, (1)

(4) [Fi]KiB DE3, (2)

(5) hFiiKi(A! (B ! (A ^B))) R3

(6) hFii(KiA ^Ki(A! (B ! (A ^B)))) (3), (5)

(7) hFiiKi(B ! (A ^B)) (6), DE1

(8) hFii(KiB ^Ki(B ! (A ^B))) (4), (7)

(9) hFiiKi(A ^B) (8)

3. KiA ^ hFiiKiB ! hFiiKi(A ^B)
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(1) KiA Ass.

(2) hFiiKiB Ass.

(3) [Fi]KiA DE3, (1)

(4) hFii(KiA ^KiB) (3), (2)

4. Ki(A ^B)! hFii(KiA ^KiB)

(1) Ki(A ^B) Ass.

(2) hFiiKiA (1), R4

(3) hFii[Fi]KiA (2), DE3

(4) [Fi]Ki(A ^B) (1), DE3

(5) [Fi]hFiiKiB (4), R4

(6) hFii([Fi]KiA ^ hFiiKiB) (3), (5)

(7) hFiihFii(KiA ^KiB) (6)

(8) hFii(KiA ^KiB) (7)
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