
CYCLE -BASED SIMULATION ON

LOOSELY -COUPLED SYSTEMS

Denis DÄohler, Associate Member, IEEE
IBM Germany, S/390 Development

P.O. Box 1380, 71003 BÄoblingen, Germany
doehler@de.ibm.com

Klaus Hering, Member, IEEE Wilhelm G. Spruth, Senior Member, IEEE
Department of Computer Science, University of Leipzig

Augustusplatz 10{11, 04109 Leipzig, Germany
fhering, spruthg@informatik.uni-leipzig.de

Abstract| Logic simulation is a crucial ver-

i¯cation task in processor design. Aiming at

signi¯cant acceleration of system simulation we

have parallelized IBM's cycle-based simulator

TEXSIM. Resulting parallelTEXSIM has al-

ready been employed successfully in simulating

S/390 architectures on IBM SP systems. Here

we present parallelTEXSIM together with its

model partitioning environment.

I. Introduction

Veri¯cation of processor designs is a real challenge

due to rapidly growing design complexity. Ensur-

ing correctness of logic designs containing millions

of gates requires a large amount of simulation. For

system simulation at register transfer level (RTL)

and gate level (GL) it has proven to be a good

practice to separate timing analysis from func-

tional veri¯cation (logic simulation). The applica-

tion of static timing veri¯ers and cycle-based sim-

ulators as tools targeted to the corresponding task

is advantage [9]. Considering functional veri¯ca-

tion, cycle-based simulators are signi¯cantly faster

than event-driven ones which o®er rich function-

ality at the cost of performance and memory uti-

lization [8]. Hardware accelerators as alternatives

to software simulators show high performance but

they are very expensive and di±cult to adapt to

changing simulation techniques.

Cycle-based simulation (CBS) can be ab-

stractly represented by the ALTER-CLOCK-

RETRIEVE pattern (Fig. 1), where CLOCK

means simulating a number of cycles, ALTER

stands for setting values of model components

from outside and RETRIEVE is related to the

check of such values. Formal description ap-

proaches for CBS can be found in [2] and [3].

With the availability of commercial programs

such as Cyclone (Synopsis) or SpeedSim/3 (Speed-

Sim) in recent years, CBS has become more and

more popular in industry. IBM has been doing

CBS for processor veri¯cation at least since the

early 80's. Work presented in this paper is related

ALTER CLOCK RETRIEVE

Fig. 1 { ALTER{CLOCK{RETRIEVE pattern

to the IBM internal cycle-based Texas Simulator

(TEXSIM) developed by D.S.Zike. Since the pro-

duction release of its ¯rst version in 1990 TEXSIM

has become the most important logic simulator

in the various IBM processor developments. It

de¯nes a client-server architecture o®ering a vari-

ety of interfaces for simulation control by di®erent

kinds of user programs. Simulation models are cre-

ated by a simulator speci¯c model compiler out of

a structural circuit description which is generated

by a HDL compiler in the context of the IBM De-

sign Automation Database (DA DB). Mixed level

models simultaneously containing RTL and GL

constructs are allowed. Originally, TEXSIM has

been used for regression runs following a random

simulation strategy based on a large number of

mainly automatically generated small test cases

(machine code or microcode sequences [1]) which

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226136875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are (automatically again) distributed over a net-

work of workstations. For regression runs related

to complete processor models at system level [7]

the evaluation of complex test cases (representing

parts of boot processes, for instance) is very de-

sirable. To cope with the tremendous amount of

time required by such simulations we have par-

allelized TEXSIM based on the assumption that

corresponding simulation processes should spend

very little time in the ALTER and RETRIEVE

steps relative to the CLOCK step.

Our parallelization approach makes use of

model inherent parallelism (replicated worker

principle). A parallelTEXSIM cycle simulation ap-

pears as a co-operation of several simulator in-

stances evaluating parts of the original model,

which are de¯ned statically, on a loosely-coupled

processor system. Choosing cone-based model

partitioning gives the possibility of leaving the ker-

nel of the optimized TEXSIM simulation engine

unchanged. The performance of corresponding

parallel simulations strongly depends on preced-

ing model partitioning. Because of the relevance

of one partitioning for several extremely time con-

suming simulations over one and the same model

we allow complex partitioning algorithms regard-

ing both component communication and workload

aspects.

In Section II, our static model partitioning

strategy for parallel cycle-based simulation is out-

lined. Then, parallelTEXSIM is introduced in Sec-

tion III focussing on its general structure and per-

formance relevant issues. Experimental results re-

lated to parallel simulations of a real processor

model belonging to the IBM S/390 architecture

are presented in Section IV.

II. Model Partitioning

A. Overview

For parallelTEXSIM simulations a set of TEXSIM

models representing parts of an original design

has to be provided together with a cross-reference

list and one signal-cut list per model. The cross-

reference list contains all elemental design com-

ponents which are accessible from outside during

simulation and information about their distribu-

tion to models. Signal-cut lists comprise model-

related input and output points indicating com-

munication relations to other models. In Fig. 2

the process of model-related input generation for

parallelTEXSIM is depicted with protos embodying

DA DB objects for the structural representation of

RTL / GL designs.

Fig. 2 { Model-related parallelTEXSIM input

Partitioning starts from a proto generated by a

HDL compilation. The number of resulting protos

can be both given in advance or ¯xed by the par-

titioning process itself. For every proto delivered

a model building process realized by texbld (the

same as for sequential TEXSIM simulation) fol-

lows. The parallel simulator automatically adapts

to the number of models generated.

B. Partitioning Strategy

As basis for development and analysis of proto

partitioning algorithms we have introduced a for-

mal Structural Hardware Model (SHM) [5] em-

bodying a directed graph with vertices to be in-

terpreted as wires, latches, elements of combi-

natorial logic or input/output elements, respec-

tively. For each proto describing a synchronous

design a corresponding SHM can be constructed

easily. Then, the problem of proto partitioning

can be considered as a problem of SHM parti-

tioning. For a given SHM M , the fan-in cones

with heads representing latches or outputs form

the set Co(M) of basic building blocks for parti-

tions ofM . The latter ones appear as partitions of

Co(M) in a mathematical sense. In correspond-

ing parallel simulations, inter-processor communi-

cation between simulator instances is restricted to

cycle boundaries and can be realized by collective

communication operations. Obviously, cones may

overlap. Assigning overlapping cones to di®erent

partition components results in replication of sim-

ulation work.

2



The SHM partitioning problem can be stated

as NP-hard combinational optimization problem.
Using a formal model of Parallel Cycle Simulation

(PCS) [3] we have developed a parameterized cost

function [4] estimating upper run-time bounds for
simulations corresponding to a given SHM parti-

tion. This partition valuation function takes into

consideration both workload aspects and inter-
processor communication overhead.

Due to the complexity of models representing

complete processor structures we have introduced

a hierarchical partitioning strategy [5] allowing
combination and competition of partitioning al-

gorithms and a special merging method of their
results called superposition. Within a two-level

partitioning scheme after fast pre-partitioning (re-

ducing problem complexity) more expensive algo-
rithms working on the basis of hypergraph struc-

tures are applied. Speci¯cally, the employment of

Evolutionary Algorithms at the second level has
proven successful.

C. Partitioning Tools

A realization of the two-level partitioning scheme

mentioned above is given by PAMB (Partition-

ing And Model Build) which has been devel-

oped by R.Haupt. It comprises a C-library

(containing partitioning algorithms, functions for
proto handling, model build and the creation of

hypergraph structures) together with a script-
based application framework in the context of the

DA DB. PAMB will be integrated in our par-

titioning environment parallelMAP (Model Analy-

sis and Partitioning). The latter one embodies a

client-server architecture which allows the imple-

mentation of parallel partitioning algorithms on
message-passing basis.

III. The Parallel Simulator

A. General Structure

We have implemented parallelTEXSIM based on
the partitioning framework outlined above. A

production release of the simulator is employed
for regression runs in the IBM S/390 proces-

sor development allowing signi¯cantly larger test

cases. From the user's point of view, the par-
allel program o®ers the same options and inter-

faces as the sequential one. Designed to run on

loosely-coupled systems, it represents a master-
slave structure (Fig. 3) with component commu-

nication via message-passing. A master simu-

lator instance (mTEXSIM) derived from sequen-
tial TEXSIM provides Application Programming

Interfaces (APIs) to the environment and con-

trols a set of slave simulator instances (sTEXSIM).
These instances contain the original TEXSIM sim-

ulation engine encapsulated within a communica-

tion shell. parallelTEXSIM permits parallelization
of user programs for simulation control by assign-

ing corresponding program instances to simulator
instances. The software platform currently sup-

ported is IBM AIX/6000 with the IBM Parallel

Environment [6]. This allows networks of IBM
RS/6000 workstations and IBM RS/6000 SP ma-

chines as target hardware.

block

bl
oc

k
m

od
el

block
m

odel

C
o

m
m

u
n

ic
at

io
n

model

A P I

Client Client Client

mTEXSIM

sT
E

X
S

IM

sT
E

X
S

IM

Interconnection
Network

Dynamic Linking

Communication

Module

Communication

Module

C
o

m
m

u
n

icatio
n

M
o

d
u

le M
o

d
u

le

sTEXSIM

Fig. 3 { Parallel simulator structure

B. Facility Management

For referencing model elements (signals or arrays)
from outside during simulation, TEXSIM provides

the concept of facilities which are represented

by bit matrices. Model partitioning for parallel
simulation leads to distribution of accessible el-

ements of the original model to di®erent models
(described by a cross-reference list mentioned in

Section II) possibly related with replication and

splitting. Therefore the facility notion has been
extended to a facility hierarchy to ensure e±-

cient element referencing within parallelTEXSIM.

We have introduced global, parallel and local fa-

cilities. A local facility is a usual facility handled

3



by a slave simulator instance. The global facilities

serve to support the usual facilities on a master

simulator instance as if they were referenced on a

non-parallel simulator. In fact they are vectors of

parallel facilities and those are vectors containing

references to local facilities.

Moreover, we have introduced communication

facilities to achieve fast access to data structures

which are involved in collective communication op-

erations during parallel cycle simulation. These

data structures are related to cut signals which

arise from model partitioning. Cut signals are

made known to parallelTEXSIM via model-related

signal-cut lists (cf. Section II).

C. Component Co-operation

Within parallelTEXSIM three types of collective

message-passing are distinguished based on the

components involved: "master and one slave",

"master and all slaves" and "all slaves". Pro-

cesses using communication operations of the cor-

responding type are for instance facility referenc-

ing, creating an initial status protocol and simu-

lating cycles in parallel.

GET

TRANSFER

PUT

CLOCK

Fig. 4 { Parallel clock-cycle implementation

The main function of parallelTEXSIM is the

realization of the parallel clock-cycle as shown

in Fig. 4. During CLOCK one cycle is sim-

ulated on all slave instances over the corre-

sponding models without interaction. In the

GET step, these instances independently provide

model-related global output values within commu-

nication vectors. TRANSFER embodies a person-

alized all-to-all communication between the slave

instances. Thereby, communication vector com-

ponents are transferred between instances accord-

ing to their vector position. This results in new

model-related communication vectors. In the ¯-

nal PUT step, all slave instances (again indepen-

dent of one another) update facilities based on the

corresponding communication vectors.

Tab. 1. System simulation for an IBM S/390 pro-

cessor model with TEXSIM / parallelTEXSIM

Test Simulation Performance (cps)

Cases 1-way 4-way 8-way 12-way

pa013

PG060

vb010

7:60 22:46 30:43 34:67

7:75 22:42 31:76 35:78

7:70 23:71 33:47 38:93

IV. Experimental Results

In the following, we present performance values

for parallelTEXSIM running on an IBM SP2 sys-

tem (160 MHz Thin Nodes, 1 GByte RAM per

node, 97 MByte/s High Performance Switch) and

simulating a processor model of the IBM S/390

architecture containing 1 Processing Unit, 4 L2-

Caches, 8 Bus Switching Networks and 8 Stor-

age Controllers. The model consists of about 2.7

million elements at RTL / GL. We have chosen

a representative set of test cases which are mi-

crocode sequences of di®erent size (pa013 : 294

cycles, PG060 : 7464 cycles, vb010 : 31466 cy-

cles). Parallel simulations based on model parti-

tions with 4, 8 and 12 components are considered

in comparison with corresponding sequential (1-

way) TEXSIM simulations (Tab. 1). Performance

is measured in cycles per second (cps).

V. Concluding Remarks

We have presented parallelTEXSIM, a parallel logic

simulator running on loosely-coupled systems. It

essentially accelerates time consuming system sim-

ulation processes in the IBM S/390 processor de-

velopment. Simulation performance strongly de-

pends on preceding model partitioning. Our parti-

tioning environment allows consideration of work-

load and inter-processor communication aspects

via parameterized partition valuation functions.

In future work we will use our experiences with

parallelTEXSIM for the parallelization of the IBM

Multivalue Simulator MVLSIM. We will concen-

trate on problems related to multiply referenced

sub-designs, dynamic load balancing in multiuser

environments and parallelization of user programs

controlling simulation.

Acknowledgment

Work presented was supported by Deutsche
Forschungsgemeinschaft (DFG) under grant

4



Sp 487/1-1. We are grateful to K.Lamb et al.

(IBM Laboratories BÄoblingen) and W.Roesner

et al. (IBM Laboratories Austin (TX)) for valu-

able assistance. Special thanks to the research

workers and students involved in the project at

the University of Leipzig.

References

[1] A. Aharon, A. Bar-David, B. Dorfman, E. Gof-

man, M. Leibowitz, and V. Schwartzburd.

Veri¯cation of the IBM RISC System/6000 by

a dynamic biased pseudo-random test program

generator. IBM Systems Journal, 30(4), pages

1{81, 1991.

[2] D. DÄohler. Entwurf und Implementierung
eines parallelen Logiksimulators auf Basis von

TEXSIM. Diploma Thesis, Univ. of Leipzig,

Dept. of Mathematics, 1996.

[3] K. Hering. Parallel Cycle Simulation. Techni-

cal Report 13(96), Dept. of Computer Science,

Univ. of Leipzig, 1996.

[4] K. Hering, R. Haupt, and U. Petri. Parame-

terized Partition Valuation for Parallel Logic

Simulation. In Proc. of the Conference on

Parallel and Distributed Computing and Net-

works (PDCN'97), pages 144 { 150, 1997.

[5] K. Hering, R. Haupt, and T. Villmann. Hi-

erarchical Strategy of Model Partitioning for

VLSI{Design Using an Improved Mixture of

Experts Approach. In Proc. of the Confer-

ence on Parallel and Distributed Simulation
(PADS'96), pages 106{113, 1996.

[6] M. Snir, P. Hochschild, and D. D. Frye. The

Communication Software and Parallel Envi-

ronment of the IBM SP2 (PE). IBM Systems

Journal, 34(2), pages 185{204, 1995.

[7] W. G. Spruth. The Design of a Microproces-

sor. Springer Verlag, Berlin, 1989.

[8] C. C. Tung and C. Ussery. Face o® : Cycle{

Based vs. Event Driven Simulation. Com-

puter Design's ASIC DESIGN, pages A14{

A17, 1994.

[9] K. Westgate and D. McInnis. Reducing

Logic Veri¯cation Time with Cycle Simula-

tion. SpeedSim, Published in the Internet,

http://www.speedsim.com/tech/cyc sim.htm,

1996.

5


