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Abstract

In the post-genomics era, the sheer volume of data is overwhelming without appropriate tools

for data integration and analysis. Studying genomic sequences in the context of other related

genomic sequences, i.e. comparative genomics, is a powerful technique enabling the identification

of functionally interesting sequence regions based on the principal that similar sequences tend to

be either homologous or provide similar functionality.

Costs associated with full genome sequencing make it infeasible to sequence every genome of

interest. Consequently, simple, smaller genomes are used as model organisms for more complex

organisms, for instance, Mouse/Human. An annotated model organism provides a source of anno-

tation for transcribed sequences and other gene regions of the more complex organism based on

sequence homology. For example, the gene annotations from the model organism aid interpretation

of expression studies in more complex organisms.

To assist with comparative genomics research in the Arabidopsis/Brassica (Thale-cress/Canola)

model-crop pair, a web-based, graphical genome browser (BioViz) was developed to display short

Brassica genomic sequences in the context of the Arabidopsis model organism genome. This involved

the development of graphical representations to integrate data from multiple sources and tools, and

a novel user interface to provide the user with a more interactive web-based browsing experience.

While BioViz was developed for the Arabidopsis/Brassica comparative genomics context, it could

be applied to comparative browsing relative to other reference genomes.

BioViz proved to be an valuable research support tool for Brassica / Arabidopsis comparative

genomics. It provided convenient access to the underlying Arabidopsis annotation, allowed the

user to view specific EST sequences in the context of the Arabidopsis genome and other related

EST sequences. In addition, the limits to which the project pushed the SVG specification proved

influential in the SVG community. The work done for BioViz inspired the definition of an open-

source project to define standards for SVG based web applications and a standard framework for

SVG based widget sets.
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Chapter 1

Introduction

1.1 Background

Comparative genomics relies on the ability to identify regions of local similarity in the genomes

of different species or strains of a species. This allows the identification of putative functional

elements in the genome, for example gene coding and regulatory regions, based on the following

two principals: first, that functional elements tend to evolve at slower rates than non-functional

elements due to selective pressure on the organism to maintain the function, and second that similar

sequences have similar functions. The latter principal enables transitive sequence annotation, i.e.

assigning annotations to unknown sequences based on similarity to an existing annotated sequence.

This is extremely helpful as an aid in assigning putative function to unknown sequences in other

organisms.

However, while helpful in many cases, transitive annotation is also dangerous because it can

result in the propagation of mis-annotations. The potential result is a cycle where the increased

number of sequences sharing the annotation increases user confidence in the annotation, which

results in further propagation of the error. Even if the mis-annotation is eventually corrected,

the damage has already been done because numerous other sequences have now been incorrectly

annotated. This could be mitigated by ensuring that all sequences contained a list of evidence for

the annotation, but would still rely on the user to carefully review all entries. Consequently, tools

to assist researchers in understanding the relationship between similar sequences are of fundamental

importance in that they contribute to proper sequence identification and annotation.

When discussing sequence similarity, sequences are either globally similar (the sequences are

similar over their full length), locally similar (the sequences have regions that are similar to each

other), or lack similarity. For example, two or more genome sequences may contain regions of local

similarity corresponding to homologous genes and other functional elements. However, the full

genome sequences are likely to lack global similarity as a result of genome rearrangement. Even

in regions with co-linear (i.e. non-rearranged) gene sequences, the inter-genic regions (excepting

functional but non-coding regions) are relatively free to evolve, causing a loss of global similarity

over time. Thus, the more closely related the sequences the greater the chance that they will
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exhibit global similarity and the more conserved will be the co-linear regions. In the same way,

short sequences such as coding sequences may or may not be globally similar depending on the

evolutionary distance between sequences and the degree to which internal elements (e.g. domains)

have undergone rearrangement.

Tools for identifying similar sequences are likely to perform a type of local alignment search.

BLAST [1] (Basic Local Alignment and Search Tool) is a well known and commonly utilized tool for

identifying sequence similarities. The program takes one or more “query” sequences and performs

a seeded search against a pre-indexed database of “subject” sequences. The output is a report

containing a set of local alignments for all query-subject pairs with similarities scoring above a

predefined threshold. Each match, referred to as a “hit”, consists of one or more high scoring pairs

(HSPs) (or regions of local similarity). The pairwise alignments produced by BLAST are typical of

the output from pairwise alignment programs, and they enable a fine-grained, position-by-position

comparison of the sequences. However, in many cases a group of related sequences must be studied

to get a sense of the relationship among sequences. This task is usually accomplished by performing

a multiple sequence alignment (MSA).

MSA is a fundamental step in many biological applications, for example the design of spe-

cific oligonucleotide sequences for use in DNA microarrays, the identification of single nucleotide

polymorphisms (SNPs) that distinguish closely related genes, the identification of protein family

domains and motifs, and studies of evolutionary relatedness (which includes phylogenetic analysis

and comparative genomics). Consequently, it is a well-studied computational problem, which has

been shown to be NP-complete using the sum-of-pairs (SP) objective function [5, 60, 25] when the

number of sequences is allowed to vary. The standard approach to overcoming the NP-complete

nature of the problem is to perform a progressive alignment of the set of sequences. This is a

type of “greedy” algorithm [10] that aligns sequences one pair at a time, typically the most closely

related pair at each step as determined from a pre-computed guide tree. The intermediate and

final alignments are generally scored using the SP objective function, and the final alignment is

presented as a row-column (RC) alignment matrix. The well-known CLUSTAL suite of programs

[55] popularized this approach, and the alignments produced by CLUSTALW are often used as the

baseline for evaluating new MSA algorithms.

1.2 Problem

This thesis work focused on representing short Brassica sequences such as EST sequences in the con-

text of the Arabidopsis genome to assist researchers in properly identifying the Brassica sequences.

Standard bioinformatics tools such as BLAST can be used to identify regions in the Arabidopsis

genome with similarity to a given Brassica EST; however, in many cases the information contained
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in the report is insufficient for a proper understanding of the relationship. For instance, the hit

between an EST and the genome sequence may contain any number of HSPs. In the simplest case,

the EST will match a single locus and the hit will consist of a small number of HSPs corresponding

to the alignment of the EST with the gene’s exons. In this case, the report might contain enough

information to elucidate the sequence relationship. However, depending on the relative length of

the exons and the degree of conservation between the sequences, the HSPs may or may not occur

in a linear order, which makes the relationship more difficult to interpret, though still manageable

(Fig 1.1).

12 34

1 2

1 2

R1

R2

1 2

3 4

1 2

a

b

c

d

Figure 1.1: Scenarios for the BLAST results of a sequence and a genome sequence
Four possible scenarios are described in the text and illustrated here. In the above diagram the
genome sequence is represented by the light-grey background rectangle. Over that a light-purple
rectangle has been drawn to denote the gene region, and over that additional grey rectangles have
been drawn to represent the coding regions. ESTs are represented above the genomic regions and the
regions with similarity to the genome sequence are drawn in blue; regions lacking similarity to the
genome sequence are not shown. The numbers above the similar regions represent the hypothetical
HSP number of the match in the Hit. a) A relatively straight-forward sceneraio wherein the the EST
matches to the exons of the gene. b) A more difficult scenario involving two tandemly duplicated
genes which would most likely result in a single Hit containing 4 HSPs. In this case if one did not
look closely at the BLAST report they might not notice that HSP 1 and 2, and 3 and 4 correspond
to the same regions of the EST. c) A scenario wherein a single EST matches two exons in the gene,
but skips one internal exon. This might result from the EST matching two duplicate elements in
a single gene or because the internal exon is too short or contains low-complexity sequence that
was filtered out by BLAST. Without access to the gene annotation, it is impossible to know for
certain which case applies. d) A scenario wherein there are two strong Hits to different regions of
the genome. This could be a result of matching a duplicated gene. In this example only one of the
matches is to an annotated gene sequence and again, it would not be known without access to the
annotation.
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In a more complicated scenario, the gene may contain repetitive regions that cause the same

region of the EST to match multiple regions in the gene. Without access to the genome annotation

it would be difficult to know that one was dealing with a repetitive gene and not matching two

separate genes in the same region of the genome. In another case, there might be exons in the gene

that are not present in the EST. Without a representation of the alignment of the EST with the

gene (or a detailed look at the annotation) this fact would not be readily apparent from the raw

BLAST report, which would simply reveal a gap between the two HSPs that might be interpreted

as an intron. In yet another case, the sequence may have strong similarity to two or more distinct

regions of the genome. This could result from the presence of a highly conserved gene family in the

model organism, or it could result from having sequenced a repetitive element (Fig 1.1).

The above difficulties arise from a lack of contextual information about the Arabidopsis genome

sequences in the BLAST reports. The information needed to interpret the results is present in

the Arabidopsis annotation, and representing the Brassica sequences relative to a marked-up rep-

resentation of the genome provides the necessary context and gives users immediate access to the

annotations. To this end the BioViz: Brassica / Arabidopsis Comparative Genome Browser was

developed. While BioViz was only applied to the Arabidopsis / Brassica crop/model pair, it could

be applied to comparative browsing relative to any model organism genome.

1.3 Solution

BioViz was developed as a web-based application in order to facilitate use by the scientific com-

munity (Fig 1.2). To provide a more powerful browsing experience than was available in existing

web-based genome browsers [20, 18], the user interface and data representations were developed

using the Scalable Vector Graphics (SVG) format [16]. Brassica sequences represented included

expressed sequence tag (ESTs) sequences, whole genome shotgun (WGS) sequences and Arabidop-

sis sequences include activation tagged site (ATS) sequences, and serial analysis of gene expression

(SAGE) tags. Representing the sequences in the context of the Arabidopsis genome sequences ne-

cessitated representations of the the Arabidopsis chromosomes and annotated features, specifically

the Arabidopsis genes and splice forms.

The pairwise alignments displayed in BioViz were computed using BLAST and BLAT (the

BLAST-Like Alignment Tool), and all the alignments are displayed in the context of the Arabidop-

sis genome. In addition to making the Arabidopsis annotations easily accessible, displaying the

alignments in the context of the genome has the effect of “stacking” pairwise alignments with sim-

ilarity to the same region, thereby relating the results of the individual pairwise alignments. This

provides a result similar in nature to a MSA and allows the user to get a high-level impression of

the relationship between all similar sequences without the need for a computationally expensive
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Figure 1.2: BioViz: Comparative Genome Browser
A screenshot of BioViz showing the initial chromosome display of the Arabidopsis genome and a
view of the region containing BAC T16L24. AAFC EST sequences with homology in this region
are stacked above and below the chromosome sequence. The view has been translated to the 5’
most (left-most) end and zoomed in to show the structure of the genes and EST matches.
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MSA for each set of sequences.

1.4 Related Work

At the time of development there were two other web-based genome browsers available (Ensembl

[24] and Vista [20]), neither of which were available for the Brassica / Arabidopsis context. Since

then other genome browsers have been developed, notably the Generic Model Organism Database

(GMOD) GBrowse genome browser. However, the user interface developed and data representations

used in BioViz are unique to BioViz. SVG enabled a more flexible user interface than is available

in the other web-based genome browsers, and lessons learned in the development of BioViz are as

relevant now as at the time of development. Futher, the emphasis on BioViz as a “comparative”

genome browser is evident in the data representations and types of actions a user can perform from

within BioViz and differentiates BioViz from these other browsers.

1.5 Impact

The end result attracted attention within both the Brassica research community where the rep-

resentations provided by BioViz were used to estimate the gene copy number for Arabidopsis and

Brassica genes in the sinapine biosynthetic pathway [3], the Brassica bioinformatics community

where it was suggested that it could be used to complement an under development Brassica En-

sembl database [38], the general bioinformatics community where it was cited as an example of the

use of open standards in bioinformatics [57], and the SVG community for its novel application of

SVG and the attempted creation of a reusable SVG UI widget set [35, 17]. The work resulted in

three published papers and several poster presentations and demonstrations. The first two papers

are related to the browser itself [34, 36] while the third is related to the user interface elements de-

veloped for the browser [31]. The content from the papers related to the browser has been extended

and reworked for inclusion in this thesis with the application and data representations described in

one chapter, and implementation details described in a second chapter. The third paper related to

the user interface elements has been minimally modified and included to illustrate the impact of the

work outside the bioinformatics community. Where appropriate, the material has been updated to

reflect developments since the original publication.

1.6 Thesis Organization

This thesis consists of six chapters, including this introduction (Chapter 1):

• Chapter 2 provides background related to the BioViz application, including the underlying
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concepts and implementation technologies.

• Chapter 3 introduces BioViz, including the objectives of the work, the data representations

developed, the use of existing tools, and a comparison with other web-based genome browsers.

• Chapter 4 describes the implementation of BioViz making use of examples from the imple-

mentation to illustrate the key design and implementation principles.

• Chapter 5 illustrates the impact of the BioViz application outside the bioinformatics commu-

nity.

• Chapter 6 summarizes the work completed as part of the thesis, highlights the key results

and outlines future work.
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Chapter 2

Background

2.1 Synopsis

This chapter begins with an introduction to sequence alignment1, including heuristic local-alignment

searches. It then provides background on additional key topics related to BioViz including EST

(Expressed Sequence Tag) sequencing and comparative genomics. Finally, it introduces the tech-

nologies used in the implementation of BioViz including SVG, Perl and AJAX (Asynchronous

JavaScript and XML). Readers already familiar with the above topics may wish to skip ahead and

refer back to this chapter if necessary in the course of reading the subsequent chapters.

2.2 Sequence alignment

2.2.1 Biological basis

For most applications of sequence alignment the sequences are assumed to be evolutionarily related,

which is to say homologous. Thus the objective is to find the regions that have been conserved

through evolution and/or the regions that make one organism distinct from another. Homology is

distinct from sequence similarity. While one might perform a sequence alignment and find that the

sequences are similar, that does not necessarily mean that they are homologous. For instance, Bras-

sica napus (commonly known as rutabaga, Swedish turnip, canola, rape) is thought to have formed

within the last 2000 years through the hybridization of the Brassica oleracea (kale) and Brassica

rapa (turnip) genomes [40, 44]. Consequently, one would expect the CBF (C-repeat/DRE-Binding

Factor) genes in Figure 2.1 to be globally related, which is in fact the case for the Brasica and

Arabidopsis sequences. The final Secale cereale (rye) sequence AF370730 is a more distant homo-

logue included as an outlier. However, in other cases the sequences share biologically significant

sequence-based features (regions of local similarity) despite their lack of global similarity. When

aligning such sequences the objective is to identify the homologous features; however, this task may

1A significant portion of the material related to sequence alignment was developed for the author’s comprehensive
exam.
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Sc:AF370730.1 GCA-GCCCGCGGGAGATCAAGGCAGCCGTCGCCGTCGCCGTCATCGCGTTCCAGCGGAAG

Bo:AF370731.1 ACCTGCCACAAGGATATCCAGAAGGCTGCTGCTGAAGCCGCATTGGCTTTTGAGGCTGAG

At:AF370732.1 ACCTGCGCCAAGGATATCCAGAAGGCTGCTGCTGAAGCCGCATTGGCTTTTGAGGCCGAG

Bn:AF499034.1 ACCTGCGCCAAGGATATCCAGAAGGCTGCTGCTGAAGCCGCATTGGCTTTTGAGGCCGAG

Bn:AF499033.1 ACATGCCCCAAGGAGATTCAGAAGGCGGCTGCTGAAGCCGC-------------------

Bn:AF499031.1 ACATGCCCCAAGGATATCCAGAAGGCGGCTGCTGAAGCCGC-------------------

Br:DQ022955.1 ACCTGCGCCAAGGATATCCAGAAGGCTGCTGCTGAAGCCGCATTGGCTTTTGAGGCCGAG

Br:DQ022954.1 ACATGCCCCAAGGATATCCAGAAGGCGGCTGCTGAAGCCGC-------------------

* ** *** ** ** ** * ** * ****

Figure 2.1: Partial alignment of closely related CBF genes
CBF genes were selected from Brassicas (Bo, Bn, Br), A. thaliana (At) and S. cereale (Sc). The
CBF genes from the Brassicas and A. thaliana are quite similar because the organisms are quite
closely related. S. cereale is a more distant relative, and consequently the CBF gene contains less
sequence similarity. Note that there appears to have been either a deletion or insertion event in
three of the sequences relative to the others, but that the S. cereale sequence seems to contain
entirely different sequence at that position which has still been forced into an alignment.

gi|154269265 ----------------------------ACTAATTGCTATGAT-----------------

gi|123977204 ---TCATGCAGATCTCCAATGAGTAT--GCTTTCTTCTGTAATCAAAAATGTGT------

gi|154707889 CCGTCAAGAACGTCACCTGTGAGAATGGGCTTCCGGCTGTGGTGAGCTGTGTGCCCGGCC

** ** * *

Figure 2.2: Alignment of unrelated sequences
An alignment of three completely unrelated sequences. Note that there are short spurious matches
between the sequences because the alignment algorithm will always produce an alignment regardless
of the source or nature of the sequences.

be complicated by the large numbers of gaps, mismatches and spurious short matches within the

unrelated regions of the sequences (Fig 2.2).

It is important that “similar” is understood to mean having similar biochemical properties

rather than simple sequence similarity. From a biological perspective this means that an accurate

sequence alignment aids in the identification of biologically relevant patterns and regions in the

sequences. From a computational perspective it means that matches occur with a frequency based

on the similarity of the two represented elements. It is this understanding that makes the alignment

in Figure 2.3 meaningful, because, while the sequences have low sequence similarity they code for

similar amino acid sequences, as can be seen from the protein alignment of the same region below

the nucleotide alignment.

2.2.2 Brief history

Pairwise alignment

The concepts of local and global alignment come from the Needleman-Wunsch (NW) [41] and

Smith-Waterman (SW) [51] pairwise alignment algorithms. These two mathematically exact se-

quence alignment algorithms were developed to align pairs of sequences, NW to perform global
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AEL038C GGCGTCG-----TTGACGTAGACGTCCGCGAGCGACA----TGAGG---CCCTGGCGG--

SPBC14F5.04c AACGTCGAATCCATGATGGCCAAGGCCAAGAAGAACAACGTCGAGGTCTTCCTCCCCGTT

YCR012W ATCGTTCCAAAGTTGATGGAAAAGGCCAAGGCCAAGGGTGTCGAAGTCGTCTTGCCAGTC

orf19.3651 AACGTTGAACACTTGGTTGAAAAAGCTAAGAAAAACAATGTTGAATTGATCTTGCCAGTT

*** ** * * * * ** * * * *

SPBC14F5.04c N V E S M M A K A K K N N V E V F L P V

orf19.3651 N V E H L V E K A K K N N V E L I L P V

YCR012W I V P K L M E K A K A K G V E V V L P V

AEL038C I V P K L A E K A K K N G V K I V L P V

* : * * * : . * : : . * * *

Figure 2.3: Alignment of distant sequences
An alignment of four pkg1 (phosphoglycerate Kinase) sequences from distantly re-
lated species: SPBC14F5.04c:Schizosaccharomyces pombe, YCR012W:Saccharomyces cerevisiae,
AEL038C:Ashbya gossypii, orf19.3651:Candida albicans. At the protein level (bottom) these se-
quences contain substantially greater sequence similarity than at the nucleotide level (top).

sequence alignment (producing the optimal alignment of two sequences over their full length) and

SW to perform local sequence alignment (producing the optimal alignment of two sub-regions of

the sequences such that the two sub-regions provide the best possible score) (Fig 2.4).

SW and NW are based on similar recurrence relations, which can be represented as a 2-

dimensional (2D) graph known as an edit-graph (Fig 2.5 a). In the edit-graph aligned characters are

represented by a diagonal transition between nodes, while insertions and deletions are represented

by a horizontal or vertical transition. Both algorithms use dynamic programming techniques to

efficiently populate the graph with a simple recurrence relation (Fig 2.5 c shows the recurrence

relation for a global alignment). The first entry in the recurrence relation calculates the score for a

diagonal transition (i.e. match/mismatch). The second and third entries calculate the score for a

horizontal and vertical transition respectively (i.e. a gap insertion into the sequence on the vertical

or horizontal axis). The example in Figure 2.5 uses a constant (non-affine) gap penalty, though

variable (affine) gap penalties can be used instead. After populating the edit graph a traceback

step (Fig 2.5 b) can be used to determine the optimal alignment (Fig 2.5 d). The traceback here

produces a global alignment, but it is possible to produce a local alignment or semi-global align-

ment by using a slightly different recurrence relation and altering the initialization of the matrix

and varying the start and end points of the traceback.

Generalized pairwise alignment

A reasonable first attempt at multiple sequence alignment (MSA) would be to generalize one of

NW or SW for use with 3 or more sequences. This can be accomplished by adding additional

dimensions to the edit graph (Fig 2.6). However, the generalized algorithm requires O(nm) time

for m sequences of length n, and even with the application of branch-and-bound techniques to

reduce the search space [8], this approach is still intractable for most non-trivial applications.
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########################################

# Program: water

#=======================================

# Aligned_sequences: 2

# 1: EU024516.1

# 2: XM_001330739.1

# Matrix: EDNAFULL

# Gap_penalty: 5.0

# Extend_penalty: 1.0

#

# Length: 677

# Identity: 326/677 (48.2%)

# Similarity: 326/677 (48.2%)

# Gaps: 320/677 (47.3%)

# Score: 770.0

#=======================================

1 ATG---GCG-G----G-AAGAGC------------T-CAAAT----T---

||| ||| | | ||.||| | ||||| |

1 ATGTTAGCGAGTTCAGCAACAGCAATGAAAGGATTTGCAAATAGTCTCAG

22 AA-GACAAG-C---AGCTCAGCA-----CTAA--TTGCTATG--------

|| || ||| | ||||||.|| | || |||.||||

51 AATGA-AAGACTATAGCTCAACAGGTATC-AATTTTGATATGACAAAATG

52 -----ATTGC---TGATG----AG-G-AT--ACAGTAAC-T----GG---

||||| |.||| || | || ||| ||| | ||

99 CATAAATTGCCAATCATGTGTCAGAGCATGCACA--AACATCGCAGGTCA

370 --TCCGTTGC--ATCTGGAA-G-GTAT 390

|| .||| ||||..|| | ||||

620 GCTC--ATGCAGATCTCCAATGAGTAT 644

########################################

# Program: needle

#=======================================

# Aligned_sequences: 2

# 1: EU024516.1

# 2: XM_001330739.1

# Matrix: EDNAFULL

# Gap_penalty: 5.0

# Extend_penalty: 1.0

#

# Length: 1474

# Identity: 329/1474 (22.3%)

# Similarity: 329/1474 (22.3%)

# Gaps: 1114/1474 (75.6%)

# Score: 767.0

#=======================================

ATG---GCG-G----G-AAGAGC------------T-CAAAT----T--- 21

||| ||| | | ||.||| | ||||| |

ATGTTAGCGAGTTCAGCAACAGCAATGAAAGGATTTGCAAATAGTCTCAG 50

AA-GACAAG-C---AGCTCAGCA-----CTAA--TTGCTATG-------- 51

|| || ||| | ||||||.|| | || |||.||||

AATGA-AAGACTATAGCTCAACAGGTATC-AATTTTGATATGACAAAATG 98

-----ATTGC---TGATG----AG-G-AT--ACAGTAAC-T----GG--- 77

||||| |.||| || | || ||| ||| | ||

CATAAATTGCCAATCATGTGTCAGAGCATGCACA--AACATCGCAGGTCA 146

--TCCGTTGC--ATCTGGAA-G-GTAT---------TG-A 393

|| .||| ||||..|| | |||| || |

GCTC--ATGCAGATCTCCAATGAGTATGCTTTCTTCTGTAATCAAAAATG 667

Remainder trimmed - Sequence 2 continues to end

Figure 2.4: NW and SW alignment of two sequences
This figure shows the NW (left) and SW (right) alignment of two sequences as computed using the
Emboss programs “needle” and “water” respectively. The alignments are effectively identical with
the selected gap opening and extension penalties. However, the SW alignment is much shorter (677
bases vs. 1474 bases). The SW alignment stops at base 644 but the NW alignment continues even
though one sequence has no more characters (to reduce the size of the image the NW alignment has
been trimmed after character 667). The alignments were created with a standard distance matrix
(EDNAFULL), and with a gap opening penalty of 5 and a gap extension penalty of 1.

Figure 2.5: DP edit graph
The matrix representation of the DP relation used in the Needleman-Wunsch and Smith-Waterman
algorithms. a) (top-left) The construction of the DP matrix used in the algorithm. b) (top-right)
The traceback step (entries highlighted) which provides the optimal alignment. c) (bottom-left)
The recurrence relation used with a non-affine gap penalty. d) (bottom-right) The resulting optimal
alignment.
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Figure 2.6: 2-D and 3-D edit graph
(a) shows the path through the 2D edit graph (2 sequences), while (b) shows the path through a
3-D edit graph (3 sequences). Note that the origin in these diagrams is in the bottom left rather
than in the top right as in Figure 2.5 to make it easier to label the axes in part b.

Progressive multiple sequence alignment

The next approach to MSA, which gave rise to the current standard approach, was to build the MSA

one pair of sequences (or alignments) at a time [15]. This progressive alignment is accomplished

by aligning an initial pair of sequences, collapsing that alignment into a 1-Dimensional (collapsed)

representation of the alignment and then aligning the 1D representation with another sequence

or 1D alignment. The order of sequence alignment is generally determined by a guide tree – a

bifurcating tree with internal nodes connecting the ever more distantly related sequences. The

1D representation of a MSA can be produced in a number of ways, but the two most common

techniques involve reducing the MSA to a consensus sequence with the most likely base in each

position or a profile that tracks the frequency of each base in a given column.

The major problems with the progressive approach are that it is sensitive to the input order of

the sequences, and that it makes no guarantees regarding the optimality of the resultant alignment

(Fig 2.7). The input order of the sequences may result in the introduction of gaps that are not

appropriate in the context of subsequent sequences. However, following the “once a gap, always

a gap” philosophy of Feng and Doolittle [15], these “erroneous” gap insertions are propagated

through to the final alignment and may be worsened by the use of additional gaps to accommodate

the initial error.

The possible improvements to the progressive alignment include varying the input order of the

sequences and iteratively refining the alignment (effectively equivalent to non-stochastic iterative

alignment below). The former is motivated by the experience that the pair-wise alignment order

affects the resulting alignment quality, and the resulting belief that there is an input order likely to

produce the best possible progressive alignment. The currently accepted approach is to minimize

the sequence distance between each pair of aligned sequences, which should minimize the number
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Figure 2.7: Illustration of initial gap selection
The above diagram illustrates how the progressive alignment strategy can introduce gaps which
are likely not correct in light of subsequent sequences. In this case, the algorithm could have
introduced an internal gap and aligned CAT with CAT, which would appear to be the correct
decision considering subsequent sequences (alignment proceeds up from the bottom). Instead it
choose a single position mismatch and a terminal gap because such gaps are often not penalized.
Recreated from Notredame, 2002 [42].
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of changes and thereby increase the accuracy of the alignment. The latter generally improves

alignment quality, because the realignment of existing sequences may correct errors introduced

in the early stage of the alignment. Historically it seems the refinement stage was often skipped

because of the increased runtime, but the recent Muscle MSA implementation [14] performs several

rounds of iterative improvement by default.

Iterative multiple sequence alignment

The non-stochastic iterative MSA algorithms work by extracting one or more sequences from the

alignment, and then realigning the sequences with the alignment. This process is repeated until

a constant alignment is achieved. While this often improves the quality of the alignment, the end

result is still likely to be a local maximum rather than the optimal alignment. To increase the like-

lihood of achieving the optimal alignment, stochastic iterative alignment algorithms incorporate a

degree of randomness into the solution. For example, SAGA is a stochastic iterative alignment al-

gorithm based on genetic algorithms [43]. A genetic algorithm randomly rearranges a portion of the

result after each iteration to see if the overall quality has improved, or at least not decreased below

a defined threshold. This random rearrangement often allows the algorithm to break out of a local

minima/maxima by moving to another area of the possible solution space. While such stochastic

iterative alignment algorithms have been shown to produce good results, they are generally too

slow and offer no guarantee of reaching the optimal alignment (or even convergence).

For a recent review on iterative multiple sequence alignment algorithms, see Wallace et al. [59].

2.2.3 Local alignment searches

A local alignment search algorithm finds non-spurious local alignments between a query sequence

and a set of subject sequences. Performing a full dynamic programming search of the set of subject

sequences is generally too time consuming, so heuristics are employed to speed the search. BLAST

(Basic Local Alignment Search Tool) is the de facto standard tool for local alignment searches. It

performs a seeded search against a pre-indexed collection of subject sequences (referred to as the

BLAST database). As part of the search, all “seed” (short exact) matches are extended in both

directions until the match score drops below a pre-defined threshold. A more detailed description

is provided in Section 2.3.4.

2.3 Comparative genome browsing

A comparative genome browser should allow easy comparisons between two genomes, likely a fully

annotated model organism and a more complex organism. To facilitate understanding of the more

complex organism, the browser should provide access to the annotations associated with the model
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organism. The following subsections provide background concepts related to comparative genome

browsing.

2.3.1 Comparative genomics

Comparative genomics is the study of genome sequences relative to one another. It is a valuable

research tool that significantly speeds biological discovery. The fundamental aspect of comparative

genomics is the identification of similar and dissimilar regions in the genomes. Conserved regions

present in multiple genomes are assumed to have come from a common ancestral sequence (and thus

to be homologous), and so, at least historically, are likely to have had similar functions based on

the principle that similar sequences provide similar function. However, the degree of conservation

within the regions relative to the average similarity within conserved gene regions can be used to

estimate the type of selection occurring within that region. If the region is experiencing stabilizing

selection, which is to say that the regions have maintained more than average similarity over the

course of time, then the regions likely still provide the same function in the two organisms. On the

other hand, if the regions are experiencing positive selection, resulting in the sequences diverging

more than the average, then the regions are likely responsible for providing different functions in

the two organisms.

2.3.2 Genome composition

For the purposes of this thesis, the genome of an organism consists of one or more chromosomes.

These molecules are composed of DNA and contain regions that result in the production of protein

sequences. These gene regions can contain both coding (exonic) and non-coding regions (untrans-

lated region, intronic), of which the coding regions contribute to the resulting protein sequence.

Protein sequences are produced in two steps. A messenger RNA (mRNA) sequence is transcribed

from the gene region of the chromosome. This molecule consists of the exonic regions of the gene;

the intronic regions are removed from the molecule post-transcription. The sequence of the mRNA

molecule is subsequently translated into a protein sequence, which folds in on itself to form the

3-dimensional structure.

2.3.3 EST sequencing

Where one does not have full genome sequences to compare, Expressed Sequence Tags (ESTs)

provide a valuable resource for comparative genomics. ESTs are regions of expressed RNA (strictly

speaking messenger RNA) sequenced from complimentary DNA (cDNA). Single stranded RNA

sequences tend to be unstable and difficult to work with, so pools of complimentary DNA (cDNA)

are created from the mRNA. The “tag” is typically the length of a sequencing run, which, with
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the latest generation of Sanger-based capillary electrophoresis sequencing, tends to be on the order

of 600-800 bp. ESTs are often assembled to form longer “contig” sequences based on overlapping

shared sequences at the end of the EST. One might choose to compare ESTs with a reference genome

(as was done in BioViz), or with ESTs produced from a related organism. Both approaches allow

for the study of functional elements within the two organisms.

2.3.4 BLAST and BLAT

BLAST (Basic Local Alignment and Search Tool) [1] is a very common bioinformatics application,

which is valuable in a comparative genomics context as a method for identifying similar sequence

regions (recall Section 2.2.3). As mentioned in the introduction, BLAST takes one or more query

sequences and searches for similar sequences in a set of “subject” sequences. To enable a rapid

search, the set of subject sequences is pre-indexed. The basic algorithm works by identifying short

matches, or “seeds” in the database, and then extending the matches until the quality of the match

drops below a predefined threshold. The quality of a match is defined in terms of the number of

paired, mismatched and unmatched characters in the alignment. An “E-Value”, the probability

that this is a random match, is provided for each match. More recent “gapped” BLAST algorithms

[2] allow the insertion of gaps into the matches, which results in longer matches that would have

otherwise been split into shorter matches. The standard BLAST report is a plain text output, an

example of which is shown in Figure 2.8.

BLAT (Blast-like Alignment Tool) [26] is another heuristic local alignment search tool with

additional features that make it potentially more useful than BLAST for aligning mRNA sequences

with genomic DNA. BLAT attempts to group nearby hits into larger alignments, for example the

matches for individual exons in a gene would be grouped into one larger match corresponding to

the gene. It will also attempt to adjust match boundaries where possible if they correspond to

canonical splice sites. It has been shown to be substantially faster than BLAST at performing the

searches.

2.4 Technologies

Three core technologies were used in the development of BioViz: SVG to provide the user interface

and content, Perl to generate the SVG content and handle data manipulation, and an AJAX style

approach to data being exchange. SVG is an XML-based vector graphics format, while perl is a

programming language commonly used for bioinformatics as it is well suited to string manipulation.

Each of these technologies is briefly described in the following sections.
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BLASTN 2.2.14 [May-07-2006]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),

"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs", Nucleic Acids Res. 25:3389-3402.

Database: phytophthora_infestans_0.fasta

3486 sequences; 173,338,388 total letters

Searching

Query= supercont0_72_of_Phytophthora_infestans_1_P1 p2 (CA)14 28 940

967

(1154 letters)

Score E

Sequences producing significant alignments: (bits) Value

supercont_72 of Phytophthora infestans 1029 0.0

supercont_3162 of Phytophthora infestans 912 0.0

supercont_1489 of Phytophthora infestans 880 0.0

supercont_725 of Phytophthora infestans 866 0.0

supercont_2605 of Phytophthora infestans 835 0.0

supercont_3220 of Phytophthora infestans 801 0.0

>supercont_72 of Phytophthora infestans

Length = 5101

Score = 1029 bits (519), Expect = 0.0

Identities = 537/546 (98%)

Strand = Plus / Plus

Query: 609 ggtgacgcattcactcagtttctgtgcgcgcgcatttctcaatccgtaagacaaactact 668

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 968 ggtgacgcattcactcagtttctgtgcgcgcgcatttctcaatccgtaagacaaactact 1027

Query: 669 accgcaccctaactcagggttactcaatctgcctcagcagccgcagactacgtacgagct 728

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 1028 accgcaccctaactcagggttactcaatctgcctcagcagccgcagactacgtacgagct 1087

Query: 729 ggctgctgcagccactggtcagagcctgagcttaactactgacctcatcgctccccactc 788

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 1088 ggctgctgcagccactggtcagagcctgagcttaactactgacctcatcgctccccactc 1147

Score = 969 bits (489), Expect = 0.0

Identities = 509/519 (98%)

Strand = Plus / Plus

Query: 1 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 60

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 360 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 419

Query: 61 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 120

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 420 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 479

Query: 121 gccggtggcgannnnnnnnnntaatcaacggcggagaggtgataaaacgtttggtggcgt 180

||||||||||| |||||||||||||||||||||||||||||||||||||||

Sbjct: 480 gccggtggcgaggggggggggtaatcaacggcggagaggtgataaaacgtttggtggcgt 539

>supercont_3162 of Phytophthora infestans

Length = 59696

Score = 912 bits (460), Expect = 0.0

Identities = 504/519 (97%), Gaps = 2/519 (0%)

Strand = Plus / Plus

Query: 1 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 60

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 11029 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 11088

Query: 61 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 120

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 11089 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 11148

Query: 121 gccggtggcgannnnnnnnnntaatcaacggcggagaggtgataaaacgtttggtggcgt 180

||||||||||| |||||||||||| ||||||||||||||||||||||||||

Sbjct: 11149 gccggtggcgaggggggggg-taatcaacggcgaagaggtgataaaacgtttggtggcgt 11207

Score = 904 bits (456), Expect = 0.0

Identities = 503/519 (96%), Gaps = 2/519 (0%)

Strand = Plus / Plus

Query: 1 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 60

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 10274 cggggtctgataggcacctgcacttgtgtcactcagtttgtcaattgggttatattgacg 10333

Query: 61 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 120

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 10334 aagcagcaacagatacgaagtcgccgagacacttaagctcctcaaagacgacgcagagca 10393

Query: 121 gccggtggcgannnnnnnnnntaatcaacggcggagaggtgataaaacgtttggtggcgt 180

||||||||||| |||||||||||| ||||||||||||||||||||||||||

Sbjct: 10394 gccggtggcgaggggggggg-taatcaacggcgaagaggtgataaaacgtttggtggcgt 10452

Figure 2.8: Sample BLAST report
A BLAST report consists of a preamble, a summary of the Hits in the report and the details of
each Hit. Each Hit provides the details of the alignment between one query-subject pair. Within
each Hit there are one or more HSPs (High Scoring Pairs), which are regions of local similarity
between the two sequences. The above example provides the preamble of the BLASTN (nucleotide-
nucleotide) report. The first query sequence is 1154 letters and resulted in 6 hits. The E-Value of
these hits (0) indicates that there is little statistical possibility that these are random matches. This
example includes fragments of the output for two Hits. Each Hit begins with the “>supercontig”
tag (this is the name of the subject sequence), and lists the details of the match. Also included is
a fragment of the second HSP for each Hit. The HSPs begin with the second “Score = ” block.
The above report was produced as part of a marker identification analysis undertaken in the fungus
Phytophthora infestans [32].
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2.4.1 Representation

XML

XML (Extensible Markup Language) is a human readable, text-based, structured format for en-

coding information [6]. It has a format similar to HTML (Hyper Text Markup Language) in that

data and other elements can be nested inside a parent element, and elements can have attributes

that modify the element. However, unlike HTML which is specific to the creation of web pages,

XML is a generic document format. The set of possible elements in an XML document is virtually

unlimited, and a formal grammar, called a schema or data type document (DTD), can be defined

to ensure that the final XML document is valid. The basic structure of an XML document is shown

is Figure 2.9.

Vector vs. Raster Graphics

Vector graphics are defined by mathematical formulas describing the desired shapes. Raster graph-

ics (or bitmaps) consist of a grid of pixels which can be set to a desired color and used to represent

the image. Raster graphics are generally more useful for photographs because it is easier to break

the captured image down into discreet pieces than it is to identify, define and style individual shapes

within the image. On the other hand, Vector graphics are often created by and used in graphic art

programs and printing because they can be infinitely scaled and otherwise manipulated through

the application of transformations (mathematical descriptions of the desired change). Rather than

coloring individual pixels, as in a raster graphics based graphics package, one draws basic shapes

and paths. The simple shapes used for data representations in BioViz were very simple to create

in this format, and the ability to infinitely scale a vector graphic was exploited in BioViz to allow

the user to zoom in on features of interest without generating a new image on the server.

Scalable Vector Graphics

SVG [16] is an XML-based vector graphics format which offers interactivity via ECMAScript (i.e.

JavaScript) [13] and Synchronized Multimedia Integration Language (SMIL) animation [7]. The

SVG and SMIL specifications is defined by the World Wide Web Consortium (W3C). ECMAScript

is a scripting language specification from Ecma International (Ecma). The specification treats

shapes as first class citizens that can be grouped and easily manipulated through the application

of transformations and stylesheets. The XML format coupled with the interactive nature of the

graphics has resulted in considerable interest in the use of SVG for web application development

[48, 50, 36], especially in the field of cartography [28]. The current SVG specification is version 1.2.

However, BioViz was developed while the 1.1 specification was in development and does not take

advantage of the functionality that became available in the 1.2 specification.
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<?xml version="1.0" standalone="yes"?>

<svg xmlns="http://www.w3.org/2000/svg">

<rect x="0" y="0" width="640" height="480" fill="blue"/>
<g transform="translate(200,200) scale(.5)">

<rect x="0" y="0" width="200" height="200" fill="white"/>
<circle cx="100" cy="100" r="50" fill="red"/>

</g>

</svg>

15/11/08 2:15 AMsampleXml.svg

Page 1 of 1file:///Users/chris/Documents/Phd/thesis/MSC/images/sampleXml.svg

Figure 2.9: Sample XML Document
(Top) The first line declares this to be an xml document, while the second line begins the declaration
of an SVG element containing a blue rectangle with a white rectangle containing a red circle drawn
on top of it. An element in an XML document begins with an opening tag and ends with a closing
tag. Tags begin with a “<” character and end with a “>” character. An element may be declared
using an opening and closing tag e.g. “<g> ... </g>” or a single closing tag e.g. “<rect ... / >”.
The “/” character marks a terminal tag. All tags may contain attributes and elements may be
nested elements. As an example the “circle” element contains 4 attributes: “cx” and “cy” provide
the x and y coordinate of the center of the circle, “r” defines the radius of the circle and “fill”
specifies the color of the circle. It is defined using a single tag nested in a parent “g” (group)
element. (Bottom) The resulting SVG image.
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<?xml version="1.0" standalone="yes"?>
<svg xmlns="http://www.w3.org/2000/svg">

<text x="20" y="20">Hello World</text>

</svg>
15/11/08 2:47 AMhelloWorld.svg

Page 1 of 1file:///Users/chris/Documents/Phd/thesis/MSC/images/helloWorld.svg

Hello World

Figure 2.10: “Hello World” SVG example
(Top) A “Hello World” SVG document, which displays the text “Hello World”. (Bottom) The
rendered SVG Document.

<?xml version="1.0" standalone="yes"?>
<svg xmlns="http://www.w3.org/2000/svg">

<rect x="0" y="0" width="120" height="30" fill="blue"/>
<text x="20" y="20" fill="orange">Hello World</text>

</svg> 15/11/08 2:54 AMhelloWorldColor.svg

Page 1 of 1file:///Users/chris/Documents/Phd/thesis/MSC/images/helloWorldColor.svg

Hello World

Figure 2.11: Colored “Hello World” SVG example
(Top) By adding a fill attribute to text element we can easily change the colors in the image.
(Bottom) The rendered image with a color rectangle as a background.
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The specification provides a simple, human-readable syntax for defining vector graphics. A

simple “Hello World” example is provided in Figure 2.10. This example contains a single “text”

element containing the text “Hello World”. Figure 2.11 adds a “fill” attribute to the the text

element to change its color and includes a blue rectangle in the background. Interactive graphics

can be created by attaching “event listeners” to elements within the SVG Document. These can

take the form of an “onload” listener, which will execute when the Document is loaded, or various

“on[mouse*]” listeners which are executed in response to different “mouse*” events (e.g. the onclick

event listener would be executed when the user clicks the mouse on the element). Figure 2.12

describes a SVG document with an “onclick” event listener that modifies the SVG Document when

the user clicks on the rectangle. This is a trivial demonstration of the interactivity available in

SVG, however, when used with the ability to retrieve content from the server and dynamically

update the SVG Document (i.e. AJAX), the interactive features enable a very compelling browsing

experience.

2.4.2 Data handling and transfer

Perl

The server-side of BioViz is implemented in Perl. Perl is commonly used for bioinformatics appli-

cations because of the ease with which strings can be manipulated. Consequently, there are many

bioinformatics tools and source libraries available in Perl. Further, Perl facilitates the development

of applications implementing the CGI (Common Gateway Interface) protocol, which is a standard

for providing dynamic web content. The above, together with the existence of a Perl module for the

generation of SVG content, made Perl a good choice for the server-side implementation of BioViz.

SVG.pm

The SVG perl module (SVG.pm) facilitates the creation of SVG content from within Perl. It

defines a set of methods enabling the simple construction of an SVG Document and and a method

for writing the result as an SVG format file. Figure 2.13 presents an example of the use of SVG.pm

to generate the “Hello World” example presented in Figure 2.10.

BioPerl

There are a number of open-source bioinformatics libraries [39], for instance, BioJava [23], and

BioPerl [53]. However, the BioPerl library tends to be the most actively developed and extensive

library, presumably as a result of the popularity of Perl for bioinformatics applications. The greatest

value to BioViz from BioPerl came in the form of parsers for commonly used bioinformatics file

formats. However, using BioPerl one might also develop a flexible SVG-based interface to display
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<?xml version="1.0" standalone="yes"?>
<svg xmlns="http://www.w3.org/2000/svg" width="140" height="80">

<g transform="translate(5, 15)" text-anchor="middle">
<rect id="button"

x="0" y="0" width="70" height="25" fill="red"
onclick=’document.getElementById("target")

.setAttribute("fill", "blue")’ />
<text

x="35" y="15" text-anchor="middle"
>Click Here</text>

<circle id="target"
cx="100" cy="10" r="20" fill="white" stroke="black"/>

</g>

</svg> 15/11/08 3:07 AMinteractiveSVGExample.svg

Page 1 of 1file:///Users/chris/Documents/Phd/thesis/MSC/images/interactiveSVGExample.svg

Click Here

Click Here

Figure 2.12: Interactive Hello World example
(Top) The SVG Document defines a “140 x 80” image containing a “red” rectangle with the text
“Click Here”, which has an “onclick” event listener that changes the color of the circle when the
user clicks on it. It does this by setting the “fill” attribute of the “circle” element to “blue”. The
example also demonstrates use of the “id” attribute of an element in an XML document, which
allows a given element to be referenced directly. (Bottom) The image before and after the user
clicks on the rectangle.
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#! /usr/bin/perl -w

use SVG;

my $svg = new SVG(
width=>"640",
height=>"480"

);

my $text = $svg->text(
x=>"320",
y=>"240",
"text-anchor"=>"middle"

)->cdata("Hello World");

print $svg->xmlify();

Figure 2.13: Generate “Hello World” example using SVG.pm
The Perl code above generates the “Hello World” example using SVG.pm. The SVG Document is
created using the “new SVG” call. The SVG Text element is created by calling the “text” method
on the SVG Document reference ($svg). The XML document is created by calling the “xmlify”
method.

information available in GBrowse.

AJAX

AJAX (Asynchronous JavaScript and XML) is a term that was coined to describe interactive web

applications that asynchronously retrieve data from a server and use JavaScript to update the cur-

rently displayed document. Common examples include GMail (Google Mail) and Google Maps.

BioViz is a prime example of such an application, though it did not use the XMLHttpRequest

interface for client-server communication (the current standard approach for client server com-

munication in AJAX) because it was not defined at the time BioViz was implemented. Instead,

BioViz utilized functionality provided within the Adobe SVG Viewer to send HTTP POSTs to the

server and asynchronously receive a result via a callback function, which was used to update the

SVG document. A POST is a standard HTTP message used to send data from the client to the

server, for instance, it is commonly used to submit entries in forms. XMLHttpRequest is a newer

programming interface allowing XML (or other text based data) to be transferred between a client

and a web server.
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Chapter 3

BioViz: Description

3.1 Synopsis

This chapter describes the Brassica / Arabidopsis Comparative Genome Browser (BioViz), intro-

duces the goals that motivated its development, and provides a comparison to other web-based

genome browsers1.

3.2 Background

The Brassica / Arabidopsis Genomics Initiative (BAGI) [29] is a project at the Saskatoon Research

Centre of Agriculture and Agri-food Canada (AAFC). The project aims to develop genomic and

genetic resources to expedite the characterization of gene function in Brassica and Arabidopsis. To

this end, the initiative developed a number of biological resources, including 3’ and 5’ ESTs from B.

napus cDNA clones. The Brassica / Arabidopsis Comparative Genome Browser (BioViz) was de-

veloped to provide context for the sequence information derived from these resources by displaying

Brassica sequences relative to homologous regions of the Arabidopsis genome. This imparts contex-

tual information on the Brassica sequences through access to the Arabidopsis annotation, as well as

providing a loose clustering of Brassica multi-gene families relative to their Arabidopsis homologue.

Currently, there are more than 70,000 3’ and 5’ Brassica napus EST sequences displayed in the

public version of the browser, and in the future information related to expression information from

microarray and Serial Analysis of Gene Expression (SAGE) studies as well as publicly available

Brassica sequences may be included.

Arabidopsis thaliana is the model organism for plant genomics research most closely related to

the Brassica genus, which contains many agriculturally important species. The genome sequence

for this plant was completed in 2000 [45], and it consists of DNA sequence information organized

into 5 chromosomes, each of which is up to 30 million base pairs in length and contains up to

1The material is derived from two early papers. The first, “BioViz: Genome Viewer, Development of an SVG
GUI for the visualization of genome data” was a conference paper including a presentation at SVG Open 2002 [34],
and the second “The Brassica / Arabidopsis Comparative Genome Browser, A novel approach to genome browsing”
was published in the Korean Journal of Biotechnology 2003 [36] following two invited presentations related to the
browser in Korea. The material has been updated to reflect developments since the initial papers were published
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7,000 distinct genes distributed along the length of the chromosome. BioViz used the Arabidopsis

genome sequence and annotations developed by The Institute for Genomic Research (TIGR), which

is currently a part of the new J. Craig Venter Institute (JCVI). The initial version of the browser

used annotations from TIGR released on August 10, 2001, which contained annotations for 25,617

genes. TIGR’s ongoing annotation efforts [61] came to an end in January 29, 2004 with release

5, which is the latest version of the Arabidopsis genome data included in the browser. Release 5

contains annotations for 26,207 protein-coding genes and 3,786 pseudogenes genes of which 22,150

of the annotations are supported by sequence similarity to at least a plant EST [56].

3.2.1 Objectives and scope

The objective in developing a comparative genome browser was to help users visualize the relation-

ship between B. napus ESTs (or other sequence-based features) and the A. thaliana model genome.

To capitalize on the community effort to annotate Arabidopsis, the browser had to allow access to

the Arabidopsis annotations, which required that it be a functional genome browser for Arabidopsis.

The viewer was not intended to be an annotation tool, and consequently there was no requirement

to update the underlying dataset (neither the Arabidopsis genome annotations nor the Brassica

sequence annotations).

It was desired that the viewer be a web-application for two reasons. Firstly, the web provides

a venue for advertising the availability and extent of the biological resources developed for the

project. Secondly, making the data accessible online ensures the viewer and associated data can be

easily accessed by the Brassica research community.

3.2.2 Existing tools

There are standard bioinformatics tools available, such as BLAST [1], which will find regions of

similarity between given sequences. Unfortunately the plain text report produced by such stan-

dard tools is not always the most informative way to visualize the relationship. This is especially

true when trying to visualize alignments over a large region such as: a BAC (Bacterial Artificial

Chromosome), average size 100,000 bp [5]; a chromosome, average size 20-30 Mbp; or the whole

genome. BioViz was developed to assist in visualizing such relationships.

BioViz allows us to efficiently display the alignment of many ESTs over a large genomic region

such as a BAC (Fig 3.4). Regions of similarity between the Brassica sequences and the BACs in

the A. thaliana genome were determined using NCBI BLAST and hits with an E-value greater

than 10−4 were stored in a MySQL database. Using this information, the browser allows the user

to view all ESTs which have similarity to a given BAC, to see how different ESTs align with the

predicted A. thaliana genes, and to find homologous regions of Arabidopsis relative to specific ESTs.

However, displaying the alignment relative to the genome adds context to the results that is not
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otherwise present in the raw BLAST output.

3.2.3 Other genome browsers

BioViz was not the only genome browser available at the time of development[24, 54, 11, 27].

However, the existing browsers all had two main drawbacks which BioViz sought to overcome

- frequent page reloads and fixed displays. These characteristics result from the use of server

generated bitmaps to present the information and the application of traditional HTML layout

techniques (with one exception). The page reloads occur quite frequently because a new image

must be generated on the server each time the user wants to change the current view (by zooming

in or out, looking at another region of the genome, or requesting supplementry information). This

page reload is functional, however, it can be distracting – especially when communicating with a

server via a slow network connection or a server which is under heavy load and slow to return

results. The static layout is a result of the use of HTML tables to perform the layout. Like the

page reload, it is functional, but it limits the ways in which users can customize their view of the

data (Fig 3.1).

As an example, the Ensembl Genome Browser [24] provided a wealth of information in a straight-

forward manner. However, the data was presented in bitmap format so a page reload was required

to retrieve a new bitmap each time the user wanted a different view of the data. The user could

customize the bitmaps returned from the server using a series of combo boxes below the display

area, but the interface itself was quite static with few-if-any possible customizations. The GBrowse

[54] and USCS Genome Browser [27] interfaces were effectively equivalent to the Ensembl interface.

The Vista Genome Browser [11] took a different approach.

Vista was created to view the results of the Berkeley Genome Pipeline for Human / Mouse

genome comparisons. This browser used a Java Applet and relied on Java Servlets (effectively

server-side applets) to update the display. It provided a graph showing regions of similarity between

the mouse genome and human genome. By implementing the browser as a Java applet rather

than using HTML, the developers avoided the page reloads common in other web-based genome

browsers. Consequently, when compared to browsers such as the Ensembl Genome Browser the

data refreshes were less noticeable and the browser felt more fluid. However, Vista provided the user

with a static display, which is typical of most web-applications. For additional information related

to the sequences, Vista linked to a version of the UCSC Genome Browser [27]. Another second

significant difference between Vista and the other existing genome browsers was its focus on the

alignment of whole genome sequences where the other browsers focus on showing short sequences

in the context of a genome.
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Figure 3.1: GBrowse “BAC View”
While GBrowse does not technically have a “BAC View”, this screenshot shows the BAC which
is displayed in the BioViz “BAC View” screenshot. This screenshot is taken from the GBrowse
installation at Agriculture and Agri-food Canada in Saskatoon. The static layout is typical of the
web-based genome browsers, and the configuration options are presented as a series of checkboxes
below the graphic. The graphic presents an overview which shows the displayed region in the
context of the chromosome. The Details area presents a bar for scale and represents chromosome-
based features below it. For this screenshot the BACs, LOCUS, Protein Coding Gene Models and
AAFC Brassica napus ESTs (unassembled) tracks were enabled.
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3.3 Results

To satisfy the above objectives, the Brassica / Arabidopsis Comparative Genome Browser (BioViz)

was developed. BioViz is a client-server application that enables the efficient display of similarities

between many short Brassica sequences and the Arabidopsis genome (Fig 1.2). It allows the user

to view all sequences with similarity to a given region of the Arabidopsis chromosome (Fig 3.3),

to see how different ESTs align with the annotated A. thaliana genes (Fig 3.4), to search for

named Brassica or Arabidopsis sequences, to access the annotation associated with the Brassica

and Arabidopsis sequences and to perform on-the-fly BLAST searches for sequences within the

database (Fig 3.6).

The client-side relies on a novel SVG-based Custom GUI library (CGUI) to provide an intuitive,

easy-to-use, web-accessible front-end for this data. CGUI was written using JavaScript objects, and

contains basic objects to facilitate the construction of a GUI. Windows can be opened, closed, and

moved inside the GUI. The contents of a window can be scaled and translated independently from

other windows which provides the user with a very flexible interface. Client-side scripting allows

the user to create and dismiss views and request supplemental data from the server which allows

them to see as much or as little information as they would like at one time. Asynchronous data

retrieval eliminates the distracting page reloads common in other web-based genome browsers and

allows the user to continue exploring the genome while additional data is loading.

The server-side is implemented in Perl and responsible for retrieving data and rendering it as

SVG. Regions of local similarity between the Brassica sequences and the Arabidopsis genome were

identified using BLAST and BLAT (c.f. 2.3.4) and the results were stored in a MySQL database.

The genome data itself resides in a mix of XML files, flat-files and relational databases on the server

(Fig 3.2).

Implementation details are provided in Chapter 4.

3.3.1 Data representations

BioViz was implemented to allow a “drill-down” style access to the displayed information. The

application opens with a representation of the 5 Arabidopsis chromosomes and the user is able to

navigate, via a few intermediate steps, to a more detailed view of the individual gene or ESTs.

Chromosomes

The Arabidopsis chromosomes are displayed as long rectangles with a constant height and a width

(in pixels) equal to the number of nucleotides in each chromosome. The chromosomes are aligned

on the left-hand side of the display and scaled to fit the width of the containing window (Fig

3.3). Experimental representations had a rectangular mask with rounded corners applied to give
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Figure 3.2: BioViz Data Flow
The data displayed in BioViz comes from a number of sources. The chromosome representations
are created from an XML file, which contains a subset of the information contained in the TIGR
chromosome.xml files for efficiency. The BAC representations are created from the TIGR BAC XML
files, also filtered to reduce the size of the XML file. Sequence similarity information comes from a
mysql database, on-the-fly BLAST report(s), or cached on-the-fly BLAST report(s) depending on
the request. Sequences are extracted from one of several fasta format databases or the mysql data
database depending on the request. All data sources are configurable on a per-installation basis.
There are a number of pre-defined data access modules, or the local DBA can code custom data
access modules.
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the chromosomes their more usual “rounded” appearance, with a “pinched” region marking the

chromosome’s centromere, however this never made it into the released version of the browser. The

centromere is the location where the two chromatids making up the chromosome join during the

cellular reproductive cycle.

Figure 3.3: BioViz Chromosome View
The initial view presented to the user in BioViz is the “chromosome” view, which presents the 5
Arabidopsis chromosomes laid out horizontally. Chromosome 1 on the top through chromosome 5
on the bottom. Using the +/− buttons at the base of the window the user can zoom in or out on
the chromosomes, and they can use the side scrollbars to move around. The line at the middle of
the display follows the mouse and the position of the mouse relative to the chromosomes (in bp) is
displayed in the top-left text area.

BACs

The Arabidopsis chromosomes were sequenced in overlapping Bacterial Artificial Chromosomes

(BACs), and the BACs are marked on the chromosomes as alternating green-blue rectangles. In

BioViz, the BACs provide the first level of “drill-down”. The user can click on a given BAC and a

new view will open displaying the corresponding region of the chromosome. Represented on that

region are all the annotated genes, as well as the regions of overlap with the neighbouring BACs

(Fig 3.4a).

Genes and gene structure

The genes in BioViz are shown within the rectangle representing the chromosome. Genes may be

annotated as occurring on the 5′ or 3′ strand of the chromosome. Genes occurring on the 5′ strand

are drawn on the top of the chromosome and genes occurring on the 3′ strand are drawn on the

bottom of the chromosome. The genes are typically made up of coding and non-coding regions, the

order of which is referred to as the gene structure. In BioViz, a semi-transparent rectangle is drawn

30



Figure 3.4: BioViz BAC View
The “BAC” provides the first level of drill-down in BioViz. At the BAC level the Arabidopsis genes
and Brassica sequences with homology to Arabidopsis are displayed. a) The dark-grey area marks
the overlap with the BACs 5′ neighbour in the chromosome assembly. b) A gene with multiple
annotated gene structures. c) A set of ESTs having similarity to an Arabidopsis gene – note that
the alignment closest to the genome has the lowest E-value. d) An EST having similarity to the
Arabidopsis gene in the reverse orientation.
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to represent the entire gene region (including non-coding regions at the 5′ and 3′ ends), and then

additional semi-transparent rectangles are drawn overtop of this rectangle to mark the exons. In

BioViz, where a gene has multiple annotated gene structures, the different versions appear stacked

on top of each other (Fig 3.5).

Figure 3.5: BioViz Gene View
From the BAC View, the user can zoom in to see the structure of genes and the relationship with
related sequences. The user can also drill-down further to access the annotation associated with a
given gene. From here the user can drill-down one further level and access the sequence associated
with the gene (not shown), or search for other related sequences (not shown) using the buttons in
the bottom-right.

Alignments

The alignments displayed in BioViz have been computed relative to the Arabiodpsis BAC sequences.

Alignments are displayed relative to the BACs rather than the chromosomes because it was felt that

there would be little information gained by displaying them at the chromosome level of resolution.

However, the hits could be displayed relative to the chromosomes by converting the coordinates of

the BAC-based hits to chromosome-based coordinates. Each BAC occurs at some position on the

chromosome and each hit starts at a position on the BAC. To convert the alignment location to

chromosome-based coordinates simply requires adding the 5′ most coordinate of the BAC to the

alignment position.

Alignments are represented by drawing a fixed height rectangle with a width equal to the length
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of the HSP for each HSP in a given BLAST Hit and an x coordinate corresponding to the start of

the Hit relative to the subject sequence (Figure 2.8). Alignment with the BACs can be computed

for multiple sets of query sequences, and each set of alignments can be displayed one at a time in

the BAC view. Because all Hits in a set are displayed at the same time, it is necessary to adjust

the y value for each Hit so that the Hits do not overlap. In BioViz, the “best” Hit (as determined

by the E-value) is drawn closest to the BAC (Fig 3.4c).

Hits may be found in either the “+” or “−” orientation (that is, the subject and query sequence

match in the same orientation or in the reverse orientation). Where a match occurs in the same

orientation it is drawn on the side of the chromosome where the gene occurs. Where it occurs in

the reverse orientation, it is drawn opposite the gene (Fig 3.4d).

BLAST results

BioViz allows the user to perform an internal BLAST against sequences in the underlying database.

For instance, a user interested in all ESTs with similarity to a given Arabidopsis gene can perform

an on-the-fly BLAST search of the Arabidopsis gene sequence against the collection EST sequences.

A simple “BLAST View” is displayed in response, showing the query sequence along the top, and

the Hits to each subject sequence stacked below it (Fig 3.6). This is similar to the cartoon displayed

with BLAST results from many current online BLAST search sites.

Brassica oligos

Oligonucleotide sequences (oligos) were designed from the AAFC collection of Brassica napus ESTs

in order to design a Brassica specific microarray. Where the oligos were designed from contigs with

similarity to the Arabidopsis genome, it was possible to represent the oligos within BioViz. While

the EST assembly had similarity to the Arabidopsis gene, the oligo may have been designed in a

region lacking similarity, in which case it was drawn offset from the assembly (Fig 3.7).

Expression data

While it is not available in the current version of the browser, the display of expression data in

the genome browser was attempted for Serial Analysis of Gene Expression (SAGE) data [58]. A

SAGE tag is a 10bp tag extracted from a specific position of an expressed mRNA – the canonical

site is downstream of the 3′-most NlaIII restriction site (nucleotide pattern “CATG”). For a given

set of SAGE tags in a library a rectangle was drawn at the position (relative to the chromosome

sequence) where the tag occurs in the genome. The height of the rectangle was set to reflect the

abundance of the tag in the SAGE library. This representation was used to look for localized

“islands” of expressed genes and can be thought of as a type of histogram along the length of

the chromosome. However, no such islands were identified in the SAGE data for which this was
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Figure 3.6: BioViz BLAST result display
Sequences having homology to the query sequence are represented within the width of the BLAST
result view. Clicking on the name of the sequence takes the user to a detailed description of the
sequence (shown for the homologous “At2g38220.1” sequence), while clicking on the rectangular
HSP representation takes the user to the BLAST result details (not shown). This example shows all
coding sequences with homology to the previously examined gene “At2g38185.1”. Not surprisingly
the 3 alternative splicing forms of the gene are identified (.2, .3, .4). More interesting is the
homology with the second half of the “.4” splice form, which suggest a duplication event in this
gene’s history.
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attempted and consequently the functionality was not maintained in BioViz. Details of the SAGE

work have been published separately [49] and are not discussed in this thesis work because they are

not related to the BioViz application.

Figure 3.7: BioViz Brassica Oligo Display
Oligos designed for the AAFC Brassica-specific oligo array were displayed in the browser to provide
users with access to the annotation of homologous Arabidopsis sequences. The Brassica assemblies
(contigs) from which the oligos were designed were aligned with the BAC sequences, and the position
of the oligo was marked with a circle (which appears as a narrow ellipse in the screenshot because
it is compressed). Oligos which overlap the contig sequence (such as the one third from the top)
are designed in a region with homology to Arabidopsis and as such might be expected to hybridize
with Arabidopsis. However, the other three oligos are designed in regions without similarity to
Arabidopsis and as such should be expected to be Brassica specific.

3.3.2 Performance characterization

It was suggested that the approach taken in Bioviz would reduce the number of page reloads and

in turn reduce the amount of data transferred to the client. To test this suggestion a simple

scenario was performed in both BioViz and GBrowse while logging network traffic. Network data

was recorded using Microsoft Network Monitor 3.2 on the client-side. Data captures were filtered

to include only packets sent to or received from the server. A new capture was performed for each

of the steps described below. A summary of the data transfered for each step is summarized in

Table 3.1. The number of data requests as well as the time spent and data transferred per request

is summarized in Table 3.2.

Step 1, “Initial Load” involved recording the data transferred while the application loaded. In

the case of GBrowse, it was necessary to delete cookies and clear the cache to ensure that all scripts
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and icons were reloaded. Step 2, “Load BAC” consisted of loading BAC F16M14. In BioViz, this

was accomplished using the “Find Sequence” option available from the Search menu on the initial

Chromosome View. In GBrowse, this was accomplished by searching for the BAC in the search

box. Step 3, “Load AAFC EST Contigs” involved adding the AAFC EST Contig representations to

the currently displayed BAC image. In BioViz, this involves requesting supplementary information

which is incorporated into the existing image. In GBrowse, this involves requesting a new image

from the server. Step 4, “Zoom to Gene” involved zooming to gene At2g38180 using the browser

navigation controls. In BioViz, this is performed entirely on the client-side, with the transformation

being adjusted as necessary to focus on the gene and reveal its structure. In GBrowse, this involved

transferring a new image from the server for each adjustment. Step 4, “Examine Neighbours”

involved navigating to the two genes flanking At2g38180. Again, in BioViz this was accomplished

entirely on the client-side, while GBrowse loaded new data for each transformation required to

display the neighbours.

For the test, the GBrowse image width was set to 1024px, while no such setting applies to

BioViz as the user can scale the image to their preferred size on the client-side. The following

GBrowse tracks were enabled to make the displayed information approximately equivalent to that

of the BioViz BAC View: BACs, Locus, and Protein Coding Gene Models. The representation

for the Locus and Protein Coding Gene Models were set to “compact” to hide the descriptions,

which are not available in the BioViz BAC View. Both BioViz and GBrowse were running on the

same internal AAFC server, with tests performed in parallel to minimize any load differences on

the server.

3.4 Discussion and Conclusions

3.4.1 Comparison with representations used in other browsers

The data representations used in BioViz differ from those used in other web-based genome browsers.

This is partially a result of the “comparative genomics” emphasis within BioViz. For instance, all of

the features which are part of the model organism (Arabidopsis) are contained within the bounds of

the “chromosome” rectangle and other features are outside these bounds (Fig 3.4). This separates

the two organisms, whereas the other comparable web-based browsers treat all features the same,

so gene features and homologous regions from other organisms appear together in tracks below

the genome (Fig 3.1). There is still a type of separation between the model organism and other

organisms, but it is not so clearly defined.

BioViz displays features above and below the centerline to represent the orientation of the

features (both genome features such as genes, and homologous sequences). This is compared to the

directed arrow used to display features in the other comparable genome browsers (Fig 3.8). The fact
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Table 3.1: Data transfer (bytes) in BioViz and GBrowse

Support Files Content Total

BioViz

Initial Load 121,696 206,513 328,209
Load BAC - 21,047 21,047

Load AAFC EST Contigs - 17,595 17,595
Zoom To Gene - - -

Examine Neighbours - - -
Total 121,696 245,155 366,851

Gbrowse

Initial Load 345,296 68,750 414,046
Load BAC - 95,813 95,813

Load AAFC EST Contigs - 118,028 118,028
Zoom To Gene - 3,417,252 3,417,252

Examine Neighbours - 277,506 277,506
Total 345,296 3,977,349 4,322,645

Network traffic was logged while executing a 5 step use case in both BioViz and GBrowse. “Initial
load” reports the data transferred when starting the genome browser. “Load BAC” reports the
additional data transferred to display BAC F16M14. “Load AAFC EST Contigs” reports the data
transferred to add the AAFC EST Contigs on BAC F16M14 to the representation. “Zoom to Gene”
reports the data used to zoom into gene At2g38180 using the browsers navigation controls. “Exam-
ine neighbours” reports the data transfered while navigating to the two genes flanking At2g38180.
The data transfer recorded in bytes and broken down into two parts, support files (e.g. style sheets
and scripts) and content (e.g. the graphic representations, including the user interface elements in
the case of BioViz).

Table 3.2: Time (seconds) and data (bytes) per request in BioViz and GBrowse

Data per
Request

Time per
RequestRequests Time

BioViz

Initial Load 1 328,209 3.89 3.89
Load BAC 1 21,047 0.48 0.48

Load AAFC EST Contigs 1 17,595 0.47 0.47
Zoom To Gene 0 - - -

Examine Neighbours 0 - - -
Total or Average 3 73,37 4.84 0.97

Gbrowse

Initial Load 1 414,046 14.36 14.36
Load BAC 1 95,813 4.27 4.27

Load AAFC EST Contigs 1 118,028 4.78 4.78
Zoom To Gene 31 110,234 327.52 10.57

Examine Neighbours 3 92,502 37.03 12.34
Total or Average 37 166,125 388.00 9.26

In BioViz, the test scenario involved one page load on startup and two additional data requests
for additional data, after which all transformations occurred on the client side. In GBrowse, the
test scenario triggered a page load on startup and one page reload each time additional data was
requested or a new view was required. BioViz requested data from the server 3 times, with an
average response size of 73Kb and an average response time of 0.97 seconds. Time per request is
not reported for the transformation related steps (4 and 5) in BioViz as no data was requested
from the server. GBrowse requested data from the server 37 times with an average response size
of 166Kb and an average response time (including user time) of 9.26 seconds.
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that the orientation of features differs is easier to observe at high-levels of zoom in BioViz. Even

when zoomed in, it can be difficult to distinguish the orientation of some sequences in the other

browsers. However, in BioViz it can be confusing to interpret the orientation of the feature until

one is familiar with BioViz. Adding arrow heads to the features in BioViz would be an improvement

to the existing representation.

It is straight-forwrad to identify sequences resulting from reverse transcription in BioViz. Such

sequences appear on the opposite side of the centerline from the gene representation (Fig 3.4 d).

However, in the other browsers genes on the chromosome are all displayed in the same track,

with only an arrow to indicate orientation. Thus it is necessary to compare arrow heads between

features on different tracks to identify potential reverse transcription sequences. Similarly, an EST

having similarity to a region without an annotated gene sequence would more clearly standout in

the BioViz representation because the EST would be aligned with an empty region of the genome.

Whereas in the other representations, one would have to look at two different tracks for overlapping

features and the user might overlook it in the array of available tracks.

3.4.2 Advantages of BioViz

The web-based genome browsers that were developed around the same time as BioViz exhibited

two technology-imposed characteristics that BioViz sought to avoid: frequent page reloads and/or

static layouts. BioViz avoids both of these characteristics through the combined use of SVG 2.4.1

and an AJAX-like approach (c.f. 2.4.2). While page reloads and a static display do not impede

the creation of a functional browser, it was felt that they diminished the user experience. The

scenario described in the previous section required 37 page reloads in GBrowse, with an average

time requirement of 9.26 seconds per reload (Table 3.2). On the other hand, BioViz required only

a single page load on startup, and required less than 1 second to retrieve additional data from the

server 3.2).

Responsiveness

The time required for the data transformation steps (Zoom To Gene, Examine Neighbours) in

BioViz is not recorded in Table 3.2 because there was no data transfer involved. However, the

author is able to perform the transformation steps in under 20 seconds (wall clock time). This

is the time required to perform the transformations. That the user is able to perform a series of

operations in BioViz in 20 seconds that required 354 seconds in GBrowse supports the notion that

the approach used in BioViz improves the user experience. However, there are a number of factors

that could contribute to the increased time in GBrowse.

Looking at the time required in GBrowse for the transformation steps it is possible to roughly

estimate the time spent reloading data compared to the client-side time for each request (Server vs
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Figure 3.8: Placement of features
Screenshots showing features in BioVoz (top) and GBrowse (bottom). In BioViz, features are
placed above the center-line if they are in the same orientation as the BAC sequence and below the
center-line if the are in the opposite orientation. In the other genome browsers the orientation is
indicated by an arrow on the features.
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Table 3.3: Server vs. Client time for Data Transformation Steps in BioViz and
GBrowse

Time Server Client

BioViz
Zoom To Gene 15 - 15

Examine Neighbours 5 - 5
Total 20 - 20

Gbrowse
Zoom To Gene 327.52 148.18 179.34

Examine Neighbours 37.03 14.34 22.69
Total 354.55 162.52 202.03

An estimate of the user time for the transformation steps in GBrowse can be made by subtracting
the time to load the AAFC EST Contigs view in GBrowse from the time for each request in the
transformation steps. Based on this estimate more than half the time required for the transforma-
tion steps was user time.

Client in Table 3.3) by subtracting the time to load the AAFC EST Contigs image (4.78 seconds)

from the time per request. This estimate provides a lower bound of the client-side time given

that the time to load each image decreases as the user zooms in (a result of the decreased image

complexity). Based on these numbers, using client-side transformations would save approximately

162 seconds of Server time related to generating and reloading the images.

The estimated client-side time in GBrowse is considerably higher than the required in BioViz.

The client-side time in GBrowse is spent on two tasks, user orientation and triggering the trans-

formation. The orientation time is required because the page reload means that the user might

need to scroll the page to re-display the browser image, and the gross transformations applied in

GBrowse require the user to re-locate the region of interest and decide which transformation to

apply next to zoom in on the desired gene. The act of triggering the transformation is negligible; in

our experience it is the reorientation that is the time consuming factor. The same actions in BioViz

require approximately 20 seconds, which is almost entirely time spent performing the transforma-

tions on the client side, there is no need to reorient between renderings because transformations

are seamless and the adjustments are small. This suggests that a more fluid interface could save as

much as 200 seconds in GBrowse.

Together, the server-side rendering and resulting page reloads cost the user more than 5 min-

utes (355 seconds to perform the actions compared with the 20 seconds in BioViz). This time is

attributed to the page reloads and reorientation required after each page reload. We observe that

a significant savings is produced by using client-side transformation and dynamically updating the

document, and thus conclude that the client-side transformations used in BioViz do in fact provide

an improved the user experience by significantly improving responsiveness of the application.
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Table 3.4: Comparison of image size for common image formats

Graphic SVG SVGZ GIF JPEG PNG
shapes 2 KB .7 KB 26 KB 24 KB 21 KB
gradients 2 KB .6 KB 62 KB 35 KB 41 KB
tiger 96 KB 31 KB 52 KB 56 KB 111 KB

The above table was originally prepared by Ken Sall (1999). The raster graphics were created
from the SVG image using Paint Shop Pro. The original table has been updated to include the
compressed SVG image (SVGZ). The table and associated images are available at http://www.
wdvl.com/Authoring/Languages/XML/SVG/DoingIt/size.html. As noted by the author SVG is
quite amenable to compression because it is a text based format.

Band width requirements

A potential secondary benefit of using SVG came in the form of lower bandwidth requirements

because vector graphics are often smaller than the corresponding high-resolution raster graphic

(Table 3.4 shows one of the original comparisons for SVG). Thus the use of a vector graphics

format has the potential to save bandwidth, both when the image is initially transfered and by

reducing the number of page reloads. As can be seen in Table 3.1 an order of magnitude less data

was transferred during this scenario using BioViz than using GBrowse, and there were 34 fewer

data requests in BioViz than in GBrowse.

The page reloads present in the existing browsers occurred each time the user changed the

current view - by zooming in on the chromosome or moving along the chromosome (scaling or

translating). The use of a vector graphics format such as SVG can significantly reduce the number

of required page reloads by eliminating the need to retrieve new data from the server for such

minor view changes. Where a user is working on a slow internet connection or the server is under

heavy load, keeping the transformation on the client-side should reduce lag and decrease the load

on the server thereby make the browser feel more responsive. Interestingly, the under-development

GBrowse version 2.0 is said to be a complete rewrite, which includes the addition of “slave ren-

derer support” to “distribute reading databases and rendering tracks across multiple processes and

machines” and thereby greatly improve performance [22]. This suggests that server-load can be a

problem in the bitmap-based browsers, so pushing some of the data transformations to the client

and reducing the number of required refreshes would be of value. In the scenario described in

the previous section, 34 of the 37 reloads (and re-renderings) could have been avoided had the

transformations been performed on the client-side (Table 3.2).

A second undesirable aspect of the page reload is the unresponsive period while the new page

is retrieved from the server. This limits the rate at which the user can work to the speed at which

new data can be retrieve from the server. A further consequence of this is that navigation can be

imprecise. Unless the zoom is quite high it is only possible to make gross changes, which makes
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tasks such as centering the view on a specific feature and then zoom-in awkward. Indeed, GBrowse

version 2.0 is also implementing a new AJAX user interface to “provide a smoother user experience”

[22]. In BioViz this is avoided by the use of a vector graphics to allow client-side transformations,

and through the use of an AJAX-like implementation where data is received asynchronously and

added to the existing page as it arrives. This allowed the user to continue navigating (drilling-

down to new regions of the genome, zooming in on features of interest, opening gene annotations)

while data was loading or searches were being performed. In the scenario described in the previous

section, it seems that approximately 3 minutes (202 seconds) of user time might be saved as a result

of implementing an AJAX style interface.

SVG

All the data images in BioViz can be scaled and translated on the client side because SVG is a

vector graphics format (recall 2.4.1). Consequently, there is no need for the data to be reloaded

each time the user desires a different perspective on already loaded data. The ability to transform

the data on the client side improves the flow of browsing by reducing the number of times the client

must fetch data from the server. For instance, genes have a specific structure that can only be

visualized at high levels of magnification. With a bitmap-based browser, the client must wait for

a new image from the server for each incremental change in magnification. Whereas BioViz allows

the user to zoom in to the point where the structure is visible without loading any additional data.

Since the whole user interface is implemented in SVG, it is one large interactive graphic, which

means that there are effectively no layout constraints imposed on the user. BioViz has been im-

plemented using a “multi-windowed” format which provides the user with a great deal of flexibility

when arranging the view of their data. The browser acts as a type of “desktop” for the browser,

allowing users to arrange their views however they’d like or even to minimize views that they are

not currently using. Given this implementation, users can view information about as many regions

of the genome as they want, as many gene sequences, and as many features as they want (though

they are limited by the physical space constraints of their display). A multi-windowed format inside

a “desktop” format was selected rather than using multiple browser windows because of restrictions

on inter-browser communication when working inside a plugin (browsers often restrict the ability

of code in plugins to effect changes outside the plugin for security purposes).

To reiterate, being an XML+SVG based genome browser gives BioViz a number of advantages

as compared to the standard bitmap based browser:

• Because SVG is a vector graphics format one can zoom and pan an SVG image on the client-

side without loss of fidelity. This reduces the number of page reloads required, reducing load

on the server and improving the responsiveness of the client. This also means there is no need

need to wait for the new image to be returned from the server each time one would like to
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examine the data from a different perspective.

• Because SVG is dynamic and interactive, new data can be added to the existing image and

the image can be changed in response to user events (i.e. clicking on a gene).

• Because SVG is an XML based graphics format, developing XML technologies such as Ex-

tensible Stylesheet Language Transformations (XSLT) [9] can be used to transform XML

formatted data into SVG. For instance one might transform MAGE-ML [52] formatted mi-

croarray experiments directly into SVG images for display or visual inspection within the

browser.

3.5 Future Work

Planned improvements to BioViz include allowing users to perform sequence based searches, en-

abling searching by key words (which would ideally involve incorporating the Gene Ontology (GO)

controlled vocabulary [4]). The work to mark the centromere on the chromosomes should be com-

pleted. Arrows should be added to the features in BioViz to make their orientation explicit.
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Chapter 4

BioViz: Implementation

4.1 Synopsis

This chapter describes the implementation of the BioViz genome browser, including examples of

the use of SVG and ECMAScript objects on the client-side and a discussion of the server-side

framework.1

4.2 Background

The SVG format (c.f. 2.4.1) is used to provide both the data representation and user interface (UI)

in BioViz. However, user interface elements are not defined in the SVG specification, so an object-

oriented (OO) JavaScript library was implemented to provide the UI elements. On the server-side,

OO Perl (c.f. 2.4.2) was used to handle client requests and produce the data representations. This

background section shows an example of the use of both OO JavaScript and Perl.

4.2.1 Object-oriented JavaScript

ECMAScript (the standard upon which JavaScript is based) provides prototype-based objects

rather than the more common class-based objects. The fundamental difference between the two

types of objects being that in a prototype-based language there is no distinction between the “class”

and an “instance” of the class. Instead, any object can act as a prototype for a new object that

can be cloned to create a copy of the object with predefined initial properties. Any function in

JavaScript can construct an object if called with the “new” operator. It is possible to implement

inheritance within this paradigm by creating two constructor methods and assigning the construc-

tor for the superclass as the prototype for the sub-class. This section shows how inheritance was

implemented in the CGUI library using examples from the implementation.

1Portions of the material in this chapter were included in the early papers: “BioViz: Genome Viewer, Development
of an SVG GUI for the visualization of genome data” [34] and “The Brassica / Arabidopsis Comparative Genome
Browser, A novel approach to genome browsing” [36]; however, this chapter adds additional material related to the
browser and the techniques used to generate the data representations used in the browser. CGUI has since been
moved to a project on the open source software development site sourceforge and renamed CSVGUI (because there
was already a CGUI library on sourceforge)

44



function CGUI (x, y, width, height) {
this.width = width;
this.height = height;
this.x = x;
this.y = y;
return this;

}

Figure 4.1: Definition of the CGUI object constructor
The CGUI constructor requires x, y, width and height values to initialize the corresponding object
properties.

var widget = new CGUI (10, 20, 80, 20);

Figure 4.2: Creation of a CGUI object
This will create a generic 80x20 CGUI object at position 10,20. However, the visual representation
of the CGUI widgets is defined by the CGUI subclasses so the above is artificial.

The CGUI object defines an “x”, “y”, “width”, “height” attribute (Fig 4.1). The CGUI object

is the base object in the CGUI hierarchy (Fig 4.9). A CGUI object could be created and and

initialized with “x” having a value of “10”, “y” having a value of “20”, “width” having a value

of “80” and “height” having a value of “20” as shown in Figure 4.2. This object is extended to

provide other UI elements, for instance a “Button” constructor is defined and the object made to

extend the “CGUI” prototype as shown in Figure 4.3. The “Button” adds a “text” attribute and

an “event” attribute to the CGUI “x”, “y”, “width”, and “height” attributes. The “text” attribute

is to hold text to display on the button and the “event” attribute is to allow the programmer to

specify a handler for user click events. Note that the “CGUI” object’s attributes are not re-declared

in the “Button” prototype because they are inherited from the parent prototype.

There are two key aspects to the inheritance. The first is setting the “prototype” property for

the subclass to ensure that the class inherits the parent’s attributes and values. By setting the

“prototype” property of “Button” equal to the CGUI constructor, we give the “Button” class all of

the “CGUI” classes attributes (“x”, “y”, “width”, “height”) in addition to the attributes declared

for the Button (“text”, and “event”). The second is initializing the inherited attributes. In CGUI,

this was done by initializing a “base” attribute to reference the superclass constructor (“this.base

= CGUI”), and then calling the constructor with the appropriate parameters.

An alternative to using the base attribute would be to use the JavaScript “call” method, which

allows you to call a method on an object other than itself. This has the effect of making the “this”

attribute in the method refer to the specified object instance. So the lines related to the base

attribute could be replaced by a single “call” line as in Figure 4.4, which will have the effect of

having the CGUI function update the attributes of the “Button” object.
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function Button (width, height, text, event) {
this.text = text;
this.base = CGUI;
this.base (0, 0, width, height);
this.event = event;
return this;

}
Button.prototype = new CGUI;

Figure 4.3: Definition of the Button object constructor and inheritance in
JavaScript

In CGUI, the Button is an example of a CGUI widget for which there is a visual representation.
The button constructor requires width, height, text, and event values to initialize the widget. The
width and height attributes are inherited from the CGUI object, and as such are not initialized
here. Instead, the CGUI constructor is called (this.base) with the width and height values. This
is discussed further in the text. The text value is used as a label for the button, while the event
value is a reference to an event handler to be called when the button is selected.

function Button (width, height, text, event) {
this.text = text;
CGUI.call (this, 0, 0, width, height);
this.event = event;
return this;

}
Button.prototype = new CGUI;

Figure 4.4: Alternative definition of the Button object constructor using
JavaScript “call” method

As discussed in the text, the call method provides an alternative technique for initializing the
superclass.
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package Sequence;

sub new {
my ($class, %args) = @_;
my $self = {};
bless $self, $class;
if ($args->{’-id’}) {

$self->{’id’} = $args->{’-id’};
}
if ($args->{’-sequence’}) {

$self->{’sequence’} = $args->{’-sequence’};
}
if ($args->{’-alphabet’}) {

$self->{’alphabet’} = $args->{’-alphabet’};
}
return $self;

}

sub draw {
# implementation to be described later

}

Figure 4.5: Declaration of Sequence class in Perl.
The above Perl fragment defines a “Sequence” class by declaring a constructor (“new”) in the
“Sequence” package. The constructor allows the “id”, “sequence”, and “alphabet” of any newly
created “Sequence” to be specified. It also defines a “draw” method (to be discussed later), which
can be used to return an SVG fragment representing this “Sequence”.

4.2.2 Object-oriented Perl

As compared to ECMAScript, Perl uses the more usual class-based objects. When working with

Class-based objects, one pre-declares the methods and attributes of the “Class”, which then serves

as a template for the creation of “instances” of the object (though strictly speaking, in Perl you don’t

need to declare attributes). Changes to an “instance” have no effect on the creation of subsequent

“instances” which are created from the “Class” definition. This section provides an example of

inheritance in Perl using examples from the BioViz server-side implementation (described in detail

in section 4.3.3).

Two of the objects rendered in BioViz are “Sequences” and “Contigs”. A “Sequence” is a

named string of amino or nucleic acid characters and a “Contig” is a set of “Sequences” which

have been assembled into a single consensus sequence. In Perl, a “Sequence” might be described as

in Figure 4.5, which allows one to create an SVG representation of a DNA sequence as in Figure

4.6. A “Contig” can be modeled as a sub-class of “Sequence”, which gives it all the necessary

“Sequence” characteristics (id, sequence, alphabet) and allows it to be used in the same way as a

regular “Sequence”. To store the additional information related to the sequences used to form the
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consensus sequence an indexed list of contig “members” is added (Fig 4.7).

my $sequence = new Sequence(
-id=>"test1",
-sequence=>"ATCCGATCCATCAGCT",
-type=>"DNA"

);
my $svg = $sequence->draw();

Figure 4.6: Creation of a Sequence object
The above code fragment creates a short DNA sequence named ”test1” and creates the correspond-
ing SVG fragment using the draw method.

package Contig;

our @ISA = qw(Sequence);

sub new {
my ($class,%ARG) = @_;
my $self = $class->SUPER::new(%ARG);
bless ($self, $class);
$self->{’members’} = {};
return $self;

}

sub draw {
# implementation to be described later

}

Figure 4.7: Definition of a Contig in Perl
The BioViz Contig object consists of a set (a hash) of “member” sequences.

Inheritance in Perl is accomplished through the use of the “ISA” array, which contains the list of

an object’s parent objects. In BioViz, the “Contig” is-a child of “Sequence” (Fig 4.7). Initialization

of the inherited attributes is accomplished in Perl by accessing the “SUPER” class (i.e. the parent)

through the “class” attribute and calling its constructor (the “new” method).

4.3 Implementation

The browser was implemented using a client-server architecture where the client-side is responsi-

ble for data presentation and the server-side is responsible for data retrieval in response to client

requests (Fig 4.8). The Adobe SVG Viewer provides a non-standard addition to the SVG speci-

fication in the form of the getURL and postURL methods, which allows a message to be sent to

the server and a response returned via a registered callback function. Together with the parseXML

method, which takes an XML fragment and turns it into an SVG Document Element, it is possible
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to asynchronously request data from the server and incorporate it into the current image. This

allows the user to request supplementary information and continue browsing while the data loads.

API enhancements added in the SVG 1.2 specification make it possible to provide functionality

similar to that available via the getURL and postURL methods in a standards compliant fashion.

Figure 4.8: BioViz Architecture
BioViz consists of a Client-Server architecture with request-based communication between the two.
The Client side is driven by an SVG Document, made up primarily of the CGUI widgets. The
Server-side consists of a framework for handling client requests and generating the SVG Document
fragments to be returned in response.

4.3.1 Client-side

The client of BioViz makes use of SVG in two ways. First, it uses SVG to display the content,

and second, it creates user interface (UI) elements in SVG using JavaScript objects to provide

interactivity. Content is returned from the server as SVG document fragments that can be inserted

into the current display using the parseXML method and the Document Object Model (DOM)

API. The UI elements are created using a hierarchy of objects developed to facilitate the creation

of the UI (Fig 4.9). Each UI element is defined by a JavaScript object that can create a visual
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representation of itself for insertion into the SVG Document. To facilitate the creation of BioViz

specific views, objects were defined and included in the BioViz package.

Figure 4.9: BioViz Client-side Architecture
The BioViz client-side architecture consists of an SVGDocument to define the web-applications
view, the CGUI library to provide the UI elements used in the app, and bioviz specific CGUI
subclasses to facilitate the creation of the various views used in BioViz. All CGUI UI elements
extend the CGUI widget. There are 4 principal component types, three primitive: Pane, Bar,
Button, and one composite: Frame. The composite Frame is composed from a number of other
elements, one or more Bars and a Window. Via the root CGUI element all components inherit an
Anchor object, which allows the UI element to be anchored at a specific location relative to another
element. They also inherit a Scheme implementation which defines the visual appearance of the
element. Note that some details have been excluded from the above diagram for the sake of clarity.

The key aspects of the client-side of the browser will be discussed here and illustrated using

examples from the BioViz application.

“onload” event handler

When an SVGDocument is first loaded the “onload” event is fired [47]. Any new application being

developed using CGUI needs to define an event handler and register it to handle the “onload”
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event. In order to initialize the application, three things need to happen. The CGUI “init” method

must be called to initialize the library. The postURLPath attribute of the CGUI object must be

initialized with the path to which client requests should be submitted. The initial GUI for the

application should be created; In BioViz this is accomplished using the “openMainFrame” method

(Fig 4.10).

// called when the page is first opened
function _onload (evt)
{

CGUI.init();
CGUI.postURLPath = "/cgi-bin/bioviz";
openMainFrame();

}

Figure 4.10: BioViz “onload” event handler
The onload event hander needs to be defined in any app using CGUI. The CGUI init method
initializes the CGUI widgets while the postURLPath contains the URL to which requests should
be sent. The openMainFrame method is unique to BioViz; it is responsible for opening the initial
“Chromosome” view.

The “openMainFrame” method creates the initial view displayed when starting BioViz (Fig 3.3).

It does this by creating a CHRView object (Chromosome View — the parameters are x, y, width,

height, title), which is a subclass of the generic CGUI Frame (which provides a window inside the

browser). The CHRView has two attributes “sourceOrg” and ”sourceSource”, which determine

the dataset to use when creating the chromosome representations. In Figure 4.11, the values are

set to “ath” (for Arabidopsis thaliana) and “tigr” (The Institute for Genome Research) because

this was the main source for the Arabidopsis thaliana genome information displayed in the browser.

Providing different values could create a request for information related to other organisms, thereby

allowing other organisms to be used in the browser. After creating the Frame it must be added to

the display — in Figure 4.11 the addToParent method is used to add the frame to the root of the

SVGDocument (referenced by CGUI.root for convenience), but it could also be used to add it to

another Frame or some other CGUI component.

After creating the main frame, the five Arabidopsis chromosomes are loaded. This is accom-

plished using the “getChromosome” method of the “CHRView” object. This method constructs a

request for a specific chromosome representation, sends it to the server, and adds the results to the

display area of the “CHRView”. The format of the requests used in BioViz is discussed in detail in

Section 4.3.2.

The CGUI library is included at the end of the SVG Document using an xlink. XML Linking

Language (XLink) [12] is a specification that allows elements to be inserted into XML documents.

It is analogous to the hlink from HTML.
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function openMainFrame () {

// create main frame
var main_frame = new CHRView (

0, 0, 700, 235,
"Brassica / Arabidopsis Comparative Genome Browser (v0.5)"

);

// specify the organism being displayed - ath = arabidopsis thaliana
main_frame.sourceOrg ("ath");
main_frame.sourceSource ("tigr");

// add the frame to the svg document
main_frame.addToParent (CGUI.root);

// load chromosomes and specify y offset
main_frame.getChromosome (1, 20);
main_frame.getChromosome (2, 50);
main_frame.getChromosome (3, 80);
main_frame.getChromosome (4, 110);
main_frame.getChromosome (5, 140);

}

Figure 4.11: BioViz openMainFrame method
The openMainFrame method creates the “Chromosome View” (CHRView), which is a subclass of
the CGUI Frame that has been extended to provide useful BioViz specific attributes such as the
“sourceOrg” and “sourceSource” (source organism and data source), which are used in the client
requests sent to the server. It then requests the representation of the 5 Arabidopsis chromosomes.

<script type="text/JavaScript"
xlink:href="./cgui_lib.js.gz"/>

Figure 4.12: Including the CGUI source
The CGUI library source files have been concatenated into one file and compressed. This source
library is included in the SVG Document (and made available to the application) by way of an
xlink (a mechanism for including an external file in an XML document).
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4.3.2 Messages

Client requests are made using the Adobe PostURL method. This requires code on the client-side to

generate the request and handle the response, and code on the server-side to receive the requests and

generate the response. On the client-side, the parameters for the request are encoded in an HTTP

POST message. Figure 4.13 shows the code used to retrieve the chromosome representations on

startup. On the server-side this request is received and the “parameter=value” pairs are parsed and

used to create a ClientRequest object, as defined in Figure 4.14. In the case of a “GetChromosome”

request, there is no “comparative” element to the request, and the “ClientRequest” object that is

created would not have a defined “target” attribute. The response to a message in BioViz is always

either an XML fragment that can be added to the current document or an error message to be

displayed to the user.

CHRView.prototype.getChromosome = function (num, y) {

window.postURL (CGUI.postURLPath + "BioVizServer.pl",
"service=GetChromosome" +
"&" + "source_id=" + num +
"&" + "source_organism=" + this. sourceOrg +
"&" + "source_type=chromosome" +
"&" + "source_source=" + this.sourceSource +
"&" + "y_offset=" + y, this.handler);

}

Figure 4.13: BioViz GetChromosome Message
The request parameters “source id”, “source organism”, “source type”, “source source” and
“y offset” are concatenated to form a string of “parameter=value” pairs, with each pair separated
by a “&”, and this string is passed to the server. For example, the complete request for Arabidopsis
chromosome 1 would look like: “service=GetChromosome&source id=1&source organism=ath&
source type=chromosome&source source=tigr&y offset=20”.

4.3.3 Server-side

The server-side of BioViz was initially developed as a set of Perl CGI’s, one for each client request

that could be generated by the client. These individual CGI’s were later merged into a single

Perl module, which was then further redeveloped into a framework for returning SVG document

fragments in response to client requests (Fig 4.15). Additional client requests can be handled by

defining a new request handler and registering it with the framework.

When a client request is received, the framework determines the appropriate request handler and

forwards the ClientRequest object to the request handler. The request handler is responsible for

gathering data from the appropriate source and creating an SVG document fragment to be returned
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package bioviz::obj::messages::ClientRequest;

# ClientRequest constructor
sub new {

...

# String: the requested service
$self->{’service’} = "";

# A bioviz::obj::Provenance object:
# Identifies the source of the requested data
$self->{’source’} = undef;

# A bioviz::obj::Provenance object:
# Identifies the target for the requested data in the case
# of a comparative request (such as a BLAST result)
$self->{’target’} = undef;

...
}

package bioviz::obj::Provenance;

# Provenance constructor
sub new {

...

# String: the source of the requested data
$self->{’source’} = "";

# String: the organism from which data is requested
$self->{’organism’} = "";

# String: the id of the requested data
$self->{’id’} = "";

# String: the type of the requested data
$self->{’type’} = "";

...
}

Figure 4.14: BioViz Message Format
A BioViz request consists of a requested “service” and two Provenance objects, which indicate
where the “source” and “target” data should come from. The Provenance object defines a data
source (institution), an “organism”, a data “type” and an “id” for the requested information.
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to and displayed in the client. Possible sources include XML files, flat files, SQL databases, and

dynamically generated reports. The SVG returned from the server is added to the GUI using the

parseXML method available in the Adobe SVG plugin.

Figure 4.15: BioViz Server-side Architecture
The BioViz server-side architecture constists of four primary interfaces HandlerI, ParserI, AccessorI
and RenderableI. Objects implementing ParserI are concerned with parsing text files, for instance
BioViz requires an object to parse BLAST reports. Objects implementing AccessorI are responsible
for accessing data, for instance, the “bioviz” accessor is used to access data in the MySQL database
used in the AAFC BioViz install. Note that any object implementing ParserI is also an AccessorI.
Objects implementing HandlerI are responsible for handling client requests, for instance, BioViz
defines a “GetChromosomeHandler”, which uses the “TIGRCHR” ParserI Object to parse and
return the chromosome representation. Objects implementing RenderableI must be able to be
rendered as SVG. These objects are used by the AccessorI objects to create the SVG content that
is returned to the client. Note that some details have been excluded from the above diagram for
the sake of clarity.

For example, in the case of the GetChromosome request described above, the ClientRequest

is created from the parameters encoded in the HTTP POST submission. The ClientRequest is

examined to determine the handler to use based on the specified “service” value. This results

in the GetServiceHandler being selected. The GetServiceHandler is dynamically loaded, and the

handleRequest method is called. This method uses the attributes of the “source” provinence object

to determine which data source should be used to load the data by looking up the appropriate

data source and accessor class in a configuration file. The use of a configuration file containing a

datasource and accessor object ensures that different datasources can be configured without having

to modify the GetChromosome request handler. This makes the GetChromosome request handler

a type of framework class that can be made to return data for new organisms or from new data

sources without modification.
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4.3.4 AJAX

The browser has been implemented using a client-server architecture with the client-side responsible

for presentation of the data, and the server-side responsible for retrieval of the data at the client’s

request. True to the AJAX approach (c.f. 2.4.2), supplementary information is asynchronously

returned from the server and added to the existing SVG Document using JavaScript rather than

having the page reload. Because the requests are asynchronous and there is no page reload the

user can continue browsing while the data loads. Note that, while AJAX is now a common web

development methodology, the term had yet to be coined at the time BioViz was developed.

4.4 Discussion and Conclusions

A version of the Viewer, with a subset of the functionality available in-house was made publicly

available at www.brassica.ca [10] as a way of sharing the AAFC EST resource with the scientific

community.

4.4.1 Client-side

Using an SVG based genome browser enabled interesting and creative techniques for viewing data

relative to a model organism. The multi-windowed display and the asynchronous data retrieval

present in the Brassica / Arabidopsis Comparative Genome Browser provided a more intuitive and

productive browsing environment than standard bitmap based browsers. By applying an AJAX

approach it would be possible to avoid page reloads in the bitmap based browsers. We are unaware

of any existing web-based application that allows the same degree of flexibility in the user interface

as was enabled through the use of SVG.

The ability to attach event handlers to specific SVG Elements makes it easy to create an

interactive application. This applies equally to the UI Elements, where the event handlers were

used to enable button clicks or frame movement, and to the data where it was possible to register

an event handler on the data after it is loaded, for instance on the chromosomes to allow the user

to drill-down to the BAC view. To do this using a bitmap based browser requires the generation of

an image map for each image, which must be updated each time the image is adjusted. While this

is entirely functional and feasible, it seems more cumbersome than attaching a listener directly to

the target in the image.

The decision to use an SVG browser will restrict the audience to those able to display the content

- though of late the majority of modern web browsers support SVG natively (that is, without a

plugin). The need to reach the broadest possible audience must be balanced with the desire to

do novel things. Ultimately the best decision might be to provide both interfaces because this
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would allow the full spectrum of users access to the data, while providing a more flexible interface

for those who are willing and able to use it. This could be accomplished using a common server-

side implementation, which returns either SVG document fragments or complete bitmaps (to be

integrated into the display using AJAX). Such an objective could, theoretically, be incrementally

implemented for one of the more ”full-featured” genome browsers by providing alternative SVG-

based representations for some data over the course of time until a full parallel SVG implementation

was available.

CGUI

The development of CGUI facilitated the creation of the interface for BioViz. Sub-classes of the core

CGUI elements where defined with appropriate default values and application specific functionality.

For instance, the views in BioViz were implemented as BioViz specific sub-classes of Frame (i.e.

CHRView). The UI API defines methods to easily insert content returned from the server at the

right place in the SVG Document to have it rendered, and to scale and translate the content to

ensure the user can access the information they need.

The SVG user community was quite interested in the development of an SVG UI library, and

there were a number of projects started to develop one. CGUI demonstrated that such a library

was feasible and contributed to the larger community effort. To ensure that others could use the

CGUI library, BioViz specific functionality was not included in the core CGUI library. Shortly after

the initial release of BioViz, CGUI was released as an open source project to make it available to

the community. As a result, a number of significant contributions were made to the toolkit in terms

of additional widgets and the separation of the widget representation from the widget declaration,

and in the end one of the major contributors took over maintenance of the version of the toolkit

that was released on Sourceforge (a popular repository for open source projects). CGUI is available

from Sourceforge (http://csvgui.sourceforge.net/) and 3rd parties built applications using the

toolkit [46].

Limitations

Three key limitations related to the use of SVG in BioViz were reported in the earlier publications.

Specifically, performance when rendering complicated images or large amounts of text, the lack of

native SVG support in mainstream web-browsers and the resulting restrictions imposed by the use

of a plugin. However, recent developments have removed these limitations.

Mainstream browsers (any WebKit based browser such as Safari, Chrome, or Konqueror; and

Firefox) all natively support SVG which eliminates any restrictions related to the use of a plugin

as well as eliminating the requirement for installing a plugin that might have prevented some users

of the application.
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A new SVG viewer, Renesis (http://www.examotion.com/), has been developed that is claimed

to be much more efficient than the original Adobe SVG Viewer, and this should result in per-

formance improvements in BioViz. If this new viewer significantly outperforms the native SVG

implementations in the WebKit-based browsers and Firefox, it can only help but motivate further

performance improvements in those implementations.

4.4.2 Server-side

The modular architecture employed in the redesigned BioViz server-side implementation is a marked

improvement over the original “script-per-request” approach in that there is a generic high-level

framework and a clearly defined interface for request handlers. This results in code that is easier

to maintain and makes it easier to extend the application to handle new requests.

The framework allows new request types and request handlers to be defined in three easy steps.

The new request type is added to the server-side configuration file, and mapped to a specific

request handler, which uses a specific datasource to handle the request. The request handler and

datasource are then implemented (assuming an existing datasource does not already provide the

necessary data). This allows multiple datasources to be used in the same instance of the application,

and would, for instance, allow BioViz to be configured to work from the database of one of the other

genome browsers, for instance the GBrowse database. This is all accomplished without making any

code changes within the framework or server-side scripts. The only coding necessary is to actually

handle the request.

The request handlers are analogous to the original request handler scripts. However, the frame-

work and defined interface enforce standards and a formal structure for the request handlers that

contributes to a cleaner implementation and better organization. The end result is more readable

and maintainable source code.

4.4.3 Installation

When installing the browser at a new location, the local database administrator (DBA) must

create Perl modules to handle any client requests that are specific to their location, and data access

modules to access their databases and the configuration file must then be updated accordingly on

the server. This makes an out-of-the-box installation of the browser impossible — except in the

unlikely event that the local site has the same table structure and same data as in the original

install. However, it also allows the browser to access an existing database installation, and ensures

that the browser is not tied to a particular database managements system or database schema.

For instance, the browser could use a database as simple as a list of features and their regions of

similarity relative to the Arabidopsis BACs or it could use an existing MySQL database installation,

so long as the DBA provides an implementation to access the desired data source.
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4.4.4 AJAX

As mentioned earlier, the GBrowse 2.0 implementation will be implemented with an AJAX style

interface. However, an SVG-based browser such as BioViz might achieve an additional improvement

by returning an SVG Document Fragment (a partial SVG Document) to be incorporated into the

existing image. Whereas a bitmap based browser would need to return an entirely new image to

be added to the containing HTML document (unless the graphic were made up from an array of

smaller images). This should result in a savings in bandwidth and rendering time on the server as

compared to sending a new image each time (recall section 3.4.2).

4.5 Future Work

BioViz, or more specifically CGUI, needs to be updated to function in the new Renesis SVG viewer,

as well as the native web-browser SVG implementations. Renesis claims to be fully compatible

with the latest Adobe SVG Viewer; however, unconfirmed reports by users of CGUI indicate that

applications based on CGUI do not function with Renesis. Testing unrelated to BioViz found that

SVG support between Opera and Firefox differs, so updating BioViz to function within the native

browser support may prove complicated. However, the CGUI library has been updated by a thrid

party to function in Firefox and Opera, which suggests that it should be possible.

Having updated BioViz to work with the new SVG implementations, it would be interesting to

test the performance of BioViz on each of the different implementations. In the process of converting

the application to work with the different implementations, a set of guidelines for ensuring cross-

platform SVG support could be developed. There is already an official SVG test suite available,

and the results of testing on the different SVG viewer implementations is reported. However, as

with all web development, there are likely to be minor differences between the implementations due

to varying interpretations of the specification and/or incomplete and/or incorrect implementations.

For instance, in some recent, unrelated (unpublished) visualization work performed by the author,

text rendering behaviour with respect to view ports was found to differ between Safari and Mozilla.

The client-side of BioViz, including the CGUI library could be reworked to take advantage

of the functionality offered in open source libraries such as Prototype and JQuery for creating

ECMAScript classes and interacting with the Document Object Model (DOM), which forms the

basis of an SVG Document. This should simplify the BioViz and CGUI JavaScript considerably

and capitalize on the community effort to create these robust, cross-browser compatible libraries.

At the same time, it would be good to rework the JavaScript objects to make better use of the id

attribute of the SVG Elements instead of maintaining references to the SVG Elements inside the

JavaScript objects. The references to the SVG Elements were inserted as a result of what we feel to

be a bug in the Adobe SVG Viewer, which allowed multiple elements to exist in the document with
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the same id and resulted in erroneous behaviour when performing a lookup on the SVG Element.

The configuration mechanism in BioViz could be simplified. At the moment the config file is

quite verbose because you must specify an entry for each valid request, including all valid parameter

combinations (because the datasource or request handler to use might vary depending on the

parameters). A more concise notation or a simple UI to configure the browser might be desirable.

Given that GBrowse 2.0 will be developed with an AJAX-style user interface, it would be in-

teresting to characterize the performance difference between GBrowse 1.0/2.0 and BioViz. The

difficulty would be in ensuring an “Apples-Apples” comparison. Measures that could be consid-

ered include time to render equivalent views between each of the implementations and bandwidth

required for a series of “typical” operations. It is the author’s expectation that the SVG-based

implementation would prove more efficient than the bitmap-based implementation assuming all

other variables were the same. This expectation is supported by the data in section 3.4.2. One

way to do this would be to modify GBrowse to return SVG Format graphics instead of bitmaps.

Another option would be to create standalone services that return graphics as bitmaps and SVG

and then to compare the performance impact of zooming and panning as implemented in GBrowse.

It would be especially important to try this on a slow network connection and a server that is under

heavy load, because these are the two scenarios where the lower bandwidth and less frequent data

requests of an SVG-based browser are expected to be most advantageous.

60



Chapter 5

BioViz: Impact

5.1 Synopsis

This chapter highlights the impact of BioViz outside the bioinformatics community, specifically

the impact of the CGUI library development in the area of SVG UIs.1. This chapter proceeds

as follows: first, necessary background regarding the CGUI and SPARK projects is presented,

and then the steps taken to make the SPARK compliant CGUI (S-CGUI) widgets are outlined.

Next the conversion guidelines and suggested extensions elucidated by this process are presented,

and two sample applications created using the converted widgets are presented. The final pages

summarize the results of this work and suggest topics for further investigation. Supplementary

resources, including the widgets used in this paper and their source code are available at http:

//homepage.usask.ca/~ctl271/cgui/spark.

5.2 Background

The use of Extensible Markup Language (XML) (c.f. 2.4.1) for the definition of SVG images,

coupled with the interactive nature of the resulting graphics resulted in considerable interest in the

use of SVG for web application development. For the most part the developers of SVG enabled

web applications have had to create their own widgets from scratch. This has resulted in many

interesting variations of the same basic widgets at the cost of considerable duplicated effort.

In an attempt to make the creation of web applications easier there have been attempts to create

standard SVG widget sets, among them the kevlindev.com widgets [37], the CGUI widgets [34, 30],

the SVgUI project (a now defunct sourceforge project started by Kevin Lindsey, circa 2002) and

the dSVG widgets from the Corel Smart Graphics Studio project (also defunct). However, even in

these projects there was substantial duplication and a lack of interoperability between the resulting

widgets.

1The paper from which much of the following chapter was derived [31] tested the general applicability of an SVG
GUI framework [17] which was developed with input from the author. The paper was presented at the SVG Open
2005 conference in Enschede, Netherlands.
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To promote interoperability and thereby decrease wasted effort, the originators of the SVG

Programmer’s Application Resource Kit (SPARK) project proposed an SVG GUI framework to

provide guidelines for the construction of SVG widgets and enable interoperable widget sets. This

project was founded by the thesis author in collaboration with Schemasoft, a software development

company based in Vancover, BC (which has since been acquired by Apple). The first draft of the

SPARK GUI Framework (SPARK-FW) was prepared by a student at Schemasoft with input from

the thesis author and developers at Schemasoft [17]. However, only a limited number of widgets

were created [33] and its general applicability was not, strictly speaking, demonstrated.

This project sought to evaluate the robustness of the SPARK framework by refactoring an

existing, proven SVG GUI library (CGUI) [30] to make it SPARK compliant. CGUI was selected

for this effort for three reasons, 1) the author’s familiarity with the library, 2) that it was one of

the only SVG GUI libraries still under active development, 3) that it had been proven effective

through use in several third party applications. The process of updating the CGUI library to work

within the SPARK-FW provided three key benefits: a set of guidelines that the developers of other

SVG based widgets can employ when adapting their widgets to work within the SPARK-FW, a

set of proposed extensions or modifications to the SPARK-FW based on needs identified by this

more thorough application of the framework, and a demonstration that the proposed framework is

generally applicable.

5.3 Implementations

5.3.1 CGUI

The CGUI widgets are implemented using ECMAScript objects to maximize code reuse and ensure

the smallest possible size for the packaged source. The original widgets had the ability to render

themselves using a hard coded graphical representation, though the visual representation was later

separated from the widget and moved to external Schemes. The widgets also provide visual cues

to indicate their state. For instance, buttons can be in the selected, active or disabled state and

their appearance is altered accordingly. The downside of the CGUI widgets is that they are created

imperatively, which doesn’t appeal to some users who desire a declarative syntax more in keeping

with the declarative nature of SVG. Conversion of the CGUI widgets to the SPARK-FW would

provide this declarative syntax; however, it is important to maintain the original imperative API

to support legacy applications.

The original CGUI design philosophy was that all widgets should inherit common functionality

from the root CGUI class (Figure 5.1), that there would be a small number of basic widgets that

could be extended to provide more sophisticated functionality (Figure 5.1) and that each widget

would be responsible for generating its own view. There are three basic widgets, a Pane to contain
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Figure 5.1: Root of the original CGUI hierarchy
There are three basic types Bar, Pane and Button and a composite type Frame which can be moved,
resized, minimized and closed. The make up the root of the CGUI hierarchy (Figure 4.9).

Figure 5.2: Example associate classes
Every widget has an anchor property inherited from CGUI that can be used to position the wid-
get relative to some target SVG Element (it may be another widget or an Element in the SVG
document). Similarly, every ButtonPane (a Pane containing a set of Buttons) has an associated
ButtonGroup which controls the behavior of the set of buttons in the ButtonPane (for instance
they might be set to behave as checkboxes or radiobuttons).
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other widgets and act as a layout element (somewhat akin to a simple java.awt.Pane), a Bar to

contain text and buttons (which in hindsight is superfluous and should be absorbed into the Pane),

and a Button to receive user input. The fourth type is a Frame, this is a compound widget made up

of 1 or more Panes and 1 or more Bars to allow them to be moved as a group, minimized, etc. thereby

creating a Window (somewhat akin to the java.awt.Frame). Classes without a visual representation,

for instance helper classes, do not inherit from the hierarchy but are instead associated with the

appropriate widget(s) (Figure 5.2).

Figure 5.3: Root after architectural change
The above diagram shows the root of the CGUI hierarchy at the time of the SPARK work. Each
widget, for instance the “Button” shown in the above extends the “CGUI” object, which in turn
extends the “EventHandler”. Each “CGUI” element has an associated “Scheme” object, a subtype
of which definition each widget’s representation.

There has been one architectural change to the CGUI library since the initial version, and it is

this modified version that was used for the SPARK trial work. The change involved the separation of

the widget’s appearance from the widgets themselves. The definition of the widget’s view was moved

into a separate Scheme class, one for each widget, and a collection of Scheme objects is assigned

by the programmer when the application is initialized. Each widget uses the corresponding scheme

in the assigned collection unless the designer overrides the scheme associated with an individual

widget or instance of a widget. At this time all widgets were also made to extend the EventHandler

class, which provides common event registration/deregistration and event handling methods to all

widgets (Figure 5.3). The intent here was to extend this class to provide a queue allowing multiple

event handlers to be registered for the same event type on a given widget, though this was never

implemented.
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5.3.2 SPARK

The SPARK-FW defines a root hierarchy that is arguably similar to the original CGUI hierarchy

(Figure 5.4). In the SPARK-FW each widget inherits common functionality from the root Widget

class and there are a number of basic widgets that must be extended to provide more sophisticated

functionality. These basic types closely resemble those of the CGUI hierarchy in that one pro-

vides a mechanism for receiving user input (Atom) and the other is used to group related widgets

(Container).

Figure 5.4: SPARK Root Hierarchy
The root class in the SPARK hierarchy is the Widget. Atom and Container are two abstract classes
that extend that define basic widget types. Each widget in the SPARK framework can access core
functionality available through the SPARK class.

Figure 5.5: Implementation of RadioButtonGroup in SPARK
A RadioButtonGroup is a Container containing some number of buttons. The RadioButtonGroup
contains the logic related to implementing the RadioButton behavior.

However, there are a number of philosophical differences between the SPARK widgets and the

CGUI widgets. For instance, while the SPARK Container and CGUI Pane are conceptually similar
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they come with different expectations. It is expected that a Pane will establish a viewBox and that

items contained by a Pane but extending outside the visible area will not be displayed (though

this expectation has relaxed over the course of time), whereas there is no such expectation of the

SPARK Container. Another example can be seen on examination of the CGUI ButtonPane. In

CGUI the RadioButton behavior is delegated to a non-widget so that ButtonGroup can be used

without requiring that the Buttons appear in a particular Pane (Figure 5.2). Whereas in the

SPARK examples, the RadioButtonGroup is a Container, so Buttons which are part of that group

cannot be placed in other Containers (Figure 5.5). Fortunately, such philosophical differences need

not interfere with the effort to make S-CGUI widgets as such decisions are not enforced by the

SPARK framework and are left up to the designer.

1 - <g id="b2" transform="translate(300, 100)"
2 - class="SPARK atom Button Style 1">

3 - <desc>Button 2</desc>
4 - <metadata>bar</metadata>

5 - <g><!-- define view -->
6 - <elipse rx="50" ry="25">
7 - <animate attributeType="xml" attributeName="ry"
8 - from="25"’ to="35" dur="0.2s"
9 - begin="b2.mouseover" fill="freeze"/>
10 - <animate attributeType="xml" attributeName="ry"
11 - from="35" to="25" dur="0.2s"
12 - begin="b2.mouseout" fill="freeze"/>
13 - </elipse>
14 - </g>
15 - </g>

Figure 5.6: Creation of a SPARK Button
The above SVG Fragment shows the declarative creation of a SPARK Button. The lines have
been prefixed with a line number for ease of explanation. The <g> (group) element (Lines 1-2)
positions the button at x=300, y=100 relative to its parent element and declares the type in its
class attribute; in this case the widget is a SPARK atom of type Button. The portion “Style 1” can
be used by the applied Cascading Style Sheet (CSS) to style the button. The view of this widget
(lines 5-16) is an ellipse that expands, via declarative animation, when the mouse is over the button
and then returns to its base state when the mouse moves off the widget.

The declarative nature of the SPARK-FW necessitates two helper classes that were not necessary

in CGUI. The first of these is the SPARKFactory. This class provides methods for creating SPARK

compliant widgets. When writing new SPARK compliant widgets the designer would add these

widgets to the Factory’s list of known widgets, and the factory is responsible for creating the

corresponding object when an element with the target class attribute is encountered in the SVG

Document. The second helper class is the SPARKDecorator, which is responsible for adding the

appropriate functionality to the widgets as they are created. The designer would typically write
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Figure 5.7: Two SPARK buttons
The button on the right corresponds to the button declared in Figure 5.6 above. The screen shot
was taken with the mouse over the button on the right, hence it is slightly larger than the button
on the left. The two buttons have a different visual appearance as a CSS has been applied to the
button on the right.

a custom decorator for their application to assign the appropriate functionality to the widgets.

The designer need only modify the SPARKFactory if they are adding new widgets for use in the

SPARKFramework.

5.3.3 SPARK & CGUI

SPARK compliance offers several advantages to users of the CGUI widget set. The primary advan-

tage is that S-CGUI widgets can be created declaratively and should be interoperable with other

SPARK compliant widgets as they become available. An additional benefit is the ease with which

S-CGUI widgets could have their appearance (skin) changed. This is because the skin can be cre-

ated declaratively at the same time the UI is described in the SVG document. Thus the designer

can provide virtually any representation of the widgets at the time that the UI is created (Figures

5.6, 5.7), whereas a user of the CGUI widgets must code a custom skin. Because the UI is pure

SVG it is amenable to creation using a standard SVG Editor, whereas a user must know JavaScript

in order to create a CGUI skin.

Despite these advantages there are several important considerations when adapting the CGUI

widgets. While a declarative syntax for creating the widgets is desirable, there may be circumstances

where an imperative interface is preferable and/or necessary. Thus all efforts should be made to

ensure that the widgets can be still be created imperatively after they become SPARK compliant.

Furthermore, where possible the old imperative interface to the CGUI widgets should be preserved

to minimize the impact of the changes on existing applications.

5.4 Questions

While planning the work required for the paper from which this chapter is derived, five questions

were asked:
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• What is required to make the widgets SPARK compliant?

• Can a converted CGUI widget be used within the SPARK framework?

• How is functionality added to the SPARK widgets?

• Can the widgets be declared more concisely?

• Are the converted widgets interoperable with the existing SPARK widgets?

The questions had to be answered in order because each question builds on the previous result.

The primary objective in asking these questions was to determine whether or not it would be possible

to make the CGUI widgets SPARK compliant, while the secondary objective was to explore any

possible extensions to the SPARK-FW that arose in the course of the work. The answers to these

questions are briefly described here.

5.4.1 Making the widgets SPARK compliant

In order for the widgets to function within the SPARK framework, they must extend the root of

the SPARK hierarchy. If they do not, they will not have the appropriate interfaces and it will not

be possible to create them using the framework. A second requirement is that the widgets must

use the Command pattern [21], because this is the method by which functionality is attached to

widgets in the SPARK framework. A third requirement is that it must be possible to declare the

widgets declaratively — this last requirement was one of the main reasons for making the widgets

SPARK compliant.

Extending the SPARK hierarchy

SPARK compliant widgets should inherit from the SPARK hierarchy. In general, this means

extending one of either Atom or Container, whichever is the most appropriate for the new widget.

As the CGUI widgets do not extend the SPARK hierarchy, this seems like a fairly obvious starting

point in the conversion process. Unfortunately this process is complicated by the fact that all of

the widgets already extend the CGUI hierarchy.

The straight-forward approach to having the CGUI widgets extend the SPARK framework is to

have them inherit from both the CGUI and SPARK hierarchies. Of course there are many arguments

for avoiding multiple inheritance, so the “replace delegation with inheritance” refactoring [19] is

used to maintain access to the CGUI core functionality while allowing the widgets to extend the

SPARK classes (Figure 5.8). Delegating the CGUI functionality required creating an instance of the

CGUI object inside the CGUI widget and making all calls to the inherited CGUI functionality via

the new reference. In the case where the CGUI method was overridden or extended, the widget’s
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Figure 5.8: Replace inheritance with delegation
(Left) An example showing the CGUI Button inheriting from the CGUI and Atom objects. (Right)
The refactored Button, which inherits from the Atom object and has a reference to the CGUI object
now satisfies the first identified requirement for SPARK compliance.

method will now call the method on the CGUI instance and perform the necessary additional

functionality as appropriate.

Allowing the CGUI widgets to use Commands

In the CGUI framework event handler code can be passed to widgets such as a Button or MenuItem,

which is called when the widget handles the mousedown event. In the SPARK framework, this event

handler code is provided in the form of Commands, and multiple commands can be added to a given

widget. By extending the SPARK framework, the old CGUI widget inherits the addCommand and

runCommands functionality. In CGUI the line of code that executes the event handler code can

be replaced with a call to runCommands, and the code allowing an event handler to be assigned

can be removed. After this the old EventHandlers can be trivially converted into Commands and

added to the widget using the addCommand method.

Allow the widgets to be created declaratively

The SPARK-FW requires that widget constructors accept a single argument, the DOM tree de-

scribing the widget; this tree can be a subtree in a larger document or a document fragment. This

requirement allows the widgets to be created by the SPARKFactory class in a single pass of the

SVG document when the document is loaded and seems like a logical second in the conversion

process. The challenge here is to change over the CGUI constructors, while preserving a simple

imperative interface.

The SPARK constructor traverses the DOM subtree and saves references to nodes in the DOM

as necessary. For instance, all SPARK widgets have an anchor property that references the root of

the widget’s subtree. This is a marked contrast to the CGUI widgets, which are created imperatively

and take arguments as necessary to construct the object and create the view defined in the associated
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Scheme.

There are really two problems here. First, the constructor needs to be modified so that it

takes in the tree describing the widget as an argument. Second the logic which initializes the

ECMAScript object must be preserved and the initialization parameters must be extracted from

the DOM subtree. In order to preserve the initialization logic the “extract method” refactoring

can be used to move all of this into an initialization method, and, at this time, the call to create

the widgets view can be removed. Once this is complete, the arguments in the constructor can be

replaced with the single input, and a parseDOM method added to extract the required initialization

parameters and save references to nodes in the DOM. After the parameters have been extracted

from the DOM, the object can be initialized using the old logic.

Old CGUI imperative declaration:

1 - var button = new Button(90, 20, "Button 1", controller);

Alternate hybrid imperative declaration:

1 - var node = Button.createScheme ("b3", 90, 20, "Button 1");
2 - parent.appendChild(node);
3 - var button = new Button (node);
4 - button.addCommand(new Message());

Figure 5.9: Imperative declaration of converted CGUI Button
The constructor for the old CGUI button took 4 arguments (as well as some optional arguments
which have not been shown here). The width and height of the button, the label for the button and
either an object implementing the EventListener interface or a method to handle the event. The
new SPARK compliant Button takes in the root of the DOM tree representing the widget, and the
width, height and label parameters from the old constructor have been moved to the createScheme
method. The object implementing the EventListener interface has been replaced by a Command
as per the SPARK framework.

This change allows the widget to be created declaratively using the SPARK-FW, but does not

prevent the widget from being created imperatively. The tree describing the view can be constructed

with the necessary parameters from the old constructor call, added to the SVG Document and then

passed to the new constructor (Figure 5.9).

5.4.2 Using the new widgets within the SPARK framework

At this point, it appears that it should be possible to use the converted CGUI widgets in the

SPARK-FW. The constructor has been modified to make it usable by the SPARKFactory, which

should allow a UI to be declaratively created. All SPARK related functionality, for instance, the

ability to add and execute Commands is available because the widgets extend the SPARK hierarchy.

And finally, Commands added to the widgets will be executed.
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Widgets in the SPARK-FW are created by the SPARKFactory when the SVG Document is

loaded. Each node in the DOM is inspected, and if the class corresponds to a registered SPARK

type, then the appropriate constructor is called via the Factory. In the original SPARKFactory

there was a hard coded list of available widget types, and a hard coded constructor applied for each

type. So to use a newly created widget within the SPARK-FW, the SPARKFactory would have to

be modified in two places, once to add the new widget type to the list, and once to add the widget’s

constructor to the method that creates the widget.

1 - // class declaration
2 - function Pane (in_node) {
3 - }
4 - Pane.prototype = new Container;
5 - Pane.prototype.CGUI_TYPE = "PANE";

6 - // self registration
7 - SPARK.registerWidgetType( Pane.REGEX, Pane );

Figure 5.10: Widget Self Registration
The above shows an example of a SPARK compliant widget registering itself with the SPARK-
FW. The registerWidgetType method will be called when the source file is included in the SVG
document.

An alternative to modifying the SPARKFactory when new widgets are added is to register the

widget type and constructor with the SPARK-FW when they are included in the SVG document

(Figure 5.10). This approach has two main advantages. First, there is no need to modify the

SPARKFactory to add a newly created widget. This means that the SPARKFactory can be treated

as a static framework class that need not be modified by developers, which makes it easier to add

a new widget to the Framework. Second, only the widgets that are used in the application are

registered with the Framework, which saves including unused widgets or having to comment out

references to them in the SPARKFactory. While this is an implementation detail that doesn’t

fundamentally alter anything about the SPARK-FW, this approach seems to work quite well and

has been used in all the examples produced as part of this project.

There is no explicit imperative mechanism for creating widgets within the SPARK-FW, however

they could be created by calling the constructor directly or calling the createWidget method of the

SPARKFactory.

5.4.3 Adding functionality to a SPARK widget

The SPARK-FW uses the SPARKDecorator to attach Commands to the widgets at the time they

are created by the SPARKFactory. The command pattern [21] encapsulates an action in an object

whose functionality can be executed. The motivation for using commands in the SPARK-FW is
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that this makes it possible for application designers to easily add logic to an otherwise generic

framework.

On startup, after the widgets have been created by the SPARKHelperFactory, the SPARKDec-

orator is responsible for adding the appropriate command(s) to the newly created widgets, based

on the widget’s id. This means that a new decorator must be written for each application. An

alternative to writing a new decorator for each application is to allow the widget to be decorated

declaratively at the time that the UI is designed.

1 - <g id="b2" transform="translate(300,100)"
2 - class="SPARK atom Button Style1">

3 - <desc>Button 2</desc>
4 - <metadata>bar</metadata>

5 - <SPARKExt:decoration>Message</SPARKExt:decoration>

6 - <g><!-- define view -->
7 - <elipse rx="50" ry="25">
8 - <animate attributeType="xml" attributeName="ry"
9 - from="25"’ to="35" dur="0.2s"
10 - begin="b2.mouseover" fill="freeze"/>
11 - <animate attributeType="xml" attributeName="ry"
12 - from="35" to="25" dur="0.2s"
13 - begin="b2.mouseout" fill="freeze"/>
14 - </elipse>
15 - </g>
16 - </g>

Figure 5.11: Declarative Decoration
The above code fragment shows the use of the “SPARKExt:decoration” element (line 5). When
this Button is clicked, the method “Message” will be called. The “decoration” element is created
in the “SPARKExt” namespace because it is not a valid SVG element.

This declarative decoration was enabled for trial purposes as part of a SPARK Extension by

placing a decoration tag inside the widget declaration (Figure 5.11). The decoration tag specifies

the name of the command with which to decorate the widget and provides any arguments to the

command constructor as attributes. This extension required changing the SPARKFactory and

SPARKDecorator to have them look for and process the decoration tag.

5.4.4 More concise widget declaration

The example button declaration presented in Figure 6 is quite verbose. Now imagine using that

notation to describe an entire application. How long would the resulting SVG document be?

Two different techniques were explored in an effort to make the GUI declaration more concise.

Ultimately, the correct way to do this will be through the use of sXBL elements, but until the
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specification is fully defined and there is a stable SVG viewer which supports sXBL other approaches

are needed.

1 - <g id="b2" transform="translate(300,100)"
2 - class="SPARK atom Button Style1">

3 - <desc>Button 2</desc>
4 - <metadata>bar</metadata>

6 - <CScheme:body label="Lazy Button"/>

7 - </g>

Figure 5.12: External View
In the above example the view (Lines 5-16) of the original “Button” definition in Figure 5.6 has
been replaced with a placeholder in a separate namespace. On startup the document will be parsed
by a tag replacement method, and where the body tag is encountered it will be replaced by the
appropriate view as determined by the class of the containing parent element (in this case “SPARK
atom Button”). Parameters related to the construction of the view are passed in as attributes on
the body tag. In this case the label for the button has been provided as a parameter.

The first technique involved moving the view to a separate file and replacing it with a placeholder

in the SVG document. This placeholder is replaced by the externally defined view at the time that

the SVG Document is loaded (Figure 5.12). This technique required the creation of an additional

helper class to parse the document when it loads and replace all placeholders with the correct

view. This technique has the advantage of being relatively simple and flexible as any necessary

parameters can be set as attributes on the placeholder. However it requires the addition of a new

custom tag and another helper class.

The second mechanism by which the view could be extracted is through use of the “use” tag.

The “use” tag allows an SVG fragment to be defined and then reused throughout the document.

This allows the view to be extracted without the need for a new tag and helper class, however it

has a fairly serious limitation. While the referenced SVG fragment is rendered as if it was at the

specified location in the DOM, the inserted fragment is actually part of a separate DOM and not

accessible for manipulation via scripting. This makes it impossible to do things such as adjust the

properties of the view to reflect state changes in the widget (though the widget can be styled via

CSS) or to initialize the widget on creation. So this technique is best suited to creating templates

that will never be changed.

A workaround for this limitation is to replace the use element in the DOM with the actual

content that it references; however the benefits of this approach rather than the external definition

are not clear (this approach was employed later in the plastic clock experiment) as the end result is

effectively the same. In fact, this approach might be the worse of the two as it may not be desirable

to replace all “use”’ elements in the document and so some mechanism for distinguishing between
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“use”’ elements would be required.

5.4.5 Interoperability

At this point the CGUI button can be said to be SPARK compliant. It extends from the SPARK

framework, implements the CommandHolder interface and uses Commands to perform its task,

implements the Observable pattern to allow other widgets to receive notification when it receives

user input and can be created declaratively by the SPARK factory. Now, the question becomes, has

it achieved interoperability with other SPARK widgets? After all, interoperability was the major

motivation for the SPARK-FW.

The new S-CGUI widget was used within the existing SPARK examples simply by substituting

the old SPARK Button source for the new S-CGUI Button source and including the necessary CGUI

sources. The only difficulty was an ECMAScript error that appeared when the SPARK Window

containing the Button’s was minimized. This turned out to be because the SPARK Buttons had

undocumented show and hide methods rather than due to any fault in the S-CGUI Button.

5.5 Guidelines

There were four guidelines identified in the answers to the above questions that can be employed

when making an existing widget set SPARK compliant. These include:

5.5.1 Classifying the existing widgets

The SPARK hierarchy provides two base widgets that should be extended when creating a new

widget. In order to make a widget set SPARK compliant the existing widgets must be classified as

either Atoms or Containers. This should be a straight-forward process as an Atom will not contain

other widgets and may receive user input, while a Container may contain other widgets and is

unlikely to accept user input. Another way to think about this is that the atom will generally

provide the target for user input.

5.5.2 Inheriting the SPARK functionality

After classifying the existing widgets it is necessary to modify them so that they extend the ap-

propriate SPARK class, either atom or container. If the existing widgets don’t inherit from an

existing hierarchy, this can be accomplished by setting the widgets prototype to be that of the

extended class, and calling the super classes’ constructor. If there is an existing hierarchy, then the

functionality inherited from the existing hierarchy can be delegated to an another class (Figure 8).

The “replace inheritance with delegation” refactoring is useful for this exercise.
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5.5.3 Modifying the widget constructor

Having made the SPARK functionality available to the newly created widget and tested that it

is accessible imperatively, it is time to alter the widgets constructor to allow it to be created

declaratively within the SPARK framework. This means changing the widget’s constructor so that

it takes the root of the DOM sub-tree describing the widget as an argument and then binds to the

tree as needed to provide necessary interaction.

It is desirable to keep something close to the old imperative syntax when modifying the con-

structor to ease migration of applications based on the old widget set. One way to do this is by

separating construction of the view (i.e. DOM sub-tree) from the construction of the widget if

it is not already separate. In doing so, ensure that any parameters which were previously passed

to the widget constructor are passed into the method which returns the view, and add an init

method to the widget that can be called with the remaining arguments to initialize the widget.

Now, when the widget is created imperatively the view can be constructed and passed to the wid-

get constructor as an argument, and when the widget is created declaratively the view and any

initialization parameters can be extracted from the xml document describing the interface. The

extract method refactoring is useful for moving view construction and initialization functionality

out of the constructor.

5.5.4 Adopting use of the Command Pattern

The final step will be to modify the widget so that any code that should be executed in response

to user input is executed via a Command. This can be accomplished by converting objects that

implemented the Event Handler interface directly into Commands, though in the case of a complex

Event Handler it might make sense to split this into a number of Commands. Then, these commands

can be added to the widget using the addCommand method rather than registered as event listeners

on the SVG Elements. If a method was used as an event handler previously rather than an object

implementing the Event Handler Interface, that method can be moved to the execute method of

the new Command, or split into several Commands just as the handleEvent method could be split.

5.6 Proposed Extensions

Three possible extensions to the SPARK framework were identified and explored as part of this

project. The proposed extensions were presented as part of the paper at SVG Open 2005, but

never formalized as part of the SPARK-FW specification. However, they proved functional and

valuable in the two sample applications described briefly below (Section 5.7) in that they decreased

the complexity of the SVG Document and required less code to be written to implement the
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applications:

• An extension that allows new widgets to be registered with the SPARK framework when

they are included in the SVG document, thereby eliminating the need to update the SPARK

factory for each new widget type created (Fig 5.10).

• A declarative decoration mechanism for adding commands to the widgets in the XML defi-

nition of the UI rather than imperatively in the ECMAScript, which eliminated the need to

write a new decorator class for each new application (Fig 5.11).

• An extension that allows the use of externally defined views or templates when declaring a

widget, making the declaration more concise and eliminating much of the redundancy present

in the original SPARK examples. Though this is only likely to be useful until sXBL is fully

realized (Fig 5.12).

5.7 Sample Applications

There were two sample applications produced as part of this exercise2. The first of these, the

“Train Game” is a simple grid based game that makes use of a number of S-CGUI Buttons with

custom skin’s designed to look like train cars. The second of these, the “Plastic Clock” is a simple

grid based application that displays clocks for different time zones, and depending on a number of

user definable parameters my display the clocks side by side or superimposed on top of each other.

Each of these is contained in an S-CGUI Pane, another widget that was converted to test the above

guidelines.

The “Train Game” was developed to experiment with the use of externally defined skins and

to test the simple S-CGUI widgets in a real application (Figure 5.13). The object of the game is

to return the scrambled train cars to their initial state and so that they can leave the yard. The

train cars in the application have been implemented as S CGUI buttons with custom, externally

defined skins. They were implemented as Buttons because it is intended that they will receive user

input (a click event) and move in response to this input if there is a move available. The yard was

implemented as a Pane as it has been used to contain and layout the Buttons.

Each car in the train yard has a Command associated with it that causes it to move in response

to the click event. A better implementation might have been to associate the Command with

the yard itself, and then have the click on the car propagate up to the yard. This would have

involve the creation of less Command objects, and provided the yard with more responsibility for

controlling the layout of the cars. Currently the behavior of the Buttons in the yard was handled by

2The functioning examples are available online, however, they require internet explorer with the Adobe SVG
Viewer. http://homepage.usask.ca/~ctl271/cgui/examples/cgui_spark.shtml
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Figure 5.13: Train Game
Each car in the train game is an S-CGUI button with the appropriate skin applied to it. When
the Buttons are clicked, they move behind the car that should precede it in the train, or move to
the front of the line in the case of an engine if the space is available. Once all the cars have been
arranged, either properly or there are no more valid moves, the game ends and a little animation
moves the complete trains out of the yard.

an associated class called by the Buttons rather than through the Pane. The possibility of having

the event propagate up to the yard and executing the Command there should be explored further

in the next round of development on the Train Game.

The second application of the SPARK compliant CGUI widgets was to create a “Plastic Clock”

(Figure 5.14). Plasticity is the measure of how well a user interface adapts itself to different displays,

and the clock was a little experiment to show plasticity in SVG based applications. An SVG UI can

be said to be trivially plastic based on the ability to infinitely scale an SVG graphic, however this

experiment sought to show how the interactive nature of SVG allows more than a trivially plastic

UI.

The original plastic clock (FlexClock) [Grolaux2001] was written as a replacement for the default

XClock in the Unix operating system. It was designed to show the time in a number of formats

depending on the size of the window it was displayed in. For instance, it might show a digital clock

at one size, an analog clock at another size, and an analog clock with a one month calendar at a third

size. The SVG plastic clock takes a slightly different approach. This clock was designed to display

multiple time zones and only in an analog display. The clock takes advantage of transparency in

the SVG specification to overlay clocks showing different time zones on top of each other when

there is not enough space to display them beside one another. The clocks will always expand to

take the maximum available space and have a user specifiable minimum size which controls when

the clocks scale to fit the current cell rather than overlaying each other.
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Figure 5.14: Plastic Clock
The left screen shot shows the plastic clock configured to display four clocks, each with a different
timezone. As the Pane is resized the layout of the clocks changes based on the configurable number
of clocks and minimum clock size. For instance, as the Pane becomes smaller, the clocks will morph
into one larger clock that occupies the whole pane (right).

5.8 Conclusions

This work developed a simple and concise set of guidelines that should facilitate the quick and easy

conversion of an existing SVG widget to a SPARK compliant widget. Such an effort has been shown

to result in widgets which are interoperable with other SPARK compliant widgets as demonstrated

by the use of the SPARK compliant CGUI widgets with the original SPARK sample widgets.

The three proposed extensions to the SPARK framework have been tested in the working ex-

amples produced for this paper and seem likely to make valuable additions to the framework once

they’ve been suitably tested and refined.

The conceptual ease with which existing widgets can be converted to SPARK compliance and

then used in a real application bodes well for the general applicability of the SPARK-FW for web

application development. One real hindrance to the easy conversion of an existing widget set is the

lack of a good ECMAScript editor with tool support for the refactoring the source.

5.9 Future Work

There are a number of future work items that require little explanation or have already been

explained in the proceeding text, for instance:

• The proposed extensions need to be further developed to ensure that they are robust enough

for general use.
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• The guidelines for converting an existing widget set will be further developed and expanded

as additional widget implementations are converted.

• As the above tasks progress it is certain that more useful extensions to the SPARK framework

will be identified.

There are also a number of more interesting items that arise as a result of this effort. These are

briefly discussed in the concluding text.

5.9.1 Server-side generation of widgets

The toy applications presented here were both fun and interesting, but they don’t really capitalize on

the benefits offered by SPARK compliance. For instance, the ability to create widgets declaratively

means that it will now be possible to create new views on the server-side. This ability will make

it simpler to track the state of the widgets in a database, which this can be used together with

some sort of session tracking to save the state of an application so that the user can return to the

application in the state from which they last accessed it. How best to track the state of SVG-based

web-applications has been a long standing question in the SVG community.

This implies the need to add an API for generating the widgets on the server-side to the SPARK

framework, and a messaging framework for tracking the widget state on the server, thereby adding

persistence to the widgets. In an environment which didn’t allow client side scripting to modify the

view, for instance SVGT, this messaging framework could be used to redraw the application and

return a new view each time a change was requested, much like current web applications generate

a new bitmap and return it to the client to allow interactive visualizations.

5.9.2 Groupware

An interesting addition to the SVG 1.2 specification is sockets. This makes more interactive client

server applications possible because the server can now easily push data to the client rather than

waiting for the client to poll for new information. Socket based communication together with the

messaging framework suggested above could be used to allow distributed, collaborative tools based

on SVG to communicate. This would see the messages used to track the state of a widget on the

server used to communicate change of state messages to a collaborator’s computer, thereby enabling

SVG based groupware.

5.9.3 Integration with other technologies

It has often been suggested that SVG could be used to render the widgets defined as part of

the XForms specification. Now that the SPARK framework makes it relatively simple to create

interoperable widgets, whether or not XForms widgets could be easily created within the SPARK
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framework needs to be evaluated. One method for doing this might be to use the XForm widget

definition as the model for the resulting widget and the existing framework to provide a view for

it.

This is an important step as one of the advantages of SVG over similar proprietary formats is its

ability to interact with other standards in a mixed namespace document. Up till now, due to a lack of

compliant browsers, SVG developers have been force to work primarily within a plugin environment,

which has restricted their ability to mix XML technologies. However, with the recent announcement

that Opera supports SVGT and that Mozilla 1.1 will support the full SVG specification natively,

a whole new world of opportunities become available. Evaluating the degree to which SPARK can

take advantage of the Xforms specification seems like a manageable first step.

5.9.4 Use new standard functionality

sXBL is an SVG specific subset of the XML Binding Language that is important from the SPARK

perspective as it allows the easy creation of interactive code templates. Unlike the “use” element,

the DOM of a template added via the sXBL framework is accessible for manipulation. This should

make it easier to template widgets and to modify their appearance without the “replace use hack”

described earlier. The question is, how easy to modify SPARK compliant widgets to take advantage

of the opportunities presented by sXBL?

5.9.5 AJAX

Ajax is an emerging approach to web application development that integrates a number of existing

technologies XHTML+CSS, DOM, XML+XSLT, XMLHttpRequest and ECMAScript to provide

more fluid and flexible web interfaces. It does this by eliminating the page reloads that existed

as part of the old web paradigm. It will be interesting to see how the experiences of the Ajax

community influence SVG based web application design, and how SVG might become part of this

model. It is particularly interesting to the author because on the surface the approach taken by

the Ajax community is almost exactly what was done in the Brassica / Arabidopsis Comparative

Genome Browser when it was developed. With the possibility of moving SVG applications out

of the plugin environment in the not too distant future, the Ajax paradigm could play a role the

development of future SVG based applications.

5.9.6 Plasticity

An SVG based user interface should automatically do well with regard to plasticity as the UI can be

scaled for free. Thus it should be possible to design an interface for an arbitrary display resolution

and then scale the interface using the viewBox of the SVG document. However, for extreme changes
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in resolution, for instance from a desktop display to a large display or cellular phone display, the

UI is unlikely to be usable even if it is scaled to reflect the resolution of the display. The question

to be answered here is how, if at all, SVG can be used to create standard, plastic widgets that will

function on a variety of display formats.

One possible solution is the use of XSLT to adjust the interface on the server-side. This trans-

formation could happen before the UI is sent to the client in a web environment, or to simply

generate the appropriate depending on the display resolution when the application is started in a

standalone environment. However, even more interesting would be widgets that were smart enough

that if the display resolution changed the UI would be transformed.
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Chapter 6

Summary and Conclusions

6.1 Summary

This thesis described the development of BioViz, a novel comparative genome browser developed for

the Brassica-Arabidopsis crop-model pair. The description was separated into three parts roughly

coinciding with existing publications related to functionality, implementation, and impact of the

browser. Given that the existing papers focused more on the use of SVG than the bioinformatics, the

section related to functionality was updated to include a description of the data representations used

in the browser and a background chapter was added to provide relevant bioinformatics information.

6.1.1 Functionality and data representation

BioViz allowed the user to view short Brassica sequences, including expressed sequence tags (ESTs),

activation tagged sequences, serial analysis of gene expression tags (SAGE), and oligonucleotide se-

quences in the context of the Arabidopsis genome. By aligning these short sequences with the

Brassica genome it provided context for the sequences, without which they are relatively meaning-

less. In the case of the EST sequences, SAGE tags and oligo sequences, positioning them relative to

the Arabidopsis genome provided access to the Arabidopsis gene annotations. Further, aligning the

ESTs with the genome sequence provided a provisional clustering of related sequences. Aligning the

SAGE tags with the genome sequence allowed users to look for clusters of up and down regulated

genes - so called “gene islands”. Aligning the oligo sequences with the genome allowed the user to

see which portions of the oligo sequences were similar with Arabidopsis and which were Brassica

specific.

This required the creation of representations for each of the short sequences and also of the

Arabidopsis genomic information. The Arabidopsis chromosomes were represented as horizontal

rectangular bars, divided into groups corresponding to the bacterial artificial chromosome (BAC)

sequences from which the full chromosome sequences were sequenced. In BioViz, the BACs served

to split the chromosomes into regions within which the user could drill down. At the BAC-level, the

user was presented with a representation of the genes overlaid on top of the rectangle representing

the BAC. The regions of overlap with the neighbouring BACs are also presented, which allows users
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to identify genes that are in the overlap region. At this level, the user is able to navigate left or

right along the chromosome to the neighbouring BACs, to view the sequences with homology along

this region of the genome, or to drill-down further and access information related to the represented

genes or Brassica sequences.

It is at the BAC level where the strengths of SVG for this application become apparent. SVG

is a vector graphics format, and given this fact, users can zoom in on the BAC to whatever level of

detail they desire - the images are drawn to correspond to one base pair per pixel, and users can

zoom into the point where they can see the individual base pairs. This allows them to see even

single basepair differences when comparing a stack of ESTs, differences that might be exploitable for

further analysis or applications. That the image is transformed on the client-side means that they

can make as many fine-grained changes to the view as desired in real-time, whereas making changes

with the web-based browsers is more difficult because they typically only allow gross position or

scale changes.

The arrangement of features relative to the center-line in BioViz is distinct from the track-based

arrangement used in the standard web-based genome browsers. We argue that the arrangement

taken in BioViz makes it easier to tell when sequences are on different strands, especially in high-

level views. However, the addition of an arrow to the features in BioViz would make the orientation

of a feature explicit in BioViz. The arrangement used in BioViz is also less amenable to the display

of multiple tracks simultaneously as is done in the standard web-based genome browsers. The split

display used in BioViz would result in an ever increasing distance between the + and − orientation

tracks where multiple tracks displayed. However, for the purposes of comparing sets of sequences

with the genome one at a time, we feel there are advantages to the split display.

In some sense the BAC View is artificial in that the BACs are an artifacts of the sequencing

process. One could imagine replacing BACs with length based segments in a future version of the

browser or if the browser were adapted for use with another organism. For performance reasons, it

is likely undesirable to simply use the whole chromosome for the detailed view, however, this would

need to be explored future.

6.1.2 Implementation

BioViz was implemented as a client-server application wherein the client presented the view of the

data returned from the server in response to client requests. BioViz uses a standard message format

for client requests and server responses. The client-side of BioViz is implemented in ECMAScript

and uses SVG to provide the user interface elements and data representations. A custom graphical

user interface (GUI) library was developed to provide the user interface elements found in BioViz.

The server-side message handling framework is implemented in Perl and it allows plugins to be

registered with the framework for various client requests. The plugins implemented for BioViz

83



utilize the BioPerl library to handle file IO and parse output from standard bioinformatics appli-

cations such as BLAST. The Perl SVG module is used to create the SVGDocument fragment that

is returned to the client containing content.

The AJAX-like implementation employed in BioViz was significantly ahead of its time, and is

only now (2008) being implemented in other mainstream web-based genome browsers. The use

of SVG facilitates this style of development because not only is it possible to return a new image

without a page refresh (as in an AJAX-style bitmap-based genome browser), but it is also possible

to return only a portion of a document and dynamically update the existing document. This

further reduces the impact of a refresh on the user and gives an even smoother user experience.

The ability to transform the content on the client-side is another advantage offered by SVG in

that it avoids delays while waiting for updated images from the server, and should save bandwidth

and reduce server load. The data reported in section 3.4.2 suggests potential significant savings in

terms of required bandwidth and browser responsiveness from the use of client-side transformations

together with a vector graphics format representation. Based on the stated motivation behind the

implementation of “slave rendered support” in the GBrowse rewrite (2.0), we conclude that there

is an appreciable cost to constantly rendering new views on the server-side and that reduced server

load could be an additional benefit of client-side rendering and transformations.

6.1.3 Impact

BioViz has been in use at Agriculture and Agri-food Canada since its initial deployment circa 2002.

Since then it has proven a valuable tool to provide researchers and technicians with access to the

Brassica resources developed at AAFC. In that it was one of the first genome browsers available,

and the first (and for several years only) browser targeted at Brassica / Arabidopsis we go so far

as to claim it was an invaluable resource for the Brassica community.

The GUI library developed for BioViz has been used in a number of third party applications

and motivated two different open source projects to continue the work started for BioViz. The

SVG Programmers Application Resource Kit (SPARK) project was started to develop standards

for SVG-based web applications. To that end the SPARK GUI Framework was developed and the

relationship between SPARK and CGUI was explored in a paper presented at SVG Open 2005. The

CSVGUI project was started from the main CGUI project and with library upkeep being performed

by one of the main CGUI contributors as of 2007.

6.2 Future Work

GBrowse appears to have become the de facto-standard genome browser. When GBrowse 2.0 is

completed, it will need to be evaluated to see whether or not the usability concerns we sought to
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address in BioViz are still valid. If so, then it is likely that BioViz should be retired. Our findings

in section 3.4.2 suggest that the user experience in GBrowse should be substantially improved in

the proposed AJAX-based implementation in that it will by reduce or eliminate the users need

to reorient after each page refresh. The addition of the slave rendering support might allow the

addition of sufficient support servers to make the time required to re-render views insignificant,

thought hardware and bandwidth costs might still be factors when considering offloading some of

the computational effort to the client.

If the usability issues are not addressed, or for users who appreciate the “comparative” focus

in BioViz as compared to GBrowse, then it might be worthwhile to update the BioViz interface

to work with the new browsers, as well as writing database adapters to allow BioViz to run off an

existing GBrowse installation. Such adapters were started, but not completed as part of the BioViz

server-side rewrite. Were they completed BioViz could be used as a web interface for any database

currently available in GBrowse, making BioViz immediately and generally applicable to organisms

other than Brassica and Arabidopsis.

The version of the CGUI library available from the CSVGUI project has been updated, so in

theory making BioViz work with the native SVG support available in modern browsers is simply a

matter of updating the library. However, it is probable that there have been API changes since the

library used in BioViz was last updated that will need to be resolved. When last the author explored

native SVG support, a number of implementation differences between browsers were identified that

might further complicate the task.

“Accessibility” is a hot topic in web-development, it refers to the practice of making websites

usable by people of all abilities and disabilities. It is especially relevant in government because

as a result of Treasury Board of Canada Standards for accessibility, applications such as BioViz

cannot be placed online. Eventually, if BioViz is not updated, it is likely that we will be forced to

take it down. An interesting future project would be to explore the requirements for developing

an “accessible” comparative genome browser. Given that SVG graphics are XML based, there are

unique possibilities for rendering them as text that could be read by a screen reader for the visually

impaired. Making images “accessible” is one of the major hurdles that has been encountered by

developers.

6.3 Hindsight

Looking back on the project at completion, there are a few things that should have been imple-

mented differently in BioViz. The server-side rewrite addressed a large portion of the problem

through the introduction of a config file, however, the client-side also needed to be reworked to

capitalize on the changes. When BioViz was first implemented, the menu options (e.g. data sets
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available for loading / searching) were hardcoded in the JavaScript. This meant that adding a new

dataset required the JavaScript to be updated each time. Ideally, the menu options should have

been provided by the server, and then after the rewrite they could have automatically reflected the

data sets available in the config file.

The multi-windowed format employed in BioViz may or may not have had value. We opted for

that style because the “desktop” style interface is a familiar one, it provided a more “seamless”

interface by avoiding the use of popups, and it allowed us to avoid limitations on inter-browser

communication imposed by the “sandbox” in which plugins execute. However, the “familiarity”

argument probably doesn’t apply given that most web application interfaces are quite different from

that of BioViz, and users seem quite content with the use of popups in web applications so those

are no longer an issue (if they ever were). Finally, given native support for SVG, any arguments

related to plugin limitations are moot.

That being said, the author would certainly maintain the AJAX-style interface and client-side

transformations used in BioViz. These appear to have been two major strengths of BioViz which

were enabled by the use of SVG. SVG was and still is an exciting technical specification with the

potential to enable a radically different web experience. Now that native browser support for SVG

is maturing, the possibilities become even greater as it becomes possible to create mixed namespace

documents utilizing SVG, HTML and other emerging specifications all together in a single page. If

BioViz were to be re-implemented at this point in time by the author, SVG would still be used for

the data representations, however, the user interface would likely be a mix of HTML and SVG.

On the server-side, rather than creating a custom message handling framework, the author

would explore open source web applications frameworks. The author might chose to use Java

rather than Perl at this point in time. However, a deciding factor would be the degree to which

BioJava provides support for GFF format databases (the format used in GBrowse). The author

feels strongly that providing the ability to work with existing GBrowse installations would be a

huge boost to the popularity of BioViz. It would also ensure that users could use existing tools

which are being developed around this standard format.
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