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Abstract. Molecular-biological annotation data is continuously being collected, 
curated and made accessible in numerous public data sources. Integration of 
this data is a major challenge in bioinformatics. We present the GenMapper 
system that physically integrates heterogeneous annotation data in a flexible 
way and supports large-scale analysis on the integrated data.  It uses a generic 
data model to uniformly represent different kinds of annotations originating 
from different data sources. Existing associations between objects, which repre-
sent valuable biological knowledge, are explicitly utilized to drive data integra-
tion and combine annotation knowledge from different sources. To serve spe-
cific analysis needs, powerful operators are provided to derive tailored annota-
tion views from the generic data representation. GenMapper is operational and 
has been successfully used for large-scale functional profiling of genes. Interac-
tive access is provided under http://www.izbi.de. 

1. Introduction 
Over the past few years, genomes of several organisms, especially the human ge-
nome, have been completely sequenced. Now the focus of genomic research has 
shifted to understand how genes and ultimately entire genomes are functioning. The 
knowledge about molecular-biological objects, such as, genes, proteins, intra- and 
inter-cellular pathways, etc., is typically encoded by a large variety of data commonly 
called annotations. Such annotations are continuously collected, curated, and made 
available in numerous public data sources. A current survey lists more than 500 such 
databases [ 14]. Furthermore, an increasing number of ontologies is maintained, 
mostly in the form of standardized vocabularies and hierarchical taxonomies. Typi-
cally, objects in one source are annotated by information in other sources and ontolo-
gies in the form of cross-references (web-links) [ 8,  7,  11]. A few sources focus on 
sequence-based objects and uniformly map them onto the genome of a particular 
species for the visual comparison and correlation of co-located objects [ 2,  6,  17]. 

Many applications such as functional gene profiling, gene expression analysis, pro-
tein analysis, etc., require molecular-biological objects and their annotations to be 
integrated from different sources and made accessible for queries and data mining. 
This integration task is a major problem since annotation data is highly diverse and 
only structured to some extent. Moreover, the number and contents of relevant 
sources are continuously expanding [ 26]. The use of web-links or the display of re-
lated objects on the genome represent first integration approaches, which are very 
useful for interactive navigation. However, they do not support automated large-scale 
analysis tasks. While more advanced integration approaches are needed, it is impor-



tant to preserve and utilize the semantic knowledge about relationships between ob-
jects, which are typically established by domain experts (curators). 

A survey of representative data integration systems in bioinformatics is given in 
[ 26]. Current solutions mostly follow a data warehouse (e.g. IGD [ 30], GIMS [ 29], 
DataFoundry [ 16 ]) or federation approach (e.g. TAMBIS [ 21], P/FDM [ 24 ]) with a 
physical or virtual integration of data sources, respectively. These systems are typi-
cally built on the notion of an application-specific global schema to consistently rep-
resent and access integrated data. However, construction and maintenance of the 
global schema (schema integration, schema evolution) are highly difficult and do not 
scale well to many sources. DiscoveryLink [ 22] and Kleisli [ 31] also follow the fed-
eration approach but their schema is simply the union of the local schemas, which 
have to be transformed to a uniform format, such as relational (DiscoveryLink), or 
nested relational (Kleisli). A general limitation of these systems is that existing cross-
references between sources are not exploited for semantic integration. 

SRS [ 19 ] and DBGET/LinkDB [  20] do not follow a global schema approach. In 
these systems, each source is replicated locally as is, parsed and indexed, resulting in 
a set of queryable attributes for the corresponding source. While a uniform query 
interface is provided to access the imported sources, join queries over multiple 
sources are not possible. Cross-references can be utilized for interactive navigation, 
but not for the generation and analysis of annotation profiles of objects of interest. 
Recently, Kementsietsidis et al [ 23] established a formal representation of instance-
level mappings, which can be obtained from the cross-references between different 
sources, and proposed an algorithm to infer new mappings from existing ones. 

GenMapper (Genetic Mapper) represents a new approach to flexibly integrate a 
large variety of annotation data for large-scale analysis that preserves and utilizes the 
semantic knowledge represented in cross-references. The key aspects of our approach 
are the following:  
• GenMapper physically integrates all data in a central database to support flexible, 

high performance analysis across data from many sources. 
• In contrast to previous data warehouse approaches, we do not employ an applica-

tion-specific global database schema (e.g. a star or snowflake schema). Instead, 
we use a generic data model called GAM (Generic Annotation Management) to 
uniformly represent object and annotation data from different data sources, in-
cluding ontologies. The generic data model makes it much easier to integrate new 
data sources and perform corresponding data transformations, thereby improving 
scalability to a large number of sources. Moreover, it is robust against changes in 
the external sources thereby supporting easy maintenance. 

• We store existing cross-references between sources (mappings) and associations 
between objects and annotations, and exploit them to combine annotation knowl-
edge from different sources. 

• To support specific analysis needs and queries, we derive tailored annotation 
views from the generic data representation. This task is supported by a new ap-
proach utilizing a set of high-level operators, e.g. to combine mappings. Results of 
such operators that are of general interest, e.g. new mappings derived from exist-
ing mappings, can be materialized in the central database. The separation of the 
generic data representation and the provision of application-specific views permits 



GenMapper and its (imported and derived) data to be used for a large variety of 
applications. 

GenMapper is fully operational and currently integrates more than 60 public 
sources, including those for gene annotations, such as LocusLink [ 8] and Unigene 
[ 12], and for protein annotations, such as InterPro [ 7] and SwissProt [ 11]. Further-
more, it includes various sub-divisions of NetAffx, a vendor-based data source of 
annotations for genes used in microarray experiments [ 1]. GenMapper has been suc-
cessfully used for large-scale functional profiling of genes [ 25,  27]. Interactive access 
is provided under http://www.izbi.de.  

The paper is organized as follows. In the next section we give an overview of our 
data integration approach implemented in GenMapper. Section  3 presents the generic 
data model GAM. Section  4 discusses the data import phase and the generation of 
annotation views. Section  5 describes additional aspects of the technical implementa-
tion as well as an application scenario of GenMapper. Section  6 concludes the paper. 

2. Overview of GenMapper 
To better understand the problem that GenMapper addresses it is instructive to exam-
ine some typical annotation data that is available to the biologist when gathering 
information about a molecular-biological object of interest.  Figure 1 shows annota-
tions for a genetic locus with the source-specific identifier (accession) 353 in the 
popular public source LocusLink. As indicated in the figure, the locus is annotated by 
a variety of information from other public sources, e.g., Enzyme [ 3] for enzyme clas-
sification, and OMIM [ 9] for disease information, and vocabularies and taxonomies 
such as Hugo [ 5] for official gene symbols and GeneOntology (GO) [ 4] for standard-
ized gene functions. GenMapper focuses on combining this kind of inter-related in-
formation during data integration and making it directly available for analysis. 

  Figure 2 shows an overview of the GenMapper integration approach. Integration 
of source data is performed in two phases: Data import and View generation. In the 
first phase, source data is downloaded, parsed and imported into a central relational 
database following the generic GAM representation. This representation is used for 
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Figure 1. Sample annotations from LocusLink  
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Figure 2. GenMapper architecture for annotation integration 



objects and their annotations originating from different sources, such as public 
sources and taxonomies, as well as the different kinds of relationships.  

Since directly accessing the GAM representation may result into complex queries, 
applications and users are typically provided with annotation views tailored to their 
analysis needs.  Figure 3 shows an example of such an annotation view for some Lo-
cuslink genes. In such a view, GenMapper can combine information and annotations 
from different sources for an arbitrary number of objects. Both the objects (the loci 
from LocusLink in the example) and the kinds of annotations (e.g., Hugo, GO, Loca-
tion, and OMIM) can be chosen arbitrarily. Such annotation views are very helpful 
for comparing and inferring functions of the objects, e.g., if they have been detected 
to show some correlated behavior in experimental processes. 

In general, an annotation 
view is a structured (e.g., tabu-
lar) representation of annota-
tions for objects of a particular 
source. Annotation views are 
queryable to support high-
volume analysis. A view con-
sists of several attributes which 
are derived from one source or 
different sources. The choice of 
attributes is not fixed as in the 
underlying sources but can be tailored to application needs. Enabling such a flexible 
generation of annotation views requires the combination of both objects and annota-
tions, i.e. relationships between objects. This is supported by the uniform representa-
tion of data from different sources in our approach. 

The annotation views can be flexibly constructed by means of various high-level 
functions which can operate on entire sources and mappings or a subset of them. Key 
operators include Compose and GenerateView, and are specifically defined on the 
GAM data model. They also represent the means to integrate GenMapper with exter-
nal applications to provide automatic analysis pipelines with annotation data. 

3. The Generic Annotation Model (GAM) 
Generic data models aim at uniformly representing different data and metadata for 
easy extensibility, evolution, and efficient storage. Typically, metadata and data are 
stored together in triples of object-attribute-value (also coined as Entity-Attribute-
Value (EAV) [ 28]). A molecular-biological example of such a triple is (APRT, Name, 
adenine phosphoribosyltransferase). This approach has been used in repository sys-
tems to maintain database schemas from different data models [ 15], in e-Commerce 
to manage electronic catalogs [ 13], in the medical domain to manage sparse patient 
data [ 28], or in the Semantic Web context to describe and exchange metadata [ 10]. 

In GenMapper, we follow the same idea to achieve a generic representation for 
molecular-biological annotation data by using a generic data model called GAM 
(Generic Annotation Model).  Figure 4 shows the core elements of GAM in a rela-
tional format. In particular, we have enriched the EAV representation with several 
specific properties. First, to avoid the mix of metadata and data in EAV triples and to 

 
Figure 3. An annotation view for LocusLink genes 



facilitate data integration from many sources, we explicitly provide two levels of 
abstraction, Source and Object. A source may be any predefined set of objects, e.g. a 
public collection of genes, an ontology, or a database schema. Second, we allow 
relationships of different semantics and cardinality to be defined at both the source 
and object level (Source_Rel and Object_Rel). Both intra- and inter-source relation-
ships are possible. A relationship at the source level (a mapping) typically consists of 
many relationships at the object level (associations).  

We roughly differentiate between 
gene-oriented, protein-oriented and 
other sources according to their 
content. A source, whose objects 
are organized in a particular struc-
ture, such as a taxonomy or a data-
base schema, is indicated as a Net-
work source. Typically, each object 
has a unique source-specific identi-
fier or accession, which is often 
accompanied by a textual compo-
nent, for example to represent the 
name of the object. Alternatively, an object may also have a numeric representation.  

In Source_Rel, we distinguish three types of relationships between and within 
sources. Structural and annotation relationships are imported from external data 
sources and represent the internal structure of a source or semantic correspondences 
between sources, respectively. In addition, GenMapper supports the calculation and 
storage of derived relationships to increase the annotation knowledge and to support 
frequent queries. We discuss the single types of relationships in the following.  
Annotation relationships. Annotations are determined using different computational 
or manual methods and typically specified by cross-references between sources. 
These relationships represent the most important and also the largest amount of data 
to be managed. Currently we group them into Fact and Similarity mappings. The 
former indicate relationships which can be taken as facts, for example, the position of 
a gene on the genome, while the latter contain computed relationships, e.g. deter-
mined by sequence comparisons and alignments (homology) between instances or by 
an attribute matching algorithm. In Object_Rel, an evidence value can be captured to 
indicate the computed plausibility of the association between two any objects. 
Structural relationships. Source structure is captured by Contains and IS_A rela-
tionships. Contains denotes containment relationships between a source and its parti-
tions, such as between GO and its sub-taxonomies Biological Process, Molecular 
Function and Cellular Component [ 4], while IS_A is the typical semantic relationship 
found between terms within a taxonomy like Biological Process or Enzyme.  
Derived relationships. Two forms of derived relationships, Composed and Sub-
sumed, are supported. Composed relationships combine cross-references across sev-
eral sources to determine annotations that are not directly available. For example, the 
new mapping Unigene↔GO can be derived by combining two existing mappings, 
Unigene↔LocusLink and LocusLink↔GO. Subsumed relationships are automati-
cally derived from the IS_A structure of a source and contain the associations of a 
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Figure 4. The GAM data model 



term in a taxonomy to all subsumed terms in the term hierarchy. This is motivated by 
the fact that if a gene is annotated with a particular GO term, it is often necessary to 
consider the subsumed terms for more detailed gene functions. 

4. Data Integration in GenMapper 
In the following we first discuss the data import process. We then outline the use of 
high-level operators to generate annotation views from the GAM representation. 
4.1. Data Import 
The integration of new data sources into the GAM data model is performed in two 
steps, Parse and Import. For all sources, the output of the Parse step is uniformly 
stored in a simple EAV format as illustrated by the example shown in  Table 1 for the 
locus 353 from  Figure 1. It represents a straightforward way to capture annotations as 
provided on the web pages of public data sources, and therefore makes the construc-
tion of parsers very simple. 

The Import step transforms 
and integrates data from the EAV 
into the GAM format. To prevent 
that already existing sources, 
objects, mappings and associa-
tions are inserted again we per-
form a  duplicate elimination at 
the source and object level. At the 
object level we compare object accessions and at the source level we examine source 
names and audit information, such as date and release of a source. Integrating new 
data requires relating provided associations with existing data. For example, if GO 
has already been integrated into GAM, re-importing LocusLink only requires to relate 
the new LocusLink objects with the existing GO terms. 

The functional split between the Parse and Import steps helps us to keep the 
integration effort low. Parse represents a small portion of source-specific code to be 
implemented, while Import realizes a generic EAV-to-GAM transformation and mi-
gration module and only needs to be implemented once. This makes the integration of 
a new source relatively easy, mainly consisting of the effort to write a new parser. 
4.2. View Generation 
To explore the relationships between molecular-biological objects, scientists often 
have to ask queries in the form “Given a set of LocusLink genes, identify those that 
are located at some given cytogenetic positions (Location), and annotated with some 
given GO functions, but not associated with some given OMIM diseases”. Such que-
ries exhibit the following properties: 
• A query involves one or more mappings between objects of a single source, e.g. 

LocusLink, and one or more targets providing the annotations of interest, e.g. Lo-
cation, GO and OMIM. Both the source and the targets can be confined to subsets 
of relevant objects. 

• The mappings can be used to evaluate logical conditions between objects, i.e. 
whether they have/do not have some associated annotations. The mappings can be 

Table 1. Parsed annotation data from LocusLink 
Locus Target Accession Text 
353 Hugo APRT adenine phosphoribo-

syltransferase 
353 Location 16q24  
353 Enzyme 2.4.2.7  
353 GO GO:0009116 nucleoside metabolism 
… … … … 



combined using the logical operators AND or OR and individually negated using 
the logical operator NOT. 

GenMapper supports the specification and processing of such queries by means of 
tailored annotation views, which can be flexibly constructed using a set of high-level 
GAM-based operators. In the following, we briefly present some simple operations, 
such as Map, Range, and Domain (see  Table 2), and discuss the most important op-
erations to determine annotations views, Compose and GenerateView, in more detail. 
Note that the operations are described declaratively and leave room for optimizations 
in the implementation.  
Simple Operations. The Map operation takes as input a source S to be annotated and 
a target T providing annotations. It searches the database for an existing mapping 
between S and T and returns the corresponding object associations. Domain and 
Range identify the source and the target objects, respectively, involved in a mapping. 
RestrictDomain and RestrictRange return a subset of a mapping covering a given set 
of objects from the source and from the target, respectively.  

Table 2. Definitions and examples for some simple operations 
Operation Definition Example 

Map(S, T) Identify associations between S and T map = Map(S, T) = {s1↔t1, s2↔t2} 
Domain(map) SELECT DISTINCT S FROM map Domain(map) = {s1, s2} 
Range(map) SELECT DISTINCT T FROM map Range(map) = {t1, t2} 
RestrictDomain(map, s) SELECT * FROM map WHERE S in s RestrictDomain(map, {s1}) = {s1↔t1} 
RestrictRange(map, t) SELECT * FROM map WHERE T in t RestrictRange(map, {t2}) = {s2↔t2} 

Compose. The Compose operation is based on a simple intuition: transitivity of asso-
ciations to derive new mappings from existing ones. For example, if a locus l in 
LocusLink is annotated with some GO terms, so are the Unigene entries associated 
with locus l. Compose takes as input a so-called mapping path consisting of two or 
more mappings connecting two sources with each other, for which a direct mapping 
is required. For example, it can use a relational join operation to combine map1: 
S1↔S2 and map2: S2↔S3, which share a common source S2, and produce as output 
a mapping between S1 and S3. 

Compose represents a simple but very effective way to derive new useful map-
pings. The operation can be used to derive new annotations, which are not directly 
available in existing sources and their cross-references. However, Compose may lead 
to wrong associations when the transitivity assumption does not hold. This effect can 
be restricted by allowing Compose to be performed with explicit user confirmation on 
the involved mapping path. The use of mappings containing associations of reduced 
evidence is a promising subject for future research. 
GenerateView. This operation assumes a source S to be annotated and a set of tar-
gets T1, ..., Tm, providing required annotations. The relevant source and target objects 
are given in the corresponding subsets s and t1, ..., tm, respectively, each of which 
may also cover all existing objects of a source. Finally, the operation requires a 
method for combining the mappings (AND or OR), and a list of targets for which the 
obtained mappings are to be negated. The result of such a query is a view of m+1 
attributes, S, T1, …, and Tm, containing tuples of related objects from the correspond-
ing sources. In particular, GenerateView implements the pseudo-code shown in 
 Figure 5 to build the required annotation view V. 



V is first set to the given set s of relevant source objects. For each target Ti, a 
mapping Mi between S and Ti is to be determined. It may already exist in the data-
base, or in many cases, may be not yet available. In the former case, the required 
mapping is directly retrieved using the Map operation. In the latter case, we try to 
derive such a mapping from the existing ones using the Compose operation. A subset 
mi is then extracted from Mi to only cover the relevant source objects s and target 
objects ti. If necessary, the negation of mi is built from the subset sî of s containing 
the objects not involved in mi. Finally, V is incrementally extended by performing a 
left outer join (OR) or inner join (AND) operation with the sub-mapping mi. 

5. Implementation and Use 
GenMapper is implemented in Java. We use the free relational database management 
system MySQL to host the backend database implementing the GAM data model. It 
currently contains approx. 2 million objects of over 60 data sources, and 5 million 
object associations organized in over 500 different mappings. In the following we 
present basic functionalities of the interactive user interface and discuss the use of 
GenMapper in a large-scale analysis application.  
5.1. Interactive Query Interface 
The interactive interface of GenMapper allows the user to pose queries and retrieve 
annotations for a set of given objects from a particular source. First, the relevant 
source can be selected from the list of currently imported sources. The accessions of 
the objects of interest can be uploaded from a file or manually copied and pasted. If 
no accessions are specified, the entire source will be considered. 

In the next step, the user can specify all targets of interest from the available 
sources. GenMapper internally manages a graph of all available sources and map-
pings. Using a shortest path algorithm, GenMapper is able to automatically determine 
a mapping path to traverse from the source to any specified target. The user can also 
search in the graph for specific paths, for example, with a particular intermediate 
source. With a high degree of inter-connectivity between the sources, many paths 
may be possible. Hence, GenMapper also allows the user to manually build and save 
a path customized for specific analysis requirements.  

When the relevant paths have been selected or manually constructed, the user can 
specify the target accessions of interest, the method for combining the mappings, and 
the negation of single mappings as shown in the screenshot in  Figure 6a. GenMapper 
then applies the GenerateView operation to construct the annotation view ( Figure 6b). 

GenerateView(S, s, T1, t1, ..., Tm, tm, [AND|OR], {negated}) 
V = s //Start with all given source objects 
For i = 1..m  
 Determine mapping Mi: S↔Ti //Using either the Map or Compose operation 
 mi = RestrictDomain(Mi, s) //Consider the given source and target objects 
 mi = RestrictRange(mi, ti)  
 If negated[Ti] //The mapping is specified as negated 
  sî =  s \ Domain(mi) //Source objects not involved in the sub-mapping 
  mî = RestrictDomain(Mi, sî) //Find associations for these objects 
  mi = mî right outer join sî on S //Preserve objects without associations 
 End If  
 V = V  inner join / left outer join mi on S //AND: inner join, OR: left outer join 
End For  

Figure 5. The algorithm for GenerateView 



The interesting accessions among the retrieved ones can be selected to start a new 
query. Alternatively, the user can retrieve the names and other information of the 
corresponding objects ( Figure 6c). All results can be saved and downloaded in differ-
ent formats for further analysis in external tools. 
5.2. Large-scale Automatic Gene Functional Profiling 
In an ongoing cooperation project aiming at a comparative analysis between humans 
and their closest relatives, chimpanzees [ 18], GenMapper has been successfully inte-
grated within an automated analysis pipeline to perform complex and large-scale 
functional profiling of genes.  

Gene expression measurements have been performed using Affymetrix microarray 
technology [ 1]. From a total of approx. 40.000 genes, the expression of around 
20.000 genes were detected, from which around 2.500 show a significantly different 
expression pattern between the species thus representing candidates for further ex-
amination [ 25,  27]. Functional profiling of the differently expressed genes was based 
on the analysis of the annotations about their known functions as specified by Gene-
Ontology (GO) terms. In particular, the genes are classified according to the GO 
function taxonomy in order to identify the functions, which are conserved or have 
changed between humans and chimpanzees. 

Using the mappings provided by GenMapper, the proprietary genes of Affymetrix 
microarrays were mapped to the generally accepted gene representation UniGene, for 
which GO annotations were in turn derived from the mappings provided by Locus-
Link. Furthermore, using the structure information of the sources, i.e. IS_A and Sub-
sumed relationships, comprehensive statistical analysis over the entire GO taxonomy 
was possible to determine significant genes. The adopted analysis methodology is 
also applicable to other taxonomies, e.g. Enzyme, to gain additional insights. 

6. Conclusions 
We presented the GenMapper system for flexible integration of heterogeneous anno-
tation data. We use a generic data model called GAM to uniformly represent annota-
tions from different sources. We exploit existing associations between objects to 
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B) Annotation view

C) Object information

Figure 6. Query specification and annotation view for Unigene objects 



drive data integration and combine annotation knowledge from different sources to 
enhance analysis tasks. From the generic representation we derive tailored annotation 
views to serve specific analysis needs and queries. Such views are flexibly con-
structed using a set of powerful high-level operators, e.g. to combine annotations 
imported from different sources. GenMapper is fully operational, integrates data from 
many sources and is currently used by biologists for large-scale functional profiling 
of genes.  
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