

UNIVERSITY OF SASKATCHEWAN

¹Department of Soil Science, 51 Campus Drive, University of Saskatchewan, SA8. ²Agriculture and Agri-Food Canada, P.O. Box 1240, Melfort, SK, CANADA S0E 1A0, ³Saskatchewan Ministry of Agriculture, Agriculture Knowledge Centre, Moose Jaw, SK, CANADA S6J 1L8

Introduction

- Liquid hog manure (LHM) is an important source of essential plant nutrients, and is typically applied by injection to farm fields surrounding the intensive livestock operation (ILO).
- The impact of LHM application to agricultural land in improving crop yield is influenced by rate/frequency of application, balance of available nutrients and placement method.
- □ Increased soil fertility is an important benefit of LHM application that substantially increases the supplies of available N in the soil. However, LHM is often low in available S relative to N.

Study Objectives

□ To evaluate the long-term effect of application of LHM on soil N, plant N uptake and crop yield.

Materials and Methods

- Study Site: Star City, SK., Dark Gray Luvisol belonging to the Kamsack Soil Association. Established in Fall 1999 with application of LHM and urea fertilizer treatment every year to 2013.
- **Study Design:** Randomized complete block design, replicated four times. Split into three subplots:
- No S fertilizer (NS): 24.4 m X 4.0 m.
- Broadcast Elemental S fertilizer (ES): 4.0 X 3.1 m.
- Broadcast K_2SO_4 fertilizer (SS): 4.0 m X 3.1 m.
- □ LHM Treatments: 37,000 L ha⁻¹ on an annual basis. 74,000 L ha⁻¹ every second year. 110,000 L ha⁻¹ every third year. LHM was injected at 8-10 cm depth using sweep type openers 1999-2002 and coulter type openers 2003-2014, in either Oct., prior to freeze-up or in early May, prior to seeding (Fig. 1).
- □ Urea fertilizer: (46-0-0) applied at 80 kg N ha⁻¹ on an annual basis.
- **Control plots**: No LHM or commercial fertilizer applied.
- □ S Subplot Treatments: Beginning in May 2002 and repeated every three years. Broadcast ES fertilizer added at 40 kg S ha⁻¹ rate beginning in May 2002. Broadcast SS added at 40 kg S ha⁻¹ rate beginning in May 2002.
- **Seeding:** In May 2000 and following to 2014, plots seeded to alternating canola (Brassica napus) - cereal (oats, wheat or barley).
- **Sampling:** Crop samples obtained prior to swathing stage. Soil samples obtained after harvest operations.

Effects of Long-Term Swine Manure Application on Soil and Plant Nitrogen and Crop Yield in an East-Central Saskatchewan Gray Luvisol Soil

Fig. 1. LHM application using coulter type openers (a) spaced 30.0 cm apart (b) and injection banding (c) at 8.0-10.0 cm depth.

IM/N	Source					Amounts of I			ifferent soil la	aye
rtilizer	/rate		20				20			
te ^z	of S	0-15	15-30	30-60	0-60	0-15	15-30	30-60	0-60	
ontrol	No S	6.6	3.8	6.5	16.9	3.1	1.3	1.5	5.9	
	ES	7.5	3.8	6.8	18.1	3.9	2.2	4.3	10.4	
	SS	7.5	3.8	6.4	17.7	4.8	2.1	3.0	9.9	
IM-1X	No S	14.0	4.9	7.5	26.4	2.7	1.3	1.9	5.9	
	ES	11.2	4.8	7.1	23.1	5.2	2.7	4.0	11.9	
	SS	20.0	6.1	7.7	33.8	5.2	2.1	3.0	10.3	
IM-2X	No S	12.1	5.5	15.1	32.7	4.1	1.5	2.3	7.9	
	ES	12.3	5.2	9.6	27.1	8.7	3.4	5.0	17.1	
	SS	13.9	5.1	6.9	25.9	4.4	2.5	3.7	10.6	
IM-3X	No S	11.9	5.0	7.3	24.2	5.9	2.7	3.4	12.0	
	ES	10.2	4.8	7.4	22.4	7.7	3.9	10.0	21.6	
	SS	13.0	4.6	6.7	24.3	9.9	5.0	6.9	21.8	
ea	No S	16.0	8.4	13.9	38.3	3.9	1.1	1.7	6.7	
	ES	18.8	16.4	32.7	67.9	5.5	2.4	2.0	9.9	
	SS	18.9	6.6	10.8	36.3	3.9	1.7	9.3	14.9	
EM (Sig)										
SD _{0.05}						2.1	0.9	1.5		
ontrol		7.2	3.8	6.6	17.6	3.9	1.9	2.9	8.7	
IM-1X		15.1	5.3	7.4	28.8	4.4	2.0	3.0	9.4	
IM-2X		12.8	5.3	10.5	28.6	5.7	2.5	3.7	11.9	
IM-3X		11.7	4.8	7.1	23.6	7.8	3.9	6.8	18.5	
		17.2	10.5	19.1	46.8	4.4	1.7	4.3	10.4	
EM (Sig)										
SD _{0.05}										
	No S	10.1	E E	10.1	27.7	2.0	1.6	2.2	77	
	No S	12.1	5.5	10.1	27.7	3.9	1.6	2.2	7.7	
	ES	12.0	7.0	12.7	31.7	10.3	2.9	5.0	28.2	
	SS	14.7	5.2	7.7	27.6	9.4	2.7	5.2	17.3	
	SEM (Sig)									
	LSD _{0.05}			74 000						
	000 L of LHM ha ⁻¹ ns refer to signif									

Source /rate					U	ptake of t	otal N in	seed + st	raw (kg N	ha ⁻ ') in	differen
of S	2000×	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
No S	47	46	39	23	40	18	32	53	50	42	13
ES			53	20	42	13	36	35	29	44	13
SS			54	26	46	16	34	43	35	36	18
No S	59	93	93	80	136	66	116	158	113	114	67
ES			133	86	116	55	91	121	90	105	59
SS			154	87	113	66	79	129	108	106	52
No S	66	54	100	58	144	54	99	68	119	66	66
ES			160	65	133	50	98	43	69	65	67
SS			193	69	137	51	96	2	130	68	70
No S	56	60	44	122	119	33	178	70	66	162	39
ES			59	125	92	25	112	49	52	166	43
SS			51	121	83	24	107	59	54	133	37
No S	64	82	101	45	121	35	55	114	46	127	33
ES	01	02	139	91	116	55	96	84	64	112	43
SS			146	93	113	51	92	100	105	94	49
	12.4	7.6	7	00	110		02	100	100	01	10
	27	17	15								
			48	23	43	16	34	43	34	40	15
			127	84	122	62	95	131	104	108	60
			151	64	138	51	98	56	106	66	68
			51	123	97	27	133	60	57	153	40
			129	71	117	38	82	96	72	111	42
			3								
			7								
No S			75	61	108	34	92	82	79	97	43
ES			109	74	98	40	82	66	59	94	44
SS			120	76	94	41	84	76	84	85	44
SEM (Sig)			3								
LSD _{0.05}			7	74,000 L (

l fertilizer	Source							Seed y	eld (kg ha ⁻	¹) in differe	nt years	
	/rate	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	of S	1X, 2X, 3X	1X	1X, 2X	1X, 3X	1X, 2X	1X	1X, 2X, 3X	1X	1X, 2X	1X, 3X	1X, 2X
bl	No S	1063	1155	1265	635	2374	430	1472	1327	1509	2909	478
	ES			1717	570	2429	309	1527	1167	855	3039	431
	SS			1682	745	2904	387	1349	1819	1035	2494	711
	No S	2083	1975	2359	1783	5039	1545	4959	4183	2528	6406	1951
	ES			3418	2173	5054	1436	4424	4749	1993	5827	1743
	SS			4082	1900	4656	1576	4033	4572	2391	6007	1531
X	No S	2280	1190	2272	1388	4640	1154	4628	1741	2734	4222	1615
	ES			3570	1635	5211	1120	4951	1776	1696	4243	1860
	SS			4357	1707	4736	1171	4839	2613	3342	4246	1883
X	No S	2295	918	1397	2155	4996	826	5253	2104	1931	6565	1082
	ES			1905	2175	4566	635	5647	2165	1593	7301	1198
	SS			1582	2068	4138	593	5095	2747	1702	5824	982
	No S	2428	583	2365	660	4719	0	2261	2761	209	5729	483
	ES			2961	1840	5048	1322	4883	4159	1381	6613	1207
	SS			3611	2030	4497	1301	4244	4249	2317	5091	1189
Sig)		334.4	257.2	233								
		729	560	476	470							
bl				1555	650	2569	375	1449	1437	1133	2814	540
				3286	1952	4918	1519	4472	4501	2304	6080	1742
2 X				3400	1577	4882	1148	4806	2044	2591	4237	1786
X				1628	2133	4567	685	5332	2339	1742	6566	1088
				2979	1510	4755	875	3796	3721	1302	5811	947
Sig)				111								
				242	226	470	156	404	291	216		
	No S			1932	1324	4354	791	3715	2423	1782	5166	1168
	ES			2714	1679	4461	964	3912	2803	1503	5406	1292
	SS			3063	1690	4188	1006	3985	3199	2157	4736	1315
	SEM (Sig)			104								
				0.4.0	475	004	101	0.1.0		407		
	LSD _{0.05}			213	175	384	121	313	226	167		
	0 L of LHM ha ⁻¹ e d ns refer to sign											
						o, i <u> </u>					opeonver	

T. King¹, J. Schoenau¹, S. S. Malhi², P. Mooleki³ and D. Leach²

	once in 3						
elfort	, Saskatche	ewan, Ca	nada (exp	perime	ent in	itiated	d in
(cm)							
	0-15	15-30	2013 30-6	20	0	60	_
	6.7	2.8	3.6			60 3.3	
	6.1	3.3	4.7			1.1	
	5.9	2.0	4.4		12	2.3	
	7.8	3.1	4.5			5.4	
	7.2	3.1	4.7			5.0	_
	6.6 8.5	2.1 3.4	5.9 4.0			4.6 5.9	
	8.1	5.0	4.8			7.9	
	6.0	1.5	1.7			.2	
	11.4	3.6	4.7			9.7	
	8.9	3.6	5.1			7.6 .7	_
	7.4 7.6	2.1 2.8	2.2			1.7 1.7	
	7.9	2.0	4.1			1.7 1.7	
	7.5	1.7	1.4).6	
	6.2	2.7	4.3	3	13	3.2	
	7.2	2.8	5.0			5.0	
	7.5	3.3	3.5			1.3	
	9.2	3.1	4.(6.3	
	7.7	2.4	3.3	3	13	3.4	_
	8.4	3.1	4.7			6.2	_
	7.6	3.5	4.7			5.8	_
	6.7	1.9	3.1		1.1	.7	
1 3 ye	ars; Urea a	pplied ev	ery year	at 80 I	kg N	ha⁻¹.	
tively							
	lied every						
[55]]) at 40 kg	S na ⁻ ', (on a Dar	k Gra	iy Li	JVISO	at
ent ye	ears						
-	00114						
0	2011×	2012	2013	2014	ł		
	27	35	35	14			
	31	52	47	16			
	33	50	48	21			
	75	58	66	34			
	71	77	83	47			
	56	69	87	59			
	99	46	72	19			
	90	58	97	32			
	69	62	91	38			
	109	60 67	59 65	25			
	103 90	67 62	65 63	26 30			
	90 93	62 50	114	28			
	93 92	50 78	121	20 48			
	76	82	114	72			
				_			
	00	10	10	4 -			
	30	46	42	17			
	68 86	68 55	78 87	47 30			
	00	55	07	30			

100616227877011749 66 81 34 65 79 44

Results and Discussion

- In the last three years there was little evidence of soil buildup of nitrate-N (NO₃-N) in the 0-60 cm depth from LHM or urea fertilizer application (Table 1).
- □ LHM applied at 37,000 L ha⁻¹, which was equivalent to ~ 80 to 100 kg N ha⁻¹, added N that was in balance with crop removal of N.
- LHM and urea application resulted in significant increase in N uptake by crops in all years (Table 2).
- The N uptake by crops in the study was greater in annual 37,000 L ha⁻¹ LHM application rate compared to urea fertilizer and where manure was applied once every three years at 110,000 L ha⁻¹ LHM application rate (Table 2). This suggests that a 110,000 L ha⁻¹ LHM single application rate intended to last for three years is not as efficiently used as smaller applications made more frequently.
- There was significant crop yield response to 37,000 L ha⁻¹ annual LHM application in all crops for the duration of the study, compared to non-amended control plots (Table 3).
- □ Yields in the LHM tri-annual 110,000 L ha⁻¹ application rate were often not higher than control plots in 3rd year after application (Table 3).
- □ LHM contains low amounts of S and the supplemental application of S fertilizer aided in correcting the N:S imbalance, especially in canola crops (Table 3). Supplementing LHM with S fertilizer can help in achieving optimum crop production on S deficient soils.

Conclusions

Application rates of LHM that supply sufficient amounts of N each year to meet crop requirements gave the best crop N recovery and did not result in soil nitrate loading. Larger single applications of LHM were less effective in increasing crop yields, N uptake and recovery over time. Yield and N use efficiency can be improved by balancing manure available N with added S fertilizer.

Acknowledgements

Funding: Saskatchewan Agricultural Development Fund (ADF) Saskatchewan-Canada-AFIF, SaskPork & Canadian Fertilizer Institute (CFI) Manure Application: Prairie Agriculture Machinery Institute (PAMI) The authors gratefully acknowledge the assistance of Cory Fatteicher, Wayne Stock, Sid Farkas and Larry Sproule.