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Abstract

One of the goals of perception is to learn to respond to coherence across space, time and modal-
ity. Here we present an abstract framework for the local online unsupervised learning of this coherent

information using multi-stream neural networks. The processing units distinguish between feedforward

inputs projected from the environment and the lateral, contextual inputs projected from the processing
units of other streams. The contextual inputs are used to guide learning towards coherent cross-stream

structure. The goal of all the learning algorithms described is to maximize the predictability between

each unit output and its context. Many local cost functions may be applied: e.g. mutual information,
relative entropy, squared error and covariance. Theoretical and simulation results indicate that, of these,

the covariance rule (1) is the only rule that speci�cally links and learns only those streams with coherent

information, (2) can be robustly approximated by a hebbian rule, (3) is stable with input noise, no
pairwise input correlations, and in the discovery of locally less informative components that are coherent

globally. In accordance with the parallel nature of the biological substrate, we also show that all the

rules scale up with the number of streams.
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1 Introduction

Two of the fundamental functions of cortical computation are feature discovery and associative learning.
Within each sensory modality there are many characteristic features that describe the environment. However
across modalities we have many associations that exist between features. These associations exist because of
correlations in the real world between di�erent representations and characteristics of objects. It is normally
bene�cial not only to learn these associations but also to use them during short-term processing. For example,
we use both hearing and vision through lip-reading when taking part in a conversation in a noisy room. In
general, these associations reect coherence across space, time and modality and it is this coherence which
helps us to understand the sensory world around us. Here we present a framework for the unsupervised
learning of coherence that combines the tasks of feature discovery and associative learning. In other words
we learn those features that occur within coherent associations. For simplicity we concentrate on spatial
coherence within a single modality but the framework may be equivalently applied to temporal (Becker,
1993; Stone & Bray, 1995) and cross-modal problems (de Sa, 1994; Ghahramani, 1995).

Kay and Phillips (1994) present the Coherent Infomax algorithm, a local information theoretic learning
rule that learns those features that are statistically related to the context in which they occur. Phillips, Kay
and Smyth (1995) use this local processor to build multi-stream networks with non-overlapping receptive
�elds. They show that the local rule can learn the underlying coherent structure that exists between streams,
even when the individual receptive �elds contain no structure or the coherent structure is a less informative
component within each stream. These are examples where normal single stream information transmission
(Linsker, 1988) or principal component analysis techniques (Oja, 1982; Sanger, 1989) will fail to �nd the
relevant structure. Here we pursue further the goal of Coherent Infomax to �nd simple learning mechanisms
that can be implemented locally as with Coherent Infomax but also online. By the term \online", we
mean rules that apply weight updates after each input presentation using as little extra stored information
as possible (such as average outputs etc). Unfortunately Coherent Infomax does not scale easily since it
requires the explicit storage of the input distributions for each stream, and these are exponential in size as
a function of the size of the input vectors. Coherent Infomax was derived as an abstract objective between
two input distributions. We shift the emphasis from the input vector distributions to the distributions of
integrated inputs, and show that a variety of objective and cost functions can be applied online and local.
We also explore methods of explicitly using short-term contextual guidance on processing to drive learning
using a modulatory activation function, rather than the normal separation of learning and processing.

Several other groups have approached this problem from various angles but they all use global information
to update weights. Becker and Hinton (1992) introduce the Imax algorithm for the unsupervised learning
of coherent information. They de�ne a global information-theoretic objective between stream outputs using
mutual information. Schmidhuber and Prelinger (1993) show how the squared error cost function between
stream outputs can be used to discover the coherent information. They successfully apply this algorithm
online. Floreano (1996) describes a local algorithm extending the PCA algorithm of Oja (1982) to extract the
direction of maximiumvariance between, rather within, multivariate datasets. Kay (1992), and Diamantaras
and Kung (1994) present global algorithms extending the corresponding multiple output PCA networks to
�nd these directions of coherent variation. In line with the work of Phillips and colleagues we di�er from
this global approach by learning the features that are coherent across streams while learning to link only
those streams that have coherent features. This local learning approach will help us understand the possible
organization principles of the biological multi-stream architectures.

1.1 Biological Background

Before we present the general framework we use for local learning, we will briey discuss the biological rele-
vance of this research. There is much evidence from neurophysiology and psychology that sensory processing
and higher cognitive functions are performed by highly interactive, but distinct processing systems tackling
di�erent sub-tasks. In the visual system there is a strong division of labour between colour and motion, for
example, and within each there are many streams distinguished by retinotopic position. DeYoe, Felleman,
Van Essen and McClendon (1994) show that this segregation is not just restricted to early visual process-
ing in LGN, V1 and V2, but also projects into inferotemporal cortex. The advantage of this multi-modal
framework is the ability to distinguish between characteristics of objects in the real world while also allowing
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generalization.
In addition to this division of labour, there is also evidence that the modalities and sub-modalities can

a�ect each others response. Lip reading is an example of positive modulation while McGurk and MacDonald
(1976) present evidence of negative inuences. Casagrande (1994) presents evidence of a third visual pathway
inuenced by somatosensory and auditory stimuli as early on as V1.

Singer and colleagues have shown that cells in cat primary visual cortex responding to the same coherent
visual stimulus display synchronized �ring within cortical columns (Gray & Singer, 1989), between cortical
columns (Gray, K�onig, Engel & Singer, 1989) and between hemispheres (Engel, K�onig, Kreiter & Singer,
1991). This phenomenon has also been found in cat retina (Neuenschwander & Singer, 1996), cat lateral
geniculate nucleus (Sillito, Jones, Gerstein & West, 1994; Neuenschwander & Singer, 1996) and macaque
visual cortex (Kreiter & Singer, 1996). In the cortex and retina, it is believed that the synchronization is
brought about by the horizontal projections between cortical columns, while in the lateral geniculate nucleus
it has been shown to be driven by the retina (Neuenschwander & Singer, 1996) and the cortex (Sillito, Jones,
Gerstein & West, 1994). These results suggest that synchronization phenomena may be one medium for
contextual modulation of response to receptive �eld inputs that reect spatial coherence.

Singer (1993) suggests that synchronized inputs to a higher level should improve the synaptic adaptation
to that stimulus. It is also possible that synchronized outputs help adaptation to the coherent input stimuli.
Whether this is so remains to be seen. However, there is evidence from cat (Callaway & Katz, 1990) and
ferret (Durack & Katz, 1996) that orientation selective cells in primary visual cortex are learnt and/or �ne-
tuned neo-natally, at the same time as the emergence of the long-range horizontal projections between similar
orientation responsive neurons in non-overlapping receptive �elds. Some evidence suggests that horizontal
connections in visual cortex may adapt after retinal lesions in adult cat (Das & Gilbert, 1995) but the exact
interpretation is open to debate (Chapman & Stone, 1996).

Given the evidence for a multi-modal system in the brain, with extensive modulation between processing
streams that may inuence adaptation, we continue the investigation of Phillips et al (1995) into the postu-
lation that context not only inuences short-term processing, but may also determine learning. We extend
their research by pursuing simple online rules that scale up and are robust in noisy conditions and therefore
are of relevance to modelling and understanding biological systems.

1.2 Multi-Stream Networks

We now introduce an arti�cial neural network for discovering linear associations across streams. In this
paper we will concentrate on single output streams with one layer. In the �nal discussion we will discuss the
extension of this to multiple outputs and layers. We use the multi-stream architecture proposed by Phillips
et al (1995). This di�ers from those used by Becker (1992) and Schmidhuber (1993), in the use of explicit
horizontal projections that learn to link those streams transmiting statistically related information. Figure
1 displays the abstract architecture of such a network with three streams, while �gure 2 gives an example of
a two stream net applied to a \visual" learning task to detect edge contrast.

The most important feature of these networks is in the distinction between those primary feedforward
inputs from the environment and those horizontal projections from the response of other streams (Kay
& Phillips, 1994). The feedforward inputs within a stream constitute the primary �eld (PF), while the
horizontal inputs to a stream constitute the contextual �eld (CF). The Coherent Infomax algorithm (Kay
& Phillips, 1994) uses this input �eld distinction to maximize the transfer of that information shared by the
distributions of the two input �elds. In this paper we will not use the multivariate distributions of the input
vectors of these �elds, rather the univariate distributions of the integrated (and logistically transformed)
input vectors. We will show that a variety of local learning rules can be applied robustly and online without
the need for batch statistics as required by the Coherent Infomax algorithm. Figure 3 shows the basic
architecture of a single stream, showing the separate PF and CF input vectors and response variables. The
PF response is called the primary output and is used as the output of the stream since it is responding to
the external input. The integrated CF passed through a logistic is called the contextual predictor, since
if the network learns the coherent information, then the CF should predict the PF output because it is
transmitting the responses of other streams responding to the corresponding coherent inputs. This will be
the basis of all learning rules discussed later: to maximize the predictability between the primary output
and the contextual predictor.

4



STREAM 1

STREAM 2

STREAM 3

STREAM OUTPUT

CONTEXTUAL GUIDANCE

PRIMARY INPUT

Figure 1: The general architecture of a 3 stream network with contextual inputs guiding local processing
and learning.

2-D ‘‘VISUAL’’ INPUT

CONTEXTUAL FIELDS

STREAM OUTPUTS

PRIMARY FIELDS

Figure 2: An example of a two stream network processing non-overlapping receptive �elds from a visual
plane. Note that the contextual guidance comes from the output of the \other" stream.
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Figure 3: The architecture of a single stream output with a distinction between the PF and CF output
responses, p & q. The primary input drives the primary output while the contextual input drives the
contextual predictor.
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Figure 4: The architecture of a single stream output with modulatory contextual guidance that combines
the primary and contextual �eld activations using a nonlinear activation function.
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1.3 Notation

The following notation is applied to each stream. We will denote each stream by subscript �, each input
instance by superscript �, and each input bit by subscript i. The PF and CF input vectors for input �
to stream � are denoted by ~x�� and ~z�� respectively. The corresponding weight vectors are ~w� and ~u� and
their output activations a�� = ~x�� ~w� =

P
i x

�
�iw�i; b�� = ~z��~u� =

P
i z

�
�iu�i. The primary output, p��, and

contextual predictor, q��, are computed using the logistic: p�� =
�
1 + e�a

�

�

��1
and q�� =

�
1 + e�b

�

�

��1
. Note

that the contextual inputs, ~z��, will derive from the primary outputs of other streams in the net. Since
computing q�� requires computing the outputs p�� for all other streams �, it is necessary to do this in two
steps: �rst compute the primary output for all streams, then compute the contextual predictors using these
outputs.

Some learning rules will require average batch outputs and these are denoted by �p� = hp��i�; �q� = hq��i�
for the PF output and CF predictor respectively. For online learning we require moving averages that can
be updated with each new net input. We use the following formulation which decays the contribution of
each input over time:

�p�(t) =

Pt

�=1 �
t��p�(� )Pt

�=1 �
t��

�q�(t) =

Pt

�=1 �
t��q�(� )Pt

�=1 �
t��

(1)

where t denotes discrete time (t inputs), and � 2 [0; 1] is inversely proportional to the rate of decay of the
current outputs contribution to the moving average over time. We use a half-life (h) to choose suitable values
for � i.e. the value of � such that the current inputs contribution halves in h timesteps: �h � 0:5. From this
formulation we can derive the following update rules for the moving averages which hold in the limit:

�p�(t) = ��p�(t � 1) + (1� �)p�(t)

�q�(t) = ��q�(t� 1) + (1 � �)q�(t) (2)

The learning rate is denoted by � and subscripted by ~w; ~u if the PF and CF use di�erent rates. In
all our experiments we randomly generate continuous inputs online. Therefore there will always be some
combination of continuous inputs that does not drive the unit outputs binary and thus induce non-zero
weight changes. In order to stabilise the weights we use the following general learning rules with decay
functions:

�w�i = �~w
�F�

�w�i

�
e��jw�ij

�
� �w�i

�u�i = �~u
�F�

�u�i

�
e��ju�ij

�
� �u�i (3)

where F� is the local objective function to be maximized (similar rules hold for error function E� to be
minimized but with a change of sign), � � 0 controls the linear decay in weight strength with respect to
time, and � � 0 controls the exponential decay in weight sensitivity to change with respect to strength. The
purpose of this latter decay on weight changes is to dampen the response of cells to incorrect information.
This will be shown to help for those rules that are not so perfect later in the paper. Note this does not
put any �xed bound on the weights. For ease of reading we will omit the decay terms and stream indices
from the rule equations that follow. Figure legends will specify the relevant decay values used in computer
simulations.

2 Algorithms

Our basic approach is to formulate some objective in terms of the primary output, p, and contextual predictor,
q, such that gradient learning will maximize the predictability of one from the other. If the primary output
is responding to some feature and the context can predict the output, then the other streams which feed
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the contextual input must have learnt, and be responding optimally, to their corresponding correlated input
features. In the language of Schmidhuber (1993) we are performing predictability maximization rather than
minimization. However there are many ways of performing this other than using just squared error. For all
functions discussed below, learning rules are derived by di�erentiating with respect to ~w for the PF and ~u

for the CF. Below we denote error functions to be minimized by E and objective functions to be maximized
by F .

2.1 Mutual Information

Mutual information is a measure that captures the amount of statistical dependence between 2 distributions
(Shannon, 1948). It's a function of the single and joint probability distributions that is independent of actual
value states represented by the probabilities (unlike linear correlation). Thus in order to apply in a neural
network context we must interpret the unit outputs as probabilities of a binary response. Thus p� is the
probability of a 1 given input �, and 1 � p� is the probability of a 0. This approach has been applied to
the problem of learning coherent information by Becker (1992) with the Imax algorithm. Here we apply this
global algorithm locally between the primary output and the contextual predictor.

F = Ip;q = Hp +Hq �Hp;q (4)

where Ip;q is the mutual information shared between the p and q output distributions, Hp;Hq are the
Shannon's entropy of the p and q output distributions respectively, and Hp;q is the entropy of the joint
distribution of p and q. Upon di�erentiation we get the following online gradient ascent rules for the PF and
CF respectively (Becker, 1992):

�wi = �~w

 
p� log

pq

(1 � p)q
+ (1� p�) log

p(1� q)

(1� p)(1� q)
� log

p

(1� p)

!
p� (1� p�)x�i

�uj = �~u

 
q� log

qp

(1 � q)p
+ (1� q�) log

q(1 � p)

(1� q)(1 � p)
� log

q

(1� q)

!
q� (1� q�) z�j (5)

One of the problems with these rules is that the sign and relative magnitude of the weights is determined
by the �rst three-term factor in each equation. This term is dependent on the relative proportions of many
average batch statistics. Since we are interested in online learning, the moving average formulation may
introduce too much error to make this rule e�ective.

2.2 Relative Entropy

Whereas mutual information was a measure of statistical relations between 2 distributions, relative entropy
(or the Kullback-Leibler distance) is a measure of the statistical independence, or di�erence, between two
distributions (Kullback, 1959). In this case we minimize the relative entropy between the underlying distri-
butions of p� and q� . Using the relative entropy template for binary distributions r and s:

K(r; s) =
X
�

r� log
r�

s�
+ (1� r�) log

1� r�

1 � s�
(6)

we get the following error measures for the PF and CF respectively:

Ep = K(p; q)

Eq = K(q; p) (7)

Di�erent objectives are required for each �eld since equation 6 is asymmetric between r and s and the
otherwise derived learning rules have asymptotically in�nite quotients that make numerical implementation
awkward. Unfortunately there is a gradient descent trivial solution to equation 6 for small initial weights
(see section 3 on theory). The weights go to zero with r and s converging on 0.5 for all inputs. Alternatively,
if one applies gradient ascent, then one would learn anti-correlated outputs which is merely a sign di�erence,
yet still transmitting in essence the same information.
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There are two methods around this gradient descent problem that give the correct output signs. We can
add an Infomax (Linsker, 1988) term to ensure binary outputs. Thus we use

Ep = K(p; q) � Ip;x

Eq = K(q; p) � Iq;z (8)

as error functions. By di�erentiation we get the following gradient descent rules:

�wi = ��~w
�
log

q�

1� q�
� log

�p

1� �p

�
p�(1� p�)x�i

�uj = ��~u

�
log

p�

1� p�
� log

�q

1� �q

�
q�(1� q�)z�j (9)

Alternatively the trivial solution may be overcome if one assumes zero-mean inputs. Instead of minimizing
the relative entropy between p and q, we can maximize the relative entropy between p and 1� q for the PF
and between q and 1� p for the CF, giving objectives:

Fp = K(p; 1� q)

Fq = K(q; 1� p) (10)

Using di�erentiation we get the following gradient ascent online learning rules:

�wi = �~w

�
log

p�

1� p�
+ log

q�

1� q�

�
p�(1 � p�)x�i

�uj = �~u

�
log

q�

1� q�
+ log

p�

1� p�

�
q�(1� q�)z�j (11)

A nice property of this anti-correlation approach is that moving averages are not required.

2.3 Mean Squared Error

An alternative approach to relative entropy uses the normal squared error cost functions of supervised
learning. Using mean squared error (MSE) we get the following error function:

Mp;q =
1

2



(p� � q�)2

�
�

(12)

However this also su�ers from the gradient descent problem found with the relative entropy rule. It can be
overcome in a similar fashion by adding a term to maximize variance:

E =
1

2



(p� � q�)2 � (p� � �p)2 � (q� � �q)2

�
�

(13)

This new cost function is equivalent to applying the Predictability Maximization and Minimization squared
error rules locally for single output streams (Schmidhuber & Prelinger, 1993). We get the following gradient
descent learning rules by di�erentiation:

�wi = ��~w (q� + �p) p�(1� p�)x�i
�uj = ��~u (p� + �q) q�(1� q�)z�j (14)

As with relative entropy, we may write an anti-correlation objective provided that the we have zero mean
inputs:

F =
1

2



(p� + q� � 1)2

�
�

(15)

and use the following gradient ascent rules:

�wi = �~w (p� + q� � 1) p�(1� p�)x�i
�uj = �~u (q

� + p� � 1) q�(1� q�)z�j (16)
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2.4 Covariance

The relative entropy and mean squared error approaches produce gradient descent learning rules. Because
of this and the presence of a trivial solution, we also require a variance or information transfer maximization
term. This splits the idea of correlation and variance into two objectives. Mutual information does not su�er
from this problem but its rule is heavily dependent on batch statistics and so does not operate well in online
mode. So the next objective we apply gets around this problem by combining the measures of correlation
and variance into one: covariance.

F = C
p;q

= h(p� � �p)(q� � �q)i� (17)

Becker (1992) points out that the continuous Imax case is equivalent to canonical correlation for linear
problems and this in turn is related to covariance in special cases. However covariance is much simpler to
implement online than the correlation coe�cient for binary outputs as can be seen from the learning rules:

�wi = �~w (q
� � �q) p�(1� p�)x�i

�uj = �~u (p
� � �p) q�(1� q�)z�j (18)

We can see an interesting property in these rules that is not present for all other rules presented above. The
�rst two-term factor that determines the sign and relative magnitude of the weight changes is completely
dependent on variables of the other input �eld. This should provide added stability with noisy problems,
since it can only learn that information which is coherent between the PF and CF and thus across streams.
In all other rules some local information is present in this factor and could a�ect learning, especially when
investigating less informative principal component problems. This is shown more formally in the next section
on our theoretical results.

2.5 Hebbian

Since covariance is equivalent to maximizing hp�q�i� with zero-mean inputs (Becker, 1992), we can approx-
imate this with the following Hebbian learning rules:

�wi = �~wx
�
i q

�

�uj = �~uz
�
j p

� (19)

Since there is no stabilizing factor from the logistic derivative, we require weight decay to control the
weight magnitudes. In particular the decay on weight changes themselves as a function of weight magnitude
(equation 3) will become important.

2.6 Modulatory Context

All the above rules use separate systems for processing and learning. They only use the contextual predictor
information when adapting weights. An alternative approach was used by Kay and Phillips (1994). They use
a nonlinear activation function that modulates the response of the primary output based on the contextual
information. This alternative approach uses the processor architecture of �gure 4. Here we use a variant of
their activation function with similar functionality:

A� = a� exp(a�b�) (20)

where a; b are the PF,CF activations as before, and A is the unit activation. The output of the stream, y, is
calculated now using the tanh() function because this new activation function requires positive and negative
contextual inputs. This activation function has three important properties: (1) the sign of A depends on the
PF activation, a, (2) the activation is boosted in magnitude (jAj > jaj) if the context and primary activations
agree in sign, ab > 0, and (3) the activation is dampened in magnitude (jAj < jaj) if the context and primary
activations disagree in sign, ab < 0. Thus the context plays a modulatory role on processing while the PF
determines the feature transmitted.
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Now we can use this activation function directly in learning. Basically if the context is boosting then we
boost weights, if its dampening then we dampen weights:

�wi = �~wx
�
i (y

� � p�)

�uj = �~uz
�
j (y

� � p�) (21)

where y� ; p� are the unit and primary �eld outputs calculated using tanh instead of the logistic (tanh(A=2)
and tanh(a=2) respectively). The important point about this learning rule (and a di�erent but related rule
by Floreano (1996)) is that the modulatory inuence of the context on processing guides learning directly.
This is very relevant to biological processing since it extrapolates short-term e�ects into long-term learning.

3 Theoretical Results

Here we present some theoretical results on the rules above. The aim of this section is to take some
tangible scenario so we can analytically compare the learning behaviour of the rules described in the previous
section. It is important to note that the example used is only an example, and the results should hold for
other input datasets. We will consider two streams using the notation of section 1.3 indexed by subscripts
�; � 2 f1; 2g; � 6= �. For simplicity of derivation we will use 2-dimensional input vectors: ~x� = (x�1; x�2)T .
The problem we analyse is to discover the sign of the edge between x�1 and x�2. We will use the natural

coordinates of contrast and brightness:

x̂� = (x�1 � x�2)=2

X̂� = (x�1 + x�2)=2 (22)

where x̂�; X̂� measure the contrast and brightness respectively of the stream input. We introduce similar
coordinates for the weights:

ŵ� = (w�1 � w�2)=2

Ŵ� = (w�1 + w�2)=2 (23)

where ŵ�; Ŵ� measure the sensitivity of the stream to contrast and brightness respectively. In the ideally
learned cell we would have w� ! 1;W� ! 0. Finally, we denote the fraction of inputs correlated in
contrast sign across streams by  2 [0; 1]. In terms of these natural coordinates we analyse the contextually
guided learning behaviour of the streams by directly analysing the cost and objective function landscapes
using Taylor expansions. Details of the approximations made by averaging over all inputs are given in the
Appendix.

3.1 Mean Squared Error

First we will analyse the MSE cost function of equation 12. By Taylor expanding p�; q� and taking the
average over the inputs we �nd the following approximation:

1

2

D
(p� � q�)

2
E
�

1

64

D
(a� � u�p�)

2
E
=

1

48
ŵ2
� +

1

48
Ŵ 2

� +
1

128
u2� �



144
u�ŵ�ŵ� (24)

From the lowest order components it is evident that gradient descent learning on this function produces
the trivial solution ŵ� = u� = Ŵ� = 0 for which all outputs are 0.5. However with gradient ascent two
non-trivial solutions are found: (1) if u� > 0 then ŵ� !1 and ŵ� = �ŵ�, or (2) if u� < 0 then ŵ� !1
and ŵ� = ŵ�. However both cases result in increasing brightness sensitivity, Ŵ�, and thus are not ideal.

We can study the dynamics of gradient ascent learning of equation 24 in more detail. The average updates
may be expressed as:

�ŵ� =
�

24

�
ŵ� �



6
u�ŵ�

�
�Ŵ� =

�

24
Ŵ�

�u� =
�

64

�
u� �

4

9
ŵ�ŵ�

�
(25)
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For small learning rate and su�ciently small weights equation 25 may be solved using di�erential equations
to give:

ŵ�(t) = ŵ�(0)e
1

24
�t

Ŵ�(t) = Ŵ�(0)e
1

24
�t

u�(t) = u�(0)e
1

64
�t (26)

where t denotes time. We see that in the lowest order the average updates are exponential and more critically,
are independent of all contextual cross-stream e�ects for contrast, brightness and contextual weights. From
equation 25 it is clear that contextual e�ects only come into play in second order terms. To investigate the
e�ects of the input correlation we look at the di�erence ! = ŵ� � ŵ�:

�! = 
�

144
u�! (27)

So depending on the sign of u� the learning is seen in the long run to either correlate (! ! 0) or anticorrelate
(j!j ! 1) the outputs of the units with respect to the contrast correlated input patterns.

For the anti-correlation MSE Rule of equation 15 we �nd an input averaged Taylor expansion of:

1

2

D
(p� � [1� q�])

2
E
�

1

64

D
(a� + u�p�)

2
E
=

1

48
ŵ2
� +

1

48
Ŵ 2

� +
1

128
u2� +

1

144
u�ŵ�ŵ� (28)

which is the same as equation 24 apart from the sign of the cross term. Hence all the above results are valid
for this learning rule as well if we only invert the sign of u�. Thus for positive contextual weights, (u� > 0),
we will correlate stream outputs. Figure 5 shows this objective surface in terms of the contrast variables and
we can see that there is clearly non ideal learning since the contrast variables can take di�erent signs while
also following gradient ascent on the surface.

The exponential decay on weight changes described in equation 3 comes in handy here. From equations
24 & 28 we can see that the brightness variables can also be increased. By dampening the weight changes it
is hoped that we can control the level of sensitivity to unwanted variables.

3.2 Relative Entropy

For the relative entropy rule of equation 6 we �nd�
p� log

p�

q�
+ (1� p�) log

1� p�

1� q�

�
�

1

8

D
(a� � u�p�)

2
E

(29)

which is functionally equivalent to the corresponding MSE rule of equation 24 except for the prefactor.
Similarly the anti-correlation rule of equation 10 expanded:�

p� log
p�

1� q�
+ (1� p�) log

1� p�

q�

�
�

1

8

D
(a� + u�p�)

2
E

(30)

is functionally identical to equation 28. The prefactors indicate that RE learning in the low activation case
(initial learning) is faster than MSE. But RE su�ers from the same problems of trivial solutions and non-zero
brightness sensitivity after learning.

3.3 Covariance

From Taylor expansion of equation 17 and then averaging over the inputs we �nd:

h(p� � hp�i) (q� � hq�i)i �


144
ŵ�u�ŵ�

�
1�

1

10

�
ŵ2
� + ŵ2

� + Ŵ 2
� + Ŵ 2

�

��
(31)

This expansion indicates that even lowest order learning components depend on the contrast of both streams,
the contextual weights between them and the correlation factor. Also it is clear that the higher order terms
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Figure 5: Arbitrary objective surface in terms of the contrast variables ŵ1; ŵ2 of two streams for the anti-
correlation MSE objective of equation 28.
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Figure 6: the covariance objective of equation 31. We can see that the Covariance objective is only maximal
when the contrast variables are of the same sign, unlike the MSE objective where they may be di�erent
signs.
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containing brightness variables are negative and so decay. Figure 5 displays this surface w.r.t. the contrast
variables and we can see that gradient ascent always drives the contrast variables to the same sign, unlike
the MSE curve in �gure 6.

By gradient ascent we �nd in lowest order the following average update rules

�ŵ� =
�

144
u�ŵ�

�
1�

3

10
ŵ2
�

�

�Ŵ� = �
�

720
ŵ�u�ŵ�Ŵ�

�u� =
�

144
ŵ�ŵ�

�
1�

1

10

�
ŵ2
� + ŵ2

� + Ŵ 2
� + Ŵ 2

�

��
(32)

For su�ciently small initial weights and learning rate the dynamics of the weights can be described by
di�erential equations and solved to give:

ŵ�(t) =
ŵ�(0)

cos
�
�

144
ŵ�(0)t

� (33)

This equation is valid for �

144
ŵ�(0)t < 1, so that ŵ�(t) is seen to increase monotonically. Correspondingly

u�(t) = ŵ�(0) tan
� �

144
ŵ�(0)t

�
(34)

As a result of these derivations we see that u�ŵ�ŵ� > 0 so that for the brightness sensitive variable we �nd

from equation 32, jŴ�(t)j ! 0 decays as it should be for ideal learning. The results show that in every
respect the covariance rule behaves ideally, in early learning at least.

3.4 Hebbian

We can rewrite the hebbian rules of equation 19 using the natural coordinates as:

�ŵ� = �q�x1

�Ŵ� = �q�X1

�u� = �p� (p� � hp�i) (35)

Averaging over the input distribution yields for the average width of the learning step:

�ŵ� =
�

72
u�ŵ�

�Ŵ� = 0

�u� =
�

36
ŵ�ŵ� (36)

Hence apart from prefactors, we obtain the same ideal learning behaviour from the low-order components as
found from the covariance rule in equation 32. However in higher-order components we �nd no decay term
for brightness as compared to covariance. Hence, W (t) will undergo a di�usive motion as a result of which
it well may become large. This can be avoided by using weight decay.

3.5 Scaling Up Streams

Here we analyse the e�ect of the number of streams on learning. We use � 2 f1;M+1g to denote the stream
index in a net of M + 1 streams. We derive for the average covariance objective function in the lowest order

h(p� � hp�i) (q� � hq�i)i =
�

144

X
� 6=�

��u��ŵ�ŵ� (37)

where �� denotes the fraction of patterns correlated between the streams � and �, and u�� denotes the
contextual weight from stream � to stream �. From equation 37 we immediately see that gradient ascent
only boosts the contextual weights between streams with correlated patterns (�� > 0).
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The dynamics of learning can again be studied by inferring the average update equations:

�ŵ� =
�

144

X
� 6=�

��u��ŵ�

�u�� =
�

144
��ŵ�ŵ� (38)

For the case of equal initial contrasts across streams and zero initial contextual weights we can use di�erential
equations and solve to �nd:

ŵ�(t) =
ŵ�(0)

cos
�p

M �

144
ŵ�(0)t

�
u��(t) =

ŵ�(0)p
M

tan
�p

M
�

144
w0t
�

(39)

Where the region of validity is now given by
p
M �

144
ŵ�(0)t. Consequently the combined e�ect ofM streams

is seen to speed up the learning of the coherent information not linearly but only by a factor of
p
M .

3.6 Summary

This section has theoretically studied an example network and training set using globally coherent edge
contrast variables and local brightness features that are globally incoherent to analyse the learning algorithms
described in the previous section. The principle result is that the covariance learning rule displays ideal
learning. The basic MSE and RE rules have trivial solutions when applied using gradient descent and they
are functionally equivalent except for a prefactor during early learning. This prefactor indicates that RE
rules should be initially faster. The covariance rule implicitly decays the brightness factor and so displays
ideal learning while the Hebbian rule has no change in brightness so explicit weight decay is necessary to
solve this problem. However RE and MSE rules su�er from the growth of the brightness variable. In cases
of noise, incoherent inputs or less informative components, the correlation factor  will be less than one. In
this case, covariance and hebbian learning depends on , so it cannot react easily in favour of incoherent
information. But RE and MSE rules perform badly because the factor does not a�ect low-order terms
and thus learning is very susceptible to within-stream uctuations. Covariance and hebbian only boost
contextual weights between coherent streams, while RE and MSE rules may boost links between streams not
transmitting coherent information. The covariance learning algorithm scales up with the number of streams
such that the rate is proportional to the square root of the number of contextual inputs to each individual
stream.

4 Simulation Results

In this section we summarize the results of our simulations with the learning rules described in section 2
and relate them to the theoretical results of section 3. In our experiments we used two types of PF input
distribution. The edge contrast inputs use a uniform PF input distribution with input bits selected randomly
from [�1; 1]. Thus the relevant statistical structure could be formed only by cross-stream comparisons. If we
visualize the streams inputs as 2x10 matrix then across streams, the sign of the edge between the two rows
is correlated, while there are no pairwise bit correlations within or between streams. The contrast is simply
calculated as the sum of one input row, minus the other. Figure 7 gives a typical PF weight vector that
has learnt to respond to the edges. The second distribution is called the horizontal bar inputs. This di�ers
from the previous distribution in that the PF distribution is not uniform. If we visualize the inputs as a 5x5
matrix, then the centred horizontal bar is correlated in sign across streams. However a certain proportion
of the time, all streams will display centred vertical bars but the signs will not be correlated. Thus they
represent distracting incoherent information that the learning process must ignore. If the horizontal bars
occur with a lower probability than the vertical bars, then the coherent information is the less informative
principal component within a PF distribution and thus traditional Infomax (Linsker, 1988) or PCA (Oja,
1982) techniques will not work. Input bits are selected randomly from [�1; 1] for the background while
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the bar input bits are the same sign but continuous. See �gure 8 for a typical learnt PF weight vector for
recognising horizontal bars. We now present results comparing the various algorithms on performance and
stability. These results have been averaged over 10 trials. Since all learning problems were linear, we used
the measure of covariance between the primary output and the contextual predictor to reect the mutual
predictability between p and q. Unfortunately we found that the Imax rule did not work online because of
the error introduced using moving averages as expected.

Figure 7: Final PF weights from a typical run with the Covariance rule on the edge contrast inputs Details:
The disc radius is proportional to magnitude, solid �lling indicates positive and hatched indicates negative.

4.1 Uniform PF Distributions

Here we present the comparative results in �gures 9, 10 of all the algorithms. We used a two stream net with
the edge contrast inputs as in �gure 2. As predicted by the theory, we found that RE rules were faster than
MSE but otherwise produced comparable results (�gure 9). Hebbian learning was faster than Covariance as
expected (�gure 10). The modulatory threshold rule was also seen to work but its performance was not very
stable (results not shown). Figure 7 shows a typical PF weight vector after learning.

4.2 Scaling Up Streams

All rules scaled up with increasing number of streams showing faster and more stable learning. We display
in �gure 11 the learning curves for the Covariance rule using otherwise equal conditions with 2, 4 and 8
streams on the edge contrast inputs. However the scaling law is sublinear. Figure 12 plots the number of
streams vs. the number of inputs to the onset of the exponential growth of the covariance measure and �ts
it to a logarithm. We can see that there is an immediate advantage in speed in increasing the net size to
over 10 streams and then the gain reduces as the scaling curve levels out.

4.3 Less Informative Components

Here we use both horizontal and vertical bar inputs with vertical bars occuring most often but uncorrelated
in sign across streams. Our results back up the theoretical proofs that the RE, MSE rules perform unstably
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Figure 8: the horizontal bar inputs with coherency probability of 0.1
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Figure 9: Comparing the mean performance of the anti-correlation MSE (right), and anti-correlation RE
(left) and Infomax (bottom) rules. Parameters: 2 streams, 2x10 PF inputs bits, xi 2 [�1; 1], edge contrast

inputs, initial weights from [0; 0:1], h = 32; � = 0:978; �w = 1; �u = 0:5; � = 10�5; � = 0:05, 10 trials, 20000

inputs per trial, covariance measure computed by sampling every 1000 training inputs and averaging over

1000 random test inputs
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Figure 10: Comparing the mean performance of the Covariance (right), Hebb (left) and Infomax (bottom)
rules. Parameters as in Fig. 9
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Figure 11: Comparing the mean performance of the Covariance rule for 8, 4 and 2 streams (from left to right)
with unscaled learning rates (all set to one). Parameters: 2x10 PF inputs bits, xi 2 [�1; 1], edge contrast

inputs, initial weights from [0; 0:1], h = 32; � = 0:978; � = 10�5; � = 0:05, 10 trials, 20000 inputs per trial,

covariance measure computed by sampling every 1000 training inputs and averaging over 1000 random test

inputs. Log �tted equation: 4349� 1043 log(x); r = �0:98
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Figure 12: The empirical (�lled) and log �tted (hollow) scaling law between the number of streams and the
onset of the exponential growth in the covariance measure. Parameters as in Fig. 11.

because only high-order terms reecting contextual e�ects use the correlation factor (equation 25). Covari-
ance and Hebbian proved to be very stable at low probabilities of coherent information. Figure 13 shows
that the covariance rule can learn very e�ciently the less informative horizontal bars at probabilities of 0.3
and 0.1, while �gure 14 indicates that the mean and deviation for the Covariance rule are much better than
the anti-correlation MSE rule. Figure 6 shows a typical PF weight vector after learning.

4.4 Additional Incoherent Inputs

Similarly we can test the rules under conditions where the net receives much incoherent inputs and with no
structure within each stream. So using the edge contrast inputs (uniform PF input distributions), we can
lower the correlation factor between streams by presenting random net inputs with a certain probability.
We found the same results as above that RE and MSE performed considerably worse than Covariance and
Hebbian. Figure 15 and 16 show the Covariance and MSE rules respectively with 70% incoherent net inputs
in a 4 stream net. The deviations are much greater for the MSE rule.

4.5 Partitioned Network Coherency

In this example we conceptually divide the network streams into two subsets. Within each subset, inputs
across streams are coherent, while between subsets, inputs are incoherent. The edge contrast inputs were used
with the sign of the edge correlated within each partition but uncorrelated across partitions. The purpose
of this experiment is to show that one needs to learn the contextual weights so that they allow a stream to
link only with those streams that transmit relevant coherent information. We found that Covariance and
Hebbian were the most powerful and stable, agreeing with this hypothesis and theoretical result, while RE
and MSE were unstable and tended to boost the links between incoherent streams but by not as much as
between coherent streams (results not shown).
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Figure 13: Comparing the mean performance of the Covariance rule for the horizontal bar inputs with
30% (left) and 10% (right) probability of coherent structure. Parameters: 4 streams, 5x5 PF inputs bits,

xi 2 [�1; 1], horizontal bar inputs, initial weights from [0; 0:1], h = 32; � = 0:978; � = 10�5; � = 0:05; �w =
0:5; �u = 0:5, 10 trials, 30000 inputs per trial, covariance measure computed by sampling every 1000 training

inputs and averaging over 1000 random test inputs
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Figure 14: Comparing the mean performance and standard deviation of the Covariance rule (top) and the
MSE rule (bottom) with 10% probability of coherent structure. Parameters as in Fig. 13.
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Figure 15: The mean performance with the standard deviation over trials for 70% random inputs using
the Covariance rule. Parameters: 4 streams, 2x10 PF inputs bits, xi 2 [�1; 1], edge contrast inputs, initial

weights from [0; 0:1], h = 32; � = 0:978; � = 10�5; � = 0:05; �w = 0:5; �u = 0:5, 10 trials, 80000 inputs per

trial, covariance measure computed by sampling every 4000 training inputs and averaging over 1000 random

test inputs
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Figure 16: As with (a) but with the MSE rule. Parameters as in Fig. 15.

5 Discussion

This paper has been concerned with local online algorithms for the unsupervised learning of that information
that is statistically related across many processing streams. Where as the Coherent Infomax algorithm
(Kay & Phillips, 1994) maximizes the 3-way mutual information measure of Ix;z;y by concentrating on the
input distributions, our approach is concerned with maximizing the predictability between the primary
output and contextual predictor distributions of the PF and CF input �elds respectively. This avoids all
the computational complexity problems of Coherent Infomax that make its scaling infeasible (even though
scaling up also improves learning here). We also operate with continuous inputs while the Coherent Infomax
requires binary inputs for learning (continuous inputs are possible but all learning uses a binarized version).
We explored a variety of objective and cost functions to apply locally to learn the coherent information and
we found that a hebbian approximation of the covariance objective could provide stable learning on hard
tasks that Coherent Infomax has problems with.

Unfortunately we found that a local online implementation of the discrete Imax algorithm applied within
a stream processor, rather than between stream outputs as in Becker (1992), does not appear to work. This
may be because the sign and relative magnitude of the weight changes is determined by a three term factor.
All the terms in this factor are functions of average batch statistics. Since we are concerned with online
learning, these statistics need to be approximated by moving averages. However if the weight changes depend
completely on these, there is too much room for error.

We show both in theory and simulation that the relative entropy and squared error approaches were
functionally equivalent, with only a di�erence in learning speed but also that they perform poorly in the
presence of noise, more informative within-stream components or additional incoherent inputs. The covari-
ance rule and its hebbian approximation were shown to be the best rules to apply and the most robust and
e�cient. They were the only rules that actually learn the relevant coherent information for each stream. All
the other rules could respond to incoherent input variables and link incoherent streams. Learning to link
only those streams that transmit coherent information is of relevance for understanding the initial develop-
ment of horizontal connections in cortical systems. In visual cortex it is known that after the inital disperse
con�guration of connections, the pruning and �ne-tuning coincides with the emergence of orientation selec-
tivity (Callaway & Katz, 1990; Durack & Katz, 1996). This latter process is postulated to link columns of
similar orientation selectivity and depends on normal visual stimulation, presumably coherent stimuli (L�owel
& Singer, 1992). Finally we applied a modulatory activation function (Kay & Phillips, 1994) and used a
threshold learning rule which is controlled explicitly by the action of the context on the output. Although it
works for simple problems, it is not that stable in noisy situations and can sometimes learn all components
in a multiple component problem, whether coherent or not. This is unfortunate given its biological relevance
but it requires further careful analysis and simulation.

We have shown that single output streams with a distinction between the PF and CF outputs can
learn the coherent information very stably in a variety of problems. There are three main areas for future
work. (1) Our implementation of a single output is compatible with the Predictability Minimization (PM)
multiple output algorithm (Schmidhuber, 1992) and in particular the approximation for linear functions
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(Schmidhuber, Eldracher & Foltin, 1996). One can simply add a lateral �eld projecting the response of the
other processors in the same stream and apply the PM algorithm using it. The only question is how the
PFs learn using two learning rules simultaneously. Kay, Floreano & Phillips (1996) describe an extension of
the Coherent Infomax algorithm to multiple outputs. (2) We hope to extend to multi-layer nets. However
many problems still need to be overcome that do not arise with other unsupervised approaches (Becker
& Hinton, 1992; Schmidhuber & Prelinger, 1993) because they backpropagate errors/objectives to solve
nonlinear functions. While Phillips et al (1995) do show how local objectives using contextual and feedback
inputs to hidden units can solve the XOR problem, this may not work in general. Any nonlinear mapping
with continuous inputs will probably require a continuous hidden distribution. But all these local objectives
discussed in this paper maximize a local variance function which will drive the outputs binary. So we need
to �nd some way of using feedback to constrain the local objectives to satisfy the unwritten global objectives
as well. (3) Finally our research has suggested possible mechanisms in which contextual inputs can guide
learning. In the brain, the synchronization of neuronal responses to a coherent feature is controlled by
such contextual inputs and Singer (1993) postulates that this synchrony may inuence long-term learning.
Our long-term goal is to test the hypothesis that since synchronization is a short-term phenomenon linking
coherent features, then it could possibly be responsible for learning those coherent features in the �rst place.
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Appendix: The averaging procedure

We study experiments where a fraction  of the patterns presented is correlated in contrast across streams,
whereas the inputs behave completely random in each of the streams, i.e. for each stream � the probability
distribution of input unit i, i 2 [1; 2] is P (x�i) =

1
2
� (1� jx�ij) where � (x) is the Heaviside step function. The

joint probability P 0 for the uncorrelated patterns is P 0 (x11:::x22) = P (x11) :::P (x22). The corresponding
probability for the correlated patterns being P 1 (x11:::x22) = 2P (x11) :::P (x22) � (x11 � x12) � (x21 � x22),
so that P 1 is zero if the contrast in the two streams is di�erent in sign. More explicitely the averaging of
any function F (x11:::x22) over the inputs is de�ned as

hF i =

Z
1

�1

dx11 : : :

Z
1

�1

dx22P (x11:::x22)F (x11:::x22) (40)

=
1

8

Z 1

�1

dx11 : : :

Z 1

�1

dx22 ((1� ) + 2� (x11 � x12) � (x21 � x22))F (41)

In terms of the "natural" coordinates for the problem

x� = (x�1 � x�2) =2; X� = (X�1 +X�2) =2 (42)

introduced above, we write the averaging 40 over the input distribution as
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where we used x = x1; y = x2; X = X1; Y = X2 for simplicity of notation.
Averaging over the uncorrelated patterns is zero for any function which is antisymmetric with respect to

any of the variables. For the correlated patterns the same is true with respect to the combined inversion of
the sign of x and y: Hence hxi = hXi = hyi = hY i =
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we will need mainly the following ones
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so that the correlation is felt only by the averages combining variables across streams. The analysis is done
by Taylor expanding the logistics
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which is valid for low activation (initial phase of learning), i.e. jaj << 1: Using equation 45 we �nd for
example 
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where a� = 2 (w�x� +W�X�) is the activation in stream �: Useful are also expressions of the kind
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valid for su�ciently low activations.
Apart from covariance, the above lowest order results are su�cient for the evaluation of the objective

functions featuring in the text. For the covariance rule by means of MAPLE we have driven the analysis up
to the fourth order so that the decay of the brightness variable is clearly demonstrated.
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Nomenclature

PF,CF Primary,Contextual Fields
~x,~z PF,CF input vectors
~w,~u PF,CF weight vectors
a,b PF,CF activations
p,q PF,CF outputs
�p,�q moving averages of PF,CF outputs
h half-life of output contribution to the moving average
� inversely proportion to the rate of decay of outputs contribution to moving average
� learning rate
� linear rate of weight decay
� exponential rate of weight sensitivity decay
� indexes current input
�wi,�vi current weight changes to ith PF,CF weights
E error/cost function to be minimized by gradient descent
F objective function to be maximized by gradient ascent
I mutual information
H Shannon's entropy
K relative entropy
M mean squared error
C covariance
h�i� average over all inputs
A output activation from exponential activation function
y actual output from activation A
�; � arbitrary stream indices

x̂,X̂ contrast, brightness variables to a 2-bit input vector

ŵ,Ŵ weight sensitivity to contrast,brightness in a 2-bit stream
 fraction of inputs correlated across streams
t time variable
�(�) Heaviside step function
P (�) probability
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