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Abstract

We present a variant of the Q-learning algorithm with

automatic control of the exploration rate by a com-

petition scheme. The theoretical approach is accom-

panied by systematic simulations of a chaos control

task. Finally, we give interpretations of the algorithm

in the context of computational ecology and neural

networks.

I. Introduction

Reinforcement learning [3, 4], originally a paradigm

in psychological learning theory, has established itself

during the last decade as a class of powerful algorithms

in nonlinear control. Several algorithms are available

that try to approximate a value function over a set

of system states and possible state transitions. Given

an initial state, this function can be used to choose a

sequence of state transitions that approaches a state

of maximal value. In order to approximate the value

function the state space is explored by random transi-

tions with an externally increased bias for `good' tran-

sitions.

We present a novel approach to reinforcement learn-

ing in which state transitions compete for reinforce-

ment rather than undergo a controlled adaptation. In

this way the algorithm becomes robust against param-

eter changes and is, hence, expected to be more reliable

in complex control tasks.

In the next section we review the Q-learning scheme

[4, 5] which has some formal similarities with the

present algorithm and which is therefore well suited

for a comparison (cf. section V.). Our approach is

based on a competition among state transitions which

is locally governed by the Fisher-Eigen-equations [2],

described in section III. Global properties of self-

adjusting reinforcement learning are discussed in sec-

tion IV. The results of numerical simulations are pre-

sented in section V. Most interestingly, the novel learn-

ing algorithm allows for challenging interpretations in

a variety of contexts, cf. section VI.

II. Q-learning

In Q-learning the value function assings a Quality

measure to each pair (i; a), where i denotes a system

state and a a control action. Q(i; a) is adapted to

predict the total discounted future reinforcement when

performing �rst action a and following the currently

best possible strategy given by a = argmax Q(i; a)

thereafter. Discounting means that a reinforcement

signal r arriving t time steps later is considered to

have a value decreased by a factor t, where  � 1

is given as the time horizon of the system. In ad-

dition to the present state which is in fact only a

label, the only knowledge the learning algorithm re-

ceives about the system is the reinforcement signal. r

is state-dependent and assumes positive values for a

goal state, negative values for failure state and is zero

otherwise. Other choices of r may be useful in accor-

dance to context. Q(i; a) is updated by

�Q(i; a) = � (r(i) + V (i� a)�Q(i; a) (1)

V (i) = max
a
Q(i; a) (2)

a(t) = a with probability pi;a; (3)

where pi;a is maximal for Q(i; a) being maximal

w.r.t. a. A common choice is

pi;a =
eQ(i;a)=�

P
b e
Q(i;b)=�

; (4)

where for a small exploration rate � the currently best

action is strongly favored. We write j = i � a if the

system moves deterministically to state j if the action

a is applied in state i. For systems which are intrin-

sically stochastic apart from the random selection of

actions the result of the operation i� a is state j with

probability paij , where
P

j p
a
ij = 1; 8 i; a. In order to

avoid confusion of paij and the probability pi;a of choos-

ing action a in state i we will consider in the following

only intrinsically deterministic systems.

Q-learning has been proven [6] to �nd optimal

strategies in Markovian systems when each state is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226136671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


visited potentially in�nitely often and the adaptation

rate � satis�es
P

�(t) = 1 and
P

�(t)2 < 1. For

large state spaces and many actions, however, the �-

nite computing time performance strongly depends on

the time course of � and particularly on the explo-

ration strategy given in terms of pi;a, which accounts

for the avoidance of local minima. Q-learning requires

to �x the time course of the variables � and �. Little

is known about optimal cooling schemes for �.

III. Self-adjusting quasispecies

The present algorithm is based upon a population dy-

namics inspired by the approach described in [2]. Con-

sidering a �xed state i the probabilities pi;a are inter-

preted as relative frequencies pa (omitting index i) of

a `species' a which has �tness Va. The frequency of

the species evolves according to

�p�pa = (Va � hV i) pa; (5)

where

hV i =
X
a

paVa (6)

is the average �tness of the individuals living at site i.

Hence, pa grows if the �tness of a exceeds the average

�tness and decreases otherwise. Eq. (5) is a discrete

version the Fisher-Eigen equations of prebiotic evo-

lution [2], which have the following properties. The

probabilities are conserved, i.e.

X
a

pa(t) = constant 8t: (7)

The Fisher-Eigen equations are explicitly solvable:

pa(t) =
eVatpa(0)P
b e

Vbtpb(0)
; (8)

such that in the limit t!1

pa(t) =
n
1 for a = maxa Va
0 otherwise

: (9)

Further, there is a Lyapunov function

L =
X
a

paVa (10)

which satis�es
d

dt
L � 0: (11)

The relevance of this schemes becomes clear is the

�tness values are not �xed quantities rather than being

determined by the value of a subsequent state in the

reinforcement dynamics, namely:

Va � r(i) + V (i� a) (12)

However, the assumption of constant �tness implicit

in the Fisher-Eigen equations does not hold in this

case. In place of the evolution of a single population we

have now the situation of co-evolving subpopulation

residing at sites i, where the subpopulations interact

by backward transmission of discounted reinforcement

and forward activation by choosing a control action

based on the current pi;a values.

IV. Self-adjusting reinforcement learning

Returning to the reinforcement learning scheme

Eq. (5) becomes

�P�pi;a = r(i)+ V (i� a)�hr(i)+ V (i� a)i: (13)

The multiplication by pa in Eq. (5) is now hidden

in the choice of a according to the probabilities pi;a,

i.e. (13) is a stochastic approximation of the coupled

Fisher-Eigen equations. The average in (13) can be

rewritten as

V (i)
def

= hr(i)+ V (i� a)i = r(i) + 
X
a

pi;aV (i� a);

(14)

which is the expected reinforcement at state i when

following the strategy with stochastic action choice for

subsequent time steps rather than the currently best

possible (`greedy') strategy as in Q-learning. When

formulating also Eq. (14) as a stochastic approxima-

tion scheme in order to avoid performing the explicit

sum in each time step, we obtain an update rule for V

which together with Eq. (13) forms the main equation

of on-line version of the present algorithm.

�p�pi;a = r(i) + V (i� a) � V (i) (15)

�V�V (i) = r(i) + V (i� a)� V (i) (16)

(15) and (16) have to be solved simultaneously which

is numerically convenient because of identical r.h.s.'s.

Thus, the self-adjusting reinforcement learning algo-

rithm depends on the choice of the �xed times scales

�p and �V in contrast to cooling schemes in Q-learning.

In order to analyze the complementary equations (15)

and (16) we consider the averaged versions (13) and

(14).

If the changes in the V values are neglectable com-

pared to the time scale in (13) we recover the situation

of the discrete Fisher-Eigen equation (5). The �tness

is constant on short time scales such that the con-

vergence and normalization properties are preserved.

Since, however, for �p � �V the probabilities converge

to zero or one further exploration becomes impossible

and the resulting strategy remains suboptimal.

If on the other hand �p � �V we can look separately

for quasi-stationary solutions of (16). We introduce a

matrix

Mij =
n
pi;a if j = i � a

0 otherwise
(17)



for the intrinsically deterministic case or analogously

for the intrinsically stochastic case

Mij =
X
a

p
a
ijpi;a (18)

and write the stationary state of Eq. (14) in vector

notation

V = r+ MV: (19)

Since M is a probability matrix all of its eigenvalues

� obey j�j � 1. Hence, it is possible to solve (19) for

0 <  < 1 and the solution of (19) is stable.

V = (1� M)�1r (20)

The current value function given by the solution (20)

can be used in Eq. (15) adapting on a slower time scale.

Since most of the p-values decay exponentially nec-

essary changes of the pi;a due to changes in the V will

by di�cult to maintain since action with pi;a close

to zero are infrequently explored. In order to avoid

the convergence to such local minima the decay of

the probabilities should by restricted to small positive

limit values � > 0. In this way the convergence rate

is improved and e�ects of small numbers are removed.

Theoretically such a restriction is, however, not neces-

sary since the probabilities also recover exponentially

fast from small values. For comparable time scales �p
and �V Eq. (14) ensures the conservation of probabil-

ity for the continuous version of (13). In the case of a

discretization or a stochastic approximation, however,

the probabilities have to be normalized explicitly.

V. Simulation results

We have applied the proposed learning scheme to a

pedagogical centering task, where an analytical solu-

tion both forQ-learning as well as for self-adjusting re-

inforcement learning is obtainable and in coincidence

with the numerical results. Other successful simula-

tions are the cart-pole problem and the control of un-

stable periodic orbits in a Mackey-Glass system.

Here we will present a more systematic numerical

study on a simple chaotic stabilization task, namely

the stabilization of an unstable �xed point in the logis-

tic map, cf. [1]. The algorithm runs for a �xed number

of 100000 time steps using inputs from a partition into

200 categories of the one-dimensional state space and

a reinforcement signal which assumes non-zero values

whenever the state passes near the �xed point. When

testing possible combinations of �xed �p and �V , the

latter parameter turned out not to be critical. Even

values di�erent by several orders of magnitude did not

change the performance of the algorithm. In contrast,

when �p is too large the control task cannot be solved

in limited time. For a smaller time scale �p on the other

hand the convergence of the p-values is too quick such

that only a poor solution is reached before su�ciently

exploring the state-action space was possible. Fig. 1

indicates the regions of an average control time of less

than 10 per cent above the optimal stabilization time.
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Figure 1: Region in the (�p; �V ) parameter space which

allows for an average stabilization time from a random

initial state that is less than 10 per cent above the

minimal average time in a chaos control task.

For comparison the Q-learning algorithm has been

applied to the same problem. The learning rate � and

the exploration rate � have a similar meaning as ��1
V

and ��1
p in the self-adjusting scheme. For �xed values

of � and � the parameter space region which allows

for a solution of the control task is a very small area

at large � and relatively small �. If � decays linearly

to zero during the learning period and � decays alge-

braically a plot similar to Fig. 1 can be made for the

starting values of � and �. In this case the successful

region is qualitatively similar, although smaller.

VI. Discussion

The presented learning algorithm allows for challeng-

ing interpretations in the contexts of computational

ecology and neural dynamics. The main �eld for appli-

cations of reinforcement learning algorithms is, how-

ever, control. Therefore we have been mainly using

this language and referred to the i as system states

and to the a as control actions.

Computational ecology: Self-adjusting reinforce-

ment learning has a background in computational ecol-

ogy. In order to illustrate this relation we will give

now a more complete interpretation of the learning al-

gorithm on a social model.

We consider a population of traders living in a city i

in which di�erent kinds a of traders have speci�c trade

relations to certain other other cities j = i�a. In any

city the goods o�ered for sale are either produced there

(r) or bought from other cities. The demand V (i) for

goods from city i depends, thus, from r(i) as well as

from the value of goods brought from elsewhere to i

discounted by a factor  for the cost of transportation.

If a trade mission to city j = i � a has turned out



to be more successful than usual that trade relation

will be more frequently exploited in future (update

p), also the trade coordination department of i should

announce the success (update V ) in order to increase

the demand. In a system as simple as described here

the produced goods should arrive as quickly as possible

at the consumers which are the leaves in the evolving

tree-like trade structure.

Neural dynamics: In the context of neural systems

the action probabilities pi;a are the e�cacies of synap-

tic connections between neurons i and j = i� a. Vi is

the mean �ring rate of neuron i. If an action potential

is send from i those e�cacies increase which relate to

activated neurons j. The activation is more likely if the

connection pi;a is strong. Hence, the dynamics of the

neural implementation follows directly Eqs. (13) and

(14) rather than their stochastic counterparts. The

learning rule for the synapses would lead to single-

output neurons in contrast to the network structure

in real neural systems. However, by requiring a mini-

mal number of action potentials arriving at a neuron

to be activated and introducing mechanisms to keep

the total activity constant more complex connectivity

structures arise. The resulting neural arrangement can

detect coincidences of arriving spikes and is function-

ally similar to a syn�re chain architecture.

VII. Conclusion

We have presented a variant of the Q-learning algo-

rithm with automatic control of the exploration rate

by a competition scheme similar to the Fisher-Eigen-

equations known from evolutionary dynamics. The

self-adjusting reinforcement learning algorithm is dif-

ferent from Q-learning in that the state-action value

function is replaced by the evolution of action proba-

bilities for each state. In addition, the adjustable vari-

ables are determined by an average over possible ac-

tions at any later time weighted by the adaptive tran-

sition probabilities rather than the currently optimal

strategy. The algorithm is simpler than Q-learning in-

sofar as no parameter cooling schemes are necessary.

In particular, the self-adjustment of the exploration

rate is superior to a �xed scheme when the reinforce-

ment signals are changing in time. The implementa-

tion of its o�-line version as a reinforcement learning

neural network will be studied in a forthcoming paper.
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