

DESIGN AND IMPLEMENTATION OF A

MODULAR CONTROLLER FOR ROBOTIC MACHINES

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

In the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon

By

RODNEY ATTA-KONADU

Keywords: architecture, communication, distributed control, embedded, Java, modular,

real-time network, reconfigurable, robots, Zeroconf

 Copyright Rodney Atta-Konadu, September, 2006. All rights reserved.

 i

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the

professor or professors who supervised my thesis work or, in their absence, by the Head of

the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan (S7N 5A2)

 ii

ABSTRACT

This research focused on the design and implementation of an Intelligent Modular

Controller (IMC) architecture designed to be reconfigurable over a robust network. The

design incorporates novel communication, hardware, and software architectures. This was

motivated by current industrial needs for distributed control systems due to growing

demand for less complexity, more processing power, flexibility, and greater fault

tolerance. To this end, three main contributions were made.

Most distributed control architectures depend on multi-tier heterogeneous

communication networks requiring linking devices and/or complex middleware. In this

study, first, a communication architecture was proposed and implemented with a

homogenous network employing the ubiquitous Ethernet for both real-time and non real-

time communication. This was achieved by a producer-consumer coordination model for

real-time data communication over a segmented network, and a client-server model for

point-to-point transactions. The protocols deployed use a Time-Triggered (TT) approach

to schedule real-time tasks on the network. Unlike other TT approaches, the scheduling

mechanism does not need to be configured explicitly when controller nodes are added or

removed. An implicit clock synchronization technique was also developed to complement

the architecture. Second, a reconfigurable mechanism based on an auto-configuration

protocol was developed. Modules on the network use this protocol to automatically detect

themselves, establish communication, and negotiate for a desired configuration. Third, the

research demonstrated hardware/software co-design as a contribution to the growing

discipline of mechatronics. The IMC consists of a motion controller board designed and

prototyped in-house, and a Java microcontroller. An IMC is mapped to each

machine/robot axis, and an additional IMC can be configured to serve as a real-time

coordinator. The entire architecture was implemented in Java, thus reinforcing uniformity,

simplicity, modularity, and openness. Evaluation results showed the potential of the

flexible controller to meet medium to high performance machining requirements.

 iii

ACKNOWLEDGMENTS

I will like to thank my supervisor Professor Chris Zhang for the generous support

and guidance he commited to me. My co-supervisor Dr. Sherman Lang of NRC-IMIT

provided key directions, motivations, and support toward this research. I appreciate the

guidance and encouragement I received from my committee members Professors

Schoenau, Hertz, Gander, and Dr. Peter Orban of NRC-IMIT.

I certainly acknowledge NSERC and the Department of Mechanical Engineering

for supporting my PhD work. Most of my research time was spent at the NRC-IMIT

where I received part-funding for this project. I thank Mr. Georges Salloum the Director

General and Dr. Gian Vascotto (Director) for endorsing this collaborative project.

Memories of the congenial IMTI microcosm will linger with me for years to come. I

acknowledge the input of Dr. Orban whose pragmatism and prodding had tremendous

impact on this work. I note the support of Marcel Verner on many technical issues. Dr.

Zhuming Bi gave me great companionship and bent the rules a few times to let me in

during silent hours. I am very thankful for the companionship and support of IMTI staff

such as Susan Salo, Brian Wong, Stan Kowala, Dave Kingston, Steve Kruithof, Lori Cox,

Dr. Helen Xie, Millan Yeung, Dr. Lihui Wang, Dr. Weiming, and Mike Meinert. Trent

Steensma (UWO Electronics Department) gave me much advice in PCB production. I also

benefited greatly from forum discussions with the Java and Systronix communities.

I am exceedingly thankful for the invaluable impact of precious friends,

particularly; Nii and Celestina Allotey, Erasmus and Catherine Amoateng, Charles and

Agnes Annan, Frank and Cynthia Arku, Ernest and Monica Ansah-Sam, Eddie and

Francisca Bansah, Milan Bhasin, Basia Bodzanowski, Brian and Darleen Carter, Joyce

Grant, Mobi Emodi, Ron Hampson, Franklin and Bridgette Krampa, Michael and Irene

Nketia, Jay and Tammy Nyyssonen, Kwaku and Regina Odei, Felix Oppong, Esther

Oppong, Dr. Osei, George and Gertrude Quainoo, Professor Tachie who introduced me to

my supervisor, Dr. Jean Yuchuan, my pastors Greg Olson and Howard Katz, and my step-

mum Esther. I am thankful to all my family for coping with my protracted abeyance, and

my dear wife Edwoba for her relentless prayers and support. The Lord Jesus Christ has

always been and will always be my life and my resurrection.

 iv

DEDICATED TO

My dear wife Edwoba

My adorable son Elijah

My precious parents Dr. Atta-Konadu and Beatrice Adjei

My uncle Jackson (rtd. aircraft engineer) who has inspired me from my pre-school days

 v

TABLE OF CONTENTS

PERMISSION TO USE... I

ABSTRACT.. II

ACKNOWLEDGMENTS ...III

DEDICATED TO ..IV

TABLE OF CONTENTS..V

LIST OF TABLES...XI

LIST OF FIGURES ... XII

LIST OF ABBREVIATIONS..XV

1. INTRODUCTION ...1

1.1 Overview .. 1
1.2 Motivation .. 1
1.3 Goals and Contributions... 3
1.4 Organization of Thesis ... 4
2. ARCHITECTURE DESIGN CONCEPTS AND REVIEW................................6

2.1 Robot Control Architecture, Introduction ... 6
2.2 Architectural Properties ... 6

2.2.1 Dealing with Complexity 6
2.2.2 Execution 7
2.2.3 Openness 8
2.2.4 Performance 8
2.2.5 Scalability 9
2.2.6 Simplicity 9
2.2.7 Modifiability 9
2.2.8 Portability 9
2.2.9 Reliability 9
2.2.10 Distributed Real-Time Systems 10

2.3 Software Architecture Styles ... 10
2.3.1 Pipe-and-Filter System (Data-Flow Model) 11
2.3.2 Layered Style 12
2.3.3 Time Triggered 12
2.3.4 Synchronous/Reactive 12
2.3.5 Process Networks 13
2.3.6 Publish and Subscribe 13
2.3.7 Client-Server (CS) 13
2.3.8 Process Control 14
2.3.9 Finite State Machines 14

 vi

2.3.10 Mobile Code 14
2.3.11 Data Abstraction and Object-Oriented Organization 15
2.3.12 Event-Based, Implicit Invocation 16
2.3.13 Repositories 16
2.3.14 Heterogeneous Architectures 17
2.3.15 Rules-of-Thumb for Selecting Styles 17

2.4 Taxonomy for Controller Architectures .. 18
2.5 Controller Hardware Architecture Review.. 18

2.5.1 WinRec 19
2.5.2 MUPAAC Architecture 20
2.5.3 Modular CNC System Architecture 22
2.5.4 GEECON Architecture 24

2.6 Controller Software Architecture Review ... 26
2.6.1 OMAC Architecture API 27
2.6.2 UBC Open Architecture Control System 29
2.6.3 NRC Tripod 32
2.6.4 CLARAty Architecture 34

2.7 Control Architectures ... 36
2.7.1 Classic Control 36
2.7.2 Reconfigurable Control Architectures 39

2.8 Concluding Remarks.. 42
3. SYSTEM ARCHITECTURE ..44

3.1 Architecture Design Philosophy .. 44
3.2 Intelligent Modular Controller (IMC) ... 48

3.2.1 Interfaces 49
3.3 The System Coordinator(s) .. 49
3.4 Conclusion.. 49
4. EMBEDDED COMPUTING PLATFORM ..51

4.1 Introduction .. 51
4.2 Java for Real-time System Design... 51
4.3 Opportunities and Constraints for Java Embedded Devices....................... 53

4.3.1 The Java Micro Edition (J2ME) 55
4.4 Microcontroller Hardware Selection ... 56

4.4.1 The aJile Processor 57
4.4.2 The JStick Platform 59

4.5 Motion Controller Hardware.. 60
4.5.1 Motion Controller Design Options 62
4.5.2 Motion Controller Board Design Criteria 63
4.5.3 Motion Controller Chip Selection 64

4.6 Conclusion.. 64
5. MOTION CONTROLLER BOARD DESIGN ...65

5.1 Introduction .. 65
5.2 JStick’s Peripheral Interface Signals ... 66

5.2.1 The Phase Locked Loop (PLL) 66

 vii

5.2.2 The External Bus Interface 67
5.2.3 HSIO Bus Address Space and Timings 67
5.2.4 JSimm Interface and Signals 68

5.3 The Interface Design .. 68
5.3.1 Clocking 74

5.4 LM628 DAC Output .. 75
5.4.1 Encoder Interface 78
5.4.2 Power Supply and Noise Emission 78
5.4.3 Board Schematics 79
5.4.4 The LM628 Hardware Driver 79
5.4.5 Initializing 82
5.4.6 Interrupt Service Routines and digital I/O operations 82

5.5 Conclusion.. 83
6. THE IMC COMMUNICATION ARCHITECTURE..84

6.1 Introduction .. 84
6.2 Requirements for Real-Time Communication .. 85

6.2.1 Environment State Capturing Strategy 87
6.2.2 Co-operation Models 88
6.2.3 Composability 89

6.3 Real Time Network Applications .. 90
6.3.1 Physical Layer 91
6.3.2 Data Link Layer 92
6.3.3 Network Layer 95
6.3.4 Transport Layer Protocols 95
6.3.5 Application Layer 95

6.4 Automatic Configuration ... 96
6.4.1 The Zeroconf Protocol 97

6.5 The IMC Communication Architecture... 98
6.5.1 Communication and Computing Elements 99
6.5.2 Communication Flow and Control 101
6.5.3 Triggering and Scheduling 103
6.5.4 Automatic Configuration 107

6.6 Conclusion.. 108
7. CLOCK SYNCHRONIZATION...110

7.1 Introduction .. 110
7.2 Time.. 110

7.2.1 Properties of Physical Clocks 111
7.2.2 Global Clocks 112
7.2.3 Failure Mode 113

7.3 The Synchronization Problem ... 113
7.3.1 Internal Synchronization 114
7.3.2 External Synchronization 115

7.4 The IMC Clock Synchronization Architecture ... 117
7.4.1 Assumptions and Properties 117
7.4.2 Analysis 119

 viii

7.5 Conclusion.. 120
8. TRAJECTORY PLANNING...121

8.1 Introduction .. 121
8.2 Planer Motion Trajectory Planning ... 121

8.2.1 Interpolation by Search Technique 122
8.2.2 Linear Interpolation by Digital Differential Analyzer (DDA) 123
8.2.3 Circular Interpolation 125

8.3 Robot Motion Planning.. 127
8.4 Other Interpolation Methods.. 129
8.5 Implementation on the IMC... 130
8.6 Conclusion.. 134
9. THE IMC SOFTWARE ARCHITECTURE ...136

9.1 Software Development Phases... 136
9.1.1 Analysis 136
9.1.2 The Design Phase 137
9.1.3 Implementation 137

9.2 The IMC Architecture Software Abstraction Development 137
9.2.1 Analysis 138
9.2.2 Design 139

9.3 The IMC Domain ... 139
9.3.1 Database Abstractions 140
9.3.2 Coordination Abstractions 144
9.3.3 Driver Abstractions 151
9.3.4 Network Abstractions 152
9.3.5 User Interface and Plug-And-Play Abstractions 153

9.4 The System Coordinator Domain .. 160
9.4.1 The Graphical User Interface (GUI) 161
9.4.2 Coordination Abstractions 166
9.4.3 The Database Abstraction 170
9.4.4 The Interpolator Component 172
9.4.5 Network Abstractions 175

9.5 The IMC Real-Time Coordinator .. 175
9.5.1 Real-Time Services 176

9.6 Conclusion.. 178
10. SYSTEM EVALUATION...179

10.1 Introduction .. 179
10.2 Sampling Time and Communication Latency... 179
10.3 Block Processing Time and Real-Timeliness.. 180
10.4 Synchronicity.. 180
10.5 Positioning Accuracy ... 182
10.6 Architectural Flexibility ... 185
10.7 Conclusion.. 186
11. CONCLUSION AND DISCUSSIONS ...187

 ix

11.1 Overview .. 187
11.2 Summary of Results ... 187

11.2.1 Control Architecture Review Summary 188
11.2.2 Recapitulation of the IMC Architecture 189
11.2.3 Prototype Development Summary 189
11.2.4 Summary of the IMC Communication Architecture 189
11.2.5 Summary of Computational and Software Models 190
11.2.6 Summary of the Controller Performance 191

11.3 Research Achievements ... 191
11.4 Discussions and Future Research Direction .. 192
REFERENCES ..194

APPENDIX A. THE IMC HARDWARE..201

A1 IMC Motion Control Board Schematics.. 201
A2 IMC Controller BOM... 207
A2 Motion Control Chips .. 209
APPENDIX B: IMC SOFTWARE INTERFACE...211

B1 com.IMC.database.. 212
Class Data 212
Class PushPullData 214
Class FIFO 216
Class FileServer_ConfigFiles 216
Class FileService 218
Class JmDNS_Coordinator_Data 219

B2 com.IMC.coordination ... 220
Class StateCoordinator 220
Class Counter 222
Class Device 222
Class EncoderReader 223
Class Interpolation_Server 223
Class Interpolation_Server_Starter 224
Class MainClass 225
Class Monitor 225
Class MultiCasted_States 226
Class StateBuffer 226

B3 com.IMC.servlets ... 228
Class PositionDump 228
Class ConfigureDevice 228
Class ControllerInfo 230
Class EditJmDNS 231
Class JmDNS_Coordinator 232

B4 com.IMC.drivers .. 233
Class Reference_Switch_Driver 233
Class GPIOPinA3 234
Class HSIO_Driver 234

 x

Class JStickTimer_tc2 236
Class LimitSwitch_Left 237
Class LimitSwitch_Right 237
Class LM628 238
Class Board_Clock 244
Class LM628_Interrupt 244
Class MotorAmp 244

B5 com.IMC.network .. 245
Class TCPServer 245
Class DatagramServer 245
Class MulticastServer 245

APPENDIX C: COORDINATOR SOFTWARE INTERFACE247

C1 com.coordinator.database... 248
Class Traj_Configuration_Data 248
Class Data 249
Class DataTranspose 252
Class FileDataToArrayConverter 253
Class GCodeParser 253
Class GCodeSender 254
Class JmDNS_DATA 254

C2 com.coordinator.coordination .. 254
Class ControllerIO 254
Class Trajectory_Server 256
Class JmDNS_Coordinator 257
Class JmDNS_Event_Server 258
Class Monitor 258
Class SynchFlag 259

C3 com.coordinator.interpolation.. 260
Class Transmission_Flag 260
Class Interpolator 260
Class Transmission 261
Class Transmission_ACK 261

C4 com.coordinator.GUI ... 262
Class TrajTable 262
Class MainApplication 262
Class MainGUIFrame 262
Class PIDTable 265
Class TrajDataApplication 266
Class TrajDataFrame 266

C5 com.coordinator.network ... 268
Class UDP_Client 268
Class DatagramSender 269
Class McastDirect 271
Class McastFlag 271
Class MulticastSender 271
Class TCP_Client 271

 xi

LIST OF TABLES

Table 4.1: Java Hardware Comparison .. 53

Table 5.1: Chip Configuration Register ... 67

Table 5.2: LM628 Signal Levels .. 68

Table 5.3: LM628 Timing Requirements... 71

Table 5.4: Timer Settings.. 75

Table 6.1: Typical JmDNS Services on the IMC Architecture 108

Table 9.1: Software Packages... 139

Table 9.2: The IMC Database Components... 140

Table 9.3: Coordination Components .. 144

Table 9.4: Driver Component ... 151

Table 9.5: Network Component ... 152

Table 9.6: Servlets Component .. 155

Table 9.7: System Coordinator Software Packages... 161

Table 9.8: GUI Component .. 161

Table 9.9: System-Coordinator Coordination Components .. 166

Table 9.10: System Coordinator Database Sub-Components 170

Table 9.11: System Coordinator Interpolator Sub-Components 173

Table 9.12: Network Package... 175

Table 9.13: Real-Time Coordinator Software Packages ... 175

Table 9.14: Real-Time Service Components ... 176

Table 9.15: Real-time Coordinator Command Structure... 176

Table 11.1: Summary of Research Objectives... 188

Table 11.2: Performance Evaluation Results ... 192

Table A1: Bill of Materials (2004) ... 207

Table A2: IMC Microcontroller, Cables & Router (2003).. 209

Table A3: Comparison of Motion Control Chips .. 210

Table B1: IMC Software... 211

Table C1: System Coordinator Software ... 247

 xii

LIST OF FIGURES

Figure 2.1: MUPAAC Architecture ... 20

Figure 2.2: MUPAAC Software Architecture.. 21

Figure 2.3: Modular CNC System Architecture .. 23

Figure 2.4: GEECON Architecture Implementation ... 25

Figure 2.5: GEECON Architecture .. 26

Figure 2.6: OMAC Architecture... 28

Figure 2.7: The UBC Open Controller Reference Architecture.................................... 30

Figure 2.8: Open Configuration System Software Architecture 31

Figure 2.9: Three-Tier Computing Hierarchy for the NRC-IMTI Tripod 33

Figure 2.10: Tripod Computing Architecture Variations .. 34

Figure 2.11: CLARAty Implementation on Various Rover Platforms 36

Figure 2.12: Classification of robot control problems ... 37

Figure 2.13: Model Reference Adaptive Control (MRAC)... 39

Figure 2.14: Control Configuration – General Strategy .. 40

Figure 2.15: Hierarchical Control Reconfiguration Structure 41

Figure 3.1: The IMC Hardware Architecture... 45

Figure 3.2: The IMC Reference Architecture .. 46

Figure 4.1: The Java System Architecture ... 52

Figure 4.2: The aJile JEM2 Processor (aJ-100, 2001) ... 58

Figure 4.3: aJ-100 Architecture (aJ-100, 2001) ... 59

Figure 5.1: Peripheral Motion Controller Board Architecture 65

Figure 5.2: aJile PLL Circuit Diagram (aJ-100, 2001) .. 66

Figure 5.3: JStick LM628 Interface.. 69

Figure 5.4: Interface Architecture for Multiple LM628 .. 70

Figure 5.5: HSIO Timing Diagram with Bus Speed of 7.37 MHz................................ 72

Figure 5.6: HSIO Timing Diagram with Bus Speed of 12.9 MHz Showing Violations73

Figure 5.7: Final HSIO Timing Diagram with Bus Speed of 12.9 MHz 74

Figure 5.8: DAC – LM628 Interface Architecture .. 77

Figure 5.9: Receiver Line Filter for Single-Ended Totem Pole Encoder...................... 78

Figure 5.10: Pseudo-code for High Speed I/O (HSIO).. 80

 xiii

Figure 6.1: Timing in an Event Triggered System... 87

Figure 6.2: Timing in a Time-Triggered System ... 88

Figure 6.3: The OSI Protocol Stack ... 91

Figure 6.4: Communication and Computing Elements: .. 100

Figure 6.5: Communication Flow... 101

Figure 6.6: Produce-Consumer Co-operation between the RC and IMC Nodes........ 103

Figure 6.7: TT communication with TT processors .. 105

Figure 6.8: ET Communication with TT Processor... 106

Figure 6.9: Multicast DNS Query .. 107

Figure 7.1: IEEE1588 Precision Time Protocol Architecture 116

Figure 7.2: Clock Synchronization Capture on a Logic Analyzer 120

Figure 8.1: Circular Interpolation... 126

Figure 8.2: Flowchart for Different Trajectory Configuration Modes 131

Figure 8.3: Flowchart for Coordinated-Motion ... 134

Figure 9.1: The IMC Architecture Software Components .. 138

Figure 9.2: IMC Configuration Servlet II .. 158

Figure 9.3: IMC Configuration Servlet II .. 158

Figure 9.4: JmDNS Service/Discovery Browser ... 159

Figure 9.5: JmDNS Service/Discovery Editor Webpage .. 160

Figure 9.6: Main GUI Browser... 163

Figure 9.7: Trajectory Editor I.. 164

Figure 9.8: Trajectory Data and Configuration Browsers ... 164

Figure 9.9: Trajectory Editor Frames ... 165

Figure 9.10: PID Filter Parameter Editor ... 165

Figure 9.11: Interpolator Flow Diagram .. 174

Figure 10.1: Timing Variations–Uncompensated Delays ... 181

Figure 10.2: Timing Variations– Compensated Delays... 181

Figure 10.3: Timing Variation– Synchronization by Interrupts 182

Figure 10.4: Linear Trajectory.. 182

Figure 10.5: Circular Trajectory – 5-mm radius .. 183

Figure 10.6: Radial Error – 1-mm radius ... 183

 xiv

Figure 10.7: Radial Error – 5-mm radius ... 184

Figure 10.8: Radial Error – 25-mm radius ... 184

Figure 10.9: Combined Linear and Circular Paths .. 185

Figure 10.10: Tripod Slider Displacements ... 186

Figure A1: Motion Control Board (3.5mm x 3.2mm) ... 201

Figure A2: LM628 Pin-out to Header (H1), and Clock... 202

Figure A3: Encoder Interface and I/O to JStick SIMM Interface 203

Figure A4: AD667 DAC Interface with Logic Devices .. 204

Figure A5: AD667 DAC Output Circuit .. 205

Figure A6: Filters and Power Supply ... 206

Figure A7: IMC Ensemble.. 207

 xv

LIST OF ABBREVIATIONS

jk

i
offset Offset of microtick i between clocks j and k with the same

granularity

δ Network latency

δmax Maximum network latency

δmin Minimum network latency (delay)

∆u Displacement step

∆x Incremental displacement in axis x

A, B, I Encoder output signals

aJile Manufacturer of aJ100 and aJ80 microprocessors that

directly execute Java bytecodes in hardware

Architecture The structure of specific components (such as hardware

software components) and the way they interact

ASIC Application Specific Integrated Circuit

BLU Basic Length Unit of a Machine indicates its precision

C Chord error (circular interpolation)

Client-Server Cooperation model based on Client node(s) that request

the service(s) of server(s)

CLKO Clock output

Cmax Maximum chord error

CMOS Complementary Metal-Oxide Semiconductor; a major

class of integrated circuits.

CNI Communication Network Interface

COTS Commercial-Off-the-Shelf

CSMA Carrier Sensing Multiple Access

CSn Chip Select n; n = integer

CTC Continuous Path Control

DAC Digital to Analog Converter

D-Type Flip-Flop A pulsed digital circuit capable of serving as a one-bit

memory. D (data) – type is one of the four basic types

EBI aJ100 External Bus Interface

 xvi

ET Event-Triggered

Fieldbus Control network based on a serial bus

fr
z
 Reference clock frequency

fx and fy x and y axes velocities.

g Granularity: duration between two consecutive microticks

of a clock

g
k Granularity of a clock k

GPIO General purpose I/O

hex Hexadecimal

I/O Input/Output

IMC Intelligent Modular Controller

J or � Latency jitter; Difference between minimum and

maximum latencies

Java bytecode Machine-independent code generated by the Java compiler

and executed by a Java interpreter.

JDK Java Development Kit

JNI Java Native Interface

JStick aJile-based microcontroller by Systronix

JVM Java Virtual Machine

 k Time interval (in the context of trajectory planning)

LSB Least Significant Bit

microtick Periodic event generated by a clock oscillating mechanism

microticki
k microtick i of clock k is identified

MSB Most Significant Bit

N Number of interpolation steps (in the context of trajectory

planning)

N1 Number of interpolation steps in acceleration region

N2 Number of interpolation steps in constant velocity region

N3 Number of interpolation steps in deceleration region

n-DOF n Degrees of Freedom

 xvii

Node An element on a network consisting of at least a host

computer and a local communication network interface

NRC-IMTI National Research Council Integrated Manufacturing and

Technology Institute

OS Operating System

PID Proportional-Integral-Derivative filter for a controller

PKM Parallel Kinematic Mechanism

PLL Phase-Locked-Loop: a closed loop frequency control

system based on the phase sensitive detection of phase

difference between the input and output of the controlled

oscillator

PnP Plug-and-Play

prescalar A continuous count-down timer that divides aJile’s

internal peripheral clock (or an external clock) by

PrescalerReloadRegisterValue – 1

PrescalerReloadRegisterValue value of the prescaler register

PS Port Select for LM628

Ps(xs, ys) and Pe(xe, ye) Starting and end points of a line

PTP Point-to-Point motion

Publish-Subscribe Cooperation model based on publishers and subscribers of

information

R(t) Reliability

RC IMC real-time coordinator

RD Read control strobe

ReloadRegisterValue Reload register value (aJile)

RST Reset pin

SC IMC system coordinator

T Interpolation period (in the context of trajectory planning)

Tc clock periods

TDMA Time Division Multiple Access

 xviii

Ti Interpolation time interval (in the context of trajectory

planning)

 TT Time-Triggered

TTL Transistor-Transistor Logic: A class of digital circuits built

from bipolar junction transistors (BJT), and resistors.

Tw Timing duration in CLKO periods

VME bus A 32-bit bus developed by Motorola

WR Write control strobe

z Reference clock

z(e) Absolute timestamp of event e �
 Failures/hour � Clock Drift

П Clock precision

 1

1. INTRODUCTION

1.1 Overview

This thesis presents the design of a modular reconfigurable controller for machine

tools. This is not a new concept, as the literature in the subsequent chapters reveals;

however the design breaks new ground by incorporating embedded technology using

commercial-off-the-shelf (COTS) components, flexible architectural design patterns based

on object-oriented technology, plug-and-play, and web-design into a distributed control

system. All these properties are harnessed by well-conceived and novel hardware,

software, and communication architecture designs. The treatise takes a tour through the

different design stages from concepts to production, and also gives a rich background of

the related state-of-the-art. Experimental results and future research directions wrap up the

main thesis body. The rest of this chapter gives the motivation for the research, goals and

contributions, and the organizational structure of the thesis.

1.2 Motivation

The Mechatronic approach in modern design of control systems inevitably

involves embedded technology. This approach is gaining a lot of attention due to the

growing demand for distributed real-time systems. Indeed, the gradual paradigm shift

from centralized systems is justified in many ways. The most compelling reasons are the

needs for less complexity, more processing power, flexibility, and greater fault-tolerance.

A typical distributed control system (DCS) consists of several processing nodes connected

by a communication network. The network presents a duo of both convenience of

connectivity, and inconvenience of dealing with real-time situations. For this reason, some

control designers treat the DCS arena with caution, quite reluctant to breakaway from

tried-and-tested microprocessor communication systems such as backplanes. However,

designs based on such systems have limited flexibility in terms of scalability, unlike serial

communication systems where a few serial lines could connect many elements. Currently,

there are several such systems, collectively called fieldbuses, which are employed in many

 2

industries to operate peripheral devices such as sensors and actuators. Fieldbus systems

have roots in automotive systems where data rates are only a few kilobytes per second.

Apparently, their bandwidths have not changed substantially since their debut some

twenty years ago. Moreover the current market is now inundated with fieldbus products,

and this poses a challenge to standardization and interoperability. Industries need

interoperable devices and techniques to reduce integration costs of factory information

systems (Dugenske et al., 2000). In the midst of evolving communication standards,

Ethernet has stood out as the most consistent and robust, though its presence in low-level

control is almost non-existent due to its non real-time properties. Against this backdrop,

this research investigates the constraints and opportunities for using Ethernet and proposes

and implements a design scheme to realize real-time control to meet stringent time

demands. The communication architecture uses a producer-consumer coordination model

for real-time data communication over a segmented network, and a client-server approach

for point-to-point transactions. Moreover, the proposed scheme employs a time-triggered

(TT) approach to schedule tasks for the network. Unlike other TT approaches – normally

branded as inflexible, the proposed scheme does not need to be configured explicitly.

Furthermore, an auto-configuration protocol that enables devices on the network to be

cognizant of the operational environment has been successfully integrated in the

architecture. This scheme allows devices on the network to automatically detect

configuration changes, and react according to local event-service routines.

Another important aspect of the architecture is the use of an object-oriented

architectural style. This style of programming leverages reuse, fast development, and high

quality software semantics. Presently, C++ and Ada are the most commonly used object-

oriented tools in embedded system designs. Both are robust real-time programming tools,

but while C++ is prone to poor readability and maintainability, Ada is large and complex.

Breaking from the norm, we use Java as the sole programming tool. Java adds flexibility

by being platform-independent with rich support for networking. However, not many real-

time applications have been written in this language due to its inherent tardiness. For this

reason, we resorted to Java-based processors with native Java machines. This led us to

design customized motion controller boards based on COTS components. Test results

 3

demonstrate the capabilities of the design. In the section below, the main objectives and

goals of this research are presented.

1.3 Goals and Contributions

The proposed research aims to advance reconfigurable controller architecture to a

new limit by addressing the above issues. The research is a collaborative effort between

the Mechanical Engineering Department of the University of Saskatchewan and the

Integrated Manufacturing and Technology Institutes of the National Research Council

(IMIT-NRC). The following list summarizes the research objectives for the proposed

design:

Primary Objectives:

1. A generic framework for a modular reconfigurable control architecture. The

framework addresses software and hardware requirements, and also the

communication structure.

2. A small and simple design that fits into embedded low-cost platforms.

3. A working prototype, not just concepts and simulations of the architecture.

Secondary Objectives:

Literature review on the current work being done in the field of design and to

identify those areas that require additional investigations.

1. A critical review of the state-of-the-art in control architecture, distributed

communication paradigms, and reconfigurable networked systems.

2. A synchronization algorithm and protocols to enable Ethernet to be used for real-time

control.

3. An operational software architecture based on modularity and reusability.

4. Demonstration of the strengths of the proposed design.

Contributions:

The main contributions of the thesis are as follows:

1. Embedded technology is a cost-effective approach to motion control design. C++ and

Ada have dominance in this field, but Java has certain unique and superior strengths

albeit some weakness in real-time design. In Chapters 4 and 5, a Java-based design is

presented that utilizes COTS components. The concepts are simple (simplicity is the

governing principle), and can easily be replicated. To the best of our knowledge, no

 4

literature has revealed a hard real-time motion controller design thoroughly based on

embedded Java technology.

2. Ethernet is the de facto network standard, but is seldom considered for time critical

events due to its inherent ‘sluggishness’. Therefore many distributed systems rely on

fieldbuses or microprocessor communication hardware (e.g. VME). However, the real-

time communications market is unregulated, and is therefore cluttered with many

different systems, which normally require special middleware and hardware systems

to make them interoperable. Moreover, not many of them have the robustness and

flexibility of Ethernet. In view of this, an Ethernet-based real-time communication

architecture with implicit clock synchronization has been implemented and

demonstrated as part of the overall architecture. The technology also enables the

controller sub-component design to incorporate embedded web-servers for remote

monitoring and system configuration.

3. Zeroconf protocol was developed by Apple to enable networked devices to

automatically reconfigure (plug and play) without the need for high level intervention.

A subset of the Zeroconf protocol, JmDNS, is written in standard Java (J2SE). With

regard to this protocol, two ideas are realized in this research: First, the protocol has

been re-engineered and ported to a subset of J2SE called the Java micro-edition

(J2ME) commonly used in embedded Java systems such as personal device assistants

(PDA). Secondly, the protocol has been successfully demonstrated as an automatic

configuration tool for controllers and other shop floor devices.

1.4 Organization of Thesis

The structure of the thesis is outlined in this section. In Chapter 2, a detailed

review of control architectures is discussed and critiqued. Typical requirements for control

and software architecture are presented to enable a comprehensive review. A snapshot of

the proposed architecture codenamed the IMC (Intelligent Modular Axis Controller)

architecture is presented in Chapter 3. The design is based on a layered reference model,

and modularity, simplicity and flexibility are the governing principles. A detailed review

of the constraints and opportunities for Java technology in real-time design is presented in

Chapter 4. Inferences drawn from this enabled us to select and to understand the

implications of using JStick, which is a Java-based COTS microcontroller. An overview

 5

of the relevant characteristics of the microcontroller is outlined. The premise for the

selection of a motion controller chip (LM628) is also included in this chapter. In Chapter

5, the hardware architecture is described in detail. The architecture consists of control

modules (IMC) dedicated to each machine axis, and a host computer (system coordinator).

Each IMC is made up of a JStick as the host microcontroller and a motion controller board

purposefully designed for this research. Details of the board design are provided: This

includes the procedure for integrating it with the JStick such as timing analysis. Chapter 6

details communication architecture concepts and principles. Following this, the system

communication architecture is described. A Time-Triggered approach enhanced with a

producer-consumer co-operation model, is employed to realize real-time communication

on a switched-Ethernet network. Analysis of the computation and communication model

is also presented. Clock synchronization in distributed systems is discussed in Chapter 7;

an external clock synchronization model developed for the IMC architecture is described.

Chapter 8 gives an overview of trajectory generation schemes and the methodologies

adopted for this project. The software architecture framework is vividly described in

Chapter 9. Experiments to verify the architecture are provided in Chapter 10, and finally

conclusions and future research directions are outlined in Chapter 11. Schematic diagrams

of the motion controller board, BOM (Bill of Materials) including prices, and the software

interfaces are appended.

 6

2. ARCHITECTURE DESIGN CONCEPTS AND REVIEW

2.1 Robot Control Architecture, Introduction

Robot control architectures embody several different notions and implications,

particularly architectural styles and structures. Architectural structure shows how a system

is decomposed into subsystems, and how subsystems interact. The computation and

communication underpinnings of a given system invariably reflect a style. For example,

one system might use a publish-subscribe message passing style of communication, while

another may use a more synchronous client-server approach (Coste-Maniere and

Simmons, 2000). Most often the holistic architecture is realized only at the working stage.

This is unfortunate, since a well-conceived architecture can have many advantages in the

specification, execution, and validation of robot systems. This chapter serves as a roadmap

to developing a robot control architecture framework. Generally, a framework refers to the

structure external to an architecture which organizes information about the architecture

and its application (Kramer and Senehi, 1993).

2.2 Architectural Properties

The architectural style employed has a direct impact on the performance of the

overall system. For example, the pipe-and-filter software style supports components’

reusability and configurability of the application by applying generality to its component

interfaces. However, components are constrained to a single interface type. Some salient

properties of architectures are discussed in the following sections.

2.2.1 Dealing with Complexity

A daunting challenge is the need to manage the complexity of interactions between

the system and its environment, and interactions between individual units of a system

(Coste-Maniere and Simmons, 2000). One way to achieve simplicity is through

modularity within a given structure. The global system complexity can be decomposed

into smaller components with well-defined abstraction levels and interfaces between them.

 7

Another means of curtailing complexity is to provide expressive languages and tools, e.g.,

ALPHA, and high-level languages such as TCA and TDL (Coste-Maniere and Simmons,

2000). Architecture description languages (ADL) are particularly useful for architecture-

based development and formal modeling notations and analysis (Medvidovic and Taylor,

2000). The software architecture must provide a basis for complexity management by

providing abstract models of the system under development, which is necessary in

comprehension, cross-domain communication, verification, validation and maintenance

(Chen, 2001). Coupling and cohesion issues must also be addressed by the architecture.

Coupling refers to the way modules are connected, while cohesion indicates the degree of

relatedness of sub-modules, or components within a module. An ideal system provides

low coupling and high cohesion without violating performance parameters (Chen, 2001).

2.2.2 Execution

The architecture should also define the run-time execution of the software. This

includes real-time responses, appropriate goal-directed behavior and reliable reactivity to

environmental changes. The issue on real-time provokes this famous definition:

A real-time computer system is a computer system in which the correctness of the
system behavior depends not only on the logical results of the computations, but
also on the physical instant at which these results are produced (Kopetz, 1997).

There are two variants of real-time systems: In a hard real-time system, timing

violations are to be avoided at all times. In contrast, a soft real-time system can tolerate

some degree of timing violations. Typical tasks for a real-time system include data

collection, digital control and man-machine interactions. The architecture has to describe,

quantify or specify the temporal requirements of the system. These include timing of

events (e.g., deadlines), arrival patterns of events (e.g., sporadic or periodic), and the

triggering policies required. Goal-directed behavior refers to the mechanism within the

architecture to manage tasks and behaviors such as task decomposition and behavior

arbitration, and for managing the interactions between tasks and behaviors such as

resources management, multitasking and temporal sequencing. Task management

facilitates concurrent execution in a single process or by a collection of distributed

processes. For reliable reactive behaviors, the architecture can provide software support

for monitoring the environment and invoking exception handlers, if necessary. The extent

 8

of reactivity depends on the real-time capabilities of the system. The management of

exceptional conditions also includes support for cleanly terminating tasks, and if necessary

recovery strategies.

2.2.3 Openness

Openness is a buzzword in the control systems community. Open architecture

control systems offer services according to standard resources, and/or standard rules that

describe the syntax and semantics of those services (Tanenbaum and van Steen, 2003;

Hong, et al, 2001). This approach forces all manufacturing vendors to conform to an

agreed standard, thereby promoting integration and interoperability. It is becoming more

acceptable for open-architecture control system to possess the common capabilities and

functionalities offered by standard platforms: these include standard computing

architecture, standard processors, standard operating systems, and standard and widely

used programming languages. Moreover, openness promotes application of user-specified

functions (Mehrabi et al., 2000; Chesney, 1998).

2.2.4 Performance

The performance of an architecture implementation is bound by first the

application requirements, then by the chosen interaction style, followed by the realized

architecture, and lastly by the implementation of individual component. As an example, if

the application requires that data be located on system X and processed on system Y, then

the software cannot avoid moving that data from X to Y. Also, an architecture cannot be

any more efficient than its interaction style allows; e.g., the cost of multiple interactions to

transport data from X to Y cannot be less than that of a single interaction from X to Y.

Lastly, regardless of the quality of an architecture, interactions cannot take place faster

than the capacity individual components can endure. The quality of a distributed control

architecture hinges on its network performance, which is measured by data throughput,

overhead, bandwidth and usable bandwidth (Fielding, 1999). From the end-user

perspective, network performance metrics are latencies, jitter and ultimately the ability of

the controller to track a prescribed motion path accurately and efficiently within the

dynamic constraints of the system.

 9

2.2.5 Scalability

Scalability is the ability of the architecture to support many components, or

interactions among components within an active configuration. Scalability can be

enhanced by simplifying components and decentralizing interactions between elements.

Another complement approach is the proper control of monitoring or user interactions and

configurations. The architecture style influences scalability by determining the location of

application states, the extent of distribution, and the coupling between components

(Fielding, 1999). Scalability is also affected by the frequency of interactions and

timeliness requirements of data transfer.

2.2.6 Simplicity

Allocation of functionality to the individual components to reduce complexity

enables easier understanding and implementation of components and the overall

architecture.

2.2.7 Modifiability

Modifiability is the ease with which a change can be made to the architecture

implementation. Modifiability is also a measure of evolvability, customizability,

reconfigurability, and reusability (Fielding, 1999). Customizability refers to modifying a

component at run-time, specifically so that the component can then perform an unusual

service. A component is customizable if it can be extended by one client of that

component’s services without adversely affecting other clients of that component.

2.2.8 Portability

Portable software can run in different environments. Architecture styles that

support portability include those that move code along with the data to be processed, such

as the virtual machine and mobile agent styles, and those that constrain the data elements

to a set of standardized formats.

2.2.9 Reliability

Reliability refers to the robustness of an architecture to failure at the system level

in the presence of partial failures within components, connectors, or data. By definition

 10

(Kopetz, 1997), if a system has a constant failure rate of
�
 failures/hour, then the reliability

R at time t is given by

()()0()
t t

R t e
λ− −= ;

where t-t0 is given in hours. The inverse of the failure rate is referred to as the

Mean-Time-To-Failure (MTTF).

2.2.10 Distributed Real-Time Systems

There are several definitions of distributed systems found in the literature.

According to a general definition given by Tanenbaum and van Steen (2003), “A

distributed system is a collection of independent computers that appears to its users as a

single coherent system”. Their definition has two implications: Firstly, the machine

hardware is autonomous. Secondly, regarding software, the users think they are dealing

with a single system. In terms of distributed system hardware, they divide all computers

into two groups: those with shared memory (multiprocessors) and those without shared

memory, i.e. multi-computers. Interconnection networks may be a bus such as a network

or backplane, or switched as in the case of the public telephone system. Essentially, it is

the software that largely determines the nature of a distributed system. The definition

given by Kopetz (1997) is more specific: “If a real-time system is distributed, it consists of

a set of (computer) nodes interconnected by a real-time communication network”.

A distributed system leverages designing systems into fault-containment regions

for easy diagnosing and smothering of faults, i.e., in a well-designed system, faults are

dealt with locally and thus do not pervade the system. Moreover, scalability and

modifiability is not as restrictive as in the case of a centralized system. However, the

communication system can be a bottleneck if not properly designed.

2.3 Software Architecture Styles

Modern day robot control architectures encase intensive software engineering.

This necessitates choosing software architecture styles. For example, one has to select a

suitable style (or a combination) for network-based applications, which will induce laid

out objectives. Researchers are still refining the definition of software architecture. Two

views are as follows:

 11

A software architecture is an abstraction of the run-time behavior of a software
system during some phase of its operation. A system may consist of many levels of
abstraction and many phases of operation, each with its own software architecture.
A software architecture consists of components, connectors, data, a configuration,
and a set of architectural properties (Fielding, 1999).

The architecture of a software system defines that system in terms of components
and of interactions among those components. In addition to specifying the
structure and topology of the system, the architecture shows the intended
correspondence between the system requirements and elements of the constructed
system. It can additionally address system-level properties such as capacity,
throughput, consistency, and component compatibility (Shaw, 1995).

Two common words that show up in various definitions are ‘components’ and

‘connectors’. Components are described by Garlan and Shaw (1993) as computational

components and by Fielding (1999) as abstract units of software that provide a

transformation of data via their interface. In Birla et al., (2001) it is described as a

reusable piece of software that serves as a building block within an application. This

approach has the potential to enhance productivity by reducing architectural complexity

(Chadha and Welsh, 2000). It is generally accepted that a connector is an abstract

mechanism that mediates communication, coordination or cooperation among components

(Fielding, 1999; Shaw, 1995).

In this section we examine some widely used styles. Our purpose is to capture the

variety of choices available and the implications thereof.

2.3.1 Pipe-and-Filter System (Data-Flow Model)

A pipe-and-filter (PF) system has two types of units: filters (component) and pipes

(connector). Filters are responsible for incrementally transforming continuous streams of

input data to streams of output data while pipes handle transportation of data streams

between the filters, i.e., connections between producer and consumer components are data

streams (Garlan and Shaw, 1993). Filters are usually implemented as software processes

and pipes as system services. Filters are independent entities and hence are not allowed to

share state with other filters. Invariably, a filter has no knowledge about its upstream and

downstream filters. Filters are initiated when data is available and run to completion at the

end of input data. In other words, computations are triggered by the availability of input

data. Several variations of PF exist including those found in the UNIX family, LabVIEW

and some database systems (Lee, 2002). The PF styles are suitable for applications where

 12

the problem can be decomposed into a series of independent computations. This kind of

configuration implies low coupling and high cohesion, which are necessary for simplicity,

modifiability, reusability, and portability. However, it can be difficult to create interactive

applications with this style. Secondly, there can be some performance-related problems

due to the overheads of parsing and unparsing operations resulting from a fine-grained

data stream (Chen, 2001).

2.3.2 Layered Style

A layered system is organized hierarchically, with each layer providing services to

the layer above it and using services of the layer below it (Garlan and Shaw, 1993). A

function in one layer can only interact with other functions in the same layer or adjacent

layers through a protocol (connector). This decoupling enhances evolvability and

reusability since each layer represents a group of modules or functions for one class of

services. The most widely used application of this kind of architectural style are layered

protocols such as the TCP/IP and OSI protocol stacks (Zimmerman, 1980), Windows NT

and hardware interface libraries. Layered styles are suitable for systems that can be

decomposed into application-specific and implementation-specific functions. The major

disadvantage of layered systems is that they add overhead and latency to the processing of

data and hence could degrade user-perceived performance (Fielding, 1999).

2.3.3 Time Triggered

In some systems timed events are driven by clocks, which are signals with events

that are repeated indefinitely with a fixed period. A number of software frameworks and

hardware architectures support this regular style of computation. The time-triggered

architecture (TTA) is a hardware architecture that employs this regularity by statically

scheduling computations and communications among distributed components.

2.3.4 Synchronous/Reactive

In the synchronous/reactive (SR) style, connections between components represent

data values that are aligned with global clock ticks, as with time-triggered approaches.

However, unlike the time-triggered approach, there is no assumption that signals have a

value at each time tick. This model is ideal for concurrent models with irregular events

such as concurrent and complex control logic. Also because of tight synchronization,

 13

safety-critical real-time applications are a good match but this makes distributed systems

difficult to model.

2.3.5 Process Networks

In this technique, components are processes or threads that communicate by

asynchronous buffered message passing. The sender of the message does not need to wait

for the receiver to be ready to receive the message. Process networks (PN) are excellent

for signal processing. They are loosely coupled, and therefore relatively easy to parallelize

or distribute. They can be implemented efficiently in both software and hardware. The

main weakness of PN models is that they are awkward for specifying complicated control

logic (Lee, 2002).

2.3.6 Publish and Subscribe

In publish-and-subscribe models, connections between components are through

named event streams. A consumer component registers an interest in the stream. When a

producer produces an event to the stream, the consumer is prompted that a new event is

available. It then queries a server for the event’s value.

2.3.7 Client-Server (CS)

The client-server style is the most frequently used architectural style for network-

based applications (Fielding, 1999). A server component offering a set of services listens

for requests: a client component in need of that service sends a request to the server via a

connector. The server may either reject or serve the request and send a response back to

the client. A client can be regarded as a triggering process while a server is a reactive

process. Requests from clients trigger reactions from servers (Andrews, 1991). Separation

of functionality is the main principle behind the client-server constraints. A proper

separation of functionality simplifies the server component in order to improve scalability.

This simplification usually involves moving all of the user interface functionality into the

client component. The separation also allows the two types of components to be modified

independently, provided that the interface does not change. There are several flavors of

client-server systems, depending on the number of servers and clients in the overall

system.

 14

2.3.8 Process Control

Also called the control-loop style (Shaw, 1995), this style is based on the notion of

closed loop control. Data flow topology is cyclic between control functions. The style has

two types of units: controlled process including process modeling as well as process

variables and sensors, and controller including control algorithms and set points. The

interactions of these units involved intense data interactions, where the controller receives

values of measured process variables at predefined time points and produces control

signals to manipulate the controlled process.

2.3.9 Finite State Machines

It is often useful to combine models, especially concurrent ones, hierarchically

with finite-state machines (FSM) to get modal models. FSM execution is strictly

sequential. A component is called a state or mode, and exactly one state is active at a time.

Connections between states denote transitions or transfer of control between states and

execution is an ordered sequence of state transitions. FSM models are excellent for

describing control logic and are easily mapped to either hardware or software

implementations (Fielding, 1999). However, the number of states can get very large even

in simple system. Hence, FMS is often combined with other styles.

2.3.10 Mobile Code

Mobile code styles use mobility to dynamically change the distance between the

processing and source of data or destination of results (Fielding, 1999; Fuggetta et al.,

1998). A site abstraction is introduced at the architectural level, as part of the active

configuration, thereby taking into account the location of the different components. The

concept of location makes it possible to model the cost of an interaction between

components at the design level. An interaction between components in the same location

is considered to have negligible cost compared to an interaction through a communication

network. By changing its location, a component may improve the proximity and quality of

its interaction, reducing interaction costs and thereby improving efficiency and

performance. In all mobile code styles, a data element is dynamically transformed into a

component. The virtual machine or interpreter is the main mobile code style (Garlan and

Shaw, 1993). The virtual machine style provides code execution in a secured and reliable

 15

way, preferably within a controlled environment. The benefits of VM are the separation

between instruction and implementation on a particular platform (portability) and ease of

extensibility. One of the most popular implementation is the Java Virtual Machine (JVM),

which enables Java to be platform-independent. In the mobile agent style, an entire

computational component is migrated to a remote site along with its state, the code it

needs, and possibly some data required to perform the task. The main advantage of the

mobile agent style is that there is greater flexibility in the selection of when to move the

code. An application can be in the midst of processing information at one location when it

decides to transfer to another location – presumably in order to narrow the distance

between it and the next set of data it wishes to process (Fielding, 1999).

2.3.11 Data Abstraction and Object-Oriented Organization

In the data abstraction and object-oriented approach, data representation and its

associated primitive operations are encapsulated in an abstract data type or object. The

components of this style are the objects. The object-oriented approach has many favorable

properties which have contributed to its widespread use. Because an object hides its

representation from its clients, it is possible to change the implementation without

affecting those clients (Shaw and. Garlan, 1995), as long as the interface is preserved.

Furthermore, the bundling of a set of accessing routines with the data they manipulate

enables programmers to decompose problems into collections of interacting agents.

However object-oriented systems have some shortcomings. Unlike pipe-and-filter

systems, an object must know the identity of another object it wants to interact with.

Therefore whenever the identity of an object changes, it is necessary to propagate this

update to all objects that explicitly invoke it. Brokered Distributed Objects is a popular

intermediary style to facilitate communication between distributed objects (on a network)

by reducing the impact of identity (Fielding, 1999). The brokered distributed object style

creates name manager components whose purpose is to answer client object requests for

general service names with the specific name of an object that will satisfy the request.

Although improving reusability and evolvability, the extra level of interaction requires

additional network interactions, thereby reducing efficiency. Brokered distributed object

systems are currently dominated by the industrial standards such as CORBA within the

 16

OMG (1997) and the international standards development of Open Distributed Processing

(ODP) within ISO/IEC (1995).

2.3.12 Event-Based, Implicit Invocation

In systems in which component interfaces provide functions and procedures such

as object-oriented systems, components interact by explicit calls on those routines. In

contrast, in implicit invocation (also referred to as reactive integration, and selective

broadcasting), a component can announce (or broadcast) one or more events. Other

components in the system can register for the event by associating a procedure with it.

When the event is published, the system itself invokes all the procedures that have been

registered for the event. Inferentially, an event announcement implicitly causes the

invocation of procedures in other modules (Shaw and Garland, 1996). One advantage of

this style is that it supports strong reuse. Any component can be integrated into the system

simply by registering it for the system events. Another advantage is that it eases system

evolution since components may be replaced without affecting the interfaces of other

components in the system. The main disadvantage of implicit invocation is that when a

component announces an event, it cannot assume that other components will respond to it,

or respond correctly. There are several examples of systems with this style such as

integration tools, database management to ensure consistency constraints, and in user

interfaces to separate presentation of data from applications they manage (Shaw and

Garland, 1996). Variants of this style are also used in some network protocols for

registering and automatically discovering services on the network.

2.3.13 Repositories

The repository style has two kinds of components; a central data structure that

represents the current state, and a group of independent components that operates on the

central data store. The choice of interaction between the repository and its external

components vary significantly among systems. For example, the repository can be a

database if the types of transactions in an input stream of transactions trigger selection of

processes to execute. Alternatively, the repository can be a blackboard if the current state

of the central data structure is the main trigger for selecting processes to execute. The

blackboard style has been used for applications requiring complex interpretations of signal

 17

processing, such as speech and pattern recognition. It is also common in AI systems and

systems requiring shared information such as compiler architecture (Garlan and Shaw,

1993). This style presents an efficient way to share large amounts of data since the data is

centrally managed. Sub-systems need not be concerned with how data is produced.

However, it does not favor efficient distribution and flexibility. Moreover, the sub-systems

must agree on a repository data model, and data evolution is difficult and expensive.

2.3.14 Heterogeneous Architectures

While it is important to understand individual architectural styles, most systems

involve some combination of several styles (Shaw and Garland, 1996). One way to

combine architectural styles is through hierarchy. A component of a system organized in

one style may have an internal structure based on a completely different style. A second

way to organize styles is to allow a single component to use a mixture of architectural

connectors. For example, a component may interact through pipes with other components

in the system and accept control information through another section of its interface (Shaw

and Garland, 1996).

2.3.15 Rules-of-Thumb for Selecting Styles

The choice of an appropriate architectural style is normally driven by the

preference of the end-user and/or implementer, the tools available and the application.

However, a cautious analysis of the chosen style could lead to a shorter delivery time and

robust product. There are no hard and fast rules governing the selection process, and a

typical architecture could consist of several styles as mentioned earlier. Garland and Shaw

(1993) have provided some basic rules-of-thumb for choosing styles: Consider pipe and

filter style if the problem can be decomposed into sequential stages or if the problem

involves transformations on continuous streams of data. If the system involves controlling

continuous action, is embedded in a physical system and is subject to unpredictable

external perturbation, consider a closed loop control style. If the system consists of

tasks/processes and runs on a multiprocessor platform, consider independent component

styles. Consider a layered style if the tasks in the system can be divided between

application-specific ones and those generic to many applications but specific to the

underlying computing platform, or if portability across different platforms is an issue.

 18

2.4 Taxonomy for Controller Architectures

Several architectural styles exist to meet different needs and some attempts have been

made to categorize them. Shaw (1995) classifies control architectures according to their

software architectural styles and contrasts them along five design dimensions; changes in

the processing algorithm, changes in data representation, enhancement to system function,

performance, and reuse. Kramer and Senehi (1993) categorize architectures into those that

emphasize control and those that emphasize data flow. In (Atta-Konadu, et al., 2004) and

(Yook et al., 1998), control architectures for machine tools are classified according to their

spatial distributions (i.e., fully centralized to fully decentralized). Ambrose’s classification

is based on hardware and software control architectures (Ambrose, 1992). In this case,

criteria such as speed and modularity are used to evaluate the architectures in each

category. There are also classifications that reflect intelligent interactions with the

environment (Coste-Maniere and Simmons, 2000) as in the case of autonomous robotic

systems. After reviewing literature items, it has become quite evident that designers and

developers emphasize either one or more of these categories: hardware architecture,

software architecture (system-level) and control architecture. The sections following

present a review of some interesting control architectures.

2.5 Controller Hardware Architecture Review

Hardware architectures usually emphasize the computation platforms, their

interfaces, and interconnections. In effect the hardware architecture should help readers to

understand the underlying execution mechanics and dataflow through the different

execution stages. This section reviews four hardware architectures. In all cases the

following criteria inspired by (Ambrose, 1992; Kopetz, 1997; James and McClain, 1999)

are used to evaluate them:

• Throughput (speed): The potential for high throughput is desirable.

• Communication between modules: The communication mechanism between entities

should not present a bottleneck to system performance.

• Functional coherence: The modules or nodes of the system should implement self-

contained functions with high internal coherence and low external interface

complexity.

 19

• Dependability: This is an indicator of the effect of a module or node failure on the

entire system. The architecture should define a fault tolerance mechanism.

• Hardware Modularity: Hardware should be modular, reconfigurable and scalable in

order to make the system an open architecture.

• Software Modularity: The controller software should also be modular, reconfigurable

and scalable with minimal effort. In order to support evolving trends in control

algorithms, the software should have standardized interfaces.

• Relevance to design objectives: Control architectures fall under four levels of

specificity. In Domain-level design the architecture applies to a broad area of robot

control. Second, in Task-level design, controllers are designed to suit a certain class of

robots designed for specific tasks, for example welding. Third, controllers may be

optimized to perform one robot algorithm such as inverse kinematics. Lastly, in

Robot-level design, controllers are optimized to perform specific algorithms for a

specific robot. In this case intrinsic knowledge of the robot geometry and dynamics is

utilized to further simplify the algorithm and thus the controller.

2.5.1 WinRec

WinRec (Lee and Mavroidis, 2001) is a PC-based controller designed to run on

MS-Windows NT. The project was driven by the need for a low-cost controller (less than

US$1000) for academic experiments. Deterministic timing obtained from Windows

MSDN library is used in both control and data acquisition. The hardware setup consists of

a PC with Intel Pentium II 333 MHz CPU, 128 MRAM, two US Digital PC7166 PC to

incremental encoder interface cards, and two Datel PC-412C analog I/O boards. The PC

polls sensor data through the data acquisition boards or the encoder interface cards,

performs feedback control calculations, and sends the signals to actuators through a

digital-to-analog (DAC) converter. The maximum controller loop rate is 200 Hz.

Experimental results with a 5 degree of freedom robot and different control laws (PID,

LQR and H2) were presented. This system was not really designed for high-end uses;

hence for its purpose to demonstrate control laws, it is quite appropriate. Nonetheless, the

single point of control is susceptible to complete system failure. Moreover, since the

design (including the software structure) is not modular or open, system modifications

could imply a major overhaul.

 20

2.5.2 MUPAAC Architecture

The Multi Processor Architecture for Automatic Control (MUPAAC) architecture

is described in Bellini et al. (2003). The project was a joint venture between the University

of Florence and two European industries to provide solutions to costs and reconfigurable

challenges with current production pipelines of manufacturing industries. The architecture

is shown in Fig. 2.1 below.

Figure 2.1: MUPAAC Architecture

The hardware architecture consists of three layers: The top layer is the MUPAAC

Supervisor which is the general server of the control system of the production. It receives

ISO commands from a CAD/CAM workstation and sends them by Ethernet (TCP/IP) to

Special Industrial Peripheral Computers (SIPC). The Supervisor can also read

alarms/errors detected by the SIPCs. The second layer is the SIPC cluster. These are

microprocessor-based systems that execute ISO programs and single instructions coming

from the Supervisor. The SIPC interacts with DSP-PCI boards for controlling axes and

receiving alarms and synchronization. Finally, the SIPC interacts with remote I/O systems

for activating and receiving I/O signals via a CANbus (Controller Area Network serial

bus). Each SIPC board has a set of PCI boards for controlling a maximum of 4 remote

Remote I/O

P
C

I
b

u
s

PC-104 CANbus

DSP-PCI board

DSP-PCI board

SIPC

SIPC

SIPC

CAN bus

Ethernet

Machine

Machine

Supervisor

 21

axes. The last layer is made up of the DSP-PCI boards. These are based on the Analog

Device’s AD2106x DSP and can control up to 4 machine axes. Communication between

the SIPC and the DSP boards is via the PCI bus. The boards can be plugged on the bus

directly without the need for configuration. The Supervisor and SIPC also control the

remote I/O boards. These boards are equipped with Intel i8051 or SH7000 CPUs for

interpreting messages received via the CANbus. On the CANbus, up to 56 boards can be

attached in a plug and play fashion. Furthermore, each board can host 8 I/O modules;

therefore each SIPC can accommodate a maximum of 512 I/O modules. The software

components (Fig. 2.2) are distributed on the three layers described above.

Figure 2.2: MUPAAC Software Architecture

The Supervisor software presents a simple user-interface and a client

communication module. The SIPC software is hosted on a WindowsCT Operating System

platform and consists of three modules; the Server Communication Module, the Control

User Interface

Server
Comm.
Module

ISO
program
s

Tokenizer

PCI Driver

I/O
Coordinator

Control
Module

SIPC Software

CANbus
Protocol &
Remote
I/O

ISO
program
s

Client
Comm.
Module

User Interface

Supervisor Software

PCI Driver

ISO Interpreter

Interpolator

PID Controller

DSP-PCI
Software

I/O

I/O

I/O

 22

Module and the CANbus Protocol and Remote I/O Boards Module. The Server

Communication Module implements a TCP/IP server to receive ISO programs and

commands. Programs are temporarily stored in a RAM file and then each instruction of

the program is tokenized and sent to the specified DSP-PCI board by means of a SIPC-

PCI protocol. Interaction with the DSP is interrupt driven and based on a dual port RAM.

The Control Module coordinates the DSP-boards with the Remote I/O Modules on the

CANbus and presents status information to the user interface. This activity is performed

by an I/O Coordinator Module which is responsible for exchanging information between

the DSP boards and the CANbus I/Os. The module updates the outputs periodically every

10 ms. The Protocol and Remote I/O Boards Module manages real-time communication

on the CANbus which has a maximum bit-rate of 1 Mbit/s. The DSP-PCI software

modules drive the performance of the control system. ISO commands are received from

the PCI bus through a local PCI driver and executed accordingly. The DSP supports linear

and circular interpolations, implements PID control, controls analog outputs of the board

and manages some I/Os such as limit switches. Even though each DSP controller is

capable of loop rates lower than 100 µsec, the Number of Entities Processed per Second

(NEPS) on the DSP is influenced by communication latency with the SPIC, computing

and interrupt servicing times, and the number of controlled axes. Nonetheless, NEPS of

1429 is achievable in the worse case, i.e., 4 axes in circular interpolation. Performance

evaluation for two or more DSP boards connected to one SIPC was not presented but at a

glance, it is evident that performance will degrade substantially.

The architecture does not explain how the SIPC synchronizes its clock with the

slave DSP-PCI boards and remote I/O modules. Moreover, it has been presented as a

domain-level type of design, but its internal structure is more tailored for CNC machines

than robots. It is also more of proprietary system than a vendor-neutral architecture.

Therefore, its robustness to obsolescence is quite questionable. Nonetheless, this is a very

interesting architecture which follows many modern design paradigms.

2.5.3 Modular CNC System Architecture

The modular CNC System was designed by researchers at the University of British

Columbia (Altintas, et al., 1996). The architecture is hierarchical with two independent

backplane buses (see Fig. 2.3). A Real-Time Master computer (PC) is in charge of the

 23

AT/ISA primary bus, and other processors (referred to as modules) dedicated to various

monitoring or control tasks may be added to the bus if there are available slots on the

backplane. All processors on the bus are memory-mapped with the Real-Time Master for

access to shared memory on the CNC Master Controller. The memory area is refreshed

periodically at 1 ms by the Real-Time Master, which collects the necessary position,

cutting forces, etc provided by the processors. The core module in the primary bus is the

CNC Master Controller computer, which is an off-the-shelf TMS320C30-based DSP

board. The CNC Master executes and provides precision NC tool path trajectory and

velocity values to each feed drive control unit on the machine. It also provides expansion

through a memory-mapped secondary bus referred to as the CNC bus. An Intel 80C196KC

based embedded microcontroller is dedicated to control each axis of the machine tool.

Figure 2.3: Modular CNC System Architecture

Axes position loops are synchronously closed at 0.2 ms by a common high-priority

interrupt line. Each axis has a second interrupt line of lower priority connected to the CNC

Master’s high speed digital output line via the CNC bus. The interrupt is generated by a

programmable timer on the CNC Master. When an interpolation interrupt is received, the

Main Bus (ISA Bus)

Real-Time
Master

Adaptive
Control
System

Chatter
Detection

Tool
Monitoring
System

Force Data
Processing
System

CNC Master Controller
- Real Time Job Manager
- High Level Control
- Interpolation
- TMS320C30 DSP Chip

CAD/CAM System

Axis 1 Axis 2 Axis n

AT 486

CNC Bus

80C196KC
microcontrollers

 24

CNC master or linear interpolator in the axis controller calculates the next position and

places it in a reference position register. When the controller receives the axis position

loop closure interrupt, the error is calculated from the actual position, and sent through a

position control filter to an internal PWM register. A circuit in the controller produces volt

command signals for dc servo amplifiers via a 2-kHz low pass filter.

The design is a classic task-specific architecture but can be modified for other

robotic tasks. It is a tightly-coupled design which trades off flexibility for hard real-

timeliness.

2.5.4 GEECON Architecture

The vision for the Generic Embedded Control Node (GEECON) project was the

development of an embedded controller which can interface to any actuated mechanical

device (Sorensen, 2003). The system architecture, shown in Fig 2.4 is based on a six layer

reference model.

The functional layers are distributed on a Central Control Node, GEECON

controllers (one per axis), and mechanical host modules. These are the shaded regions of

Fig 2.4. The Central Control Node consists of three layered software modules: The top

module handles high level applications such as motion planning and user interfaces. The

second module implements the part of the execution layer which require global knowledge

of the robot such as kinematics, interpolations, etc. At the bottom is a module for

interfacing and interacting with the distributed part of the system through a network. The

GEECON controller is the main thrust of the research. It is designed to be embeddable in a

mechanical axis such as a robot arm (Fig 2.5).

 25

Figure 2.4: GEECON Architecture Implementation

The embedded controller is driven by a Texas Instruments based DSP board –

Orys Gmbh, which has a serial bus and implements PID control and a sample rate

converter. To make it as generic as possible, the GEECON mates with a reconfigurable

I/O logic board developed for this research. The logic board features a Xilinx FPGA (Field

Programmable Gate Array) and can be programmed to interface with a large range of

industrial I/O needed for robot control. Information flow (e.g. nested control loops) within

the entire architecture is designed to cover typical bandwidth requirements; the position

control servo loop frequency is 4-MHz, while the high-level control loop (executed by the

Central Control Node) supplies set-points to the GEECON nodes at 200-Hz. These are

reconstructed to high resolution paths for the position control by the GEECON nodes.

G
E

E
C

O
N

G
E

E
C

O
N

G
E

E
C

O
N

H
o

st
 M

o
d

u
le

 n

H
o

st
 M

o
d

u
le

 1

H
o

st
 M

o
d

u
le

 2

Central
Control
Node

Transducer
layer

Physical
layer

Interface
layer

Control
layer

Control
layer

Interface
layer

Transducer
layer

Physical
layer

Physical
layer

Transducer
layer

Interface
layer

Control
layer

Execution Layer

Application layers

 26

Figure 2.5: GEECON Architecture

The GEECON is a well conceived and fairly ambitious project which is still in its

infancy stage. Further tests will have to be done to validate its objective as a domain-level

solution. Designers may have to address clock synchronization between the central

controller and the embedded controllers (GEECON), and re-engineer their software for

greater flexibility.

2.6 Controller Software Architecture Review

Software architecture deals with abstractions, behaviors, and interfaces of the

controller’s software structure. Concepts discussed in the early sections of this chapter

apply here. Three architectures will be reviewed in the backdrop of the following, most of

which have already been discussed:

• Modularity: The architecture should curtail complexity and promote modifiability

issues such as reconfiguration and scalability.

• Performance: Software abstractions and structure should not bottleneck performance

such communication.

• Human Machine Interface: The user should have access to all levels of the

architecture if performance will not be obstructed.

Mechanical Host Module

Computer
N

et
w

o
rk

Software In
p

u
t/

O
u

tp
u

t

S
ig

n
al

C
o

n
d

it
io

n
in

g
 a

n
d

P
o

w
er

 C
o

n
tr

o
l

A
ct

u
at

io
n

 a
n

d

S
en

si
n

g

Embedded Controller Node

 27

• Openness: The architecture should conform to an open technology such as

standardization. Moreover, it is desirable that its implementation is not hardware-

dependent.

• Fault-tolerance: The controller should have comprehensive monitoring systems and a

fault-tolerant approach to harness problems.

2.6.1 OMAC Architecture API

The Open Modular Architecture Controller (OMAC) was initiated by a consortium

of some prominent industrial and research groups (Birla, et al., 2001). The vision for the

OMAC Application Programming Interface (API) is to enable control vendors to supply

standard components that machine suppliers can easily configure and integrate to build

machine control systems. The framework also seeks to leverage easy reconfiguration by

end-users. The OMAC API is built on an object-oriented approach to plug-and-play

modularization. Software entities are grouped into components, modules and tasks

according to their level of granularity; each entity is based on a Finite State Machine

(FSM) to facilitate collaborations with related activities. A module in this sense refers to a

container for components. Figure 2.6 below shows how the OMAC API specification

highlights the relationship between an application control system, modules and

components.

 28

Figure 2.6: OMAC Architecture

The API defines two elementary FSMs: a lifecycle FSM and a task FSM. The

lifecycle FSM is used to deploy, publish, connect, initialize and shutdown components

during their lifetime. The Task FSM is a smaller state logic for executing programs and

individual program steps. A C++ FSM class library handles state nesting and other

advanced state machine logic. A prominent feature of the OMAC API is a framework

environment for developing and integrating components. OMAC API initially adopted

Microsoft Component Object Model (COM) but later evolved to a customized framework

called IOmac. The framework defines the modus operandi of component interfaces to

enable components to collaborate and advertise functionality and operational status. Thus

a typical component encapsulates the following:

• A Functionality interface – defines behavior, state and parameter manipulation.

System
Coordinator

Domain
Coordinator

Omac
Module

HMI

Axis Group

Axis

Task
Coordinator

Discrete
Logic

IO Device IO Point

Kinematic
Model

Process
Model

Control Law

Program

ITask

Application Modules Components

 29

• An Infrastructure interface – provides support for advertising services, where it is and

how it operates.

• A Connection interface – advertises module dependencies.

• Attributes define how a component can be customized.

The OMAC approaches reconfigurability principally through the flexibility it

provides for exploiting component interfaces. Furthermore, interfaces provide a uniform

API for dealing with most software (object) functionality. A connection API allows

components to advertise what other components they require and assist in resolving

component dependencies. To further enhance system reconfigurability, the OMAC API

supports embedding information in a component. Thus a component has the ability to be

used in the design phase in a drag-and-drop Integrated Developer Environment (IDE) of a

visual programming tool. Embedded information also allows a component to be queried

locally on the shop floor about local properties such as its history. Thirdly, embedded

information supports component introspection that allows users to determine the

capabilities of a component and how to customize it. Another interesting attribute of

OMAC towards reconfigurability is through component plugs; i.e., the ability to plug-in or

replace components within a module.

The OMAC API is one of the most cutting-edge reference architectures available,

though a full implementation is yet to be realized. Obviously, this is due to the stringent

details the framework demands.

2.6.2 UBC Open Architecture Control System

The UBC Open Architecture Control System (Oldknow and Yellowley, 2000) is

quite an intriguing design. Both hardware and software architectures have been clearly

defined with emphasis on openness and reconfigurability. Even though this is categorized

under software architecture, we deem it appropriate to discuss the hardware architecture in

order to understand the software layout. The hardware system is laid out on a double

backplane similar to the Modular CNC System described earlier. Obviously this is a task-

specific design. The reference architecture is illustrated in Fig 2.7.

 30

Figure 2.7: The UBC Open Controller Reference Architecture

The reference architecture is based on a distributed model involving several

processing units and two communication channels. The primary master – CNC Master, is

mainly responsible for user interface tasks and first-stage interpolation. Master 2 is

optional and may be used for CAD/CAM tasks. There is one slave controller per machine

axis and these receive first-stage interpolation increments from the CNC Master over the

backplane (such as STD) or a network (e.g. Ethernet). The first-stage increments are then

broken down into second-stage increments required by the controller at each servo loop

frequency using either a linear or a parabolic blending algorithm. As shown in Fig. 2.7, the

servo controllers are connected to each other and other process monitoring boards through

a second communication channel consisting of a Frontplane bus and a synchronization

line. The channel enables the controllers to implement dynamic interpolation algorithm

which facilitates the adaptive control of machining processes in response to multiple

constraints (e.g. spindle torque, shank stress, etc) as well as integration of new hardware.

The dynamic interpolator works by reading the value present on the Frontplane bus before

closing the servo loop. The bus consists of open collector lines which can be written to by

all connected processors. In the simplest case of a single stateline, if the controller reads a

logic high value, the next second-stage increment is added to the position buffer;

otherwise the servo loop is closed in the normal way. This approach enables any servo

Sync Line

5V OC Line

Backplane Bus

CNC
Master

Master 2 Slave
Axis 1

Slave
Axis m

Slave
Monitor

Frontplane Bus

Added
hardware

 31

controller or process monitor to adaptively control the system in response to violations to a

process constraint. A more complex multi-bit stateline approach is also possible. The

architecture also addresses flexibility in terms of hardware/software relationships. Static

reconfigurability is achieved through hardware independence by using software

abstraction; i.e., hardware device behavior is encapsulated in an object-oriented class

definition and presented to the rest of the system as a well-defined neutral interface.

Moreover, the architecture promotes dynamic reconfigurability, where communication

and control methods can be tested, evaluated, modified and replaced without the need to

re-start. To accomplish this, an Open Configuration System Protocol has been

implemented in an object-oriented extension of the Forth programming language. The

protocol is based on abstraction of system control hardware into a Virtual Machine Tool

(VMT). The configuration system thus provides a VMT interface to high-level software as

shown in Fig. 2.8.

Figure 2.8: Open Configuration System Software Architecture

High-
level
software

Virtual
X-Axis

Virtual
Y-Axis

Virtual
Z-Axis

Virtual
Process
monitor

Virtual
PLC

Binding
Table

X-Axis
Methods

Y-Axis
Methods

Z-Axis
Methods

Process
monitor
Methods

PLC
Methods

B
ac

k
p

la
n

e
C

o
m

m
.

B
u

s/
N

et
w

o
rk

 Physical
X-Axis

Physical
Y-Axis

Physical
Z-Axis

Physical
Process
monitor

Physical
PLC

O
p

en
 C

o
n

fi
g
.

C
h

a
n

n
el

s

Tokenized
Config. Stream

Hardware
Indep. Objects

Hardware
Dependent Methods

CNC Master

Open Config. Utility

 32

Calls made to the interface are managed by VMT objects (axes, PLC, process

monitors) using a combination of hardware independent and hardware dependent methods.

Hardware independent methods are defined within object class definitions while

dependent methods consist of references into a reconfigurable software switch called the

binding table. The latter translates these references into the corresponding device specific

methods used to interface physical hardware. To this end, a technique within the Forth

programming environment known as Vectored Execution is used. By storing device

specific code in the firmware of the devices themselves (in a tokenized form), hardware

devices can self-instantiate in the system in plug-and-play style. The start-up procedure is

as follows; the open configuration system queries all available communication channels

for compatible devices. When a device is discovered, a Tokenized Configuration Stream

(TCS) is received from the firmware of the device. The tokenization scheme is an

extended version of the Open Firmware standard by Sun Microsystems, and can be

directly codified into Forth. Afterwards, the Forth code is interpreted by the system and

the code registers the device, defines the method required to communicate with the device,

and binds these to the appropriate VMT methods through the binding table.

Implementation of the reference architecture together with the dynamic interpolator and

TCS has been demonstrated with a novel Xilinx FPGA based single-axis servo controller

and a simple DC motor. The device closes a velocity controlled servo loop at a frequency

of 4 kHz.

This architecture bears the hallmarks of high performance reconfigurable

architecture. It is not clear though how the CNC Master is synchronized with the DSP-PCI

boards. The stateline also presents some complexities, and associated software modules

are not encapsulated to give clear hardware-independence. The designers claim that the

backplane may be replaced by a network. Obviously, in this case more work would have

to be done to arrest network-induced problems such as jitter.

2.6.3 NRC Tripod

A three-tier flexible architecture framework to support computations of parallel

kinematic mechanisms (PKM) is presented by Atta-Konadu et al (2005). The framework

was originally designed for the NRC-IMTI Tripod project, but can be generalized for other

mechanisms as well. The architecture successively computes different algorithmic stages

 33

on reconfigurable computing platforms. In the basic configuration shown in Fig 2.9, the

top level algorithm, Frame-Constants, is executed only once for a particular mechanical

configuration, to derive global constants such as direction and position vectors for

kinematic computations. Data from the top layer are passed to a second algorithm,

Iteration-Parameters, where the orientation matrix and translation vector of the Tripod

platform are computed for each tool-center point provided by a path-generator. At the

bottom level, the algorithm Joint-Interpolation receives inputs from Iteration-Parameters,

and computes joint position (in local joint coordinates) for individual joint controllers.

Figure 2.9: Three-Tier Computing Hierarchy for the NRC-IMTI Tripod

This concept enables the architecture to migrate the algorithms to different

computing platforms on a network, depending on the decomposability of the algorithms.

Figure 2.10 shows two other configurations that can be derived from the framework.

The distributed style that the architecture provides has the potential to greatly

simplify and speed up computations. However, communication latencies over the network

could severely degrade performance if delays are not properly handled. Moreover, the

Master
controller

Axis
controller

Driver

encoder

Motor

Axis
controller

encoder

Network

Axis n

Motion
controller

Driver

Motor

Motion
controller
`

Algorithms
Frame-Constants

Iteration-Parameters

Joint-Interpolation

Axis 1

Coordination &
Synchronization

 34

clocks on the different nodes have to be continually synchronized for computation

consistency.

Figure 2.10: Tripod Computing Architecture Variations

2.6.4 CLARAty Architecture

The CLARAty (Coupled Layered Architecture for Robotic Autonomy)

architecture is the invention of the Jet Propulsion Lab of the California Institute of

Technology (Nesna, et al., 2003). The architecture approaches flexibility by defining

reusable software components, and the target platforms are rovers for Mars exploration

missions. Thus the issues of locomotion and manipulation with a robotic arm are dealt

with. The architectural framework defines a 2-stage hierarchy; the Functional Layer at the

bottom and the Decision Layer on top.

The Functional Layer includes a number of generic frameworks centered on

different robotic applications. Packages included in this layer are: I/O, motion control and

coordination, locomotion, manipulation, vision, navigation, mapping, terrain evaluation,

path planning, science analysis, estimation, simulation, and system behavior. The system’s

low and mid-level autonomy are implemented by this layer. Most control logic including

Axis
controller

Driver

encoder

Motor

Axis
controller

encoder

Network

Axis n

Motion
controller

Driver

Motor

Motion
controller

Axis 1

Coordination &
Synchronization

Algorithms
Frame-Constants

Iteration-Parameters

Joint-Interpolation

a. Semi-Hierarchical Architecture

Master
controller

Axis
controller

Driver

encoder

Motor

Axis
controller

encoder

Network

Axis n

Motion
controller

Driver

Motor

Motion
controller
`

Algorithms
Frame-Constants

Iteration-Parameters

Axis 1

Synchronization
Joint-Interpolation

Coordination &
Synchronization

b. Decentralized Architecture

 35

vision-based navigation, sensor-based manipulation, and vision target tracking that use a

predefined sequence of operations are implemented in the Functional Layer. The layer has

four main features aimed at creating component reusability. First, it provides system level

decomposition through object-oriented techniques with different levels of abstractions. For

example, a general locomotor may be extended to specifics of wheels or legs, etc. Second,

the layer separates algorithmic capabilities from system responsibilities. As an example,

algorithms such as inverse kinematics are expressed in their general terms. On platforms

(rovers) where an optimized algorithm is available, the general algorithm is overwritten.

Thirdly, the Functional Layer partitions behavioral definitions and interactions from the

implementation. This allows a motor, for instance, to separate the specialization to a

particular hardware controller from the functional details of a controlled motor to a joint.

Finally, the layer provides flexible runtime models; this enables a system with specific

hardware execution (such as servo control) not to run that of the main processor.

The Decision Layer is the global engine that analyzes system resources and

constraints. It encapsulates general planners, executives, schedulers, activity databases,

and rover and planner specific heuristics. The Decision Layer communicates with the

Functional Layer using a client-server model. Interactions with the Functional Layer

include queries about system resources, and sending commands. The layer can also utilize

encapsulated Functional Layer capabilities with high-level commands, or access low-level

resources and combine them in ways not supported by the Functional Layer. The former is

employed when planning capabilities are limited, or when under-constrained system

operation is allowed. The latter is useful if detailed, globally optimized planning is

possible, or if resource margins are limited.

The architecture has been adapted to different rovers with various motion control

and communication architectures, and physical (locomotion) capabilities. Figure 2.11

shows the generic controlled motor and joint classes and their adaptations to Fido, R8 and

R7 NASA rovers.

 36

Figure 2.11: CLARAty Implementation on Various Rover Platforms

2.7 Control Architectures

A control architecture refers to the actual operational software used to run a

machine (e.g. robot), and may also include intelligence to handle interactions with the

environment or system, and optimization procedures necessary to enhance performance.

This section reviews some well-known control strategies and some new paradigms in

system-level control reconfiguration.

2.7.1 Classic Control

Robot control for contour following operations can be classified into gross motion

and fine motion control (Somló, et al. 1997). In gross motion control, an end-effector or

machine tool follows a prescribed path as closely and as quickly as possible; the task is to

find a control law that governs its velocity and position. On the contrary, in fine motion

control, the objective is to control position and force simultaneously by a technique called

hybrid control. Gross motion control may be implemented in joint or Cartesian space

depending on whether the desired path is specified in the joints or Cartesian space. Fine

motion control may be passive or active compliance control. The former may be achieved

through Remote Compliance Center devices to compensate for disturbances. In active

 37

compliance control, there is force (torque) feedback to correct errors. The classification of

robot control is given in the Fig 2.12 below.

Figure 2.12: Classification of robot control problems

For a given configuration of the robot, one can create a mathematical model of the

robot and with previous knowledge of the variation range of the parameters a conventional

robust controller can be designed. The complete dynamic model of a robot consists of the

dynamic models of the mechanical and actuator parts. In most cases of robot control, the

dynamics of the actuator part are ignored as it is assumed that the torque produced by the

motor is suitable to realize the goals at all times. The design task is then to find the

appropriate input torque, which enables the robot to closely follow a desired trajectory.

When using high torque or current controlled dc motors, this condition is normally met;

hence the torque is simply proportional to current. By using fast feedback control a

suitable torque can be realized. With more powerful drives, responses can be made very

fast but implementation cost can be very high. In every case optimal solution should be

applied to realize the appropriate power/torque to be applied. Therefore, in many practical

cases ignoring the actuator dynamics may have significant effects on system performance.

When voltage-controlled dc motors or electro-hydraulic actuators are employed, the

torque is produced with delay depending on the time-constants. The time constants for

small permanent-magnet dc motors are normally below 1 ms: when applied to robot

systems, the time constants are small enough for actuator dynamics to be ignored in the

Robot Control

Gross motion control
(Trajectory control)

Fine motion control
(Hybrid, compliance control)

Joint
space
control

Cartesian
space
control

Passive
compliance
control

Active
compliance
control

 38

controller design (Somló, et al. 1997). However, for bigger motors it is necessary to

consider the complete dynamic model incorporating mechanical and actuator dynamics.

Most industrial robots are controlled by PID type controllers and work properly under

conventional conditions (low velocity, constrained payloads etc). Usually, this is

implemented as independent joint control if the interconnections of the joints are not

closely tied. In such situations, joint interconnections are neglected in the model.

Therefore two potentials problems could arise in robot control design (Somló, et al. 1997):

There is the problem of uncertainties of parameters and the non-linear interconnections

between the manipulator joints. To curtail the first problem, the controller must be robust;

to compensate for the unwanted effects of the second problem, the interconnections must

be taken into consideration. The interconnections between the joints appear in the total

torque (or force) acting on the joints. The significant part of this torque can be measured

by an appropriate sensor attached to the axis. An alternative approach is to compute the

interconnections in real-time by using the kinetic equations of the robot with measured

positions, velocities and accelerations of the joints. These real-time computations may be

performed by an ASIC (Application Specific Integrated Circuit) or by a central computer.

Generally, classic control architectures may be decentralized or centralized

(Somló, et al. 1997). In the first method, the control loops are independent of each other as

in the case of PID control. In the second method, signals from other joints are used in the

control of some of the joints. The latter offers high speed and quality processes and is

realized on centralized control systems. A classic example of centralized control is the

Computed Torque Control (CTC) technique. Regarding solution methods to control

problems, there are two approaches: nonadaptive and adaptive methods. Examples of

nonadaptive methods are CTC, Resolved Motion Rate Control (RMRC), Resolved

Acceleration Control (RAC), Time Optimal Control, and Variable Structure Control

(VSC). Adaptive control methods include models such as Model Reference Adaptive

Control (MRAC), and Self-Tuning. The MRAC strategy is presented by Somló, et al.

(1997). The motion of the robot is controlled in such a way that it closely follows the

motion of a given model, which represents the desired performance of the system. The

basic scheme of MRAC is shown in Fig. 2.13.

 39

Figure 2.13: Model Reference Adaptive Control (MRAC)

The input signal vector u affects both the actuators of the joints and the input

signal of the models of each joint. The output of the joints are compared and the

differences of these are used to drive the system to track the model. The ideal case is when

the adaptation error, which is the difference between the model output and the joint output,

approaches zero. Two approaches used to realize this method are parameter adaptation and

signal adaptation. Both of these strategies are illustrated in the Fig. 2.13 above. Based on

the adaptation error, the adaptive control loop produces signals which in the case of

parameter adaptation correct some parameters of the system, and in the case of signal

adaptation send signals to modify the system signals.

2.7.2 Reconfigurable Control Architectures

Generally, there are two issues regarding reconfiguration: Distributed system

reconfiguration and control reconfiguration. The former is related to a structural or

system-level software reconfiguration while the latter deals with modifying control law in

its structure to maintain a certain performance. Reconfigurable control for fault tolerance

is an exceptionally challenging control design problem. Failure detection and

identification, parameter estimation and controller redesign have to be carried out on-line

and completed within tight time boundaries. Some methods that address reconfigurable

Perturbations

Signal adaptation

+

+

Reference model

Adaptive Control
Computation

Process

Parameter
adaptation

ym(t)

y(t)

u(t)

g(t)

y(t)

u(t)

-

+
e(t)

 40

control include linear-quadratic (LQ) control methodology, adaptive control systems,

knowledge-based systems, and Eigen-structure assignments. Considering adaptive control,

there are several approaches but in general perspective control reconfiguration is

attempted by using a continually adapting nonlinear model. At this point we make a

distinction between fault-tolerance, robust control, and reconfiguration control strategies.

In the first situation, when a fault appears in one peripheral element and the plant is still

observable and controllable, the controller uses a fault accommodation strategy to achieve

its original objectives by adapting control parameters to fault conditions. A robust

controller (also called adaptive controller in some literature) aims at providing suitable

system performance if the parameters and conditions vary within given domains.

Parameters and conditions include uncertainties in the mathematical model of the plant,

and strong non-linear interconnections (e.g., between the joints of a robot); for distributed

systems, robust controllers accommodate network-induced jitters and sometimes

computation delays.

In system reconfiguration, faulty peripheral elements are switched off, and the

control structure and associated control objectives are modified to accommodate the

absence of certain parts of the plant. A similar strategy may be developed for the presence

of new elements. The initial model or reference model is based on initial information

regarding a priori fault and fault-free scenarios (Benítez-Pérez, et al., 2005). To update

current models, approaches such as neural networks and fuzzy logic may be used, where

several approximations can be followed such as differential neural networks, and radial

basis functions. Figure 2.14 shows the general strategy for fault diagnosis and control

configuration of this method.

Figure 2.14: Control Configuration – General Strategy

Control
Switching

Fault
Localization

Fault
Models

Control Plant

 41

Another reconfiguration strategy is implemented in a hierarchical manner, where a

decision maker is used to switch from one control to another. The decision maker layer

may be implemented by a knowledge-based algorithm such as neural networks. The 3-tier

model presented in (Wills et al., 2001) for autonomous control is a typical example (Fig.

2.15). The complex structure combines high-level situation awareness and mode selection

functionalities with mid-level coordination routines for leveraging mode transitioning and

reconfigurable control as well as low-level control activities. A sensor management unit

provides appropriate data to a high-level situation awareness module, a fault-detection-

and-isolation module, and to all lower levels. When an external or internal situation (such

as faults) is detected, the mode selection module generates in real-time sequences of new

modes (such as waypoints) for the controller. The mode switching or reconfiguration

module then schedules transitioning dynamics by using a nonlinear dynamic/fuzzy logic.

The low-level provides set-points and command trajectories to low-level controllers.

Figure 2.15: Hierarchical Control Reconfiguration Structure

Wang and Shin (2001) approach hierarchical reconfiguration from a different

perspective, where reconfigurable control software is viewed as consisting of “a set of

inter-communicating components, each of which is a pre-implemented software module

and used as a building block”. Components are modeled with a set of external interfaces,

communication ports, a control logic driver based on a Nested Finite State Machine

High-Level Control
Situation Awareness

Reactive Control & Mode

Mid-Level Control
Mode Transitioning

Low-Level Control
Low-level control

S
en

so
rs

Global
Process

Modeling

 42

(NFSM), and service protocols. The objective is to achieve execution-code-level

reconfigurability for control software.

Another approach to reconfiguration deals with adopting different plant models by

using reconfigurable execution models of the kinematics and dynamics of systems. This

strategy is invariably associated with developing generic algorithms and/or execution

strategies. Lin and Lee (1991) for example developed a strategy for parallel execution.

They exploited possible inherent parallelisms in robotic algorithms and investigated their

characteristics such as granularities, data dependencies, etc. Based on these, a medium-

grained reconfigurable dual-network SIMD (Single Instruction-Stream-Multiple-Data-

Stream) machine consisting of multiple processing units was developed.

Most of reconfigurable control algorithms are very recursive requiring intensive

computation and are not able to recover the original performance level. For example, an

LQ-based approach may not restore the original system performance due to ambiguities in

the optimization procedure. The pseudo-inverse method (PIM) and linear model following

(LMF) control are simpler to implement than the previous but the performance of the

closed-loop system cannot be easily predicted. The approach presented by Dhayagude and

Gao (1996) attempts to address some of these issues but even this is based on a priori

assumed conditions.

2.8 Concluding Remarks

In this chapter, we examined several issues related to architectural design properties and

software architecture styles. This led to a comprehensive review of control system

architectures. Prior to this, control system architectures were classified into three groups

according to what they emphasize. The categories were Hardware Architecture, Software

Architecture (system-level), and Control architecture. Different architectures were

reviewed and critiqued based on their throughput, communication efficiency, functional

coherence, dependability, modularity, relevance to design objectives, openness, and fault-

tolerance. The lessons learned which will be applied in our design are as follows:

• A distributed hardware design can greatly reduce complexities and enhance

performance, scalability, modifiability, and reconfigurability if the underlying

communication structure is reliable. A modular homogenous design is desirable for

clean interface definitions.

 43

• A rigid communication hardware such as a backplane guarantees high real-time

throughput, but a network-based system introduces greater flexibility by providing

loosely-coupled interconnections among elements or nodes. However, performance

may degrade if network-induced jitter and bandwidth limitations are not properly

deduced at the design phase. Hence, use tight-coupling for hard real-time and/or high

rate communication such as servo loops and loose-coupling otherwise.

• An object-oriented software architectural style leverages component-based design for

enhanced modularity, which leads to easy configuration, platform-independence, etc.

• Hardware abstractions should be used to limit or eliminate hardware dependencies.

The next chapter presents the conceptual framework of our architecture which we

call IMC (Intelligent Modular Controller) architecture. It is based on a layered reference

model with modularity, simplicity and flexibility as the design cornerstones.

 44

3. SYSTEM ARCHITECTURE

3.1 Architecture Design Philosophy

The main objective of this research is an experimental design of a control

architecture that is based on simple and cost-effective Commercial-Off-the-Shelf (COTS)

components to create a generic or domain-level control system that is easy to configure

and customize for a wide-variety of applications. It was realized from the previous chapter

that certain key technologies enable such design solutions. In retrospect, a distributed

system based on modularity and network communication has inherent or potential

flexibility due to loose-coupling between entities. The main bottleneck though is the

nature of its communication network properties such as bandwidth and transaction

mechanisms. Also, such design-for-flexibility should necessarily be accompanied by well-

conceived software architecture. Object-oriented styles lend powerful credence and

support for flexible designs. This chapter presents the conceptual framework of the

Intelligent Modular Controller (IMC) architecture. Below is a summary of the design

concepts;

• Distributed architecture based on a reference (abstract) architecture that defines the

various hierarchical decomposition.

• Loosely-coupled elements (software and hardware) for easy system development and

flexibility. This may be achieved by object-oriented software architectural style and

networked (Ethernet) communication elements.

• Controller elements should possess the ability to automatically subscribe for services

they need and also publish their own services. This makes it possible to support

automatic configuration of high level applications.

• Modular design.

• The execution flow may be configured to be biased in different ways; for example, a

centralized or decentralized interpolator may be employed based on communication

bandwidth. The proposed means to achieve this is as follows:

 45

• An Ethernet network for high bandwidth communication and robustness.

• Synchronization in order for nodes to have a global sense of time.

• A synchronization mechanism for real-time entities.

• A protocol for devices to automatically discover themselves and publish their services

to enable auto-configuration of architecture.

The system architecture strongly emphasizes modularity both in software and

hardware. The hardware architecture is shown in Fig. 3.1. Instead of having a monolithic

controller for each machine axis, control functionalities are distributed on a

microcontroller host and a dedicated motion controller for each machine axis.

Figure 3.1: The IMC Hardware Architecture

Figure 3.2 shows the reference model architecture layers superimposed on the

hardware entities (shaded regions). The reference model is inspired by work done by

Sorensen in 2003. The model is made up of seven layers for emphasis. However, in the

course of operation some layers may be redundant. The following is a discussion on the

functionalities of the model.

System
Coordinator

Motion
Controller

Microcontroller
Host

IMC

IMC

Network

Machine
Axis

IMC

PC

Real-time
Coordinator

Micro-
controller

Host

Machine Axis

Machine Axis

 46

Figure 3.2: The IMC Reference Architecture

I/O Layer: This layer provides reading/writing of I/O ports connected to

transducers, i.e., sensors and actuator drives. The layer contains different types of I/O units

for digital and analog I/O, DAC (Digital to Analog Converter), ADC (Analog to Digital

Converter), and switches. This layer also hosts the motor driver or servo amplifier, and

power supply and conditioner needed to provide appropriate signals to/from the transducer

layer. The I/O layer delivers energy to the actuator based on signals from its control layer.

Control Layer: This layer is responsible for translating motion set-points into input

signals for the actuator that drives the mechanical element. It is imperative for this layer to

implement a reliable synchronous sub-component for hard real-time performance. Servo-

S
y

st
em

/R
ea

l-
ti

m
e

C
o

o
rd

in
a

to
r

T
ra

n
sd

u
ce

rs

M
o

ti
o

n

C
o

n
tr

o
ll

er

H
o

st

H
o

st

M
o

ti
o

n

C
o

n
tr

o
ll

er

T
ra

n
sd

u
ce

rs

I/O Layer

Communication Layer

Interface Layer

Control Layer

Local Application
Layer

Local Coord. Layer

Application & Global Coordination Layer

I/O Layer

Local Application
Layer

Interface Layer

Control Layer

Local Coord. Layer

IMC

Axis 1 Axis n

 47

control and sensor feedback conversion needed in the control loop are part of this layer.

Fine trajectory generation for smooth motion may also be performed in this layer.

Interface Layer: The control layer communicates with the higher level command

layer through a high-speed real-time network. This layer is responsible for ensuring the

timely delivery of motion commands from the command layer to the control layer. It also

delivers feedback and status data to the command layer. In essence, the interface layer

serves as a hardware abstraction layer (HAL) in order to separate hardware-specific

software components from generic ones. This is to allow easy hardware replacements and

software reuse.

Local Application Layer: Some high-level applications can be hosted directly on

the local microcontroller. These include kinematics and interpolation algorithms which

can be decoupled for each axis. Local execution of such algorithms helps to reduce the

volume and frequency of communication across the network. The application layer also

includes an embedded web server, which is invoked by the higher layer to provide user

interface services.

Local Coordination layer: This layer coordinates activities in the lower layers

according to global (system-level) instructions received. For example, different motion

control modes may be specified by the users such as coordinated motion or synchronized

motion. If coordinated motion is requested, the layer activates a method to periodically

synchronize the controller’s timer with the global time. The synchronization methodology

is discussed in Chapter 7. The layer also hosts a graphical user interface (GUI), and

databases including a real-time database of temporal data. The user interface provides

status information such as position logs, command functions and configuration editors.

Lastly, the layer implements components to monitor the status of lower layers such as

motor stall situations.

Communication Layer: This layer is the interface to the network on the distributed

system. The layer is responsible for creating a virtual global environment so that the whole

system appears as one entity to the IMC nodes, even though they are spatially separated.

To enable this, the layer implements a configuration scheme to automatically discover

services on the network, and register itself to other nodes on the network. Chapter 6

provides the communication architecture design details and analysis.

 48

Application and Global Coordination Layer: All global tasks and functions are

implemented in this layer. The layer provides high level interpolation, motion

synchronization and coordination, and system configuration. The layer also supplies a

graphical user interface for monitoring devices, creating trajectory data (e.g., NC code),

and sending commands to the IMC nodes. High-level control algorithms may be

implemented in this layer.

3.2 Intelligent Modular Controller (IMC)

Each axis controller (IMC) is designed such that there is minimal need for global

data interchange. Therefore most hard real-time functions are confined within the IMC

domain. Each IMC communicates with the central coordinator through a network while

communication with the mechanical axis is through an embedded motion controller and a

set of I/O signals. The IMC architecture allows a completely distributed or a hierarchical

architectural structure in order to accommodate different demands imposed by higher

application layers. A typical example is the control of a serial robot in contrast with a

parallel kinematic machine (PKM): While it is practical to distribute the inverse

kinematics of an n-DOF PKM to n computing elements (i.e., n IMCs), a centralized

computing structure is required for the latter. Another feature of the IMCs is the ability for

any one of them or an additional IMC to serve as a real-time coordinator. This is

especially important in two different applications: The first is the situation where the

global workstation or computer which hosts most of the higher layer application software

runs on a non real-time operating system (OS). While many functions such as path-

planning and NC program parsing may be abstracted from non real-time computing, real-

time transactions are a necessity for coordinating coarse or finely interpolated data. The

architecture allows an IMC to be selected for this purpose. In this case, the IMC is relieved

of its motion control activities in order to conserve computing resources for real-time

coordination. The architecture, therefore, does not predispose the user to any particular

operating system which is a key advantage. The second interesting feature of the IMC

architecture is that they are designed from the onset to be embedded mobile computing

elements. This provides the ability for them to be integrated or embedded in the

mechanical platform. The concept can therefore be used to control mobile equipment such

as AGVs or mobile robots. There are a few architectural permutations that can address

 49

such situations: One arrangement is to have one IMC inside each host mechanical axis;

another variation is to map several motion controllers to one IMC microcontroller. The

IMC hardware architecture design is discussed in Chapters 4 and 5.

3.2.1 Interfaces

Since the IMC architecture is meant to be a generic controller for a variety of host

modules, the interface is open for extreme variations in the connection requirements of

mechanical host modules. It is assumed that each host module will be equipped with a

suitable motor drive and signal conditioner. The architecture provides the necessary I/O

connections for interfacing signals to the motion controller and higher layers. The

interface with other nodes on the network such as the global coordinator(s) is a network

API, and the network hardware. The network provides a reliable and real-time

communication medium for synchronous messages such as interpolation data streams as

well as control messages such as start/stop which are asynchronous.

3.3 The System Coordinator(s)

The global coordinator(s) is/are responsible for all tasks which cannot be suitably

decomposed to the IMC nodes; for example, certain kinematics, path planning, NC

programs, interpolation, and coordination of axes motion. As aforementioned, if the global

coordinator is incapable of coordinating real-time tasks, an IMC host is assigned to be a

real-time coordinator. The global coordinator still plays the role of system monitoring at

its backend, and user-induced front-end activities.

3.4 Conclusion

In this chapter, an overview of the architecture that supports the Intelligent

Machine Controller (IMC) has been discussed. The architecture is distributed over three

kinds of platforms; the IMC nodes, a system coordinator and a real-time coordinator. The

IMC node consists of a microcontroller and an embedded motion controller board. All

global services are implemented on the coordinators. Real-time high-level services such as

interpolation are provided by the real-time coordinator if the system coordinator cannot

provide such services. The real-time coordinator runs on a platform similar to the IMC

microcontroller. The next chapter presents a review of Java technology and the

 50

microcontroller hardware that is used for the IMC. The software structure for the entire

system is presented in Chapter 9.

 51

4. EMBEDDED COMPUTING PLATFORM

4.1 Introduction

This chapter elaborates how a suitable microcontroller was selected for the IMC

architecture design. The discourse includes the rationale for Java in real-time system

design, and enabling technologies for embedded Java systems. Essentially, an embedded

system is an application specific computer system that is part of a larger system or

mechanical component. It is designed to perform a limited range of functions with no, or

minimal user intervention. These systems operate on significantly low power and

consequently use slow processors and small memory sizes in order to minimize costs and

energy consumption. Like typical real-time systems, real-time embedded systems also

require a real-time operating system (OS) for process management and synchronization,

memory management, interprocess communication, and I/O. As was mentioned in the

previous chapter, the software signature of the architecture is a homogenous programming

environment based on Java. The opportunities and implications of this preference are

discussed in ensuing sections, and against this backdrop, a Java-based hardware is

selected. The closing sections describe motion controller design options, and the controller

ASIC (application specific integrated circuit) that was selected for the design of the IMC

motion controller board.

4.2 Java for Real-time System Design

The most widely used embedded real-time systems are written in C++ and Ada83.

Currently, these are also the most popular object-oriented tools in this field. Both are

robust real-time programming software tools but not necessarily the ultimate tools. C++ is

widely used because it is readily available and supports low-level programming. However,

it suffers from low robustness to modification, and poor readability and maintainability.

On the other hand, Ada83 is too large for many embedded systems, and too expensive.

Java has many unique qualities that concur very well with modern-day paradigms in

industrial automation such as software reuse, openness, single inheritance, software

 52

modularity, and platform-independence (Vyatkin, et al., 2005). However, by design it is

more suited for enterprise-level tools, where real-time requirements are not stringent.

Nonetheless in recent years, Java developers and interest groups have been carving out

specifications for Real-Time Java, in order to add color to the real-time world. Java is a

unique blend of language definition, very robust, and offers a rich class library and a

runtime environment. Programs are compiled to bytecodes that are executed by a Java

virtual machine (JVM). Its robustness is derived from strong typing, runtime checks and

avoidance of pointers. Intermediate bytecode representation simplifies porting of Java to

different operating environments and is easy to implement requiring minimum system

resource. As shown in Fig. 4.1, Java has four important components: the Java

Programming Language, the Java Class Library containing binary representation or

bytecode, the Java Native Interface to support functions written in C/C++ and the JVM.

Figure 4.1: The Java System Architecture

The JVM loads, verifies and executes the bytecode of a Java program. Execution

speed is hindered by interpreting bytecodes, and this has been one of the setbacks of Java

in real-time applications until recently. One solution to this problem is a JVM with a just-

in-time (JIT) compiler designed for desktop and server systems. However these require

large memory footprints and have to be ported for different processor architectures. An

excellent candidate for real-time embedded system designs is a Java processor (hardware)

Operating System

Java
Native
Interface

Classloader Verifier Execution

Java Virtual Machine

Java Class Library

Java Programming Language

Java Application

 53

that implements the JVM as a native machine. This avoids the slow execution model of an

interpreting JVM and the memory requirements of a compiler, thus making it suitable for

embedded systems. There are two approaches to Java bytecode execution by hardware. In

the first approach, a Java coprocessor is placed in the instruction fetch path of a general

purpose microprocessor and translates Java bytecodes to sequences of instructions for the

host CPU or directly executes basic Java bytecodes. In the second approach, a Java chip

replaces the general purpose CPU. All applications therefore have to be written in Java.

Table 4.1 is a cross-section of some existing Java chips (Schoberl, 2005).

Table 4.1: Java Hardware Comparison

Product Type Chip
Technology

Speed (MHz) Java
Standard

JIFFY Translation FPGA

Jazelle Co-processor ASIC 0.18 �s 200

JSTAR Co-processor ASIC 0.18 �s 104 J2ME CLDC

picoJava Processor Full

aJile Processor ASIC 0.25 �s 103 J2ME CLDC

Cjip Processor ASIC 0.35 �s 67 J2ME CLDC

Komodo Processor 2600 LCs 20 subset

4.3 Opportunities and Constraints for Java Embedded Devices

Generally, program execution on an embedded platform is done either cyclically

or concurrently with time constraints. Java utilizes the latter method, and its concurrency

is derived from its Thread class. The Thread class is built on a shared memory

communication model where all thread implementations use the same memory heap.

Thread activation is governed by mutual exclusion (synchronized keyword) and the

methods wait(), notify() and notifyAll(). The classes java.util.TimerTask and

java.util.Timer can be used to schedule tasks for future execution in a background thread.

Java defines a very loose behavior of threads and scheduling in order to avoid deadlocks

and thread starvation. For instance, Java allows even low priority threads to preempt high

priority threads. This is important for non real-time applications but a liability in real-time

programming. Another limp in Java’s response to real-timeliness is in its garbage

collection policy. In Java, removal of unreferenced entities (objects) is done automatically,

greatly simplifying programming and eliminating the infamous memory leak and dangling

 54

pointer crises in programs written in C/C++. However, even real-time garbage collectors

are usually avoided in hard real-time systems. Implementations of Java must include the

full Java API library (JDK) constituting over 15MB, which is too large for many

embedded systems. Lastly, since Java was designed to be a safe language with a safe

execution environment, no classes are available for low-level access to hardware features.

Hence the standard library was not defined and coded to support real-time applications.

The Real-Time Specification for Java (RTSJ) defines a new API with support from

the JVM and the following guiding principles (International, 2000; International, 2001):

• No restriction on the Java runtime environment.

• Backward compatibility for non-real-time Java programs. This implies that the RTSJ

is intended to run on top of J2SE (and not on J2ME).

• No syntactic extension to the Java language or new keywords.

• Predictable execution.

• Address current real-time system practice.

• Allow future implementations to add advanced features.

The RTSJ specification defines threads and scheduling for real-time behavior. The

base scheduler is defined as a priority-based, preemptive scheduler with at least 28 real-

time priorities. In addition, the 10 priority levels for the traditional Java threads need to be

available. Threads with equal priority are queued in First-In-First-Out (FIFO) order.

Additional schedulers such as Earliest Deadline First (EDF) can be dynamically loaded.

The class scheduler and related classes provide optional support for feasibility analysis.

Threads are either periodic or bound to asynchronous events. Since garbage collection is a

bottleneck in real-time applications, the RTSJ defines new memory areas. Scoped memory

is a memory region with bounded lifetime. On exit of the last thread from a scope, all

finalizers of allocated objects are invoked and the memory area is released. Physical

memory is used to regulate allocation in memories with different access time. Raw

memory enables byte-level access to physical memory or memory-mapped I/O. Immortal

memory is a memory regime shared between all threads without a garbage collector. Heap

memory is the classic garbage collected memory regime. A bound can be set on maximum

memory usage and the maximum allocation rate per thread. RTSJ restricts the

implementation of the keyword synchronized to prevent priority inversion. The priority

 55

inheritance protocol is the default and the priority ceiling emulation protocol can be used.

Threads queuing to enter a synchronized block are priority ordered and FIFO ordered

within each priority. Wait-free queues provide communication between instances of

java.lang.Thread and RealtimeThread. Classes to represent relative and absolute times

with nanosecond resolution are defined by RTSJ. Multiple clocks can represent different

sources of time and resolution in order to allow for the reduction of queue management

overheads for tasks with different tolerance for jitter. A new type, rationale time, can be

used to define periods with a requested resolution over a longer period. Timer classes can

produce time-triggered events (one-shot and periodic). External world events may be

scheduled and dispatched by the scheduler. An AsyncEvent object represents an external

event such as a hardware interrupt or an internal event. Event handlers are linked to these

events and can be bound to a regular real-time thread. The RTSJ is a complex

specification resulting in a big memory footprint beyond the capabilities of many

embedded systems. Therefore many implementations use only a subset of RTSJ

(Schöberl, 2005).

4.3.1 The Java Micro Edition (J2ME)

To provide a compact API for embedded systems, Sun has defined the Java 2

Platform Micro Edition (J2ME) which is a subset of standard Java API (J2SE). Instead of

being a single unified entity, J2ME is a collection of specifications that define a set of

platforms for specific products types. The subset of the full Java programming

environment for a particular device is defined by one or more profiles which project the

basic capabilities of a device configuration (Topley, 2002). The configuration and the

profile(s) targeted for a particular device depend on both the nature of its hardware and the

target market. J2ME defines three layers of software built upon the host operating system

of the device:

Java Virtual Machine: J2ME reduces the function of the JVM to make

implementation lighter on smaller processors. This layer is the usual JVM as in every Java

implementation. It is assumed that the JVM will be implemented on top of a host

operating system.

Configurations: The configuration defines the minimum set of JVM features and

Java class libraries available on a particular class of devices. They specify such things as

 56

the types and amount of memory available, the processor type and speed, and the network

connections available to the device. J2ME currently defines two configurations, the

Connected Limited Device Configuration (CLDC) and the Connected Device

Configuration (CDC). The CLDC configuration is designed for low-end devices with a

memory budget of 128 KB and a 16 or 32-bit processor. The main target devices are

wireless devices. The CLDC is based on a small-footprint JVM called K Virtual Machine

(KVM) and core class libraries. Many features such as floating point support and

finalization have been removed from the Java API. The JVM handles errors by halting in

an implementation-specific manner. The following features have been excluded from the

JVM (version 1.1): Java Native Interface (JNI), Reflection, Finalization, weak references,

user-defined class loaders, thread groups, daemon threads and asynchronous exceptions.

The CLDC defines a subset of the Java class libraries java.io, java.lang, java.lang.ref and

java.util. An additional library javax microedition.io defines a simpler interface for

network connections. On the other hand the CDC configuration targets devices with at

least 2 MB of memory and more capable processors, and can support a much more

complete software environment. CDC places no restrictions on the JVM.

Profile: The profile complements a configuration by defining the minimum set of

APIs for a particular class of devices. Both J2ME configurations have one or more

associated profiles. Mobile Information Device Profile (MIDP) and PDA Profile (PDAP)

add networking, user interface components and local storage to their CLDCs. The

Foundation Profile is the building block for all profiles based on CDC. The RMI profile

for example includes the J2SE Remote Method Invocation (RMI) libraries to the

Foundation Profile. Two profiles are most appealing to embedded applications, namely,

EmbeddedJava and PersonalJava. Target devices typically have 32-bit processors and 512

KB of ROM/RAM and 2 MB ROM/RAM respectively. These profiles allow the

implementer to remove any package or class, or even a method within a class that is not

required, in order to fit the final product into the memory available.

4.4 Microcontroller Hardware Selection

The criteria for the selection of an appropriate computing platform were as

follows.

1. The hardware must be capable of supporting at least 60 MHz of computing.

 57

2. The underlying operating system must be capable of multi-tasking synchronously

and/or asynchronously.

3. There should be provision for a real-time serial bus and bi-directional Ethernet.

4. At least 2 Mbytes of storage space.

5. Computing platform based on Java.

6. There should be an appreciable number of input/output pins for digital or analog

interfacing, serial and parallel interfacing.

Even though there is a wide variety of processing platforms available, not very

many meet the aforementioned requirements of an embedded technology with native

support for real-time, object-oriented programming and communication network. For this

reason, we selected the aJile microprocessor (see Table 4.1). The chipset is only US$25

(2004 price). The next section gives a brief description of the processor with emphasis on

the features of interest to us.

4.4.1 The aJile Processor

The aJile architecture uses JEM2 as a direct-execution Java processor that is

available as both an IP core and a stand alone processor (aJ-100, 2001). The data path is

made up of a 32-bit ALU, a 32-bit barrel shifter and the support for floating point

operations (disassembly/assembly, overflow and NaN detection). The control memory is a

4K by 56 ROM to hold the microcode that implements the Java bytecode. An additional

RAM can be used for custom microcode to implement new instructions. The aJile

inventors report that this feature can increase the efficiency of frequently used algorithms

by 5 – 50 times by decreasing execution overheads. This feature is also used to implement

basic synchronization and thread scheduling routines in microcode to yield context-

switching of 1 µs. A Multiple JVM Manager (MJM) supports two independent, memory

protected JVMs, which can execute with a deterministic schedule and full memory

protection (Fig. 4.2).

 58

Figure 4.2: The aJile JEM2 Processor (aJ-100, 2001)

Currently, there are two silicon versions of JEM2 microcontrollers: the aJ-80 and

the aJ-100. The aJ-100 shown in Fig. 4.3 (aJ-100, 2001), provides a generic 8-bit, 16-bit or

32-bit external bus interface and can be clocked up to 103 MHz, while the 66-MHz aJ-80

only provides an 8-bit interface. Both versions are made up of the JEM2 core, the MJM,

48-KB zero wait state RAM and peripheral components, such as timers, I/O’s, a real- time

serial communication bus (SIP) and UART. 16KB of the RAM is used for the writable

control store and 32 KB for storage of the processor stack. Both microprocessors are

bundled with J2ME-CLDC Java runtime system, optimizing application builder, and a

very basic debugging tool. Complete implementations for real-time networked embedded

Java applications are available (aJ-100, 2001 and Systronix, 2003).

 59

Figure 4.3: aJ-100 Architecture (aJ-100, 2001)

4.4.2 The JStick Platform

Systronix Inc. (2003) produces about five different boards with the aJile

microprocessor. Their JStick microcontroller meets most of our preferences such as small

form factor, I/O (input/output) interfaces, and network support. JStick is a Single Board

Computer (SBC) with a SIMM30 (Single In-Line Memory Module) format. It features a

host of facilities to provide most controller functionalities. The following is summary of

the portfolio of this device:

• Processor: aJ100 (100 MHz).

• Memory: 2-Mbytes SRAM and 4-Mbytes flash.

• Power: switching power converters which provide 5 V and 3.3 V for peripheral

devices.

• Power supply: unregulated DC of 9-14 volts or regulated DC power of 5V.

• Communication: serial I/O, 10BaseT Ethernet (including the RJ45 jack).

• Bus Interface: A high speed I/O expansion bus.

 60

• Real-time network: SPI (Serial Peripheral Interface).

• Multiple timers, counters, PWM, interrupt inputs, etc.

4.5 Motion Controller Hardware

A motion controller is the most important element in a motion control system.

Next to choosing a proper motor, the selection or design of a motion controller is the

designer’s most important decision. The fundamental function of a controller is to

compare two signals: the command signal from the microprocessor and the position

feedback signal from an encoder, resolver or tachometer. The position feedback signal is

subtracted from the reference position to provide a following error which is converted by a

digital-to-analog converter (DAC) to analog voltage for the servo amplifier. The

controller’s prime duty is to minimize the position error without causing system

instability. With an appropriate motion controller in place, the designer can focus on

stabilizing and programming the system.

There are two broad categories of motion controllers: application specific

controllers and general purpose controllers. Application specific controllers are usually

more expensive and have features, performance and packaging specific to certain types of

applications (e.g. CNC). Since they are highly tailored for specific applications, they are

not usually suited for general purpose tasks. On the contrary, general purpose controllers

host a variety of communication interfaces and flexible programming to meet a variety of

applications effectively. There are many configurations of general purpose controllers, the

most common being board-level and stand-alone controllers.

Board-level controllers include a microprocessor containing the logic embedded in

a communication bus such as a PC/ISA, VME or STD bus. Programming is accomplished

through fast parallel processing with program storage on storage facilities residing on the

controller. The execution sequence occurs when the program is downloaded to a non-

volatile memory chip on the controller and executed. These controllers benefit from high-

level language interfaces (DLL, C, etc) and available functionality found in the host. Its

low cost, standard host architecture and rapid programming make board-level controllers

the most popular control solution. The disadvantage of using board level controllers is that

they require a separate host interface and are therefore not ideal for situations requiring

portability.

 61

Stand-alone controllers circumvent this by having their own host together with the

controller in one package. Programs are typically downloaded from a PC through a serial

communication link to an EEPROM or battery-backed RAM on the controller. Obviously,

a disadvantage is that program size is limited to the on-board memory capacity of the

controller host.

Motion controllers owe their speed and precision to high level ASCII-based or

compiled programming languages plus powerful microprocessors, counters, etc. Although

some controllers can control up to 32 axes of motion, most applications have much fewer

axes. Motion controllers are usually capable of controlling a number of different

components such as DC motors (brush or brushless), stepper motors, induction motors,

pneumatic/hydraulic servos and proportional servo valves. In addition, they can also

provide multitasking, PLC interfacing and analog and digital I/O control to control

solenoids, relays, switches etc for complete machine control.

There are three basic types of motor control in motion applications: position,

velocity and torque. Position (or current) control is found in servo and some stepper

applications and employs feedback devices to close the position loop and make the system

repeatable and dynamically responsive. The controller senses the speed increase or

decrease via the feedback device and issues a new command voltage to maintain the

original motor speed. Velocity control specifies the load velocity for a prescribed time

interval and is not concerned with load position. The mode uses either the feedback from

the motor’s back EMF signal or a tachometer as a regulating signal, often as part of the

inner velocity loop tied to an amplifier. Torque control’s emphasis is on delivering

constant torque regardless of load positions or velocity changes.

The most common motion profiles are point-to-point and coordinated motion.

Point-to-point profiling involves constant and repeatable movements from one point to

another such as pick and place, drilling and scanning. Coordinated motion involves tight

synchronization of independent axes along a path such as is common in CNC, web lines,

contouring, grinding, etc. This application requires that the load position follow the

commanded position in a very predictable manner with high stiffness (loop gain) in order

to reject external disturbances such as changes in load. On the contrary, point-to-point

profiles typically are not as concerned with precise path motion as with settling times,

 62

move times and velocity profiles. There are other motion profiles which are more

complex. These include electronic gearing and cams, master/slave synchronization, linear

and circular interpolation, contouring, cubic spines, parabolic profiling, spline

interpolation, helical interpolation, S-curve acceleration and acceleration feed-forward.

The controller uses a filter such as PID to stabilize the system and reduce the following

error to an infinitesimal value. A more sophisticated filter achieves high dynamic

response, high accuracy, minimum settling time and reduced instability, at the cost of

computational resources.

4.5.1 Motion Controller Design Options

The decision to select an appropriate motion control scheme depended on a

number of factors. The options considered are as follows;

• JStick as stand-alone motion controller

• Use auxiliary hardware in conjunction with JStick for motion control

• COTS motion controller board; Interface an off-the-shelf motion control board to

JStick

• COTS motion control chip; design a motion controller board based on a COTS motion

control chip.

The first option requires coding control filter algorithms such as PID, polling

sensor (encoder) data and using JStick’s hardware counters and software to decode

encoder pulses for the filter, and sending PWM signals to an amplifier or motor driver. In

terms of hardware, it is the simplest to implement but will present challenging

performance issues. The embedded device will be overburdened to meet motion control

requirements and at the same time provide communication and user interface facilities.

We envisage that we will have to use low frequency sampling – 10Hz at most – for the

PID filter algorithm. The setup will also result in very limited free memory storage for

other coding that we might need to implement. A solution to the limited JStick computing

budget is to use a servo interface board to either handle the quadrature decoding of

encoder signals, digital to analog conversion of motion signals or both. In this case, JStick

will be responsible for only reading/writing signals from/to the auxiliary board, motion

control (commands and filter) and motion profiling. There are a few COTS that offer such

options but their costs are too high for a cost-effective solution to our Java-based motion

 63

controller. Secondly, the potential for JStick to interface with the peripheral device is the

absolute determining factor; issues regarding interfacing include signal types, timing

parameters and ease of integration. These factors prompted us to opt for an in-house

designed motion control board as opposed to a proprietary product.

4.5.2 Motion Controller Board Design Criteria

The following features were considered for the motion controller board design:

• A programmable motion controller chip with a compensator (at least a PID filter), a

sampling rate of at least 1 KHz for high performance (Bellini et al., 2003), motion

profiling, quadrature decoding and a real-time means of populating an integrated

buffer with motion set-points from the JStick host. The chip should also be capable of

providing encoder readings to allow monitoring or adaptive control.

• A Digital to Analog (DAC) chip, which easily interfaces with the motion control chip

and provides at least a 12-bit resolution and a voltage output range of +/- 10 V. It is

worth noting here that the chip timing parameters should be compatible with that of

the motion control chip.

• An encoder receiver chip (if the motion controller needs one) and circuitry for filtering

out noise. Encoder signals are very susceptible to noise, especially single line

encoders. This is compounded by long transmission lines and the use of relatively

cheap encoder technology like totem-pole and open-collector types.

• Digital I/O with interrupts for enable-signal on motor driver (amplifier) and

mechanical switches such as limit and home position switches.

• Logic chips such as flip-flops for buffering signals and signal inverters.

• Power converter chip for devices requiring power levels which are unavailable on the

JStick.

The following criteria set further guidelines for selecting appropriate peripheral

devices for the motion controller board.

• Compatibility with JStick’s HSIO interface: since JStick’s HSIO provides facilities for

interfacing with peripheral devices, any such device should be capable of interfacing

with the HSIO byte-wide data bus. Signals are TTL levels; therefore it will be

advantageous to select TTL hardware in order to avoid voltage level shifter circuitry.

 64

• Timing granularity: peripheral timing characteristics should be within JStick’s timing

range without clocking down JStick from its maximum speed of 103 MHz. A clock

down will imply slower computational processing of supporting and other algorithms.

• Power levels: peripheral devices power should be capable of utilizing onboard power

resources either directly or through a simple power converter which must also depend

on JStick’s power sources. In addition the peak power demand should be within

JStick's power supply budget, which is about 1W. The vision is to have a compact

system with one main power source for both the JStick and the motion control module.

• Ease of handling: components with extremely small form factors or pin spacing will

be difficult to work with.

4.5.3 Motion Controller Chip Selection

There are a number of commercial motion controller chips on the market. A few of

these were identified as potential candidates for the motion controller board design. The

National Semiconductor’s LM628 (LM628/LM629, 2003) was eventually selected based

on the criteria outlined above, including its low price, simplicity, and proven capabilities.

In Chapter 2, this particular chip is featured in the CLARAty architecture for space rovers

(K7 rover). Cost and technology comparison of different motion controller chips and

boards are provided in Appendix A.

4.6 Conclusion

This chapter provided some insight in embedded Java technology and the enabling

technologies available. The JStick microcontroller, which is based on aJile’s aJ-100 Java

processor, was selected as the host computer for the IMC nodes. The selection was based

on the several on-board facilities that JStick provides, including real-time scheduling,

timers/counters and Ethernet – to mention a few. A motion controller chip, LM628, was

also selected for an in-house design of a motion controller board. The next chapter details

the hardware and timing features of JStick and how it interfaces with the LM628 chip on

the IMC motion controller board. Timing analysis and the board design procedure is also

discussed.

 65

5. MOTION CONTROLLER BOARD DESIGN

5.1 Introduction

This chapter focuses on the hardware design of the motion controller board for the

IMC node. The schematic of the board is shown in Fig. 5.1. The hardware architecture is a

multi-tier system with independent controllers for each joint of the robot. Each joint

controller is made up of a JStik (Systronix) microcontroller and a motion control board

consisting of a LM628 PID motion controller chip (National Semiconductor), a 12-bit

DAC, and various I/O interfaces. The LM628 has an 8-bit host interface and is made up of

four major functional blocks; the Trajectory Profile Generator, Loop Compensating PID

Filter, Summing Junction and Motor Position Decoder. The output interface is

programmable for an 8-bit or 12-bit DAC. Its maximum sampling rate is 2.932 kHz.

Figure 5.1: Peripheral Motion Controller Board Architecture

aJ100

Flash

RAM UART

Ethernet

GPIO
Interface

Timers H
S

IO
 I

n
te

rf
ac

e

8
-b

it
 I

/O
 a

n
d

 C
o

n
tr

o
l

In
te

rf
ac

e

Power
conditioner

Clock

DAC
Interface

DAC Encoder
Interface

I/
O

 I
n

te
rf

ac
e

L
M

6
2

8
 M

o
ti

o
n

 C
o

n
tr

o
ll

er

JStick Motion Controller Board

 66

5.2 JStick’s Peripheral Interface Signals

In order to interface this board with peripheral I/O devices, JStick uses an

asynchronous, memory-mapped High Speed I/O Interface (HSIO). The HSIO provides

byte-wide (8-bit) data, twelve address bits, read and write strobes, two chip selects, 3.3

VDC power and ground. More chip selects can be easily decoded from the 12-bit address.

HSIO signals interface directly to 3.3V TTL and CMOS or 5V TTL devices (Systronix,

2001). In order to configure the HSIO for a peripheral device one needs to properly select

timing parameters to match the timing specifications of the peripheral device. Fortunately,

the bus timing can be varied to support most peripheral speeds. The bus timing is

controlled by three features; a Phase Locked Loop (PLL), the aJile CPU external bus

interface settings and the HSIO memory mapped address bits.

5.2.1 The Phase Locked Loop (PLL)

The aJ-100 chip utilizes a PLL circuitry shown in Fig. 5.2 to generate the high-

speed internal clock from a low frequency external oscillator. JStick uses a 7.3728-MHz

clock to generate internal clocks of up to 103 MHz for its aJ100 CPU. The outputs can be

configured through the PLL Configuration Register. The clock output (CLKO) signal is

derived from the CPU clock divided by 2, 4 or 8 (Systronix, 2003).

Figure 5.2: aJile PLL Circuit Diagram (aJ-100, 2001)

 67

5.2.2 The External Bus Interface

The aJile’s external bus interface (EBI) generates the signals to control access to

external memory and peripherals devices. The EBI may be configured to support 32-bit,

16-bit, and 8-bit memory devices or a combination of these memory widths. The EBI

provides eight chip selects (CS0n..CS7n) to control external memory devices and

peripherals and each chip select has a configuration register to specify the setup times,

hold times, wait states and memory widths (Systronix, 2003). The HSIO is controlled by

CS5n. Its configuration register is shown in Table 5.1 below.

Table 5.1: Chip Configuration Register

Bit
Positions

31:12 11:10 9:8 7:6 5:2 1:0

Field
Name

unused CS setup
Ncs

Address
setup (Nas)

Address
hold (Nah)

Wait states
(Nws)

Bus
width

• CS setup configures the number of clock cycles the CS line should be valid before the

assertion of the control strobe (REn/WEn). The range is 0 to 3 times the clock cycle (0

– 3T).

• The Address setup defines the number of clock cycles the address should be valid

before the chip select signal. The range is 0 – 3T.

• The Address hold defines the number of clock cycles to hold write data and addresses

following the release of the transfer control strobes. The valid range is 0 – 3T.

• The Wait states bits extend the duration of the bus transactions from 0 to 15. Each

states increments the memory cycle by 1T.

• The Bus width defines three data bus configurations; bits = 0 defines an 8-bit memory

transfer (D[7:0]), bits = 01 a 16 bit transfer (D[15:0]) and bits = 11 a 32 bit transfer.

5.2.3 HSIO Bus Address Space and Timings

The HSIO timing granularity is a multiple of the CLKO period (Systronix, 2001).

At the maximum rated frequency of 103 MHz, JStik CLKO options are 51.6, 25.8, or 12.9

MHz. The HSIO bus uses 12-bits of address, 0-FFF and two 12-bit chip selects; each one

 68

has its own 12-bit address space. More chip selects may be decoded within a given HSIO

address space. The HSIO control logic uses address lines A[19:A16] exclusively to set the

bus cycle wait states. The timing duration Tw, in CLKO periods Tc of the inserted wait

states is defined as.

Tw = ((A[19:16] × 2) + 1) × Tc. (5.1)

A[19:16] = 0 gives the fastest transaction. The state of address A20 (0 or 1) and

the value of chip select configuration register CS5_CR [11:10] control the assertion of the

HSIO read/write control strobes (X-RD/X_WR).

5.2.4 JSimm Interface and Signals

JStick provides several general-purpose I/O’s (GPIO) on its 30-pin JSimm

interface. aJ-100 includes five 8-bit discrete GPIO ports (A to E). Most of the GPIO pins

are multiplexed with the I/O signals from other resources on the CPU such as timers,

counters, etc. A few of these pins (port A) are capable of driving/sinking 24 mA while the

others can drive/sink 8 mA. Each port is capable of generating an interrupt unlike the

HSIO bus. The JSimm interface provides unregulated 15 V, regulated 5 V and ground. All

signals on JStick are powered by 3.3-V logic, are TTL level compatible, and are 5 volt

tolerant. As such they will interface directly to 3.3-V TTL and CMOS or 5-V TTL

devices.

5.3 The Interface Design

The LM628 is a TTL device with signal levels shown in Table 5.2. Therefore there

is no need for a buffer or level shifter to mediate signals to/from JStick.

Table 5.2: LM628 Signal Levels

Limits Parameter
min max

Logic 1 Input Voltage 2.0 V

Logic 0 Input Voltage 0.8 V

Logic 1 Output Voltage 2.4 V

Logic 0 Output Voltage 0.4 V

 69

Figure 5.3 shows the simplicity of the interface connections between the JStick

HSIO and a single LM628. An address decoder shown in Fig. 5.4 may be used to decode

HSIO address bits for connections with multiple LM628 chips. In our current board

design, we use a single LM628 chip.

Figure 5.3: JStick LM628 Interface

H
S

IO
 B

U
S

JSIMM GPIO PINS

D0 – D7

RD (L)

CS (L)

PS (L)

WR (L)

HI

8-bit Data Bus

RST (L)

RD (L)

WR (L)

A0

CS (L)

HSIO Interface Pins LM628 Host Pins

 70

Figure 5.4: Interface Architecture for Multiple LM628

All control pins (strobes), Chip Select (CS), Port Select (PS), Read (RD) and Write

(WR) assert low (logic 0). The Chip Select is for selecting the LM628 for writing and

reading operations. The Read pin is for reading data from the LM628 and also its status

while Write controls command and data write transactions. Port Select is used to select the

LM628’s command or data port depending on its logic level. The Host Interrupt (HI)

signal alerts JStick that an interrupt condition has occurred. Lastly, the Reset (RST) pin

resets the LM628 to default conditions. The next phase of the design is to establish

communication between JStick running at 103 MHz and the much slower LM628 clocked

at 6 MHz. Like in any processor interface design, the timing requirements of the LM628

must be stringently met to ensure the integrity of transactions such as data read/write,

command byte write and status byte write. Consequently, we configure the HSIO

parameters described in the previous section with the aid of a timing analysis. Table 5.3

below shows the timing requirements of the LM628 chip.

HSIO

CS (L)

PS (L)

Address Bus
A0 –A11

LM628

Address
Decoder

JStick Controller Board

H
S

IO
 I

n
te

rf
a

ce

Actuator 1

I/
O

 I
n

te
rf

a
ce

Actuator n

 71

Table 5.3: LM628 Timing Requirements

Limits Timing Interval T#
Min Max

Units

DATA WORD READ TIMING
Chip-Select Setup/Hold Time T7 0 ns

Port-Select Setup Time T8 30 ns

Port-Select Hold Time T9 30 ns

Read Data Access Time T10 180 ns

Read Data Hold Time T11 0 ns

RD High to Hi-Z Time T12 180 ns

Busy Bit Delay T13 ns

Read Recovery Time T17 120 ns

DATA WORD WRITE TIMING
Chip-Select Setup/Hold Time T7 0 ns

Port-Select Setup Time T8 30 ns

Port-Select Hold Time T9 30 ns

Busy Bit Delay T13 ns

WR(L) Pulse Width T14 100 ns

Write Data Access Time T15 50 ns

Write Data Hold Time T16 120 ns

Write Recovery Time T18 120 ns

The timing intervals may be constraints or delays; a constraint establishes a

relationship between the two signal edges that must be maintained within the Min/Max

values; setup, hold times and pulse widths are constraints. A delay represents a cause-and-

effect relationship between two signal edges, such as the propagation delay due to Data

Access Time. Using the Timing Designer software (Timing Designer, 2003), timing

diagrams are created by adding these delays and timing constraints to JStick’s HSIO

timing diagram. When the timing parameters of JStick are updated, TimingDesigner

instantly performs a true worst-case timing analysis and automatically flags any violations

of the timing diagram specification. Using aJile’s PLL settings, the lowest clock (CLKO)

speed we can derive for the HSIO at maximum processor speed (103 MHz) is 12.9 MHz,

i.e., CPU Clock divided by 8. Intuitively, this is too fast for LM628 which is clocked at a

maximum of 6 MHz. The obvious is to clock down the aJ100 CPU; using a PLL

multiplier of 8, we get a CPU clock speed of 58.98 MHz and a corresponding CLKO (bus

speed) value of 7.37 MHz. Figure 5.5 shows the resulting timing diagram of the HSIO bus

transactions with the LM628. Commands are written to LM628 by bringing WR and PS

low. When PS is high, WR brought low writes data into LM628 and similarly, RD is

brought low to read data from LM628. Address pin A0 of the HSIO drives the PS pin and

we recall that CS has to be brought low to select LM628 for all transactions.

 72

Subsequently, the maximum read and write transaction times in Fig. 5.5 are approximately

800 and 700 nanoseconds respectively – with no timing violations.

T12T10

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245Tpd:LCX245

Tpd:LCX245Tpd:LCX245

T11

T16T15

T7

T9

T14T14T8

T7

T9

T7T8

T7

250ns 500ns 750ns

HSIO BUS SIGNALS

X_A[11..0]

X_CS0,1(L)

BX_RD(L)

BX_WR(L)

X_D[7..0] (Wri te)

X_D[7..0] (Read)

Figure 5.5: HSIO Timing Diagram with Bus Speed of 7.37 MHz

Next, we investigated the possibility of maintaining the maximum aJile CPU speed

(CLKO = 12.9 MHz) since there are many other processes sharing the time space.

Inserting a 232-ns wait state in the HSIO by setting A[19:16] to 1 (see 5.1) results in the

timing diagram shown in Fig. 5.6. There is yet a timing violation of -9.24 ns on the Write

Data Hold Time (T16), which implies that data output from JStick to LM628 will lag

timing constraints.

 73

T12T10

Tpd:LCX245Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245Tpd:LCX245

Tpd:LCX245Tpd:LCX245

T11

T16 Violation of -9.24T15

T7

T9

T14T14T8

T7

T9 Violation of -26.12ns

T7

T8

T7

250ns 500ns

HSIO BUS SIGNALS

X_A[11..0]

X_CS0,1(L)

BX_RD(L)

BX_WR(L)

X_D[7..0] (Wri te)

X_D[7..0] (Read)

Figure 5.6: HSIO Timing Diagram with Bus Speed of 12.9 MHz Showing Violations

To resolve the above problem, the bus interface (EBI) control strobes was

compelled to use the maximum address hold time (recall from section 5.2.2 that bit-fields

7:6 of the EBI chip configuration register influence the number of clock cycles to hold

write data and addresses following the release of the EBI’s transfer control strobes). The

resulting timing diagram (Fig. 5.7) shows a lag of 16 ns on the read control strobe,

however since there is no violation in the corresponding data propagation we regard this as

benign. The maximum read and write transaction times are approximately 500 and 400 ns

respectively.

 74

T12T10

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245

Tpd:LCX245Tpd:LCX245

Tpd:LCX245Tpd:LCX245

T11

T16T15

T7

T9

T14T14T8

T7

T9 Violation of -16.44ns

T7

T8

T7

250ns 500ns

HSIO BUS SIGNALS

X_A[11..0]

X_CS0,1(L)

BX_RD(L)

BX_WR(L)

X_D[7..0] (Wri te)

X_D[7..0] (Read)

Figure 5.7: Final HSIO Timing Diagram with Bus Speed of 12.9 MHz

5.3.1 Clocking

The hardware architecture provides two means of clocking the LM628 chip; static

clocking and dynamic clocking. There is an onboard 6 MHz clock which provides very

accurate clocking for the chip. The clock can be enabled or disabled in software but the

output frequency is fixed. Alternatively, the aJile chip provides a Timer/Counter circuitry

comprising of a 16-bit prescalar and three 16-bit timer/counter blocks. The prescalar is a

continuous count-down timer that divides aJile’s internal peripheral clock (or an external

clock) by

PrescalerReloadRegisterValue + 1; 0 ≤ PrescalerReloadRegisterValue ≤ 65535;

Where PrescalerReloadRegisterValue is the value of the prescaler register.

The internal peripheral clock shown in Fig. 5.2 divides the CPU clock by two.

There is also a reload register value, ReloadRegisterValue, associated with each

timer/counter. Its value is transferred into the corresponding timer when a reload event

occurs. A reload event can be specified in software or when the timer reaches a 0×0000

value. In effect the timer’s low pulse width is driven by the PrescalerReloadRegisterValue

 75

while the high pulse width is determined by the ReloadRegisterValue. The flexibility of

adjusting the clock rate in software or by trigger events is extremely advantageous in

designing distributed systems where clock rates have to be synchronized occasionally.

Additionally, the sample rate of the LM628 can be varied very conveniently for different

requirements. Table 5.4 shows the results of different settings to derive the LM628’s clock

range of 1 – 6 MHz using the class following. Pulses and frequencies were measured with

a logic analyzer. The register values selected result in near symmetric square waves.

Table 5.4: Timer Settings

Prescaler

ReloadRegisterValue
Reload

RegisterValue
High Pulse
Width (ns)

Low Pulse
Width (ns)

Frequency
(MHz)

3 1 70 80 6.4

4 1 96 96 5

5 1 112 120 4.3

7 1 150 160 3.4

11 1 240 230 2.15

24 1 490 480 1.032

The method for setting the timer is listed below.

1. public JStickTimer2(double freqMHz) {

2. //calculate prescalerReloadRegisterValue and reloadRegisterValue from freq given

3. prescalerReloadValues(freqMHz);

4. //configure the prescaler to use the internal preipheral clock = 50MHz

5. TimerCounter.setPrescalerClockSource(TimerCounter.INTERNAL_PERIPHERAL_CLOCK);

6. //set the PrescalerReloadRegisterValue and enable it

7. TimerCounter.setPrescalerReloadRegisterValue(prescalerReloadRegisterValue);

8. TimerCounter.setPrescalerEnabled(true);

9. //configure TIMER2 output

10. TIMER2.setMode_IO_Line_B(TimerCounter.TIMER_2_OUTPUT);

11. TIMER2.setExternalSampleMode(

12. TimerCounter.CONTROL_SIGNAL_2_TRAILING_EDGE_ENABLED);

13. TIMER2.setExternalTimerEnableMode(

14. TimerCounter.TIMER_ENABLED_ONLY_VIA_MTEN_AND_TRIGGER);

15. //set the setReloadRegisterValue

16. TIMER2.setReloadRegisterValue(reloadRegisterValue);

17. TIMER2.setMasterTimerEnabled(true);

18. }

5.4 LM628 DAC Output

The LM628 precision motion controller outputs data to a DAC (Digital to Analog

Converter) on its ports DAC0-DAC7. Its output port can be configured for either a latched

 76

8-bit parallel output or a multiplexed 12-bit output. While the 8-bit output can be directly

connected to non-input-latching DAC (Digital to Analog Converter), the 12-bit output has

to be demultiplexed using an external 6-bit latch. The IMC motion controller board uses

the 12-bit output mode for better resolution. In this mode two multiplexed 6-bit words are

outputted by pins DAC2-DAC7, the less-significant 6-bit word first followed by the more

significant word. DAC0 and DAC1 are converted into control signals; DAC1 is driven

low to latch the less-significant word while the positive-going edge of DAC0 is used to

strobe the output data. In effect the 8-bit output port is converted to a 6-bit port with two

control strobes. Currently, there is no commercially available 12-bit DAC chip that allows

direct interfacing of 6-bit buses. Versatile ones interface with microprocessor bus widths

which are multiples of four. The problem is resolved by a combination of an input-

latching 12-bit DAC (AD667) from (Analog Devices, 2003) and logic devices. The bus

interface logic of the AD667 consists of four independently addressable registers in a pair

of ranks. The first rank comprises of three four-bit registers which can be loaded directly

from a 4-, 8-, 12-, or 16-bit microprocessor bus. Once a 12-bit data word has been

assembled in the first rank, it can be loaded into the 12-bit register of the second rank. The

latches are controlled by the addresses, A0–A3, and the CS input. All control inputs are

active low. The four address lines each enable one of the four latches, as indicated in Fig.

5.8. All latches in the AD667 are level-triggered, implying that data present during the

time when the control signals are valid will enter the latch. When any one of the control

signals returns high, the data is latched. Since LM628 outputs 6 bits in each cycle, we used

an external D-Type flip-flop and inverter combination (Fig. 5.8) for the latching process.

 77

Figure 5.8: DAC – LM628 Interface Architecture

The following is the procedure for a 12-bit data transfer from the LM628;

• The AD667’s chip select (CS) and Latch 2 are permanently enabled by hardwiring CS

and A1 to digital ground.

• LM628 drives DAC1 low to transfer the less-significant 6-bit word to the Flip Flop’s

Q outputs. Subsequently, the lower 4 bits of this word are latched to Latch 3 while the

next 2 bits are latched to the lower half of Latch 2. Simultaneously, the inverter inverts

the DAC1 signal to disable Latches 1 and 4 through control addresses A3 and A2.

• LM628 drives DAC1 high to transfer the more-significant 6-bit word. The inverted

DAC1 signal drives A3 and A2 low, thus enabling Latches 1 and 4. The lower 2 bits

are latched to the upper half of Latch 2, which now has 4 bits, while the next 4 bits are

latched to Latch 1. Since Latch 4 is enabled, all 12 bits in the first rank are loaded to it.

Note that without the intermediary flip-flop, bits in Latch 2 will be ill-formed

during the above process. Our architecture configures the AD667 to function in a ± 10 V

bipolar mode which requires a power supply of ± 15 V.

MSB LSB

 78

5.4.1 Encoder Interface

The LM628 provides three channels of quadrature encoder input for A, B and I

encoder signals. Each time the quadrature decoder detects an edge either on the A or B

encoder phase, it increments or decrements a counter, depending on the sense of motion.

The relative phasing of the A and B phases determine the direction of motion. The

resulting decoding means that an N-pulse encoder produces N × 4 counts per revolution.

The I signal is gated to the A and B phases so that it is active over a region between two

consecutive phases. The region which is called index position may be used to set a home

or reference position. The board provides additional support for two kinds of encoders,

differential and single-ended totem pole input encoders. Encoders with differential outputs

drive two lines per signal (A and A*, etc). While one is driven high, the other is driven

low, giving greater signal amplitude, and greater immunity to noise. The interface on the

board uses a 26LS32 differential line receiver to convert the signal pairs to single phases

for the LM628. Single-ended totem pole input encoders are more sensitive to noise and

cable length, therefore additional noise immunity may be necessary. In this configuration,

the board provides a voltage divider resistor circuit on the inverted inputs of the 26LS32

line driver, as illustrated in Fig. 5.9.

Figure 5.9: Receiver Line Filter for Single-Ended Totem Pole Encoder

5.4.2 Power Supply and Noise Emission

JStick provides three power sources with a total budget of 1 A; regulated +3.3 V

and +5 V, and unregulated +17 V. Except for the AD667 DAC, all devices on the board

are powered by the 5 V source. Since the DAC requires ± 15 V, a miniature regulated DC-

DC switched-mode converter (C&D Technologies, 1997) is used to convert the 17 V to

220 Ω

26LS32

Encoder port

Encoder port
A

 To LM628

330 Ω

5 V

 79

the voltage levels required by the DAC. A switching converter is generally very compact

and efficient but can be very noisy if not well isolated. The converter selected has a fixed

characteristic operating frequency, making filtering relatively simple, compared to pulse-

skipping types (C&D Technologies, 2000). Simple passive LC network filters were used

at both inputs and outputs. For high precision motion control, noise immunity is critical.

Hence the following criteria were used for the motion board design.

• The motion controller chip receives two-phase quadrature signals provided by an

incremental encoder. For better noise immunity, differential signals must be used to

cancel out common mode noise. A receiver chip on the board is used for this purpose.

• Low pass filters on all power lines.

• Option of using pull-up resistors for open collector and totem-pole encoders.

• Proper termination of encoder signals.

5.4.3 Board Schematics

The schematic diagrams and printed circuit board layout for final production were

created with the Eagle software (CadSoft, 2003). The following were the guiding

principles for laying out the tracks and components.

• No loops in supply lines.

• Wide tracks for power lines and a solid ground plane.

• Short high frequency tracks.

• Bevel or mitre track corners instead of sharp bends.

5.4.4 The LM628 Hardware Driver

For low level access to aJile’s hardware, the aJile API includes a rich set of

libraries such as com.ajile.jem.rawJEM for reading and writing primitives (Boolean, short,

integer, long, float and double values). In the respective operations the read (RD) and

write (WR) pins are driven to logic low. Since the aJ-100 chip has a 32-bit data bus width,

it is more efficient to do word (integer) access to JStick’s HSIO address space than an

explicit byte write. Only the low byte of the word is actually used for the HSIO data bus –

the upper bits are ignored by the HSIO hardware. The two least significant bits of the

aJ100 CPU address do not go to the HSIO bus, which means that the aJ100 address space

 80

is left-shifted by 2 in the HSIO address space. The HSIO.class in Fig. 5.10 below

implements methods for configuring the HSIO and is the parent class for all read/write

transactions with the motion controller. Apart from the last two methods of the class, all

the others are direct logic and bit operations. The last two methods implement methods

rawJEM.getInt(PortAddress) and rawJEM.set(PortAddress, data) for reading and writing

data respectively.

Figure 5.10: Pseudo-code for High Speed I/O (HSIO)

The LM628 driver class LM628.class illustrated below creates two objects of the

HSIO.class. The first object, addressA0, configures the A0 address space on chip select 0

1. package com.IMC.drivers;

2. import com.ajile.jem.rawJEM;

3. import java.lang.Integer;

4.

5. public class HSIO {

6. public static final int HSIO_CS0_ADDRESS = 0x01400000;

7. private int PortAddress = HSIO_CS0_ADDRESS;

8. //constructor creates a new HSIO

9. // integer NewAddress; The new HSIO address of the port.

10. // byte A19_16 is the clock divider bits of the HSIO address + 1.

11. //integer A20 is the External Address Setup Control

12. //Boolean SelectCS1; if true, chip select 1 is selected. If false, chip select 0 is selected

13. public HSIO(int NewAddress, byte A19_16, int A20, boolean SelectCS1) {

14. :: }

15. // address setup

16. public void setHsioAddress(int NewAddress) throws IllegalArgumentException {

17. // map to hsio space, shift the bottom 2 bits that are always 0.

18. // bits 0 to 13 are either not used or are the HSIO address. Clear them so it can be set

19. // set the new port address. }

20. //HSIO timing setup: bits A19:16

21. public void setHsioTiming(byte A19_16) throws IllegalArgumentException {

22. // Clear bits 19:16, of the HSIO address bits.

23. // put the new clock divider in the bits that were just cleared. }

24. // address wait setup: bit A20

25. public void setHsioWait(int Tas) throws IllegalArgumentException {

26. // Clear bit 20 of the HSIO address bits

27. // Put the wait value in bit 20. }

28. // read data from address and return value

29. public int read() {

30. return rawJEM.getInt(PortAddress); }

31. // write data to address

32. public void write(int data) {

33. rawJEM.set(PortAddress, data);

34. } }//end of class

 81

(CS0), while the first object, dataAddress, configures the HSIO CS0 base address for data

I/O. Each address pin (A0-A11) holds logic high if there is read/write to it.

1. package com.IMC.drivers;

2.

3. public class LM628 extends HSIO{

4. private static final int addr = 0x01; //address A0

5. private static final int addrBase = 0x00; // base address

6. private static final byte A19_16 = 0x01; // clock divider)

7. private static final int A20 = 0x01; //address hold

8.

9. //create HSIO.class object to configure address A0 on chip select 0

10. private static HSIO addressA0= HSIO (addr, A19_16, A20, false);

11. }

12. //create second HSIO.class object to configure base address

13. private static HSIO dataAddress = HSIO (addrBase, A19_16, A20, false);

14. }

15. //other methods

16. : : :

17. }

The LM628 read and write operations involve three internal registers; status-byte

register where all interrupts are stored, high-byte register, and low-byte register (Hunt,

1999; LM628, 2003). The LSB of the status byte contains the busy bit which is set

immediately after the host writes a command byte, or reads or writes the second byte of a

data word. While the busy-bit is set, the LM628 will ignore any commands or attempts to

transfer data, therefore it is imperative to query this status-byte frequently. This register is

read by bringing RD and PS low – the PS pin is driven by the HSIO address pin A0. In the

LM628.class the following method reads the status-byte:

31. public static byte read_Status_Byte() {

32. return dataAddress.read() - dataAddress.getRawJStikAddress();

33. }

The busy bit, i.e. LSB of status-byte can then be checked as follows:

61. public static void check_busy_bit() {

62. while ((read_Status_Byte() & 0x01) == 1){

63. } }

Data written to a HSIO address space is retrieved by subtracting the initial address

contents from its current contents. Since the above method does not read from the A0

address space, the A0 pin – hence PS, remains at logic low while the RD pin is driven low

 82

to meet the condition for reading the status-byte. Similarly, when writing commands (e.g.

PID filter configuration, run motor, etc) to LM628, PS and WR must be driven low as

shown below:

64. public static void write_command(int CMD) {

65. test.write(CMD); }

On the contrary, the A0 pin must drive PS high in order to read or write data to the

LM628. The following methods make this possible:

66. public static int read_data() {

67. return testA0.read() - test.getRawJStikAddress();

68. }

69. public static void write_data(int data) {

70. testA0.write(data);

71. }

5.4.5 Initializing

Immediately following power-up a hardware reset must be done before the LM628

can be programmed. This is executed by strobing the RST low for a minimum of eight

clock cycles. The RST pin is hooked to JStick’s reset pin, therefore both resets are

executed simultaneously. Following a reset procedure the status-byte must read C4 hex or

84 hex. Subsequently, all bits in the LM628 interrupt register are reset to zero by the

method reset_interrupt_register(int).

5.4.6 Interrupt Service Routines and digital I/O operations

The hardware architecture drivers include classes for receiving interrupts on

various general purpose I/O pins connected to the LM628 HI interrupt pin, and digital I/O

such as interrupts from limit switches on the controlled device. There are also I/O pins for

outputting digital signals. The aJile API provides base classes for all manner of typical

microcontrollers I/O operations. LM628 interrupts are received and serviced in two ways;

by polling its status-byte or receiving hardware interrupts on the HI pin. The

LM628_Interrupt.class below shows how a motor-stall interrupt is received and serviced.

The Monitor.class implements methods to communicate with the system coordinator

computer. In this case, the coordinator is informed of an excessive position error

condition.

 83

1. package com.IMC.drivers;

2. import com.ajile.events.TriggerEventListener;

3. import com.ajile.drivers.gpio.GpioPin;

4. import network.Monitor;

5. public class LM628_Interrupt {

6. final GpioPin pinA1 = new GpioPin(GpioPin.GPIOA_BIT1);

7. Monitor monitor;

8. //constructor

9. public LM628_Interrupt(Monitor mon) {

10. monitor=mon;

11. pinA1.setPinReportPolicy(GpioPin.REPORT_RISING_EDGE);

12. pinA1.addReportListener(

13. //inner class implements event listener

14. new TriggerEventListener(){

15. public void triggerEvent() {

16. //poll status byte for value of its bit 5

17. if ((LM628.rdstatusLM628 & 32) == 32) {

18. monitor.sendEmergencyStop();

19. }

20. }

21. });

22. } //end of constructor

23. }

In the above class, when an interrupt is received, the LM628 status register is

polled for its bit values. Alternatively, the status- byte can be cyclically polled as shown

below. This routine waits for a trajectory-end bit before executing the next command.

1. public static void wait_trajectoryEnd_bit() {

2. do {

3. check_busy_bit();

4. while (((read_Status_Byte() & 4) != 4 //poll status byte for value of its bit 3

5. }

5.5 Conclusion

A detailed description of the IMC hardware design has been presented in this

chapter. The design consists of an embedded Java microcontroller, JStick, and a motion

controller board specifically designed for this project. The motion controller board

features a dedicated precision motion controller chip (LM628), I/O logic to communicate

with the microcontroller, a DAC and encoder receiver logic, digital I/O, a power

converter, and a clock. Six of these boards were manufactured for this research. The next

chapter presents the IMC communication architecture.

 84

6. THE IMC COMMUNICATION ARCHITECTURE

6.1 Introduction

The integrity of a reconfigurable distributed control system depends heavily on the

flexibility of its communication architecture (Feng-Li et al, 2000). Even though the

traditional centralized point-to-point communication architecture has proven advantages

such as reliable hard real-time support, its communication infrastructure is quite inflexible.

This deduction is clarified by using a microcontroller bus such as VME as an illustration:

Firstly, there is the issue of the central locus of control – a computer crash brings down the

entire system. Moreover downtime is likely to be aggravated by the time it takes to single

out the fault. In contrast, a distributed system built on modular units is naturally molded

into fault containment regions. Even if a fault pervades the entire system, it is relatively

easier to diagnose and replace or fix modules. Secondly, scaling up a centralized system is

met with capacity, cost and hardware problems on the computing, communication and

geographic (location) domains. On the other hand, networked control systems could make

reconfiguration such as scalability as easy as plug-and-play.

However, like the advent of any typical ideology that promises a holistic solution,

distributed control is met by quite a colossal challenge to surmount. Since data exchange

occurs between processes in different processors spatially separated, there is the need for a

communication service that meets the demands of synchrony, data rate, latency and

reliability. While it is easy to instantaneously sample several sensors in a centralized

system, clock drifts or process execution deviating trends will have to be accounted for

either dynamically or statically in a distributed system. Yet another major problem is the

mechanism of the network itself: Information must be deftly delivered from producers to

recipients (collision avoidance). Some data must be delivered reliably, while others must

be delivered deterministically. The network protocol may also have to discriminate

between messages of different priorities; for example, an emergency message such as

“shutdown controllers” should preempt lower-priority messages. On a centralized system,

 85

the latter case is as simple as asserting a high-priority interrupt line connected to slave

controllers. The last problem worth mentioning is the issue of interoperability; simply

stated, controllers on different networks may not be able to talk to each other without a

mediator.

These myriads of problems have churned out a number of research works and

interesting solutions which is gradually narrowing the performance gap between the two

extreme configuration architectures. In fact, network architecture design in distributed

control systems is becoming an artistry of sorts, which is resulting in a plethora of

standards and paradigms (Pedreiras and Almeida, 2000; Schickhuber and McCarthy,

1997). Four main research and development (R&D) streams in distributed control have

been identified. One stream deals with the aspects of the communication mechanism, such

as protocols and physical infrastructure (Kopetz, 1997; Pedreiras and Almeida, 2000), and

paradigms such as Time-Triggered, Event-Triggered and Cyclic communication has led to

fieldbuses such as TTA, CAN, Profibus, and LonWorks – to mention a few! The next

stream closely associated with the first, focuses on clock synchronization of networked

controllers (Kopetz 2004; Lönn 1999), while the third stream emphasizes control

algorithms that curtail network uncertainties (delays and jitter) (Wittenmark, et al., 1995;

Goktas, 2000; Nilsson, 1998). The last stream addresses reconfigurable control solutions

(Lian, et al, 2000; Atta-Konadu, et al, 2005) sometimes with fault tolerance (Kopetz,

1997; Benitez-Perez and Garcia-Nocetti, 2005). The architecture presented in this chapter

is an integrated (hybrid) approach that incorporates the strengths of distributed and

centralized architectures. Moreover, it promises a cost-effective and inter-operable

solution by employing the most ubiquitous and flexible network system – Ethernet. As

will be discussed in the following, there is some platitude about Ethernet not being real-

time. However, an approach is presented which provides a real-time environment

harnessed by the robustness of Ethernet

6.2 Requirements for Real-Time Communication

In practice, real-time networks require high efficiency, deterministic latency,

operational robustness, configuration flexibility, and low cost per node. Because cost

constrains the network bandwidth available to many applications, protocol efficiency is

very important. Most real-time systems are characterized by predominance of short,

 86

periodic messages. An obvious optimization is to reduce overhead bits used for message

packaging and routing. The next issue is to reduce media access overhead. This may be

accomplished by minimizing the network bandwidth consumed by arbitration (e.g.,

passing a token or resolving collision conflict). Since worst-case behavior is usually

important, efficiency should be evaluated both for light traffic as well as heavy traffic.

Determinacy, or the ability to calculate worst-case response time is needed to meet the

real-time constraints. A prioritization capability is usually included in systems to improve

determinacy of messages for time-critical tasks. Priorities can be assigned by node number

or by message type. Furthermore, protocols should support local or global priority

mechanisms. In local prioritization, each node is given a turn at the network in sequence

and transmits its highest priority queued message (thus potentially forcing a very high

priority message to wait for other nodes to transmit). In global prioritization the highest

priority message in the global system is always transmitted first. This feature is highly

desirable for many safety critical applications.

A protocol is robust if it can quickly detect and recover from errors (e.g., duplicate

or lost tokens), added nodes, and deleted nodes. Simple protocols require less hardware

and software resources and are therefore likely to be less costly. For cost-sensitive high-

volume applications, these protocols are good choices. However, for scalable applications,

more advanced protocols provide stronger framework.

One of the main problems in real-time communication is the scheduling of

messages over the network so that messages' time constraints are met. The sort of

scheduling that can (or must) be used depends on the network topology: multiple-access

(e.g. shared broadcast bus or ring) or point-to-point (e.g. mesh network). An issue of

utmost importance for the real-time scheduling of messages on multiple-access networks

is the Medium Access Control (MAC). In real-time networks, access control protocols

play a fundamental role in the timeliness of the communication system since they establish

the order by which communicating nodes access the transmission medium. Therefore, they

directly influence the response time of the communication system to the requests issued by

the nodes. Such protocols must ensure that all nodes have the right to access the bus

within a bounded time window. Otherwise, the ability of the communication system to

transfer information subject to time constraints is lost. When it comes to guaranteeing a

 87

predictable timing behavior, as required in real-time networks, the problem is not confined

to the MAC protocol. In fact, such timing predictability must be a property of all protocols

and services in all layers (Thomesse, 1998). When this is the case, it is possible to perform

a schedulability analysis over the set of communication requirements and thus, obtain

some level of guarantee concerning the timely behavior of the communication system.

6.2.1 Environment State Capturing Strategy

The computing system in a real-time network must be aware of the state of the

environment at any instant. This is achieved by maintaining a data structure within the

computing system that reflects the environment state. Since the computing system is

distributed, the real-time database is likewise distributed among the nodes of the system.

In such databases all the items have expiration times after which they are no longer valid.

This property known as temporal accuracy is normally implemented as an Event-

Triggered (ET) or Time-Triggered (TT) mechanism. In the ET approach, the computer

system is alerted of any significant change in the environment state (external event) or in

the controller internal state (internal event), such as a timer interrupt. Consequently, the

computer system triggers the appropriate actions. If there are no events, the ET

mechanism remains in an ‘idle’ or wait state. ET systems are susceptible to a phenomenon

called event showers, where a node is overwhelmed by events such that not all events can

be serviced; hence a scheduler has to deal with simultaneous arrival of many events, some

with different priorities and deadlines. An overwhelmed scheduler might result in missed

deadlines. Figure 6.1 shows a typical timing issue in an ET system. Pi is processor node i

while the rectangles are events. The flag indicates the detection of events.

Figure 6.1: Timing in an Event Triggered System

P1

P2

P3

P4

output

output

 88

Events are processed and dispatched as they arrive. However, the system

architecture can create rules to superimpose TT behavior on top of an event

communication or processing system (Verissimo and Rodrigues, 2001). In the TT

approach, processes are started at predefined time slots, normally periodically. The

environment or nodes are scanned periodically at rates pre-calculated to take into account

the environment dynamics. Unlike the event-triggered approach, even when there are no

state changes, actions within the computer system are continuously triggered. The

advantage of the TT is that since activation instants for all actions are predefined (Fig.

6.2), it is possible to control the level of contention among actions by appropriately

controlling the relative phasing of those instants.

Figure 6.2: Timing in a Time-Triggered System

ET is more resource-efficient when changes in the environment state are sporadic.

However, its temporal performance depends on the number of events that might arrive

simultaneously at the computer system. The time-triggered approach has a more stable

temporal behavior due to the aprioristic knowledge of the actions’ activation instants.

Hence, event-triggered approach is normally associated with dynamic scheduling, while

the TT approach is usually associated with static scheduling.

6.2.2 Co-operation Models

Another important property of a communication system is the manner of

interaction between stakeholders. There are two distinct co-operation models namely,

client-server (CS) and the producer-consumer (PC) models.

P1

P2

P3

P4

TR

output

 89

In the client-server model a request from a client to the server prompts a response

from the server at a later time. There are different variants of the CS model. In the one-to-

many communication (clients-server) model, requests from the multiple clients are

serialized and processed by the server one at a time. This situation may give rise to spatial

incoherence in the real-time database (temporary inaccurate real-time images) since two

simultaneous requests for the same entity in the same server might obtain different values.

Another variant of the CS model is “many servers to one client”, i.e., client-servers model.

The simultaneous access by this client to the different servers has to be carried out

sequentially and may therefore yield temporal incoherence in the real-time database.

Lastly, in clients-servers model (many-to-many), all client requests need to be serialized

with regard to several servers. In all variations of the client-server model, if time is to be

accounted for as in real-time applications, it is necessary to bound the maximum response

delay by a server to any client request. The CS model is very appropriate for supporting

acknowledged data transfers.

The producer-consumers model works on a different principle: A producer node

with data that might be needed by other nodes makes such data available on the network.

The consumer nodes identify data relevant to them and read it from the network. Unlike

the CS model, there is no explicit consumer request and the producer generally starts

transactions. Since all consumer nodes have simultaneous access to data on the network,

the model implicitly supports one-to-many communication with spatial consistency of the

real-time database. However, where they are multiple producers, the respective

transactions must be serialized, which could cause temporal coherence problems. The

producers-distributor-consumers (PDC) model (Thomesse, 1993) is a solution to this

problem. This model is a combination of the producers-consumers model and a master-

slave architecture. All transactions are centrally managed by the distributor (master node),

which facilitates the respective scheduling in order to meet the temporal constraints

required to assure both the temporal accuracy and coherence of the real-time database.

6.2.3 Composability

Arguably, the most important property of a real-time system architecture is its

composablility (Kopetz, 1997). “An architecture is composable with respect to a specified

property if the system integration will not invalidate such property once the property has

 90

been established at the subsystem level. Examples of such properties are timeliness or

testability.” (Kopetz, 1997). Kopetz (1997) outlines two factors that establish

composability. The first is referred to as “Temporal Encapsulation of the Nodes”: The

communication system should wrap a temporal firewall around its host computer,

forbidding the flow of control signals across the communication network interface (CNI).

It is stated categorically (Kopetz, 1997) that such an autonomous communication system

can be implemented and validated independently of the application software. Moreover,

communication timing properties can be validated in isolation. The counter argument is

that if flow-control1 can be characterized, the need for autonomy which requires extra

hardware will be rather questionable. Another requirement for real-time communication is

the need for flexibility. For example, a scalable architecture allows functional and/or

physical changes to the system during its lifetime without any predefined upper limit to

such changes or elaborate software modification. The communication system must be

robust, providing predictable and dependable service (Kopetz, 1997). The system should

be capable of rectifying errors quite seamlessly, and if this is not possible, all participating

communicators must be informed urgently. Lastly, there should be interoperability

between equipment and the communication system and also with potential networks

outside the immediate sphere of communication. Thomesse (1998) refers to several causes

for non-interoperability such as unavailability of services, different options in protocol

implementation, time behavior incompatibilities or lack of resources. The issue of

obsolesce is also noted in the IMC communication architecture design. It is desired to

anticipate new network apparatus which are backward-compatible with older ones.

6.3 Real Time Network Applications

Due to the absence of shared memory, communication in distributed systems is

based on exchanging messages between communicating elements. Therefore, there is the

need for a priori communication agreement at all levels of communication, i.e. from low

level bit formats, to data semantics, error checks, etc. This led to the development of the

Open System Interconnection Reference Model (OSI) (Day and Zimmerman, 1983) by the

ISO (International Standards Organization). The OSI model as it is popularly called,

1 Flow-control is the control of the speed of information flow between a sender and a receiver in such a manner that the

receiver can keep up with the sender

 91

clearly identifies the various levels involved in network communication, gives them

standard names, and their respective functionalities (Fig. 6.3).

Figure 6.3: The OSI Protocol Stack

Communication systems based on the full OSI model are highly flexible and

interoperable. However, the layered architecture imposes considerable processing and

communication overhead. Consequently, protocols that were developed for the OSI model

were never widely used (Tanenbaum and van Steen, 2002). Rather, protocols developed

for applications are based on the bottom few layers and the application layer. Ethernet for

example, is based on the bottom four layers and the application layer, while control

networks, typically fieldbuses are based on the bottom three layers and the application

layer. The latter results in lean communication overheads for deterministic response time

but at the expense of interoperability and flexibility. The following sections discuss the

protocols used in fieldbuses and Ethernet.

6.3.1 Physical Layer

The physical layer ensures the transmission of bits. The voltage levels for low (0)

and high (1), bit transmission rate, and whether transmission is bidirectional are key issues

in the physical layer. Other issues addressed in this layer include the interconnection

topology, the physical medium, the maximum bus length, the maximum number of nodes

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Transport

Network

Data Link

Physical

Comm. Channel Comm. Channel

 92

that can be connected to the bus, the possibility to feed power to the nodes through the

bus, and immunity to EMI (Electromagnetic Interference). Most fieldbuses use a bus

topology while Ethernet can accommodate other topologies such as the star-topology. The

two commonly used physical media are electric cabling and optical fibers. Industries are

also fast embracing wireless networks, particularly Bluetooth and wireless Ethernet (IEEE

802). Wireless networks are particularly suitable for mobile equipment and in situations

where devices are spread over large distances in large plants. In many situations where

cabling is used there is a limitation to the number of nodes that can be connected to the

fieldbus since each connected node adds an extra capacitance to the bus line, which tends

to increase the propagation delay of control signals and data.

6.3.2 Data Link Layer

The data link layer provides services and protocols required to ensure the correct

transmission of data. The salient entities in this layer are the mechanism governing access

to the shared communication media, identification of the destination node (or nodes), and

mechanisms to assure the correct transfer of information. The first entity is called MAC

(Medium Access Control). The second is called Addressing, while the third entity is called

LLC (Logical Link Control).

6.3.2.1 Medium Access Control (MAC)

The MAC sub-layer is the workhorse for message scheduling on multiple-access

networks. MAC protocols influence the response time of the communication system since

they establish the order by which communicating nodes access the transmission medium.

In real-time communication, protocols guarantee that all nodes have the right to access the

bus within a bounded time window. One common classification of MAC protocols is

whether they impose controlled access (e.g., centralized arbitration, token-passing, Time-

Division-Multiple-Access (TDMA)) or uncontrolled access. In controlled access, message

collisions are avoided by some control mechanism or signal. As an example, token-

passing is used in Profibus, where a control message called a token circulates the network

such that whoever has the token is allowed to transmit. Some protocols such as the FIP

protocol depend on a master node to arbitrate communications while others regulate

transmission by using time-slices (e.g. ARINC 629) or progression of real-time (e.g.

 93

TDMA). In uncontrolled access protocols such as CSMA (Carrier-Sense-Multiple-

Access), there is no external control signal; instead arbitration is performed based on the

bus status and on local information. Collisions may occur since it is possible that several

nodes detect silence on the bus at the same time and start transmitting almost

simultaneously. The manner in which collisions are handled defines the nature or type of

CSMA protocol. The arbitration mechanism is completely decentralized and independent.

This implies that there is no centralized information about the present system

configuration, and arbitration is carried out the same way regardless of the configuration.

This lends CSMA-based systems high flexibility, for example, making it possible from a

functional perspective to connect or disconnect nodes during normal on-line operation.

However, the arbitration mechanism is a challenge in real-time message delivery. For

instance, in the CSMA-CD (Collision Detection) protocol which is used in Ethernet, nodes

involved in a collision hold back from transmission and retry after a random time interval.

Obviously, this phenomenon becomes critical and highly non-deterministic during heavy

traffic. A solution to this is to reduce or totally eliminate the probability of collisions. This

will be discussed in the course of this chapter. Some CSMA protocols are designed to be

deterministic, for example CSMA- CA (Collision Avoidance). In one such protocol, a set

of synchronized timers at each node with predetermined values is used to guarantee that

only one node transmits at any given time. An enhanced version of this scheme is used in

the IEEE 802.11 wireless protocol. Another variant of CSMA-CA is used in the popular

CAN (Controller Area Network) field bus where an 11-bit message identifier field is used

for arbitration. In this case, the arbitration mechanism assumes that a dominant and a

recessive state exist on the communication bus such that the dominant state can overwrite

the recessive state (Kopetz, 1997). Assume that ‘0’ and ‘1’ are coded into the dominant

and recessive states respectively. Whenever a node wishes to send a message, it puts the

first bit of the message identifier on the network. In the event of a conflict, the node with a

‘0’ in its first identifier wins the right to transmit, and the other node must back off. This

arbitration continues for all eleven bits in the identifier. This arbitration however limits

CAN to a maximum bit rate of 1 Mbit/s on a 40 m bus. Other serial-bus protocols are

emerging that guarantee bandwidth for high speed deterministic communication. FireWire

(IEEE 1394) for example is capable of interleaving asynchronous and isochronous

 94

communication at data rates likely to exceed 400 Mbps in the near future (Steinberg and

Birk, 2000). This network targets home use but is gradually being fused into industrial

applications requiring substantial bandwidths.

6.3.2.2 Addressing

The Data Link Layer is also responsible for identifying nodes, i.e. the origin and

destination(s) of messages. There are two different ways of addressing the destination of a

data transaction: directly addressing the node where the receiving application process

resides or indirect addressing where an identification is placed on the data to be

transmitted. The former is used in many field buses, typically in Master-Slave

configurations. Destination nodes can be identified either by their physical addresses, i.e.,

MAC addresses, or by their logical addresses, i.e., network addresses. Group addressing is

a very important property in industrial automation systems where for example the output

generated by a given controller may need to be shared among several field devices. Hence

many field buses and Ethernet support one-to-many communication, or multicast. Indirect

addressing is typically found in protocols that support the producer-consumer

communication model, where a producing node initiates a transaction to transmit a given

data entity. The consumers identify the data entity of interest to them and copy them to

their local buffers to be used by their respective application processes. This addressing

scheme is found in CAN and WorldFIP.

6.3.2.3 Logical link control

The last component of the Data Link Layer is the Logical Link Control (LLC).

This sub-layer ensures the correct transfer of information among communicating nodes by

properly framing data to be transmitted, implementing error detection and correction,

establishing data-link connections between nodes, and coordinating communication

acknowledgements. Most real-time networks provide communication with immediate

acknowledgement for real-time data. For periodic data transmission, however,

communication is unacknowledged since it requires a considerable amount of bus

bandwidth. Multicast communication is also typically unacknowledged. Regarding

connection, most fieldbuses provide connectionless communication. Ethernet’s LLC

provides two types of data link control operations; LLC1 for connectionless and LLC2 for

connection-oriented. With connection-oriented services, the sender and receiver first

 95

explicitly establish a connection, and possibly negotiate the protocol they will use. The

connection is terminated at the end of the transaction.

6.3.3 Network Layer

The Network layer is relevant in Wide Area Networks (WAN) for routing

messages from a sender through a maze of networks to the receiver. In LAN systems,

usually the sender does not need to know the geographic location of the receiver; once the

message is delivered on the network, the receiver takes it off. The connectionless IP

(Internet Protocol) is the most widely used network protocol. The IPv6 (IP version 6)

includes many improvements over IPv4 (IP version 4) including stateless address

autoconfiguration (Thomson and Narten, 1998).

6.3.4 Transport Layer Protocols

The transport protocol forms the last part of the basic Ethernet protocol stack. The

job of the transport layer is to provide a reliable connection. When data is received from

the application layer, the transport layer breaks it into packets small enough for

transmission, assigns a sequence number to each, and sends them all. The transport layer

then monitors which one has been sent, received, how many more the receiver can accept,

which should be retransmitted, etc. Reliable or connection-oriented transport connections

can be stacked on a connection-oriented or connectionless service. In the former situation,

all the packets arrive in the same sequence that they were sent, but in the later case, it is

possible for one packet to take a different route and arrive ahead of the packet sent before

it. It is then the responsibility of the transport layer protocol to reassemble the packets in

the right order. The Internet transport protocol is called the TCP (Transmission Control

Protocol). The combination of TCP/IP is now the de-facto standard for network

communication (Tanenbaum and van Steen, 2002). The Internet protocol suite also offers

a connectionless protocol called UDP (Universal Datagram Protocol), which is basically

IP with minimal additions.

6.3.5 Application Layer

Application layer services normally follow a certain co-operation model, e.g.

Client-Server (CS) and Producer-Consumer (PC), which describes how data is exchanged

between the communicating peers. Generally, the CS model is used for one-to-one

 96

connection-oriented co-operation. This is very useful for non-repetitive asynchronous

services such as remote control of tasks execution. The PC co-operation model is more

suitable for periodic task with high data rates such as closed loop control. These services

are typically subject to tight temporal constraints and hence need the support of

connectionless services. The application layer is also used for task scheduling, since user

tasks are located at this layer.

6.4 Automatic Configuration

In concept, each layer of the protocol stack described above could be automatically

configured. Flexibility of configuration makes simple technology work more predictably

and easier to deploy. The transport and data layers rarely require configuration in Internet

hosts, unlike the application and network layers which nearly always require configuration

for devices to be able to communicate. Historically, this has been a task for experienced

network administrators, however emerging networking protocols are making configuration

changes less difficult. For typical configurations, hosts that are permanently attached to a

network are assigned static network configurations by administrators, while other hosts are

assigned dynamic configurations. All necessary parameters are assigned to the host by a

network configuration service, which also requires configuration. Many situations call for

ad hoc reconfigurations or fault tolerance which can be impractical or impossible

(Guttman, 2001). For this reason, automatic configuration protocols are becoming

extremely valuable in the dynamic world of networking. There are two main strategies to

bridging the gap between configuration and automatic operation (Guttman, 2001). The

first approach requires transitions between local (automatic) and global (dynamic)

configuration. Hosts provide local configuration for as long as there is no global

configuration. A typical example is the network interface autoconfiguration protocol

adopted for Apple and Microsoft operating systems. A host uses this protocol to select an

unassigned IP address from a reserved range. The host then uses a Dynamic Host

Configuration Protocol (DHCP) to request for IP configuration parameters (global) from

the network. If a DHCP server responds (usually after some retries) and offers

configuration parameters, these replace the local ones on the host. In a client-server

system, this works very well especially on the client side but can become problematic

when server configuration changes. Servers with dynamically changing IP parameters can

 97

only be located by a dynamic discovery protocol. When a server configures via a DHCP, it

cannot communicate with clients that have not been configured (for e.g., if the DHCP is

no longer available). Likewise, configured clients cannot locate a server that has not been

configured. Lastly and very pertinent in this research, some simple embedded devices

support only local IP configuration and would therefore be unable to locate hosts

configured with DHCP. Such problems have compelled the need for automatic

configuration protocols, and have resulted in protocols such as AppleTalk, IPX and

NetBIOS/SMB, which attempt to address some of these needs (Guttman, 2001). The

section below discusses the Zeroconf protocol which is one of the most comprehensive

solutions available.

6.4.1 The Zeroconf Protocol

The Zero Configuration Networking (Zeroconf) workgroup pioneered by Apple

has defined requirements for four zero configuration network protocol areas: IP addresses

autoconfiguration, name resolving without a DNS (Domain Name Service) server,

decentralized service discovery, and multicast address allocation (Passmore, 2002). The

last item has not been standardized yet, but the Zeroconf suite offers one of the most

comprehensive solutions to avoiding dependency on infrastructure such as DHCP and

DNS servers, and expert knowledge. The sections following discuss the Zeroconf

specifications.

6.4.1.1 IP addresses Autoconfiguration

The Zeroconf specification for IP address autoconfiguration is different for IPv4

and IPv6. For IPv4, computers pick a random link-local address in the 169.254.0.0/16

range, and send out an ARP request to check if another host is using it. If so, they select

another IP address and repeat the process. By design, IPv6 supports dynamic allocation of

addresses.

6.4.1.2 Name Resolution

Zeroconf specifies a multicast DNS (mDNS) quite similar to LLMNR (Link-local

Multicast Name Resolution) promoted by Microsoft. The latter however, has no

implementations yet. For both protocols, a host does not need a DNS server to find the

name of another host. Instead the host sends its DNS request to a unique IP multicast

 98

address (224.0.0.251 for mDNS) on the local subnet where hosts listen and respond. Each

hosts picks a hostname in the .local domain (mDNS), and publishes this on the IP

multicast address. Collisions are prevented by a conflict resolution mechanism.

6.4.1.3 Service Discovery

There are two classes of service discovery protocols, namely, high-level

(application or technology specific) ones and low-level generic ones. High-level protocols

include Jini for Java objects, Salutation which relies on central servers, Service Discovery

Protocol (SDP) for Bluetooth, which is based on the former and UDDI for web-services.

Generic ones include Simple Service Discovery Protocol (SSDP) used in Universal plug-

and-play (UPnP), Service Location Protocol (SLP), and DNS-SD (DNS Service

Discovery) specified by Zeroconf. Generally, SSDP is regarded to be more complex than

DNS-SD, and SLP has not been widely embraced. On the technical side, DNS-SD

typically makes defunct the need for a central infrastructure such as a DNS or directory

server. Each host offering a network service creates a DNS SRV resource record that it

stores in its local mini-DNS server. Other hosts look up the service by broadcasting a DNS

service discovery query. All hosts that offer the requested service then respond with their

names and IP addresses (Passmore, 2002).

6.4.1.4 Zeroconf Implementations

Zeroconf specification is now adopted and implemented by many network device

manufacturers. Currently, many network printers and network storage devices implement

some aspect of Zeroconf-compatible networking. The most widely adopted Zeroconf

solution is Bonjour from Apple Computer, which uses a combination of IP address

autoconfiguration, mDNS and DNS-SD. Many implementations nonetheless do not

implement the full specification. However, mDNS and DNS-SD are often implemented

together. For example the Java implementation of Zeroconf – JmDNS, provides only

mDNS and DNS-SD services. JmDNS has been modified in (Atta-Konadu, et al., 2005)

for embedded Java devices.

6.5 The IMC Communication Architecture

The IMC communication architecture is quite a unique concept that combines

different aspects of orthogonal paradigms such as distributed and centralized systems,

 99

client-server and producer co-operation models. The peculiarity of the architecture is

reinforced by its Ethernet communication backbone – as mentioned earlier, Ethernet is not

popular in real-time applications. Nonetheless, the architecture is built on the premise of

using some of the most basic cost-effective commercial of-the-shelf (COTS) components.

Ethernet for example is the most ubiquitous, proven and reliable of all networks with well

known hardware and software characteristics. Very few networks are as cost-effective and

simple to implement. The architecture addresses the issue of realizing real-timeliness.

Some attempts have been made to realize a real-time Ethernet communication system. The

fundamental method is to reduce message collisions on the network. The IMC architecture

imposes rigorous traffic patterns and a message scheduling mechanism to create collision-

free zones. Moreover, the JmDNS-CLDC protocol is fused into the architecture to create a

reconfigurable paradigm. The sections following elaborate on the architecture design.

6.5.1 Communication and Computing Elements

The message collision crisis of Ethernet is curtailed by the use of switching

technology. As shown in Fig. 6.4 (I), all communication nodes are connected to a 10-100

Mbps router/switch, forming a star-topology as opposed to the traditional shared bus or

linear topology. The result is there is only one collision domain per port – or dedicated

bandwidth segment. Moreover, all communication ports are full-duplex, hence inbound

and outbound messages are kept on separate channels.

 100

I. Nodes connected to a Router/Switch;

II. Functionalities of the SC (System Coordinator), RC (Real-time Coordinator),

and I
C
 (IMC Controller).

Figure 6.4: Communication and Computing Elements:

The switch operates with wire-speed and is non-blocking. Wire-speed implies that

all ports of the switch can simultaneously transmit and receive at their full rates. Switching

technology is becoming very attractive in industrial systems for process control.

Nonetheless, some further work on the protocol level is required to meet the stringent

requirement for real-time communication. Typically, congestion can occur in a switch

when several ports forward their traffic to the same output port while the total input traffic

is greater than the output bandwidth. In this case the source bit rate should be slowed

down to avoid buffer overflow within the switch (Wang et al., 2001). Another potential

for congestion is when the output port is connected to a shared segment and the available

bandwidth left by the traffic of the segment is smaller than the input traffic (Wang et al.,

2001). The section following describes how the IMC architecture is guarded against the

Real Time Job Manager
High level Control
Interpolation Operations
Kinematics
Coordination, Clock Synch

RC SC

Task Manager
HMI, configuration
Monitoring
CAD, Path planning,
Interpolation, Kinematics

IC IC IC IC

Motion coordination
Interpolation
Kinematics

Fine Interpolation
Motion Control

High speed
 I/O bus

SC RC IC

Internet,
LAN, etc

I.

II.

Router/Switch

 101

above phenomena. The computing elements shown in Fig. 6.4 (II) reside in the System

Coordinator (SC), Real-time Coordinator (RC) or the IMC controllers (IC). A description

of their functionalities is provided in Chapter 3.

6.5.2 Communication Flow and Control

The architecture divides communication into two zones as shown in Fig. 6.5.

Three main communication protocols are established between the communicating

elements: A TCP/IP connection is maintained between the SC and IMC controllers at all

times for position update information. An unanticipated broken connection is assumed to

be a fault on the IMC node. The second persistent connection is a multicast connection

between all nodes, i.e., one multicast domain, and is used for simultaneous delivery of

messages. The third connection is a datagram connection between the SC and all other

nodes. This is used for control signals, and configuration information. For clarity, this

connection is lumped together with the multicast connection in Fig 6.5, since both

protocols are based on UDP/IP.

Figure 6.5: Communication Flow

Communication between the RC and IC is designed in a producer-consumer

fashion, such that messages are not explicitly addressed to receivers. At startup, the

communication elements use an auto configuration protocol (to be discussed later) to

Commands, Auto-Config.

Position Readings

Clock Synch./Set-points

SC IC RC

Position Feedback

TCP/IP Communication

Client-Server; Non Real-time Zone Producer-Consumer; Real-time Zone

Multicast Communication

 102

identify themselves and their services. At this point, the IMC nodes are given unique

identity numbers. The configuration in Fig 6.5 is logically set-up when the user selects

coordinated-motion from one of the four motion modes provided by the architecture (see

Chapter 7 for details), and motion commands typically in NC code format are sent by the

SC to the RC. The SC also multicasts task information like the number of axes and

interpolation period to all nodes and measures the round-trip time to compensate for delay.

As soon as the interpolation period T is received, the RC sets up a real-time periodic

thread to run its interpolator. If position feedback is required for high level control, a

second period thread is established according to the update rate required, to receive sensed

positions from the IMC nodes. When the SC issues a run command to the RC, it attaches

its logical clock value to a start-of-motion message and multicasts this to all IMC nodes,

which in turn use this value to adjust their respective timers (the timers clock the motion

controllers). Subsequently, each periodic data received from the RC connotes the global

time and is therefore the basis for timer synchronization. The next data to be streamed at

the next period is delineated by the unique node numbers and packed into a datagram

packet. When data arrives at each IMC node (simultaneously), its timer is synchronized if

deviation is off limits, and the relevant data addressed to that node (by the identifier) is

extracted from the datagram packet for its motion controller. Figure 6.6 is a skeletal

sequence diagram of the interactions between a single IMC (consumer) and the RC

(producer). Data transmissions denoted by the horizontal arrows are kept atomic (no

processes in-between) unless preempted by the system coordinator.

 103

Figure 6.6: Produce-Consumer Co-operation between the RC and IMC Nodes

If the RC requires position feedback, the IMC nodes take turns transmitting their

actual positions to the RC, in a TDMA (Time Division with Multiple Access) style, to

avoid message collision and congestion on the switch. The protocol for this timing is

determined by the identifier assigned to each node. For example if there are N nodes and

the RC receiving thread is cycling periodically at T ms, node number n will have its turn to

transmit data at an offset of T × n from the start of the motion transaction and with a

period of T × N. There are other variants of the communication architecture to support the

other motion modes. For example, in synchronized-motion-mode, set-points are streamed

directly from the system coordinator to buffers in each IMC node in a typical client-server

fashion.

6.5.3 Triggering and Scheduling

In this section, an analysis of message scheduling on the communication

architecture is presented. The real-time threads on the IMC processors including that of

the real-time coordinator use priority-based cyclic scheduling with pre-emption; thus a

Time-triggered (TT) approach is used. Since the schedule is pre-defined or derived prior to

IC domain

Time

 104

run-time, scheduling is static, as opposed to dynamic scheduling. The communication

mechanism employed, i.e., Ethernet, is typically Event-Triggered (ET). However the zero-

collision derived from segmenting the network renders the communication mechanism

quite like a hybrid of TT and ET. In fact the last barrier to its full qualification as a TT/ET

hybrid is that the CNI (communication network interface) on the microcontrollers are not

autonomous. A CNI is autonomous2 when the decision when a message must be sent

resides within the sphere of the communication system rather than the host computer

(Kopetz, 1997). Otherwise, the timing for control signals to cross over the CNI to the host

cannot be exactly characterized. Although building an autonomous CNI is quite simple,

this research did not address this issue. Rather, communication sockets are encapsulated in

interrupt-priority (high priority) threads to protect them from interference. Both ET and

TT communication scenarios will be used in the analysis. Data released from the real-time

coordinator, communication and trajectory updates in the trajectory planner share a given

period time, T. Interpolation occurs at the beginning of the high-level control period, and

trajectory update after a short and constant delay δ. Deviations from the nominal time, i.e.,

jitter is denoted by J. The worst case execution time Ci is the maximum processing time

required by a task or for the message transmission time on the bus. The length of the

activity window represents the task response time from start to completion. The activity

may be completed at any time after the minimal execution time. In the worst case, task

execution may be delayed by release jitter and interference from other tasks. The

important control performance metrics are jitter J, control delay δ and variation in control

delay ∆δ.

6.5.3.1 TT Communication with TT Processors

Global time is used to release the trajectory planner (hosted by the motion

controller) update task at a time when data generation from the real-time coordinator (RC),

communication and local transactions on the IMC are guaranteed to have completed (at

offset OG). Task R is scheduled to complete before the next periodic cycle appears, and

tasks E and G at a time after the message has arrived (Fig. 6.7).

2 This approach is used in the Time-triggered TTA architecture for tighter determinism.

 105

Figure 6.7: TT communication with TT processors

Assuming there are no interference and jitter, task G executes at a fixed offset

relative to the data generation task on the RC, and the following hold.

δ� min = δ� max = OG + CG (6.1)

OG ≥ CR + CE + CL. (6.2)

Supposing the high-level interpolation period is given as 10 ms; for the trajectory

generators on the IMC to see this same real-time image, OG = 10 ms. The network latency

is calculated as follows. Given cable length = 3m; cable propagation delay (time for one

bit to traverse the cable) = 15 ns, at 2/3 the speed of light in a vacuum; Bandwidth = 10

Mbps. The bit length is defined as the number of bits that can traverse the cable within one

propagation delay, and evaluates to 0.15 bits. For a packet size of 100 bytes, the

propagation time is therefore 80 µs. Of course, transaction delays within the network

interfaces compound this figure. It is much easier to use a round-trip approach to measure

the composite delay, i.e., CE + CL. A delay of 620 µs is measured for the above data.

Hence the periodic execution on the real-time coordinator should be set to 10 ms minus

Offset, OG

t

Delay

Data, R

Communication, E

Execution time variation (∆Ci)

Minimum Execution time (Ci-∆Ci)

RC

Ethernet

IMC

Trajectory
Generator, G

Offset
 OE

Offset, OL

Local trans., L

 106

310 µsec. For consistent latency, data lengths are kept constant in the course of this

transaction.

6.5.3.2 ET Communication with TT Processor

In this sub-section, we analyze a more conservative scenario where

communication is ET, i.e., uncertainties are introduced by jitters in the communication

mechanism. Figure 6.8 shows the time sequence diagram. Since the response time of the

communication is variable, the offsets of tasks E and G will be larger, but there will not be

any variations in data release to the trajectory generator.

δmin = δmax = OG + CG, (6.3)

OG ≥ CR + JE + CE + CL. (6.4)

Figure 6.8: ET Communication with TT Processor

The above illustrates that the system architecture can create rules to superimpose

TT behavior on top of an event communication if a global time base is observed by

participating nodes. For a global time base to exist, the processor clocks need to be

synchronized with each other. This topic is dealt with in Chapter 7.

t

Delay

Offset OG

Comm. E

Local Trans, L Trajectory
Generator G

Jitter Ji

Execution time variation (∆Ci)

Minimum Execution time (Ci-∆Ci)

RC

Ethernet
Bus

IMC

Offset OL

Data, R

 107

6.5.4 Automatic Configuration

One of the most compelling properties of the architecture is the implementation of

JmDNS (JmDNS-CLDC) to enable automatic configuration of the architecture. This

implementation also serves as a decentralized watchdog for monitoring activities on the

network. The resulting Plug-and-Play (PnP) feature enhances the modular characteristics

of the architecture by leveraging seamless additions or removal of network nodes (e.g. an

IMC) without the need to configure network protocols. On the IMC controller side, the

protocol instantiation is encapsulated in servlets hosted by a min-web server (the

implementation details are provided in Chapter 9). Each IMC server keeps a database on

its properties such as encoder resolution, PID settings and connected I/O devices. On start-

up when hosts join the network, they use the JmDNS-CLDC protocol to register their

services and discover themselves. The protocol naming format is [service type, service

name, port number, description]. When services are received, network parameters (IP

addresses and port numbers) are extracted to enable the necessary connections described

in Section 5.5.2 to be established. Figure 6.9 shows a typical interaction between two

nodes while Table 6.1 shows some of the services registered and discovered on the

network.

Figure 6.9: Multicast DNS Query

 Application

mDNS

Query: Service Type = X Reply: Service Type = X,
address, port, information

System Coordinator IMC Node Node

 108

Table 6.1: Typical JmDNS Services on the IMC Architecture

Service Name Service Type Port Description

Axis 1 Controller _dserver._udp.local. 3000 Datagram Server receives trajectory
data

Axis 1 Controller _controller._tcp.local. 2000 TCP socket connection for streaming
encoder readings

Axis 1 Controller _http._tcp.local. 80 Web service

Multicast _mcast._udp.local. 4000 Multicast service for receiving
synchronizing signals during multi
axes coordination

The advantage of the JmDNS-CLDC protocol is that evidently, the loose-coupling

between nodes leverages configuration changes and code migration from one platform to

another since services are outsourced on the network. Binding or tight-coupling which is

essential for real-time control is established as hosts mesh their services and demands on

the network.

6.6 Conclusion

This chapter began with a discussion on the requirements for real-time

communication, a review of fieldbus and Ethernet protocols, and automatic configuration

strategies. Key features inferred from this discussion led to the design of the IMC

communication architecture. The following are the highlights of the architecture:

1. An automatic configuration protocol, JmDNS-CLDC running on each node

enables nodes to automatically discover themselves and register their services. The

protocol also serves as a watchdog.

2. A switched-Ethernet is used to segment the network and create one collision

domain per switch port.

3. Communication flow is separated into two zones; one zone implements a

producer-consumer relationship between the real-time coordinator and the IMC

nodes for real-time periodic transactions; the other zone is a client-server co-

operation scheme between the system coordinator and the rest of the nodes for

sporadic data communication.

4. The real-time coordinator schedules tasks for the IMC nodes in a static cyclic

periodic manner (time-triggered) for hard-real time control.

 109

5. Since all real-time nodes are time-triggered (with a global clock), the event-

triggered nature of the communication system does not vary delays – i.e., latency

is fixed.

At the moment, device control is entirely distributed amongst the IMC nodes.

Even though the architecture provides the framework for a high-level controller, this is yet

to be implemented. It will certainly be interesting to analyze the effectiveness of the

communication mechanism when this is done.

 110

7. CLOCK SYNCHRONIZATION

7.1 Introduction

It is absolutely important for a distributed hard real-time system to have a global or

agreed time base. The time base is composed of several clocks – one in each node, which

are synchronized at regular intervals. A good clock synchronization architecture should

ensure the integrity of timing in the various communication nodes which will otherwise

lead to poor control performance. There are three main challenges in the design of

algorithms for clock synchronization: Firstly, if there is substantial network transmission

jitter, each process cannot have an instantaneous global view of every remote clock value.

Secondly, modern-day quartz-driven clocks run at rates that differ from real-time by up to

10-6 seconds/seconds. This implies that two clocks could drift apart by 6 msec per minute

even if they are started with the same clock value. The last frontier is recognizing and

curtailing faulty or failed clocks, i.e., failed communication nodes. Typical

synchronization algorithms operate on a set of clock readings collected from the other

clocks in the system. When all of the clocks have collected instantaneous clock readings

from all other clocks, the synchronization algorithm is applied in each node; therefore all

clocks are corrected within the synchronization period. If a clock reading is beyond the

boundaries set by the algorithm, it is regarded as faulty. Several fault-tolerant clock

synchronization methods have been presented in literature. This chapter discusses

pertinent clock synchronization issues and presents the clock synchronization design for

the IMC architecture, which is based on external multicast communication with high

tolerance for low-precision oscillators, i.e. large clock drift. With this method, clocks are

synchronized to a master clock periodically and do not need to keep track of the clock

readings of other nodes in the system.

7.2 Time

The most common way to represent time in a process is to use a local physical

clock consisting of a counter, and an oscillating mechanism – typically quartz. The

 111

oscillating mechanism generates a periodic event called the microtick (Kopetz, 1997) to

increment the counter. Since this is a granular process, digitalization errors in

measurement are bound to occur. The duration between two consecutive microticks is the

clock granularity. Regarding notation, clocks are identified by numbers: If the property of

a clock is expressed, it is identified by the clock number as superscript; the microtick or

tick number is denoted by a subscript. For instance, microtick i of clock k is identified by

microticki
k.

7.2.1 Properties of Physical Clocks

Physical Clock Granularity: The granularity g of a physical clock k is expressed

as

1

k k k

i i
microtick microtick g+ − = . (7.1)

Reference Clock: The reference clock is assumed to be a unique reference clock z

with frequency frz, which is in perfect harmony with the international standard time. The

granularity gz of such as clock is 1/fr
z. Assuming that frz is very large, the granularity of

the clock is infinitesimally small enough for digitalization errors to be disregarded. A

clock k, may generate a timestamp on an instantaneous event e denoted as k(e). If k = z,

then since z is the sole reference clock in the system, z(e) is called the absolute timestamp

of the event e. The duration between two events is determined by counting the microticks

of the reference clock that occur between the two events. The granularity gk of a clock k,

may also be expressed as the nominal number nk of microticks of the reference clock z

between two microticks of this clock.

Clock Drift: The clock drift of a clock k between microtick i and microtick i+1 is

the frequency ratio between clock k and the reference clock z, at the instant of microtick i.

This is expressed mathematically as;

1() ()k k
k i i
i k

z microtick z microtick

n
ρ + −= . (7.2)

Since a good clock has a drift close to one, for notational purpose the drift-rate or �-bounded expression is given as (Veríssimo and Rodrigues, 2001);

 112

1() ()
0 1 1

k k
k ki i

k

z microtick z microtick

n
ρ ρ+ −≤ − ≤ ≤ + . (7.3)

A perfect clock will have a zero drift-rate. Maximum drift rates are provided in

manufacturer data sheets. Typical values for real clock within their operating conditions

are 10-2 to 10-7 sec/sec. Obviously, clocks which are not resynchronized leave their

bounded relative time interval after a finite time.

Offset: The offset of microtick i between clocks j and k with the same granularity

is given as

() ()jk j k

i i i
offset z microtick z microtick= − . (7.4)

7.2.2 Global Clocks

The concept of global time is an abstract notion that is estimated by the proper

selection of a subset of microticks from the synchronized local physical clocks. The

granularity of the node-local perception of global time is referred to as macrotick. The

number of microticks per macrotick is called the microtick-macrotick conversion factor.

The following are the most important properties that depict the integrity of a global clock

(Kopetz, 1997).

Precision: For an ensemble of n clocks, the maximum offset between any two

clocks is the precision П of the ensemble. The expression for clock precision is

{ }
1 ,

max
jk

i i

j k n

offset
∀ ≤ ≤

∏ = . (7.5)

The precision is represented by the number of microticks of the reference clock.

The process of mutual resynchronization to maintain a bounded precision is referred to as

internal synchronization or state correction. The deviation between the different clocks of

the ensemble must be within acceptable values for the valid operation of the system.

Accuracy: Accuracy characterizes how closely physical clocks are synchronized

to the reference clock over a time interval of interest. The process of re-synchronizing a

clock with the reference clock in order to maintain a bounded precision is called external

clock synchronization. Clock rate correction can be achieved only by external

synchronization.

 113

Reasonableness Condition: The global time t is reasonable, if all local

implementations of the global time satisfy the condition g > П, where g is the global

granularity. This condition bounds the synchronization error to less that one macro

granule, i.e. the duration between two ticks. If the reasonable condition is fulfilled then for

a single event e, observed by two clocks of the ensemble,

() () 1j kt e t e− ≤ . (7.6)

This means that the global timestamp for a single event can differ by at most one

tick. This is the best that can be achieved (Kopetz, 1997).

7.2.3 Failure Mode

A physical clock may commit two types of failures: A clock commits a timing

failure if it is not �-bounded (7.3), or the clock counter may become damaged by a fault so

that its values are erroneous. Such error could lead to a Clock Byzantine Failure in an

ensemble of clock, where local clocks receive inaccurate, untimely or conflicting

information from a faulty clock. An example is a dual-faced clock which may give

different values of time to different nodes. Synchronization assumes that the network

connection may commit omission or performance failures but never crash (Anceaume et

al., 1997).

Link Omission failure: A connection between nodes commits an omission failure

if a sender’s message inserted into its outgoing buffer fails to reach the incoming buffer of

the recipient node.

Performance Omission failure: A connection commits a performance failure if it

fails to deliver a message within its specified time.

7.3 The Synchronization Problem

Clock synchronization may be done through hardware, software or a hybrid of

both methods as in the case of the IMC synchronization scheme. The former achieves very

tight synchronization, but may require special hardware at each node and a dedicated

network for synchronization. On the other hand, in software synchronization, nodes

exchange synchronization messages to adjust their local logical clocks through special

algorithms. The nature of the algorithm defines whether the synchronization scheme is

 114

internal or external. It is important to note that internal synchronization secures precision,

i.e. clock state; for any two clocks j and k and all microticks i.

() ()j k

i i
z microtick z microtick− < Π . (7.7)

On the other hand, external synchronization secures accuracy (clock rate) and

subsequently bounds precision to within П = 2A. Irrespective of the method employed, the

synchronization algorithm in each processor has the following responsibilities (Veríssimo

and Rodrigues, 2001; Anceaume et al., 1997):

• Generate a periodic resynchronization event.

• Estimate the values of remote clocks (may not be used in external synchronization).

• Provide each correct process with the value to adjust logical (virtual) clocks. At the

end of a synchronization interval, (7.8) should be valid.

While there are numerous synchronization proposals in the literature, there is no

holistic solution that may be applied to all situations. The following sections build on the

case for the appropriate synchronization method for the IMC architecture.

7.3.1 Internal Synchronization

Internal synchronization raises a number of challenges. Firstly, state correction

cannot be applied suddenly since it will introduce discontinuities (sudden jumps) in the

time base. The solution is to spread the adjustment over a resynchronization time interval

i.e., fast clocks become slower, and slow clocks faster, so they converge. Secondly, it has

been proven by Lundelius and Lynch (1984) that given n clocks on a network with latency

jitter of �, the best internal synchronization that can be achieved even with perfect clocks

is

1
1

n
ε Π = −

. (7.8)

Therefore, in internal synchronization, precision is affected by not only latency

jitter, but also the number of good clocks in the ensemble. Thirdly, each clock sends a

message to all others: In the case of averaging algorithms message contents are clock

values, while with non-averaging algorithms the message is simply a signal. In both

situations, a convergence function computes the value to be applied to the logical clock.

 115

Clearly, the exchange of messages introduces communication overheads. Nonetheless,

these algorithms are capable of curtailing the malicious Byzantine error described above.

However, for any algorithm to tolerate k Byzantine errors or clocks, a total of n ≥ (3k+1)

clocks are required (Kopetz, 1997).

7.3.2 External Synchronization

External synchronization aims at injecting the time of an external reference, the

master clock, into the global time of an ensemble of slave clocks. Contrasting this with

internal synchronization, clocks are synchronized individually from the master clock,

rather than agreeing among each other. In a sense this method is an authoritarian process

since the master imposing its view of external time on all the slaves, forcing them to either

trust the master or use fault-tolerant configurations. Typical external reference clocks or

time servers are a Global Positioning System (GPS) receiver and the Network Time

Protocol (NTP) servers with synchronization tightness in millisecond and nanosecond

ranges respectively. Alternatively, a high precision oscillator may be used as the reference

clock.

Many methods have been proposed for external synchronization with traditional

timeservers such as Berkeley and Christian’s algorithms (Tenenbaum and van Steen,

2002). The IEEE1588 protocol is an emerging paradigm for achieving external clock

synchronization on devices using regular data networks that support multicast such as

Ethernet. The most precise clock on the network is elected by a simple algorithm to be the

master clock. The synchronization process itself is done in two phases. In the first phase

the clock offset between master and slave is corrected after the master cyclically transmits

its clock value to the slaves in two second intervals. After this process the time differences

between the clock and slaves is the network delay or latency. The second phase measures

this delay by a round-trip process: A slave clock sends a "delay request" packet to the

master at time TS1. On reception of the packet, the master generates a time stamp, TM2,

and sends the time of reception back to the slave in a "delay response" packet time

stamped with the transmission time, TM3. Once the packet arrives, the slave records the

arrival time TS4 and calculates the delay for adjusting its clock as follows;

 116

() ()4 1 3 2

2

TS TS TM TM− − −
∆ = . (7.9)

In order to mitigate traffic congestion, resynchronization is performed randomly

between two and sixty seconds. There are a couple of challenges regarding this method. In

purely software based implementations, time stamping is done by reading the clock when

creating a packet for transmission. For an incoming packet, time stamping may be done by

the packet reception interrupt service routine. This implies that the transmission latency

may include both the network channel access uncertainty and the reception interrupt

latency. When time stamping is done in the network application layer, synchronization

precision is in the range of 1 ms. Precision can be improved to a 10 µs range if

synchronization is implemented at the driver or kernel level of a real-time operating

system (Gaderer et al, 2004). For even finer precision in the order 1 µs, hardware time

stamping is required. In this method, the clock value is inserted directly into

synchronization messages at the point of departure or entry into the node. Figure 7.1

shows the configuration of such a system (Mohl, 2003) with a clock hardware unit

consisting of a highly precise clock and a time stamping unit (TSU).

Figure 7.1: IEEE1588 Precision Time Protocol Architecture

IEEE1588 Precision Time Protocol

Port
Interface

Timestamp
Interface

Clock
Interface

Network
Protocol

Stack

MAC

PHY

TSU HW real-
time clock

TX

RX

Hardware

Software

 117

7.4 The IMC Clock Synchronization Architecture

The sections above discussed the importance of clock synchronization in a real-

time distributed network and various algorithms and protocols to achieve this. While

internal clock synchronization corrects clock states, external synchronization corrects

clock rates. Therefore external synchronization implicitly corrects the state of clocks. Both

of these methods may require special computing hardware or networks. For example, the

internal synchronization algorithms that run on time-triggered networks/protocols such as

the Time Triggered Protocol (TTP) require special hardware. Therefore, it is quite difficult

or impossible to incorporate such algorithms in distributed systems that do not provide the

requisite hardware support. A rather radical approach is used for the IMC clock

synchronization. All the methods described above make use of a logical (virtual) clock

(one way or the other), and require an initialization phase. Eventually, quite a homogenous

clock value is seen in all nodes and maintained by resynchronization. Instead of following

the norm, the IMC clock ensemble does not care for literal clock values as much as it does

for clock rate; i.e., clock accuracy implies clock precision. The reason is that the

controllers on the IMC nodes are driven by hardware clock rates (i.e., edge-triggered); all

related transactions such as command inputs to the controllers are either driven by the

clock rate or by related events. The following section describes the synchronization

architecture.

7.4.1 Assumptions and Properties

The IMC clock synchronization architecture is based on the following assumptions

and attributes.

Assumption 1 (Reference Clock Integrity): A reference clock H exists such that

at time t |H(t) – t)| <
�
, where

�
 is an a priori given error.

Assumption 2 (Bounded Transmission Delay); the real time transmission delay

is within some known bounds [
�

 - �,
�

 + �].

Assumption 3: There is no direct access to the Ethernet hardware MAC, therefore

hardware time-stamping of IP messages is not possible. To circumvent this

liability, the highest possible thread priority is used for receiving, servicing and

sending messages.

 118

Assumption 4: Communication between the reference clock and the IMC nodes is

by multicast. All good nodes receive simultaneous messages with time variation t�,
where t� <<0.

Property 1 (State Correction): If all clocks of an ensemble are synchronized with

accuracy A, then the ensemble is also internally synchronized with a precision of

at most 2A.

Property 2 (Oscillator Property): All clocks in the ensemble have a maximum

drift rate that defines a drift-window around a nominal frequency. A faulty clock

oscillates outside the drift-window.

Property 3 (Clock Hardware): The JStick microcontroller has low-level drivers

for controlling its timers and counters. The motion controller associated with each

IMC is clocked by its JStick.

Failure: The IMC node is designed to be fail-silent, thus a faulty clock puts it in a

fail-silent state.

The operation of the master-slave synchronization process between the coordinator

and the IMC nodes is as follows:

• The real-time coordinator hosts the reference clock, which is assumed to have a drift

rate of less than 10-6 seconds/second. The real-time node is connected to an external

reference time server to fulfill Assumption 1. A δ value of 1 µs is selected.

• The real-time coordinator implements high priority time-sliced real-time threads for all

transactions.

• In the first phase of interaction, the communication latency ∆, between the coordinator

and each IMC node is determined by measuring a round-trip message delay.

• The second synchronization phase is combined with the normal modus operandi of the

real-time coordinator. The primary role of the coordinator is to serve the IMC nodes

with real-time position set-points at an interpolation rate of T milliseconds (the

maximum trajectory update rate of the motion controllers). Since this is the reference

clock, it is assumed that an omniscient observer will see an event from the coordinator

every T milliseconds. The coordinator begins this phase by multicasting a control

signal to the IMC nodes at time t1. Upon reception of this signal at time t1 +
�

, each

node activates a hardware frequency counter to count its timer clock cycles. At time t1

 119

+ T, and subsequently every period T, the coordinator multicasts an event (set-point).

The IMC node checks the value of its counter when it receives the event and if the

counter is ahead or behind, it adjusts its timer accordingly and resets the counter. If the

difference is pernicious (in the order of milliseconds), the node informs the system

coordinator: Depending on the fault-tolerance method selected by the user, the system

coordinator may shut down all controllers, only the faulty node or do nothing.

7.4.2 Analysis

In this section, the synchronization scheme is analyzed for the precision and

accuracy it provides to the clock ensemble. The implication of this method on the

controller architecture is also discussed.

The drift offset
�

, of any two clocks in the ensemble depends on the length of the

resynchronization period T and the maximum specified drift rate � of the clocks:

2 TρΓ = . (7.10)

Due to network latency jitter, the precision of the real-time coordinator has to be

correct as follows;

εΠ = + Γ . (7.11)

Typical values are; � = 1·10-6 sec/sec; T = 10 ms; � = 0.01 ms. From (7.10) and

(7.11), � � 0.01 ms. Using Property 1 above, the accuracy of the ensemble is at least

0.005 ms. This is the best synchronization that is achievable with his scheme. Figure 7.2

shows typical synchronization analysis of three IMC clocks. More analytic results

detailing the impact on motion coordination are discussed in Chapter 9 of this thesis.

 120

Figure 7.2: Clock Synchronization Capture on a Logic Analyzer

7.5 Conclusion

In this chapter, a number of issues relating to clock and clock synchronization

methodologies were discussed. It was realized that external clock synchronization

provided a convenient and simple way to synchronize the rates of a clock ensemble.

Moreover, the need for logical clocks was undermined since most IMC real-time events

are directly driven by the edge-triggered events of their respective clocks. Based on the

characteristics governing external clock events and the properties of a global clock, a

simple synchronization scheme was developed for the IMC architecture. In this scheme,

the synchronization procedure is integrated with a trajectory generation on a real-time

coordinator in order to avoid network traffic congestion. The best accuracy obtainable is

0.01 ms. Tests were performed with the aid of a logic analyzer.

 121

8. TRAJECTORY PLANNING

8.1 Introduction

Motion planning for robotized processes is much more complex than that of NC

machines. The prime reason is that a robot is built for transportation and/or manipulation

tasks, and these require change of position in space and motion to some significant

distance in comparison with its size. This raises the problem of mapping task space

positions (orientation and translation) and velocities to appropriate joint space parameters.

The three aspects of motion planning, i.e., path planning, trajectory planning, and

trajectory tracking are indeed very broad areas. Path planning is the determination of the

geometry of the motion, while trajectory planning is the determination of the time history

(velocity) of the motion. The objective of trajectory tracking is to plan the control action

which guarantees that the prescribed path is realized within desired accuracies. In many

situations, the three aspects are highly interconnected. The IMC architecture by no means

exhausts the various aspects of motion planning. Rather, the supporting underpinning

allows for the implementation of high level task specifications as in the case of path

planning. This chapter gives a brief overview of motion planning and describes the

mechanisms provided by the architecture for trajectory planning. Since we are dealing

with resource-constrained computing systems, the trajectory planning mechanism is

designed around the most computationally efficient methods.

8.2 Planer Motion Trajectory Planning

The main functions of an interpolator are as follows (Weck, 1984):

• The geometric data produced by the interpolator shall approximate as close as possible

to the desired path or contour.

• Since the most widely used contours are straight lines and circular curves, an

interpolator should therefore be capable of at least linear and circular interpolation.

• The velocity of the axes must be kept within limitations and be independent of the

contour.

 122

• The final destination of the travel should be reached exactly as specified in order to

avoid build-up (roundness) errors.

Two types of interpolator architectures identified in literature are hardware

interpolators and software interpolators. Hybrid architectures or two-stage interpolators

are quite common in modern designs. While a single-stage interpolator converts input data

directly into colossal sequential axial co-ordinate values, the two-stage interpolator firstly

provides intermediary or rough reference points to a fine interpolator. The latter

subsequently determines the intermediary co-ordinate values – typically linearly, between

the reference points. Such architecture permits the use of micro-processors with

comparatively low capacity for the fine interpolation stage. The most common types of

interpolation between coordinated axes are linear and circular interpolations. When a

circular interpolation in one plane is superimposed upon a linear motion in a perpendicular

axis a helical, spiral or screw-path interpolation is obtained. Higher order interpolations

such as parabolic or elliptical are becoming quite common as well. Interpolation

techniques are based on exact mathematical relationships of the following fundamental

forms (Weck, 1984):

Implicit representation: F(x, y, z) = 0;

Explicit representation: x = F(y, z), y = F(x, z) z = F(x, y);

Parameter representation: x = F (�), y = F (�), z = F (�), where � is a common

parameter such as time.

If the common parameter is proportional to time, then the functional dependency

on time is automatically considered. Parameter representative techniques have the

advantage that the resultant velocity will be constant if the resolution of the interpolator is

constant with respect to time. Hence the velocity is not a function of the path being

described.

8.2.1 Interpolation by Search Technique

The search technique (Weck, 1984) is derived from the implicit function

representation of a plane. Each point on the prescribed contour satisfies the function

equation F(x, y) = 0 but for all other points outside the contour the equation F(x, y) ≠ 0.

The magnitude and sign of the value is determined by the amount and direction of the

instantaneous deviation of an interpolation point with respect to the contour. If the contour

 123

form is consistently in one direction, then the sign will be sufficient to indicate which axial

direction the next increment must be given. The search method can only consider the

functional dependence of two variables in any one calculation. Hence for interpolation in

more than one plane, a common reference axis for the determination of the positional

values will be required. The search method may be applied in circular interpolation and

the calculation of single-directional functions of a higher order.

8.2.2 Linear Interpolation by Digital Differential Analyzer (DDA)

The DDA technique is one of the most favored techniques for interpolation and is

based on the mathematical integration of the velocity components (Weck, 1984). The

linear interpolation DDA solution for a 2-D contour is as follows:

Given the starting and end points of a line to be Ps(xs, ys) and Pe(xe, ye)

respectively, the intermediate values is determined as a function of time by the equations,

0

0

() () ,

() ()

t

s x

t

s y

x t x k t x f dt

y t y k t y f dt

= ⋅∆ = +

= ⋅ ∆ = +

∫

∫

. (8.1)

For simplicity, the interpolation period T may be divided into N equal time

intervals, each of duration
�

t. However to account for acceleration and deceleration, the

axes velocities fx and fy and the interpolation time interval Ti will vary with time during

these periods but remain constant during the constant feed phase. A technique which is

based on constant displacement increment follows (Altintas et al, 1996). The above

equation may be expressed in discrete form as,

1

1 1

1

1 1

() () () () () () (),

() () () () () () (),

k k

s x i s x i x i

j j

k k

s y i s y i y i

j j

x k x f j T j x f j T j f k T j

y k y f j T j y f j T j f k T j

−

= =

−

= =

= + = + +

= + = + +

∑ ∑

∑ ∑
 (8.2)

or

 124

() (1) () (),

() (1) () ().

x i

y i

x k x k f k T k

y k y k f k T k

= − +
= − +

 (8.3)

The axes velocities at time interval k are

, .
() ()

x y

i i

x y
f f

T k T k

∆ ∆= = (8.4)

The incremental displacement in both axes remains constant as follows;

, .e s e s
x x y y

x y
N N

− −∆ = ∆ = (8.5)

Substituting (8.5) and (8.4) into (8.3) yields the recursive digital linear

interpolation equations;

() (1) ,

() (1) .

s

s

x k t x k x x k x

y k t y k x y k y

⋅∆ = + ⋅ ∆ = − + ∆
⋅∆ = + ⋅∆ = − + ∆

 (8.6)

For a trapezoidal velocity profile (Altintas et al., 1996), N is divided into

acceleration (N1), constant velocity (N2) and deceleration (N3) regions. Supposing

acceleration A is from feed f0 to f, the following can easily be proven for N1:

2 2

0
1 ,

2

f f
N

A u

−=
∆

 (8.7)

where ∆u is the displacement step which is kept constant. Similarly if deceleration

D, is from feed f to fl, N3 can be deduced as

2 2

3 .
2

l
f f

N
D u

−=
∆

 (8.8)

The interpolation period Ti for each interpolation interval varies in the acceleration

and deceleration zones as follows:

1 for accleration,2
()

-1 for deceleration() (1)
i

vu
T k

vf k v f k

=∆=
=+ ⋅ −

, (8.9)

but remains constant in the constant velocity zone as

 125

()
i

u
T k

f

∆= . (8.10)

The incremental size is calculated based on a given minimum interpolation

interval. A real-time implementation of this technique is fairly simple and computationally

efficient. The implementation details are discussed in Section 8.5.

8.2.3 Circular Interpolation

Circular interpolation by second-order recurrence (Weck, 1984) divides an arc into

N small chords each of length
�

u and corresponding angular segment
��

. A chord error C

(Fig. 8.1) is introduced as a result, which is the distance between the arc and the chord.

1 cos ,
2

C R
θ∆ = −

 (8.11)

where R is the radius of curvature. Hence the angular segment evaluates to

1 max2cos 1 .
C

R
θ − ∆ = −

 (8.12)

If the maximum chord error is constrained to one encoder count, then

1 1
2cos 1

R
θ − ∆ = −

. (8.13)

The corresponding chord segment is,

 u R θ∆ = ∆ . (8.14)

As in the case of linear interpolation, the tool path length N is divided into N1, N2

and N3 segments for the acceleration, constant velocity and deceleration zones. The feed

speed f is tangential to the arc and the travel distance is the segment
�

u in every

interpolation period Ti. It can easily be shown that the velocities in the x and y axis are

sin (),

cos ().

x

y

f f f
f t y t

R R R

f f f
f t x t

R R R

 = − = − ⋅

 = = ⋅

 (8.15)

 126

Since the velocities are coupled with position, digital integration of the above

equations will yield errors. A recurring circular interpolation (Altintas, 2000) has been

formulated to overcome this. Considering the arc in Fig. 8.1, the coordinates for Pn can be

expressed as:

()
()

cos ,

sin .

n s

n s

x R n

y R n

θ θ
θ θ

= + ∆

= + ∆
 (8.16)

It follows that

()
()

1

1

cos (1) ,

sin (1) .

n s

n s

x R n

y R n

θ θ
θ θ

+

+

= + + ∆

= + + ∆
 (8.17)

By using trigonometric functions to manipulate the above, the following recursive

equations are derived:

1 1

1 1

2 cos ,

2 cos .

n n n

n n n

x x x

y y y

θ
θ

+ −

+ −

= ∆ −
= ∆ −

 (8.18)

Figure 8.1: Circular Interpolation

R

∆
�

y

x xn xn+1

yn

yn+1

Pn

Pn+1

�
s

C

 127

This method is particularly suitable for real-time computing since there are

minimal multiplications, additions, and subtractions. Moreover,
��

 evaluated from (8.13)

may be stored in memory before interpolation begins. The different computing

configurations described in section 8.2.2 apply in this situation as well.

8.3 Robot Motion Planning

As mentioned earlier, the essence of robotized processes is transportation and

manipulation tasks. There are two cases very different from the motion planning view:

These are continuous path (Cartesian path) and point to point (joint space path) with

corresponding Continuous Path Control (CPC) and Point to Point (PTP) control (Somló, et

al., 1997). With CPC, in every point of the robot motion the velocities and positions are

computed. Moreover, it may be required that the orientation of working tools attached to

the end-effector have given orientations. On the contrary PTP control requires only the

initial and final points – the motion between these is determined by the kinematics and

dynamics of the robot motion. Obviously, PTP control is computationally less demanding

than that of CPC. Continuous path motion deeply involves all aspects of motion planning,

i.e., path planning, trajectory planning, and tracking.

Trajectory planning is in itself a challenge in robot motion because apart from

mapping task space motion (end-effector path and tool orientations) to joint space, the

technological constraints (e.g. velocity, torque, etc) on actuators must not be exceeded. In

other words, there is a possibility that the planned path may pass through singularities or

unreachable workspace. Moreover, actuators do not reach their limits at the same time due

to the dynamics of the motion. In situations where the motion path is known, complicated

methods are available for optimal control or trajectory generation. However, in practice,

simpler approaches are normally sufficient (Somló, et al. 1997). One of these is the use of

trapezoidal velocity profile discussed earlier. In this approach, the working point moves on

the path with given constant velocity after going through a given acceleration phase. The

joint velocities are computed by inverse transformations. Another approach is to use spline

curves to define the motion. In this case, the coordinates of a series of points in Cartesian

coordinate system are given and the corresponding joint coordinates are determined by

inverse kinematics. The trajectory planning problem is to determine the joint positions,

velocities and possibly acceleration/deceleration values and of course, the time of motion

 128

from point to point. The desired paths for joints satisfying the given boundary conditions

in the given point can then be determined using proper order splines. In all approaches to

trajectory planning, the last phase involves generating in real-time, finely interpolated

trajectory set-points for or by the controller:

Let

()S

T
T k for k=1,..,N denote the initial pose, via-points (poses) and final goal (pose);

S is the stationary frame: (1)S

T
T is the initial pose and ()S

T
T N is the final goal. For k=1,.., N-

1, a smooth path in SE(3) is generated (for example by splines) that connects ()S

T
T k and

(1)S

T
T k + . After a CPC trajectory,

(3)S

t
T SE∈ , t[ti, tf] (8.19)

is generated, it must be converted into a sequence of set-points via inverse

kinematics for the controller.

The time axis is digitized as

, 1, , ,
f i

s i

t t
t t s s N

N
δ δ

−
= + ⋅ = =… , (8.20)

with intermediary or via-points

s i s

S S

s t tT T T
δ+

= = . (8.21)

The via-points are converted into joint set-points

1 , 1, , ,
i s

S

s tK T s N
δ

θ
+

−= = … (8.22)

where K-1 represents the inverse kinematics.

As mentioned earlier, in PTP or joint space control the actual Cartesian position of

the end effector is only given at the specified initial, end-point and intermediary points

(way-points or via-points). The path is converted into joint coordinates using the inverse

kinematics of the manipulator and a smooth time trajectory for each joint position
�

i is

calculated based on the given initial and final values. As in the case of CPC, trapezoidal or

spline interpolation may be used for the trajectory planning. Set-point generation for the

 129

joint controllers is then simply a matter of finely digitizing sequence of points on the

trajectory.

8.4 Other Interpolation Methods

There are several other interpolation methods used to realize appropriate

application-dependent trajectories. Nonholonomic constraints is a phenomenon which

occurs when the generalized velocity vector of a mechanical system are non-integrable to

equivalent configuration space constraints. The effect of this is that the instantaneous

velocity is limited to certain directions. Nonholonomic interpolation usually involves

motion in a plane with three degrees of freedom constrained to two in translation and one

in rotation (Divelbiss, 1997). This type of constraint occurs in mobile robots, automobiles,

orbiting satellites and space-based robot manipulators. Another class of controlled

mechanical systems that exhibits nonholonomic behavior is under-actuated robots, i.e.,

robots with passive degrees of freedom. These mechanisms range from nonprehensile

manipulation to robot acrobatics, from legged locomotion to surgical robotics, from free-

floating robots to manipulators with flexibility concentrated at the joints or distributed

along the links (De Luca, 2002). Motion planning solutions for nonholonomic systems

require intuitive geometrical approaches and optimization techniques for prudent

computational efficiencies. Some approaches include methods that emphasize optimality

and those that emphasize feasibility (Divelbiss, 1997).

In situations where motion is in a three-dimensional space with three degrees of

freedom or six degrees of freedom, holonomic spatial interpolation is used. Examples

include Spherical Linear Interpolation (SLERP) and screw axis interpolation. SLERP is

derived from representing the relative rotations of two rigid bodies by unit quaternions.

Quaternions are a generalization of the complex numbers that can be used to represent

three dimensional rotations. The set of all unit quaternions form a 4D unit sphere.

Consequently, the problem of interpolation can be seen as the problem of finding the

great-circle arc between two points on the 4D sphere. It has been proved that SLERP

corresponds to rotation around a fixed axis with constant angular velocity (Strandberg,

2004). A screw motion is a combination of two simultaneous motions of an object; a linear

translation and a rotation around a constant axis parallel to the translation vector. The

trajectory of any point on the moving object is a helix and the velocity vector of the point

 130

remains constant with respect to the object's local coordinate system. Thus, screw motion

can be decomposed into a pure rotation or a pure translation, since they produce

consistently the same relative trajectory – regardless of the choice of the coordinate

systems (Rossignac, 2001).

8.5 Implementation on the IMC

The IMC framework supports a variety of motion modes to support the

aforementioned trajectory planning schemes: This include jog-mode, position-mode,

synchronized-position-mode, velocity-mode, and coordinated-motion. Figure 8.2 shows

the flow chart for the different modes, except coordinated-motion.

 131

Figure 8.2: Flowchart for Different Trajectory Configuration Modes

UDP

Synch-position mode

Position-mode

Position-mode

Velocity
mode

Read in:
Mode, accel., buffer sizes,
data log parameters

Create FIFO buffers for
trajectory data

Fill trajectory
buffers Load first trajectory

Wait for start command

Execute run command

Load next trajectory

Wait trajectory-end bit

Wait for synch flag

Mode Load break-point

Data?

Mode Load break-point

Wait break-point bit

Mode

Velocity-mode

Trajectory-end bit

Trajectory-end bit

Send to system
coordinator

Log encoder
readings

TCP

UDP

Position-mode

 132

In jog-mode, a single set of user-defined trajectory data (final position, maximum

velocity and acceleration) is required to jog an axis to the commanded position. On the

other hand, in position-mode, each IMC receives a continuous stream of set-points from

the system coordinator into a FIFO buffer. The stream is temporarily interrupted by an

object-lock operation when the buffer is full, thus enabling a much smaller buffer size to

be used. Only the start of motion is synchronized, thereafter each IMC coordinates the

operation of its own motion controller. The motion controller has a register that holds only

one set of trajectory data at a time; therefore the IMC host continually updates this registry

until motion is completed. Position is controlled along a trapezoidal trajectory profile from

start to completion. On the contrary, in velocity-mode, the controller tracks velocity along

the profile without coming to rest until a stop command is issued. The velocity may be

varied on the fly or any other action may be taken upon the emergence of a breakpoint

interrupt. This interrupt is triggered when a preloaded position reference is reached in the

trajectory. Synchronized-position-mode is similar to position mode; except that each IMC

node signals the system coordinator each time a commanded position is reached, loads its

controller’s trajectory register with the next data, and holds to receive a multicast “go”

signal from the coordinator.

In coordinated-motion (Fig. 8.3), the architecture may be configured such that the

real-time coordinator multicasts set-points to the IMC nodes at each interpolation period.

Each IMC node extracts its data from the multicast package according to its given axis ID

and commands its controller which in turn fine-interpolates at a minimum of 0.341 ms.

The trajectory planer may be hosted either by the real-time coordinator or by the system

coordinator. If the latter has real-time services, set-point data may be multicast directly to

the IMC nodes; otherwise, data is channelled through the real-time IMC coordinator by a

buffer-send technique. The advantage of this configuration is that large files (e.g., NC

code), and computationally expensive motion planning can be handled outside the

resource-constrained IMC nodes on a more powerful computer platform: A typical

example is the high computational cost of the inverse kinematics of complex serial robots.

In situations where trajectory generation (including the inverse kinematics) is

decomposable, each axis is automatically configured to compute its own incremental

displacements; for example, in linear interpolation, an algorithmic representation of

 133

equation 8.6 is used. During the interpolation process, the real-time coordinator manages

all the IMC nodes with a real-time periodic thread; the periodic value T is supplied by the

system coordinator3. In one configuration style, the coordinator calculates the number of

interpolation iterations, the step size for each axis displacement, the remainder for each

axis step size, and sends them to the IMC controllers. The coordinator then proceeds to

compute the interpolation time intervals, which may be higher than T; at each scheduled

period T, its real-time thread multicasts the difference
�
, between the interpolation time

and T to the controllers. On the IMC ensemble, the following cyclic process takes place

until the trajectory segment is completed:

1. Each node calculates the next displacement and velocity from equations (8.6) and (8.4)

and loads its controller trajectory registers with these values.

2. Each node sees a real-time image (value) of
�
 at every period T; this value is loaded

into a timer counter that counts down.

3. A countdown to zero triggers a run command to be sent to the motion controller. The

motion controller then proceeds to finely interpolate the loaded trajectory, and

simultaneously control the actuator.

In situations where the kinematics of the mechanism demand a more centralized

computational structure, the coordinator generates all set-points and transmits them

(including the interpolation time interval) to the IMC nodes at each scheduled period.

3 The user-selected interpolation period is decremented by a pre-computed value to account for network latency.

 134

Figure 8.3: Flowchart for Coordinated-Motion

8.6 Conclusion

In this chapter, an overview of motion planning and trajectory generation

techniques has been discussed. Subsequently, trajectory planning schemes have been

adopted and developed for the IMC architecture. Two fundamental interpolation schemes

Data from System Coordinator:
Mode, axis ID = n, Boolean [load
inv. kinematics], accln

.Create high priority
datagram socket listener

Read set-point

Calculate velocity

Load trajectory (pos, vel)

Execute run command

Send to system
coordinator

Log encoder
readings

Flag

Local

Synch
Stream reader

Mode

Set-points

Timer synch
method

Read interpolation
type and parameters

Calculate next set-point

New

Yes

Inverse kinematics

Load trajectory (pos, vel)

Execute run command

Transform

No

Yes

No

Trajectory

 135

used on the IMC system are linear and circular interpolations. The next chapter presents

details of the IMC software architecture.

 136

9. THE IMC SOFTWARE ARCHITECTURE

9.1 Software Development Phases

The software architecture is based on Java’s rich object-oriented style of

programming. This greatly leverages building software components with standard

interfaces and reuse capability. Reuse is achieved by generality and extensibility. For

example, it is possible to have a generalized forward kinematics component for different

robots. Extensibility can be achieved through inheritance, where one piece of code

extends the functionality of another. Object-oriented software allows for the building of

components with standard interfaces and reuse property. There are three major steps in the

design of object-oriented components (Kapoor, 1996). The first step is the analysis of the

problem domain and sub-domains. This results in a set of entities in the form of classes or

objects, the relationship between these entities and their functionality. The next step is the

design phase where decisions are made based on the execution platform, the programming

language and the operational constraints. The last step is the software implementation.

9.1.1 Analysis

 The purpose of the analysis phase is to provide a model for the behaviour of a

system. This means identifying the entities of the system. Generally, the analysis process

can be decomposed into the following steps:

Identify the entities in the application domain. The identified entities generally

lead to defining classes and objects in the design and implementation phases. It should be

easy for the designer to identify and name the behaviour of an entity. Moreover, the size of

the abstraction should be appropriate.

Identify the responsibilities of the entities. In this second stage, the

responsibilities of the entities are characterized by the services and behaviours of classes.

The objective here is to create efficient interfaces that provide the maximum possible

functionality.

 137

Identify the relationship between entities: Object-oriented software architecture

leverages the definition of crisp relationship between entities or classes. Two or more

classes have an IS-A relationship if there is a parent-child or inheritance connection. On

the other hand, a HAS-A relationship indicate containment of a class within another class,

or of an object within a class, or of an object within an object. Another type of connection

is the USES-A relationship. This relationship is present if the function interface of a class

takes an instance or object of another class as a parameter. Generally USES-A relationship

comes in handy when two or more classes need to collaborate to accomplish a task.

9.1.2 The Design Phase

The design phase results in the definition of classes and objects identified in the

analysis phase. At this stage, names are given to classes and these names should reflect the

semantics of the application domain. Furthermore in this phase, relationships identified in

the analysis phase are transformed into inheritance hierarchies or containment

relationships.

9.1.3 Implementation

The implementation phase involves filling in the details of the class data structures,

adding internal functionality to support overall class functionality, and writing member

functions. Testing and validation take place during implementation. Generally, a software

designer will have to juggle the analysis, design and implementation activities a few times

before arriving at a satisfactory architecture. Therefore these activities are not necessarily

sequential.

9.2 The IMC Architecture Software Abstraction Development

Categorically, the goal of this research is to design a distributed reconfigurable

controller for robotic applications. Generally, researchers have made many strides in

developing specific robot application programs that are generic and hence can be

reconfigured for various platforms. Similarly there are a plethora of distributed control

systems and even distributed and reconfigurable I/O interfaces. Our focus in this research

departs from these classic design approaches by employing a software and hardware

infrastructure that supports a wide range of services. The overall architecture was

described in Chapter 3. We concluded that most computationally intensive functions

 138

needed to be hosted by a system coordinator running on a Workstation. Software

components had to be developed for the IMC in the following areas:

• Low level control requiring hard real-time services.

• Well defined mechanisms for communicating and collaborating with the system

coordinator.

• Mechanism for configuring device and auto-configuration.

• Partial kinematics.

• Interpolation.

• Interface for high level control.

• Kinematics interfaces.

• Graphical user interfaces.

• Configuration and auto-configuration interfaces.

9.2.1 Analysis

Analysis had to be performed on these domains and main components had to be

identified. Subsequently, software components had to be designed and tested. Three main

domains were developed to support the IMC architecture. Figure 9.1 shows the IMC

Domain which represents the IMC modular controllers – one per machine axis, the Real-

Time IMC Coordinator which handles all system-level real time tasks and the System

Coordinator which is the main interface between the user and the rest of the system. After

defining key domains and their sub-domains, the next task was the analysis of the sub-

domains or classes. The analysis led to the specification of the key entities in the sub-

domain. In this phase, related domains were grouped into packages to enhance software

reusability.

Figure 9.1: The IMC Architecture Software Components

System Coordinator

Component

Component

IMC Domain

Component

Component

Real-time IMC Coordinator

Component

Component

 139

9.2.2 Design

Design issues are more relevant at the sub-domain or component level. Some of

the key design issues that were employed are as follows.

• All classes developed had to have meaningful names and placed in clearly defined

packages. An example is DatagramServer.class which belongs to the

com.IMC.network package.

• Real-time threads were defined on the IMC platform for scheduling real-time tasks,

while non-real-time threads handled non-real-time tasks.

• The priority levels of threads were clearly defined.

• Tasks demanding hard real-time were assigned a higher priority than the automatic

garbage collector.

• Minimum garbage was generated in classes. Therefore string writes were minimal.

• Efficient coding was used since resources are limited on the IMC JSticks. This

involved for example avoidance of unnecessary copying of objects and suspension of

superfluous thread loops.

9.3 The IMC Domain

The IMC domain is responsible for axis-specific activities such as joint control. In

addition, the domain contains many components for intelligent interaction with the rest of

the system. Table 9.1 shows the packages in this domain.

Table 9.1: Software Packages

Package Description
com.IMC.database Network, configuration data and data access methods

com.IMC.coordination Protocols for negotiating with system coordinator

com.IMC.drivers Low level drivers for the communicating with the LM628,
interrupt services, and digital I/O drivers

com.IMC.network Ethernet protocols

com.IMC.servlets Web interface for viewing/editing configuration and PnP
mechanisms

 140

9.3.1 Database Abstractions

The database abstraction provides a data warehouse for static and dynamically

generated data, and also data access policies. The subcomponents are listed in Table 9.2.

Interface definitions are provided in Appendix B1.

Table 9.2: The IMC Database Components

Database Component Description
Data Network and configuration data

PushPullData Data access mechanisms for collaborating threads

FIFO First-In-First-Out Buffer

JmDNS_Coordinator_Data Contains data for publishing and subscribing services o the
network

FileServer_ConfigFiles Controller parameters

9.3.1.1 Data

The Data class is used to store key static parameters needed by the IMC controller.

The analysis and design issues are presented below.

Analysis

A data warehouse provides persistent data to the domain. Its attributes and desire

functionality are as follows:

• The data class should distinguish between modifiable static data and final data.

• The class should contain all network and configuration parameters

• It should not place a limitation on inheriting.

Design

Based on the analysis above, the class specification was designed and

implemented as described below.

• Data.class is made to be a member of the com.IMC.database package.

• The class is given the modifier abstract to enable other classes inheriting its properties

to have the flexibility of inheriting other properties.

• All parameters are static and default parameters are qualified with final.

Example

An example of the implementation of this class is as follows.

1. Myclass implements Data{

 141

2. int datagramPort = PRIORITY_DATAGRAM_PORT_NUMBER; //inherited from Data }

9.3.1.2 PushPullData

Sometimes two or more threads need to collaborate to accomplish a task. For

example a thread may need to know if another thread has finished its task. However, when

two threads share the same data, complexities may arise due to a phenomenon called race

condition (Oaks and Wong, 2004). Java uses a concept called synchronization to solve this

problem. When a method is declared synchronized, the thread that wants to execute the

method must acquire a token or a lock. Once the method has acquired the lock, it executes

the method and releases the lock. There is only one lock per object so if two separate

threads try to call synchronized methods of the same object, only one thread can execute

the method; the other thread must wait for the lock to be released before it can execute the

method. The PushPull class implements synchronized methods for various tasks and also

stores short-term data.

Analysis

• The class should support collaboration between two threads calling on the same

methods in this class.

• An object of this class should be available to all threads that need its services.

 Design

• PushPullData is made to be part of the com.IMC.database package and declared

public.

• Methods used by two or more threads are designed to be synchronized methods.

Example

This method below controls the start of motion.

1. /**

2. if velocity is 0 thread calling this method will be put in a wait

3. state until notified. This is used to synchronize start of motion.

4. */

5. public synchronized double get_vel() {

6. if (vel == 0) {

7. try {

8. wait(); //wait for all trajectory data before starting motion

9. }

10. catch (InterruptedException ex) {} }

11. return vel; }

 142

9.3.1.3 FIFO

This class provides a first-in-first-out buffer for two threads. One thread fills the

buffer from its tail whiles the other takes data from its head.

Analysis

• The class should provide methods to create any buffer size.

• This class should provide a method to fill the buffer from its tail and wait for the

buffer to be partially empty before resuming the fill operation.

Design

• The FIFO class is part of the com.IMC.database package.

• A method is implemented to create an array of any given size.

• Synchronized methods fill and acquire data from the buffer.

• The PushPullData class contains instances of the FIFO class for creating velocity and

position buffers. Therefore this connotes a USES-A relationship between the two

classes.

Example

In the example below, buffers are created for position and velocity data.

1. public static void createPosVelFIFO(int size) {

2. positionBuffer = new FIFO(size);

3. velocityBuffer = new FIFO(size);

4. }

9.3.1.4 JmDNS_Coordinator_Data

The IMC architecture implements an auto-configuration network protocol called

JmDNS, to enhance modularity and reconfigurations (see Chapter 5). The protocol is used

to register configuration information and discover services such as the connection detail of

nodes on the network. The JmDNS_Coordinator_Data contains data required by a JmDNS

coordinator to register and detect these services.

Analysis

 This class should contain data to compose JmDNS information. Some of the data

such as network information is in the Data.class.

Design

• The class was place in the com.IMC.database package.

 143

• The JmDNS_Coordinator_Data.class bears an IS-A relationship with Data.class since

it inherits data from this class.

Implementation

The example below shows one of the methods in this class for creating a JmDNS

register.

1. public static String registerSingle(String type, String name, int port,

2. int weight, int priority, String text) {

3. StringBuffer register = new StringBuffer();

4. register.append(type); // type of service

5. register.append(",");

6. register.append(name);//name of the service

7. register.append(",");

8. register.append(port); //port number for this service

9. register.append(",");

10. register.append(weight); //degree of persistence

11. register.append(",");

12. register.append(priority); //priority level

13. register.append(",");

14. register.append(text); //text message

15. return register.toString();

16. }

9.3.1.5 FileServer_ConfigFiles

File creation, storage and retrieval are important for storing and modifying

persistent data. The FileServer_ConfigFiles class contains various methods for storing

configuration data such as PID filter values and JmDNS data.

Analysis

• The class should have methods to prepare data for storage such as adding delimiters to

separate data.

• The class should have methods to create, delete and perform file I/O.

Design

FileServer_ConfigFiles inherits data from JmDNS_Coordinator_Data, which also

inherits data from Data.class. Therefore this is an IS-A relationship. The class embodies

various methods to add delimiters such as commas and end-of-line to data.

Example

In the example below, the method retrieves configuration parameters from

Data.class and converts them to a String separated by the end-of-line delimiter.

1. public String getConfig(String[] value) {

2. StringBuffer buffer = new StringBuffer();

 144

3. for (int i = 0; i < value.length; i++) {

4. buffer.append(value[i]);

5. buffer.append('\n'); // parameters separated by \n ie "new line"

6. }

7. return buffer.toString();

8. }

9.3.2 Coordination Abstractions

The coordination component abstracts an interface for the system coordinator to

issue commands and receive feedback from the controllers. The coordinator also handles

clock synchronization signals and real-time data from the real-time coordinator. As

discussed in Chapter 8, the architecture supports various motion modes, including jogging,

position-mode, synchronized-position-mode, velocity-mode, and coordinated-motion.

Each IMC receives either a stream of set-points, or/and motion synchronization signals,

depending on the mode selected by the user. These various tasks are coordinated by the

components listed in Table 9.3. Their interface structure is provided in Appendix B2.

Table 9.3: Coordination Components

Coordination Component Description
StateCoordinator Receives datagram events from system coordinator

MultiCasted_States Receives high priority multicast events signals

Device Invoked by StateCoordinator to execute motion profiles

StateBuffer Creates a temporary buffer for multicast signals received

Interpolation_Server

Receives set-point from an interpolator and commands the
controller to move to set-point positions

Monitor Establishes a TCP connection with system coordinator

EncoderReader Periodically reads and sends encoder data to the system
coordinator

Counter Logs sensor data

MainClass Main class for initializing the controller

9.3.2.1 StateCoordinator

The StateCoordinator class uses a network connection to receive events from the

system coordinator, and call the right method to execute the requested command. All

datagram packets received consist of a header and a body. The header contains a flag

which indicates the type of incoming event, for example “set PID filter” and may contain

 145

other parameters such as data packet size, etc, depending on the value of the flag. The

body may contain associated data such as PID parameters or may be null. For some

motion modes, trajectory data are received into FIFO buffers. When motion commences,

i.e., when FIFO buffer consumption begins, the system coordinator is alerted to stream in

the next data batch.

Analysis

• The class should have a datagram connection with the system coordinator. This is will

enable packet sizes to be pre-allocated. Since a packet is an indexed buffer, its contents

can be discharged into FIFO buffers systematically.

• Methods should be executed without blocking incoming commands; i.e., the class

should run concurrently with the classes implementing these methods.

Design

• The class is implemented as a high priority thread with its “run” method embodying a

perpetual loop. The loop waits forever for messages from the coordinator and makes

functions calls on methods in other classes as dictated by the command flag received.

Since threads run concurrently, these methods execute outside the thread’s own

execution block.

• The class inherits a datagram socket connection from DatagramServer.class in the

com.IMC.network package. Therefore all connection related issues including

exceptions are handled outside this class.

• In order to have access to the FIFO buffers, an object from the PushPullData.class is

created within the class at runtime. The received data packet is used to fill the buffers

by virtue of a synchronized method in the PushPullData.class which ensures that the

buffers are not flooded. When the packet is emptied a flag is sent to the coordinator to

resend the next packet. The back-and-forth communication continues until an end-of-

data flag is received or a high priority interrupt pre-empts the operation.

Example

The example below shows a skeletal implementation of the StateCoordinator

class.

1. public class StateCoordinator

2. extends DatagramServer implements Runnable {

3.

 146

4. public synchronized void run() {

5.

6. while (true) {

7. in_packet.setLength(inbuffer_length); //reset buffer

8. dgconn.receive(in_packet); //receive packet

9. state_Flag = in_packet.readInt(); //read first number of packet

10. switch (state_Flag) {

11. case 0:

12. // receive trajectory data for jogging axis

13.

14. case 4:

15. //position mode

16.

17. case 9:

18. //Receive PID Filter value

19. case n:

20. }

21. }

22. }

23. }

9.3.2.2 MultiCasted_States

Multicast signals are very useful when all nodes on a network need to receive the

same information simultaneously. The architecture employs this protocol for most

synchronized behaviour such as synchronized start, stop, suspend, etc. The section below

describes the multicast class.

Analysis

• Since synch signals are urgent commands, the class implementing this should be

protected from pre-emption by most operations.

• The class should not generate garbage or run computationally intensive functions

Design

• The class is derived from MulticastServer.class in the com.IMC.network and is

implemented as a thread with the highest priority in the Java API specification.

• The class receives only 4-byte packets and immediately dispenses them in a storage

class in order to minimize the risk of losing an in-coming packet.

Implementation

The class is instantiated as follows.

1. StateBuffer buffer = new StateBuffer() ;//storage class

2. Thread thread =new Thread(new MultiCasted_States(buffer));

3. Thread.setPriority(10); //10 is the highest thread priority

4. thread.start();

 147

9.3.2.3 Device

Methods were required for direct calls on controller drivers such as “load

trajectory”, “run trajectory”, etc. Simultaneously, the class implementing these methods

needed to cooperate with other classes in direct contact with the system coordinator to

create a producer-consumer relationship.

Analysis

• The class should be implemented as a consumer and have methods to control the

peripheral controller in the manner dictated by the system coordinator.

Design

• The class is implemented as a thread to run concurrently with the producers.

• The class retrieves data through the PushPullData class and frequently monitors the

StateBuffer class for urgent signals.

• A loop is implemented in its run() method to periodically read instructions from the

coordinators (producers) through the StateBuffer class. It was more computationally

efficient to temporarily halt the loop when there was no immediate instruction

therefore the instruction-read method was cast as a synchronized method with a wait().

Implementation

The following is the section of its method for executing a “find home position”

command.

1. case 8: {

2. //mask all interrupts except excessive position interrupt

3. LM628.mask_reg(0x20);

4. //reset loop flag. This will cause the main loop to wait until next command

5. statebuffer.put_deviceRunFlag(false);

6. load_PID_Filter(); //call PID filter load method

7. //call reference switch driver

8. Reference_Switch_Driver home = new Reference_Switch_Driver("home");

9. break;

10. }

9.3.2.4 StateBuffer

A class was required to hold high priority state information such as stop, run and

suspend.

Analysis

• The class needs to employ safe methods which prevent race conditions or loss of data

integrity.

 148

Design

• The StateBuffer class is designed with the same concept as that of PushPullData class.

Command flags (as opposed to data in the latter) are held in its buffers. Secondly,

emergency stop commands are implemented directly in this class.

• The StateBuffer extends or inherits the properties of PushPullData, making it possible

for instances of this class to have direct access to the latter.

9.3.2.5 Interpolation_Server

This class coordinates with the real-time coordinator to receive set-points,

trajectory signals and clock synchronization signals.

Analysis

• The most important requirement is for the class to capture the real-time data stream

and command the controller without any infringements. This means that method

executions should be atomic and be guaranteed to commit.

• The real-time coordinator multicasts all set-points to all nodes in the multicast group.

Therefore the class should have an efficient means to identify and extract set-points

addressed to its platform.

Design

• The class is designed to inherit a datagram socket connection from the

DatagramServer class.

• The class is given a high thread priority – above that of the Java Garbage Collection

thread.

• When this class is instantiated by the StateCoordinator class, a set-point index

generated by the system coordinator is passed to it. This index is transformed into a

read-pointer to mark the position of the set-point data in the multicast packet.

Implementation

The class is instantiated and started by the StateCoordinator as follows:

1. Thread thread = null;

2. thread = new Thread(new Interpolation_Server(mode, true, statebuffer));

3. rawJEM.setJEMPriority(thread, 26); // thread priority; thread.start();

 149

9.3.2.6 Monitor

Most communication across the network was designed to be connectionless in

order to allow easy changes on the network. However, the system coordinator needed at

least one connection-oriented link to serve as the life-line for emergency calls from the

IMC, encoder readings and synch signals.

Analysis

The Monitor class should have the following attributes and functionality:

• The class implements TCP socket communication with the system coordinator and has

methods to send and receive data.

• The priority level of an object of this class should be adjustable for high and low

priority messages.

Design

The following describes the design of the Monitor.class.

• The Monitor class inherits its server socket communication method from

TCPServer.class in the com.IMC.network package.

• The class is not implemented as a thread therefore its priority is not static. Rather,

threads invoking a synchronized method of its object use a low-level method in the

aJile API, to raise their own thread priority to a specified ceiling level. After returning

from the synchronized method, the priority is restored to the priority prior to invoking

the method.

Examples

The following examples show how the Monitor class methods may be applied.

1. Monitor monitor; //Monitor object

2.

3. // This procedure is used by an interrupt listener to send an emergency signal

4. com.ajile.jem.rawJEM.setCeiling(monitor,25);

5. monitor.sendEmergencyStop();

6.

7. //This is used by the Device class during synchronized- position-mode operations

8. monitor.send_flag(); //send a synch flag

9.

10. monitor.send_data(int data); //send encoder data

 150

9.3.2.7 EncoderReader

Analysis

• The EncoderReader periodically reads the encoder signal from the controller’s decoder

registry and dispatches it to the system coordinator.

Design

• The class uses the send_data method in the Monitor class to send signals by TCP.

• The class is implemented as a thread. Before invoking the send() command, it calls on

a synchronized method in the StateBuffer.class. If a higher priority operation is in

process, the send() procedure is temporarily suspended.

Implementation

The following shows part of the body of EncoderReader class.

1. public class EncoderReader extends Thread{

2.

3. public synchronized void run(){

4. while(true){

5. try {

6. statebuffer.get_monitorBusyFlag(); //call synchronized method

7. monitor.send_data(LM628.readPosition()); //send data

8. Thread.sleep(Data.encoderRepInt); //frequency provided by user

9. }

10. catch (Exception ex) {} }}}

9.3.2.8 Counter

The Counter class logs encoder positions in a buffer. The size of the buffer and

frequency of logs is determined by the user before motion commences.

Analysis

The class has the following attributes and functionality:

• Its integer array buffer should be protected from index or illegal exceptions to prevent

garbage generated by uncaught exceptions.

Design

• The array size is determined by the calling method.

• The logging method catches array exceptions locally.

Implementation

The following is the logging method of the class.

1. public class Counter {

2.

3. public static void posCounter() {

 151

4. try {

5. position[index] = LM628.readPosition();

6. index++;

7. } catch (ArrayIndexOutOfBoundsException ex) { } }}

8. A typical invocation of the above method is as follows.

9. int logCounter = in_packet.readInt(); //read user-defined buffer size

10. Counter.position = new int[logCounter]; //set counter size

9.3.2.9 MainClass

The MainClass is the first to be executed. Its functionalities and attributes are as

follows:

• It is responsible for instantiating and starting most of the coordinator threads,

including StateCoordinator.class, MultiCasted_States.class and Device.class.

• It sets the controller’s timer or clock.

• It starts a web server.

• It logs on to a time server to set JStick’s wall clock.

9.3.3 Driver Abstractions

The driver component is responsible for all low-level operations related to

hardware switches, I/O and the motion controller. Most of the functionalities of its sub-

components have already been described in Chapter 4. Table 9.4 lists the drivers and a

brief description of each. The interfaces are given in Appendix B4.

Table 9.4: Driver Component

Driver Component Description
LM628

Contains methods to directly control the motion controller

HSIO_Driver Driver for High Speed I/O operations between the controller
and the JStick

Board_Clock Enables/disables the board clock

JStickTimer_tc2 Programmable timer

LM628_Interrupt Receives and services hardware interrupts from the motion
controller

LimitSwitch Limit switch drivers

Reference_Switch_Driver Reference or home switch driver

GPIOPinA3 Digital I/O for external purposes

 152

9.3.4 Network Abstractions

The network sub-components are designed to be base classes for all required

Ethernet connections. A description of each class is given in Table 9.5.

Table 9.5: Network Component

Network Component Description
DatagramServer Creates Datagram Server Sockets

MulticastServer Creates Multicast Server Sockets

TCPServer Creates TCP Server Sockets

9.3.4.1 DatagramServer

The DatagramServer class provides the tools for all classes seeking to build a

datagram server connection.

Analysis

The following are the attributes and functionality of the class.

• Connections made should be memory efficient.

• The class should leverage the creation of multi-server connections.

Design

• The class uses a memory efficient DatagramConnection method from aJile’s API, and

optionally provides standard connection methods in the J2ME network API.

• The class is instantiated with a server port number to allow multi-server connections.

Implementation

The interface is outlined in Appendix B5. A multi-server connection is simply

established as follows.

1. DatagramServer server1 = new DatagramServer(int port_1);

2. DatagramServer server2 = new DatagramServer(int port_2);

3. DatagramServer server3 = new DatagramServer(int port_3);

9.3.4.2 MulticastServer

The MulticastServer class provides tools for multicast connections.

Analysis

The following are the attributes and functionality of the class;

• Connections established are memory efficient.

 153

• The class method handles the protocol for joining multicast groups.

Design

• The class uses a memory efficient MulticastConnection method from aJile’s API as

opposed to the standard connection method in the J2ME network API.

• The class implements methods to join or leave a multicast group.

Implementation

The interface is outlined in Appendix B5. A multi-server connection is established

as follows;

1. MulticastServer server = new MulticastServer (String address, int port);

9.3.4.3 TCPServer

The TCPServer class provides the tools for building TCP multi-socket

connections.

Analysis

The following are the attributes and functionality of the class;

• Connections established are memory efficient.

• The server connection waits to accept and open a connection with a client before

releasing control of its socket to the implementing class.

Design

• The class uses a memory efficient StreamConnectionNotifier method from aJile’s API

and also provides standard connection methods in the J2ME network API.

9.3.5 User Interface and Plug-And-Play Abstractions

Man-Machine Interface: If an embedded system has a man-machine
interface, it must be specifically designed for the stated purpose and must be easy
to operate. Ideally, the use of intelligent product should be self-explanatory, and
not require any training or reference to an operating manual (Kopetz, 1996).

The architecture provides a rich set of tools for PnP and man-machine interactions,

transforming the otherwise black-box-like IMC modules into intelligent open modules.

Using Java servlet technology, users can login to each IMC and view or change

configurations and network services with a web browser. All sensitive transactions are

password protected. The architecture uses Tynamo (Silverman, 2004) as the platform for

building all servlets. Tynamo is one of the few ultra-concise web-servers designed

 154

explicitly for embedded Java platforms. Before describing the sub-components, the

following sections explain the underlying protocols leveraging these services.

9.3.5.1 Servlet Technology

Servlets are reusable Java applications which run on response/request-oriented

web server. The server loads and executes the servlets, which accept zero or more requests

from clients and return data to them. Functionally, they are similar to CGI scripts, but

more platform-independent. A few of the many applications of servlets include the

following;

• Servlets can process data posted over Https using an HTML form.

• Servlets can accommodate multiple requests concurrently to allow collaboration

between multiple users.

• Servlets can forward requests to other servers and servlets in order to balance load

among servers or partition a single logical service over several servlets.

There are two types of servlets:

1. Generic servlets are protocol independent, implying that they contain no built-in

support for any transport protocols such as HTTP.

2. HTTP servlets support the HTTP protocol and are more relevant in web browser

environments.

When a server loads a servlet, it runs the servlet’s initializer method, init(), only

once. The init method may be overridden when developing the servlet. Afterwards the

servlet may handle client requests in its service method. The service method supports

standard HTTP/1.1 requests by assigning each request to a designated method. When

designing servlets, the following methods in the HttpServlet class may be overridden.

• doGet, for servicing HTTP GET, conditional GET and HEAD requests.

• doPost for handling HTTP POST request.

• doPut for handling HTTP PUT request.

• doDelete for handling HTTP DELETE requests.

The above methods take two arguments: The first, HttpServletRequest,

encapsulates the data from the client, while the second, HttpServletResponse, embodies

the response to the client. An HttpServletRequest object provides access to form data,

cookies, session information, and URL name-value pairs. See Sun Microsystems (1999),

 155

Berners-Lee et al (1996), and HTML 4.0 (1998) for more information on servlet

technology, HTTP/1.1, and the HTML specification respectively.

9.3.5.2 The JmDNS Protocol

The JmDNS protocol was designed for standard Java (J2SE). Hence, over fifty

method calls and procedures had to be modified or replaced in order to port it to the Java-

CLDC profile running on the IMC controllers. All classes that dealt with network issues

derived from java.network package, were substituted with CLDC equivalents or low-level

detour methods. Many other classes like ThreadGroup, Iteration, etc not found in the

CLDC package were substituted with other methods. The protocols were embedded in the

IMC servers (servlets to be specific) to enable a web-based approach to register and

discover services, and allow users to view and change configurations. The sub-

components constituting the user interface and PnP (automatic configuration) are listed in

Table 9.6. The interfaces are outlined in Appendix B3.

Table 9.6: Servlets Component

Servlets Component Description
JmDNS_Coordinator Implements JmDNS to register IMC services and discover

specific services

ConfigureDevice Creates a web-based interface for configuring the IMC

EditJmDNS Creates a web-based interface for configuring the JmDNS
services

PositionDump Creates a web-based interface for viewing position logs

ControllerInfo Creates a web-based interface for viewing info on the IMC

ShutdownServlet Web-based interface for shutting down the web server

9.3.5.3 JmDNS_Coordinator

The JmDNS_Coordinator encapsulates the JmDNS protocol and is one of the first

programs to be executed at runtime. Below are the attributes and functionality of this

class.

 Analysis

• It is a servlet class and auto-started by the server.

• The class uses JmDNS to register services and discover specific services.

• Listeners continue running to detect changes on the network.

 156

• The class removes registered services (local) when the IMC stalls or shuts down.

• The servlet posts information on a web service.

Design

• The class is designed as an HTTP servlet.

• The server is pre-configured to auto-start or load this servlet when the IMC node is

started.

• Its init method embodies methods to register and discover services; therefore this is

done automatically at runtime.

• A listener thread is kept alive to detect services added or removed.

• Discovered services are posted on to the com.IMC.database package.

• The servlet provides a doGet method to post information in HTML format on a web

browser.

Implementation

The init method of the servlet is as follows:

1. public void init(ServletConfig config) throws ServletException

2. { super.init(config);

3. try{

4. //set HOST name in JmDNS

5. JmDNS.DEFAULT_HOST_NAME="JStick-"+Data.DEVICE_NAME;

6. jmdns = new JmDNS();

7. listenerVector =new Vector(); // stored info. on services to be discovered

8. }

9. catch (IOException e) { }

10. discoverJmDNS(); //invoke method to discover services

11. //don’t register services if controller needs to be initialized

12. if(!Data.initializeController){

13. registerJmDNS();

14. }

15. }

The servlet has an inner class that implements the JmDNS listener. The skeletal

illustration is as follows:

120. static class Listener implements ServiceListener {

121.
122. public void serviceAdded(ServiceEvent event) {

123.
124. //detect supervisor

125. if (type.startsWith("_supervisor._tcp.local.")) {

126.
127. }

128. //detect registered devices

129. if (type.startsWith("_device._pid")) {

 157

130.
131. }

132. //detect services removed

133. public void serviceRemoved(ServiceEvent event) { } }

9.3.5.4 ConfigureDevice

A class was needed to access and display configuration parameters and allow users

to make changes. The attributes and functionality of the ConfigureDevice class are

described below.

Analysis

• The class implements a servlet to publish the configuration of the IMC in HTML

format.

• The IMC configuration parameters such as screw-pitch factor, encoder resolution, etc

can be changed by users by means of this servlet.

• The servlet is protected to allow only authorized users to configure the device.

Design

• The class is designed to read configuration parameters from configuration files,

present them in HTML format, and save changes to these files to persistent memory.

• The class is structured to extend com.qindesign.servlet.AuthenticatedHttpServlet

within the Tynamo API to provide security methods.

• The class design overrides the following methods:

o doGet to auto-generate HTML forms and handle doPost requests

o doPost to auto-generate HTML forms and handle doGet requests

o doUnauthorizedGet to handle unauthorized HTTP GET requests.

o doUnauthorizedPost to handle unauthorized HTTP POST requests.

o getRealm to get the realm based on the request.

o isAuthorized to check if the given user/password is authorized in the given realm.

Example

Typical configuration browser displays when a client user queries the

ConfigureDevice servlet are shown in the Figs. 9.2 and 9.3.

 158

Figure 9.2: IMC Configuration Servlet II

Figure 9.3: IMC Configuration Servlet II

 159

9.3.5.5 EditJmDNS

When a new service is added to an IMC programmatically, and this has to be

announced to the network domain, the services have to be included in the list of services to

be registered. Similarly, new services to be discovered have to be included in the service

discovery list. The class implemented to handle this responsibility is described below.

Analysis

The class has the following attributes and actors:

• The class implements a servlet to publish registered and discovered JmDNS services in

HTML format.

• An HTML based form is provided for users to edit, delete or add services.

Design

• The class is designed to read JmDNS data from a file and present them in HTML

format and also save changes to files.

• The class uses collaborative executions of doPost and doGet to display a hierarchy of

HTML forms at the prompt of the user.

Example

Examples of the interfaces generated by the EditJmDNS servlet are shown in Fig.

9.4 and 9.5 below.

Figure 9.4: JmDNS Service/Discovery Browser

 160

Figure 9.5: JmDNS Service/Discovery Editor Webpage

9.3.5.6 PositionDump

The servlet technology employed makes it possible to remotely monitor devices on

a web browser. This section describes the design of a class for this purpose.

Analysis

The attributes and functionality of the class are as follows:

• Encoder readings are periodically posted to the servlet.

• The servlet posts a history (log) of encoder data.

• The servlet encapsulates readings in HTML format in its doGet method.

Design

• Objects of EncoderReader and Counter in the com.IMC.coordination package are

created to capture real-time and logged encoder data.

• Encoder readings are wrapped in HTML format in the servlet’s doGet method.

9.4 The System Coordinator Domain

The System Coordinator domain handles all supervisory activities to guarantee the

appropriate execution of tasks on the IMC controllers. All high-level tasks and commands

are generated in this domain. These include human-machine interactions, system

configuration, and Meta tasks such as “complex” inverse kinematics, which cannot be

 161

handled by the IMC nodes or the real-time coordinator. Table 9.7 shows the packages in

this domain.

Table 9.7: System Coordinator Software Packages

Package Description
com.coordinator.GUI Abstracts the Human-Machine Interface

com.coordinator.coordination Protocols for commanding and coordinating activities

com.coordinator.database Temporary and Permanent Global Repository

com. coordinator.interpolation Abstracts interpolation and kinematics algorithms

com. coordinator.network Abstracts protocols for communication

9.4.1 The Graphical User Interface (GUI)

The GUI component contains programs which construct graphical interfaces for

viewing, editing and sending commands to the IMC hosts. Table 9.8 lists the sub-

components in this package and brief descriptions. The interfaces are outlined in

Appendix C4.

Table 9.8: GUI Component

GUI Component Description
MainApplication Main program for starting the User Interface

MainGUIFrame Presents the main GUI

TrajDataFrame Constructs the GUI for viewing and editing motion parameters

TrajTable Displays a table for constructing trajectories

PIDTable Presents a table for viewing and editing PID parameters.

9.4.1.1 MainApplication

Since there can be only one “main method” in a Java application, the

implementing class becomes the trigger point for the execution of the entire application.

This section describes the design of the class starter.

Analysis

The attributes and actors of the MainApplication are as follows:

• The MainApplication starts all network applications and a JmDNS implementation to

discover and register services on the network.

• This class also instantiates the main graphical user frame.

 162

Design

• The MainApplication constructor is designed to create objects of classes encapsulating

network connectionless protocols such as DatagramSender and MulticastSender. At

the time of the execution of this class, it is assumed that the connection parameters of

the IMC hosts are not known.

• The JmDNS coordinator is instantiated in this class before its lifecycle ends.

9.4.1.2 MainGUIFrame

A graphical user frame provides a user-friendly man-machine interaction. This

section describes the main GUI frame for this purpose.

Analysis

The features and functionality of the class are as follows:

• The main GUI provides a self-explanatory graphical frame for users to explore the

various functionalities of the system.

• The graphics show all registered IMC devices and graphical methods to logon to their

web servers.

• The graphical frame shows real-time encoder readings sent by the registered IMC

devices.

• The graphics provide tools and links to send control signals and parameters and also

shutdown specific or all IMC devices.

Design

• The class is designed with Java graphical API tools in the javax.swing and java.awt

packages and layout features from the Borland JBuilder’s, com.borland.jbcl.layout

package (JBuilder, 2005).

• The interface amalgamates all registered IMC hosts into one console, thus emulating a

centralized system.

• The design provides links to other graphical tools to edit or create motion commands.

Implementation

The diagram (Fig. 9.6) below illustrates the main GUI browser.

 163

Figure 9.6: Main GUI Browser

9.4.1.3 TrajDataFrame

The TrajDataFrame class provides a graphical tool for editing motion trajectory

parameters from saved files or creating new trajectories.

Analysis

The TrajDataFrame class embodies the following features and attributes.

• The class projects a user-friendly interactive environment for selecting the trajectory

type, configuration, and mode of interaction with the IMC hosts.

• The class provides an editor for creating or editing motion trajectory or commands.

Design

• The design of the class is based on Java graphical API tools.

• The class reads or writes user-provided data to the system coordinator’s database.

Implementation

An example of a graphical frame generated by the class is shown in the figures

below. Figure 9.7 shows the configuration window for NC Code. Figure 9.8 illustrates

trajectory set-points including via-points generated offline by the user.

 164

Figure 9.7: Trajectory Editor I

Figure 9.8: Trajectory Data and Configuration Browsers

 165

9.4.1.4 TrajTable and PIDTable

The TrajTable and PIDTable classes have similar attributes; both add methods

from the javax.swing.table package to standard graphical methods described above to

generate editable tables. TrajTable may be used to create new trajectories for position,

velocity and synchronized position modes. Figure 9.9 shows a trajectory table for creating

motion profiles for up to six end-device axes. PIDTable on the other hand may be used to

generate new PID filter values for the IMC devices. Figure 9.10 illustrates the graphical

table for editing PID settings.

Figure 9.9: Trajectory Editor Frames

Figure 9.10: PID Filter Parameter Editor

 166

9.4.2 Coordination Abstractions

The coordination component mirrors that of the IMC nodes. The sub-components

in this package are listed in Table 9.9 and the interfaces are provided in Appendix C2.

Table 9.9: System-Coordinator Coordination Components

coordination Component Description
JmDNS_Coordinator Implements JmDNS to register services and discover specific

services

JmDNS_Event_Server JmDNS_Coordinator calls this class to service events
received

ControllerIO Relays user commands in the GUI to the communication
layer

Monitor Receives IMC sensor data and messages by TCP

SynchFlag Coordinates trajectory in synchronized-position mode

Trajectory_Server Streams trajectory commands to IMC hosts

9.4.2.1 JmDNS_Coordinator and JmDNS_Event_Server

The JmDNS coordinator collaborates with JmDNS counterparts running on the

IMC to create a unified system configuration with no user-intervention. At the start of

execution, the system coordinator makes no assumption about the network configurations

and services provided by the IMC hosts. It multicasts its own service parameters and

executes a listener for IMC services. When service parameters are received, encapsulated

network data such as IP addresses are extracted and utilized for connections with the IMC

hosts.

Analysis

The functionality and attributes of the classes are as follows:

• The JmDNS_Coordinator class uses JmDNS to register the system coordinator on the

network.

• The JmDNS_Coordinator class calls JmDNS_Event_Server to fire its listeners to

detect incoming JmDNS events on the network and service them accordingly.

Design

• Like in the case of the IMC, the JmDNS_Coordinator and JmDNS_Event_Server are

designed to implement JmDNS to register and discover services respectively.

• The JmDNS_Event_Server is designed to service the following events:

 167

o When an IMC controller service is detected, the device name is posted to its spot

on the main graphical user interface and its IP configuration is mailed to a

database. Subsequently, a client TCP thread is activated to connect with its TCP

server.

o When an IMC web service is detected, a corresponding “web” button is enabled

on the user interface to allow the user to access its web-pages.

o IMC multicast information detected are mailed to the database.

• IMC devices disconnected from the network are removed automatically.

• The JmDNS_Event_Server listener thread is kept alive to detect service changes on the

network.

9.4.2.2 ControllerIO

The ControllerIO class interprets signals and commands from the graphical user

interface and prepares them to be sent to the IMC hosts through the communication

interface. The ControllerIO therefore plays the role of a resource controller.

Analysis

The attributes and functionalities of the class are enumerated below.

• The class transforms all real-world representations to forms which can be understood

by the IMC hosts. For example, commands like “run”, “home position” make sense in

the concrete world but not in the IMC realm.

• The class connects or matches commands and data to the appropriate communication

channel.

Design

The class is designed as follows:

• During the controller commissioning process, the system coordinator’s database is

rehashed with connection and command information about the IMC subsystem. The

IMC names are used to retrieve specific command keys.

• The class is designed to inherit a datagram client socket to connect with the various

IMC datagram servers.

 168

Implementation

The following is an example of how a jog command is sent to the controllers. The

jog method below is called when a jog button is clicked in the graphical user interface. For

example, the jog button for AXIS 1 executes the method following which in turn calls the

corresponding method in the ControllerIO class;

1. void axis_1Go_actionPerformed(ActionEvent e) {

2. controllerIO.jog("AXIS_1", "run");

3. }

4. public class ControllerIO extends DatagramSender{

5.

6. public void jog(String device, String flag) {

7.

8. for (int i = 0; i < DEVICES.length; i++) {

9. try {

10. if (device.equals(DEVICES[i]) | device.equals("ALL")) {

11. trajectory(AXIS_TRAJ[i][0], AXIS_TRAJ[i][1], AXIS_TRAJ[i][2],

12. getDeviceIP(DEVICES[i]),

13. getDevicePort(DEVICES[i]), getControlFlag(flag));

14. }

15. }

16. catch (Exception ex) { } }}

17. }

The method getControlFlag(flag)) above is invoked from Data.class to retrieve

the command key from a hash-table.

9.4.2.3 Monitor

The Monitor class is the client version of the Monitor class on the IMC hosts. A

Monitor thread is created when an IMC is detected on the network. The thread then makes

a request for a TCP connection with the server in order to receive emergency signals,

encoder readings and synch signals.

Analysis

The Monitor class has the following attributes and functionality:

• The class implements a TCP client socket communication.

• Encoder readings are made available to the graphical user interface and any high level

controller implemented.

Design

The following describes the design of the Monitor.class.

• The Monitor class derives a client communication socket from TCP_Client class in the

com.coordinator.network package and is implemented as a thread.

 169

• Messages received are channelled to the data repository, graphical display or controller

depending on the value of the flag prefixed to the data.

Examples

The example below shows how the Monitor thread coordinates synchronized-

position-mode motion within its thread body.

1. public void run() {

2.

3. switch (readFlag) {

4. case 1: {

5. //increment synch counter when a trajectory-end flag is received

6. Synch.put_flag(1);

7. //if number of flags = number of threads (IMC hosts) send run command

8. if (Synch.get_flag() % Synch.get_threads() == 0) {

9. ControllerIO.setMulticast("run"); }

10. break; } } }

The Synch class is used as a repository for flags received from all Monitor threads

during this type of motion s follows;

1. public synchronized void put_flag(int i) {

2. synch = synch +i;

3. notifyAll();

4. }

5. //When a Monitor thread is created a thread-counter is incremented in the Synch class

6. public synchronized void put_threads(int i) {

7. threads += i; //thread counter

8. notifyAll();

9. }

10. //Method returns the number of synch flags received

11. public synchronized int get_flag() {

12. return synch;

13. }

14. //Method returns the number of Monitor threads

15. public synchronized int get_threads() {

16. return threads;

17. }

9.4.2.4 Trajectory_Server

The Trajectory_server class communicates trajectory data to the StateCoordinator

of each IMC.

Analysis

The attributes and functionalities of the class are as follows:

• Large chunks of trajectory data are sliced into conveniently small pieces, packaged in

datagram packets and sent over the network sequentially.

 170

• The class negotiates with the IMC coordinators in order to ensure the integrity of data

congruity.

Design

• The class is designed to have a handshake policy with each IMC. Therefore one class

thread is created for each IMC. When a packet is sent, the thread switches to a

blocking receive-state to receive a ready signal from the IMC. The next packet is then

sent. This cycle continues until all the data is sent or the process is interrupted by a

high level command.

9.4.3 The Database Abstraction

The database abstracts sub-component which are designed to store persistent and

most transient data. Table 9.10 lists the sub-components and their descriptions. Their

respective interfaces are outlined in Appendix C1.

Table 9.10: System Coordinator Database Sub-Components

Database Component Description
Data Network, configuration and program data and access

mechanisms

JmDNS_DATA Repository for JmDNS services

Traj_Configuration_Data Stores trajectory configuration data

GCodeParser Parses NC code into machine readable format

GCodeSender Sends NC code to the real-time interpolator

9.4.3.1 Data

The analysis and design of the Data class is described in this section.

Analysis

• The Data class stores all persistent data except trajectory and JmDNS data.

• The class contains robust mechanisms to store and retrieve data, even when changes

are unanticipated.

Design

• The Data class is designed to use the static modifier for all persistent data.

• System commands and IMC information are placed in hash-tables and retrieved with

keys. For example, when a device is registered, its IP address is put in an IP hashtable

 171

and the device name becomes the key to retrieving the address. Since this credential is

not hard-coded, changes have no ramification on calling methods.

Example

An example of a method in the Data class is illustrated below;

1. public static void putDeviceIPInfo(String deviceName, String IP_Address, int port)

2. throws Exception {

3. hashIP.put(deviceName, IP_Address);

4. hashPort.put(deviceName,new Integer(port));

5. }

9.4.3.2 JmDNS_DATA and Traj_Configuration_Data

All JmDNS data to be registered and discovered are stored in the JmDNS_DATA

class as arrays. The JmDNS coordinator extends this class to get access to this data. The

Traj_Configuration_Data class handles user-defined trajectory configuration parameters

such as acceleration, interpolation periods, etc. These are held in arrays and stored in a

configuration file defined by the user.

9.4.3.3 GCodeParser

NC machine code is usually written in a text format. The GCodeParser performs a

syntax check on an NC G code file and transforms it into a data structure, which is suitable

for an interpolator. This section describes the design of the parser.

Analysis

The attributes and functionalities of the GCodeParser are as follows:

• The class reads a typical G code file and eliminates all non-motion related ASCII

characters and comments.

• Meaningful tokens are sequenced and end of command lines are properly delimited.

• The results are saved in binary format.

Design

• The class is designed to use a combination of a file read pointer

(DataInputStream.readLine) and a read marker (DataInputStream.mark) to search

from the beginning of the file to the first command line, i.e., the first occurrence of the

character N, n, G, or g followed by two digits. When the command line is detected, the

marker places the read pointer at the beginning of this line.

 172

• The G code is tokenized by this technique; the G commands are logically grouped into

motion commands (G00, G01, G02, G03, F, etc), G commands (G52, G91, etc), and

coordinates and federates (e.g., X2, F2, etc). When a motion command is read, it is

buffered and prefixed to every coordinate. When another motion command is read, the

previous command is replaced by the current, and so on.

• All white spaces are removed and end-of-lines are delimited. The file is saved in

ASCII binary big-endian format.

Example

The following typical G code for linear interpolation,

1. NRC: Footprint: 70x70x30 mm, IN METRIC UNITS

2. N60 G00 G90 G54 X6.317 Y11.209

3. N80 G94 G01 X6.301 Y11.295 Z11.112 F2.5

4. N100 X6.290 Y11.301 Z11.152

is tokenized into the format below.

1. g90

2. g54

3. g0

4. x6.317

5. y11.209

6. g94

7. g1

8. x6.301

9. y11.295

10. z11.112

11. f2.5

12. g1

13. x6.290

14. y11.301

15. z11.152

9.4.3.4 GCodeSender

The GCodeSender is used to send G code commands to the real-time coordinator.

It extends the functionality of the GCodeParser and in addition calls a TCP client socket.

9.4.4 The Interpolator Component

The component described in this section is essential for all coordinated motion

profiles. It is responsible for generating set-points through interpolation and transmitting

these set-points. Set-points may be transmitted directly to the IMC hosts or through a real-

time coordinator. The Transmission and Transmission_ACK classes (Table 9.11) are

 173

responsible for the communication transaction. The rest of the section describes the design

and implementation of the interpolator.

Table 9.11: System Coordinator Interpolator Sub-Components

Interpolator
Component

Description

Interpolator Trajectory interpolation

Transmission Transmits set-points to controllers or real-time coordinator

Transmission_ACK Receives acknowledgement from real-time coordinator

Transmission_Flag Services acknowledgement flags

9.4.4.1 Interpolator

The interpolator design is based on the linear and circular interpolation algorithms

discussed in Chapter 7. The original code was written in C++, and later ported to the Java-

based IMC architecture for this research. The flow diagram of the Interpolator class is

shown in Fig 9.11.

 174

Figure 9.11: Interpolator Flow Diagram

The Interpolator class is instantiated with user-defined configurations.

Configurations include, the interpolation minimum period, the number of controlled axes,

acceleration/deceleration values, a Boolean to indicate whether motion profile should be

ramped (acceleration/deceleration regimes), and an object of the class implementing the

inverse kinematics of the controlled device. The system coordinator architecture, which

hosts this class, is designed to run on Microsoft Windows XP. However, since Java is

platform-independent, it is possible to run the system on other platforms – ideally a real-

time operating system. In the case of a real-time environment, set-points can be

G01 G02 , G03

Read G Code
Block

Open G Code
Fil
e

Read
Configuration

Call Linear
Interpolator

Call Circular
Interpolator

Send set-points

Call Inverse
Kinematic
s

Configuration
Number of axes

Interpolation period
Acceleration

Kinematics

 175

transmitted deterministically to the IMC hosts. However, in the absence of such an

operating environment, the IMC architecture provides a workaround by dedicating one of

the IMC hosts for real-time coordination such as streaming set-points.

9.4.5 Network Abstractions

The network abstraction is the complement of the IMC network abstraction.

Hence, communication components abstract client connections from this package to

request connections with corresponding servers on the IMC hosts. The abstraction

contains other classes to communicate with the real-time coordinator. The list and

description of the sub-components of this package are shown in Table 9.12.

Table 9.12: Network Package

Network Components Description
DatagramSender Transmits control flags and data to IMC nodes

McastDirect

This is used by Interpolator.class to multicast set-points
directly to IMC nodes

MulticastSender For sending state signals by multicast to nodes

TCP_Client Creates a TCP/IP data I/O stream socket

UDP_Client Creates datagram client socket and has methods to
transmit/receive data

9.5 The IMC Real-Time Coordinator

The real-time coordinator complements the system coordinator by providing

services which the latter may not be able to provide. Table 9.13 shows the packages in the

real-time coordinator. Only components in the first package will be discussed since the

last two are similar to aforementioned ones.

Table 9.13: Real-Time Coordinator Software Packages

Package Description
com.RTcoordinator.RTservices Contains real-time protocol services for coordinating with IMC

nodes

Kinematics.NRCTripod Contains inverse kinematics of the NRC Tripod

com.RTcoordinator.network A group of standard IP protocols

 176

9.5.1 Real-Time Services

The real-time services package includes abstractions for real-time streaming of

data, and clock synchronization. The package contents are listed in Table 9.14. The classes

with asterisks bear resemblances with ones already discussed, so a concise description of

them will ensue.

Table 9.14: Real-Time Service Components

Real Time Services Description
CommandReceiver Receives commands from the system coordinator

GCodeReceiver* Receives tokenized G Code from system coordinator and
stores values in local directory

Multicaster* Multicasts data to IMC nodes

Interpolator* Real-time interpolator

NetworkParameters* IP parameters

Network_Analyzer* Measures network latency

RTReceiver Receives data streams from System Coordinator

RTDistribute Streams data in real-time to IMC nodes

TCPReceiver Base class for TCP connections

TimeStamper Uses hardware timer to timestamp events

9.5.1.1 CommandReceiver

The CommandReceiver class establishes a server-client relationship with the

system coordinator through which various command flags are received. The command

structure is shown in Table 9.15. Descriptions of the analysis and design follow.

Table 9.15: Real-time Coordinator Command Structure

Command
Flag

Action to be Taken

0 Suspend interpolation thread

1 Release interpolation thread from suspend-mode

2 Reset/restart interpolation

3 Execute method/class to receive tokenized NC code, and store in persistent file.

4 Prepare interpolation thread to execute locally stored NC code. Interpolation
time, number of axes and acceleration value attached to packet.

5 Interpolation values streamed by system coordinator. Prepare threads to receive
data for real-time streaming to IMC nodes. Period attached to packet.

6 Start threads in 5 to receive and distribute data

7 Send contents of NC file

8 Invoke method to measure network latency

 177

Analysis

The attributes and functionalities of the CommandReceiver class are as follows:

• The class is made as generic as possible to allow reusability on other platforms.

• It responds to the various commands from the system coordinator listed above.

Design

For a generic design, implementation-specific methods are made abstract; the class

inherits a datagram socket from the network package, and is implemented as a standard

thread with the main loop in its run() method. Implementing classes may override

hardware-specific methods such as the creation of real-time threads.

Example

The prominent feature of the implementation of this class is the real-time thread

creation. The aJile CPU uses a cyclic executive model with preemption for real-time

periodic threads with a context-switch of 1 µs. The data structure for this model is a cyclic

array which is like a piano roll. The PianoRoll constructor provided in the aJile API,

establishes the Piano Roll's length (duration) and beat. The cyclic data structure is used by

the aJ-100 scheduler to keep the different periodic threads. An index pointer to the

structure is incremented for every beat time and if a periodic thread is scheduled for that

beat, it is executed. Below shows how the real-time threads for receiving (receiver object)

and streaming data (distributor object) are created.

1. void prepareDataStreamThreads(){

2. int n = 2;

3. int k = 0;

4. int T = period;

5. int beat = 1 * T;

6. int duration = n * beat;

7. int period = 1 * beat;

8. // max priority of the periodic threads:

9. int priority = 14; // use: 0 <= priority <= 14

10. int receiveroffset = 0;

11. int distributroffset = beat;

12. //setup FIFO buffers

13. InterruptSafeIntFifo buffer = new InterruptSafeIntFifo(num_axes * 5000);

14. InterruptSafeIntFifo periodbuffer = new InterruptSafeIntFifo(5000);

15. receiver = new RTReceiver(period, priority - 1, receiveroffset, buffer,

16. periodbuffer);

17. distributor = new RTDistribute(period, priority, distributroffset,

18. buffer, periodbuffer,msender);

19. pianoRoll = new PianoRoll(duration, beat);

20. }

 178

The network is analyzed once for a particular configuration.

9.5.1.2 GCodeReceiver

This class is instantiated to receive tokenized NC code from the coordinator via a

TCP/IP connection. The data stream from the connection is wrapped in a file output

stream for simultaneous data transfer to a created file.

9.5.1.3 Interpolator, Multicaster and Network_Analyzer

The Interpolator is similar to that of the coordinator, except that it is scheduled for

periodic real-time executions. The Multicaster class is invoked by the interpolator to

package and multicast data to the IMC nodes. The Network_Analyzer uses a datagram

socket connection to carry out several request-response transactions with each IMC nodes.

The average latency is then deduced and used to correct periodic schedules.

9.6 Conclusion

Details of the IMC software architecture have been presented in this chapter. An

object-oriented architectural style based on Java is used in order to benefit from the

inherent modular component properties this style provides. The architecture is

implemented on the three separate domains of the IMC architecture; i.e., the IMC nodes,

the system coordinator, and the real-time coordinator. Analysis, design, and

implementation details are provided for the components of each domain. The architecture

is designed from the onset to be modular, reusable, and easy to maintain. Hence

component-style techniques are used such as separation of hardware-specific or

implementation-specific components from generic components. Since Java is platform-

independent, with little modification, the implementation can run on different computing

platforms.

 179

10. SYSTEM EVALUATION

10.1 Introduction

System evaluation (and fine-tuning) is a very broad exercise which could pass for

another major research projects. Therefore, this chapter provides a brief evaluation based

on CNC requirements. This is one of the most stringent areas of application for IMC

architecture. A demonstration on a parallel kinematic machine is also illustrated.

Machine tools may be classified according to their time period for evaluating and

generating axes commands. This period is commonly referred to as the servo cycle period.

High performance controllers have servo cycle periods of less than 1 ms, while that of

medium performance controllers lie between 1 ms and 7 ms. Low performance controllers

have servo cycles greater than 7 ms. Most CNC machines for metal cutting fall within the

medium to high categories (Bellini, et al., 2003). In addition, a controller’s block

processing time reveals its ability to process geometric entities. For general machining, 10

ms (or less) is adequate. In contrast, high-speed machining requires a block processing

time of less than 2 ms. In view of these requirements, the distributed reconfigurable

controller is evaluated based on the following criteria:

1. Servo loop cycle time.

2. Communication latency.

3. Block processing time and real-timeliness.

4. Synchronicity and positioning accuracy.

5. Architectural flexibility.

10.2 Sampling Time and Communication Latency

The PID motion controller chip (LM628) on the IMC performs high speed

trajectory generation (including ramping and slewing) at a maximum sampling speed of

341 µs. This is the last and finest interpolation leading to commanding the axes drives. At

this speed, trajectory calculation takes 120 µs, PID filter calculation adds 66 µs delay, and

sample output latency is 13.3 µs. However, the output integrity of the motion chip may

 180

deteriorate if its trajectory generator is updated (externally) faster than 10 ms. The JSticks

which serve as the host to the motion control board communicates with the LM628 chip

via its 8-bit high speed I/O (HSIO). The HSIO’s timing is reconfigurable enabling us to

clock down from its maximum speed of 38.8 ns to 77.5 ns in order to meet the timing

requirements of the motion control chip. It takes five 8-bit words to command and load up

a set of trajectory parameters (velocity and position) into the LM628’s buffers.

Considering read/write delays, the total execution time for this is at most 500 ns. It is

therefore technically feasible for one JStick to host more than one LM628. At the moment

only one JStick is mapped to each of our motion boards. The hosts receive set points from

the interpolator every 10 ms and propagate them to the motion chips accordingly.

Communication is via Ethernet’s multicast protocol (UDP/IP). Since UDP has an

overhead of only 8 bytes, communication is very fast. With a payload of 8 bytes per each

set-point and a bandwidth of 10 Mbps, it takes theoretically 1.6 µs for a packet to reach

the communication interface of an IMC node. Accounting for jitter and processing time,

the maximum latency is approximately 4 µs.

10.3 Block Processing Time and Real-Timeliness

The interpolator runs on a computing platform (JStick) dedicated for real-time

coordination. The JStick platform executes real-time threads in a cyclic deterministic

manner. Thread context switch takes only 1 µs, thereby providing acceptable real-time

outputs. ISO G-code programs are loaded to the interpolator’s flash memory by Ethernet

from a GUI program running on a regular PC. The JStick’s flash speed is 90 ns and its

execution speed is 15 Mega bytecodes/s. To measure the average block processing speed,

G1 and G2 codes were executed on the platform. An average time of 1.5 ms was obtained

for 3-axis linear interpolation, and 2.0 ms for 2-axis circular interpolation. However, the

block processing time is constrained by the hardware limitation of the motion controller

chip to 10 ms as mentioned in the previous section.

10.4 Synchronicity

Synchronization is a critical issue with decentralized controllers. Three different

timing analyses were conducted on a 3-axis machine with the aid of a logic analyzer. Each

controller toggled one of its I/O pins just after executing its trajectory commands. The

 181

respective pin activity timings were logged by the logic analyzer. In the first test case,

there was no compensation for timing variations caused by network and processing delays.

The worst case delay, as shown in Fig. 10.1 was about 1 ms, and over 20% of the data fell

in this region. In the next test case, the clock synchronization scheme developed for the

architecture (see Chapter 7) was implemented. The worst case delay fell appreciably to 0.1

ms (Fig. 10.2). For even finer synchronization, the real-time coordinator was hardwired to

the IMC controllers by an interrupt line. Thus the sequence of events was driven by

interrupts from the real-time coordinator. The delay results are illustrated in Fig. 10.3.

Delays are highly repeatable in this case, but this configuration is not a true distributed

approach. This is illustrated to show the versatility of the architecture.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0ms 0.5ms 1ms

F
re

q
u

e
n

c
y
 (

%
)

Figure 10.1: Timing Variations-Uncompensated Delays

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0ms 0.05ms 0.1ms

F
re

q
u

e
n

c
y
(%

)

Figure 10.2: Timing Variations- Compensated Delays

 182

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 µs 10 µs 30 µs

F
re

q
u

e
n

c
y
 (

%
)

Figure 10.3: Timing Variation- Synchronization by Interrupts

10.5 Positioning Accuracy

Some position measurements are presented below to illustrate the performance of

the controller on a 3-axis machine. The machine is equipped with d.c. motors directly

connected to 5-mm pitch feed-screws and 360-line encoders (360 × 4 counts/rev). Thus

the BLU (Basic Length Unit) is approximately 0.003 mm. Figure 10.4 shows a zigzag

pattern move realized with a feed-rate of 900 mm/s. Figure 10.5 illustrates circular

interpolation with a feed-rate of 350 mm/s and a radius of 5 mm (1440 counts). The

trajectory errors associated with a 1-mm radius (288 counts), 5-mm radius and 25-mm

radius circular paths are shown in Figs. 10.6 to 10. 8.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000 30000 35000 40000

x- axis encoder counts

y
-
a
x
is

 e
n
c
o
d
e
r
c
o
u
n
ts

From Encoder Interpolator

Figure 10.4: Linear Trajectory

 183

-3000

-2500

-2000

-1500

-1000

-500

0

-2000 -1500 -1000 -500 0 500 1000 1500 2000

axis X encoder counts

a
x
is

 Y
 e

n
c
o

d
e
r

c
o

u
n

ts

Encoder readings Interpolator commands

Figure 10.5: Circular Trajectory – 5-mm radius

-12

-7

-2

3

8

-3.5-2.5-1.5-0.50.5

Angle (radians)

E
rr

o
r

(e
n

c
o

d
e
r

c
o

u
n

ts
)

commanded error actual error

 Figure 10.6: Radial Error – 1-mm radius

 184

-12

-7

-2

3

8

-3.5-2.5-1.5-0.50.5

Angle (radians)

E
rr

o
r

(e
n

c
o

d
e
r

c
o

u
n

ts
)

commanded error actual error

Figure 10.7: Radial Error – 5-mm radius

-11

-6

-1

4

9

-3.6-2.6-1.6-0.60.4

Angle (radians)

E
rr

o
r

(e
n

c
o

d
e
r

c
o

u
n

ts
)

Commanded Error Actual Error

Figure 10.8: Radial Error – 25-mm radius

The error patterns are very similar and bound by a maximum of about 11 counts.

Dry friction in the mechanical drives and interpolation approximations contribute

significantly to these errors. Blended moves are also very acceptable. In Fig 10.9, two

 185

linear and one circular interpolations followed by another linear interpolation are executed

in one trajectory path.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000

encoder counts

e
n

c
o

d
e
r

c
o

u
n

ts

interpolator commands From encoder

Figure 10.9: Combined Linear and Circular Paths

10.6 Architectural Flexibility

By virtue of the intelligent communication protocols and the modular nature of our

hardware and software architecture, flexibility is greatly enhanced. When machine (or

workstation) configurations such as the number of axes need to be scaled, control modules

are added to the network to match the number of axes. The protocols described in Chapter

6 automatically configure the network for such changes. The modular nature of the

software architecture makes it easy to add modules to accommodate changes. For

example, through software interfacing new algorithms for kinematics or interpolation can

be readily integrated. Figure 10.10 illustrates the simulation of the guide (slider)

movements of a parallel kinematic mechanism on a 3-axis table.

 186

-110

-90

-70

-50

-30

-10

2
0

1
1

8
0

2
3

4
0

3
5

0
0

4
6

6
0

5
8

2
0

6
9

8
0

8
1

4
0

9
3

0
0

1
0

4
6

0

1
1

6
2

0

1
2

7
8

0

1
3

9
4

0

1
5

1
0

0

Time (ms)

S
li
d

e
 d

is
p

la
c

e
m

e
n

t
(m

m
)

Axis 1

Axis 2

Axis 3

Figure 10.10: Tripod Slider Displacements

10.7 Conclusion

The architecture and development of a real-time modular controller architecture

for easy reconfiguration has been described and analyzed. The work demonstrates the use

of COTS components for cost-effectiveness and easy integration. The architecture allows

devices to discover themselves and search for services or broadcast their services using the

JmDNS protocol described in Chapter 5. The architecture may also be changed during

initialization for optimal performance depending on the decision of a master controller.

This broadens its range of application to other devices such as serial robots. Performance

results show a close match with medium performance controllers while providing rich

support for network connectivity.

 187

11. CONCLUSION AND DISCUSSIONS

11.1 Overview

This research has presented the design and implementation of a modular controller

for robot applications. The work progressed along two main directions. First, the field of

controller architectures was reviewed to determine the necessary philosophy and

components for a good design. Moreover, the requirements vis-à-vis shortcomings of

current designs were investigated. Second, a controller was designed based on modular

distributed concepts, off-the-shelf components, and reconfigurability. The design process

itself was a little more chaotic than it appears in this thesis. In retrospect, most of the

intermediary steps in the course of this project were reached before the requirement

analysis was exhausted. This rationale, also called rapid prototyping in some literature, is

quite suitable when dealing with a general problem space that is hard to model analytically

or has not been previously investigated. Quite certainly, many system designers will

intimate the same sentiments after attempting to mesh together seemingly conflicting

goals. Nonetheless, a good design is an inherently creative activity with a sense of

continuing finality.

A summary of the thesis chapters is provided in the following. In addition, the

major contributions are underscored. Finally, recommendations for future research

directions in the area of reconfigurable controller design are provided.

11.2 Summary of Results

The overall objective of this research was to design and implement a modular

reconfigurable controller prototype based on COTS components. The research objectives

were outlined in Chapter 1 and are repeated in summary form in Table 11.1.

 188

Table 11.1: Summary of Research Objectives

Primary Objectives

• Design a generic framework for a modular reconfigurable control
architecture.

• A simplistic design that fits into embedded low-cost systems.

• A working prototype.

Secondary Objectives

A critical review of the state-of-the-art in control architecture, distributed
communication paradigms, and reconfigurable networked systems.

A synchronization algorithm and protocols to enable Ethernet to be used for
real-time control.

An operational software architecture based on modularity and reusability.

Implementation and evaluation of the strengths of the prototype.

11.2.1 Control Architecture Review Summary

Chapter 1 emphasized the need for a well-conceived architecture and provided key

issues for designing control architectures. A broad review of some state-of-the-art

software and hardware architectures was provided. The review unveiled the ongoing

research of designing controller architectures with superior flexibility and greater

robustness to obsolescence than traditional ones. Certain concepts stood out in the

discussion as the key enablers of this vision. First modularity should be pervasive

throughout the design, in order to relax many constraints associated with traditional

controllers such as complexity. Among the many hardware and software approaches,

modularity based on off-the-shelf components and object-oriented techniques apparently

have many advantages. Second the architecture should possess a well-designed

communication framework that can support configuration changes. There is a dichotomy

between enhanced flexibility and performance. Therefore, this necessitates a well-

designed communication architecture to provide a good balance. Third, intelligence should

not be limited to the upper layers of a controller architecture hierarchy but distributed as

much as possible – ultimately to sensors and actuators. This approach improves flexibility,

fault-tolerance, and versatility.

 189

11.2.2 Recapitulation of the IMC Architecture

In Chapters 3 through 9, the IMC controller architecture was conceived and

developed. The architecture defined the functionalities of various levels of a distributed

layered-model. The concept also proposed embedding or dedicating a controller for each

machine axis, a loosely-coupled coordination scheme that can auto-configure to tight-

coupling depending on the need, and a network system that can accommodate these

requirements. Below is a summary of the salient properties of the architecture.

• A distributed architecture based on a reference (abstract) architecture that defines the

various hierarchical decompositions.

• Loosely-coupled architectural elements (software and hardware) for easy system

development and flexibility. This is primarily enabled by a modular hardware design,

networked elements, and an object-oriented software architectural style.

• Controller elements or nodes are designed to be plug-and-playable.

• Cooperation protocols were developed to separate real-time from non real-time data

flows.

• A clock synchronization model was developed to provide a global time base.

11.2.3 Prototype Development Summary

In Chapter 4, the strengths and weaknesses of Java for real-time control were

discussed. It was realized that Java potentially has several advantages over traditional C++

and Ada approaches. The main weakness of Java is that it was not originally designed to

service real-time systems, hence its relatively slow and non-deterministic response.

However, many measures are currently under way to develop real-time Java platforms. Of

particular interest to us is the advent of COTS-embedded Java hardware processors which

promise real-time computation. Consequently, in Chapter 5, a combined COTS Java-

processor based microcontroller (JStick) and motion controller boards were developed for

each machine axis and code-named IMC (Intelligent Modular Controller). Details of the

design procedure and timing analyses were discussed in this chapter.

11.2.4 Summary of the IMC Communication Architecture

Traditionally, Ethernet is used for non real-time communication because of the

non-deterministic nature of its underlying protocols. Nonetheless, it provides superior

 190

robustness to almost all other network communication standards. In Chapters 6, a case for

using Ethernet for real-time communication was presented. The primary reason was to

address the need to propagate this standard communication mechanism further to the

controller arena. Currently, this field is inundated by keen competition between rival

fieldbuses. Therefore, a typical industrial communication system (from enterprise level to

field devices) needs several mediator or middleware devices to create a virtually

homogenous environment. Obviously, this technology aggravates the complexity of the

system. In order to create a truly homogenous environment, a flexible Ethernet-based real-

time communication architecture with implicit clock synchronization was developed for

the IMC architecture. The following were the enabling concepts and technologies.

• An automatic configuration protocol based on JmDNS was developed to run on each

node. The protocol enables nodes to automatically subscribe for services they need and

also publish their own services

• A switched-Ethernet was used to segment the network and create one collision

domain per switch port.

• There are two main execution flows which run concurrently. A client-server

cooperation scheme is used for non real-time communication over the network,

particularly monitoring operations. In contrast, a producer-consumer model is used for

real-time communication. In addition, the latter provides greater flexibility than the

former.

• A dedicated real-time coordinator module was created to schedule hard-real time tasks

for the IMC nodes in a static cyclic periodic manner (time-triggered computations).

• External clock synchronization is not a singular activity but is concurrent with regular

cyclic communication flows.

11.2.5 Summary of Computational and Software Models

Chapter 8 provided an overview of trajectory generation schemes for different

mechanical platforms and the execution methodology developed for the architecture. The

discussions focused on algorithms that can be decomposed according to the number of

machine axes. Two fundamental interpolation schemes developed for the IMC system

were linear and circular interpolations. In Chapter 9, the development process of the IMC

 191

object-oriented software architecture was discussed. The architecture was designed and

implemented on a conceptual framework of reusability and modularity, and this was

empowered by component building blocks. The rationale behind this was to realize a

system that is easy to maintain and configure for different end-devices. The development

of components consisted of three major steps executed in a back and forth manner. First,

the problem domain and sub-domains were analysed. This resulted in a set of entities

(components) in the form of classes or objects, the relationship between these entities, and

their functionalities. The next step was the design phase, where decisions were made

based on the execution platform, the programming language and the operational

constraints. The third step was the software implementation. The entire framework

consisted of the IMC (axis-controller) domain, the real-time coordinator domain, and

system coordinator domain.

11.2.6 Summary of the Controller Performance

An evaluation of the performance of the controller architecture was presented in

Chapter 10. Table 11.2 shows a summary of the main evaluation results obtained. The

controller met the expectations of a medium performance controller with latitude for

tremendous improvement. The main limitation identified was the trajectory update rate of

the motion controller chips employed in the design of the IMC.

11.3 Research Achievements

The main contributions of the work presented in this thesis are as follows:

1. An Ethernet-based real-time communication architecture with implicit clock

synchronization. The technology also enables the controller sub-component design to

incorporate embedded web-servers for remote monitoring and system configuration.

2. The development and demonstration of a protocol for automatic configuration (i.e.,

PnP) of controllers and other embedded shop floor devices.

3. The design and implementation of a medium-performance flexible controller

incorporating the above on a homogenous Java software and hardware processor

environment.

 192

Table 11.2: Performance Evaluation Results

Evaluation Criteria Value

Maximum servo loop cycle time 341 µs

Communication latency 4 µs

Block processing time 3-axis linear interpolation: 1.5 ms
2-axis circular interpolation: 2.0 ms

Synchronicity Synchronization through network:
maximum jitter ≈ 1 ms

Synchronization by interrupt line:
maximum jitter ≈ 30 µs

Positioning accuracy Max. radial error on 25 mm circle: 0.03
mm (BLU ≈ 0.003mm)

Architectural flexibility Easy to add/remove axis
Quick adaptation to different mechanical

platforms

11.4 Discussions and Future Research Direction

The Java-processor (aJile) used in the research is still in its infancy stage. We

would like to see further development of this system and also other Java-based systems.

Currently, the stripped-down version of Java (J2ME) that aJile uses makes programming a

bit cumbersome. Moreover, a complete implementation of the real time specifications for

Java (RTSJ) will enable designers to have a richer suite of scheduling methods at the

kernel level. Presently, only fixed priority scheduling with preemption is supported by

aJile.

An implementation of the IEEE 1588 clock synchronization protocol on aJile-

based systems such as JStick is also greatly desired. This technology will require a more

sophisticated Ethernet system that is capable of autonomous communication: In this case,

control signals can be serviced directly by low-level communication protocols. This

capability will free up computing resources for high-level tasks.

There are research potentials in improving and extending the Zeroconf protocol to

networked factory-floor equipment and even network-centric field devices. This protocol

could mitigate the technical and time cost of reconfiguring machines.

 193

Demonstrative work performed to evaluate the architecture was not very thorough

due to time constraints. A full evaluation is necessary to characterize and tune various

aspects of the architecture such as the ones outlined below:

• For fault tolerance, an internal clock synchronization algorithm has to be incorporated

into the current external synchronization method.

• The software architecture has to be optimized for performance and openness.

• Implementation of generalized kinematics for a wide-range of robotic devices should

be investigated.

• At the moment, high-level control algorithms such as adaptive control or cross-

coupling control have not been implemented. Fault tolerant independent control is

definitely an interesting research area to be exploited.

• The motion control chips used on the controller board are fixed PID types. We will

like to see an upgrade with modern ASIC chips capable of handling more

sophisticated algorithms. However, these chips are quite expensive and susceptible to

obsolescence. Ultimately, we would like to develop a Field Programmable Gate Array

(FPGA) system that can be configured for different motion control requirements.

 194

REFERENCES

aJ-100 Reference Manual, aJile Systems, Inc., 2001.

Altintas Y, Manufacturing Automation Metal Cutting Mechanics, Machine Tool

Vibrations, and CNC Design, Cambridge University Press, 2000.

Altintas Y., N. Newell and M. Ito, Modular CNC Design for Intelligent Machining. 1.

Design of a Hierarchical Motion Control Module for CNC Machine Tools, Journal of
Manufacturing Science and Engineering, 1996; 118 (4), pp. 506-513.

Analog Devices, Microprocessor-Compatible 12-Bit D/A Converter, REV A, 2003.

Anceaume E. and I. Puauta, Taxonomy of Clock Synchronization Algorithms, Research
report IRISA, NoPI1103, July 1997.

Andrews G., Paradigms for Process Interaction in Distributed Programs, ACM
Computing Surveys, 23(1), Mar. 1991, pp. 49-90.

Atta-Konadu R., S. Y. T. Lang, P. Orban and C. Zhang, Design and Implementation of a

Modular Distributed Control Architecture for Robot Control, 14th International
Conference on Flexible Automation and Intelligent Manufacturing FAIM2004, July 12-
14, Toronto, Canada, 2004, pp 441-48.

Atta-Konadu R., S. Y. T. Lang, C. Zhang and P. Orban, Design of a Robot Control

Architecture, Mechatronics and Automation, 2005 IEEE International Conference, Vol. 3,
2005, pp. 1363- 68.

Atta-Konadu R., S. Y. T. Lang, P. Orban and C. Zhang, Performance Evaluation of a

Distributed Reconfigurable Controller Architecture for Robotic Applications, ASME
International Mechanical Engineering Congress and Exposition, Orlando Florida, 2005,
pp. 1627-33.

Bellini P., M. Buonopane and P. Nesi, Assessment of a Flexible Architecture for

Distributed Control”, Programming and Computer Software, Vol. 29, No. 3, 2003, pp.
147-160.

Benítez-Pérez H and F. García-Nocetti, Reconfigurable Distributed Control, Springer-
Verlad London Ltd, 2005.

Berners-Lee T., R. Fielding, H. Frystyk, Hypertext Transfer Protocol HTTP 1.0, RFC
1945, May 1996.

Birla S., D. Faulker, J. Michaloski, S. Sorenson, G. Weinert and J. Yen, Reconfigurable

Machine Controllers using the OMAC API, Proceedings of the CIRP 1st International
Conference on Reconfigurable Manufacturing , Ann Arbor, MI - May 01, 2001

CadSoft Computer, Inc., Eagle Version 4.16r1, 2003.

 195

C&D Technologies, DC-DC Converters Application Notes, C&D Technologies (NCL)
Ltd, 2000.

C&D Technologies, Product Data Sheet, HL02RrevD, 10/97.

Chen D. J., Architecture for Systematic Development of Mechatronics Software Systems,
Licentiate Thesis, Department of Machine Design, Royal Institute of Technology, KTH,
Sweden, 2001.

Chesney C., Which Bus Architecture Is Best for You? EE:-Evaluation Engineering, V 37 N
9 1998, pp. 12, 14, 17, 19.

Coste-Maniere E. and R. Simmons, Architecture, the Backbone of Robotic Systems,
Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San
Francisco, CA., vol.1, 2000, pp. 67-72.

Chadha B. and J. Welsh, Architecture Concepts for Simulation-based Acquisition of

Complex Systems, Summer Computer Simulation Conference, 2000.

De Luca A. and G. Oriolo, Trajectory Planning and Control for Planar Robots with

Passive Last Joint, The International Journal of Robotics Research Vol. 21, No. 5-6, 2002,
pp. 575-590.

Dhayagude N and Z. Gao, A novel Approach to Reconfigurable Control System Design,
Journal of Guidance, Control and Dynamics, Vol. 19, N04, 1996, pp 963-967.

Divelbiss A. W. and J. T. Wen, A Path Space Approach to Nonholonomic Motion

Planning in the Presence of Obstacles, IEEE Transactions on Robotics and Automation,
Vol. 13, No. 3, June 1997, pp. 443-51.

Dugenske A, A. Fraser, T., Nguyen and R. Voitus, The National Electronics

Manufacturing Initiative (NEMI) plug and play factory project”, International Journal of
Computer Integrated Manufacturing, 2000, Vol. 13, No. 3, pp. 225-44.

Feng-Li L., J. R. Moyne and D. M. Tilbury, Implementation of Networked Machine Tools

in Reconfigurable Manufacturing Systems, Proceedings of the 2000 Japan-USA
Symposium on Flexible Automation, Ann Arbor, MI, July 2000.

Fielding R. T., Software Architectural Styles for Network-Based Systems, PhD Thesis,
University of California, Irvine, 1999.

Finkemeyer B., M. Borchard and F. M. Wahl, A Robot Control Architecture Based on an

Object Server, Proceedings of the IASTED International Conference, Robotics and
Manufacturing, IASTED/ACTA Press, Calgary, Canada, 2001.

Fuggetta A., G. P. Picco and G. Vigna. Understanding code mobility, IEEE Transactions
on Software Engineering, 24(5), May 1998, pp. 342-361.

 196

Gaderer G., Höller R., Sauter T. and Muhr H., Extending IEEE 1588 to Fault Tolerant

Clock Synchroniztion, IEEE, 2004.

Garlan D. and M. Shaw. An Introduction to Software Architecture, Ambriola & Tortola
(eds.), Advances in Software Engineering & Knowledge Engineering, vol. II, World
Scientific Pub Co., Singapore, 1993, pp. 1-39.

Goktas F., Distributed Control of Systems over Communication Networks”, Ph.D Thesis,
University of Pennsylvania, 2000.

Guttman E., Autoconfiguration for IP Networking: Enabling Local Communication, IEEE
Internet Computing, 2001, pp. 81-88.

Hong K. S., K. H. Choi, J. G Kim and S. Lee, A PC-Based Open Robot Control System:

PC-ORC, Robotics and Computer Integrated Manufacturing 17 (2001) 355–365

HTML 4.0 Specification, W3C Recommendations, REC-html40 – 19980424, 1998.

Hunt S., LM628 Programming Guide, National Semiconductor Application Note 693,
1999.

JBuilder 2005, Borland Software Corporation, 2005.

James J. and McClain R., Tools and Techniques for Evaluating Control Architecture,
Proceedings of the 1999 IEEE International Symposium on Computer Aided Control
System Design, Kohala Coast-Island of Hawai’i, Hawai’i, USA, August 22-27, 1999.

Kapoor C., A Reusable Operational Software Architecture for Advanced Robotics, PhD
Thesis, The University of Texas at Austin, 1996.

Kim K. H., Im C. and Prasad A., Realization of a Distributed OS Component for Internal

Clock Synchronization in a LAN Environment, Proceedings of the 5th 1EEE International
Symposium on Object-Oriented Real-Time Distributed Computing, 2002.

Kopetz H., Ademaj A. and Hanzlik A., Integration of Internal and External Clock

Synchronization by the Combination of Clock-State and Clock-Rate Correction in Fault-

Tolerant Distributed Systems, Proceedings of the 25th 1EEE International Real-Time
Systems Symposium, 2004.

Kopetz H., Real Time Systems: Design Principles for Distributed Embedded Applications,
Boston, MA, USA: Kluwer Academic Publishers, 1997.

Kramer T. and M. K. Senehi: Feasibility Study: Reference Architecture for Machine

Control Systems Integration, NISTIR 5297, National Institute of Standards and
Technology, Gaithersburg, MD, 1993.

 197

Lee C. J. and C. Mavroidis, PC-Based Control of Robotic and Mechatronic Systems

Under MS-Windows NT Workstation” IEE/ASME Transactions on Mechatronics, Vol. 6,
No. 3, 2001., pp. 311-321.

Lee E. A., Embedded Software, Advances in Computers (M. Zelkowitz, editor), Vol. 56,
Academic Press, London, 2002.

Lian F. L., J. R. Moyne and D. M. Tilbury, Implementation of Networked Machine Tools

in Reconfigurable Manufacturing Systems, 2000 Japan-USA Symposium on Flexible
Automation July 23-26, 2000, Ann Arbor, Michigan, USA

Lin C. and C. S. G. Lee, Fault-Tolerant Reconfigurable Architecture for Robot Kinematics

and Dynamics Computations, IEEE Transactions on Systems, Man, and Cybernetics, Vol.
21, No5, 1991, pp. 983-99.

LM628/LM629, Precision Motion Controller, National Semiconductor Corporation
DS009219, 2003.

Lönn H, Synchronization and Communication Results in Safety-Critical Real-Time

Systems, PhD thesis, Department of Computer Engineering, Chalmers University of
Technology Göteborg, Sweden 1999.

Lönn H., Synchronization and Communication Results in Safety-Critical Real-Time
Systems, Chalmers University of Technology, 1999.

Lundelius J. and N. Lynch, An Upper and Lower Bound for Clock for Clock

Synchronization, Information and Control, 62(2/3), 1984, pp. 190-204.

Medvidovic N. and R. N. Taylor, A Classification and Comparison Framework for

Software Architecture Description Languages, IEEE Transactions on Software
Engineering, Vol. 26, No. 1, Jan. 2000.

Mehrabi M. G., A. G. Ulsoy and Y. Koren, Reconfigurable Manufacturing Systems and

Their Enabling Technologies, International J. of Manufacturing Technology and
Management, 2000.

Mohl D. S., IEEE 1588 - Precise Time Synchronization as the Basis for Real Time

Applications in Automation, Available at www.industrialnetworking.com, 2003.

Nesnas I., A Wright, M. Bajracharya, R Simmons, T. Estlin and W. S. Kim, CLARAty: An

Architecture for Reusable Robotic Software, 2003, pp. 253-264.

Nilsson J., Real-time Control System with Delays, PhD thesis, Dept. of Automatic Control,
Lund Institute of Technology PhD thesis, 1998.

Oaks S. and H. Wong, Java Threads, O’Reilly Media, Inc., 2004.

 198

Oldknow K. D. and I. Yellowley, Design, implementation and validation of a system for

the dynamic reconfiguration of open architecture machine tool controls, International
Journal of Machine Tools & Manufacture 41, 2001, pp. 795–808.

Orban P., R. Atta-Konadu, S. Lang, M. Verner and C. Zhang, Java-based Distributed

Control System for Reconfigurable Manufacturing, 3rd CIRP International Conference
on Reconfigurable Manufacturing, Ann Arbor, Michigan, 2005.

Pardo-Castellote G., Experiments in the Integration and Control of an Intelligent

Manufacturing Workcell, PhD Thesis, Dept of Electrical Engineering, Stanford
University, June 1995.

Passmore D., Zero Configuration Networks, Burton Group Research, Business
Communications Review, 2002, available at
http://www.burtongroup.com/promo/columns/column.asp?articleid=122&employeeid=56

Pedreiras P. and L. Almeida, Combining Event-Triggered and Time-Triggered Traffic In

FTT-CAN: Analysis of the Asynchronous Messaging System”, Proceedings of the 2000
IEEE International Workshop on Factory Communication Systems (WFCS'00). Porto,
Portugal: IEEE Industrial Electronics Society, 2000, pp. 67--75.

Reference.com, Zeroconf, Available at http://www.reference.com/browse/wiki/Zeroconf.

Rossignac J. R. and J. J. Kim, Computing and Visualizing Pose-Interpolating 3D Motions,
Computer Aided Design, 33(4):279–291, 2001.

Schickhuber G. and O. McCarthy, Distributed Fieldbus and Control Network Systems,
Computing & Control Engineering, Vol. 8, no. 1, pp. 21--32, Feb. 1997.

Schöberl M., JOP: A Java Optimized Processor for Embedded Real-Time Systems, PhD
Thesis, Vienna University of Technology, Austria, 2005.

Shaw M., Beyond Objects: A Software Design Paradigm Based on Process Control, ACM
Software Eng., Engineering Notes, Vol. 20, No 1, January 1995.

Shaw M., Comparing Architectural Design Styles, IEEE Software, Volume: 12 Issue: 6,
Nov. 1995, Page(s): 27 –41.

Shaw M. and D. Garlan, Software Architecture. Perspectives on An Emerging Discipline,
Prentice- Hall Inc., 1996.

Shaw M., R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnick,
Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, 21(4), Apr. 1995, pp. 314-335.

Silverman S., Tynamo-aJile Version 1.0-RC1, 2004.

 199

Somló J, B. Lantos and P. T. Cat, Advanced Robot Control, in Advances in Electronics,
Vol. 14, Budapest, Akademiai Kiado, 1997.

Sorensen A. S., Modular Control of Industrial Mechanics, PhD Dissertation, University of
Denmark, 2003.

Steinberg D. and Y Birk, An Empirical Analysis of the IEE-1394 Serial Bus Protocol”,
IEEE-Micro. Vol. 20 N 1 2000, pp 58-65.

Strandberg M., Robot Path Planning: An Object-Oriented Approach, PhD Thesis,
Automatic Control Department of Signals, Sensors and Systems Royal Institute of
Technology (KTH) Stockholm, Sweden, 2004.

Sun Microsystems, Java(TM) Servlet API Specification 2.2, 1999.

Systronix, JStik High Speed I/O Timing Diagram, Systronix, Inc., Rev 1.0, 2001.

Systronix, JStik™ Power & the JSimm Bus, Systronix, Inc. 2003.

Systronix, Technical Reference for Systronix JStik Realtime Native Java Network
Module, Systronix Inc., 2003.

Tanenbaum A. S. and R. van Renesse, Distributed Operating Systems, ACM Computing
Surveys, 17(4), Dec. 1985, pp. 419-470.

Tanenbaum A. S. and M. van Steen, Distributed Systems: Principles and Paradigms”,
Prentice Hall, 2002.

Thomesse J.-P, A review of the Fieldbuses, Annual reviews in Control 22, pp35-45, 1998.

Thomson, S. and T. Narten, IPv6 Stateless Address Autoconfiguration, RFC 2462,
December 1998.

Timing Designer, Pro v5.3 Datasheet, Forte Design Systems, 2003.

Topley K., J2ME in a Nutshell, O’Reilly and Associates, Inc, 2002.

Vyatkin V. V., J. H. Christensen and J. L. Martinez Lastra, OOONEIDA: An Open,

Object-Oriented Knowledge Economy for Intelligent Industrial Automation, IEEE
Transactions on Industrial Informatics, Vol. 1, No. 1, pp. 4-17, 2005.

Veríssimo P. and L. Rodrigues, Distributed Systems for System Architects. Boston, MA,
USA: Kluwer Academic Publishers, 2001.

Wang S. and Shin K. G., Reconfigurable Software for Open Architecture Controllers, In
Proceedings of the 2001 IEEE International Conference on Robotics & Automation,
2001, pp. 4090-94.

 200

Wang Z., Y. Song, J. Chen and Y. Sun, Real Time Characteristics of Ethernet and Its

Improvement”, Proceedings of the 4th World Congress on Intelligent Control and
Automation, China, 2002, pp. 1311- 1318.

Weck M., Handbook of Machine Tools Vol. 3, Automation and Controls, Wiley Heyden
Publication, 1984.

Wills L., S. Kannan, S. Sander, M. Guler, B. Heck, J.V.R. Prasad, D. Schrage and G.
Vachtsevanos, An Open Platform for Reconfigurable Control, IEEE Control Systems
Magazine, Vol. 21, No. 3, 2001, pp. 49-64.

Wittenmark B., J. Nilsson and M. Törngren, Timing problems in real-time control

systems, In Proceedings of the 1995 American Control Conference, Seattle, Washington
Control Conference, Seattle, Washington.

Yook J., D. Tilbury, K. Chervela, N. Soparkar, Decentralized, Modular Real-Time

Control for Machining Applications, In: 1998 American Control Conference,
Philadelphia, PA, June 24-26, 1998, Proceedings. Vol. 2 (A99-14618 02-63), Institute of
Electrical and Electronics Engineers, P 844-849, 1998.

Zimmerman H., OSI Reference Model - The ISO Model of Architecture for Open Systems

Interconnection, IEEE Transactions on Communications, 28, Apr. 1980, pp. 425-432.

 201

APPENDIX A. THE IMC HARDWARE

A1 IMC Motion Control Board Schematics

This section illustrates the IMC hardware schematics.

Figure A1: Motion Control Board (3.5mm x 3.2mm)

LM

H1

CLK

V2

V1

DAC

H2

T2

T5

V3

 202

Figure A2: LM628 Pin-out to Header (H1), and Clock

Title: IMC

Date: Oct 2004

Sheet: 1/5

LM628 Interface

 203

Figure A3: Encoder Interface and I/O to JStick SIMM Interface

Title: IMC

Date: Oct 2004

Sheet: 2/5

Encoder &I/O to SIMM

 204

Figure A4: AD667 DAC Interface with Logic Devices

Title: IMC

Date: Oct 2004

Sheet: 3/5

DAC Input (Digital)

 205

Figure A5: AD667 DAC Output Circuit

Title: IMC

Date: Oct 2004

Sheet: 4/5

DAC Output (Analog)

 206

Figure A6: Filters and Power Supply

Title: IMC

Date: Oct 2004

Sheet: 5/5

Power Supply to DAC

 207

Figure A7: IMC Ensemble

A2 IMC Controller BOM

This section shows the Bill of Materials (BOM).

Table A1: Bill of Materials (2004)

Part Value Device Package Price
(CND$)

C1 20pF Capacitor C1206 0.30

C2 0.1uF Capacitor C – 2.5 0.20

C3 0.1uF Capacitor C – 2.5 0.20

C4 0.1uF Capacitor C – 2.5 0.20

C5 0.1uF Capacitor C – 2.5 0.20

C6 0.1uF Capacitor C – 2.5 0.20

C7 0.1uF Capacitor C – 2.5 0.20

C8 1uF Capacitor C – 2.5 0.55

C9 1uF Capacitor C – 2.5 0.55

C10 1uF Capacitor C – 2.5 0.55

C11 0.1uF Capacitor C – 2.5 0.20

C12 0.1uF Capacitor C – 2.5 0.20

C12 0.1uF Capacitor C – 2.5 0.20

JStick

JSimm
Backplane

 208

Part Value Device Package Price
(CND$)

C14 10uF Capacitor C – 2.5 1.26

C15 0.1uF Capacitor C – 2.5 0.20

C16 0.1uF Capacitor C – 2.5 0.20

C17 0.1uF Capacitor C – 2.5 0.20

CLK 6 MHz Oscillator DIL08S 3.96

DAC AD667 12-Bit DAC
converter

PLCC28 11.87

DC-DC 1 Watt; 12VDC
+/ -15VDC

DC-DC
Converter

DIP 21.40

F1 0.1A hold Resettable fuse 0.68

F2 0.5A hold Resettable fuse 0.76

H1 2 x 15; 2mm Header DIL 2 mm 5.24

H2 2 x 15; 2.54mm Header DIL 5.00

JP1 3-pin Jumper 0.60

JP1 2 x 4 pin Jumper Dual straight 0.79

L1 143 Ohm Ferrite Bead Axial 3.51 2.62

L2 220 uH Inductor Radial 0.50

L3 220 Ohm Inductor Radial 0.50

L3 220 Ohm Inductor Radial 0.50

LM LM628 Precision
Motion
Controller

DIL28 35.20

PI 100 Ohm Potentiometer SIL 2.13

P2 100 Ohm Potentiometer SIL 2.13

RN 220/330 Ohm Resistor
Network

SIL6 0.74

T1 2 position Terminal block 3.81 mm 2.90

T2 8 position Terminal block 3.81 mm 9.40

T3 2 position Terminal block 3.81 mm 2.90

T4 6 position Terminal block 3.81 mm 7.10

V1 74377 D-Type FF SO20W 0.35

V2 7404 Hex Inverter SO14 0.22

V3 26LS32 Receiver S016 0.36

Total 163.46
PCB (with silk screen and masking) Onetime Setup Fee 121.00

Fee per PCB $7.49

Price for One Motion Control Board 291.94
Price for 6 Motion Control Boards 1146.70

 209

Table A2: IMC Microcontroller, Cables & Router (2003)

Product Approx. Unit Cost ($US)
JStick microcontroller 330.00

JStick backplane 97.90

Ribbon Cable and connectors 6.60

Ethernet Cable (CAT5) 7.70

Router (8 port) 99.00

A2 Motion Control Chips

Traditionally, two chips have dominated the embedded motion control and custom

built applications arena. They are the Agilent4 HCTL-1100, and the National

Semiconductor LM628 listed in Table A.1. The HCTL-1100 costs about US$ 49. The two

chips are very similar in their features and operations. The HCTL-1100 is 5V CMOS,

which makes it incompatible with JStick’s 5V TTL levels. Currently, many other motion

control chips are being introduced on the market to replace these aging ones. Table A35

gives a comparison overview of some popular ones.

4 The semiconductor branch of Agilent (formerly HP) is currently owned by Avago Technologies

5 Randy Frank, Design News, Sept. 13, 2004.

 210

Table A3: Comparison of Motion Control Chips

Company Description Motor Types1 Features Package Price (US)
Freescale
Semiconductor
56F8357

16-bit DSP/MCU
Hybrid (60MIPS
@ 60MHz),
76 I/O

ACIM, BDC,
BLDC, SRM,
VRM, and
Stepper Motors.
12 PWM outputs
(6 individually
programmable)

- 12 PWM
outputs (6
individually
programmable)
- 256K Flash
- Four 4-
channel, 12-bit
ADCs

160-pin
LQFP

$17.92 in
quantities of
1,000
Evaluation
Module ($299)

International
Rectifier
IRMCK201

AC Servo Motor
Control IC. Uses
external MCU or
host.
54 I/O

ACIM or ACPM
Servo Drive
System

- Space Vector
PWM with 12-
Bit resolution
- 128 x 8
EEPROM
- 4-channel, 12-
bit ADC

100-pin
QFP

$8.75 in qnties
of 10,000
Development
System
($1,999)

Performance
Motion Devices
Inc.
 MC58420

Motion Processor
with over 130
commands. Uses
external MCU or
host.
256 I/O

DC servo,
BLDC
Microstepping,
and Pulse and
Direction
Motors

- 10-bit 20 kHz
PWM or 160bit
DAC motor
control output

144-pin
TQFP

$14.75 per axis
in qnties of
10,000
Developer's Kit
($995)

Microchip
Technology
PIC18F4431

8-bit MCU (10
MIPS @ 40 MHz)
36 I/O

ACIM and
BLDC

- 8 Channels 14-
bit Power
Control PWM
- 16 KB Flash
256B EEPROM
- 9 channels of
10-bit ADC

44-pin
TQFP

Price: $5.20 in
qnties of 10,000
Development
Board ($299)

ST Micro-
electronics
ST7MC1

8-bit MCU
(8MHz)
60 I/O

ACIM and
BLDC

- 6 high-sink
PWM output
channels for
sinewave or
trapezoidal
control
- 24KB Flash
- 10-bit ADC
with 16 input
pins

64-pin
TQFP

Price: $2.86 in
qnties of 10,000
Starter Kit
($695)

Texas
Instruments
TMS320R2811

32-bit DSC
(150MIPS @
150MHz)
56 I/O

Servo Control - 2 Event
Managers each
with 16-bit
Compare/PWM
- 20K x 16-bit
SARAM
- 12-bit, 16-
channel ADC

128-pin
PBK

$9.11 in qnties
of 1,000.Kit
($495)

¹Abbreviations: ACIM (AC Induction Motors); BDC (Brush DC motors); BLDC (Brushless DC motors);
SRM (Switched Reluctance Motors); PM (Permanent Magnet); SARAM (Single Access RAM)

211

APPENDIX B: IMC SOFTWARE INTERFACE

The IMC domain is responsible for axis-specific activities such as joint control. In

addition, the domain contains many components for intelligent interaction with the rest of

the system. Table B1 summarizes the software packages and their corresponding classes.

The class interfaces are described in this appendix.

Table B1: IMC Software

Package Description Classes
com.IMC.database Network, configuration data and data

access methods
Data

PushPullData

FIFO

JmDNS_Coordinator_Data

FileServer_ConfigFiles

com.IMC.coordination Protocols for negotiating with system
coordinator

StateCoordinator

MultiCasted_States

Device

StateBuffer

Interpolation_Server

Monitor

EncoderReader

com.IMC.drivers Low level drivers for the
communicating with the LM628,
interrupt services, and digital I/O
drivers

HSIO_Driver

Board_Clock

JStickTimer_tc2

LM628_Interrupt

LimitSwitch

Reference_Switch_Driver

GPIOPinA

com.IMC.network Ethernet protocols DatagramServer

MulticastServer

TCPServer

com.IMC.servlets Web interface for viewing/editing
configuration and PnP mechanisms

JmDNS_Coordinator

ConfigureDevice

EditJmDNS
PositionDump
ControllerInfo

ShutdownServlet

212

B1 com.IMC.database
Class Data
public abstract class Data

Contains default and user defined network and motion device settings

Field Detail

public static final int DEFAULT_MULTICAST_PORT_NUMBER

public static final java.lang.String DEFAULT_MULTICAST_IP_ADDRESS

public static final java.lang.String PRIORITY_MULTICAST_IP_ADDRESS

public static final int DEFAULT_DATAGRAM_PORT_NUMBER

public static final int PRIORITY_MULTICAST_PORT_NUMBER

public static final int PRIORITY_DATAGRAM_PORT_NUMBER

public static final int DEFAULT_MONITOR_SOCKET_PORT

public static final java.lang.String DEFAULT_SUPERVISOR_IP

public static final int DEFAULT_ENCODER_LINES

public static int USER_ENCODER_LINES

public static final int DEFAULT_LIMIT_SWITCHES

public static int USER_LIMIT_SWITCHES

public static final java.lang.String[] DEFAULT_DEVICE_NAMES

public static java.lang.String DEVICE_NAME

public static final double conversionFactor

doubles are converted to integers by this parameter by the PC host before transmission over the
network to the IMC.

public static double mmToRevFactor

conversion from travel distance in mm to rev (pitch-screw factor)

public static final java.lang.String DEFAULTmmToRevFactor

default conversion from travel distance in mm to rev = 1

public static int PID_PROPORTIONAL

public static int PID_INTEGRAL

public static int PID_DERIVATIVE

public static int PID_INTEGRAL_LIMIT

213

public static int PID_DERIVATIVE_SAMPLING_SIZE

public static final int DEF_PID_PROPORTIONAL

public static final int DEF_PID_INTEGRAL

public static final int DEF_PID_DERIVATIVE

public static final int DEF_PID_INTEGRAL_LIMIT

public static final int DEF_PID_DERIVATIVE_SAMPLING_SIZE

public static final int DEF_EXCESSIVE_POS_ERROR

public static int encoderRepInt

DEFAULT Encoder reporting interval = 100

public static double speedOverRide

public static int EXCESSIVE_POS_ERROR

public static final java.lang.String CLOCKSOURCE

DEFAULT clock source = BOARD_CLOCK

public static int clock

public static boolean initializeController

Controller initialized flag

public static int initializeControllerFlag

Controller initialized flag saved to file

public static boolean isInterpolationDone

Interpolation complete flag - encoder read dump follows if true

public static boolean togglePIN3

flag for toggling pin 3 so it can be monitored on a logic analyzer

public static double home_pos

Default home position = 0

public static int logGranularity

Frequency of logging position data

public static boolean logPositions

Flag for position logging; default is false i.e. no logging

public static final java.lang.String[] configinfo

Configuration information containing services available on platform

public static final java.lang.String[] config

214

default configuration information in matrix form

com.IMC.database
Class PushPullData
public class PushPullData

This Class manages data produced and consumed such as position set-points

Field Detail

private static int supervisorPort

private static boolean isAbsolutePos

private static boolean isAbsoluteVel

public static com.IMC.database.FIFO posFIFOBuffer

public static com.IMC.database.FIFO velFIFOBuffer

Method Detail

public synchronized double get_pos()
Returns:

position

public synchronized void put_pos(double position)

Used for single point move
Parameters:

position - double - position

public synchronized double get_vel()

if velocity is 0 thread calling this method will be put in a wait state until notified. This is used to
synchronize start of motion.

Returns:
velocity

public synchronized void put_vel(double velocity)

For single position move
Parameters:

velocity - double - velocity

public synchronized void put_accl(double acceleration)

For single position move
Parameters:

acceleration - double

public synchronized void put_isAbsolute(boolean isAbsPos,
 boolean isAbsVel)

For position and velocity
Parameters:

isAbsPos - true if position is absolute and false if relative
isAbsVel - true if velocity is absolute

public synchronized boolean isAbsolutePos()

215

Returns:
true for absolute position

public synchronized boolean isAbsoluteVel()
Returns:

true for abs velocity

public synchronized double get_accl()
Returns:

acceleration requested by supervisor

public synchronized int get_Profile_type()
Returns:

int indicating motion profile mode type requested by supervisor

public synchronized void put_Profile_type(int type)
Parameters:

type - profile mode

public synchronized void put_speedOverRide(int factor)
Parameters:

factor - speed over-ride percentage; 100 => 1, ie no overider; 120 => 1.2

public synchronized double get_speedOverRide()
Returns:

double speed Over-ride

public static void createPosVelFIFO(int size)

Creates one FIFO each for position & velocity data to be received from supervisor
Parameters:

size - size of each FIFO

public synchronized int get_Filter(int i)
Parameters:

i - index for filter
Returns:

specific filter (eg proportional) value

public synchronized void put_Filter(int data,
 int i)

sets PID filter values with user-defined data array
Parameters:

data - int; specific filter value
i - position of parameter eg 1 for proportional, 2 for integral

public static synchronized java.lang.String get_SupervisorIP()
Returns:

String - Supervisor's IP Address

public synchronized void put_SupervisorIP(java.lang.String address)

Stores supervisors IP address
Parameters:

address - String; IP address

216

public static synchronized int get_SupervisorPort()
Returns:

int Supervisor's IP port number

public synchronized void put_SupervisorPort(int port)

Stores supervisors IP port number
Parameters:

port - int port number

com.IMC.database
Class FIFO
public class FIFO

Contains various methods for managing a FIFO Buffer

Constructor Detail

public FIFO(int i)
Parameters:

i - buffer size

Method Detail

public synchronized void synchput(double i)
puts a double i at the tail end of the FIFO. If FIFO is full wait until there is space, ie hold lock
until notified

public boolean isFull()
Returns:

true if FIFO is full

public int getFree()
Returns:

amount of free space

public synchronized double synchronized_Take()

take double from head of FIFO. If it's empty hold lock until notified
Returns:

double

public boolean isEmpty()
Returns:

true if FIFO is empty

com.IMC.database
Class FileServer_ConfigFiles
public class FileServer_ConfigFiles
extends com.IMC.database.JmDNS_Coordinator_Data

CLDC storage connection. Utility class for storing configuration files. It contains methods to
configure files

Field Detail

217

private static final java.lang.String FILE_SYSTEM_MOUNT_POINT
The name of the Flash File System mount point;

private static final java.lang.String FILE_SYSTEM_ROOT

top level of the flash file system.

private static java.util.Vector fileContent

contents of file

Constructor Detail

public FileServer_ConfigFiles()
implicit call to the com.IMC.servlets.JmDNS_Coordinator

Method Detail

public void run()

searches directories for configurations files and creates them if with default values if they don’t
exist

Throws:
IOException -

public java.lang.String getConfig(java.lang.String[] value)

gets default configuration parameters from com.IMC.database.Data and converts them to a String
Parameters:

value - String[] contains configuration parameter
Returns:

String i.e, configuration parameter

public static void getParameters(java.lang.String filename)

retrieves stored controller configuration data from file and updates static variable in
Constant.class

Parameters:
filename - String name of file

public void createDir(java.lang.String path,
 java.lang.String filename)

Creates a directory.
Parameters:

path - is the subdirectory to create the file in
filename - is the name of the file to create

Throws:
IOException - if unable to access the file system

public static void writeFile(java.lang.String filename,
 java.lang.String data)

Writes data to a file.
Parameters:

filename - is the location where the data is to be written
data - is the data to be stored in the file

Throws:
IOException - if unable to access the file system

public void readFile(java.lang.String fileName)

218

Reads and displays the contents of a file.
Parameters:

fileName - specifies the file to be read.
Throws:

IOException - if unable to access the file system

public void directory(java.lang.String path)

Displays directory structure starting at a root directory.
Parameters:

path - specifies the root directory to display
Throws:

IOException - if unable to access the file system

public void deleteFile(java.lang.String filename)

Deletes a single file from the file system.
Parameters:

filename - specifies the file to be removed

com.IMC.database
Class FileService
public class FileService

This class contains all methods needed by servlets etc for different file I/O operations

Method Detail

public static synchronized java.util.Vector readFile(java.lang.String filename)
Reads and displays the contents of a file into a Vector.

Parameters:
filename - String; specifies the file to be read.

Returns:
Vector holds contents of file

Throws:
IOException -

public static synchronized void writeFile(java.lang.String filename,
 java.util.Vector data)

Writes data to file from a Vector. Elements are line separated
Parameters:

filename - String; name of file
data - Vector; Vector containing data to be written

Throws:
IOException -

public static void deleteDir(java.lang.String parentDir,
 java.lang.String dir)

Deletes a single directory from the file system.
Parameters:

parentDir - directory that contains the directory to be deleted
dir - name of the directory to be deleted

Throws:
IOException - if unable to delete file

public static synchronized java.lang.String[] split(java.lang.String data, int n, char c)

219

method takes a string, splits it where there are commas and puts them in a String array of size n.
This method is used to organize String data obtained from file for registering rendezvous
services. Eg "_http._tcp.local., foo, 80, 0, 0, path=index.html" will be split into 6 strings;
"_http._tcp.local." "foo" "80" "0" "0", "path=index.html"

Parameters:
data - String
n - number of strings
c - splitting is done wherever there is this character eg comma

Returns:
String[]; array containing data

Throws:
IndexOutOfBoundsException -

public static boolean createRegister(java.lang.String type,
 java.lang.String name,
 int port,
 java.lang.String text,
 java.util.Vector register)

Method used to create a JmDNS 'register service' string
Parameters:

type - String; eg "_http._tcp.local."
name - String; eg "X TABLE"
port - int; eg 6000
text - String; eg "Controller for X Table"
register - Vector; holds a concatenation of the above

Returns:
boolean

public static java.lang.String removeAll(java.lang.String string,
 char charc)

method removes all characters (charc)such as white spaces from a string
Parameters:

string - String
charc - char; character to remove from string

Returns:
String; string without charc above

public static double stringToDouble(java.lang.String number)

this method converts a number in String primitive to a double value. Method not available in Java
CLDC API.

Parameters:
number - String; number in String form

Returns:
double; number cast as double

com.IMC.database
Class JmDNS_Coordinator_Data
public class JmDNS_Coordinator_Data
extends com.IMC.database.Data

Class holds registers containing initial JmDNS data.

Field Detail

static java.lang.String discoverServicesFile
contains initial JmDNS services to be discovered by JmDNS_Coordinator.class

220

public static java.lang.String registerServicesFile

contains initial JmDNS services to be registered by JmDNS_Coordinator.class

Method Detail

public static java.lang.String[] constructRegisterString(boolean isDeviceNamed)
constructs String[] buffer to hold JmDNS register parameters

Parameters:
if isDeviceNamed is true the name given to device is used, else the default name, X TABLE, is
used

Returns:
String[] matrix containing all register values

public static java.lang.String[] constructDiscoverString()

constructs String[] buffer to hold JmDNS discover parameters
Returns:

String[] matrix containing all discover values

public static java.lang.String registerSingle(java.lang.String type,
 java.lang.String name,
 int port,
 int weight,
 int priority,
 java.lang.String text)

constructs a buffer to hold one JmDNS service construct
Parameters:

type - JmDNS service type eg. _datagram._udp.local.,
_device._pid.local.,_http._tcp.local.,_mcast._udp.local.,_mcaststream._udp.local.
name - name of service eg., DatagramServer, deviceName, MulticastReceiver MulticastStream.
port - port number of service
text - text information about service

Returns:
String comma separated concatenation of JmDNS service

public static void discoverServices(java.lang.String[] data)

returns line separated discover values as discoverServicesFile
Parameters:

data - String[]

public static void registerAll(java.lang.String[] data)

returns line separated register values as registerServicesFile
Parameters:

data - String[]

public static void initJmDNS(boolean isDeviceNamed)

This function executes registerAll() and discoverServices() if device has not been initialized or
has been reconfigured registerAll() and discoverServices()

Parameters:
if - isDeviceNamed is true execute

B2 com.IMC.coordination
Class StateCoordinator

221

public class StateCoordinator
extends com.IMC.network.DatagramServer
implements java.lang.Runnable

This class inherits datagram connection from DatagramServer for cooperating with supervisor
through a FSM. See com.IMC.network.DatagramServer

Field Detail

private com.IMC.coordination.StateBuffer statebuffer

public static int trajectory_data

public static int trajectoryMode

public static boolean isInterpolatorSocketOpen

public static int max_trajectory_data_Size

boolean receive_trajectory

int state_Flag

public byte[] in_buffer

public final int inbuffer_length

public javax.microedition.io.Datagram in_packet

public javax.microedition.io.Datagram out_packet

Constructor Detail

public StateCoordinator(com.IMC.coordination.StateBuffer sbuffer)

calls super class to open datagram connection to receive packets on port
com.IMC.database.data.DEFAULT_DATAGRAM_PORT_NUMBER

Parameters:
sbuffer - = serverbuffer

Method Detail

public synchronized void run()

Thread implementation for servicing datagrams received. State flags are received from supervisor
and serviced; eg flag 0; receive single set of trajectory data (pos, vel accl) and flag device FSM to
run trajectory right away;

private void serviceTrajProfileDatagram(int profileType)

Method services trajectory profile data. It uses a FIFO buffer and coordinates with supervisor as
data stream in and is consumed. Thus large storage space for trajectory data is not needed

Parameters:
profileType - int; indicates which state or mode of trajectory is desired, ie synchronized,
interpolation data, unsynchronized, break.

222

com.IMC.coordination
Class Counter
public class Counter

Class implements methods to read and log encoder positions

Field Detail

public static int[] position
array to store positions

public static int messageCount

index used to set granularity of logs; eg log every 3rd point

public static int index

position index

Method Detail

public static void posCounter()
reads position into position[]

public static void posCounter2()

Logs according to granularity provided. This is used by a logging thread which runs continuously

com.IMC.coordination
Class Device
public class Device
extends java.lang.Thread

This class makes several calls on drive the com.IMC.drivers.LM628 to command the LM628 for
various moves. It also starts DatagramServer and Monitor thread objects and runs a thread with a
Finite State Machine to service supervising coordinator's commands

Field Detail

private static com.IMC.coordination.StateBuffer statebuffer

private static com.IMC.drivers.LM628 Model

private com.IMC.coordination.StateCoordinator statecoordinator

public static com.IMC.coordination.Monitor monitor

Constructor Detail

public Device(com.IMC.coordination.StateBuffer sbuffer)
Instantiates lm628 with serverbuffer as its argument; Starts the dServer with serverbuffer as its
argument; Starts the limit switch drivers

Parameters:
sbuffer -

Method Detail

public static void setPIDfilter()

223

Method to set the LM628 PID filter. Filter parameters are stored in sbuffer

public synchronized void run()

Attempts to initialize lm628. If successful the following are executed; Instantiates monitor with
serverbuffer as argument; Starts FSM to service supervising coordinator commands

com.IMC.coordination
Class EncoderReader
public class EncoderReader
extends java.lang.Thread

implements a low priority thread to read encoder position

Field Detail

private com.IMC.coordination.Monitor monitor

private static com.IMC.coordination.StateBuffer serverbuffer

Constructor Detail

public EncoderReader(com.IMC.coordination.Monitor mon,
 com.IMC.coordination.StateBuffer sbuffer)
Parameters:

mon -
sbuffer -

Method Detail

public synchronized void run()
Method continuously reads encoder position and send it across network to supervisor

com.IMC.coordination
Class Interpolation_Server
public class Interpolation_Server
extends com.IMC.network.DatagramServer
implements java.lang.Runnable

This class implements a high priority thread to receive streams of multicasted setpoints from an
interpolator for coordinated axes moves.

Field Detail

private static int mode
mode = 0 => set LM628 to position mode ; mode=1 set LM628 in velocity mode

private static int controlMode

used in velocity mode to set direction of travel

public static int axisNum

unique ID of controller supplied by supervisor

private static int bufSize

datagram byte[] buffer size

224

private com.IMC.drivers.LM628 lm628

private com.IMC.coordination.StateBuffer sbuffer

Constructor Detail

public Interpolation_Server(int modes,
 boolean flag,
 com.IMC.coordination.StateBuffer statebuffer)

calls super class to open datagram connection to receive multicasts on
com.IMC.database.PRIORITY_MULTICAST_PORT_NUMBER.; bufSize: 4 bytes for
interpolation period, 4 bytes for each coordinated axis. , ie, bufSize = axisNum * 4 + 4;

Parameters:
modes - 0 -> position mode; 1-> velocity mode
flag - true if datagramconnection has already been created
statebuffer - StateBuffer

Method Detail

public void run()
Thread's run method creates datagram packet with bufSize Field, creates high priority LM628
object and runs the appropriate profile mode, ie position or velocity

void positionMode(javax.microedition.io.Datagram packet)

position Mode execution. Datagram containing velocities and positions are received. The ones
meant for receiving controller are extracted based on its axisNum ID. Method loads the LM628
controller with trajectory data each time data arrive

Parameters:
packet - Datagram; passed to it by run() method

void velocityMode(javax.microedition.io.Datagram packet)

velocity Mode execution. Datagram containing velocities and positions are received. The ones
meant for receiving controller are extracted based on its axisNum ID. Method loads the LM628
controller with trajectory data each time data arrive. When position direction changes, motor is
commanded to change direction of rotation

Parameters:
packet - Datagram; passed to it by run() method

com.IMC.coordination
Class Interpolation_Server_Starter
public class Interpolation_Server_Starter

Class executes method to initialize and start the Interpolation_Server

Method Detail

public void startDatagramInterpolator(int mode,
 com.IMC.coordination.StateBuffer statebuffer)

Starts DatagramServerInterpolator
Parameters:

mode - int; 0 ->position mode; 1 -> velocity mode
statebuffer - StateBuffer

225

com.IMC.coordination
 Class MainClass
public class MainClass
extends com.IMC.coordination.StateBuffer
implements java.lang.Runnable

The main thread starts the controller.

Constructor Detail

public MainClass()

Method Detail

public void run()
thread's run method creates a ServerBuffer object, serverbuffer and runs
com.IMC.coordination.StateBuffer.startController synchronized method. This method waits for
lock to be released by JmDNS_Coordinator.class, i.e., for supervising coordinator to logon.
When lock is released, MultiCastServer.class and Device.class thread objects are started with
serverbuffer as their arguments

public static void main(java.lang.String[] arg)

main method starts FileServer_ConfigFiles.run(), initiates clock for motion controller (if JStick
clock is selected), and calls a NTP timer server with sntpReceiver() to set its base time

Parameters:
arg - String[]

public static void sntpReceiver()

Logs on to a time server and sets aJile’s wall date and clock

com.IMC.coordination
Class Monitor
public class Monitor
extends com.IMC.network.TCPServer

Creates TCP server socket to send data, synch flags and messages to supervisor

Field Detail

private static java.io.DataOutputStream dataout

Constructor Detail

public Monitor(com.IMC.coordination.StateBuffer serverbuffer)
Calls super class to create server socket connection on
com.IMC.database.DEFAULT_MONITOR_SOCKET_PORT. Starts encoder reader which
streams encoder positions

Parameters:
serverbuffer - ServerBuffer

Method Detail

public void send_data(int data)
Parameters:

data - int

226

public static void send_flag()

Method sends synchronization flag to supervisor coordinator during synchronized motion

public static void send_Text(java.lang.String text)
Parameters:

text - String

public static void send_Stop()

public static void sendEmergencyStop()

public static void send_initialInfo()

com.IMC.coordination
Class MultiCasted_States
public class MultiCasted_States
extends com.IMC.network.MulticastServer
implements java.lang.Runnable

Receives motor STOP, RUN flags from supervisor and puts them in a StateBuffer object

Field Detail

private static com.IMC.coordination.StateBuffer statebuffer

private static int mcastport

Port number to listen on for multicast messages

private static java.lang.String mcastaddress

IP address to listen on for multicast messages

public static int mcastFlag

Flag value

Constructor Detail

public MultiCasted_States(com.IMC.coordination.StateBuffer s)
Calls super class to join multicast group on
com.IMC.database.data.Data.DEFAULT_MULTICAST_IP_ADDRESS and
com.IMC.database.data.Data.DEFAULT_MULTICAST_PORT_NUMBER

Parameters:
s - StateBuffer

Method Detail

public void run()
Uses the receiver to listen forever for state flags such as trajectory mode, start, stop, from
supervisor. Flags are put in StateBuffer object

com.IMC.coordination
Class StateBuffer

227

public class StateBuffer
extends com.IMC.database.PushPullData

This Class contains registers which report states eg stop, start. It extends PushPullData @see
com.com.IMC.data.PushPullData

Field Detail

private int stopState

private static boolean deviceRunFlag

public static boolean break_flag

private static boolean check_BusyFlag

Used in a synchronized method to put EncoderReader in wait

Constructor Detail

public StateBuffer()
initializes flags

Method Detail

public synchronized int get_flag()
get state of stopState flag. wait and notified() methods used by this method to put calling methods
in wait or release them

Returns:
int stopState

public synchronized void put_flag(int sbyte)

Sets stopState
Parameters:

sbyte - int - if 0, FSM continues (or starts) trajectory; if 1 stops trajectory and puts objects calling
on this method to wait for go cmd; if 2 hold and wait for lock to be released. This is used in cases
where trajectory data is sent to two or more controllers. Method causes each controller to hold
after receiving this data until it receives a multicast 'go' cmd. Multicast is used to effect
synchronized motion

public synchronized void get_monitorBusyFlag()

Used in synchronized move and all high priority communications with supervisor to put objects
calling on this method into a wait state

public synchronized void put_monitorBusyFlag(boolean value)

Used in synchronized move and all high priority communications with supervisor. Methods sets
check_BusyFlag

Parameters:
value - boolean

public synchronized void put_deviceRunFlag(boolean value)

Sets deviceRunFlag.
Parameters:

value - true to release FSM to run, false otherwise

public synchronized void get_deviceRunFlag()

Method puts Device in wait until lock is released - to save CPU time

228

public synchronized void startController()

Method to control start of controller. If controller needs to be restarted because some vital
parameters have been changed, method will put calling object in wait state

B3 com.IMC.servlets
 Class PositionDump
public class PositionDump
extends javax.servlet.http.HttpServlet

This servlet is for displaying encoder positions logged by the com.IMC.coordination.Counter in
HTML format

Method Detail

public void init(javax.servlet.ServletConfig config)
Server calls this method when servlet's URL is requested

Parameters:
config - ServletConfig

Throws:
ServletException -

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

Queries com.IMC.coordination.Counter for position logs and displays them in HTML format
Parameters:

req - HttpServletRequest
res - HttpServletResponse

Throws:
ServletException -
IOException -

com.IMC.servlets
 Class ConfigureDevice
public class ConfigureDevice
extends com.qindesign.servlet.AuthenticatedHttpServlet

This class executes servlet methods to create html GUI for user to configure the motion
controller. It runs on a Tynamo server built for aJile's embedded Java devices

Field Detail

private java.lang.String filename
configuration parameters in file /configuration/config.txt
parameters are the field names below

private static java.lang.String device

private static java.lang.String encoder

private static java.lang.String switches

private static java.lang.String mmToRevFactor

private static java.lang.String PROPORTIONAL

229

private static java.lang.String INTEGRAL

private static java.lang.String DERIVATIVE

private static java.lang.String INTEGRAL_LIMIT

private static java.lang.String DERIVATIVE_SAMPLE

private static java.lang.String encoderRepInt

private static java.lang.String speedOverRide

private static java.lang.String EXCESSIVE_POS

private static java.lang.String clockSource

private static java.lang.String restartFlag

private static java.lang.String home

private static boolean restart

restart controller flag

Method Detail

public void init(javax.servlet.ServletConfig config)
The Server initiates this servlet with this method when its URL is requested by client. Method
reads configuration file into configuration vector

Parameters:
config - ServletConfig

Throws:
ServletException -

public java.lang.String getRealm(javax.servlet.http.HttpServletRequest req)

Required method. Gets the realm based on the request.

public boolean isAuthorized(java.lang.String realm,
 java.lang.String user,
 java.lang.String pass)

Required method. Checks if the given user/password is authorized in the given realm.

protected void doUnauthorizedGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp)

Unauthorized GET request.

protected void doUnauthorizedPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp)

Unauthorized POST request.

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

230

generates html of controller configuration and handles GET requests from users (clients), ie
generates HTML forms and text for users to change values; has control buttons for users to call
doPost and also set controller up for desired configuration; Modifies configuration file and saves
it in nonvolatile memory; alerts user to restart controller if configuration changes eg clock speed
are critical.

Parameters:
req - HttpServletRequest; used to read incoming HTTP headers and HTML form data
res - HttpServletResponse; used to specify the HTTP response line and headers

Throws:
ServletException -
IOException -

protected void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

doPost method generates html form for client to change controller configuration such as PID
filter values, clock speed, etc.

Parameters:
req - HttpServletRequest
res - HttpServletResponse

Throws:
ServletException -
IOException -

private void save()

Method to save configuration file
Throws:

IOException -

private void reset()

Method to reset configuration file to default
Throws:

IOException -

com.IMC.servlets
 Class ControllerInfo
public class ControllerInfo
extends javax.servlet.http.HttpServlet

This Servlet displays information about controller services and configuration

Field Detail

private java.util.Vector applications

private java.lang.String filename

private com.IMC.database.FileService file

private static java.util.Vector configuration

Method Detail

public void init(javax.servlet.ServletConfig config)

231

The Server initiates this servlet with this method when its URL is requested by client. Method
reads configuration files into Vectors

Parameters:
config - ServletConfig

Throws:
ServletException -

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
Parameters:

req - HttpServletRequest
res - HttpServletResponse

Throws:
ServletException -
IOException -

com.IMC.servlets
Class EditJmDNS
public class EditJmDNS
extends javax.servlet.http.HttpServlet

This class executes servlet methods to create html GUI for user to configure JmDNS 'discover'
and 'register' services for this device It runs on a Tynamo server built for aJile's embedded Java
devices

Field Detail

private static java.util.Vector viewListener

Vector to hold JmDNS 'discover' data

private static java.util.Vector viewRegister

Vector to hold JmDNS 'register' data

Method Detail

public void init(javax.servlet.ServletConfig config)
The Server initiates this servlet with this method when its URL is requested by client; Method
reads contents of JmDNS 'discover' and 'register' files into viewListener and viewRegister
Vectors

Parameters:
config - ServletConfig

Throws:
ServletException -

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

generates html of JmDNS services on network and also services registered by controller;
processes data posted by doPost(); has control buttons for users to call doPost

Parameters:
req - used to read incoming HTTP headers and HTML form data
res - used to specify the HTTP response line and headers

Throws:
ServletException -
IOException -

232

protected void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

Generates HTML forms for clients to change JmDNS settings, register services and also listen for
specified services on the network

Parameters:
req - HttpServletRequest
res - HttpServletResponse

Throws:
ServletException -
IOException -

com.IMC.servlets
Class JmDNS_Coordinator
public class JmDNS_Coordinator
extends javax.servlet.http.HttpServlet

The Server initiates this servlet automatically when the server is started. This is the main tool for
the controller's PnP reconfigurability. When the controller starts the Server, this servlet listens for
services on the network, ie, the Supervisor and other nodes on the network. Service info received
contains all parameters to enable this controller to communicate appropriately. When services are
removed the servlet notifies the controller. The servlet also registers or publishes services it
provides eg motion control. Method reads configuration file into configuration vector

Parameters:
config - ServletConfig

Throws:
ServletException -

Field Detail

private static java.util.Vector addBuffer
holds services discovered

private static java.util.Vector removeBuffer

services removed from network

private static java.util.Vector resolveBuffer

services resolved

private static java.util.Vector viewListener

controller listens for services in this Vector

private static java.util.Vector viewRegister

controller registers services in this Vector

public static javax.jmdns.JmDNS jmdns

private static java.lang.String supervisorIP

Supervisor's IP is stored by this string

private static int supervisorPort

public static java.util.Vector deviceName

array for device names discovered on network

233

public static boolean isServiceRegistered

private static java.util.Vector listenerVector

holds listeners for viewListener Field

Method Detail

public void init(javax.servlet.ServletConfig config)

This is called immediately when Server starts. Method starts JmDNS, executes methods to listen
and discover services. If controller has been rebooted after a reconfiguration procedure which
requires a reboot, the servlet registers its services. The servlet checks
Constants.initializeController flag for this.

Parameters:
config - ServletConfig

Throws:
ServletException -

public static void discoverJmDNS()

Method executes a JmDNS service listener for each service to be discovered

public static void registerJmDNS()

Method calls registerJmDNS() for each service in viewRegister

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

Displays HTML showing services registered and discovered
Parameters:

req - HttpServletRequest
res - HttpServletResponse

Throws:
ServletException -
IOException -

public static void registerAService(java.lang.String type,
 java.lang.String name,
 int port,
 int weight,
 int priority,
 java.lang.String text)

Method is called by registerJmDNS() for each service to be registered

public static void unregisterAll()

Method used to unregister all services

B4 com.IMC.drivers
Class Reference_Switch_Driver
public class Reference_Switch_Driver

Reference switch driver.

Constructor Detail

public Reference_Switch_Driver(java.lang.String device)

234

Moves motion device to its hardware reference switch. Implements a TriggerEventListener to
service interrupt on the reference position pin. Also used to move device to its home position

Parameters:
device - String represents motion device. Home position for device is stored in its configuration
file

Method Detail

void GotoHomePosition()
Finds home position relative to reference switch as defined in configuration file

com.IMC.drivers
Class GPIOPinA3
public class GPIOPinA3

Class to assert JSimm pin A3 .

Field Detail

public static com.ajile.drivers.gpio.GpioPin pin3
Creates General Purpose I/O pin A3

Method Detail

public static boolean state()
Returns:

true if pin is high; false if pin is low

public static boolean enable()

Configures pin as output pin and drives it low
Returns:

true

public static boolean disable()

Configures pin as output pin and drives it high
Returns:

true

com.IMC.drivers
Class HSIO_Driver
public class HSIO_Driver

Sets up HSIO pins and configures the HSIO for read/write operations

Field Detail

private static final int HSIO_CS0_ADDRESS
Chips Select CS0 address = 0x01400000;

private int HSIOPortAddress

HSIOPortAddress = HSIO_CS0_ADDRESS

Constructor Detail

public HSIO_Driver(int PinAddress,

235

 byte A19_A16,
 int A20)

creates a new HsioPort with port address PinAddress and a clock divider of A19_A16 on chip
select 0. Wait bit is A20

Parameters:
PinAddress - The new HSIO address of the port.
A19_A16 - clock divider bits of the HSIO address + 1.
A20 - wait bit

public HSIO_Driver(int PinAddress,
 byte A19_A16,
 int A20,
 boolean SelectCS1)

creates a new HsioPort with port address PinAddress and a clock divider of A19_A16 on chip
select 0 or 1. Wait bit is A20

Parameters:
PinAddress - The new HSIO address of the port.
A19_A16 - clock divider bits of the HSIO address + 1.
A20 wait bit
SelectCS1 - true if CS1 false if CS0 should be selected

Method Detail

public void setHsioAddress(int PinAddress)
Sets HSIO address in HSIO address space. It verifies that the address is only 12 bits and throws
an IllegalArgumentException if it is not.

Parameters:
PinAddress - int

Throws:
IllegalArgumentException -

public void setHsioTiming(byte A19_A16)

sets the HSIO timing bits [19:16] in the JStik address to the low order bits of A19_A16.
Parameters:

A19_A16 - byte
Throws:

IllegalArgumentException - if there are more than 4 bits

public void setHsioA20(int Tas)

sets the HSIO wait state, A20. Can be 0 or 1. Adds one CLKO to the setup time from address
asserted to RD or WR asserted. Also adds one CLKO period to the write hold time (WR negated
to WAIT negated).

Parameters:
Tas - int

Throws:
IllegalArgumentException - if more than 1 bit ie decimal 1

public void setChipSelect(boolean SelectCS1)

Sets the chip select bit in the port address. *
Parameters:

SelectCS1 - if true, chip select 1 is selected. If false, chip select 0 is selected

public int getRawJStikAddress()

returns HSIOPortAddress for use with RawJem reads and writes without overhead.
Returns:

236

int address of HSIOPortAddress

public void setRawJStikAddress(int JStikAddress)

Verifies that the address is a valid HSIO address in the JStik address space. A bad address can
write to arbitrary places in memory and cause object and heap corruption.

public int read()

reads a byte from the HSIO port.
Returns:

The return value is an integer for performance reasons.

public void write(int data)

writes a byte to the HSIO port. data is an int to improve performance over the read, modify, write
implementation of the JVM. The HSIO data bus is only 8 bits wide anyway, so the high order 24
bits are not transmitted.

Parameters:
data - is the byte to be transmitted.

com.IMC.drivers
Class JStickTimer_tc2
public class JStickTimer_tc2

Usage of the 3rd aJ100 General Purpose Timer/Counter hardware with output on pin 15. Low
Level Device Driver classes. This is used as an alternate clock source for the LM628. The neat
thing is flexibility of clock control. Different clock speeds can be configured on this timer and
diff sorts of interrupts may be received and serviced accordingly. LM628 requires clock speeds
of between 1 and 6MHz inclusive. Jumper JP1 on the controller board has to be inserted on pins
CLK2 and OUT!!

Field Detail

private com.ajile.drivers.gptc.TimerCounter tc2

private static int prescalerReloadRegisterValue

private static int reloadRegisterValue

Constructor Detail

public JStickTimer_tc2(double freqMHz)
Configures the hardware timer 2 to generate frequency of 6MHz or less to clock the LM628.

Method Detail

public static void main(java.lang.String[] args)
Create an Example instance then perform some operations on that instance.

public static double freqCalculator(int PrescalerReloadRegisterValue,
 int ReloadRegisterValue)

method to calculate freq. given PrescalerReloadRegisterValue and setReloadRegisterValue
Parameters:

PrescalerReloadRegisterValue - int
ReloadRegisterValue - int

Returns:
double frequency in MHz

237

public static void prescalerReloadValues(double freqMHz)

This function calculates PrescalerReloadRegisterValue and setReloadRegisterValue for
symmetrical square waves.

Parameters:
freqMHz - is the desired frequency

Throws:
java.lang.IllegalArgumentException - if frequency>6MHz

com.IMC.drivers
Class LimitSwitch_Left
public class LimitSwitch_Left

Contains methods to service interrupts received on left limit switch

Field Detail

final com.ajile.drivers.gpio.GpioPin pinA3
set up GPIO pin connected to left limit switch

com.IMC.coordination.Monitor monitor

Monitor object sends interrupt messages to supervising coordinator

Constructor Detail

public LimitSwitch_Left(com.IMC.coordination.Monitor mon)
Funtion sets up a TriggerEventListener to receive and service interrupts Also debounces pin to
avoid sporadic responses

Parameters:
mon - Monitor

Method Detail

void send()
Used by Constructor to send emergency message if limit switch is triggered

com.IMC.drivers
Class LimitSwitch_Right
public class LimitSwitch_Right

Contains methods to service interrupts received on right limit switch

Field Detail

final com.ajile.drivers.gpio.GpioPin pinA4
set up GPIO pin connected to right limit switch

com.IMC.coordination.Monitor monitor

Monitor object sends interrupt messages to supervising coordinator

Constructor Detail

public LimitSwitch_Right(com.IMC.coordination.Monitor mon)
Funtion sets up a TriggerEventListener to receive and service interrupts Also debounces pin to
avoid sporadic responses

Parameters:
mon - Monitor

238

Method Detail

void send()
Used by Constructor to send emergency message if limit switch is triggered

com.IMC.drivers
Class LM628
public class LM628

This class contains functions for commanding the LM628 and sending/receiving data from/to it.
Field values are commands. Refer to the LM628 manual for definitions

Field Detail

public static final int RESET

public static final int RSTI

public static final int DFH

public static final int SIP

public static final int LPEI

public static final int LPES

public static final int SBPA

public static final int SBPR

public static final int MSKI

public static final int LFIL

public static final int UDF

public static final int LTRJ

public static final int STT

public static final int RDSIGS

public static final int RDIP

public static final int RDDP

public static final int RDRP

public static final int RDDV

public static final int RDRV

239

public static final int RDSUM

public static final int PORT12

private static final int addr

address A0 of JStick HSIO

private static final byte div

HSIO Timing value; div = 1

private static final int tas

HSIO Wait value; tas =1;

private static final int addrBase

base address of JStick HSIO

public static double NLINE

number of encoder lines

private static double CLK

LM628 clock value

private static int SMP_RT

Sampling rate

public static int rdataLM628

variable for storing data read from LM628

public static int rdstatusLM628

variable for storing data LM628 status info

private static final com.IMC.drivers.HSIO_Driver HSIO_ADDRESS_A0

HSIO_Driver object for address A0

private static com.IMC.drivers.HSIO_Driver HSIO_ADDRESS_BASE

HSIO_Driver object for base address

private static com.IMC.coordination.StateBuffer statebuffer

private static double pos_Constant

variable to store constant for calculating position

private static double vel_Constant

variable to store constant for calculating velocity

private static double accl_Constant

variable to store constant for calculating acceleration

Constructor Detail

public LM628()
default constructor

240

public LM628(com.IMC.coordination.StateBuffer sbuffer)
constructor initializes clock value, number of encoder lines and position, velocity and
acceleration constants

Parameters:
sbuffer=statebuffer -

Method Detail

public static void check_busy_bit()
Polls status byte until busy bit is cleared by the chip ie, = 0

public static void write_command(int CMD)

function writes command to the LM628 base address. On LM628 PS->low, CS->low, WR->low
On JStick A0->low, CS0->low, WR->low. Each address pin (A0-A11) holds low if there's no
RD/WR to it.

Parameters:
CMD - command value as in Fields

public static void write_data(int data)

Function writes data to the LM628 to address space A0. On LM628 PS->high, CS->low, WR-
>low On JStick A0->high, CS0->low, WR->low.

Parameters:
data - in integer form

public static int read_data()

Function reads data from the LM628 address space A0. On LM628 PS->high, CS->low, RD-
>low On JStick A0->high, CS0->low, RD->low.

Returns:
value read

public static int read_status()

Function reads the LM628 status register from base address. On LM628 PS->low, CS->low, RD-
>low. On JStick A0->low, CS0->low, RD->low.

Returns:
value read

public static int read_signals_register()

reads the LM628 16 bit signals register
Returns:

signals_reg

public static void chk_motoroff()

polls status register until motor off bit is set (1)

public static void wait_traj_bit()

polls status register bit until trajectory end bit is set (1) or a stop signal is received from a state
machine

public static void chk_breakpt()

polls status register bit until breakpoint bit is set (1) or a stop signal is received from a state
machine

public static void waitTrajBit_log()

241

polls status register bit until trajectory end bit is set (1) or a stop signal is received from a state
machine. In the meantime it logs positions

public static void chkBreakpt_log()

polls status register bit until breakpoint bit is set (1) or a stop signal is received from a state
machine. In the meantime it logs positions

public static void breakpoint(double FIN_POS,
 boolean isAbsolute)

This method loads a breakpoint position as relative or absolute
Parameters:

FIN_POS - double ; final position. This is scaled up (see LM628 documentation) and type cast as
an integer. Since Java integer is 32-bits long, method splits FIN_POS into 4 bytes and writes
them a byte at a time starting with the MSB
isAbsolute - boolean; true if FIN_POS is absolute

public static synchronized void traj_sel(int high_byte,
 int low_byte,
 double FIN_POS,
 double VEL_FIN,
 double ACCL)

The Trajectory command is followed by a 2-byte data containing motion configuration
parameters, eg load relative position, position or velocity mode, etc. This is followed by the
trajectory data in the order acceleration position velocity. Each is 32 bits (integer) so method
splits each into 4 bytes and writes them starting with the MSB.

Parameters:
high_byte - high byte of trajectory command data
low_byte - low byte of trajectory command configuration data
FIN_POS - Final position
VEL_FIN - Final velocity
ACCL - Final acceleration see traj_sel method above

public static synchronized void traj_sel_2(int control_bytes,
 double FIN_POS,
 double VEL_FIN,
 double ACCL)

The Trajectory command is followed by a 2-byte data containing motion configuration
parameters, eg load relative position, position or velocity mode, etc. This is followed by the
trajectory data in the order acceleration position velocity. Each is 32 bits (integer) so method
splits each into 4 bytes and writes them starting with the MSB.

Parameters:
control_bytes - int; trajectory command configuration data. This is 2 bytes so it is split into 2
bytes
FIN_POS - Final position
VEL_FIN - Final velocity
ACCL - Final acceleration see traj_sel method above

public static synchronized void traj_sel_3(double FIN_POS,
 double VEL_FIN)

This loads only position (in revs) and velocity (rev/s): trajectory control byte configures for
absolute position and velocity

Parameters:
FIN_POS - Final position
VEL_FIN - Final velocity see traj_sel method

242

public static synchronized void traj_sel_abs_Rel(double FIN_POS,
 double VEL_FIN,
 boolean isAbsolutePos,
 boolean isAbsoluteVel)

Method loads only position (in revs) and velocity (rev/s):
Parameters:

FIN_POS - Final position
VEL_FIN - Final velocity
isAbsolutePos - true for absolute position or false for relative position
isAbsoluteVel - true for absolute velocity or false for relative velocity see traj_sel method

public static synchronized void trajSel_Vel(double VEL_FIN,
 boolean isAbsolute)

Method loads only velocity (mm/s) in velocity mode.
Parameters:

FIN_POS - Final position
VEL_FIN - Final velocity
isAbsolute - true for absolute velocity or false for relative velocity see traj_sel method

public static synchronized void traj_sel_4(int mode,
 double VEL_FIN)

Method loads only velocity (mm/s) in velocity mode.
Parameters:

mode - used by trajectory configuration to determine motor direction
VEL_FIN - Final velocity see traj_sel method

public static synchronized void traj_sel_home(double VEL_FIN,
 double ACCL)

Method loads trajectory in velocity mode for moving motion device to its home position
Parameters:

VEL_FIN - Final velocity
ACCL - acceleration see traj_sel method

public static void filter_sel(int Kp,
 int Ki,
 int Kd,
 int Il,
 int CLK_SC)

Programs the PID Filter
Parameters:

Kp - Proportional term
Ki - Integral
Kd - Derivative
Il - Integral limit
CLK_SC - programs derivative sampling rate

public static synchronized void run_motor()

Function to run motor

public static void define_home()

Defines home (position 0)

243

public static void excessivePosError(int EncoderCounts)

method sets the condition for detecting excessive position error
Parameters:

EncoderCounts - int

public static int readIndex()

method for reading position recorded in the index register
Returns:

int; index position

public static int readPosition()

reads real position
Returns:

int; position

public static int readVel()

read real velocity
Returns:

int; velocity

public static int readDesiredPosition()

method to read desired position
Returns:

int; desired position

public static void reset_interrupt_register(int value)

Method to set interrupt register
Parameters:

value - register value desired. Zero in an interrupt register bit position resets the corresponding
interrupt

public static boolean initialize()

Method for doing hardware and interrupt resets
Returns:

boolean true if successful

public static void mask_reg(int mask_bits)

method for masking interrupt bits in interrupt register
Parameters:

mask_bits - int

public static void stop_Anywhere()

method to halt motor abruptly

public static void set_DAC()

Method for calibrating the DAC [AD667]. The motor driver should be off. 1. set all bits to 0 by
issuing a reverse velocity command and adjust the offset trimmer until the output is -10.00V. 2.

244

set all bits to 1 by issuing fwd velocity command and adjust the gain trimmer until the output is
9.9976V.

public static void reset()

Method to do a soft reset of the LM628

com.IMC.drivers
Class Board_Clock
public class Board_Clock

Class to enable/disable the onboard clock. Its enable pin is hooked to JStick SIMM pin A6.

Method Detail
public static boolean disable()

writes a zero to pin A6 to disable the onboard clock
Returns:

boolean; true

public static boolean enable()

writes a 1 to pin A6 to enable the onboard clock
Returns:

boolean; true

com.IMC.drivers
Class LM628_Interrupt
public class LM628_Interrupt

Contains method to receive and service hardware interrupts from the LM628

Field Detail

final com.ajile.drivers.gpio.GpioPin pinA1

com.IMC.coordination.Monitor monitor

Monitor.class object transmits interrupt condition to supervisor

Constructor Detail

public LM628_Interrupt(com.IMC.coordination.Monitor mon)
Implements TriggerEventListener to receive and service interrupts

Parameters:
mon - Monitor = monitor as in field

Method Detail

void send()
Sends interrupt info to supervisor

com.IMC.drivers
Class MotorAmp
public class MotorAmp

Class to enable/disable motor drivers. Motor amp's enable pin is hooked to JSimm pin A5
through an inverter since pins are logic high when Jstick is powered.

245

Method Detail

public static boolean enable()
writes 0 to pin A5 to drive it low

Returns:
boolean true

public static boolean disable()

writes 1 to pin A5 to drive it high
Returns:

boolean; true

B5 com.IMC.network
Class TCPServer
public class TCPServer

Class creates a TCP server socket stream connection

Field Detail

public javax.microedition.io.StreamConnectionNotifier scn

public javax.microedition.io.StreamConnection connection

Constructor Detail

public TCPServer(int server_port)
Parameters:

server_port - int

com.IMC.network
Class DatagramServer
public class DatagramServer

This class provides a CLDC DatagramConnection for datagram transmissions

Field Detail

public javax.microedition.io.DatagramConnection dgconn

Constructor Detail

public DatagramServer(int datagram_port)
Parameters:

datagram_port - int

com.IMC.network
Class MulticastServer
public class MulticastServer

Creates a Multicast socket

Field Detail

public javax.microedition.io.MulticastConnection mSocket
Multicast Socket

public int mGroup

246

Internet address group

Constructor Detail

public MulticastServer(java.lang.String multicast_address,
 int multicast_port)
Parameters:

multicast_address - String
multicast_port - int

247

APPENDIX C: COORDINATOR SOFTWARE INTERFACE

The System Coordinator domain handles all supervisory activities to guarantee the

appropriate execution of tasks on the IMC controllers. All high-level tasks and commands

are generated in this domain. These include human-machine interactions, system

configuration, and Meta tasks such as “complex” inverse kinematics, which cannot be

handled by the IMC nodes or the real-time coordinator. Table C1 shows the packages in

this domain and their corresponding classes. The class interfaces are described in this

appendix.

Table C1: System Coordinator Software

Package Description Classes
com.coordinator.GUI Abstracts the Human-Machine

Interface
MainApplication

MainGUIFrame

TrajDataFrame

TrajTable

PIDTable

com.coordinator.coordination Protocols for commanding and
coordinating activities

JmDNS_Coordinator

JmDNS_Event_Server

ControllerIO

Monitor

SynchFlag

Trajectory_Server

com.coordinator.database Temporary and permanent global
repository

Data

JmDNS_DATA

Traj_Configuration_Data

GCodeParser

GCodeSende

com. coordinator.interpolation Abstracts interpolation and
kinematics algorithms

Interpolator

Transmission

Transmission_ACK

Transmission_Flag

com. coordinator.network Abstracts protocols for
communication

DatagramSender
McastDirect
MulticastSender
TCP_Client
UDP_Client

248

C1 com.coordinator.database
Class Traj_Configuration_Data
public class Traj_Configuration_Data

This class contains methods for initializing class for constructing trajectory set-points in
TrajDataFrame.class

Field Detail

public static java.io.File getFileDirectory
trajectory file "getFileDirectory" is used to find the parent directory

public static java.lang.String AXES

public static java.lang.String ACCELERATION

public static java.lang.String INTERPOLATION_PERIOD

public static java.lang.String INTERPOLATION_TYPE

public static java.lang.String INTERPOLATION_PLATFORM

public static java.lang.String COMMUNICATION_MODE

public static java.lang.String CONTROLLER_MODE

public static java.lang.String isAbsolute

public static java.lang.String isAbsoluteVel

public static java.lang.String[] AXIS_STRING

"1","2","3","4","5","6","TRIPOD (5 AXIS)","PUMA" show up in combo box in TrajDataFrame
class *

public static final java.lang.String[] INTERPOL_TYPE_FIXED_STRING

"breakpoint","nonbreakpoint", "nonbreakpoint (synchronized)","G CODE" show up in combo
box in TrajDataFrame class *

public static java.lang.String[] INTERPOL_TYPE_STRING

public static java.lang.String[] INTERPOLATION_PLATFORM_STRING

"Local Host", "JStick Host" show up in combo box in TrajDataFrame class

public static java.lang.String[] COMMUNICATION_MODE_STRING

"via RT JStick Host", "Multicast Direct" show up in combo box in TrajDataFrame class

public static java.lang.String[] CONTROLLER_MODE_STRING

"via RT JStick Host", "Multicast Direct" "Position Mode", "Velocity Mode"

public static int counterSize

controllers set their log buffers to this size

public static int counterGranul

249

granularity or how often controllers log positions. This doesn't apply to GCode interpolation
mode

Constructor Detail

public Traj_Configuration_Data(java.io.File getFileDirectory)

Parameters:
getFileDirectory - File; configuration file directory obtained from TrajDataFrame

Method Detail

public static void writeFile()
this methods saves configuration parameters to trajConfig.txt which is in the same directory as
user defined or selected trajectory data file

public static void Configuration_Data()

trajectory file "getFileDirectory" is used to find the parent directory this method attempts to fetch
configuration parameters from trajConfig.txt. The parameters are used to update the
TrajDataFrame GUI. If the file does not exists, default parameters are used and the trajConfig.txt
is created with these values

com.coordinator.database
Class Data
public class Data

Class contains all network connection fields and control mode keys and values for hashtable it
creates.

Field Detail

public static final int MONITOR_PORT

public static final int MONITOR_PORT_TIMEOUT

public static final int UDPdirectPort

public static final int TCPdirectPort

private static java.lang.String MULTICAST_IP_ADDRESS

private static int MULTICAST_PORT_NUMBER

public static boolean isJmDNSAlive

public static int interpolatorTCPPort

public static int interpolatorUDPPort

public static int interpolatorUDPStreamPort

public static java.lang.String interpolatorIP

public static int McastDirectPort

250

public static java.lang.String McastDirectIP

public static final java.lang.String[] DEVICES

public static java.lang.String AXIS_1_IP

public static java.lang.String AXIS_2_IP

public static java.lang.String AXIS_3_IP

public static java.lang.String AXIS_4_IP

public static java.lang.String AXIS_5_IP

public static java.lang.String AXIS_6_IP

public static int AXIS_1_PORT

public static int AXIS_2_PORT

public static int AXIS_3_PORT

public static int AXIS_4_PORT

public static int AXIS_5_PORT

public static int AXIS_6_PORT

public static int AXIS_1_WEB_PORT

public static int AXIS_2_WEB_PORT

public static int AXIS_3_WEB_PORT

public static int AXIS_4_WEB_PORT

public static int AXIS_6_WEB_PORT

public static java.lang.String[] CONTROL_MODES

control modes; hastbale keys

public static int[] CONTROL_FLAGS

holds values for hashtable keys

Method Detail

public static int getControlFlag(java.lang.String flag)
Stores and retrieves control flags from hashtable

Parameters:
flag - String

251

Returns:
int; flag

public static int getDeviceID(java.lang.String device)

Stores ID of device detected on network to hashtable

Parameters:
device - String

Returns:
int; device ID

Throws:
Exception -

public static int getDevicePort(java.lang.String device)

Stores port nos. of devices detected on network in a hashtable

Parameters:
device - String

Returns:
int; port number

Throws:
Exception -

public static java.lang.String getDeviceIP(java.lang.String device)

Stores IP addresses of devices detected on network in a hashtable

Parameters:
device - String

Returns:
String; device

Throws:
Exception -

public static java.lang.String putDeviceIPInfo(java.lang.String device
 java.lang.String IP_Address,
 int port)

Stores IP address of device in hashIP and port number in hashPort
Parameters:

device - Device name; IP_Address - IP address; port – port number

Throws:
Exception -

public static int getMulticastPort()

Returns:
int; main multicaster port number

public static void putMulticastPort(int port)

Parameters:
port - int; main multicaster port number

public static java.lang.String getMulticastIP()

Returns:
String; main multicaster IP address

252

public static void putMulticastIP(java.lang.String ip)

Parameters:
ip - String; main multicaster IP address

public static java.lang.String getMcastDirectIP()

Returns:
String; IP address for multicaster streaming setpoints

public static void putMcastDirectIP(java.lang.String ip)

Parameters:
ip - String; IP address for multicaster streaming setpoints

public static int getMcastDirectPort()

Returns:
int; port number for multicaster streaming setpoints

public static void putMcastDirectPort(int port)

Parameters:
port - int; port number for multicaster streaming setpoints

public static int[] getInterpolatorPorts()

Returns:
int[]; holds interpolator's port numbers

public static void putInterpolatorPorts(int tcpport,
 int udpport,
 int udpstreamport)

Parameters:
tcpport - int; interpolator's TCP port
udpport - int; interpolator's UDP port
udpstreamport - int; interpolator's UDP port for setpoint streaming

public static java.lang.String getInterpolatorIP()

Returns:
String; interpolator's IP address

public static void putInterpolatorIP(java.lang.String ip)

Parameters:
ip - String; puts interpolator's IP address in interpolatorIP

com.coordinator.database
Class DataTranspose
public class DataTranspose

Class has a method for transposing data in a file

Constructor Detail

public DataTranspose(java.io.File file,
 java.lang.String outFileName)

Parameters:

253

file - File; input file
outFileName - String

Method Detail

public static void main(java.lang.String[] args)
main method executes DataTranspose

Parameters:
args - String[]

com.coordinator.database
Class FileDataToArrayConverter
public class FileDataToArrayConverter

Implements method to read trajectory data from file and store them in arrays according to the
number of controllers

Method Detail

public static void dataServer(int type,
 java.io.File trajFile,
 int[] dataDim)

Method called by TrajDataFrame.class to decompose trajectory data into arrays.

Parameters:
type - int; type=0->breakpoint, nonbreakpoint or synchronized trajectory mode type
trajFile - File; trajectory file
dataDim - int[]; array containing row and column sizes

com.coordinator.database
Class GCodeParser
public class GCodeParser

This class parses NC G Code for interpolation.

Field Detail

public static java.io.BufferedReader in

public static java.io.DataOutputStream dout

public static java.io.File file

Constructor Detail

public GCodeParser(java.io.File gfile)

Parameters:
gfile - File; G Code file

Method Detail

public void gCodeParser()
Method to parse G Code into another file with the same name (and directory as the G Code file
but with .bin extension ; In brief procedure is as ff; File ignores all comments prefixed to G
Code; G Code commands are in 3 categories; motion parameters (eg G01, G02, G03, G00), state

254

(eg G90); coordinates (eg X90). Motion parameters are prefixed to coordinates by method, eg
G01X90. If another motion parameter is read the previous is overwritten, eg G02X10.

com.coordinator.database
Class GCodeSender
public class GCodeSender

Sends parsed NC G code by TCP to JStick module designated for realtime interpolation This
method tends to cause the module to draw excess current, likely due to the Ethernet controller set
to TCP mode for this transaction. This causes the control module sharing the backplane to reset
several times. Hence this method should probably be used only when the interpolator module has
its own backplane

Method Detail

void gCodeParser()

See Also:
GCodeParser for implementation details. Coordinates in this method are converted to integers by
scaling them by 1000. This is because it is computationally efficient for JSticks to receive
datagrams containing integers than doubles.

com.coordinator.database
Class JmDNS_DATA
public class JmDNS_DATA
extends com.coordinator.database.Data

Class holds JmDNS data

Field Detail

public static java.lang.String[] register
array for services to be registered

public static java.lang.String[] discover

Constructor Detail

public JmDNS_DATA()
Fills register and discover arrays with data . Example register[0] =
"_supervisor._tcp.local.,SUPERVISOR,MONITOR_DEFAULT_PORT,0,0"; discover[0] =
"_http._tcp.local."; contains address and port of controller's server; connection info is used by
GUI to create links discover[1] = "_mcast._udp.local."; contains address and port of controller's
multicast receiver to connect with com.coordinator.network.MulticastSender discover[2] =
"_device._pid.local.";contains address and port of controller's datagram server to connect with
com.coordinator.network.DatagramSender. discover[3] = "_mcaststream._udp.local."; connection
information for McastDirect

See Also:
com.coordinator.network.MulticastSender, com.coordinator.GUI.MainGUIFrame,
com.coordinator.database.Data, com.coordinator.network.McastDirect,
com.coordinator.network.DatagramSender

C2 com.coordinator.coordination
Class ControllerIO
public class ControllerIO

255

extends com.coordinator.network.DatagramSender
Regulator for setting up values and parameters to be sent to Controllers via datagram

See Also:
com.coordinator.network.DatagramSender.

Constructor Detail

public ControllerIO()
creates trajectory array for holding pos, vel and accl for each device. This is used for single point
(jog) mode

Method Detail

public void jog(java.lang.String device,
 java.lang.String flag)

Method for jogging axis or axes.

Parameters:
device - String
flag - String;

public void shutdownController(java.lang.String device,
 java.lang.String flag)

method to send shutdown message to individual or all controllers

public static void setMulticast(java.lang.String flag)

method to send multicast run or stop flag to devices on the network

public static void setDatagram(java.lang.String flag,
 int numaxes,
 double period,
 double accl)

sends control flag and data to real-time interpolator. This interpolator may be put in a state to
wait for G code or receive setpoints from local interpolator

Parameters:
flag - String; eg interpolator_viaRT_flag
numaxes - int; number of coordinated axes
period - double; period of interpolation
accl - double; acceleration

public static void setDatagram(java.lang.String flag,
 int[][] pid)

For sending user-defined PID filter values

Parameters:
flag - String; if flag ==pidfilter send filter values to registered devices
pid - array pid[m][n] for devices

public void setDatagram(java.lang.String flag,
 double accl,
 int logSize)

Parameters:
flag - String; trajectory mode eg interpolator_gcode_velocitymode
accl - double; acceleration
logSize - int; size of log file

256

public void setDatagram(java.lang.String flag,
 int speedOverRide)

sends speed Over-Ride value

public void setDatagram(java.lang.String flag)

for sending various signal (modes) to set the state of controllers. Signals are derived from
com.coordinator.network.Database hastable keys

Parameters:
flag - String; key eg "drives_off"

com.coordinator.coordination
Class Trajectory_Server

public class Trajectory_Server
implements java.lang.Runnable

When host PC or JStick is not used for explicit online interpolation, as in non-breakpoint,
breakpoint and synchronized_non-break point modes, this thread class coordinates streaming of
coarse trajectory data by datagram to controllers. When controller's receive buffers are full it
informs its coordinator thread to send next batch. This enables us to use minimum resources on
the controllers

Field Detail

public static final int maxDataRow_per_pkt
Two columns of data (position, velocity) are packed into datagram. maxDataRow_per_pkt is the
maximum n of the n x 2 matrix.

java.lang.String address

int port

byte[] trajectory_data

com.coordinator.network.UDP_Client udp

Constructor Detail

public Trajectory_Server(java.lang.String address,
 int port,
 int dataColumn)

Parameters:
ipAddress - String; IP Address of controller
port - int; port number
dataColumn - int; column position of data in trajectory file

Method Detail

public void run()
Thread run method. Sends datagram packet containing a portion of data in trajectory file to
controller and waits for acknowledgement before sending next packet - until all data is sent or a
stop command is issued

257

com.coordinator.coordination
Class JmDNS_Coordinator
public class JmDNS_Coordinator
extends com.coordinator.database.JmDNS_DATA

Implements methods for providing a PnP interface with controllers. It uses JmDNS protocol to
register and discover services. JmDNS_Event_Coordinator listener method is called by its
discover method to listen for events.

Constructor Detail

public JmDNS_Coordinator()
Initiates JmDNS

Method Detail

public java.lang.String[] split(java.lang.String data,
 int n,
 char c)

method takes a string, splits it where there are characters (c) and puts them in a String array of
size n

Parameters:
data - String
n - int
c - char

Returns:
String[]

Throws:
IndexOutOfBoundsException -

public void registerAService(java.lang.String type,
 java.lang.String name,
 int port,
 int weight,
 int priority,
 java.lang.String text)

Method registers one JmDNS service

Parameters:
type - String eg _supervisor._tcp.local.
name - String eg SUPERVISOR
port - int IP port number
weight - int
priority - int
text - String

public void registerServices()

method registers all services in JmDNS_DATA register array

public void discoverServices()

used to discover services listed in JmDNS_DATA discover array

public static void writeFile(java.io.File filename,
 java.util.Vector data)

Utility method to implements ObjectOutputStream to write data to filename

Parameters:
filename - File

258

data - Vector

public static java.util.Vector readFile(java.io.File filename)

Utility program to read data from filename

Parameters:
filename - File

Returns:
Vector

com.coordinator.coordination
Class JmDNS_Event_Server
class JmDNS_Event_Server
extends com.coordinator.database.JmDNS_DATA
implements javax.jmdns.ServiceListener, javax.jmdns.ServiceTypeListener

Class for servicing events discovered by JmDNS on network. JmDNS_Coordinator calls this
class to discover specified services. This class over writes serviceAdded, serviceRemoved and
serviceResolved methods in javax.jmdns.ServiceListener and also serviceTypeAdded method in
javax.jmdns.ServiceTypeListener.

Field Detail

private javax.jmdns.ServiceInfo serviceInfoDevice

static final com.coordinator.coordination.SynchFlag SYNCH

Method Detail

public void serviceAdded(javax.jmdns.ServiceEvent event)
Method used by JmDNS ServiceListener to listen for events; these incoming events are serviced;
_mcast._udp.local.; _mcaststream._udp.local.; _device._pid; _http._tcp.local.; When connection
information is received for each service, eg IP address for a controller's multicaster, the
connection is launched. When _device._pid event is received, a Monitor thread is created with
connection parameters and thread is executed to requests connection with controller's TCP server

Parameters:
event - javax.jmdns.ServiceEvent

See Also:
JmDNS_DATA, Monitor

public void serviceRemoved(javax.jmdns.ServiceEvent event)

This method services event removal from its host, ie users of services are informed; eg URL
address is removed from GUI.

Parameters:
event – ServiceEvent

com.coordinator.coordination
Class Monitor
public class Monitor
extends com.coordinator.database.Data
implements java.lang.Runnable

The Monitor.class receives encoder positions from controllers and also trajectory end flags for
synchronization via TCP client socket

259

See Also:
com.coordinator.network.TCP_Client

Constructor Detail

public Monitor(int device,
 javax.jmdns.ServiceInfo deviceInfo,
 com.coordinator.coordination.SynchFlag synchflag,
 java.lang.String add,
 int portNo)

Parameters:
device - int
deviceInfo - ServiceInfo
synchflag - SynchFlag
add - String; IP address
portNo - int; port

Method Detail

public void run()
Thread's run method receives encoder positions, synchronization flags, urgent and other info
from controller

com.coordinator.coordination
Class SynchFlag
public class SynchFlag

This class stores synch flags received by the Monitor. In synchronized trajectory mode, each
controller sends a flag to indicate end of trajectory and waits. When all flags have been received,
i.e, synch==threads, synch is reset to 0 and MulticastSender is alerted by Monitor thread to
multicast flag to alert them to run next trajectory.

Field Detail

public static int synch
stores synch flags received

public static int threads

stores number of thread Monitors, ie number of controllers

Method Detail

public synchronized void put_flag(int i)
increments synch by i, ie 1

Parameters:
i – int

public synchronized void put_threads(int i)
Each Monitor thread created calls this method to increment threads by i, ie 1

Parameters:
i - int

public synchronized int get_flag()

Returns:
int; synch

260

public synchronized void reset_flag()
sets synch to 0

public synchronized int get_threads()

Returns:
int; number of threads.

C3 com.coordinator.interpolation
Class Transmission_Flag
public class Transmission_Flag

InterpolationData_Trans uses this class to get and set a boolean flag in this class

Field Detail

static boolean flag

Method Detail

public synchronized void getFlag()
sets flag. If flag is false, method calling this (UDP.transaction) will be put in wait state until flag
is true.

public synchronized void setFlag(boolean sflag)

sets flag and notifies UDP waiting on lock

Parameters:
sflag - boolean; flag

com.coordinator.interpolation
Class Interpolator
public class Interpolator
extends com.coordinator.interpolation.Transmission
implements java.lang.Runnable

NC code interpretation and interpolation is done in this class. The code was originally received
from NRC-IMTI in C format and was designed for DSP's. Rodney converted it to Java and added
protocols for transmitting data over network

Constructor Detail

public Interpolator(int numAxes,
 java.lang.String platformType,
 int period,
 boolean ACDEC,
 java.io.File file,
 java.lang.String transactionType,
 com.coordinator.network.McastFlag flag)

Parameters:
numAxes - int; number of axis
platformType - String; JStick or local PC host
period - int;interpolation period
ACDEC - boolean; if true use acceleration and deceleration profiling in interpolation
file - File; parsed Gcode file
transactionType - String; viaRT,UDP,Multicast, ie communication mode

261

flag - McastFlag; use for interrupting interpolation

Method Detail

public void run()
Thread's run method reads NC data, interpolates, calls inverse kinematics if needed and calls
methods to send data to controllers either directly or through real-time JStick coordinator

void readCoord_Circular()

run() calls this method to read circular interpolation data

void readCoord_linear()

run() calls this method to read linear interpolation data

private int InterpolationCoordinator(int axes)

run() calls this method to coordinate interpolation, ie call axisInit1 followed by velocityInit1(),
axisInit2(axes) and velocityInit2(). Number of interpolation steps are returned and used to
calculate setpoints. After ach computation setpoints are sent on the network

void tripodInvKin()

calls tripod's inverse kinematics with translation and orientation derived from interpolation

void axisOutput()

method for passing setpoints to communication protocol

com.coordinator.interpolation
Class Transmission
public class Transmission
extends com.coordinator.database.Data

Protocol for sending setpoints from interpolator to JStick coordinator

Constructor Detail

public Transmission(java.lang.String type)
creates UDP socket

Parameters:
type - String; trajectory type, eg "via RT JStick Host"

Method Detail

public synchronized void transaction()
creates and sends datagram packets containing setpoints. To avoid flooding the JStick
coordinator, the size is limited to 576 bytes. The method works together with Transmission_ACK
and Transmission_Flag to wait for response from the JStick coordinator before next UDP is sent.
Method is interrupted by user stop command

com.coordinator.interpolation
Class Transmission_ACK
public class Transmission_ACK
extends com.coordinator.interpolation.Transmission

262

implements java.lang.Runnable
UDP class calls this method to receive flag from JStick coordinator that it is ready for next batch
of setpoints.

Method Detail

public void run()
UDPExt thread's run method waits for datagram from coordinator; it uses UDP.class socket
connection to receive, blocking until data arrives

C4 com.coordinator.GUI
Class TrajTable
public class TrajTable
extends javax.swing.JFrame

This class shows a table for inputting trajectory data (position velocity) for all axes

Constructor Detail

public TrajTable()
sets table (columns and rows) with headers

Method Detail

private void jbInit()
sets graphical display parameters

Throws:
Exception -

com.coordinator.GUI
Class MainApplication
public class MainApplication

This is class is the application program for starting the Graphical User Interfaces

Field Detail

public static com.coordinator.GUI.MainGUIFrame frame

private static com.coordinator.network.McastFlag mcastflag

Constructor Detail

public MainApplication()
Sets graphical parameters for MainGUIFrame

Method Detail

public static void main(java.lang.String[] args)
Starts Application and com.coordinator.coordination.JmDNS_Coordinator;

Parameters:
args - String[]

com.coordinator.GUI
Class MainGUIFrame
public class MainGUIFrame
extends javax.swing.JFrame

263

Constructor Detail

public MainGUIFrame(com.coordinator.network.McastFlag flag)

Parameters:
flag - McastFlag

Method Detail

private void jbInit()
Called by constructor to display graphics

Throws:
Exception -

protected void processWindowEvent(java.awt.event.WindowEvent e)

Overridden so we can exit when window is closed

Parameters:
e - WindowEvent

void axis_1Go_actionPerformed(java.awt.event.ActionEvent e)

axis 1 Go button

Parameters:
e - ActionEvent

void axis_2Go_actionPerformed(java.awt.event.ActionEvent e)

axis 2 Go button

void axis_3Go_actionPerformed(java.awt.event.ActionEvent e)

axis 3 Go button

void axis_4_Go_actionPerformed(java.awt.event.ActionEvent e)

axis 4 Go button

void axis_5_Go_actionPerformed(java.awt.event.ActionEvent e)

axis 5 Go button

void axis_6_Go_actionPerformed(java.awt.event.ActionEvent e)

axis 6 Go button

void go_actionPerformed(java.awt.event.ActionEvent e)

Go button for synchronized moves

void setPoints()

method to pass (position, velocity, acceleration in textfield boxes to ControllerIO

void runProfile_actionPerformed(java.awt.event.ActionEvent e)

method below is for running different trajectory profile modes

void stop_actionPerformed(java.awt.event.ActionEvent e)

Method to call multicaster to stop controllers

Parameters:
e - ActionEvent

void reference_actionPerformed(java.awt.event.ActionEvent e)

264

When 'reference position' button is clicked method alerts ControllerIO

void Load_actionPerformed(java.awt.event.ActionEvent e)

When 'Load trajectory' button is clicked method calls TrajDataApplication with file data

Parameters:
e - ActionEvent

void driverson_actionPerformed(java.awt.event.ActionEvent e)

When 'drives_on' button is clicked method alerts ControllerIO

void driversoff_actionPerformed(java.awt.event.ActionEvent e)

When 'drives_off' button is clicked method alerts ControllerIO

void PIDFilter_actionPerformed(java.awt.event.ActionEvent e)

method to execute PIDTable to show PID Filter table

void dreference_actionPerformed(java.awt.event.ActionEvent e)

When 'define_home' button is clicked method alerts ControllerIO

public void setWebButton(java.lang.String device,
 java.lang.String flag,
 java.lang.String name)

Method for setting and enabling web buttons

Parameters:
device - String; device
flag - String; on button is enable; off it is disabled
name - String

void webButton1_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 1

void webButton2_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 2

void webButton3_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 3

void webButton4_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 4

void webButton5_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 5

void webButton6_actionPerformed(java.awt.event.ActionEvent e)

opens web browser for axis 6

void New_actionPerformed(java.awt.event.ActionEvent e)

method executes TrajTable for displaying and editing trajectory data

void shutdown_actionPerformed(java.awt.event.ActionEvent e)

method alerts controllerIO to shutdown controllers

public static void setPowerButtons(java.lang.String device,

265

 java.lang.String flag)
this method shows status of controllers (on or off)

void axis_1_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_1 controller

void axis_2_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_2 controller

void axis_3_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_3 controller

void axis_4_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_4 controller

void axis_5_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_5 controller

void axis_6_power_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO to shut down axis_6 controller

void speedReady_actionPerformed(java.awt.event.ActionEvent e)

handles speed over-ride GUI controls and alerts controllerIO

void jCheckBox1_itemStateChanged(java.awt.event.ItemEvent e)

all controllers may be shut down by this logic if a fault occurs on one of them

void logButton_actionPerformed(java.awt.event.ActionEvent e)

this method is for logging encoder positions of individual controllers

public void updateProgressBar()

progress bar for encoder logger

public void zero_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO when 'go to zero position' button is clicked

Parameters:
e - ActionEvent

public void Home_actionPerformed(java.awt.event.ActionEvent e)

alerts controllerIO when 'home' button is clicked

Parameters:
e - ActionEvent

com.coordinator.GUI
Class PIDTable
public class PIDTable
extends javax.swing.JFrame

This class implements the GUI for setting, editing and saving PID values

Constructor Detail

public PIDTable()

266

Method Detail

private void jbInit()
Called by Constructor to display graphics

Throws:
Exception -

com.coordinator.GUI
Class TrajDataApplication
public class TrajDataApplication

Field Detail

boolean packFrame
Application to execute TrajDataFrame.class GUI

Constructor Detail

public TrajDataApplication(java.io.File fileName)
Called by MainGUIFrame with file as argument

Parameters:
fileName - File; file with trajectory data

com.coordinator.GUI
Class TrajDataFrame
public class TrajDataFrame
extends javax.swing.JFrame

This class displays a GUI for choosing trajectory type, platform, communication type and
modifying trajectory data

Constructor Detail

public TrajDataFrame(java.io.File file)
Constructs the frame

Method Detail

private void jbInit()
Component initialization called by constructor

public void jComboBox1ListStart(java.lang.String firstItem)

method to populate interpolation data type list when GUI shows up

public void jComboBox1List(java.lang.String firstItem)

method to populate interpolation data type list when GUI resets

public void jComboBox2List(java.lang.String firstItem)

method to populate interpolation platform list

public void jComboBox3List(java.lang.String firstItem)

populate number of axis list

public void jComboBox4List(java.lang.String firstItem)

267

populate motion controller mode list

public void jComboBox5List(java.lang.String firstItem)

populate motion communication mode list

public void jComboBox5List2(java.lang.String firstItem)

Populate motion communication mode list. This is used for interpolation modes other than G
Code {"TCP Direct", "UDP Direct"}

public int[] fileArrayDim()

measures the row and column sizes; used for trajectory types other than G Code

public void fileTypeTest()

tests for the type of data file

boolean saveFile()

method to save current file configuration and trajectory data files

boolean saveAsFile()

Save current file, asking user for new destination name.

protected void processWindowEvent(java.awt.event.WindowEvent e)

Overridden so we can exit when window is closed

void trajTypeCombo_actionPerformed(java.awt.event.ActionEvent e)

Method to handle trajectory type selected

Parameters:
e - ActionEvent

void platformCombo_actionPerformed(java.awt.event.ActionEvent e)

HANDLES INTERPOLATION PLATFORM selected

Parameters:
e - ActionEvent

void AxesCombo_actionPerformed(java.awt.event.ActionEvent e)

Handles AXES (e.g. 2, 4) selected

void contModeCombo_actionPerformed(java.awt.event.ActionEvent e)

handles CONTROLLER MODE selected

void comModeCombo_actionPerformed(java.awt.event.ActionEvent e)

handles COMMUNICATION MODE selected; e.g. "via RT JStick Host", "Multicast Direct"

Parameters:
e - ActionEvent

void OK_actionPerformed(java.awt.event.ActionEvent e)

handles OK button as ff; set acceleration, period and abs/relative strings in
Traj_Configuration_Data handles selection of non-break point trajectory type handles condition
for break point trajectory type and alerts controllerIO handles condition for "nonbreakpoint
(synchronized)" trajectory type and alerts controllerIO handles condition for G Code;
interpolation on real time JStick and alerts controllerIO handles condition, local interpolation,
setpoints transmission, which may be option 1 (viaRT) transmits setpoints to a real time module

268

which in turn distributes to controllers option 2 (UDPdirect) transmits directly to controllers by
UDP option 3 (McastDirect) transmits to controllers by multicast and alerts controllerIO

Parameters:
e - ActionEvent

C5 com.coordinator.network
Class UDP_Client
public class UDP_Client

Class for creating and sending datagrams via a datagram client socket

Field Detail

java.lang.String address

int port

byte[] data

java.net.DatagramPacket outpacket

java.net.DatagramPacket inpacket

java.net.DatagramSocket ds

java.net.InetAddress inetaddr

Constructor Detail

public UDP_Client(java.lang.String address,
 int port,
 byte[] data)

prepares a DatagramPacket dp and DatagramSocket ds

Parameters:
address - String
port - int
data - byte[]

Method Detail

public void send()
sends Datagrampacket out_packet by DatagramSocket ds

public void send(byte[] outdata)

sends outdata in Datagrampacket out_packet by DatagramSocket ds

Parameters:
outdata -

public void receive(byte[] in_buffer)

receives datagram into in_buffer

Parameters:
in_buffer -

269

com.coordinator.network
Class DatagramSender
public class DatagramSender
extends com.coordinator.database.Data

Transmits control flags and data to JStick servers

Method Detail

public static void trajectory(double pos,
 double vel,
 double accl,
 java.lang.String dgramipaddr,
 int dgramport,
 int mode)

transmits datagram to controllers for jogging axes

Parameters:
pos - double; position
vel - double; velocity
accl - double; acceleration
dgramipaddr - String; IP address
dgramport - int; port number
mode - int; informs controllers of this mode, i.e. jogging

public static void sendFilter(java.lang.String dgramipaddr,
 int dgramport,
 int index,
 int[][] PID,
 int flag)

Sends PID filter parameters to controllers

Parameters:
dgramipaddr - String; IP address of controller
dgramport - int; datagram port
index - index for device
PID - Proportional, Integral, Derivative
flag - shows data type, i.e. PID data

public static void control(java.lang.String dgramipaddr,
 int dgramport,
 int mode,
 int value)

Sends datagram containing speed over-ride

Parameters:
dgramipaddr - String; ip address
dgramport - int; ip port
mode - int; flags motion controllers
value - int; speed over-ride value

public static void control(java.lang.String dgramipaddr,
 int dgramport,
 int mode)

Sends various command flags to motion controllers;

Parameters:
dgramipaddr - String; IP address
dgramport - int; IP port number
mode - shows data type e.g. 6 => turn on motor drive;

270

public static void control(java.lang.String dgramipaddr,
 int dgramport,
 int mode,
 double accl,
 boolean isAbsolute,
 boolean isAbsoluteVel,
 int pktSize,
 int logSize,
 int logGran)

This method is used in break-pt, non break pt and synchronized trajectory modes to set the states
of controllers for this mode

Parameters:
dgramipaddr - String; IP Address
dgramport - int; Port number
mode - int; flag to set controller state
accl - double; acceleration
isAbsolute - boolean; true if positions are absolute
isAbsoluteVel - boolean; true if velocities are absolute
pktSize - int; used to set buffer size for incoming packets
logSize - int; used to set number of position values to log
logGran - int; used to set log granularity, ie frequency of log

public static void control(java.lang.String dgramipaddr,
 int dgramport,
 int mode,
 double accel,
 int axisNum,
 int logSize)

For G-code interpolation mode:

Parameters:
dgramipaddr - String; IP Address
dgramport - int; Port number
mode - int; flag to set controller state
accel - double; acceleration
axisNum - int; axis ID
logSize - int; size of position data to log

public static void control(java.lang.String dgramipaddr,
 int dgramport,
 int mode,
 int numaxes,
 double interpTime,
 double acceln)

sends data to JStick interpolator

Parameters:
dgramipaddr - String; IP Address
dgramport - int; Port number
mode - indicates the type of data
numaxes - int; number of axes
interpTime - double; period of interpolation
acceln - double; acceleration

com.coordinator.network

271

Class McastDirect
public class McastDirect

This class is used by com.coordinator.interpolation.Interpolator to multicast setpoints directly to
controllers

Constructor Detail

public McastDirect(java.lang.String ipaddr,
 int port)

Parameters:
ipaddr - String; IP address of controller
port - int; port

Method Detail

public static void multicastDirect(int[] data)
Method for multicasting setpoints to controllers

Parameters:
data - int[]; setpoints

com.coordinator.network
Class McastFlag
public class McastFlag

contains methods for flagging controllers when a user issues a stop command

Field Detail

public static boolean flag

Method Detail

public synchronized void put_runStatusFlag(boolean pflag)
sets run pflag

Parameters:
pflag - boolean

public synchronized boolean get_runStatusFlag()

Returns:
flag boolean

com.coordinator.network
Class MulticastSender
public class MulticastSender
extends com.coordinator.database.Data

Class for sending state signals by multicast to JStick servers

Method Detail

public static void run(byte[] flag)

Parameters:
flag - signal to be sent to controllers

com.coordinator.network
Class TCP_Client
public class TCP_Client

272

This class creates a TCP client socket and has methods to create DataInput and DataOutput
streams on this socket

Field Detail

java.io.DataInputStream data_in

java.io.DataOutputStream data_out

java.net.Socket client_socket

int timeout

java.lang.String address

int port

Constructor Detail

public TCP_Client(java.lang.String address,
 int port,
 int timeout)

Creates a client socket and waits forever until server is found

Parameters:
address - IP Address
port -
timeout - Connection timeout

Method Detail

public java.io.DataInputStream dataInStream()
Creates an input TCP stream for the client socket

Returns:
DataInputStream

public java.io.DataOutputStream dataOutStream()

Creates an output TCP stream for the client socket

Returns:
DataOutputStream

public void close_Stream()

