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ABSTRACT 

This research focused on the design and implementation of an Intelligent Modular 

Controller (IMC) architecture designed to be reconfigurable over a robust network. The 

design incorporates novel communication, hardware, and software architectures. This was 

motivated by current industrial needs for distributed control systems due to growing 

demand for less complexity, more processing power, flexibility, and greater fault 

tolerance. To this end, three main contributions were made. 

Most distributed control architectures depend on multi-tier heterogeneous 

communication networks requiring linking devices and/or complex middleware. In this 

study, first, a communication architecture was proposed and implemented with a 

homogenous network employing the ubiquitous Ethernet for both real-time and non real-

time communication. This was achieved by a producer-consumer coordination model for 

real-time data communication over a segmented network, and a client-server model for 

point-to-point transactions. The protocols deployed use a Time-Triggered (TT) approach 

to schedule real-time tasks on the network. Unlike other TT approaches, the scheduling 

mechanism does not need to be configured explicitly when controller nodes are added or 

removed. An implicit clock synchronization technique was also developed to complement 

the architecture. Second, a reconfigurable mechanism based on an auto-configuration 

protocol was developed. Modules on the network use this protocol to automatically detect 

themselves, establish communication, and negotiate for a desired configuration. Third, the 

research demonstrated hardware/software co-design as a contribution to the growing 

discipline of mechatronics. The IMC consists of a motion controller board designed and 

prototyped in-house, and a Java microcontroller. An IMC is mapped to each 

machine/robot axis, and an additional IMC can be configured to serve as a real-time 

coordinator. The entire architecture was implemented in Java, thus reinforcing uniformity, 

simplicity, modularity, and openness. Evaluation results showed the potential of the 

flexible controller to meet medium to high performance machining requirements. 
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1. INTRODUCTION 

1.1 Overview 

This thesis presents the design of a modular reconfigurable controller for machine 

tools. This is not a new concept, as the literature in the subsequent chapters reveals; 

however the design breaks new ground by incorporating embedded technology using 

commercial-off-the-shelf (COTS) components, flexible architectural design patterns based 

on object-oriented technology, plug-and-play, and web-design into a distributed control 

system. All these properties are harnessed by well-conceived and novel hardware, 

software, and communication architecture designs. The treatise takes a tour through the 

different design stages from concepts to production, and also gives a rich background of 

the related state-of-the-art. Experimental results and future research directions wrap up the 

main thesis body. The rest of this chapter gives the motivation for the research, goals and 

contributions, and the organizational structure of the thesis. 

1.2 Motivation 

The Mechatronic approach in modern design of control systems inevitably 

involves embedded technology. This approach is gaining a lot of attention due to the 

growing demand for distributed real-time systems. Indeed, the gradual paradigm shift 

from centralized systems is justified in many ways. The most compelling reasons are the 

needs for less complexity, more processing power, flexibility, and greater fault-tolerance. 

A typical distributed control system (DCS) consists of several processing nodes connected 

by a communication network. The network presents a duo of both convenience of 

connectivity, and inconvenience of dealing with real-time situations. For this reason, some 

control designers treat the DCS arena with caution, quite reluctant to breakaway from 

tried-and-tested microprocessor communication systems such as backplanes. However, 

designs based on such systems have limited flexibility in terms of scalability, unlike serial 

communication systems where a few serial lines could connect many elements. Currently, 

there are several such systems, collectively called fieldbuses, which are employed in many 
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industries to operate peripheral devices such as sensors and actuators. Fieldbus systems 

have roots in automotive systems where data rates are only a few kilobytes per second. 

Apparently, their bandwidths have not changed substantially since their debut some 

twenty years ago. Moreover the current market is now inundated with fieldbus products, 

and this poses a challenge to standardization and interoperability. Industries need 

interoperable devices and techniques to reduce integration costs of factory information 

systems (Dugenske et al., 2000). In the midst of evolving communication standards, 

Ethernet has stood out as the most consistent and robust, though its presence in low-level 

control is almost non-existent due to its non real-time properties. Against this backdrop, 

this research investigates the constraints and opportunities for using Ethernet and proposes 

and implements a design scheme to realize real-time control to meet stringent time 

demands. The communication architecture uses a producer-consumer coordination model 

for real-time data communication over a segmented network, and a client-server approach 

for point-to-point transactions. Moreover, the proposed scheme employs a time-triggered 

(TT) approach to schedule tasks for the network. Unlike other TT approaches – normally 

branded as inflexible, the proposed scheme does not need to be configured explicitly. 

Furthermore, an auto-configuration protocol that enables devices on the network to be 

cognizant of the operational environment has been successfully integrated in the 

architecture. This scheme allows devices on the network to automatically detect 

configuration changes, and react according to local event-service routines.  

Another important aspect of the architecture is the use of an object-oriented 

architectural style. This style of programming leverages reuse, fast development, and high 

quality software semantics. Presently, C++ and Ada are the most commonly used object-

oriented tools in embedded system designs. Both are robust real-time programming tools, 

but while C++ is prone to poor readability and maintainability, Ada is large and complex. 

Breaking from the norm, we use Java as the sole programming tool. Java adds flexibility 

by being platform-independent with rich support for networking. However, not many real-

time applications have been written in this language due to its inherent tardiness. For this 

reason, we resorted to Java-based processors with native Java machines. This led us to 

design customized motion controller boards based on COTS components. Test results 
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demonstrate the capabilities of the design. In the section below, the main objectives and 

goals of this research are presented. 

1.3 Goals and Contributions 

The proposed research aims to advance reconfigurable controller architecture to a 

new limit by addressing the above issues. The research is a collaborative effort between 

the Mechanical Engineering Department of the University of Saskatchewan and the 

Integrated Manufacturing and Technology Institutes of the National Research Council 

(IMIT-NRC).  The following list summarizes the research objectives for the proposed 

design: 

Primary Objectives: 

1. A generic framework for a modular reconfigurable control architecture. The 

framework addresses software and hardware requirements, and also the 

communication structure. 

2. A small and simple design that fits into embedded low-cost platforms. 

3. A working prototype, not just concepts and simulations of the architecture. 

Secondary Objectives: 

Literature review on the current work being done in the field of design and to 

identify those areas that require additional investigations. 

1. A critical review of the state-of-the-art in control architecture, distributed 

communication paradigms, and reconfigurable networked systems. 

2. A synchronization algorithm and protocols to enable Ethernet to be used for real-time 

control. 

3. An operational software architecture based on modularity and reusability. 

4. Demonstration of the strengths of the proposed design. 

Contributions: 

The main contributions of the thesis are as follows: 

1. Embedded technology is a cost-effective approach to motion control design. C++ and 

Ada have dominance in this field, but Java has certain unique and superior strengths 

albeit some weakness in real-time design. In Chapters 4 and 5, a Java-based design is 

presented that utilizes COTS components. The concepts are simple (simplicity is the 

governing principle), and can easily be replicated. To the best of our knowledge, no 
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literature has revealed a hard real-time motion controller design thoroughly based on 

embedded Java technology.   

2. Ethernet is the de facto network standard, but is seldom considered for time critical 

events due to its inherent ‘sluggishness’. Therefore many distributed systems rely on 

fieldbuses or microprocessor communication hardware (e.g. VME). However, the real-

time communications market is unregulated, and is therefore cluttered with many 

different systems, which normally require special middleware and hardware systems 

to make them interoperable. Moreover, not many of them have the robustness and 

flexibility of Ethernet. In view of this, an Ethernet-based real-time communication 

architecture with implicit clock synchronization has been implemented and 

demonstrated as part of the overall architecture. The technology also enables the 

controller sub-component design to incorporate embedded web-servers for remote 

monitoring and system configuration.   

3. Zeroconf protocol was developed by Apple to enable networked devices to 

automatically reconfigure (plug and play) without the need for high level intervention. 

A subset of the Zeroconf protocol, JmDNS, is written in standard Java (J2SE). With 

regard to this protocol, two ideas are realized in this research: First, the protocol has 

been re-engineered and ported to a subset of J2SE called the Java micro-edition 

(J2ME) commonly used in embedded Java systems such as personal device assistants 

(PDA). Secondly, the protocol has been successfully demonstrated as an automatic 

configuration tool for controllers and other shop floor devices.  

1.4 Organization of Thesis 

The structure of the thesis is outlined in this section. In Chapter 2, a detailed 

review of control architectures is discussed and critiqued. Typical requirements for control 

and software architecture are presented to enable a comprehensive review. A snapshot of 

the proposed architecture codenamed the IMC (Intelligent Modular Axis Controller) 

architecture is presented in Chapter 3. The design is based on a layered reference model, 

and modularity, simplicity and flexibility are the governing principles. A detailed review 

of the constraints and opportunities for Java technology in real-time design is presented in 

Chapter 4. Inferences drawn from this enabled us to select and to understand the 

implications of using JStick, which is a Java-based COTS microcontroller. An overview 
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of the relevant characteristics of the microcontroller is outlined. The premise for the 

selection of a motion controller chip (LM628) is also included in this chapter. In Chapter 

5, the hardware architecture is described in detail. The architecture consists of control 

modules (IMC) dedicated to each machine axis, and a host computer (system coordinator). 

Each IMC is made up of a JStick as the host microcontroller and a motion controller board 

purposefully designed for this research. Details of the board design are provided: This 

includes the procedure for integrating it with the JStick such as timing analysis. Chapter 6 

details communication architecture concepts and principles. Following this, the system 

communication architecture is described. A Time-Triggered approach enhanced with a 

producer-consumer co-operation model, is employed to realize real-time communication 

on a switched-Ethernet network. Analysis of the computation and communication model 

is also presented. Clock synchronization in distributed systems is discussed in Chapter 7; 

an external clock synchronization model developed for the IMC architecture is described. 

Chapter 8 gives an overview of trajectory generation schemes and the methodologies 

adopted for this project. The software architecture framework is vividly described in 

Chapter 9. Experiments to verify the architecture are provided in Chapter 10, and finally 

conclusions and future research directions are outlined in Chapter 11. Schematic diagrams 

of the motion controller board, BOM (Bill of Materials) including prices, and the software 

interfaces are appended.     
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2. ARCHITECTURE DESIGN CONCEPTS AND REVIEW 

2.1 Robot Control Architecture, Introduction 

Robot control architectures embody several different notions and implications, 

particularly architectural styles and structures. Architectural structure shows how a system 

is decomposed into subsystems, and how subsystems interact. The computation and 

communication underpinnings of a given system invariably reflect a style. For example, 

one system might use a publish-subscribe message passing style of communication, while 

another may use a more synchronous client-server approach (Coste-Maniere and 

Simmons, 2000). Most often the holistic architecture is realized only at the working stage. 

This is unfortunate, since a well-conceived architecture can have many advantages in the 

specification, execution, and validation of robot systems. This chapter serves as a roadmap 

to developing a robot control architecture framework. Generally, a framework refers to the 

structure external to an architecture which organizes information about the architecture 

and its application (Kramer and Senehi, 1993).  

2.2 Architectural Properties 

The architectural style employed has a direct impact on the performance of the 

overall system. For example, the pipe-and-filter software style supports components’ 

reusability and configurability of the application by applying generality to its component 

interfaces. However, components are constrained to a single interface type. Some salient 

properties of architectures are discussed in the following sections. 

2.2.1 Dealing with Complexity 

A daunting challenge is the need to manage the complexity of interactions between 

the system and its environment, and interactions between individual units of a system 

(Coste-Maniere and Simmons, 2000). One way to achieve simplicity is through 

modularity within a given structure. The global system complexity can be decomposed 

into smaller components with well-defined abstraction levels and interfaces between them. 
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Another means of curtailing complexity is to provide expressive languages and tools, e.g., 

ALPHA, and high-level languages such as TCA and TDL (Coste-Maniere and Simmons, 

2000). Architecture description languages (ADL) are particularly useful for architecture-

based development and formal modeling notations and analysis (Medvidovic and Taylor, 

2000). The software architecture must provide a basis for complexity management by 

providing abstract models of the system under development, which is necessary in 

comprehension, cross-domain communication, verification, validation and maintenance 

(Chen, 2001). Coupling and cohesion issues must also be addressed by the architecture. 

Coupling refers to the way modules are connected, while cohesion indicates the degree of 

relatedness of sub-modules, or components within a module. An ideal system provides 

low coupling and high cohesion without violating performance parameters (Chen, 2001).  

2.2.2 Execution 

The architecture should also define the run-time execution of the software. This 

includes real-time responses, appropriate goal-directed behavior and reliable reactivity to 

environmental changes. The issue on real-time provokes this famous definition: 

A real-time computer system is a computer system in which the correctness of the 
system behavior depends not only on the logical results of the computations, but 
also on the physical instant at which these results are produced (Kopetz, 1997). 

There are two variants of real-time systems: In a hard real-time system, timing 

violations are to be avoided at all times. In contrast, a soft real-time system can tolerate 

some degree of timing violations. Typical tasks for a real-time system include data 

collection, digital control and man-machine interactions. The architecture has to describe, 

quantify or specify the temporal requirements of the system. These include timing of 

events (e.g., deadlines), arrival patterns of events (e.g., sporadic or periodic), and the 

triggering policies required. Goal-directed behavior refers to the mechanism within the 

architecture to manage tasks and behaviors such as task decomposition and behavior 

arbitration, and for managing the interactions between tasks and behaviors such as 

resources management, multitasking and temporal sequencing. Task management 

facilitates concurrent execution in a single process or by a collection of distributed 

processes. For reliable reactive behaviors, the architecture can provide software support 

for monitoring the environment and invoking exception handlers, if necessary. The extent 
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of reactivity depends on the real-time capabilities of the system. The management of 

exceptional conditions also includes support for cleanly terminating tasks, and if necessary 

recovery strategies. 

2.2.3 Openness  

Openness is a buzzword in the control systems community. Open architecture 

control systems offer services according to standard resources, and/or standard rules that 

describe the syntax and semantics of those services (Tanenbaum and van Steen, 2003; 

Hong, et al, 2001). This approach forces all manufacturing vendors to conform to an 

agreed standard, thereby promoting integration and interoperability. It is becoming more 

acceptable for open-architecture control system to possess the common capabilities and 

functionalities offered by standard platforms: these include standard computing 

architecture, standard processors, standard operating systems, and standard and widely 

used programming languages. Moreover, openness promotes application of user-specified 

functions (Mehrabi et al., 2000; Chesney, 1998). 

2.2.4 Performance 

The performance of an architecture implementation is bound by first the 

application requirements, then by the chosen interaction style, followed by the realized 

architecture, and lastly by the implementation of individual component. As an example, if 

the application requires that data be located on system X and processed on system Y, then 

the software cannot avoid moving that data from X to Y. Also, an architecture cannot be 

any more efficient than its interaction style allows; e.g., the cost of multiple interactions to 

transport data from X to Y cannot be less than that of a single interaction from X to Y. 

Lastly, regardless of the quality of an architecture, interactions cannot take place faster 

than the capacity individual components can endure. The quality of a distributed control 

architecture hinges on its network performance, which is measured by data throughput, 

overhead, bandwidth and usable bandwidth (Fielding, 1999). From the end-user 

perspective, network performance metrics are latencies, jitter and ultimately the ability of 

the controller to track a prescribed motion path accurately and efficiently within the 

dynamic constraints of the system. 
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2.2.5 Scalability 

Scalability is the ability of the architecture to support many components, or 

interactions among components within an active configuration. Scalability can be 

enhanced by simplifying components and decentralizing interactions between elements. 

Another complement approach is the proper control of monitoring or user interactions and 

configurations. The architecture style influences scalability by determining the location of 

application states, the extent of distribution, and the coupling between components 

(Fielding, 1999). Scalability is also affected by the frequency of interactions and 

timeliness requirements of data transfer.  

2.2.6 Simplicity 

Allocation of functionality to the individual components to reduce complexity 

enables easier understanding and implementation of components and the overall 

architecture. 

2.2.7 Modifiability 

Modifiability is the ease with which a change can be made to the architecture 

implementation. Modifiability is also a measure of evolvability, customizability, 

reconfigurability, and reusability (Fielding, 1999). Customizability refers to modifying a 

component at run-time, specifically so that the component can then perform an unusual 

service. A component is customizable if it can be extended by one client of that 

component’s services without adversely affecting other clients of that component. 

2.2.8 Portability 

Portable software can run in different environments. Architecture styles that 

support portability include those that move code along with the data to be processed, such 

as the virtual machine and mobile agent styles, and those that constrain the data elements 

to a set of standardized formats. 

2.2.9 Reliability 

Reliability refers to the robustness of an architecture to failure at the system level 

in the presence of partial failures within components, connectors, or data. By definition 
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(Kopetz, 1997), if a system has a constant failure rate of 
�
 failures/hour, then the reliability 

R at time t is given by  

( )( )0( )
t t

R t e
λ− −= ; 

where t-t0 is given in hours. The inverse of the failure rate is referred to as the 

Mean-Time-To-Failure (MTTF).  

2.2.10 Distributed Real-Time Systems 

There are several definitions of distributed systems found in the literature. 

According to a general definition given by Tanenbaum and van Steen (2003), “A 

distributed system is a collection of independent computers that appears to its users as a 

single coherent system”. Their definition has two implications: Firstly, the machine 

hardware is autonomous. Secondly, regarding software, the users think they are dealing 

with a single system. In terms of distributed system hardware, they divide all computers 

into two groups: those with shared memory (multiprocessors) and those without shared 

memory, i.e. multi-computers. Interconnection networks may be a bus such as a network 

or backplane, or switched as in the case of the public telephone system. Essentially, it is 

the software that largely determines the nature of a distributed system. The definition 

given by Kopetz (1997) is more specific: “If a real-time system is distributed, it consists of 

a set of (computer) nodes interconnected by a real-time communication network”. 

A distributed system leverages designing systems into fault-containment regions 

for easy diagnosing and smothering of faults, i.e., in a well-designed system, faults are 

dealt with locally and thus do not pervade the system. Moreover, scalability and 

modifiability is not as restrictive as in the case of a centralized system. However, the 

communication system can be a bottleneck if not properly designed.  

2.3 Software Architecture Styles 

Modern day robot control architectures encase intensive software engineering. 

This necessitates choosing software architecture styles. For example, one has to select a 

suitable style (or a combination) for network-based applications, which will induce laid 

out objectives. Researchers are still refining the definition of software architecture. Two 

views are as follows: 
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A software architecture is an abstraction of the run-time behavior of a software 
system during some phase of its operation. A system may consist of many levels of 
abstraction and many phases of operation, each with its own software architecture. 
A software architecture consists of components, connectors, data, a configuration, 
and a set of architectural properties (Fielding, 1999). 

The architecture of a software system defines that system in terms of components 
and of interactions among those components. In addition to specifying the 
structure and topology of the system, the architecture shows the intended 
correspondence between the system requirements and elements of the constructed 
system. It can additionally address system-level properties such as capacity, 
throughput, consistency, and component compatibility (Shaw, 1995). 

Two common words that show up in various definitions are ‘components’ and 

‘connectors’. Components are described by Garlan and Shaw (1993) as computational 

components and by Fielding (1999) as abstract units of software that provide a 

transformation of data via their interface. In Birla et al., (2001) it is described as a 

reusable piece of software that serves as a building block within an application. This 

approach has the potential to enhance productivity by reducing architectural complexity 

(Chadha and Welsh, 2000). It is generally accepted that a connector is an abstract 

mechanism that mediates communication, coordination or cooperation among components 

(Fielding, 1999; Shaw, 1995).  

In this section we examine some widely used styles. Our purpose is to capture the 

variety of choices available and the implications thereof. 

2.3.1 Pipe-and-Filter System (Data-Flow Model) 

A pipe-and-filter (PF) system has two types of units: filters (component) and pipes 

(connector). Filters are responsible for incrementally transforming continuous streams of 

input data to streams of output data while pipes handle transportation of data streams 

between the filters, i.e., connections between producer and consumer components are data 

streams (Garlan and Shaw, 1993). Filters are usually implemented as software processes 

and pipes as system services. Filters are independent entities and hence are not allowed to 

share state with other filters. Invariably, a filter has no knowledge about its upstream and 

downstream filters. Filters are initiated when data is available and run to completion at the 

end of input data. In other words, computations are triggered by the availability of input 

data. Several variations of PF exist including those found in the UNIX family, LabVIEW 

and some database systems (Lee, 2002). The PF styles are suitable for applications where 
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the problem can be decomposed into a series of independent computations. This kind of 

configuration implies low coupling and high cohesion, which are necessary for simplicity, 

modifiability, reusability, and portability. However, it can be difficult to create interactive 

applications with this style. Secondly, there can be some performance-related problems 

due to the overheads of parsing and unparsing operations resulting from a fine-grained 

data stream (Chen, 2001). 

2.3.2 Layered Style 

A layered system is organized hierarchically, with each layer providing services to 

the layer above it and using services of the layer below it (Garlan and Shaw, 1993). A 

function in one layer can only interact with other functions in the same layer or adjacent 

layers through a protocol (connector). This decoupling enhances evolvability and 

reusability since each layer represents a group of modules or functions for one class of 

services. The most widely used application of this kind of architectural style are layered 

protocols such as the TCP/IP and OSI protocol stacks (Zimmerman, 1980), Windows NT 

and hardware interface libraries. Layered styles are suitable for systems that can be 

decomposed into application-specific and implementation-specific functions. The major 

disadvantage of layered systems is that they add overhead and latency to the processing of 

data and hence could degrade user-perceived performance (Fielding, 1999).  

2.3.3 Time Triggered  

In some systems timed events are driven by clocks, which are signals with events 

that are repeated indefinitely with a fixed period. A number of software frameworks and 

hardware architectures support this regular style of computation. The time-triggered 

architecture (TTA) is a hardware architecture that employs this regularity by statically 

scheduling computations and communications among distributed components.  

2.3.4 Synchronous/Reactive  

In the synchronous/reactive (SR) style, connections between components represent 

data values that are aligned with global clock ticks, as with time-triggered approaches. 

However, unlike the time-triggered approach, there is no assumption that signals have a 

value at each time tick. This model is ideal for concurrent models with irregular events 

such as concurrent and complex control logic. Also because of tight synchronization, 
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safety-critical real-time applications are a good match but this makes distributed systems 

difficult to model.  

2.3.5 Process Networks  

In this technique, components are processes or threads that communicate by 

asynchronous buffered message passing. The sender of the message does not need to wait 

for the receiver to be ready to receive the message. Process networks (PN) are excellent 

for signal processing. They are loosely coupled, and therefore relatively easy to parallelize 

or distribute. They can be implemented efficiently in both software and hardware. The 

main weakness of PN models is that they are awkward for specifying complicated control 

logic (Lee, 2002).  

2.3.6 Publish and Subscribe  

In publish-and-subscribe models, connections between components are through 

named event streams. A consumer component registers an interest in the stream. When a 

producer produces an event to the stream, the consumer is prompted that a new event is 

available. It then queries a server for the event’s value.  

2.3.7 Client-Server (CS) 

The client-server style is the most frequently used architectural style for network-

based applications (Fielding, 1999). A server component offering a set of services listens 

for requests: a client component in need of that service sends a request to the server via a 

connector. The server may either reject or serve the request and send a response back to 

the client. A client can be regarded as a triggering process while a server is a reactive 

process. Requests from clients trigger reactions from servers (Andrews, 1991). Separation 

of functionality is the main principle behind the client-server constraints. A proper 

separation of functionality simplifies the server component in order to improve scalability. 

This simplification usually involves moving all of the user interface functionality into the 

client component. The separation also allows the two types of components to be modified 

independently, provided that the interface does not change. There are several flavors of 

client-server systems, depending on the number of servers and clients in the overall 

system. 
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2.3.8 Process Control 

Also called the control-loop style (Shaw, 1995), this style is based on the notion of 

closed loop control. Data flow topology is cyclic between control functions. The style has 

two types of units: controlled process including process modeling as well as process 

variables and sensors, and controller including control algorithms and set points. The 

interactions of these units involved intense data interactions, where the controller receives 

values of measured process variables at predefined time points and produces control 

signals to manipulate the controlled process. 

2.3.9 Finite State Machines  

It is often useful to combine models, especially concurrent ones, hierarchically 

with finite-state machines (FSM) to get modal models. FSM execution is strictly 

sequential. A component is called a state or mode, and exactly one state is active at a time. 

Connections between states denote transitions or transfer of control between states and 

execution is an ordered sequence of state transitions. FSM models are excellent for 

describing control logic and are easily mapped to either hardware or software 

implementations (Fielding, 1999). However, the number of states can get very large even 

in simple system. Hence, FMS is often combined with other styles.  

2.3.10 Mobile Code 

Mobile code styles use mobility to dynamically change the distance between the 

processing and source of data or destination of results (Fielding, 1999; Fuggetta et al., 

1998). A site abstraction is introduced at the architectural level, as part of the active 

configuration, thereby taking into account the location of the different components. The 

concept of location makes it possible to model the cost of an interaction between 

components at the design level. An interaction between components in the same location 

is considered to have negligible cost compared to an interaction through a communication 

network. By changing its location, a component may improve the proximity and quality of 

its interaction, reducing interaction costs and thereby improving efficiency and 

performance. In all mobile code styles, a data element is dynamically transformed into a 

component. The virtual machine or interpreter is the main mobile code style (Garlan and 

Shaw, 1993). The virtual machine style provides code execution in a secured and reliable 
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way, preferably within a controlled environment. The benefits of VM are the separation 

between instruction and implementation on a particular platform (portability) and ease of 

extensibility. One of the most popular implementation is the Java Virtual Machine (JVM), 

which enables Java to be platform-independent. In the mobile agent style, an entire 

computational component is migrated to a remote site along with its state, the code it 

needs, and possibly some data required to perform the task. The main advantage of the 

mobile agent style is that there is greater flexibility in the selection of when to move the 

code. An application can be in the midst of processing information at one location when it 

decides to transfer to another location – presumably in order to narrow the distance 

between it and the next set of data it wishes to process (Fielding, 1999). 

2.3.11 Data Abstraction and Object-Oriented Organization 

In the data abstraction and object-oriented approach, data representation and its 

associated primitive operations are encapsulated in an abstract data type or object. The 

components of this style are the objects. The object-oriented approach has many favorable 

properties which have contributed to its widespread use. Because an object hides its 

representation from its clients, it is possible to change the implementation without 

affecting those clients (Shaw and. Garlan, 1995), as long as the interface is preserved. 

Furthermore, the bundling of a set of accessing routines with the data they manipulate 

enables programmers to decompose problems into collections of interacting agents. 

However object-oriented systems have some shortcomings. Unlike pipe-and-filter 

systems, an object must know the identity of another object it wants to interact with. 

Therefore whenever the identity of an object changes, it is necessary to propagate this 

update to all objects that explicitly invoke it. Brokered Distributed Objects is a popular 

intermediary style to facilitate communication between distributed objects (on a network) 

by reducing the impact of identity (Fielding, 1999). The brokered distributed object style 

creates name manager components whose purpose is to answer client object requests for 

general service names with the specific name of an object that will satisfy the request. 

Although improving reusability and evolvability, the extra level of interaction requires 

additional network interactions, thereby reducing efficiency. Brokered distributed object 

systems are currently dominated by the industrial standards such as CORBA within the 
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OMG (1997) and the international standards development of Open Distributed Processing 

(ODP) within ISO/IEC (1995).  

2.3.12 Event-Based, Implicit Invocation 

In systems in which component interfaces provide functions and procedures such 

as object-oriented systems, components interact by explicit calls on those routines. In 

contrast, in implicit invocation (also referred to as reactive integration, and selective 

broadcasting), a component can announce (or broadcast) one or more events. Other 

components in the system can register for the event by associating a procedure with it. 

When the event is published, the system itself invokes all the procedures that have been 

registered for the event. Inferentially, an event announcement implicitly causes the 

invocation of procedures in other modules (Shaw and Garland, 1996). One advantage of 

this style is that it supports strong reuse. Any component can be integrated into the system 

simply by registering it for the system events. Another advantage is that it eases system 

evolution since components may be replaced without affecting the interfaces of other 

components in the system. The main disadvantage of implicit invocation is that when a 

component announces an event, it cannot assume that other components will respond to it, 

or respond correctly. There are several examples of systems with this style such as 

integration tools, database management to ensure consistency constraints, and in user 

interfaces to separate presentation of data from applications they manage (Shaw and 

Garland, 1996). Variants of this style are also used in some network protocols for 

registering and automatically discovering services on the network. 

2.3.13 Repositories 

The repository style has two kinds of components; a central data structure that 

represents the current state, and a group of independent components that operates on the 

central data store. The choice of interaction between the repository and its external 

components vary significantly among systems. For example, the repository can be a 

database if the types of transactions in an input stream of transactions trigger selection of 

processes to execute. Alternatively, the repository can be a blackboard if the current state 

of the central data structure is the main trigger for selecting processes to execute. The 

blackboard style has been used for applications requiring complex interpretations of signal 
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processing, such as speech and pattern recognition. It is also common in AI systems and 

systems requiring shared information such as compiler architecture (Garlan and Shaw, 

1993). This style presents an efficient way to share large amounts of data since the data is 

centrally managed. Sub-systems need not be concerned with how data is produced. 

However, it does not favor efficient distribution and flexibility. Moreover, the sub-systems 

must agree on a repository data model, and data evolution is difficult and expensive. 

2.3.14 Heterogeneous Architectures 

While it is important to understand individual architectural styles, most systems 

involve some combination of several styles (Shaw and Garland, 1996). One way to 

combine architectural styles is through hierarchy. A component of a system organized in 

one style may have an internal structure based on a completely different style. A second 

way to organize styles is to allow a single component to use a mixture of architectural 

connectors. For example, a component may interact through pipes with other components 

in the system and accept control information through another section of its interface (Shaw 

and Garland, 1996).  

2.3.15 Rules-of-Thumb for Selecting Styles 

The choice of an appropriate architectural style is normally driven by the 

preference of the end-user and/or implementer, the tools available and the application. 

However, a cautious analysis of the chosen style could lead to a shorter delivery time and 

robust product. There are no hard and fast rules governing the selection process, and a 

typical architecture could consist of several styles as mentioned earlier. Garland and Shaw 

(1993) have provided some basic rules-of-thumb for choosing styles: Consider pipe and 

filter style if the problem can be decomposed into sequential stages or if the problem 

involves transformations on continuous streams of data. If the system involves controlling 

continuous action, is embedded in a physical system and is subject to unpredictable 

external perturbation, consider a closed loop control style. If the system consists of 

tasks/processes and runs on a multiprocessor platform, consider independent component 

styles. Consider a layered style if the tasks in the system can be divided between 

application-specific ones and those generic to many applications but specific to the 

underlying computing platform, or if portability across different platforms is an issue. 
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2.4 Taxonomy for Controller Architectures 

Several architectural styles exist to meet different needs and some attempts have been 

made to categorize them. Shaw (1995) classifies control architectures according to their 

software architectural styles and contrasts them along five design dimensions; changes in 

the processing algorithm, changes in data representation, enhancement to system function, 

performance, and reuse. Kramer and Senehi (1993) categorize architectures into those that 

emphasize control and those that emphasize data flow. In (Atta-Konadu, et al., 2004) and 

(Yook et al., 1998), control architectures for machine tools are classified according to their 

spatial distributions (i.e., fully centralized to fully decentralized). Ambrose’s classification 

is based on hardware and software control architectures (Ambrose, 1992). In this case, 

criteria such as speed and modularity are used to evaluate the architectures in each 

category. There are also classifications that reflect intelligent interactions with the 

environment (Coste-Maniere and Simmons, 2000) as in the case of autonomous robotic 

systems. After reviewing literature items, it has become quite evident that designers and 

developers emphasize either one or more of these categories: hardware architecture, 

software architecture (system-level) and control architecture. The sections following 

present a review of some interesting control architectures.  

2.5 Controller Hardware Architecture Review 

Hardware architectures usually emphasize the computation platforms, their 

interfaces, and interconnections. In effect the hardware architecture should help readers to 

understand the underlying execution mechanics and dataflow through the different 

execution stages. This section reviews four hardware architectures. In all cases the 

following criteria inspired by (Ambrose, 1992; Kopetz, 1997; James and McClain, 1999) 

are used to evaluate them: 

• Throughput (speed): The potential for high throughput is desirable. 

• Communication between modules: The communication mechanism between entities 

should not present a bottleneck to system performance. 

• Functional coherence: The modules or nodes of the system should implement self-

contained functions with high internal coherence and low external interface 

complexity. 
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• Dependability: This is an indicator of the effect of a module or node failure on the 

entire system. The architecture should define a fault tolerance mechanism. 

• Hardware Modularity: Hardware should be modular, reconfigurable and scalable in 

order to make the system an open architecture.  

• Software Modularity: The controller software should also be modular, reconfigurable 

and scalable with minimal effort. In order to support evolving trends in control 

algorithms, the software should have standardized interfaces. 

• Relevance to design objectives: Control architectures fall under four levels of 

specificity. In Domain-level design the architecture applies to a broad area of robot 

control. Second, in Task-level design, controllers are designed to suit a certain class of 

robots designed for specific tasks, for example welding. Third, controllers may be 

optimized to perform one robot algorithm such as inverse kinematics. Lastly, in 

Robot-level design, controllers are optimized to perform specific algorithms for a 

specific robot. In this case intrinsic knowledge of the robot geometry and dynamics is 

utilized to further simplify the algorithm and thus the controller.   

2.5.1 WinRec 

WinRec (Lee and Mavroidis, 2001) is a PC-based controller designed to run on 

MS-Windows NT. The project was driven by the need for a low-cost controller (less than 

US$1000) for academic experiments. Deterministic timing obtained from Windows 

MSDN library is used in both control and data acquisition.  The hardware setup consists of 

a PC with Intel Pentium II 333 MHz CPU, 128 MRAM, two US Digital PC7166 PC to 

incremental encoder interface cards, and two Datel PC-412C analog I/O boards. The PC 

polls sensor data through the data acquisition boards or the encoder interface cards, 

performs feedback control calculations, and sends the signals to actuators through a 

digital-to-analog (DAC) converter. The maximum controller loop rate is 200 Hz. 

Experimental results with a 5 degree of freedom robot and different control laws (PID, 

LQR and H2) were presented. This system was not really designed for high-end uses; 

hence for its purpose to demonstrate control laws, it is quite appropriate. Nonetheless, the 

single point of control is susceptible to complete system failure. Moreover, since the 

design (including the software structure) is not modular or open, system modifications 

could imply a major overhaul. 
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2.5.2 MUPAAC Architecture 

The Multi Processor Architecture for Automatic Control (MUPAAC) architecture 

is described in Bellini et al. (2003). The project was a joint venture between the University 

of Florence and two European industries to provide solutions to costs and reconfigurable 

challenges with current production pipelines of manufacturing industries. The architecture 

is shown in Fig. 2.1 below. 

 

Figure 2.1: MUPAAC Architecture 

The hardware architecture consists of three layers: The top layer is the MUPAAC 

Supervisor which is the general server of the control system of the production. It receives 

ISO commands from a CAD/CAM workstation and sends them by Ethernet (TCP/IP) to 

Special Industrial Peripheral Computers (SIPC). The Supervisor can also read 

alarms/errors detected by the SIPCs. The second layer is the SIPC cluster. These are 

microprocessor-based systems that execute ISO programs and single instructions coming 

from the Supervisor. The SIPC interacts with DSP-PCI boards for controlling axes and 

receiving alarms and synchronization. Finally, the SIPC interacts with remote I/O systems 

for activating and receiving I/O signals via a CANbus (Controller Area Network serial 
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axes. The last layer is made up of the DSP-PCI boards.  These are based on the Analog 

Device’s AD2106x DSP and can control up to 4 machine axes. Communication between 

the SIPC and the DSP boards is via the PCI bus. The boards can be plugged on the bus 

directly without the need for configuration. The Supervisor and SIPC also control the 

remote I/O boards. These boards are equipped with Intel i8051 or SH7000 CPUs for 

interpreting messages received via the CANbus. On the CANbus, up to 56 boards can be 

attached in a plug and play fashion. Furthermore, each board can host 8 I/O modules; 

therefore each SIPC can accommodate a maximum of 512 I/O modules. The software 

components (Fig. 2.2) are distributed on the three layers described above.  

  

Figure 2.2: MUPAAC Software Architecture 

The Supervisor software presents a simple user-interface and a client 

communication module. The SIPC software is hosted on a WindowsCT Operating System 
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Module and the CANbus Protocol and Remote I/O Boards Module. The Server 

Communication Module implements a TCP/IP server to receive ISO programs and 

commands. Programs are temporarily stored in a RAM file and then each instruction of 

the program is tokenized and sent to the specified DSP-PCI board by means of a SIPC-

PCI protocol. Interaction with the DSP is interrupt driven and based on a dual port RAM. 

The Control Module coordinates the DSP-boards with the Remote I/O Modules on the 

CANbus and presents status information to the user interface. This activity is performed 

by an I/O Coordinator Module which is responsible for exchanging information between 

the DSP boards and the CANbus I/Os. The module updates the outputs periodically every 

10 ms. The Protocol and Remote I/O Boards Module manages real-time communication 

on the CANbus which has a maximum bit-rate of 1 Mbit/s. The DSP-PCI software 

modules drive the performance of the control system. ISO commands are received from 

the PCI bus through a local PCI driver and executed accordingly. The DSP supports linear 

and circular interpolations, implements PID control, controls analog outputs of the board 

and manages some I/Os such as limit switches. Even though each DSP controller is 

capable of loop rates lower than 100 µsec, the Number of Entities Processed per Second 

(NEPS) on the DSP is influenced by communication latency with the SPIC, computing 

and interrupt servicing times, and the number of controlled axes. Nonetheless, NEPS of 

1429 is achievable in the worse case, i.e., 4 axes in circular interpolation. Performance 

evaluation for two or more DSP boards connected to one SIPC was not presented but at a 

glance, it is evident that performance will degrade substantially.  

The architecture does not explain how the SIPC synchronizes its clock with the 

slave DSP-PCI boards and remote I/O modules. Moreover, it has been presented as a 

domain-level type of design, but its internal structure is more tailored for CNC machines 

than robots. It is also more of proprietary system than a vendor-neutral architecture. 

Therefore, its robustness to obsolescence is quite questionable. Nonetheless, this is a very 

interesting architecture which follows many modern design paradigms.   

2.5.3  Modular CNC System Architecture 

The modular CNC System was designed by researchers at the University of British 

Columbia (Altintas, et al., 1996). The architecture is hierarchical with two independent 

backplane buses (see Fig. 2.3). A Real-Time Master computer (PC) is in charge of the 
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AT/ISA primary bus, and other processors (referred to as modules) dedicated to various 

monitoring or control tasks may be added to the bus if there are available slots on the 

backplane. All processors on the bus are memory-mapped with the Real-Time Master for 

access to shared memory on the CNC Master Controller. The memory area is refreshed 

periodically at 1 ms by the Real-Time Master, which collects the necessary position, 

cutting forces, etc provided by the processors. The core module in the primary bus is the 

CNC Master Controller computer, which is an off-the-shelf TMS320C30-based DSP 

board. The CNC Master executes and provides precision NC tool path trajectory and 

velocity values to each feed drive control unit on the machine. It also provides expansion 

through a memory-mapped secondary bus referred to as the CNC bus. An Intel 80C196KC 

based embedded microcontroller is dedicated to control each axis of the machine tool. 

 

 

Figure 2.3: Modular CNC System Architecture 
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CNC master or linear interpolator in the axis controller calculates the next position and 

places it in a reference position register. When the controller receives the axis position 

loop closure interrupt, the error is calculated from the actual position, and sent through a 

position control filter to an internal PWM register. A circuit in the controller produces volt 

command signals for dc servo amplifiers via a 2-kHz low pass filter.   

The design is a classic task-specific architecture but can be modified for other 

robotic tasks. It is a tightly-coupled design which trades off flexibility for hard real-

timeliness. 

2.5.4 GEECON Architecture 

The vision for the Generic Embedded Control Node (GEECON) project was the 

development of an embedded controller which can interface to any actuated mechanical 

device (Sorensen, 2003). The system architecture, shown in Fig 2.4 is based on a six layer 

reference model.  

The functional layers are distributed on a Central Control Node, GEECON 

controllers (one per axis), and mechanical host modules. These are the shaded regions of 

Fig 2.4. The Central Control Node consists of three layered software modules: The top 

module handles high level applications such as motion planning and user interfaces. The 

second module implements the part of the execution layer which require global knowledge 

of the robot such as kinematics, interpolations, etc. At the bottom is a module for 

interfacing and interacting with the distributed part of the system through a network. The 

GEECON controller is the main thrust of the research. It is designed to be embeddable in a 

mechanical axis such as a robot arm (Fig 2.5). 
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Figure 2.4: GEECON Architecture Implementation 

The embedded controller is driven by a Texas Instruments based DSP board – 

Orys Gmbh, which has a serial bus and implements PID control and a sample rate 

converter. To make it as generic as possible, the GEECON mates with a reconfigurable 

I/O logic board developed for this research. The logic board features a Xilinx FPGA (Field 

Programmable Gate Array) and can be programmed to interface with a large range of 

industrial I/O needed for robot control. Information flow (e.g. nested control loops) within 

the entire architecture is designed to cover typical bandwidth requirements; the position 

control servo loop frequency is 4-MHz, while the high-level control loop (executed by the 

Central Control Node) supplies set-points to the GEECON nodes at 200-Hz. These are 

reconstructed to high resolution paths for the position control by the GEECON nodes. 
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Figure 2.5: GEECON Architecture 

The GEECON is a well conceived and fairly ambitious project which is still in its 

infancy stage. Further tests will have to be done to validate its objective as a domain-level 

solution. Designers may have to address clock synchronization between the central 

controller and the embedded controllers (GEECON), and re-engineer their software for 

greater flexibility.  
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• Openness: The architecture should conform to an open technology such as 

standardization. Moreover, it is desirable that its implementation is not hardware-

dependent. 

• Fault-tolerance: The controller should have comprehensive monitoring systems and a 

fault-tolerant approach to harness problems.   

2.6.1 OMAC Architecture API 

The Open Modular Architecture Controller (OMAC) was initiated by a consortium 

of some prominent industrial and research groups (Birla, et al., 2001). The vision for the 

OMAC Application Programming Interface (API) is to enable control vendors to supply 

standard components that machine suppliers can easily configure and integrate to build 

machine control systems. The framework also seeks to leverage easy reconfiguration by 

end-users. The OMAC API is built on an object-oriented approach to plug-and-play 

modularization. Software entities are grouped into components, modules and tasks 

according to their level of granularity; each entity is based on a Finite State Machine 

(FSM) to facilitate collaborations with related activities. A module in this sense refers to a 

container for components.  Figure 2.6 below shows how the OMAC API specification 

highlights the relationship between an application control system, modules and 

components.  
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Figure 2.6: OMAC Architecture 
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• An Infrastructure interface – provides support for advertising services, where it is and 

how it operates. 

• A Connection interface – advertises module dependencies. 

• Attributes define how a component can be customized. 

The OMAC approaches reconfigurability principally through the flexibility it 

provides for exploiting component interfaces. Furthermore, interfaces provide a uniform 

API for dealing with most software (object) functionality. A connection API allows 

components to advertise what other components they require and assist in resolving 

component dependencies. To further enhance system reconfigurability, the OMAC API 

supports embedding information in a component. Thus a component has the ability to be 

used in the design phase in a drag-and-drop Integrated Developer Environment (IDE) of a 

visual programming tool. Embedded information also allows a component to be queried 

locally on the shop floor about local properties such as its history. Thirdly, embedded 

information supports component introspection that allows users to determine the 

capabilities of a component and how to customize it. Another interesting attribute of 

OMAC towards reconfigurability is through component plugs; i.e., the ability to plug-in or 

replace components within a module.  

The OMAC API is one of the most cutting-edge reference architectures available, 

though a full implementation is yet to be realized. Obviously, this is due to the stringent 

details the framework demands.   

2.6.2 UBC Open Architecture Control System 

The UBC Open Architecture Control System (Oldknow and Yellowley, 2000) is 

quite an intriguing design. Both hardware and software architectures have been clearly 

defined with emphasis on openness and reconfigurability. Even though this is categorized 

under software architecture, we deem it appropriate to discuss the hardware architecture in 

order to understand the software layout. The hardware system is laid out on a double 

backplane similar to the Modular CNC System described earlier. Obviously this is a task-

specific design. The reference architecture is illustrated in Fig 2.7. 
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Figure 2.7: The UBC Open Controller Reference Architecture  
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controller or process monitor to adaptively control the system in response to violations to a 

process constraint. A more complex multi-bit stateline approach is also possible. The 

architecture also addresses flexibility in terms of hardware/software relationships. Static 

reconfigurability is achieved through hardware independence by using software 

abstraction; i.e., hardware device behavior is encapsulated in an object-oriented class 

definition and presented to the rest of the system as a well-defined neutral interface. 

Moreover, the architecture promotes dynamic reconfigurability, where communication 

and control methods can be tested, evaluated, modified and replaced without the need to 

re-start. To accomplish this, an Open Configuration System Protocol has been 

implemented in an object-oriented extension of the Forth programming language. The 

protocol is based on abstraction of system control hardware into a Virtual Machine Tool 

(VMT). The configuration system thus provides a VMT interface to high-level software as 

shown in Fig. 2.8.  

 

Figure 2.8: Open Configuration System Software Architecture 
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Calls made to the interface are managed by VMT objects (axes, PLC, process 

monitors) using a combination of hardware independent and hardware dependent methods. 

Hardware independent methods are defined within object class definitions while 

dependent methods consist of references into a reconfigurable software switch called the 

binding table. The latter translates these references into the corresponding device specific 

methods used to interface physical hardware. To this end, a technique within the Forth 

programming environment known as Vectored Execution is used. By storing device 

specific code in the firmware of the devices themselves (in a tokenized form), hardware 

devices can self-instantiate in the system in plug-and-play style. The start-up procedure is 

as follows; the open configuration system queries all available communication channels 

for compatible devices. When a device is discovered, a Tokenized Configuration Stream 

(TCS) is received from the firmware of the device. The tokenization scheme is an 

extended version of the Open Firmware standard by Sun Microsystems, and can be 

directly codified into Forth. Afterwards, the Forth code is interpreted by the system and 

the code registers the device, defines the method required to communicate with the device, 

and binds these to the appropriate VMT methods through the binding table. 

Implementation of the reference architecture together with the dynamic interpolator and 

TCS has been demonstrated with a novel Xilinx FPGA based single-axis servo controller 

and a simple DC motor. The device closes a velocity controlled servo loop at a frequency 

of 4 kHz. 

This architecture bears the hallmarks of high performance reconfigurable 

architecture. It is not clear though how the CNC Master is synchronized with the DSP-PCI 

boards. The stateline also presents some complexities, and associated software modules 

are not encapsulated to give clear hardware-independence. The designers claim that the 

backplane may be replaced by a network. Obviously, in this case more work would have 

to be done to arrest network-induced problems such as jitter.  

2.6.3 NRC Tripod 

A three-tier flexible architecture framework to support computations of parallel 

kinematic mechanisms (PKM) is presented by Atta-Konadu et al (2005). The framework 

was originally designed for the NRC-IMTI Tripod project, but can be generalized for other 

mechanisms as well. The architecture successively computes different algorithmic stages 
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on reconfigurable computing platforms. In the basic configuration shown in Fig 2.9, the 

top level algorithm, Frame-Constants, is executed only once for a particular mechanical 

configuration, to derive global constants such as direction and position vectors for 

kinematic computations. Data from the top layer are passed to a second algorithm, 

Iteration-Parameters, where the orientation matrix and translation vector of the Tripod 

platform are computed for each tool-center point provided by a path-generator. At the 

bottom level, the algorithm Joint-Interpolation receives inputs from Iteration-Parameters, 

and computes joint position (in local joint coordinates) for individual joint controllers.  

 

Figure 2.9: Three-Tier Computing Hierarchy for the NRC-IMTI Tripod 

This concept enables the architecture to migrate the algorithms to different 

computing platforms on a network, depending on the decomposability of the algorithms. 
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clocks on the different nodes have to be continually synchronized for computation 

consistency. 

 

Figure 2.10: Tripod Computing Architecture Variations 
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vision-based navigation, sensor-based manipulation, and vision target tracking that use a 

predefined sequence of operations are implemented in the Functional Layer. The layer has 

four main features aimed at creating component reusability. First, it provides system level 

decomposition through object-oriented techniques with different levels of abstractions. For 

example, a general locomotor may be extended to specifics of wheels or legs, etc. Second, 

the layer separates algorithmic capabilities from system responsibilities. As an example, 

algorithms such as inverse kinematics are expressed in their general terms. On platforms 

(rovers) where an optimized algorithm is available, the general algorithm is overwritten. 

Thirdly, the Functional Layer partitions behavioral definitions and interactions from the 

implementation. This allows a motor, for instance, to separate the specialization to a 

particular hardware controller from the functional details of a controlled motor to a joint. 

Finally, the layer provides flexible runtime models; this enables a system with specific 

hardware execution (such as servo control) not to run that of the main processor.  

The Decision Layer is the global engine that analyzes system resources and 

constraints. It encapsulates general planners, executives, schedulers, activity databases, 

and rover and planner specific heuristics. The Decision Layer communicates with the 

Functional Layer using a client-server model. Interactions with the Functional Layer 

include queries about system resources, and sending commands. The layer can also utilize 

encapsulated Functional Layer capabilities with high-level commands, or access low-level 

resources and combine them in ways not supported by the Functional Layer. The former is 

employed when planning capabilities are limited, or when under-constrained system 

operation is allowed. The latter is useful if detailed, globally optimized planning is 

possible, or if resource margins are limited.  

The architecture has been adapted to different rovers with various motion control 

and communication architectures, and physical (locomotion) capabilities. Figure 2.11 

shows the generic controlled motor and joint classes and their adaptations to Fido, R8 and 

R7 NASA rovers. 
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Figure 2.11: CLARAty Implementation on Various Rover Platforms 

2.7 Control Architectures 

A control architecture refers to the actual operational software used to run a 

machine (e.g. robot), and may also include intelligence to handle interactions with the 

environment or system, and optimization procedures necessary to enhance performance. 

This section reviews some well-known control strategies and some new paradigms in 

system-level control reconfiguration.     

2.7.1 Classic Control 

Robot control for contour following operations can be classified into gross motion 

and fine motion control (Somló, et al. 1997). In gross motion control, an end-effector or 

machine tool follows a prescribed path as closely and as quickly as possible; the task is to 

find a control law that governs its velocity and position. On the contrary, in fine motion 

control, the objective is to control position and force simultaneously by a technique called 

hybrid control. Gross motion control may be implemented in joint or Cartesian space 

depending on whether the desired path is specified in the joints or Cartesian space. Fine 

motion control may be passive or active compliance control. The former may be achieved 

through Remote Compliance Center devices to compensate for disturbances. In active 
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compliance control, there is force (torque) feedback to correct errors. The classification of 

robot control is given in the Fig 2.12 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12: Classification of robot control problems 

For a given configuration of the robot, one can create a mathematical model of the 

robot and with previous knowledge of the variation range of the parameters a conventional 

robust controller can be designed. The complete dynamic model of a robot consists of the 

dynamic models of the mechanical and actuator parts. In most cases of robot control, the 

dynamics of the actuator part are ignored as it is assumed that the torque produced by the 

motor is suitable to realize the goals at all times. The design task is then to find the 

appropriate input torque, which enables the robot to closely follow a desired trajectory. 

When using high torque or current controlled dc motors, this condition is normally met; 

hence the torque is simply proportional to current. By using fast feedback control a 

suitable torque can be realized. With more powerful drives, responses can be made very 

fast but implementation cost can be very high. In every case optimal solution should be 

applied to realize the appropriate power/torque to be applied. Therefore, in many practical 

cases ignoring the actuator dynamics may have significant effects on system performance. 

When voltage-controlled dc motors or electro-hydraulic actuators are employed, the 

torque is produced with delay depending on the time-constants. The time constants for 

small permanent-magnet dc motors are normally below 1 ms: when applied to robot 

systems, the time constants are small enough for actuator dynamics to be ignored in the 
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controller design (Somló, et al. 1997). However, for bigger motors it is necessary to 

consider the complete dynamic model incorporating mechanical and actuator dynamics. 

Most industrial robots are controlled by PID type controllers and work properly under 

conventional conditions (low velocity, constrained payloads etc). Usually, this is 

implemented as independent joint control if the interconnections of the joints are not 

closely tied. In such situations, joint interconnections are neglected in the model. 

Therefore two potentials problems could arise in robot control design (Somló, et al. 1997): 

There is the problem of uncertainties of parameters and the non-linear interconnections 

between the manipulator joints. To curtail the first problem, the controller must be robust; 

to compensate for the unwanted effects of the second problem, the interconnections must 

be taken into consideration. The interconnections between the joints appear in the total 

torque (or force) acting on the joints. The significant part of this torque can be measured 

by an appropriate sensor attached to the axis. An alternative approach is to compute the 

interconnections in real-time by using the kinetic equations of the robot with measured 

positions, velocities and accelerations of the joints. These real-time computations may be 

performed by an ASIC (Application Specific Integrated Circuit) or by a central computer.  

Generally, classic control architectures may be decentralized or centralized 

(Somló, et al. 1997). In the first method, the control loops are independent of each other as 

in the case of PID control. In the second method, signals from other joints are used in the 

control of some of the joints. The latter offers high speed and quality processes and is 

realized on centralized control systems. A classic example of centralized control is the 

Computed Torque Control (CTC) technique. Regarding solution methods to control 

problems, there are two approaches: nonadaptive and adaptive methods. Examples of 

nonadaptive methods are CTC, Resolved Motion Rate Control (RMRC), Resolved 

Acceleration Control (RAC), Time Optimal Control, and Variable Structure Control 

(VSC). Adaptive control methods include models such as Model Reference Adaptive 

Control (MRAC), and Self-Tuning. The MRAC strategy is presented by Somló, et al. 

(1997). The motion of the robot is controlled in such a way that it closely follows the 

motion of a given model, which represents the desired performance of the system. The 

basic scheme of MRAC is shown in Fig. 2.13.  
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Figure 2.13: Model Reference Adaptive Control (MRAC) 

The input signal vector u affects both the actuators of the joints and the input 

signal of the models of each joint. The output of the joints are compared and the 

differences of these are used to drive the system to track the model. The ideal case is when 

the adaptation error, which is the difference between the model output and the joint output, 

approaches zero. Two approaches used to realize this method are parameter adaptation and 

signal adaptation. Both of these strategies are illustrated in the Fig. 2.13 above. Based on 

the adaptation error, the adaptive control loop produces signals which in the case of 

parameter adaptation correct some parameters of the system, and in the case of signal 

adaptation send signals to modify the system signals. 

2.7.2 Reconfigurable Control Architectures 

Generally, there are two issues regarding reconfiguration: Distributed system 

reconfiguration and control reconfiguration. The former is related to a structural or 

system-level software reconfiguration while the latter deals with modifying control law in 

its structure to maintain a certain performance. Reconfigurable control for fault tolerance 

is an exceptionally challenging control design problem. Failure detection and 

identification, parameter estimation and controller redesign have to be carried out on-line 

and completed within tight time boundaries. Some methods that address reconfigurable 
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control include linear-quadratic (LQ) control methodology, adaptive control systems, 

knowledge-based systems, and Eigen-structure assignments. Considering adaptive control, 

there are several approaches but in general perspective control reconfiguration is 

attempted by using a continually adapting nonlinear model. At this point we make a 

distinction between fault-tolerance, robust control, and reconfiguration control strategies. 

In the first situation, when a fault appears in one peripheral element and the plant is still 

observable and controllable, the controller uses a fault accommodation strategy to achieve 

its original objectives by adapting control parameters to fault conditions. A robust 

controller (also called adaptive controller in some literature) aims at providing suitable 

system performance if the parameters and conditions vary within given domains. 

Parameters and conditions include uncertainties in the mathematical model of the plant, 

and strong non-linear interconnections (e.g., between the joints of a robot); for distributed 

systems, robust controllers accommodate network-induced jitters and sometimes 

computation delays.  

In system reconfiguration, faulty peripheral elements are switched off, and the 

control structure and associated control objectives are modified to accommodate the 

absence of certain parts of the plant. A similar strategy may be developed for the presence 

of new elements. The initial model or reference model is based on initial information 

regarding a priori fault and fault-free scenarios (Benítez-Pérez, et al., 2005). To update 

current models, approaches such as neural networks and fuzzy logic may be used, where 

several approximations can be followed such as differential neural networks, and radial 

basis functions. Figure 2.14 shows the general strategy for fault diagnosis and control 

configuration of this method.  

 

Figure 2.14: Control Configuration – General Strategy  

Control 
Switching 

Fault 
Localization 

Fault  
Models 

Control  Plant 



 41 

Another reconfiguration strategy is implemented in a hierarchical manner, where a 

decision maker is used to switch from one control to another. The decision maker layer 

may be implemented by a knowledge-based algorithm such as neural networks. The 3-tier 

model presented in (Wills et al., 2001) for autonomous control is a typical example (Fig. 

2.15). The complex structure combines high-level situation awareness and mode selection 

functionalities with mid-level coordination routines for leveraging mode transitioning and 

reconfigurable control as well as low-level control activities. A sensor management unit 

provides appropriate data to a high-level situation awareness module, a fault-detection-

and-isolation module, and to all lower levels. When an external or internal situation (such 

as faults) is detected, the mode selection module generates in real-time sequences of new 

modes (such as waypoints) for the controller. The mode switching or reconfiguration 

module then schedules transitioning dynamics by using a nonlinear dynamic/fuzzy logic. 

The low-level provides set-points and command trajectories to low-level controllers.     

  

Figure 2.15: Hierarchical Control Reconfiguration Structure 

Wang and Shin (2001) approach hierarchical reconfiguration from a different 

perspective, where reconfigurable control software is viewed as consisting of “a set of 
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(NFSM), and service protocols. The objective is to achieve execution-code-level 

reconfigurability for control software. 

Another approach to reconfiguration deals with adopting different plant models by 

using reconfigurable execution models of the kinematics and dynamics of systems. This 

strategy is invariably associated with developing generic algorithms and/or execution 

strategies. Lin and Lee (1991) for example developed a strategy for parallel execution. 

They exploited possible inherent parallelisms in robotic algorithms and investigated their 

characteristics such as granularities, data dependencies, etc. Based on these, a medium-

grained reconfigurable dual-network SIMD (Single Instruction-Stream-Multiple-Data-

Stream) machine consisting of multiple processing units was developed.        

Most of reconfigurable control algorithms are very recursive requiring intensive 

computation and are not able to recover the original performance level. For example, an 

LQ-based approach may not restore the original system performance due to ambiguities in 

the optimization procedure. The pseudo-inverse method (PIM) and linear model following 

(LMF) control are simpler to implement than the previous but the performance of the 

closed-loop system cannot be easily predicted. The approach presented by Dhayagude and 

Gao (1996) attempts to address some of these issues but even this is based on a priori 

assumed conditions.  

2.8 Concluding Remarks 

In this chapter, we examined several issues related to architectural design properties and 

software architecture styles. This led to a comprehensive review of control system 

architectures. Prior to this, control system architectures were classified into three groups 

according to what they emphasize. The categories were Hardware Architecture, Software 

Architecture (system-level), and Control architecture. Different architectures were 

reviewed and critiqued based on their throughput, communication efficiency, functional 

coherence, dependability, modularity, relevance to design objectives, openness, and fault-

tolerance. The lessons learned which will be applied in our design are as follows: 

• A distributed hardware design can greatly reduce complexities and enhance 

performance, scalability, modifiability, and reconfigurability if the underlying 

communication structure is reliable. A modular homogenous design is desirable for 

clean interface definitions. 
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• A rigid communication hardware such as a backplane guarantees high real-time 

throughput, but a network-based system introduces greater flexibility by providing 

loosely-coupled interconnections among elements or nodes. However, performance 

may degrade if network-induced jitter and bandwidth limitations are not properly 

deduced at the design phase. Hence, use tight-coupling for hard real-time and/or high 

rate communication such as servo loops and loose-coupling otherwise. 

• An object-oriented software architectural style leverages component-based design for 

enhanced modularity, which leads to easy configuration, platform-independence, etc. 

• Hardware abstractions should be used to limit or eliminate hardware dependencies. 

The next chapter presents the conceptual framework of our architecture which we 

call IMC (Intelligent Modular Controller) architecture. It is based on a layered reference 

model with modularity, simplicity and flexibility as the design cornerstones.  
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3. SYSTEM ARCHITECTURE 

3.1 Architecture Design Philosophy  

The main objective of this research is an experimental design of a control 

architecture that is based on simple and cost-effective Commercial-Off-the-Shelf (COTS) 

components to create a generic or domain-level control system that is easy to configure 

and customize for a wide-variety of applications. It was realized from the previous chapter 

that certain key technologies enable such design solutions. In retrospect, a distributed 

system based on modularity and network communication has inherent or potential 

flexibility due to loose-coupling between entities. The main bottleneck though is the 

nature of its communication network properties such as bandwidth and transaction 

mechanisms. Also, such design-for-flexibility should necessarily be accompanied by well-

conceived software architecture. Object-oriented styles lend powerful credence and 

support for flexible designs. This chapter presents the conceptual framework of the 

Intelligent Modular Controller (IMC) architecture. Below is a summary of the design 

concepts;  

• Distributed architecture based on a reference (abstract) architecture that defines the 

various hierarchical decomposition.  

• Loosely-coupled elements (software and hardware) for easy system development and 

flexibility. This may be achieved by object-oriented software architectural style and 

networked (Ethernet) communication elements. 

• Controller elements should possess the ability to automatically subscribe for services 

they need and also publish their own services. This makes it possible to support 

automatic configuration of high level applications. 

• Modular design. 

• The execution flow may be configured to be biased in different ways; for example, a 

centralized or decentralized interpolator may be employed based on communication 

bandwidth. The proposed means to achieve this is as follows: 



 45 

• An Ethernet network for high bandwidth communication and robustness. 

• Synchronization in order for nodes to have a global sense of time. 

• A synchronization mechanism for real-time entities. 

• A protocol for devices to automatically discover themselves and publish their services 

to enable auto-configuration of architecture. 

The system architecture strongly emphasizes modularity both in software and 

hardware. The hardware architecture is shown in Fig. 3.1. Instead of having a monolithic 

controller for each machine axis, control functionalities are distributed on a 

microcontroller host and a dedicated motion controller for each machine axis.  

 

 

Figure 3.1: The IMC Hardware Architecture  

Figure 3.2 shows the reference model architecture layers superimposed on the 

hardware entities (shaded regions). The reference model is inspired by work done by 

Sorensen in 2003. The model is made up of seven layers for emphasis. However, in the 

course of operation some layers may be redundant. The following is a discussion on the 

functionalities of the model.  
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Figure 3.2: The IMC Reference Architecture 

I/O Layer: This layer provides reading/writing of I/O ports connected to 

transducers, i.e., sensors and actuator drives. The layer contains different types of I/O units 

for digital and analog I/O, DAC (Digital to Analog Converter), ADC (Analog to Digital 

Converter), and switches. This layer also hosts the motor driver or servo amplifier, and 

power supply and conditioner needed to provide appropriate signals to/from the transducer 

layer. The I/O layer delivers energy to the actuator based on signals from its control layer. 

Control Layer: This layer is responsible for translating motion set-points into input 

signals for the actuator that drives the mechanical element. It is imperative for this layer to 

implement a reliable synchronous sub-component for hard real-time performance. Servo-
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control and sensor feedback conversion needed in the control loop are part of this layer. 

Fine trajectory generation for smooth motion may also be performed in this layer.  

Interface Layer: The control layer communicates with the higher level command 

layer through a high-speed real-time network. This layer is responsible for ensuring the 

timely delivery of motion commands from the command layer to the control layer. It also 

delivers feedback and status data to the command layer. In essence, the interface layer 

serves as a hardware abstraction layer (HAL) in order to separate hardware-specific 

software components from generic ones. This is to allow easy hardware replacements and 

software reuse. 

Local Application Layer: Some high-level applications can be hosted directly on 

the local microcontroller. These include kinematics and interpolation algorithms which 

can be decoupled for each axis. Local execution of such algorithms helps to reduce the 

volume and frequency of communication across the network. The application layer also 

includes an embedded web server, which is invoked by the higher layer to provide user 

interface services. 

Local Coordination layer: This layer coordinates activities in the lower layers 

according to global (system-level) instructions received. For example, different motion 

control modes may be specified by the users such as coordinated motion or synchronized 

motion. If coordinated motion is requested, the layer activates a method to periodically 

synchronize the controller’s timer with the global time.  The synchronization methodology 

is discussed in Chapter 7. The layer also hosts a graphical user interface (GUI), and 

databases including a real-time database of temporal data. The user interface provides 

status information such as position logs, command functions and configuration editors. 

Lastly, the layer implements components to monitor the status of lower layers such as 

motor stall situations.  

Communication Layer: This layer is the interface to the network on the distributed 

system. The layer is responsible for creating a virtual global environment so that the whole 

system appears as one entity to the IMC nodes, even though they are spatially separated. 

To enable this, the layer implements a configuration scheme to automatically discover 

services on the network, and register itself to other nodes on the network. Chapter 6 

provides the communication architecture design details and analysis.  
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Application and Global Coordination Layer: All global tasks and functions are 

implemented in this layer. The layer provides high level interpolation, motion 

synchronization and coordination, and system configuration. The layer also supplies a 

graphical user interface for monitoring devices, creating trajectory data (e.g., NC code), 

and sending commands to the IMC nodes. High-level control algorithms may be 

implemented in this layer. 

3.2 Intelligent Modular Controller (IMC) 

Each axis controller (IMC) is designed such that there is minimal need for global 

data interchange. Therefore most hard real-time functions are confined within the IMC 

domain. Each IMC communicates with the central coordinator through a network while 

communication with the mechanical axis is through an embedded motion controller and a 

set of I/O signals. The IMC architecture allows a completely distributed or a hierarchical 

architectural structure in order to accommodate different demands imposed by higher 

application layers. A typical example is the control of a serial robot in contrast with a 

parallel kinematic machine (PKM): While it is practical to distribute the inverse 

kinematics of an n-DOF PKM to n computing elements (i.e., n IMCs), a centralized 

computing structure is required for the latter. Another feature of the IMCs is the ability for 

any one of them or an additional IMC to serve as a real-time coordinator. This is 

especially important in two different applications: The first is the situation where the 

global workstation or computer which hosts most of the higher layer application software 

runs on a non real-time operating system (OS). While many functions such as path-

planning and NC program parsing may be abstracted from non real-time computing, real-

time transactions are a necessity for coordinating coarse or finely interpolated data. The 

architecture allows an IMC to be selected for this purpose. In this case, the IMC is relieved 

of its motion control activities in order to conserve computing resources for real-time 

coordination. The architecture, therefore, does not predispose the user to any particular 

operating system which is a key advantage. The second interesting feature of the IMC 

architecture is that they are designed from the onset to be embedded mobile computing 

elements. This provides the ability for them to be integrated or embedded in the 

mechanical platform. The concept can therefore be used to control mobile equipment such 

as AGVs or mobile robots. There are a few architectural permutations that can address 
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such situations: One arrangement is to have one IMC inside each host mechanical axis; 

another variation is to map several motion controllers to one IMC microcontroller. The 

IMC hardware architecture design is discussed in Chapters 4 and 5.  

3.2.1 Interfaces 

Since the IMC architecture is meant to be a generic controller for a variety of host 

modules, the interface is open for extreme variations in the connection requirements of 

mechanical host modules. It is assumed that each host module will be equipped with a 

suitable motor drive and signal conditioner. The architecture provides the necessary I/O 

connections for interfacing signals to the motion controller and higher layers. The 

interface with other nodes on the network such as the global coordinator(s) is a network 

API, and the network hardware. The network provides a reliable and real-time 

communication medium for synchronous messages such as interpolation data streams as 

well as control messages such as start/stop which are asynchronous.   

3.3 The System Coordinator(s) 

The global coordinator(s) is/are responsible for all tasks which cannot be suitably 

decomposed to the IMC nodes; for example, certain kinematics, path planning, NC 

programs, interpolation, and coordination of axes motion. As aforementioned, if the global 

coordinator is incapable of coordinating real-time tasks, an IMC host is assigned to be a 

real-time coordinator. The global coordinator still plays the role of system monitoring at 

its backend, and user-induced front-end activities.  

3.4 Conclusion 

In this chapter, an overview of the architecture that supports the Intelligent 

Machine Controller (IMC) has been discussed. The architecture is distributed over three 

kinds of platforms; the IMC nodes, a system coordinator and a real-time coordinator. The 

IMC node consists of a microcontroller and an embedded motion controller board. All 

global services are implemented on the coordinators. Real-time high-level services such as 

interpolation are provided by the real-time coordinator if the system coordinator cannot 

provide such services. The real-time coordinator runs on a platform similar to the IMC 

microcontroller. The next chapter presents a review of Java technology and the 
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microcontroller hardware that is used for the IMC. The software structure for the entire 

system is presented in Chapter 9. 
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4. EMBEDDED COMPUTING PLATFORM 

4.1 Introduction 

This chapter elaborates how a suitable microcontroller was selected for the IMC 

architecture design. The discourse includes the rationale for Java in real-time system 

design, and enabling technologies for embedded Java systems. Essentially, an embedded 

system is an application specific computer system that is part of a larger system or 

mechanical component. It is designed to perform a limited range of functions with no, or 

minimal user intervention. These systems operate on significantly low power and 

consequently use slow processors and small memory sizes in order to minimize costs and 

energy consumption. Like typical real-time systems, real-time embedded systems also 

require a real-time operating system (OS) for process management and synchronization, 

memory management, interprocess communication, and I/O. As was mentioned in the 

previous chapter, the software signature of the architecture is a homogenous programming 

environment based on Java. The opportunities and implications of this preference are 

discussed in ensuing sections, and against this backdrop, a Java-based hardware is 

selected. The closing sections describe motion controller design options, and the controller 

ASIC (application specific integrated circuit) that was selected for the design of the IMC 

motion controller board.   

4.2 Java for Real-time System Design 

The most widely used embedded real-time systems are written in C++ and Ada83. 

Currently, these are also the most popular object-oriented tools in this field. Both are 

robust real-time programming software tools but not necessarily the ultimate tools. C++ is 

widely used because it is readily available and supports low-level programming. However, 

it suffers from low robustness to modification, and poor readability and maintainability. 

On the other hand, Ada83 is too large for many embedded systems, and too expensive. 

Java has many unique qualities that concur very well with modern-day paradigms in 

industrial automation such as software reuse, openness, single inheritance, software 
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modularity, and platform-independence (Vyatkin, et al., 2005). However, by design it is 

more suited for enterprise-level tools, where real-time requirements are not stringent. 

Nonetheless in recent years, Java developers and interest groups have been carving out 

specifications for Real-Time Java, in order to add color to the real-time world. Java is a 

unique blend of language definition, very robust, and offers a rich class library and a 

runtime environment. Programs are compiled to bytecodes that are executed by a Java 

virtual machine (JVM). Its robustness is derived from strong typing, runtime checks and 

avoidance of pointers. Intermediate bytecode representation simplifies porting of Java to 

different operating environments and is easy to implement requiring minimum system 

resource. As shown in Fig. 4.1, Java has four important components: the Java 

Programming Language, the Java Class Library containing binary representation or 

bytecode, the Java Native Interface to support functions written in C/C++ and the JVM. 

 

 

 

Figure 4.1: The Java System Architecture 

The JVM loads, verifies and executes the bytecode of a Java program. Execution 

speed is hindered by interpreting bytecodes, and this has been one of the setbacks of Java 

in real-time applications until recently. One solution to this problem is a JVM with a just-

in-time (JIT) compiler designed for desktop and server systems. However these require 

large memory footprints and have to be ported for different processor architectures. An 

excellent candidate for real-time embedded system designs is a Java processor (hardware) 
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that implements the JVM as a native machine. This avoids the slow execution model of an 

interpreting JVM and the memory requirements of a compiler, thus making it suitable for 

embedded systems. There are two approaches to Java bytecode execution by hardware. In 

the first approach, a Java coprocessor is placed in the instruction fetch path of a general 

purpose microprocessor and translates Java bytecodes to sequences of instructions for the 

host CPU or directly executes basic Java bytecodes. In the second approach, a Java chip 

replaces the general purpose CPU. All applications therefore have to be written in Java. 

Table 4.1 is a cross-section of some existing Java chips (Schoberl, 2005).  

Table 4.1: Java Hardware Comparison 

Product Type Chip 
Technology 

Speed (MHz) Java 
Standard 

JIFFY Translation FPGA   

Jazelle Co-processor ASIC 0.18 �s 200  

JSTAR Co-processor ASIC 0.18 �s 104 J2ME CLDC 

picoJava Processor   Full 

aJile Processor ASIC 0.25 �s 103 J2ME CLDC 

Cjip Processor ASIC 0.35 �s 67 J2ME CLDC 

Komodo Processor 2600 LCs 20 subset 

 

4.3 Opportunities and Constraints for Java Embedded Devices 

Generally, program execution on an embedded platform is done either cyclically 

or concurrently with time constraints. Java utilizes the latter method, and its concurrency 

is derived from its Thread class. The Thread class is built on a shared memory 

communication model where all thread implementations use the same memory heap. 

Thread activation is governed by mutual exclusion (synchronized keyword) and the 

methods wait(), notify() and notifyAll(). The classes java.util.TimerTask and 

java.util.Timer can be used to schedule tasks for future execution in a background thread. 

Java defines a very loose behavior of threads and scheduling in order to avoid deadlocks 

and thread starvation. For instance, Java allows even low priority threads to preempt high 

priority threads. This is important for non real-time applications but a liability in real-time 

programming. Another limp in Java’s response to real-timeliness is in its garbage 

collection policy. In Java, removal of unreferenced entities (objects) is done automatically, 

greatly simplifying programming and eliminating the infamous memory leak and dangling 
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pointer crises in programs written in C/C++. However, even real-time garbage collectors 

are usually avoided in hard real-time systems. Implementations of Java must include the 

full Java API library (JDK) constituting over 15MB, which is too large for many 

embedded systems. Lastly, since Java was designed to be a safe language with a safe 

execution environment, no classes are available for low-level access to hardware features. 

Hence the standard library was not defined and coded to support real-time applications.  

The Real-Time Specification for Java (RTSJ) defines a new API with support from 

the JVM and the following guiding principles (International, 2000; International, 2001): 

• No restriction on the Java runtime environment. 

• Backward compatibility for non-real-time Java programs. This implies that the RTSJ 

is intended to run on top of J2SE (and not on J2ME). 

• No syntactic extension to the Java language or new keywords. 

• Predictable execution. 

• Address current real-time system practice. 

• Allow future implementations to add advanced features. 

The RTSJ specification defines threads and scheduling for real-time behavior. The 

base scheduler is defined as a priority-based, preemptive scheduler with at least 28 real-

time priorities. In addition, the 10 priority levels for the traditional Java threads need to be 

available. Threads with equal priority are queued in First-In-First-Out (FIFO) order. 

Additional schedulers such as Earliest Deadline First (EDF) can be dynamically loaded. 

The class scheduler and related classes provide optional support for feasibility analysis. 

Threads are either periodic or bound to asynchronous events. Since garbage collection is a 

bottleneck in real-time applications, the RTSJ defines new memory areas. Scoped memory 

is a memory region with bounded lifetime. On exit of the last thread from a scope, all 

finalizers of allocated objects are invoked and the memory area is released. Physical 

memory is used to regulate allocation in memories with different access time. Raw 

memory enables byte-level access to physical memory or memory-mapped I/O. Immortal 

memory is a memory regime shared between all threads without a garbage collector. Heap 

memory is the classic garbage collected memory regime. A bound can be set on maximum 

memory usage and the maximum allocation rate per thread. RTSJ restricts the 

implementation of the keyword synchronized to prevent priority inversion. The priority 
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inheritance protocol is the default and the priority ceiling emulation protocol can be used. 

Threads queuing to enter a synchronized block are priority ordered and FIFO ordered 

within each priority. Wait-free queues provide communication between instances of 

java.lang.Thread and RealtimeThread. Classes to represent relative and absolute times 

with nanosecond resolution are defined by RTSJ. Multiple clocks can represent different 

sources of time and resolution in order to allow for the reduction of queue management 

overheads for tasks with different tolerance for jitter. A new type, rationale time, can be 

used to define periods with a requested resolution over a longer period. Timer classes can 

produce time-triggered events (one-shot and periodic). External world events may be 

scheduled and dispatched by the scheduler. An AsyncEvent object represents an external 

event such as a hardware interrupt or an internal event. Event handlers are linked to these 

events and can be bound to a regular real-time thread. The RTSJ is a complex 

specification resulting in a big memory footprint beyond the capabilities of many 

embedded systems. Therefore many implementations use only a subset of RTSJ 

(Schöberl, 2005).  

4.3.1 The Java Micro Edition (J2ME) 

To provide a compact API for embedded systems, Sun has defined the Java 2 

Platform Micro Edition (J2ME) which is a subset of standard Java API (J2SE). Instead of 

being a single unified entity, J2ME is a collection of specifications that define a set of 

platforms for specific products types. The subset of the full Java programming 

environment for a particular device is defined by one or more profiles which project the 

basic capabilities of a device configuration (Topley, 2002). The configuration and the 

profile(s) targeted for a particular device depend on both the nature of its hardware and the 

target market. J2ME defines three layers of software built upon the host operating system 

of the device: 

Java Virtual Machine: J2ME reduces the function of the JVM to make 

implementation lighter on smaller processors. This layer is the usual JVM as in every Java 

implementation. It is assumed that the JVM will be implemented on top of a host 

operating system. 

Configurations: The configuration defines the minimum set of JVM features and 

Java class libraries available on a particular class of devices. They specify such things as 
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the types and amount of memory available, the processor type and speed, and the network 

connections available to the device. J2ME currently defines two configurations, the 

Connected Limited Device Configuration (CLDC) and the Connected Device 

Configuration (CDC). The CLDC configuration is designed for low-end devices with a 

memory budget of 128 KB and a 16 or 32-bit processor. The main target devices are 

wireless devices. The CLDC is based on a small-footprint JVM called K Virtual Machine 

(KVM) and core class libraries. Many features such as floating point support and 

finalization have been removed from the Java API. The JVM handles errors by halting in 

an implementation-specific manner. The following features have been excluded from the 

JVM (version 1.1): Java Native Interface (JNI), Reflection, Finalization, weak references, 

user-defined class loaders, thread groups, daemon threads and asynchronous exceptions. 

The CLDC defines a subset of the Java class libraries java.io, java.lang, java.lang.ref and 

java.util. An additional library javax microedition.io defines a simpler interface for 

network connections. On the other hand the CDC configuration targets devices with at 

least 2 MB of memory and more capable processors, and can support a much more 

complete software environment. CDC places no restrictions on the JVM. 

Profile: The profile complements a configuration by defining the minimum set of 

APIs for a particular class of devices. Both J2ME configurations have one or more 

associated profiles. Mobile Information Device Profile (MIDP) and PDA Profile (PDAP) 

add networking, user interface components and local storage to their CLDCs. The 

Foundation Profile is the building block for all profiles based on CDC. The RMI profile 

for example includes the J2SE Remote Method Invocation (RMI) libraries to the 

Foundation Profile. Two profiles are most appealing to embedded applications, namely, 

EmbeddedJava and PersonalJava. Target devices typically have 32-bit processors and 512 

KB of ROM/RAM and 2 MB ROM/RAM respectively. These profiles allow the 

implementer to remove any package or class, or even a method within a class that is not 

required, in order to fit the final product into the memory available.  

4.4 Microcontroller Hardware Selection 

The criteria for the selection of an appropriate computing platform were as 

follows. 

1. The hardware must be capable of supporting at least 60 MHz of computing. 
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2. The underlying operating system must be capable of multi-tasking synchronously 

and/or asynchronously. 

3. There should be provision for a real-time serial bus and bi-directional Ethernet. 

4. At least 2 Mbytes of storage space. 

5. Computing platform based on Java. 

6. There should be an appreciable number of input/output pins for digital or analog 

interfacing, serial and parallel interfacing. 

Even though there is a wide variety of processing platforms available, not very 

many meet the aforementioned requirements of an embedded technology with native 

support for real-time, object-oriented programming and communication network. For this 

reason, we selected the aJile microprocessor (see Table 4.1). The chipset is only US$25 

(2004 price). The next section gives a brief description of the processor with emphasis on 

the features of interest to us. 

4.4.1 The aJile Processor 

The aJile architecture uses JEM2 as a direct-execution Java processor that is 

available as both an IP core and a stand alone processor (aJ-100, 2001). The data path is 

made up of a 32-bit ALU, a 32-bit barrel shifter and the support for floating point 

operations (disassembly/assembly, overflow and NaN detection). The control memory is a 

4K by 56 ROM to hold the microcode that implements the Java bytecode. An additional 

RAM can be used for custom microcode to implement new instructions. The aJile 

inventors report that this feature can increase the efficiency of frequently used algorithms 

by 5 – 50 times by decreasing execution overheads. This feature is also used to implement 

basic synchronization and thread scheduling routines in microcode to yield context-

switching of 1 µs. A Multiple JVM Manager (MJM) supports two independent, memory 

protected JVMs, which can execute with a deterministic schedule and full memory 

protection (Fig. 4.2). 
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Figure 4.2: The aJile JEM2 Processor (aJ-100, 2001) 

Currently, there are two silicon versions of JEM2 microcontrollers: the aJ-80 and 

the aJ-100. The aJ-100 shown in Fig. 4.3 (aJ-100, 2001), provides a generic 8-bit, 16-bit or 

32-bit external bus interface and can be clocked up to 103 MHz, while the 66-MHz aJ-80 

only provides an 8-bit interface. Both versions are made up of the JEM2 core, the MJM, 

48-KB zero wait state RAM and peripheral components, such as timers, I/O’s, a real- time 

serial communication bus (SIP) and UART. 16KB of the RAM is used for the writable 

control store and 32 KB for storage of the processor stack. Both microprocessors are 

bundled with J2ME-CLDC Java runtime system, optimizing application builder, and a 

very basic debugging tool. Complete implementations for real-time networked embedded 

Java applications are available (aJ-100, 2001 and Systronix, 2003).  
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Figure 4.3: aJ-100 Architecture (aJ-100, 2001) 

4.4.2 The JStick Platform 

Systronix Inc. (2003) produces about five different boards with the aJile 

microprocessor. Their JStick microcontroller meets most of our preferences such as small 

form factor, I/O (input/output) interfaces, and network support. JStick is a Single Board 

Computer (SBC) with a SIMM30 (Single In-Line Memory Module) format. It features a 

host of facilities to provide most controller functionalities. The following is summary of 

the portfolio of this device: 

• Processor: aJ100 (100 MHz). 

• Memory: 2-Mbytes SRAM and 4-Mbytes flash.  

• Power: switching power converters which provide 5 V and 3.3 V for peripheral 

devices. 

• Power supply: unregulated DC of 9-14 volts or regulated DC power of 5V. 

• Communication: serial I/O, 10BaseT Ethernet (including the RJ45 jack).  

• Bus Interface: A high speed I/O expansion bus. 
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• Real-time network: SPI (Serial Peripheral Interface). 

• Multiple timers, counters, PWM, interrupt inputs, etc. 

4.5 Motion Controller Hardware 

A motion controller is the most important element in a motion control system. 

Next to choosing a proper motor, the selection or design of a motion controller is the 

designer’s most important decision. The fundamental function of a controller is to 

compare two signals: the command signal from the microprocessor and the position 

feedback signal from an encoder, resolver or tachometer. The position feedback signal is 

subtracted from the reference position to provide a following error which is converted by a 

digital-to-analog converter (DAC) to analog voltage for the servo amplifier. The 

controller’s prime duty is to minimize the position error without causing system 

instability. With an appropriate motion controller in place, the designer can focus on 

stabilizing and programming the system.  

There are two broad categories of motion controllers: application specific 

controllers and general purpose controllers. Application specific controllers are usually 

more expensive and have features, performance and packaging specific to certain types of 

applications (e.g. CNC). Since they are highly tailored for specific applications, they are 

not usually suited for general purpose tasks. On the contrary, general purpose controllers 

host a variety of communication interfaces and flexible programming to meet a variety of 

applications effectively. There are many configurations of general purpose controllers, the 

most common being board-level and stand-alone controllers. 

Board-level controllers include a microprocessor containing the logic embedded in 

a communication bus such as a PC/ISA, VME or STD bus. Programming is accomplished 

through fast parallel processing with program storage on storage facilities residing on the 

controller. The execution sequence occurs when the program is downloaded to a non-

volatile memory chip on the controller and executed. These controllers benefit from high-

level language interfaces (DLL, C, etc) and available functionality found in the host. Its 

low cost, standard host architecture and rapid programming make board-level controllers 

the most popular control solution. The disadvantage of using board level controllers is that 

they require a separate host interface and are therefore not ideal for situations requiring 

portability.  
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Stand-alone controllers circumvent this by having their own host together with the 

controller in one package. Programs are typically downloaded from a PC through a serial 

communication link to an EEPROM or battery-backed RAM on the controller. Obviously, 

a disadvantage is that program size is limited to the on-board memory capacity of the 

controller host.  

Motion controllers owe their speed and precision to high level ASCII-based or 

compiled programming languages plus powerful microprocessors, counters, etc. Although 

some controllers can control up to 32 axes of motion, most applications have much fewer 

axes. Motion controllers are usually capable of controlling a number of different 

components such as DC motors (brush or brushless), stepper motors, induction motors, 

pneumatic/hydraulic servos and proportional servo valves. In addition, they can also 

provide multitasking, PLC interfacing and analog and digital I/O control to control 

solenoids, relays, switches etc for complete machine control.  

There are three basic types of motor control in motion applications: position, 

velocity and torque. Position (or current) control is found in servo and some stepper 

applications and employs feedback devices to close the position loop and make the system 

repeatable and dynamically responsive. The controller senses the speed increase or 

decrease via the feedback device and issues a new command voltage to maintain the 

original motor speed. Velocity control specifies the load velocity for a prescribed time 

interval and is not concerned with load position. The mode uses either the feedback from 

the motor’s back EMF signal or a tachometer as a regulating signal, often as part of the 

inner velocity loop tied to an amplifier. Torque control’s emphasis is on delivering 

constant torque regardless of load positions or velocity changes.  

The most common motion profiles are point-to-point and coordinated motion. 

Point-to-point profiling involves constant and repeatable movements from one point to 

another such as pick and place, drilling and scanning. Coordinated motion involves tight 

synchronization of independent axes along a path such as is common in CNC, web lines, 

contouring, grinding, etc. This application requires that the load position follow the 

commanded position in a very predictable manner with high stiffness (loop gain) in order 

to reject external disturbances such as changes in load. On the contrary, point-to-point 

profiles typically are not as concerned with precise path motion as with settling times, 
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move times and velocity profiles. There are other motion profiles which are more 

complex. These include electronic gearing and cams, master/slave synchronization, linear 

and circular interpolation, contouring, cubic spines, parabolic profiling, spline 

interpolation, helical interpolation, S-curve acceleration and acceleration feed-forward. 

The controller uses a filter such as PID to stabilize the system and reduce the following 

error to an infinitesimal value. A more sophisticated filter achieves high dynamic 

response, high accuracy, minimum settling time and reduced instability, at the cost of 

computational resources.  

4.5.1 Motion Controller Design Options 

The decision to select an appropriate motion control scheme depended on a 

number of factors. The options considered are as follows; 

• JStick as stand-alone motion controller 

• Use auxiliary hardware in conjunction with JStick for motion control 

• COTS motion controller board; Interface an off-the-shelf motion control board to 

JStick 

• COTS motion control chip; design a motion controller board based on a COTS motion 

control chip. 

The first option requires coding control filter algorithms such as PID, polling 

sensor (encoder) data and using JStick’s hardware counters and software to decode 

encoder pulses for the filter, and sending PWM signals to an amplifier or motor driver. In 

terms of hardware, it is the simplest to implement but will present challenging 

performance issues. The embedded device will be overburdened to meet motion control 

requirements and at the same time provide communication and user interface facilities. 

We envisage that we will have to use low frequency sampling – 10Hz at most – for the 

PID filter algorithm. The setup will also result in very limited free memory storage for 

other coding that we might need to implement. A solution to the limited JStick computing 

budget is to use a servo interface board to either handle the quadrature decoding of 

encoder signals, digital to analog conversion of motion signals or both. In this case, JStick 

will be responsible for only reading/writing signals from/to the auxiliary board, motion 

control (commands and filter) and motion profiling. There are a few COTS that offer such 

options but their costs are too high for a cost-effective solution to our Java-based motion 
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controller. Secondly, the potential for JStick to interface with the peripheral device is the 

absolute determining factor; issues regarding interfacing include signal types, timing 

parameters and ease of integration. These factors prompted us to opt for an in-house 

designed motion control board as opposed to a proprietary product.  

4.5.2 Motion Controller Board Design Criteria 

The following features were considered for the motion controller board design: 

• A programmable motion controller chip with a compensator (at least a PID filter), a 

sampling rate of at least 1 KHz for high performance (Bellini et al., 2003), motion 

profiling, quadrature decoding and a real-time means of populating an integrated 

buffer with motion set-points from the JStick host. The chip should also be capable of 

providing encoder readings to allow monitoring or adaptive control. 

• A Digital to Analog (DAC) chip, which easily interfaces with the motion control chip 

and provides at least a 12-bit resolution and a voltage output range of +/- 10 V. It is 

worth noting here that the chip timing parameters should be compatible with that of 

the motion control chip. 

• An encoder receiver chip (if the motion controller needs one) and circuitry for filtering 

out noise. Encoder signals are very susceptible to noise, especially single line 

encoders. This is compounded by long transmission lines and the use of relatively 

cheap encoder technology like totem-pole and open-collector types. 

• Digital I/O with interrupts for enable-signal on motor driver (amplifier) and 

mechanical switches such as limit and home position switches. 

• Logic chips such as flip-flops for buffering signals and signal inverters. 

• Power converter chip for devices requiring power levels which are unavailable on the 

JStick. 

The following criteria set further guidelines for selecting appropriate peripheral 

devices for the motion controller board. 

• Compatibility with JStick’s HSIO interface: since JStick’s HSIO provides facilities for 

interfacing with peripheral devices, any such device should be capable of interfacing 

with the HSIO byte-wide data bus. Signals are TTL levels; therefore it will be 

advantageous to select TTL hardware in order to avoid voltage level shifter circuitry.  
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• Timing granularity: peripheral timing characteristics should be within JStick’s timing 

range without clocking down JStick from its maximum speed of 103 MHz. A clock 

down will imply slower computational processing of supporting and other algorithms. 

• Power levels: peripheral devices power should be capable of utilizing onboard power 

resources either directly or through a simple power converter which must also depend 

on JStick’s power sources. In addition the peak power demand should be within 

JStick's power supply budget, which is about 1W. The vision is to have a compact 

system with one main power source for both the JStick and the motion control module. 

• Ease of handling: components with extremely small form factors or pin spacing will 

be difficult to work with. 

4.5.3 Motion Controller Chip Selection 

There are a number of commercial motion controller chips on the market. A few of 

these were identified as potential candidates for the motion controller board design. The 

National Semiconductor’s LM628 (LM628/LM629, 2003) was eventually selected based 

on the criteria outlined above, including its low price, simplicity, and proven capabilities. 

In Chapter 2, this particular chip is featured in the CLARAty architecture for space rovers 

(K7 rover). Cost and technology comparison of different motion controller chips and 

boards are provided in Appendix A.  

4.6 Conclusion 

This chapter provided some insight in embedded Java technology and the enabling 

technologies available. The JStick microcontroller, which is based on aJile’s aJ-100 Java 

processor, was selected as the host computer for the IMC nodes. The selection was based 

on the several on-board facilities that JStick provides, including real-time scheduling, 

timers/counters and Ethernet – to mention a few. A motion controller chip, LM628, was 

also selected for an in-house design of a motion controller board. The next chapter details 

the hardware and timing features of JStick and how it interfaces with the LM628 chip on 

the IMC motion controller board. Timing analysis and the board design procedure is also 

discussed. 
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5. MOTION CONTROLLER BOARD DESIGN 

5.1 Introduction 

This chapter focuses on the hardware design of the motion controller board for the 

IMC node. The schematic of the board is shown in Fig. 5.1. The hardware architecture is a 

multi-tier system with independent controllers for each joint of the robot. Each joint 

controller is made up of a JStik (Systronix) microcontroller and a motion control board 

consisting of a LM628 PID motion controller chip (National Semiconductor), a 12-bit 

DAC, and various I/O interfaces. The LM628 has an 8-bit host interface and is made up of 

four major functional blocks; the Trajectory Profile Generator, Loop Compensating PID 

Filter, Summing Junction and Motor Position Decoder. The output interface is 

programmable for an 8-bit or 12-bit DAC. Its maximum sampling rate is 2.932 kHz. 

 

 
Figure 5.1: Peripheral Motion Controller Board Architecture 
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5.2 JStick’s Peripheral Interface Signals  

In order to interface this board with peripheral I/O devices, JStick uses an 

asynchronous, memory-mapped High Speed I/O Interface (HSIO). The HSIO provides 

byte-wide (8-bit) data, twelve address bits, read and write strobes, two chip selects, 3.3 

VDC power and ground. More chip selects can be easily decoded from the 12-bit address. 

HSIO signals interface directly to 3.3V TTL and CMOS or 5V TTL devices (Systronix, 

2001). In order to configure the HSIO for a peripheral device one needs to properly select 

timing parameters to match the timing specifications of the peripheral device. Fortunately, 

the bus timing can be varied to support most peripheral speeds. The bus timing is 

controlled by three features; a Phase Locked Loop (PLL), the aJile CPU external bus 

interface settings and the HSIO memory mapped address bits.  

5.2.1 The Phase Locked Loop (PLL) 

The aJ-100 chip utilizes a PLL circuitry shown in Fig. 5.2 to generate the high-

speed internal clock from a low frequency external oscillator. JStick uses a 7.3728-MHz 

clock to generate internal clocks of up to 103 MHz for its aJ100 CPU. The outputs can be 

configured through the PLL Configuration Register. The clock output (CLKO) signal is 

derived from the CPU clock divided by 2, 4 or 8 (Systronix, 2003).  

 

 

 
 

Figure 5.2: aJile PLL Circuit Diagram (aJ-100, 2001) 
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5.2.2 The External Bus Interface 

The aJile’s external bus interface (EBI) generates the signals to control access to 

external memory and peripherals devices. The EBI may be configured to support 32-bit, 

16-bit, and 8-bit memory devices or a combination of these memory widths. The EBI 

provides eight chip selects (CS0n..CS7n) to control external memory devices and 

peripherals and each chip select has a configuration register to specify the setup times, 

hold times, wait states and memory widths (Systronix, 2003). The HSIO is controlled by 

CS5n. Its configuration register is shown in Table 5.1 below. 

Table 5.1: Chip Configuration Register 

Bit 
Positions 

31:12 11:10 9:8 7:6 5:2 1:0 

Field 
Name 

unused CS setup 
Ncs 

Address 
setup (Nas) 

Address 
hold (Nah) 

Wait states 
(Nws) 

Bus 
width 

 
 

• CS setup configures the number of clock cycles the CS line should be valid before the 

assertion of the control strobe (REn/WEn). The range is 0 to 3 times the clock cycle (0 

– 3T).  

• The Address setup defines the number of clock cycles the address should be valid 

before the chip select signal. The range is 0 – 3T.  

• The Address hold defines the number of clock cycles to hold write data and addresses 

following the release of the transfer control strobes. The valid range is 0 – 3T. 

• The Wait states bits extend the duration of the bus transactions from 0 to 15. Each 

states increments the memory cycle by 1T. 

• The Bus width defines three data bus configurations; bits = 0 defines an 8-bit memory 

transfer (D[7:0]), bits = 01 a 16 bit transfer (D[15:0]) and bits = 11 a 32 bit transfer.  

5.2.3 HSIO Bus Address Space and Timings 

The HSIO timing granularity is a multiple of the CLKO period (Systronix, 2001). 

At the maximum rated frequency of 103 MHz, JStik CLKO options are 51.6, 25.8, or 12.9 

MHz. The HSIO bus uses 12-bits of address, 0-FFF and two 12-bit chip selects; each one 
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has its own 12-bit address space. More chip selects may be decoded within a given HSIO 

address space. The HSIO control logic uses address lines A[19:A16] exclusively to set the 

bus cycle wait states. The timing duration Tw, in CLKO periods Tc of the inserted wait 

states is defined as. 

 

Tw = ((A[19:16] × 2) + 1) × Tc. (5.1) 

A[19:16] = 0 gives the fastest transaction. The state of address A20 (0 or 1) and 

the value of chip select configuration register CS5_CR [11:10] control the assertion of the 

HSIO read/write control strobes (X-RD/X_WR).  

5.2.4 JSimm Interface and Signals 

JStick provides several general-purpose I/O’s (GPIO) on its 30-pin JSimm 

interface. aJ-100 includes five 8-bit discrete GPIO ports (A to E). Most of the GPIO pins 

are multiplexed with the I/O signals from other resources on the CPU such as timers, 

counters, etc. A few of these pins (port A) are capable of driving/sinking 24 mA while the 

others can drive/sink 8 mA. Each port is capable of generating an interrupt unlike the 

HSIO bus. The JSimm interface provides unregulated 15 V, regulated 5 V and ground. All 

signals on JStick are powered by 3.3-V logic, are TTL level compatible, and are 5 volt 

tolerant. As such they will interface directly to 3.3-V TTL and CMOS or 5-V TTL 

devices.  

5.3 The Interface Design 

The LM628 is a TTL device with signal levels shown in Table 5.2. Therefore there 

is no need for a buffer or level shifter to mediate signals to/from JStick.  

Table 5.2: LM628 Signal Levels 

Limits Parameter 
min max 

Logic 1 Input Voltage 2.0 V  

Logic 0 Input Voltage  0.8 V 

Logic 1 Output Voltage 2.4 V  

Logic 0 Output Voltage  0.4 V 
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Figure 5.3 shows the simplicity of the interface connections between the JStick 

HSIO and a single LM628. An address decoder shown in Fig. 5.4 may be used to decode 

HSIO address bits for connections with multiple LM628 chips. In our current board 

design, we use a single LM628 chip. 

 

 

Figure 5.3: JStick LM628 Interface 
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Figure 5.4: Interface Architecture for Multiple LM628 

All control pins (strobes), Chip Select (CS), Port Select (PS), Read (RD) and Write 

(WR) assert low (logic 0). The Chip Select is for selecting the LM628 for writing and 

reading operations. The Read pin is for reading data from the LM628 and also its status 

while Write controls command and data write transactions. Port Select is used to select the 

LM628’s command or data port depending on its logic level. The Host Interrupt (HI) 

signal alerts JStick that an interrupt condition has occurred. Lastly, the Reset (RST) pin 

resets the LM628 to default conditions. The next phase of the design is to establish 

communication between JStick running at 103 MHz and the much slower LM628 clocked 

at 6 MHz. Like in any processor interface design, the timing requirements of the LM628 

must be stringently met to ensure the integrity of transactions such as data read/write, 

command byte write and status byte write. Consequently, we configure the HSIO 

parameters described in the previous section with the aid of a timing analysis. Table 5.3 

below shows the timing requirements of the LM628 chip. 
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Table 5.3: LM628 Timing Requirements 

Limits Timing Interval T# 
Min Max 

Units 

DATA WORD READ TIMING 
Chip-Select Setup/Hold Time T7 0  ns 

Port-Select Setup Time T8 30  ns 

Port-Select Hold Time T9 30  ns 

Read Data Access Time T10  180 ns 

Read Data Hold Time T11 0  ns 

RD High to Hi-Z Time T12  180 ns 

Busy Bit Delay T13   ns 

Read Recovery Time T17 120  ns 

DATA WORD WRITE TIMING 
Chip-Select Setup/Hold Time T7 0  ns 

Port-Select Setup Time T8 30  ns 

Port-Select Hold Time T9 30  ns 

Busy Bit Delay T13   ns 

WR(L) Pulse Width T14 100  ns 

Write Data Access Time T15 50  ns 

Write Data Hold Time T16 120  ns 

Write Recovery Time T18 120  ns 

 
The timing intervals may be constraints or delays; a constraint establishes a 

relationship between the two signal edges that must be maintained within the Min/Max 

values; setup, hold times and pulse widths are constraints. A delay represents a cause-and-

effect relationship between two signal edges, such as the propagation delay due to Data 

Access Time. Using the Timing Designer software (Timing Designer, 2003), timing 

diagrams are created by adding these delays and timing constraints to JStick’s HSIO 

timing diagram. When the timing parameters of JStick are updated, TimingDesigner 

instantly performs a true worst-case timing analysis and automatically flags any violations 

of the timing diagram specification. Using aJile’s PLL settings, the lowest clock (CLKO) 

speed we can derive for the HSIO at maximum processor speed (103 MHz) is 12.9 MHz, 

i.e., CPU Clock divided by 8. Intuitively, this is too fast for LM628 which is clocked at a 

maximum of 6 MHz. The obvious is to clock down the aJ100 CPU; using a PLL 

multiplier of 8, we get a CPU clock speed of 58.98 MHz and a corresponding CLKO (bus 

speed) value of 7.37 MHz. Figure 5.5 shows the resulting timing diagram of the HSIO bus 

transactions with the LM628. Commands are written to LM628 by bringing WR and PS 

low. When PS is high, WR brought low writes data into LM628 and similarly, RD is 

brought low to read data from LM628. Address pin A0 of the HSIO drives the PS pin and 

we recall that CS has to be brought low to select LM628 for all transactions. 



 72 

Subsequently, the maximum read and write transaction times in Fig. 5.5 are approximately 

800 and 700 nanoseconds respectively – with no timing violations.  
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Figure 5.5: HSIO Timing Diagram with Bus Speed of 7.37 MHz 

Next, we investigated the possibility of maintaining the maximum aJile CPU speed 

(CLKO = 12.9 MHz) since there are many other processes sharing the time space. 

Inserting a 232-ns wait state in the HSIO by setting A[19:16] to 1 (see 5.1) results in the 

timing diagram shown in Fig. 5.6. There is yet a timing violation of -9.24 ns on the Write 

Data Hold Time (T16), which implies that data output from JStick to LM628 will lag 

timing constraints.  
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Figure 5.6: HSIO Timing Diagram with Bus Speed of 12.9 MHz Showing Violations 

To resolve the above problem, the bus interface (EBI) control strobes was 

compelled to use the maximum address hold time (recall from section 5.2.2 that bit-fields 

7:6 of the EBI chip configuration register influence the number of clock cycles to hold 

write data and addresses following the release of the EBI’s transfer control strobes). The 

resulting timing diagram (Fig. 5.7) shows a lag of 16 ns on the read control strobe, 

however since there is no violation in the corresponding data propagation we regard this as 

benign. The maximum read and write transaction times are approximately 500 and 400 ns 

respectively. 
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Figure 5.7: Final HSIO Timing Diagram with Bus Speed of 12.9 MHz 

5.3.1 Clocking 

The hardware architecture provides two means of clocking the LM628 chip; static 

clocking and dynamic clocking. There is an onboard 6 MHz clock which provides very 

accurate clocking for the chip. The clock can be enabled or disabled in software but the 

output frequency is fixed. Alternatively, the aJile chip provides a Timer/Counter circuitry 

comprising of a 16-bit prescalar and three 16-bit timer/counter blocks. The prescalar is a 

continuous count-down timer that divides aJile’s internal peripheral clock (or an external 

clock) by 

PrescalerReloadRegisterValue + 1; 0  ≤ PrescalerReloadRegisterValue ≤ 65535; 

Where PrescalerReloadRegisterValue is the value of the prescaler register. 

The internal peripheral clock shown in Fig. 5.2 divides the CPU clock by two. 

There is also a reload register value, ReloadRegisterValue, associated with each 

timer/counter. Its value is transferred into the corresponding timer when a reload event 

occurs. A reload event can be specified in software or when the timer reaches a 0×0000 

value. In effect the timer’s low pulse width is driven by the PrescalerReloadRegisterValue 
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while the high pulse width is determined by the ReloadRegisterValue. The flexibility of 

adjusting the clock rate in software or by trigger events is extremely advantageous in 

designing distributed systems where clock rates have to be synchronized occasionally. 

Additionally, the sample rate of the LM628 can be varied very conveniently for different 

requirements. Table 5.4 shows the results of different settings to derive the LM628’s clock 

range of 1 – 6 MHz using the class following. Pulses and frequencies were measured with 

a logic analyzer. The register values selected result in near symmetric square waves.  

Table 5.4: Timer Settings 

Prescaler 

ReloadRegisterValue 
Reload 

RegisterValue 
High Pulse 
Width (ns) 

Low Pulse 
Width (ns) 

Frequency 
(MHz) 

3 1 70 80 6.4 

4 1 96 96 5 

5 1 112 120 4.3 

7 1 150 160 3.4 

11 1 240 230 2.15 

24 1 490 480 1.032 

 
 

The method for setting the timer is listed below.  

 
1. public JStickTimer2(double freqMHz) { 

2. //calculate prescalerReloadRegisterValue and reloadRegisterValue from freq given 

3. prescalerReloadValues(freqMHz); 

4. //configure the prescaler to use the internal preipheral clock = 50MHz    

5. TimerCounter.setPrescalerClockSource(TimerCounter.INTERNAL_PERIPHERAL_CLOCK); 

6.   //set the PrescalerReloadRegisterValue and enable it 

7. TimerCounter.setPrescalerReloadRegisterValue(prescalerReloadRegisterValue); 

8. TimerCounter.setPrescalerEnabled(true); 

9. //configure TIMER2 output  

10. TIMER2.setMode_IO_Line_B(TimerCounter.TIMER_2_OUTPUT); 

11. TIMER2.setExternalSampleMode( 

12. TimerCounter.CONTROL_SIGNAL_2_TRAILING_EDGE_ENABLED);  

13. TIMER2.setExternalTimerEnableMode( 

14. TimerCounter.TIMER_ENABLED_ONLY_VIA_MTEN_AND_TRIGGER); 

15. //set the setReloadRegisterValue 

16. TIMER2.setReloadRegisterValue(reloadRegisterValue); 

17. TIMER2.setMasterTimerEnabled(true);    

18. }   

5.4 LM628 DAC Output  

The LM628 precision motion controller outputs data to a DAC (Digital to Analog 

Converter) on its ports DAC0-DAC7. Its output port can be configured for either a latched 
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8-bit parallel output or a multiplexed 12-bit output. While the 8-bit output can be directly 

connected to non-input-latching DAC (Digital to Analog Converter), the 12-bit output has 

to be demultiplexed using an external 6-bit latch. The IMC motion controller board uses 

the 12-bit output mode for better resolution. In this mode two multiplexed 6-bit words are 

outputted by pins DAC2-DAC7, the less-significant 6-bit word first followed by the more 

significant word. DAC0 and DAC1 are converted into control signals; DAC1 is driven 

low to latch the less-significant word while the positive-going edge of DAC0 is used to 

strobe the output data. In effect the 8-bit output port is converted to a 6-bit port with two 

control strobes. Currently, there is no commercially available 12-bit DAC chip that allows 

direct interfacing of 6-bit buses. Versatile ones interface with microprocessor bus widths 

which are multiples of four. The problem is resolved by a combination of an input-

latching 12-bit DAC (AD667) from (Analog Devices, 2003) and logic devices. The bus 

interface logic of the AD667 consists of four independently addressable registers in a pair 

of ranks. The first rank comprises of three four-bit registers which can be loaded directly 

from a 4-, 8-, 12-, or 16-bit microprocessor bus. Once a 12-bit data word has been 

assembled in the first rank, it can be loaded into the 12-bit register of the second rank. The 

latches are controlled by the addresses, A0–A3, and the CS input. All control inputs are 

active low. The four address lines each enable one of the four latches, as indicated in Fig. 

5.8. All latches in the AD667 are level-triggered, implying that data present during the 

time when the control signals are valid will enter the latch. When any one of the control 

signals returns high, the data is latched. Since LM628 outputs 6 bits in each cycle, we used 

an external D-Type flip-flop and inverter combination (Fig. 5.8) for the latching process.  
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Figure 5.8: DAC – LM628 Interface Architecture 

The following is the procedure for a 12-bit data transfer from the LM628; 

• The AD667’s chip select (CS) and Latch 2 are permanently enabled by hardwiring CS 

and A1 to digital ground. 

• LM628 drives DAC1 low to transfer the less-significant 6-bit word to the Flip Flop’s 

Q outputs. Subsequently, the lower 4 bits of this word are latched to Latch 3 while the 

next 2 bits are latched to the lower half of Latch 2. Simultaneously, the inverter inverts 

the DAC1 signal to disable Latches 1 and 4 through control addresses A3 and A2. 

• LM628 drives DAC1 high to transfer the more-significant 6-bit word. The inverted 

DAC1 signal drives A3 and A2 low, thus enabling Latches 1 and 4. The lower 2 bits 

are latched to the upper half of Latch 2, which now has 4 bits, while the next 4 bits are 

latched to Latch 1. Since Latch 4 is enabled, all 12 bits in the first rank are loaded to it.  

Note that without the intermediary flip-flop, bits in Latch 2 will be ill-formed 

during the above process. Our architecture configures the AD667 to function in a ± 10 V 

bipolar mode which requires a power supply of ± 15 V. 

MSB LSB 
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5.4.1 Encoder Interface 

The LM628 provides three channels of quadrature encoder input for A, B and I 

encoder signals. Each time the quadrature decoder detects an edge either on the A or B 

encoder phase, it increments or decrements a counter, depending on the sense of motion. 

The relative phasing of the A and B phases determine the direction of motion. The 

resulting decoding means that an N-pulse encoder produces N × 4 counts per revolution. 

The I signal is gated to the A and B phases so that it is active over a region between two 

consecutive phases. The region which is called index position may be used to set a home 

or reference position. The board provides additional support for two kinds of encoders, 

differential and single-ended totem pole input encoders. Encoders with differential outputs 

drive two lines per signal (A and A*, etc). While one is driven high, the other is driven 

low, giving greater signal amplitude, and greater immunity to noise. The interface on the 

board uses a 26LS32 differential line receiver to convert the signal pairs to single phases 

for the LM628. Single-ended totem pole input encoders are more sensitive to noise and 

cable length, therefore additional noise immunity may be necessary. In this configuration, 

the board provides a voltage divider resistor circuit on the inverted inputs of the 26LS32 

line driver, as illustrated in Fig. 5.9. 

 

  

 

 

 
 

 

Figure 5.9: Receiver Line Filter for Single-Ended Totem Pole Encoder 

5.4.2 Power Supply and Noise Emission 

JStick provides three power sources with a total budget of 1 A; regulated +3.3 V 

and +5 V, and unregulated +17 V. Except for the AD667 DAC, all devices on the board 

are powered by the 5 V source. Since the DAC requires ± 15 V, a miniature regulated DC-

DC switched-mode converter (C&D Technologies, 1997) is used to convert the 17 V to 
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the voltage levels required by the DAC. A switching converter is generally very compact 

and efficient but can be very noisy if not well isolated. The converter selected has a fixed 

characteristic operating frequency, making filtering relatively simple, compared to pulse-

skipping types (C&D Technologies, 2000). Simple passive LC network filters were used 

at both inputs and outputs. For high precision motion control, noise immunity is critical. 

Hence the following criteria were used for the motion board design. 

• The motion controller chip receives two-phase quadrature signals provided by an 

incremental encoder. For better noise immunity, differential signals must be used to 

cancel out common mode noise. A receiver chip on the board is used for this purpose. 

• Low pass filters on all power lines. 

• Option of using pull-up resistors for open collector and totem-pole encoders. 

• Proper termination of encoder signals. 

5.4.3 Board Schematics 

The schematic diagrams and printed circuit board layout for final production were 

created with the Eagle software (CadSoft, 2003). The following were the guiding 

principles for laying out the tracks and components. 

• No loops in supply lines. 

• Wide tracks for power lines and a solid ground plane. 

• Short high frequency tracks. 

• Bevel or mitre track corners instead of sharp bends. 

5.4.4 The LM628 Hardware Driver 

For low level access to aJile’s hardware, the aJile API includes a rich set of 

libraries such as com.ajile.jem.rawJEM for reading and writing primitives (Boolean, short, 

integer, long, float and double values). In the respective operations the read (RD) and 

write (WR) pins are driven to logic low. Since the aJ-100 chip has a 32-bit data bus width, 

it is more efficient to do word (integer) access to JStick’s HSIO address space than an 

explicit byte write. Only the low byte of the word is actually used for the HSIO data bus – 

the upper bits are ignored by the HSIO hardware. The two least significant bits of the 

aJ100 CPU address do not go to the HSIO bus, which means that the aJ100 address space 
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is left-shifted by 2 in the HSIO address space. The HSIO.class in Fig. 5.10 below 

implements methods for configuring the HSIO and is the parent class for all read/write 

transactions with the motion controller. Apart from the last two methods of the class, all 

the others are direct logic and bit operations. The last two methods implement methods 

rawJEM.getInt(PortAddress) and rawJEM.set(PortAddress, data) for reading and writing 

data respectively. 

 

 
Figure 5.10: Pseudo-code for High Speed I/O (HSIO) 

The LM628 driver class LM628.class illustrated below creates two objects of the 

HSIO.class. The first object, addressA0, configures the A0 address space on chip select 0 

1. package com.IMC.drivers; 

2. import com.ajile.jem.rawJEM; 

3. import java.lang.Integer; 

4.  

5. public class HSIO { 

6.         public static final int HSIO_CS0_ADDRESS = 0x01400000; 

7.         private int PortAddress = HSIO_CS0_ADDRESS; 

8. //constructor  creates a new HSIO 

9.          // integer NewAddress; The new HSIO address of the port. 

10.          // byte A19_16  is the clock divider bits of the HSIO address + 1.  

11.          //integer A20 is the External Address Setup Control 

12.          //Boolean SelectCS1; if true, chip select 1 is selected.  If false, chip select 0 is selected 

13.         public HSIO(int NewAddress, byte A19_16, int A20, boolean SelectCS1) { 

14.                 ::        } 

15.  // address setup 

16.         public void setHsioAddress(int NewAddress) throws IllegalArgumentException { 

17.            // map to hsio space, shift the bottom 2 bits that are always 0. 

18.           // bits 0 to 13 are either not used or are the HSIO address. Clear them so it can be set 

19.       // set the new port address.      } 

20. //HSIO timing setup: bits A19:16 

21.         public void setHsioTiming(byte A19_16) throws IllegalArgumentException { 

22.            // Clear bits 19:16, of the HSIO address bits. 

23.             // put the new clock divider in the bits that were just cleared.        } 

24. // address wait setup: bit A20 

25.          public void setHsioWait(int Tas) throws IllegalArgumentException { 

26.           // Clear bit 20 of the HSIO address bits 

27.           // Put the wait value in bit 20.      } 

28. // read data from address and return value 

29.         public int read() { 

30.                 return rawJEM.getInt(PortAddress);        } 

31. // write data to address 

32.         public void write(int data) { 

33.                 rawJEM.set(PortAddress, data); 

34.         }   }//end of class 
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(CS0), while the first object, dataAddress, configures the HSIO CS0 base address for data 

I/O. Each address pin (A0-A11) holds logic high if there is read/write to it. 

 

1. package com.IMC.drivers; 

2.  

3. public class LM628 extends HSIO{ 

4. private static final int addr = 0x01;   //address A0 

5. private static final int addrBase = 0x00; // base address 

6. private static final byte A19_16 = 0x01;  // clock divider)  

7. private static final int A20 = 0x01;   //address hold 

8.    

9. //create HSIO.class object to configure address A0 on chip select 0 

10. private static HSIO addressA0= HSIO (addr, A19_16, A20, false); 

11. } 

12. //create second HSIO.class object to configure base address 

13. private static HSIO dataAddress = HSIO (addrBase, A19_16, A20, false); 

14. } 

15. //other methods 

16. : : : 

17. }  

 

The LM628 read and write operations involve three internal registers; status-byte 

register where all interrupts are stored, high-byte register, and low-byte register (Hunt, 

1999; LM628, 2003). The LSB of the status byte contains the busy bit which is set 

immediately after the host writes a command byte, or reads or writes the second byte of a 

data word. While the busy-bit is set, the LM628 will ignore any commands or attempts to 

transfer data, therefore it is imperative to query this status-byte frequently. This register is 

read by bringing RD and PS low – the PS pin is driven by the HSIO address pin A0. In the 

LM628.class the following method reads the status-byte: 

 

31. public static byte read_Status_Byte() { 

32.     return dataAddress.read() - dataAddress.getRawJStikAddress(); 

33. } 

 

The busy bit, i.e. LSB of status-byte can then be checked as follows: 

61. public static void check_busy_bit() {        

62. while ( (read_Status_Byte() & 0x01) == 1){ 

63. }  } 

 

Data written to a HSIO address space is retrieved by subtracting the initial address 

contents from its current contents. Since the above method does not read from the A0 

address space, the A0 pin – hence PS, remains at logic low while the RD pin is driven low 
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to meet the condition for reading the status-byte. Similarly, when writing commands (e.g. 

PID filter configuration, run motor, etc) to LM628, PS and WR must be driven low as 

shown below: 

64. public static void write_command(int CMD) { 

65.  test.write(CMD); }  

 

On the contrary, the A0 pin must drive PS high in order to read or write data to the 

LM628. The following methods make this possible: 

66. public static int read_data() { 

67. return testA0.read() - test.getRawJStikAddress();  

68.   } 

69. public static void write_data(int data) { 

70. testA0.write(data);  

71. } 

5.4.5 Initializing  

Immediately following power-up a hardware reset must be done before the LM628 

can be programmed. This is executed by strobing the RST low for a minimum of eight 

clock cycles. The RST pin is hooked to JStick’s reset pin, therefore both resets are 

executed simultaneously. Following a reset procedure the status-byte must read C4 hex or 

84 hex. Subsequently, all bits in the LM628 interrupt register are reset to zero by the 

method reset_interrupt_register(int).  

5.4.6 Interrupt Service Routines and digital I/O operations 

The hardware architecture drivers include classes for receiving interrupts on 

various general purpose I/O pins connected to the LM628 HI interrupt pin, and digital I/O 

such as interrupts from limit switches on the controlled device. There are also I/O pins for 

outputting digital signals. The aJile API provides base classes for all manner of typical 

microcontrollers I/O operations. LM628 interrupts are received and serviced in two ways; 

by polling its status-byte or receiving hardware interrupts on the HI pin. The 

LM628_Interrupt.class below shows how a motor-stall interrupt is received and serviced. 

The Monitor.class implements methods to communicate with the system coordinator 

computer. In this case, the coordinator is informed of an excessive position error 

condition.  
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1. package com.IMC.drivers; 

2. import com.ajile.events.TriggerEventListener; 

3. import com.ajile.drivers.gpio.GpioPin; 

4. import network.Monitor; 

5. public class LM628_Interrupt { 

6.    final  GpioPin pinA1 = new GpioPin(GpioPin.GPIOA_BIT1); 

7.    Monitor monitor; 

8.  //constructor 

9.  public LM628_Interrupt(Monitor mon) { 

10.       monitor=mon; 

11.   pinA1.setPinReportPolicy(GpioPin.REPORT_RISING_EDGE); 

12.   pinA1.addReportListener( 

13. //inner class implements event listener  

14.    new TriggerEventListener(){ 

15.               public void triggerEvent() { 

16.      //poll status byte for value of its bit 5  

17.                  if ( (LM628.rdstatusLM628 & 32) == 32) { 

18.                     monitor.sendEmergencyStop(); 

19.                   } 

20.              } 

21.           }  ); 

22.    } //end of constructor 

23. } 

 

In the above class, when an interrupt is received, the LM628 status register is 

polled for its bit values. Alternatively, the status- byte can be cyclically polled as shown 

below. This routine waits for a trajectory-end bit before executing the next command.  

1. public static void wait_trajectoryEnd_bit() { 

2.     do { 

3.       check_busy_bit(); 

4.     while ( ((read_Status_Byte() & 4) != 4 //poll status byte for value of its bit 3  

5.    } 

5.5 Conclusion 

A detailed description of the IMC hardware design has been presented in this 

chapter. The design consists of an embedded Java microcontroller, JStick, and a motion 

controller board specifically designed for this project. The motion controller board 

features a dedicated precision motion controller chip (LM628), I/O logic to communicate 

with the microcontroller, a DAC and encoder receiver logic, digital I/O, a power 

converter, and a clock. Six of these boards were manufactured for this research. The next 

chapter presents the IMC communication architecture. 
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6. THE IMC COMMUNICATION ARCHITECTURE 

6.1 Introduction 

The integrity of a reconfigurable distributed control system depends heavily on the 

flexibility of its communication architecture (Feng-Li et al, 2000). Even though the 

traditional centralized point-to-point communication architecture has proven advantages 

such as reliable hard real-time support, its communication infrastructure is quite inflexible. 

This deduction is clarified by using a microcontroller bus such as VME as an illustration: 

Firstly, there is the issue of the central locus of control – a computer crash brings down the 

entire system. Moreover downtime is likely to be aggravated by the time it takes to single 

out the fault. In contrast, a distributed system built on modular units is naturally molded 

into fault containment regions. Even if a fault pervades the entire system, it is relatively 

easier to diagnose and replace or fix modules. Secondly, scaling up a centralized system is 

met with capacity, cost and hardware problems on the computing, communication and 

geographic (location) domains. On the other hand, networked control systems could make 

reconfiguration such as scalability as easy as plug-and-play.  

However, like the advent of any typical ideology that promises a holistic solution, 

distributed control is met by quite a colossal challenge to surmount. Since data exchange 

occurs between processes in different processors spatially separated, there is the need for a 

communication service that meets the demands of synchrony, data rate, latency and 

reliability. While it is easy to instantaneously sample several sensors in a centralized 

system, clock drifts or process execution deviating trends will have to be accounted for 

either dynamically or statically in a distributed system. Yet another major problem is the 

mechanism of the network itself: Information must be deftly delivered from producers to 

recipients (collision avoidance). Some data must be delivered reliably, while others must 

be delivered deterministically. The network protocol may also have to discriminate 

between messages of different priorities; for example, an emergency message such as 

“shutdown controllers” should preempt lower-priority messages. On a centralized system, 
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the latter case is as simple as asserting a high-priority interrupt line connected to slave 

controllers. The last problem worth mentioning is the issue of interoperability; simply 

stated, controllers on different networks may not be able to talk to each other without a 

mediator.  

These myriads of problems have churned out a number of research works and 

interesting solutions which is gradually narrowing the performance gap between the two 

extreme configuration architectures. In fact, network architecture design in distributed 

control systems is becoming an artistry of sorts, which is resulting in a plethora of 

standards and paradigms (Pedreiras and Almeida, 2000; Schickhuber and McCarthy, 

1997). Four main research and development (R&D) streams in distributed control have 

been identified. One stream deals with the aspects of the communication mechanism, such 

as protocols and physical infrastructure (Kopetz, 1997; Pedreiras and Almeida, 2000), and 

paradigms such as Time-Triggered, Event-Triggered and Cyclic communication has led to 

fieldbuses such as TTA, CAN, Profibus, and LonWorks – to mention a few! The next 

stream closely associated with the first, focuses on clock synchronization of networked 

controllers (Kopetz 2004; Lönn 1999), while the third stream emphasizes control 

algorithms that curtail network uncertainties (delays and jitter) (Wittenmark, et al., 1995; 

Goktas, 2000; Nilsson, 1998). The last stream addresses reconfigurable control solutions 

(Lian, et al, 2000; Atta-Konadu, et al, 2005) sometimes with fault tolerance (Kopetz, 

1997; Benitez-Perez and Garcia-Nocetti, 2005). The architecture presented in this chapter 

is an integrated (hybrid) approach that incorporates the strengths of distributed and 

centralized architectures. Moreover, it promises a cost-effective and inter-operable 

solution by employing the most ubiquitous and flexible network system – Ethernet. As 

will be discussed in the following, there is some platitude about Ethernet not being real-

time. However, an approach is presented which provides a real-time environment 

harnessed by the robustness of Ethernet 

6.2 Requirements for Real-Time Communication 

In practice, real-time networks require high efficiency, deterministic latency, 

operational robustness, configuration flexibility, and low cost per node. Because cost 

constrains the network bandwidth available to many applications, protocol efficiency is 

very important. Most real-time systems are characterized by predominance of short, 
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periodic messages. An obvious optimization is to reduce overhead bits used for message 

packaging and routing. The next issue is to reduce media access overhead. This may be 

accomplished by minimizing the network bandwidth consumed by arbitration (e.g., 

passing a token or resolving collision conflict). Since worst-case behavior is usually 

important, efficiency should be evaluated both for light traffic as well as heavy traffic. 

Determinacy, or the ability to calculate worst-case response time is needed to meet the 

real-time constraints. A prioritization capability is usually included in systems to improve 

determinacy of messages for time-critical tasks. Priorities can be assigned by node number 

or by message type. Furthermore, protocols should support local or global priority 

mechanisms. In local prioritization, each node is given a turn at the network in sequence 

and transmits its highest priority queued message (thus potentially forcing a very high 

priority message to wait for other nodes to transmit). In global prioritization the highest 

priority message in the global system is always transmitted first. This feature is highly 

desirable for many safety critical applications.  

A protocol is robust if it can quickly detect and recover from errors (e.g., duplicate 

or lost tokens), added nodes, and deleted nodes. Simple protocols require less hardware 

and software resources and are therefore likely to be less costly. For cost-sensitive high-

volume applications, these protocols are good choices. However, for scalable applications, 

more advanced protocols provide stronger framework.  

One of the main problems in real-time communication is the scheduling of 

messages over the network so that messages' time constraints are met. The sort of 

scheduling that can (or must) be used depends on the network topology: multiple-access 

(e.g. shared broadcast bus or ring) or point-to-point (e.g. mesh network). An issue of 

utmost importance for the real-time scheduling of messages on multiple-access networks 

is the Medium Access Control (MAC). In real-time networks, access control protocols 

play a fundamental role in the timeliness of the communication system since they establish 

the order by which communicating nodes access the transmission medium. Therefore, they 

directly influence the response time of the communication system to the requests issued by 

the nodes. Such protocols must ensure that all nodes have the right to access the bus 

within a bounded time window. Otherwise, the ability of the communication system to 

transfer information subject to time constraints is lost. When it comes to guaranteeing a 
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predictable timing behavior, as required in real-time networks, the problem is not confined 

to the MAC protocol. In fact, such timing predictability must be a property of all protocols 

and services in all layers (Thomesse, 1998). When this is the case, it is possible to perform 

a schedulability analysis over the set of communication requirements and thus, obtain 

some level of guarantee concerning the timely behavior of the communication system.  

6.2.1 Environment State Capturing Strategy 

The computing system in a real-time network must be aware of the state of the 

environment at any instant. This is achieved by maintaining a data structure within the 

computing system that reflects the environment state. Since the computing system is 

distributed, the real-time database is likewise distributed among the nodes of the system. 

In such databases all the items have expiration times after which they are no longer valid. 

This property known as temporal accuracy is normally implemented as an Event-

Triggered (ET) or Time-Triggered (TT) mechanism. In the ET approach, the computer 

system is alerted of any significant change in the environment state (external event) or in 

the controller internal state (internal event), such as a timer interrupt. Consequently, the 

computer system triggers the appropriate actions. If there are no events, the ET 

mechanism remains in an ‘idle’ or wait state. ET systems are susceptible to a phenomenon 

called event showers, where a node is overwhelmed by events such that not all events can 

be serviced; hence a scheduler has to deal with simultaneous arrival of many events, some 

with different priorities and deadlines. An overwhelmed scheduler might result in missed 

deadlines. Figure 6.1 shows a typical timing issue in an ET system. Pi is processor node i 

while the rectangles are events. The flag indicates the detection of events. 

 

 
Figure 6.1: Timing in an Event Triggered System 
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Events are processed and dispatched as they arrive. However, the system 

architecture can create rules to superimpose TT behavior on top of an event 

communication or processing system (Verissimo and Rodrigues, 2001). In the TT 

approach, processes are started at predefined time slots, normally periodically. The 

environment or nodes are scanned periodically at rates pre-calculated to take into account 

the environment dynamics. Unlike the event-triggered approach, even when there are no 

state changes, actions within the computer system are continuously triggered. The 

advantage of the TT is that since activation instants for all actions are predefined (Fig. 

6.2), it is possible to control the level of contention among actions by appropriately 

controlling the relative phasing of those instants.  

 

 

Figure 6.2: Timing in a Time-Triggered System 

ET is more resource-efficient when changes in the environment state are sporadic. 

However, its temporal performance depends on the number of events that might arrive 
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temporal behavior due to the aprioristic knowledge of the actions’ activation instants. 

Hence, event-triggered approach is normally associated with dynamic scheduling, while 

the TT approach is usually associated with static scheduling.  

6.2.2 Co-operation Models 

Another important property of a communication system is the manner of 
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In the client-server model a request from a client to the server prompts a response 

from the server at a later time. There are different variants of the CS model. In the one-to-

many communication (clients-server) model, requests from the multiple clients are 

serialized and processed by the server one at a time. This situation may give rise to spatial 

incoherence in the real-time database (temporary inaccurate real-time images) since two 

simultaneous requests for the same entity in the same server might obtain different values. 

Another variant of the CS model is “many servers to one client”, i.e., client-servers model.  

The simultaneous access by this client to the different servers has to be carried out 

sequentially and may therefore yield temporal incoherence in the real-time database. 

Lastly, in clients-servers model (many-to-many), all client requests need to be serialized 

with regard to several servers. In all variations of the client-server model, if time is to be 

accounted for as in real-time applications, it is necessary to bound the maximum response 

delay by a server to any client request. The CS model is very appropriate for supporting 

acknowledged data transfers.  

The producer-consumers model works on a different principle: A producer node 

with data that might be needed by other nodes makes such data available on the network. 

The consumer nodes identify data relevant to them and read it from the network. Unlike 

the CS model, there is no explicit consumer request and the producer generally starts 

transactions. Since all consumer nodes have simultaneous access to data on the network, 

the model implicitly supports one-to-many communication with spatial consistency of the 

real-time database. However, where they are multiple producers, the respective 

transactions must be serialized, which could cause temporal coherence problems. The 

producers-distributor-consumers (PDC) model (Thomesse, 1993) is a solution to this 

problem. This model is a combination of the producers-consumers model and a master-

slave architecture. All transactions are centrally managed by the distributor (master node), 

which facilitates the respective scheduling in order to meet the temporal constraints 

required to assure both the temporal accuracy and coherence of the real-time database.  

6.2.3 Composability  

Arguably, the most important property of a real-time system architecture is its 

composablility (Kopetz, 1997). “An architecture is composable with respect to a specified 

property if the system integration will not invalidate such property once the property has 
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been established at the subsystem level. Examples of such properties are timeliness or 

testability.” (Kopetz, 1997). Kopetz (1997) outlines two factors that establish 

composability. The first is referred to as “Temporal Encapsulation of the Nodes”: The 

communication system should wrap a temporal firewall around its host computer, 

forbidding the flow of control signals across the communication network interface (CNI). 

It is stated categorically (Kopetz, 1997) that such an autonomous communication system 

can be implemented and validated independently of the application software. Moreover, 

communication timing properties can be validated in isolation. The counter argument is 

that if flow-control1 can be characterized, the need for autonomy which requires extra 

hardware will be rather questionable. Another requirement for real-time communication is 

the need for flexibility. For example, a scalable architecture allows functional and/or 

physical changes to the system during its lifetime without any predefined upper limit to 

such changes or elaborate software modification. The communication system must be 

robust, providing predictable and dependable service (Kopetz, 1997). The system should 

be capable of rectifying errors quite seamlessly, and if this is not possible, all participating 

communicators must be informed urgently. Lastly, there should be interoperability 

between equipment and the communication system and also with potential networks 

outside the immediate sphere of communication. Thomesse (1998) refers to several causes 

for non-interoperability such as unavailability of services, different options in protocol 

implementation, time behavior incompatibilities or lack of resources. The issue of 

obsolesce is also noted in the IMC communication architecture design. It is desired to 

anticipate new network apparatus which are backward-compatible with older ones.    

6.3 Real Time Network Applications 

Due to the absence of shared memory, communication in distributed systems is 

based on exchanging messages between communicating elements. Therefore, there is the 

need for a priori communication agreement at all levels of communication, i.e. from low 

level bit formats, to data semantics, error checks, etc. This led to the development of the 

Open System Interconnection Reference Model (OSI) (Day and Zimmerman, 1983) by the 

ISO (International Standards Organization). The OSI model as it is popularly called, 

                                                 
1 Flow-control is the control of the speed of information flow between a sender and a receiver in such a manner that the 

receiver can keep up with the sender  
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clearly identifies the various levels involved in network communication, gives them 

standard names, and their respective functionalities (Fig. 6.3).  

 

 
 

Figure 6.3: The OSI Protocol Stack 

Communication systems based on the full OSI model are highly flexible and 
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layer. The latter results in lean communication overheads for deterministic response time 

but at the expense of interoperability and flexibility. The following sections discuss the 

protocols used in fieldbuses and Ethernet. 

6.3.1 Physical Layer  

The physical layer ensures the transmission of bits. The voltage levels for low (0) 

and high (1), bit transmission rate, and whether transmission is bidirectional are key issues 

in the physical layer. Other issues addressed in this layer include the interconnection 

topology, the physical medium, the maximum bus length, the maximum number of nodes 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Transport 

Network 

Data Link 

Physical 

Comm. Channel Comm. Channel 



 92 

that can be connected to the bus, the possibility to feed power to the nodes through the 

bus, and immunity to EMI (Electromagnetic Interference). Most fieldbuses use a bus 

topology while Ethernet can accommodate other topologies such as the star-topology. The 

two commonly used physical media are electric cabling and optical fibers. Industries are 

also fast embracing wireless networks, particularly Bluetooth and wireless Ethernet (IEEE 

802). Wireless networks are particularly suitable for mobile equipment and in situations 

where devices are spread over large distances in large plants. In many situations where 

cabling is used there is a limitation to the number of nodes that can be connected to the 

fieldbus since each connected node adds an extra capacitance to the bus line, which tends 

to increase the propagation delay of control signals and data.  

6.3.2 Data Link Layer  

The data link layer provides services and protocols required to ensure the correct 

transmission of data. The salient entities in this layer are the mechanism governing access 

to the shared communication media, identification of the destination node (or nodes), and 

mechanisms to assure the correct transfer of information. The first entity is called MAC 

(Medium Access Control). The second is called Addressing, while the third entity is called 

LLC (Logical Link Control).  

6.3.2.1 Medium Access Control (MAC) 

The MAC sub-layer is the workhorse for message scheduling on multiple-access 

networks. MAC protocols influence the response time of the communication system since 

they establish the order by which communicating nodes access the transmission medium. 

In real-time communication, protocols guarantee that all nodes have the right to access the 

bus within a bounded time window. One common classification of MAC protocols is 

whether they impose controlled access (e.g., centralized arbitration, token-passing, Time-

Division-Multiple-Access (TDMA)) or uncontrolled access. In controlled access, message 

collisions are avoided by some control mechanism or signal. As an example, token-

passing is used in Profibus, where a control message called a token circulates the network 

such that whoever has the token is allowed to transmit. Some protocols such as the FIP 

protocol depend on a master node to arbitrate communications while others regulate 

transmission by using time-slices (e.g. ARINC 629) or progression of real-time (e.g. 
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TDMA). In uncontrolled access protocols such as CSMA (Carrier-Sense-Multiple-

Access), there is no external control signal; instead arbitration is performed based on the 

bus status and on local information. Collisions may occur since it is possible that several 

nodes detect silence on the bus at the same time and start transmitting almost 

simultaneously. The manner in which collisions are handled defines the nature or type of 

CSMA protocol. The arbitration mechanism is completely decentralized and independent. 

This implies that there is no centralized information about the present system 

configuration, and arbitration is carried out the same way regardless of the configuration. 

This lends CSMA-based systems high flexibility, for example, making it possible from a 

functional perspective to connect or disconnect nodes during normal on-line operation. 

However, the arbitration mechanism is a challenge in real-time message delivery. For 

instance, in the CSMA-CD (Collision Detection) protocol which is used in Ethernet, nodes 

involved in a collision hold back from transmission and retry after a random time interval. 

Obviously, this phenomenon becomes critical and highly non-deterministic during heavy 

traffic. A solution to this is to reduce or totally eliminate the probability of collisions. This 

will be discussed in the course of this chapter. Some CSMA protocols are designed to be 

deterministic, for example CSMA- CA (Collision Avoidance). In one such protocol, a set 

of synchronized timers at each node with predetermined values is used to guarantee that 

only one node transmits at any given time. An enhanced version of this scheme is used in 

the IEEE 802.11 wireless protocol. Another variant of CSMA-CA is used in the popular 

CAN (Controller Area Network) field bus where an 11-bit message identifier field is used 

for arbitration. In this case, the arbitration mechanism assumes that a dominant and a 

recessive state exist on the communication bus such that the dominant state can overwrite 

the recessive state (Kopetz, 1997). Assume that ‘0’ and ‘1’ are coded into the dominant 

and recessive states respectively. Whenever a node wishes to send a message, it puts the 

first bit of the message identifier on the network. In the event of a conflict, the node with a 

‘0’ in its first identifier wins the right to transmit, and the other node must back off. This 

arbitration continues for all eleven bits in the identifier. This arbitration however limits 

CAN to a maximum bit rate of 1 Mbit/s on a 40 m bus. Other serial-bus protocols are 

emerging that guarantee bandwidth for high speed deterministic communication. FireWire 

(IEEE 1394) for example is capable of interleaving asynchronous and isochronous 
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communication at data rates likely to exceed 400 Mbps in the near future (Steinberg and 

Birk, 2000). This network targets home use but is gradually being fused into industrial 

applications requiring substantial bandwidths.    

6.3.2.2 Addressing  

The Data Link Layer is also responsible for identifying nodes, i.e. the origin and 

destination(s) of messages. There are two different ways of addressing the destination of a 

data transaction: directly addressing the node where the receiving application process 

resides or indirect addressing where an identification is placed on the data to be 

transmitted. The former is used in many field buses, typically in Master-Slave 

configurations. Destination nodes can be identified either by their physical addresses, i.e., 

MAC addresses, or by their logical addresses, i.e., network addresses. Group addressing is 

a very important property in industrial automation systems where for example the output 

generated by a given controller may need to be shared among several field devices. Hence 

many field buses and Ethernet support one-to-many communication, or multicast. Indirect 

addressing is typically found in protocols that support the producer-consumer 

communication model, where a producing node initiates a transaction to transmit a given 

data entity. The consumers identify the data entity of interest to them and copy them to 

their local buffers to be used by their respective application processes. This addressing 

scheme is found in CAN and WorldFIP. 

6.3.2.3 Logical link control  

The last component of the Data Link Layer is the Logical Link Control (LLC). 

This sub-layer ensures the correct transfer of information among communicating nodes by 

properly framing data to be transmitted, implementing error detection and correction, 

establishing data-link connections between nodes, and coordinating communication 

acknowledgements. Most real-time networks provide communication with immediate 

acknowledgement for real-time data. For periodic data transmission, however, 

communication is unacknowledged since it requires a considerable amount of bus 

bandwidth. Multicast communication is also typically unacknowledged. Regarding 

connection, most fieldbuses provide connectionless communication. Ethernet’s LLC 

provides two types of data link control operations; LLC1 for connectionless and LLC2 for 

connection-oriented. With connection-oriented services, the sender and receiver first 
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explicitly establish a connection, and possibly negotiate the protocol they will use. The 

connection is terminated at the end of the transaction.  

6.3.3 Network Layer 

The Network layer is relevant in Wide Area Networks (WAN) for routing 

messages from a sender through a maze of networks to the receiver. In LAN systems, 

usually the sender does not need to know the geographic location of the receiver; once the 

message is delivered on the network, the receiver takes it off. The connectionless IP 

(Internet Protocol) is the most widely used network protocol. The IPv6 (IP version 6) 

includes many improvements over IPv4 (IP version 4) including stateless address 

autoconfiguration (Thomson and Narten, 1998). 

6.3.4 Transport Layer Protocols 

The transport protocol forms the last part of the basic Ethernet protocol stack. The 

job of the transport layer is to provide a reliable connection. When data is received from 

the application layer, the transport layer breaks it into packets small enough for 

transmission, assigns a sequence number to each, and sends them all. The transport layer 

then monitors which one has been sent, received, how many more the receiver can accept, 

which should be retransmitted, etc. Reliable or connection-oriented transport connections 

can be stacked on a connection-oriented or connectionless service. In the former situation, 

all the packets arrive in the same sequence that they were sent, but in the later case, it is 

possible for one packet to take a different route and arrive ahead of the packet sent before 

it. It is then the responsibility of the transport layer protocol to reassemble the packets in 

the right order. The Internet transport protocol is called the TCP (Transmission Control 

Protocol). The combination of TCP/IP is now the de-facto standard for network 

communication (Tanenbaum and van Steen, 2002). The Internet protocol suite also offers 

a connectionless protocol called UDP (Universal Datagram Protocol), which is basically 

IP with minimal additions.       

6.3.5 Application Layer  

Application layer services normally follow a certain co-operation model, e.g. 

Client-Server (CS) and Producer-Consumer (PC), which describes how data is exchanged 

between the communicating peers. Generally, the CS model is used for one-to-one 
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connection-oriented co-operation. This is very useful for non-repetitive asynchronous 

services such as remote control of tasks execution. The PC co-operation model is more 

suitable for periodic task with high data rates such as closed loop control. These services 

are typically subject to tight temporal constraints and hence need the support of 

connectionless services. The application layer is also used for task scheduling, since user 

tasks are located at this layer. 

6.4 Automatic Configuration 

In concept, each layer of the protocol stack described above could be automatically 

configured. Flexibility of configuration makes simple technology work more predictably 

and easier to deploy. The transport and data layers rarely require configuration in Internet 

hosts, unlike the application and network layers which nearly always require configuration 

for devices to be able to communicate. Historically, this has been a task for experienced 

network administrators, however emerging networking protocols are making configuration 

changes less difficult. For typical configurations, hosts that are permanently attached to a 

network are assigned static network configurations by administrators, while other hosts are 

assigned dynamic configurations. All necessary parameters are assigned to the host by a 

network configuration service, which also requires configuration. Many situations call for 

ad hoc reconfigurations or fault tolerance which can be impractical or impossible 

(Guttman, 2001). For this reason, automatic configuration protocols are becoming 

extremely valuable in the dynamic world of networking. There are two main strategies to 

bridging the gap between configuration and automatic operation (Guttman, 2001). The 

first approach requires transitions between local (automatic) and global (dynamic) 

configuration. Hosts provide local configuration for as long as there is no global 

configuration. A typical example is the network interface autoconfiguration protocol 

adopted for Apple and Microsoft operating systems. A host uses this protocol to select an 

unassigned IP address from a reserved range. The host then uses a Dynamic Host 

Configuration Protocol (DHCP) to request for IP configuration parameters (global) from 

the network. If a DHCP server responds (usually after some retries) and offers 

configuration parameters, these replace the local ones on the host. In a client-server 

system, this works very well especially on the client side but can become problematic 

when server configuration changes. Servers with dynamically changing IP parameters can 
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only be located by a dynamic discovery protocol. When a server configures via a DHCP, it 

cannot communicate with clients that have not been configured (for e.g., if the DHCP is 

no longer available). Likewise, configured clients cannot locate a server that has not been 

configured. Lastly and very pertinent in this research, some simple embedded devices 

support only local IP configuration and would therefore be unable to locate hosts 

configured with DHCP. Such problems have compelled the need for automatic 

configuration protocols, and have resulted in protocols such as AppleTalk, IPX and 

NetBIOS/SMB, which attempt to address some of these needs (Guttman, 2001). The 

section below discusses the Zeroconf protocol which is one of the most comprehensive 

solutions available. 

6.4.1 The Zeroconf Protocol 

The Zero Configuration Networking (Zeroconf) workgroup pioneered by Apple 

has defined requirements for four zero configuration network protocol areas: IP addresses 

autoconfiguration, name resolving without a DNS (Domain Name Service) server, 

decentralized service discovery, and multicast address allocation (Passmore, 2002). The 

last item has not been standardized yet, but the Zeroconf suite offers one of the most 

comprehensive solutions to avoiding dependency on infrastructure such as DHCP and 

DNS servers, and expert knowledge. The sections following discuss the Zeroconf 

specifications.  

6.4.1.1 IP addresses Autoconfiguration 

The Zeroconf specification for IP address autoconfiguration is different for IPv4 

and IPv6. For IPv4, computers pick a random link-local address in the 169.254.0.0/16 

range, and send out an ARP request to check if another host is using it. If so, they select 

another IP address and repeat the process. By design, IPv6 supports dynamic allocation of 

addresses.  

6.4.1.2 Name Resolution 

Zeroconf specifies a multicast DNS (mDNS) quite similar to LLMNR (Link-local 

Multicast Name Resolution) promoted by Microsoft. The latter however, has no 

implementations yet. For both protocols, a host does not need a DNS server to find the 

name of another host. Instead the host sends its DNS request to a unique IP multicast 
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address (224.0.0.251 for mDNS) on the local subnet where hosts listen and respond. Each 

hosts picks a hostname in the .local domain (mDNS), and publishes this on the IP 

multicast address. Collisions are prevented by a conflict resolution mechanism.  

6.4.1.3 Service Discovery 

There are two classes of service discovery protocols, namely, high-level 

(application or technology specific) ones and low-level generic ones. High-level protocols 

include Jini for Java objects, Salutation which relies on central servers, Service Discovery 

Protocol (SDP) for Bluetooth, which is based on the former and UDDI for web-services. 

Generic ones include Simple Service Discovery Protocol (SSDP) used in Universal plug-

and-play (UPnP), Service Location Protocol (SLP), and DNS-SD (DNS Service 

Discovery) specified by Zeroconf. Generally, SSDP is regarded to be more complex than 

DNS-SD, and SLP has not been widely embraced. On the technical side, DNS-SD 

typically makes defunct the need for a central infrastructure such as a DNS or directory 

server. Each host offering a network service creates a DNS SRV resource record that it 

stores in its local mini-DNS server. Other hosts look up the service by broadcasting a DNS 

service discovery query. All hosts that offer the requested service then respond with their 

names and IP addresses (Passmore, 2002).    

6.4.1.4 Zeroconf Implementations 

Zeroconf specification is now adopted and implemented by many network device 

manufacturers. Currently, many network printers and network storage devices implement 

some aspect of Zeroconf-compatible networking. The most widely adopted Zeroconf 

solution is Bonjour from Apple Computer, which uses a combination of IP address 

autoconfiguration, mDNS and DNS-SD. Many implementations nonetheless do not 

implement the full specification. However, mDNS and DNS-SD are often implemented 

together. For example the Java implementation of Zeroconf – JmDNS, provides only 

mDNS and DNS-SD services. JmDNS has been modified in (Atta-Konadu, et al., 2005) 

for embedded Java devices.  

6.5 The IMC Communication Architecture 

The IMC communication architecture is quite a unique concept that combines 

different aspects of orthogonal paradigms such as distributed and centralized systems, 
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client-server and producer co-operation models. The peculiarity of the architecture is 

reinforced by its Ethernet communication backbone – as mentioned earlier, Ethernet is not 

popular in real-time applications. Nonetheless, the architecture is built on the premise of 

using some of the most basic cost-effective commercial of-the-shelf (COTS) components. 

Ethernet for example is the most ubiquitous, proven and reliable of all networks with well 

known hardware and software characteristics. Very few networks are as cost-effective and 

simple to implement. The architecture addresses the issue of realizing real-timeliness. 

Some attempts have been made to realize a real-time Ethernet communication system. The 

fundamental method is to reduce message collisions on the network. The IMC architecture 

imposes rigorous traffic patterns and a message scheduling mechanism to create collision-

free zones. Moreover, the JmDNS-CLDC protocol is fused into the architecture to create a 

reconfigurable paradigm. The sections following elaborate on the architecture design. 

6.5.1 Communication and Computing Elements 

The message collision crisis of Ethernet is curtailed by the use of switching 

technology. As shown in Fig. 6.4 (I), all communication nodes are connected to a 10-100 

Mbps router/switch, forming a star-topology as opposed to the traditional shared bus or 

linear topology. The result is there is only one collision domain per port – or dedicated 

bandwidth segment. Moreover, all communication ports are full-duplex, hence inbound 

and outbound messages are kept on separate channels.  
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I. Nodes connected to a Router/Switch;  

II. Functionalities of the SC (System Coordinator), RC (Real-time Coordinator), 

and I
C
 (IMC Controller). 

Figure 6.4: Communication and Computing Elements:  
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above phenomena. The computing elements shown in Fig. 6.4 (II) reside in the System 

Coordinator (SC), Real-time Coordinator (RC) or the IMC controllers (IC). A description 

of their functionalities is provided in Chapter 3.  

6.5.2 Communication Flow and Control  

The architecture divides communication into two zones as shown in Fig. 6.5. 

Three main communication protocols are established between the communicating 

elements: A TCP/IP connection is maintained between the SC and IMC controllers at all 

times for position update information. An unanticipated broken connection is assumed to 

be a fault on the IMC node. The second persistent connection is a multicast connection 

between all nodes, i.e., one multicast domain, and is used for simultaneous delivery of 

messages. The third connection is a datagram connection between the SC and all other 

nodes. This is used for control signals, and configuration information. For clarity, this 

connection is lumped together with the multicast connection in Fig 6.5, since both 

protocols are based on UDP/IP.  

 
Figure 6.5: Communication Flow  
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identify themselves and their services. At this point, the IMC nodes are given unique 

identity numbers. The configuration in Fig 6.5 is logically set-up when the user selects 

coordinated-motion from one of the four motion modes provided by the architecture (see 

Chapter 7 for details), and motion commands typically in NC code format are sent by the 

SC to the RC. The SC also multicasts task information like the number of axes and 

interpolation period to all nodes and measures the round-trip time to compensate for delay. 

As soon as the interpolation period T is received, the RC sets up a real-time periodic 

thread to run its interpolator. If position feedback is required for high level control, a 

second period thread is established according to the update rate required, to receive sensed 

positions from the IMC nodes. When the SC issues a run command to the RC, it attaches 

its logical clock value to a start-of-motion message and multicasts this to all IMC nodes, 

which in turn use this value to adjust their respective timers (the timers clock the motion 

controllers). Subsequently, each periodic data received from the RC connotes the global 

time and is therefore the basis for timer synchronization. The next data to be streamed at 

the next period is delineated by the unique node numbers and packed into a datagram 

packet. When data arrives at each IMC node (simultaneously), its timer is synchronized if 

deviation is off limits, and the relevant data addressed to that node (by the identifier) is 

extracted from the datagram packet for its motion controller. Figure 6.6 is a skeletal 

sequence diagram of the interactions between a single IMC (consumer) and the RC 

(producer). Data transmissions denoted by the horizontal arrows are kept atomic (no 

processes in-between) unless preempted by the system coordinator.   
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Figure 6.6: Produce-Consumer Co-operation between the RC and IMC Nodes 

 
If the RC requires position feedback, the IMC nodes take turns transmitting their 

actual positions to the RC, in a TDMA (Time Division with Multiple Access) style, to 

avoid message collision and congestion on the switch. The protocol for this timing is 

determined by the identifier assigned to each node. For example if there are N nodes and 

the RC receiving thread is cycling periodically at T ms, node number n will have its turn to 

transmit data at an offset of T × n from the start of the motion transaction and with a 

period of T × N. There are other variants of the communication architecture to support the 

other motion modes. For example, in synchronized-motion-mode, set-points are streamed 

directly from the system coordinator to buffers in each IMC node in a typical client-server 

fashion.  

6.5.3 Triggering and Scheduling 

In this section, an analysis of message scheduling on the communication 

architecture is presented. The real-time threads on the IMC processors including that of 

the real-time coordinator use priority-based cyclic scheduling with pre-emption; thus a 

Time-triggered (TT) approach is used. Since the schedule is pre-defined or derived prior to 

IC domain 

Time 
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run-time, scheduling is static, as opposed to dynamic scheduling. The communication 

mechanism employed, i.e., Ethernet, is typically Event-Triggered (ET). However the zero-

collision derived from segmenting the network renders the communication mechanism 

quite like a hybrid of TT and ET. In fact the last barrier to its full qualification as a TT/ET 

hybrid is that the CNI (communication network interface) on the microcontrollers are not 

autonomous. A CNI is autonomous2 when the decision when a message must be sent 

resides within the sphere of the communication system rather than the host computer 

(Kopetz, 1997). Otherwise, the timing for control signals to cross over the CNI to the host 

cannot be exactly characterized. Although building an autonomous CNI is quite simple, 

this research did not address this issue. Rather, communication sockets are encapsulated in 

interrupt-priority (high priority) threads to protect them from interference. Both ET and 

TT communication scenarios will be used in the analysis. Data released from the real-time 

coordinator, communication and trajectory updates in the trajectory planner share a given 

period time, T. Interpolation occurs at the beginning of the high-level control period, and 

trajectory update after a short and constant delay δ. Deviations from the nominal time, i.e., 

jitter is denoted by J. The worst case execution time Ci is the maximum processing time 

required by a task or for the message transmission time on the bus. The length of the 

activity window represents the task response time from start to completion. The activity 

may be completed at any time after the minimal execution time. In the worst case, task 

execution may be delayed by release jitter and interference from other tasks. The 

important control performance metrics are jitter J, control delay δ and variation in control 

delay ∆δ.  

6.5.3.1 TT Communication with TT Processors 

Global time is used to release the trajectory planner (hosted by the motion 

controller) update task at a time when data generation from the real-time coordinator (RC), 

communication and local transactions on the IMC are guaranteed to have completed (at 

offset OG). Task R is scheduled to complete before the next periodic cycle appears, and 

tasks E and G at a time after the message has arrived (Fig. 6.7). 

 

                                                 
2 This approach is used in the Time-triggered TTA architecture for tighter determinism. 
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Figure 6.7: TT communication with TT processors 

Assuming there are no interference and jitter, task G executes at a fixed offset 

relative to the data generation task on the RC, and the following hold.  

δ� min = δ� max = OG + CG  (6.1)  

OG ≥ CR + CE + CL. (6.2) 

Supposing the high-level interpolation period is given as 10 ms; for the trajectory 

generators on the IMC to see this same real-time image, OG = 10 ms. The network latency 

is calculated as follows. Given cable length = 3m; cable propagation delay (time for one 

bit to traverse the cable) = 15 ns, at 2/3 the speed of light in a vacuum; Bandwidth = 10 

Mbps. The bit length is defined as the number of bits that can traverse the cable within one 

propagation delay, and evaluates to 0.15 bits. For a packet size of 100 bytes, the 

propagation time is therefore 80 µs. Of course, transaction delays within the network 

interfaces compound this figure. It is much easier to use a round-trip approach to measure 

the composite delay, i.e., CE + CL. A delay of 620 µs is measured for the above data. 

Hence the periodic execution on the real-time coordinator should be set to 10 ms minus 
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310 µsec. For consistent latency, data lengths are kept constant in the course of this 

transaction.     

6.5.3.2 ET Communication with TT Processor 

In this sub-section, we analyze a more conservative scenario where 

communication is ET, i.e., uncertainties are introduced by jitters in the communication 

mechanism. Figure 6.8 shows the time sequence diagram. Since the response time of the 

communication is variable, the offsets of tasks E and G will be larger, but there will not be 

any variations in data release to the trajectory generator. 

δmin = δmax = OG + CG, (6.3) 

OG ≥ CR + JE + CE + CL. (6.4) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8: ET Communication with TT Processor 

The above illustrates that the system architecture can create rules to superimpose 

TT behavior on top of an event communication if a global time base is observed by 

participating nodes. For a global time base to exist, the processor clocks need to be 

synchronized with each other. This topic is dealt with in Chapter 7.  
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6.5.4 Automatic Configuration 

One of the most compelling properties of the architecture is the implementation of 

JmDNS (JmDNS-CLDC) to enable automatic configuration of the architecture. This 

implementation also serves as a decentralized watchdog for monitoring activities on the 

network. The resulting Plug-and-Play (PnP) feature enhances the modular characteristics 

of the architecture by leveraging seamless additions or removal of network nodes (e.g. an 

IMC) without the need to configure network protocols. On the IMC controller side, the 

protocol instantiation is encapsulated in servlets hosted by a min-web server (the 

implementation details are provided in Chapter 9). Each IMC server keeps a database on 

its properties such as encoder resolution, PID settings and connected I/O devices. On start-

up when hosts join the network, they use the JmDNS-CLDC protocol to register their 

services and discover themselves. The protocol naming format is [service type, service 

name, port number, description]. When services are received, network parameters (IP 

addresses and port numbers) are extracted to enable the necessary connections described 

in Section 5.5.2 to be established. Figure 6.9 shows a typical interaction between two 

nodes while Table 6.1 shows some of the services registered and discovered on the 

network. 

 

 

Figure 6.9: Multicast DNS Query 
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Table 6.1: Typical JmDNS Services on the IMC Architecture 

Service Name Service Type Port Description 

Axis 1 Controller _dserver._udp.local. 3000 Datagram Server receives trajectory 
data  

Axis 1 Controller _controller._tcp.local. 2000 TCP socket connection for streaming 
encoder readings  

Axis 1 Controller _http._tcp.local. 80 Web service 

Multicast _mcast._udp.local. 4000 Multicast service for receiving 
synchronizing signals during multi 
axes coordination 

 

The advantage of the JmDNS-CLDC protocol is that evidently, the loose-coupling 

between nodes leverages configuration changes and code migration from one platform to 

another since services are outsourced on the network. Binding or tight-coupling which is 

essential for real-time control is established as hosts mesh their services and demands on 

the network.   

6.6 Conclusion 

This chapter began with a discussion on the requirements for real-time 

communication, a review of fieldbus and Ethernet protocols, and automatic configuration 

strategies. Key features inferred from this discussion led to the design of the IMC 

communication architecture. The following are the highlights of the architecture: 

1. An automatic configuration protocol, JmDNS-CLDC running on each node 

enables nodes to automatically discover themselves and register their services. The 

protocol also serves as a watchdog. 

2. A switched-Ethernet is used to segment the network and create one collision 

domain per switch port. 

3. Communication flow is separated into two zones; one zone implements a 

producer-consumer relationship between the real-time coordinator and the IMC 

nodes for real-time periodic transactions; the other zone is a client-server co-

operation scheme between the system coordinator and the rest of the nodes for 

sporadic data communication. 

4. The real-time coordinator schedules tasks for the IMC nodes in a static cyclic 

periodic manner (time-triggered) for hard-real time control. 
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5. Since all real-time nodes are time-triggered (with a global clock), the event-

triggered nature of the communication system does not vary delays – i.e., latency 

is fixed.  

At the moment, device control is entirely distributed amongst the IMC nodes. 

Even though the architecture provides the framework for a high-level controller, this is yet 

to be implemented. It will certainly be interesting to analyze the effectiveness of the 

communication mechanism when this is done. 
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7. CLOCK SYNCHRONIZATION 

7.1 Introduction 

It is absolutely important for a distributed hard real-time system to have a global or 

agreed time base. The time base is composed of several clocks – one in each node, which 

are synchronized at regular intervals. A good clock synchronization architecture should 

ensure the integrity of timing in the various communication nodes which will otherwise 

lead to poor control performance. There are three main challenges in the design of 

algorithms for clock synchronization: Firstly, if there is substantial network transmission 

jitter, each process cannot have an instantaneous global view of every remote clock value. 

Secondly, modern-day quartz-driven clocks run at rates that differ from real-time by up to 

10-6 seconds/seconds. This implies that two clocks could drift apart by 6 msec per minute 

even if they are started with the same clock value. The last frontier is recognizing and 

curtailing faulty or failed clocks, i.e., failed communication nodes. Typical 

synchronization algorithms operate on a set of clock readings collected from the other 

clocks in the system. When all of the clocks have collected instantaneous clock readings 

from all other clocks, the synchronization algorithm is applied in each node; therefore all 

clocks are corrected within the synchronization period. If a clock reading is beyond the 

boundaries set by the algorithm, it is regarded as faulty.  Several fault-tolerant clock 

synchronization methods have been presented in literature. This chapter discusses 

pertinent clock synchronization issues and presents the clock synchronization design for 

the IMC architecture, which is based on external multicast communication with high 

tolerance for low-precision oscillators, i.e. large clock drift. With this method, clocks are 

synchronized to a master clock periodically and do not need to keep track of the clock 

readings of other nodes in the system.  

7.2 Time 

The most common way to represent time in a process is to use a local physical 

clock consisting of a counter, and an oscillating mechanism – typically quartz. The 
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oscillating mechanism generates a periodic event called the microtick (Kopetz, 1997) to 

increment the counter. Since this is a granular process, digitalization errors in 

measurement are bound to occur. The duration between two consecutive microticks is the 

clock granularity. Regarding notation, clocks are identified by numbers: If the property of 

a clock is expressed, it is identified by the clock number as superscript; the microtick or 

tick number is denoted by a subscript. For instance, microtick i of clock k is identified by 

microticki
k.  

7.2.1 Properties of Physical Clocks 

Physical Clock Granularity: The granularity g of a physical clock k is expressed 

as  

1

k k k

i i
microtick microtick g+ − = . (7.1) 

Reference Clock: The reference clock is assumed to be a unique reference clock z 

with frequency frz, which is in perfect harmony with the international standard time. The 

granularity gz of such as clock is 1/fr
z. Assuming that frz is very large, the granularity of 

the clock is infinitesimally small enough for digitalization errors to be disregarded. A 

clock k, may generate a timestamp on an instantaneous event e denoted as k(e). If k = z, 

then since z is the sole reference clock in the system, z(e) is called the absolute timestamp 

of the event e. The duration between two events is determined by counting the microticks 

of the reference clock that occur between the two events. The granularity gk of a clock k, 

may also be expressed as the nominal number nk of microticks of the reference clock z 

between two microticks of this clock.  

Clock Drift: The clock drift of a clock k between microtick i and microtick i+1 is 

the frequency ratio between clock k and the reference clock z, at the instant of microtick i. 

This is expressed mathematically as; 

1( ) ( )k k
k i i
i k

z microtick z microtick

n
ρ + −= . (7.2) 

Since a good clock has a drift close to one, for notational purpose the drift-rate or �-bounded expression is given as (Veríssimo and Rodrigues, 2001); 
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1( ) ( )
0 1 1

k k
k ki i

k

z microtick z microtick

n
ρ ρ+ −≤ − ≤ ≤ + . (7.3) 

A perfect clock will have a zero drift-rate. Maximum drift rates are provided in 

manufacturer data sheets. Typical values for real clock within their operating conditions 

are 10-2 to 10-7 sec/sec. Obviously, clocks which are not resynchronized leave their 

bounded relative time interval after a finite time.  

Offset: The offset of microtick i between clocks j and k with the same granularity 

is given as  

( ) ( )jk j k

i i i
offset z microtick z microtick= − . (7.4) 

7.2.2 Global Clocks 

The concept of global time is an abstract notion that is estimated by the proper 

selection of a subset of microticks from the synchronized local physical clocks. The 

granularity of the node-local perception of global time is referred to as macrotick. The 

number of microticks per macrotick is called the microtick-macrotick conversion factor. 

The following are the most important properties that depict the integrity of a global clock 

(Kopetz, 1997). 

Precision: For an ensemble of n clocks, the maximum offset between any two 

clocks is the precision П of the ensemble. The expression for clock precision is 

{ }
1 ,

max
jk

i i

j k n

offset
∀ ≤ ≤

∏ = . (7.5) 

The precision is represented by the number of microticks of the reference clock. 

The process of mutual resynchronization to maintain a bounded precision is referred to as 

internal synchronization or state correction. The deviation between the different clocks of 

the ensemble must be within acceptable values for the valid operation of the system. 

Accuracy: Accuracy characterizes how closely physical clocks are synchronized 

to the reference clock over a time interval of interest. The process of re-synchronizing a 

clock with the reference clock in order to maintain a bounded precision is called external 

clock synchronization. Clock rate correction can be achieved only by external 

synchronization.  
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Reasonableness Condition: The global time t is reasonable, if all local 

implementations of the global time satisfy the condition g > П, where g is the global 

granularity. This condition bounds the synchronization error to less that one macro 

granule, i.e. the duration between two ticks. If the reasonable condition is fulfilled then for 

a single event e, observed by two clocks of the ensemble, 

( ) ( ) 1j kt e t e− ≤ . (7.6) 

This means that the global timestamp for a single event can differ by at most one 

tick. This is the best that can be achieved (Kopetz, 1997).  

7.2.3 Failure Mode 

A physical clock may commit two types of failures: A clock commits a timing 

failure if it is not �-bounded (7.3), or the clock counter may become damaged by a fault so 

that its values are erroneous. Such error could lead to a Clock Byzantine Failure in an 

ensemble of clock, where local clocks receive inaccurate, untimely or conflicting 

information from a faulty clock. An example is a dual-faced clock which may give 

different values of time to different nodes. Synchronization assumes that the network 

connection may commit omission or performance failures but never crash (Anceaume et 

al., 1997). 

Link Omission failure: A connection between nodes commits an omission failure 

if a sender’s message inserted into its outgoing buffer fails to reach the incoming buffer of 

the recipient node.  

Performance Omission failure: A connection commits a performance failure if it 

fails to deliver a message within its specified time. 

7.3 The Synchronization Problem 

Clock synchronization may be done through hardware, software or a hybrid of 

both methods as in the case of the IMC synchronization scheme. The former achieves very 

tight synchronization, but may require special hardware at each node and a dedicated 

network for synchronization. On the other hand, in software synchronization, nodes 

exchange synchronization messages to adjust their local logical clocks through special 

algorithms. The nature of the algorithm defines whether the synchronization scheme is 
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internal or external. It is important to note that internal synchronization secures precision, 

i.e. clock state; for any two clocks j and k and all microticks i. 

( ) ( )j k

i i
z microtick z microtick− < Π . (7.7) 

On the other hand, external synchronization secures accuracy (clock rate) and 

subsequently bounds precision to within П = 2A. Irrespective of the method employed, the 

synchronization algorithm in each processor has the following responsibilities (Veríssimo 

and Rodrigues, 2001; Anceaume et al., 1997):  

• Generate a periodic resynchronization event. 

• Estimate the values of remote clocks (may not be used in external synchronization). 

• Provide each correct process with the value to adjust logical (virtual) clocks. At the 

end of a synchronization interval, (7.8) should be valid.  

While there are numerous synchronization proposals in the literature, there is no 

holistic solution that may be applied to all situations. The following sections build on the 

case for the appropriate synchronization method for the IMC architecture.  

7.3.1 Internal Synchronization 

Internal synchronization raises a number of challenges. Firstly, state correction 

cannot be applied suddenly since it will introduce discontinuities (sudden jumps) in the 

time base. The solution is to spread the adjustment over a resynchronization time interval 

i.e., fast clocks become slower, and slow clocks faster, so they converge. Secondly, it has 

been proven by Lundelius and Lynch (1984) that given n clocks on a network with latency 

jitter of �, the best internal synchronization that can be achieved even with perfect clocks 

is  

1
1

n
ε  Π = − 
 

. (7.8) 

Therefore, in internal synchronization, precision is affected by not only latency 

jitter, but also the number of good clocks in the ensemble. Thirdly, each clock sends a 

message to all others: In the case of averaging algorithms message contents are clock 

values, while with non-averaging algorithms the message is simply a signal. In both 

situations, a convergence function computes the value to be applied to the logical clock. 
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Clearly, the exchange of messages introduces communication overheads. Nonetheless, 

these algorithms are capable of curtailing the malicious Byzantine error described above. 

However, for any algorithm to tolerate k Byzantine errors or clocks, a total of n ≥ (3k+1) 

clocks are required (Kopetz, 1997).  

7.3.2 External Synchronization 

External synchronization aims at injecting the time of an external reference, the 

master clock, into the global time of an ensemble of slave clocks. Contrasting this with 

internal synchronization, clocks are synchronized individually from the master clock, 

rather than agreeing among each other. In a sense this method is an authoritarian process 

since the master imposing its view of external time on all the slaves, forcing them to either 

trust the master or use fault-tolerant configurations. Typical external reference clocks or 

time servers are a Global Positioning System (GPS) receiver and the Network Time 

Protocol (NTP) servers with synchronization tightness in millisecond and nanosecond 

ranges respectively. Alternatively, a high precision oscillator may be used as the reference 

clock.  

Many methods have been proposed for external synchronization with traditional 

timeservers such as Berkeley and Christian’s algorithms (Tenenbaum and van Steen, 

2002). The IEEE1588 protocol is an emerging paradigm for achieving external clock 

synchronization on devices using regular data networks that support multicast such as 

Ethernet. The most precise clock on the network is elected by a simple algorithm to be the 

master clock. The synchronization process itself is done in two phases. In the first phase 

the clock offset between master and slave is corrected after the master cyclically transmits 

its clock value to the slaves in two second intervals. After this process the time differences 

between the clock and slaves is the network delay or latency. The second phase measures 

this delay by a round-trip process: A slave clock sends a "delay request" packet to the 

master at time TS1. On reception of the packet, the master generates a time stamp, TM2, 

and sends the time of reception back to the slave in a "delay response" packet time 

stamped with the transmission time, TM3. Once the packet arrives, the slave records the 

arrival time TS4 and calculates the delay for adjusting its clock as follows; 
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( ) ( )4 1 3 2

2

TS TS TM TM− − −
∆ = . (7.9) 

In order to mitigate traffic congestion, resynchronization is performed randomly 

between two and sixty seconds. There are a couple of challenges regarding this method. In 

purely software based implementations, time stamping is done by reading the clock when 

creating a packet for transmission. For an incoming packet, time stamping may be done by 

the packet reception interrupt service routine. This implies that the transmission latency 

may include both the network channel access uncertainty and the reception interrupt 

latency. When time stamping is done in the network application layer, synchronization 

precision is in the range of 1 ms. Precision can be improved to a 10 µs range if 

synchronization is implemented at the driver or kernel level of a real-time operating 

system (Gaderer et al, 2004). For even finer precision in the order 1 µs, hardware time 

stamping is required. In this method, the clock value is inserted directly into 

synchronization messages at the point of departure or entry into the node. Figure 7.1 

shows the configuration of such a system (Mohl, 2003) with a clock hardware unit 

consisting of a highly precise clock and a time stamping unit (TSU). 

 
 

 
Figure 7.1: IEEE1588 Precision Time Protocol Architecture 
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7.4 The IMC Clock Synchronization Architecture 

The sections above discussed the importance of clock synchronization in a real-

time distributed network and various algorithms and protocols to achieve this. While 

internal clock synchronization corrects clock states, external synchronization corrects 

clock rates. Therefore external synchronization implicitly corrects the state of clocks. Both 

of these methods may require special computing hardware or networks. For example, the 

internal synchronization algorithms that run on time-triggered networks/protocols such as 

the Time Triggered Protocol (TTP) require special hardware. Therefore, it is quite difficult 

or impossible to incorporate such algorithms in distributed systems that do not provide the 

requisite hardware support. A rather radical approach is used for the IMC clock 

synchronization. All the methods described above make use of a logical (virtual) clock 

(one way or the other), and require an initialization phase. Eventually, quite a homogenous 

clock value is seen in all nodes and maintained by resynchronization. Instead of following 

the norm, the IMC clock ensemble does not care for literal clock values as much as it does 

for clock rate; i.e., clock accuracy implies clock precision. The reason is that the 

controllers on the IMC nodes are driven by hardware clock rates (i.e., edge-triggered); all 

related transactions such as command inputs to the controllers are either driven by the 

clock rate or by related events. The following section describes the synchronization 

architecture.  

7.4.1 Assumptions and Properties 

The IMC clock synchronization architecture is based on the following assumptions 

and attributes. 

Assumption 1 (Reference Clock Integrity): A reference clock H exists such that 

at time t |H(t) – t)| < 
�
, where 

�
 is an a priori given error. 

Assumption 2 (Bounded Transmission Delay); the real time transmission delay 

is within some known bounds [
�

 - �, 
�

 + �]. 

Assumption 3: There is no direct access to the Ethernet hardware MAC, therefore 

hardware time-stamping of IP messages is not possible. To circumvent this 

liability, the highest possible thread priority is used for receiving, servicing and 

sending messages.   
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Assumption 4: Communication between the reference clock and the IMC nodes is 

by multicast. All good nodes receive simultaneous messages with time variation t�, 
where t� <<0.  

Property 1 (State Correction): If all clocks of an ensemble are synchronized with 

accuracy A, then the ensemble is also internally synchronized with a precision of 

at most 2A.  

Property 2 (Oscillator Property): All clocks in the ensemble have a maximum 

drift rate that defines a drift-window around a nominal frequency. A faulty clock 

oscillates outside the drift-window.  

Property 3 (Clock Hardware): The JStick microcontroller has low-level drivers 

for controlling its timers and counters. The motion controller associated with each 

IMC is clocked by its JStick.   

Failure: The IMC node is designed to be fail-silent, thus a faulty clock puts it in a 

fail-silent state.  

The operation of the master-slave synchronization process between the coordinator 

and the IMC nodes is as follows: 

• The real-time coordinator hosts the reference clock, which is assumed to have a drift 

rate of less than 10-6 seconds/second. The real-time node is connected to an external 

reference time server to fulfill Assumption 1. A δ value of 1 µs is selected.  

• The real-time coordinator implements high priority time-sliced real-time threads for all 

transactions.  

• In the first phase of interaction, the communication latency ∆, between the coordinator 

and each IMC node is determined by measuring a round-trip message delay.  

• The second synchronization phase is combined with the normal modus operandi of the 

real-time coordinator. The primary role of the coordinator is to serve the IMC nodes 

with real-time position set-points at an interpolation rate of T milliseconds (the 

maximum trajectory update rate of the motion controllers). Since this is the reference 

clock, it is assumed that an omniscient observer will see an event from the coordinator 

every T milliseconds. The coordinator begins this phase by multicasting a control 

signal to the IMC nodes at time t1. Upon reception of this signal at time t1 + 
�

, each 

node activates a hardware frequency counter to count its timer clock cycles. At time t1 
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+ T, and subsequently every period T, the coordinator multicasts an event (set-point). 

The IMC node checks the value of its counter when it receives the event and if the 

counter is ahead or behind, it adjusts its timer accordingly and resets the counter. If the 

difference is pernicious (in the order of milliseconds), the node informs the system 

coordinator: Depending on the fault-tolerance method selected by the user, the system 

coordinator may shut down all controllers, only the faulty node or do nothing. 

7.4.2 Analysis 

In this section, the synchronization scheme is analyzed for the precision and 

accuracy it provides to the clock ensemble. The implication of this method on the 

controller architecture is also discussed. 

The drift offset 
�

, of any two clocks in the ensemble depends on the length of the 

resynchronization period T and the maximum specified drift rate �  of the clocks: 

2 TρΓ = . (7.10) 

Due to network latency jitter, the precision of the real-time coordinator has to be 

correct as follows; 

εΠ = + Γ . (7.11) 

Typical values are; �  = 1·10-6 sec/sec; T = 10 ms; � = 0.01 ms. From (7.10) and 

(7.11), � � 0.01 ms. Using Property 1 above, the accuracy of the ensemble is at least 

0.005 ms. This is the best synchronization that is achievable with his scheme. Figure 7.2 

shows typical synchronization analysis of three IMC clocks. More analytic results 

detailing the impact on motion coordination are discussed in Chapter 9 of this thesis.  
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Figure 7.2: Clock Synchronization Capture on a Logic Analyzer 

7.5 Conclusion  

In this chapter, a number of issues relating to clock and clock synchronization 

methodologies were discussed. It was realized that external clock synchronization 

provided a convenient and simple way to synchronize the rates of a clock ensemble. 

Moreover, the need for logical clocks was undermined since most IMC real-time events 

are directly driven by the edge-triggered events of their respective clocks. Based on the 

characteristics governing external clock events and the properties of a global clock, a 

simple synchronization scheme was developed for the IMC architecture. In this scheme, 

the synchronization procedure is integrated with a trajectory generation on a real-time 

coordinator in order to avoid network traffic congestion. The best accuracy obtainable is 

0.01 ms. Tests were performed with the aid of a logic analyzer. 
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8. TRAJECTORY PLANNING 

8.1 Introduction 

Motion planning for robotized processes is much more complex than that of NC 

machines. The prime reason is that a robot is built for transportation and/or manipulation 

tasks, and these require change of position in space and motion to some significant 

distance in comparison with its size. This raises the problem of mapping task space 

positions (orientation and translation) and velocities to appropriate joint space parameters. 

The three aspects of motion planning, i.e., path planning, trajectory planning, and 

trajectory tracking are indeed very broad areas. Path planning is the determination of the 

geometry of the motion, while trajectory planning is the determination of the time history 

(velocity) of the motion. The objective of trajectory tracking is to plan the control action 

which guarantees that the prescribed path is realized within desired accuracies. In many 

situations, the three aspects are highly interconnected. The IMC architecture by no means 

exhausts the various aspects of motion planning. Rather, the supporting underpinning 

allows for the implementation of high level task specifications as in the case of path 

planning. This chapter gives a brief overview of motion planning and describes the 

mechanisms provided by the architecture for trajectory planning. Since we are dealing 

with resource-constrained computing systems, the trajectory planning mechanism is 

designed around the most computationally efficient methods.  

8.2 Planer Motion Trajectory Planning 

The main functions of an interpolator are as follows (Weck, 1984): 

• The geometric data produced by the interpolator shall approximate as close as possible 

to the desired path or contour. 

• Since the most widely used contours are straight lines and circular curves, an 

interpolator should therefore be capable of at least linear and circular interpolation. 

• The velocity of the axes must be kept within limitations and be independent of the 

contour.  
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• The final destination of the travel should be reached exactly as specified in order to 

avoid build-up (roundness) errors. 

Two types of interpolator architectures identified in literature are hardware 

interpolators and software interpolators. Hybrid architectures or two-stage interpolators 

are quite common in modern designs. While a single-stage interpolator converts input data 

directly into colossal sequential axial co-ordinate values, the two-stage interpolator firstly 

provides intermediary or rough reference points to a fine interpolator. The latter 

subsequently determines the intermediary co-ordinate values – typically linearly, between 

the reference points. Such architecture permits the use of micro-processors with 

comparatively low capacity for the fine interpolation stage. The most common types of 

interpolation between coordinated axes are linear and circular interpolations. When a 

circular interpolation in one plane is superimposed upon a linear motion in a perpendicular 

axis a helical, spiral or screw-path interpolation is obtained. Higher order interpolations 

such as parabolic or elliptical are becoming quite common as well. Interpolation 

techniques are based on exact mathematical relationships of the following fundamental 

forms (Weck, 1984): 

Implicit representation: F(x, y, z) = 0; 

Explicit representation: x = F(y, z),  y = F(x, z) z = F(x, y); 

Parameter representation: x = F (� ), y = F (�), z = F (�), where �  is a common 

parameter such as time. 

If the common parameter is proportional to time, then the functional dependency 

on time is automatically considered. Parameter representative techniques have the 

advantage that the resultant velocity will be constant if the resolution of the interpolator is 

constant with respect to time. Hence the velocity is not a function of the path being 

described.  

8.2.1 Interpolation by Search Technique 

The search technique (Weck, 1984) is derived from the implicit function 

representation of a plane. Each point on the prescribed contour satisfies the function 

equation F(x, y) = 0 but for all other points outside the contour the equation F(x, y) ≠ 0. 

The magnitude and sign of the value is determined by the amount and direction of the 

instantaneous deviation of an interpolation point with respect to the contour. If the contour 
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form is consistently in one direction, then the sign will be sufficient to indicate which axial 

direction the next increment must be given. The search method can only consider the 

functional dependence of two variables in any one calculation. Hence for interpolation in 

more than one plane, a common reference axis for the determination of the positional 

values will be required. The search method may be applied in circular interpolation and 

the calculation of single-directional functions of a higher order.  

8.2.2 Linear Interpolation by Digital Differential Analyzer (DDA) 

The DDA technique is one of the most favored techniques for interpolation and is 

based on the mathematical integration of the velocity components (Weck, 1984). The 

linear interpolation DDA solution for a 2-D contour is as follows: 

Given the starting and end points of a line to be Ps(xs, ys) and Pe(xe, ye) 

respectively, the intermediate values is determined as a function of time by the equations, 
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For simplicity, the interpolation period T may be divided into N equal time 

intervals, each of duration 
�

t. However to account for acceleration and deceleration, the 

axes velocities fx and fy and the interpolation time interval Ti will vary with time during 

these periods but remain constant during the constant feed phase. A technique which is 

based on constant displacement increment follows (Altintas et al, 1996). The above 

equation may be expressed in discrete form as, 
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The axes velocities at time interval k are 
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The incremental displacement in both axes remains constant as follows; 
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Substituting (8.5) and (8.4) into (8.3) yields the recursive digital linear 

interpolation equations; 
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For a trapezoidal velocity profile (Altintas et al., 1996), N is divided into 

acceleration (N1), constant velocity (N2) and deceleration (N3) regions. Supposing 

acceleration A is from feed f0 to f, the following can easily be proven for N1: 
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where ∆u is the displacement step which is kept constant. Similarly if deceleration 

D, is from feed f to fl, N3 can be deduced as 
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The interpolation period Ti for each interpolation interval varies in the acceleration 

and deceleration zones as follows: 

1 for accleration,2
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-1 for deceleration( ) ( 1)
i
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, (8.9) 

but remains constant in the constant velocity zone as 
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( )
i

u
T k

f

∆= . (8.10) 

The incremental size is calculated based on a given minimum interpolation 

interval. A real-time implementation of this technique is fairly simple and computationally 

efficient. The implementation details are discussed in Section 8.5. 

8.2.3 Circular Interpolation 

Circular interpolation by second-order recurrence (Weck, 1984) divides an arc into 

N small chords each of length 
�

u and corresponding angular segment 
��

. A chord error C 

(Fig. 8.1) is introduced as a result, which is the distance between the arc and the chord.  
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where R is the radius of curvature. Hence the angular segment evaluates to  
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If the maximum chord error is constrained to one encoder count, then  
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The corresponding chord segment is, 

 u R θ∆ = ∆ . (8.14) 

As in the case of linear interpolation, the tool path length N is divided into N1, N2 

and N3 segments for the acceleration, constant velocity and deceleration zones. The feed 

speed f is tangential to the arc and the travel distance is the segment 
�

u in every 

interpolation period Ti. It can easily be shown that the velocities in the x and y axis are  
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Since the velocities are coupled with position, digital integration of the above 

equations will yield errors. A recurring circular interpolation (Altintas, 2000) has been 

formulated to overcome this. Considering the arc in Fig. 8.1, the coordinates for Pn can be 

expressed as: 

( )
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n s

n s
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It follows that  
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By using trigonometric functions to manipulate the above, the following recursive 

equations are derived: 
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Figure 8.1: Circular Interpolation 
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This method is particularly suitable for real-time computing since there are 

minimal multiplications, additions, and subtractions. Moreover, 
��

 evaluated from (8.13) 

may be stored in memory before interpolation begins. The different computing 

configurations described in section 8.2.2 apply in this situation as well.  

8.3 Robot Motion Planning 

As mentioned earlier, the essence of robotized processes is transportation and 

manipulation tasks. There are two cases very different from the motion planning view: 

These are continuous path (Cartesian path) and point to point (joint space path) with 

corresponding Continuous Path Control (CPC) and Point to Point (PTP) control (Somló, et 

al., 1997). With CPC, in every point of the robot motion the velocities and positions are 

computed. Moreover, it may be required that the orientation of working tools attached to 

the end-effector have given orientations. On the contrary PTP control requires only the 

initial and final points – the motion between these is determined by the kinematics and 

dynamics of the robot motion. Obviously, PTP control is computationally less demanding 

than that of CPC. Continuous path motion deeply involves all aspects of motion planning, 

i.e., path planning, trajectory planning, and tracking.  

Trajectory planning is in itself a challenge in robot motion because apart from 

mapping task space motion (end-effector path and tool orientations) to joint space, the 

technological constraints (e.g. velocity, torque, etc) on actuators must not be exceeded. In 

other words, there is a possibility that the planned path may pass through singularities or 

unreachable workspace. Moreover, actuators do not reach their limits at the same time due 

to the dynamics of the motion. In situations where the motion path is known, complicated 

methods are available for optimal control or trajectory generation. However, in practice, 

simpler approaches are normally sufficient (Somló, et al. 1997). One of these is the use of 

trapezoidal velocity profile discussed earlier. In this approach, the working point moves on 

the path with given constant velocity after going through a given acceleration phase. The 

joint velocities are computed by inverse transformations. Another approach is to use spline 

curves to define the motion. In this case, the coordinates of a series of points in Cartesian 

coordinate system are given and the corresponding joint coordinates are determined by 

inverse kinematics. The trajectory planning problem is to determine the joint positions, 

velocities and possibly acceleration/deceleration values and of course, the time of motion 
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from point to point. The desired paths for joints satisfying the given boundary conditions 

in the given point can then be determined using proper order splines. In all approaches to 

trajectory planning, the last phase involves generating in real-time, finely interpolated 

trajectory set-points for or by the controller: 

Let 

( )S

T
T k for k=1,..,N denote the initial pose, via-points (poses) and final goal (pose); 

S is the stationary frame: (1)S

T
T is the initial pose and ( )S

T
T N is the final goal. For k=1,.., N-

1, a smooth path in SE(3) is generated (for example by splines) that connects ( )S

T
T k and 

( 1)S

T
T k + . After a CPC trajectory, 

(3)S

t
T SE∈ ,     t[ti, tf] (8.19) 

is generated, it must be converted into a sequence of set-points via inverse 

kinematics for the controller.  

The time axis is digitized as  
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with intermediary or via-points  
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The via-points are converted into joint set-points  
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where K-1 represents the inverse kinematics. 

As mentioned earlier, in PTP or joint space control the actual Cartesian position of 

the end effector is only given at the specified initial, end-point and intermediary points 

(way-points or via-points).  The path is converted into joint coordinates using the inverse 

kinematics of the manipulator and a smooth time trajectory for each joint position 
�

i is 

calculated based on the given initial and final values. As in the case of CPC, trapezoidal or 

spline interpolation may be used for the trajectory planning.  Set-point generation for the 
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joint controllers is then simply a matter of finely digitizing sequence of points on the 

trajectory. 

8.4 Other Interpolation Methods  

There are several other interpolation methods used to realize appropriate 

application-dependent trajectories. Nonholonomic constraints is a phenomenon which 

occurs when the generalized velocity vector of a mechanical system are non-integrable to 

equivalent configuration space constraints. The effect of this is that the instantaneous 

velocity is limited to certain directions. Nonholonomic interpolation usually involves 

motion in a plane with three degrees of freedom constrained to two in translation and one 

in rotation (Divelbiss, 1997). This type of constraint occurs in mobile robots, automobiles, 

orbiting satellites and space-based robot manipulators. Another class of controlled 

mechanical systems that exhibits nonholonomic behavior is under-actuated robots, i.e., 

robots with passive degrees of freedom. These mechanisms range from nonprehensile 

manipulation to robot acrobatics, from legged locomotion to surgical robotics, from free-

floating robots to manipulators with flexibility concentrated at the joints or distributed 

along the links (De Luca, 2002). Motion planning solutions for nonholonomic systems 

require intuitive geometrical approaches and optimization techniques for prudent 

computational efficiencies. Some approaches include methods that emphasize optimality 

and those that emphasize feasibility (Divelbiss, 1997).  

In situations where motion is in a three-dimensional space with three degrees of 

freedom or six degrees of freedom, holonomic spatial interpolation is used. Examples 

include Spherical Linear Interpolation (SLERP) and screw axis interpolation. SLERP is 

derived from representing the relative rotations of two rigid bodies by unit quaternions. 

Quaternions are a generalization of the complex numbers that can be used to represent 

three dimensional rotations. The set of all unit quaternions form a 4D unit sphere. 

Consequently, the problem of interpolation can be seen as the problem of finding the 

great-circle arc between two points on the 4D sphere. It has been proved that SLERP 

corresponds to rotation around a fixed axis with constant angular velocity (Strandberg, 

2004). A screw motion is a combination of two simultaneous motions of an object; a linear 

translation and a rotation around a constant axis parallel to the translation vector. The 

trajectory of any point on the moving object is a helix and the velocity vector of the point 
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remains constant with respect to the object's local coordinate system. Thus, screw motion 

can be decomposed into a pure rotation or a pure translation, since they produce 

consistently the same relative trajectory – regardless of the choice of the coordinate 

systems (Rossignac, 2001). 

8.5 Implementation on the IMC  

The IMC framework supports a variety of motion modes to support the 

aforementioned trajectory planning schemes: This include jog-mode, position-mode, 

synchronized-position-mode, velocity-mode, and coordinated-motion. Figure 8.2 shows 

the flow chart for the different modes, except coordinated-motion.  
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Figure 8.2: Flowchart for Different Trajectory Configuration Modes 
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In jog-mode, a single set of user-defined trajectory data (final position, maximum 

velocity and acceleration) is required to jog an axis to the commanded position. On the 

other hand, in position-mode, each IMC receives a continuous stream of set-points from 

the system coordinator into a FIFO buffer. The stream is temporarily interrupted by an 

object-lock operation when the buffer is full, thus enabling a much smaller buffer size to 

be used. Only the start of motion is synchronized, thereafter each IMC coordinates the 

operation of its own motion controller. The motion controller has a register that holds only 

one set of trajectory data at a time; therefore the IMC host continually updates this registry 

until motion is completed. Position is controlled along a trapezoidal trajectory profile from 

start to completion. On the contrary, in velocity-mode, the controller tracks velocity along 

the profile without coming to rest until a stop command is issued. The velocity may be 

varied on the fly or any other action may be taken upon the emergence of a breakpoint 

interrupt. This interrupt is triggered when a preloaded position reference is reached in the 

trajectory.  Synchronized-position-mode is similar to position mode; except that each IMC 

node signals the system coordinator each time a commanded position is reached, loads its 

controller’s trajectory register with the next data, and holds to receive a multicast “go” 

signal from the coordinator.  

In coordinated-motion (Fig. 8.3), the architecture may be configured such that the 

real-time coordinator multicasts set-points to the IMC nodes at each interpolation period. 

Each IMC node extracts its data from the multicast package according to its given axis ID 

and commands its controller which in turn fine-interpolates at a minimum of 0.341 ms. 

The trajectory planer may be hosted either by the real-time coordinator or by the system 

coordinator. If the latter has real-time services, set-point data may be multicast directly to 

the IMC nodes; otherwise, data is channelled through the real-time IMC coordinator by a 

buffer-send technique. The advantage of this configuration is that large files (e.g., NC 

code), and computationally expensive motion planning can be handled outside the 

resource-constrained IMC nodes on a more powerful computer platform: A typical 

example is the high computational cost of the inverse kinematics of complex serial robots.  

In situations where trajectory generation (including the inverse kinematics) is 

decomposable, each axis is automatically configured to compute its own incremental 

displacements; for example, in linear interpolation, an algorithmic representation of 
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equation 8.6 is used. During the interpolation process, the real-time coordinator manages 

all the IMC nodes with a real-time periodic thread; the periodic value T is supplied by the 

system coordinator3. In one configuration style, the coordinator calculates the number of 

interpolation iterations, the step size for each axis displacement, the remainder for each 

axis step size, and sends them to the IMC controllers. The coordinator then proceeds to 

compute the interpolation time intervals, which may be higher than T; at each scheduled 

period T, its real-time thread multicasts the difference 
�
, between the interpolation time 

and T to the controllers. On the IMC ensemble, the following cyclic process takes place 

until the trajectory segment is completed: 

1. Each node calculates the next displacement and velocity from equations (8.6) and (8.4) 

and loads its controller trajectory registers with these values.   

2. Each node sees a real-time image (value) of 
�
 at every period T; this value is loaded 

into a timer counter that counts down.  

3. A countdown to zero triggers a run command to be sent to the motion controller. The 

motion controller then proceeds to finely interpolate the loaded trajectory, and 

simultaneously control the actuator.  

In situations where the kinematics of the mechanism demand a more centralized 

computational structure, the coordinator generates all set-points and transmits them 

(including the interpolation time interval) to the IMC nodes at each scheduled period.  

 

                                                 
3 The user-selected interpolation period is decremented by a pre-computed value to account for network latency. 
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Figure 8.3: Flowchart for Coordinated-Motion 
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used on the IMC system are linear and circular interpolations. The next chapter presents 

details of the IMC software architecture.  
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9. THE IMC SOFTWARE ARCHITECTURE 

9.1 Software Development Phases 

The software architecture is based on Java’s rich object-oriented style of 

programming. This greatly leverages building software components with standard 

interfaces and reuse capability. Reuse is achieved by generality and extensibility. For 

example, it is possible to have a generalized forward kinematics component for different 

robots. Extensibility can be achieved through inheritance, where one piece of code 

extends the functionality of another. Object-oriented software allows for the building of 

components with standard interfaces and reuse property. There are three major steps in the 

design of object-oriented components (Kapoor, 1996). The first step is the analysis of the 

problem domain and sub-domains. This results in a set of entities in the form of classes or 

objects, the relationship between these entities and their functionality. The next step is the 

design phase where decisions are made based on the execution platform, the programming 

language and the operational constraints. The last step is the software implementation. 

9.1.1 Analysis 

 The purpose of the analysis phase is to provide a model for the behaviour of a 

system. This means identifying the entities of the system. Generally, the analysis process 

can be decomposed into the following steps: 

Identify the entities in the application domain. The identified entities generally 

lead to defining classes and objects in the design and implementation phases. It should be 

easy for the designer to identify and name the behaviour of an entity. Moreover, the size of 

the abstraction should be appropriate.  

Identify the responsibilities of the entities. In this second stage, the 

responsibilities of the entities are characterized by the services and behaviours of classes. 

The objective here is to create efficient interfaces that provide the maximum possible 

functionality. 
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Identify the relationship between entities: Object-oriented software architecture 

leverages the definition of crisp relationship between entities or classes. Two or more 

classes have an IS-A relationship if there is a parent-child or inheritance connection. On 

the other hand, a HAS-A relationship indicate containment of a class within another class, 

or of an object within a class, or of an object within an object. Another type of connection 

is the USES-A relationship. This relationship is present if the function interface of a class 

takes an instance or object of another class as a parameter. Generally USES-A relationship 

comes in handy when two or more classes need to collaborate to accomplish a task. 

9.1.2 The Design Phase  

The design phase results in the definition of classes and objects identified in the 

analysis phase. At this stage, names are given to classes and these names should reflect the 

semantics of the application domain. Furthermore in this phase, relationships identified in 

the analysis phase are transformed into inheritance hierarchies or containment 

relationships. 

9.1.3 Implementation 

The implementation phase involves filling in the details of the class data structures, 

adding internal functionality to support overall class functionality, and writing member 

functions. Testing and validation take place during implementation. Generally, a software 

designer will have to juggle the analysis, design and implementation activities a few times 

before arriving at a satisfactory architecture. Therefore these activities are not necessarily 

sequential.  

9.2 The IMC Architecture Software Abstraction Development 

Categorically, the goal of this research is to design a distributed reconfigurable 

controller for robotic applications. Generally, researchers have made many strides in 

developing specific robot application programs that are generic and hence can be 

reconfigured for various platforms. Similarly there are a plethora of distributed control 

systems and even distributed and reconfigurable I/O interfaces. Our focus in this research 

departs from these classic design approaches by employing a software and hardware 

infrastructure that supports a wide range of services. The overall architecture was 

described in Chapter 3. We concluded that most computationally intensive functions 
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needed to be hosted by a system coordinator running on a Workstation. Software 

components had to be developed for the IMC in the following areas: 

• Low level control requiring hard real-time services.  

• Well defined mechanisms for communicating and collaborating with the system 

coordinator.  

• Mechanism for configuring device and auto-configuration. 

• Partial kinematics. 

• Interpolation.  

• Interface for high level control. 

• Kinematics interfaces. 

• Graphical user interfaces. 

• Configuration and auto-configuration interfaces. 

9.2.1 Analysis 

Analysis had to be performed on these domains and main components had to be 

identified. Subsequently, software components had to be designed and tested. Three main 

domains were developed to support the IMC architecture. Figure 9.1 shows the IMC 

Domain which represents the IMC modular controllers – one per machine axis, the Real-

Time IMC Coordinator which handles all system-level real time tasks and the System 

Coordinator which is the main interface between the user and the rest of the system. After 

defining key domains and their sub-domains, the next task was the analysis of the sub-

domains or classes. The analysis led to the specification of the key entities in the sub-

domain. In this phase, related domains were grouped into packages to enhance software 

reusability. 

 

Figure 9.1: The IMC Architecture Software Components 
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9.2.2 Design 

Design issues are more relevant at the sub-domain or component level. Some of 

the key design issues that were employed are as follows. 

• All classes developed had to have meaningful names and placed in clearly defined 

packages. An example is DatagramServer.class which belongs to the 

com.IMC.network package.  

• Real-time threads were defined on the IMC platform for scheduling real-time tasks, 

while non-real-time threads handled non-real-time tasks.  

• The priority levels of threads were clearly defined. 

• Tasks demanding hard real-time were assigned a higher priority than the automatic 

garbage collector. 

• Minimum garbage was generated in classes. Therefore string writes were minimal. 

• Efficient coding was used since resources are limited on the IMC JSticks. This 

involved for example avoidance of unnecessary copying of objects and suspension of 

superfluous thread loops.  

9.3 The IMC Domain 

The IMC domain is responsible for axis-specific activities such as joint control. In 

addition, the domain contains many components for intelligent interaction with the rest of 

the system. Table 9.1 shows the packages in this domain. 

Table 9.1: Software Packages 

Package Description 
com.IMC.database Network, configuration data and data access methods 

com.IMC.coordination Protocols for negotiating with system coordinator 

com.IMC.drivers Low level drivers for the communicating with the LM628, 
interrupt services, and digital I/O drivers 

com.IMC.network Ethernet protocols 

com.IMC.servlets Web interface for viewing/editing configuration and PnP 
mechanisms 
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9.3.1 Database Abstractions 

The database abstraction provides a data warehouse for static and dynamically 

generated data, and also data access policies. The subcomponents are listed in Table 9.2. 

Interface definitions are provided in Appendix B1. 

Table 9.2: The IMC Database Components 

Database Component Description  
Data  Network and configuration data 

PushPullData Data access mechanisms for collaborating threads  

FIFO First-In-First-Out Buffer 

JmDNS_Coordinator_Data Contains data for publishing and subscribing services o the 
network 

FileServer_ConfigFiles Controller parameters 

 

9.3.1.1 Data 

The Data class is used to store key static parameters needed by the IMC controller. 

The analysis and design issues are presented below. 

Analysis 

A data warehouse provides persistent data to the domain. Its attributes and desire 

functionality are as follows: 

• The data class should distinguish between modifiable static data and final data.  

• The class should  contain all network and configuration parameters 

• It should not place a limitation on inheriting.  

Design 

Based on the analysis above, the class specification was designed and 

implemented as described below. 

• Data.class is made to be a member of the com.IMC.database package. 

• The class is given the modifier abstract to enable other classes inheriting its properties 

to have the flexibility of inheriting other properties. 

• All parameters are static and default parameters are qualified with final. 

Example 

An example of the implementation of this class is as follows. 

1. Myclass implements Data{ 
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2. int datagramPort = PRIORITY_DATAGRAM_PORT_NUMBER; //inherited from Data }  

 

9.3.1.2 PushPullData 

Sometimes two or more threads need to collaborate to accomplish a task. For 

example a thread may need to know if another thread has finished its task. However, when 

two threads share the same data, complexities may arise due to a phenomenon called race 

condition (Oaks and Wong, 2004). Java uses a concept called synchronization to solve this 

problem. When a method is declared synchronized, the thread that wants to execute the 

method must acquire a token or a lock. Once the method has acquired the lock, it executes 

the method and releases the lock. There is only one lock per object so if two separate 

threads try to call synchronized methods of the same object, only one thread can execute 

the method; the other thread must wait for the lock to be released before it can execute the 

method. The PushPull class implements synchronized methods for various tasks and also 

stores short-term data.  

Analysis 

• The class should support collaboration between two threads calling on the same 

methods in this class. 

• An object of this class should be available to all threads that need its services. 

 Design 

• PushPullData is made to be part of the com.IMC.database package and declared 

public. 

• Methods used by two or more threads are designed to be synchronized methods. 

Example 

This method below controls the start of motion.  

1. /** 

2. if velocity is 0 thread calling this method will be put in a wait  

3. state until notified. This is used to synchronize start of motion. 

4. */ 

5. public synchronized double get_vel() { 

6. if (vel == 0) { 

7. try { 

8. wait();             //wait for all  trajectory data before starting  motion        

9. } 

10. catch (InterruptedException ex) {}    } 

11. return vel; }  
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9.3.1.3 FIFO 

This class provides a first-in-first-out buffer for two threads. One thread fills the 

buffer from its tail whiles the other takes data from its head.  

Analysis 

• The class should provide methods to create any buffer size. 

• This class should provide a method to fill the buffer from its tail and wait for the 

buffer to be partially empty before resuming the fill operation. 

Design 

• The FIFO class is part of the com.IMC.database package. 

• A method is implemented to create an array of any given size. 

• Synchronized methods fill and acquire data from the buffer. 

• The PushPullData class contains instances of the FIFO class for creating velocity and 

position buffers. Therefore this connotes a USES-A relationship between the two 

classes. 

Example 

In the example below, buffers are created for position and velocity data. 

1. public static void createPosVelFIFO(int size) { 

2. positionBuffer = new FIFO(size); 

3. velocityBuffer = new FIFO(size); 

4. } 

 

9.3.1.4 JmDNS_Coordinator_Data 

The IMC architecture implements an auto-configuration network protocol called 

JmDNS, to enhance modularity and reconfigurations (see Chapter 5). The protocol is used 

to register configuration information and discover services such as the connection detail of 

nodes on the network. The JmDNS_Coordinator_Data contains data required by a JmDNS 

coordinator to register and detect these services. 

Analysis 

 This class should contain data to compose JmDNS information. Some of the data 

such as network information is in the Data.class. 

Design 

• The class was place in the com.IMC.database package. 
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• The JmDNS_Coordinator_Data.class bears an IS-A relationship with Data.class since 

it inherits data from this class. 

Implementation 

The example below shows one of the methods in this class for creating a JmDNS 

register.  

1. public static String registerSingle(String type, String name, int port, 

2. int weight, int priority, String text) { 

3. StringBuffer register = new StringBuffer(); 

4. register.append(type); // type of service 

5. register.append(","); 

6. register.append(name);//name of the service 

7. register.append(","); 

8. register.append(port);      //port number for this service 

9. register.append(","); 

10. register.append(weight);  //degree of persistence 

11. register.append(","); 

12. register.append(priority); //priority level 

13. register.append(","); 

14. register.append(text);               //text message 

15. return register.toString();  

16. } 

 

9.3.1.5 FileServer_ConfigFiles 

File creation, storage and retrieval are important for storing and modifying 

persistent data. The FileServer_ConfigFiles class contains various methods for storing 

configuration data such as PID filter values and JmDNS data.  

Analysis 

• The class should have methods to prepare data for storage such as adding delimiters to 

separate data. 

• The class should have methods to create, delete and perform file I/O.  

Design 

FileServer_ConfigFiles inherits data from JmDNS_Coordinator_Data, which also 

inherits data from Data.class. Therefore this is an IS-A relationship. The class embodies 

various methods to add delimiters such as commas and end-of-line to data. 

Example 

In the example below, the method retrieves configuration parameters from 

Data.class and converts them to a String separated by the end-of-line delimiter. 

1. public String getConfig(String[] value) { 

2. StringBuffer buffer = new StringBuffer(); 
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3. for (int i = 0; i < value.length; i++) { 

4. buffer.append(value[i]); 

5. buffer.append('\n');  // parameters separated by \n ie "new line" 

6. } 

7. return buffer.toString(); 

8. } 

 

9.3.2 Coordination Abstractions 

The coordination component abstracts an interface for the system coordinator to 

issue commands and receive feedback from the controllers. The coordinator also handles 

clock synchronization signals and real-time data from the real-time coordinator. As 

discussed in Chapter 8, the architecture supports various motion modes, including jogging, 

position-mode, synchronized-position-mode, velocity-mode, and coordinated-motion. 

Each IMC receives either a stream of set-points, or/and motion synchronization signals, 

depending on the mode selected by the user. These various tasks are coordinated by the 

components listed in Table 9.3. Their interface structure is provided in Appendix B2.  

Table 9.3: Coordination Components 

Coordination Component Description  
StateCoordinator Receives datagram events from system coordinator  

MultiCasted_States Receives high priority multicast events signals 

Device Invoked by StateCoordinator to execute motion profiles 

StateBuffer Creates a temporary buffer for multicast signals received 

Interpolation_Server 

 
Receives set-point from an interpolator and commands the 
controller to move to set-point positions 

Monitor Establishes a TCP connection with system coordinator  

EncoderReader Periodically reads and sends encoder data to the system 
coordinator 

Counter Logs sensor data 

MainClass Main class for initializing the controller 

 

9.3.2.1 StateCoordinator 

The StateCoordinator class uses a network connection to receive events from the 

system coordinator, and call the right method to execute the requested command. All 

datagram packets received consist of a header and a body. The header contains a flag 

which indicates the type of incoming event, for example “set PID filter” and may contain 



 145 

other parameters such as data packet size, etc, depending on the value of the flag. The 

body may contain associated data such as PID parameters or may be null. For some 

motion modes, trajectory data are received into FIFO buffers. When motion commences, 

i.e., when FIFO buffer consumption begins, the system coordinator is alerted to stream in 

the next data batch.  

Analysis 

• The class should have a datagram connection with the system coordinator. This is will 

enable packet sizes to be pre-allocated. Since a packet is an indexed buffer, its contents 

can be discharged into FIFO buffers systematically.  

• Methods should be executed without blocking incoming commands; i.e., the class 

should run concurrently with the classes implementing these methods. 

Design 

• The class is implemented as a high priority thread with its “run” method embodying a 

perpetual loop. The loop waits forever for messages from the coordinator and makes 

functions calls on methods in other classes as dictated by the command flag received. 

Since threads run concurrently, these methods execute outside the thread’s own 

execution block.  

• The class inherits a datagram socket connection from DatagramServer.class in the 

com.IMC.network package. Therefore all connection related issues including 

exceptions are handled outside this class. 

• In order to have access to the FIFO buffers, an object from the PushPullData.class is 

created within the class at runtime. The received data packet is used to fill the buffers 

by virtue of a synchronized method in the PushPullData.class which ensures that the 

buffers are not flooded. When the packet is emptied a flag is sent to the coordinator to 

resend the next packet. The back-and-forth communication continues until an end-of-

data flag is received or a high priority interrupt pre-empts the operation.  

Example 

The example below shows a skeletal implementation of the StateCoordinator 

class.  

1. public class StateCoordinator 

2.      extends DatagramServer implements Runnable { 

3.  .. .. 
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4. public synchronized void run() { 

5.    .. ..  

6.  while (true) {       

7.   in_packet.setLength(inbuffer_length);    //reset buffer 

8.    dgconn.receive(in_packet);  //receive packet 

9.    state_Flag = in_packet.readInt();           //read first number of packet 

10.    switch (state_Flag) { 

11.             case 0: 

12.           // receive trajectory data for jogging axis  

13.                 ..  ..  

14.             case 4: 

15.            //position mode 

16.                 .. .. 

17.             case 9:  

18.           //Receive PID Filter value  

19.            case n: 

20.                              } 

21.     } 

22.  } 

23. } 

 

9.3.2.2 MultiCasted_States 

Multicast signals are very useful when all nodes on a network need to receive the 

same information simultaneously. The architecture employs this protocol for most 

synchronized behaviour such as synchronized start, stop, suspend, etc. The section below 

describes the multicast class. 

Analysis 

• Since synch signals are urgent commands, the class implementing this should be 

protected from pre-emption by most operations. 

• The class should not generate garbage or run computationally intensive functions 

Design 

• The class is derived from MulticastServer.class in the com.IMC.network and is 

implemented as a thread with the highest priority in the Java API specification. 

• The class receives only 4-byte packets and immediately dispenses them in a storage 

class in order to minimize the risk of losing an in-coming packet. 

Implementation 

The class is instantiated as follows.  

1. StateBuffer buffer = new StateBuffer() ;//storage class 

2. Thread thread =new Thread(new MultiCasted_States(buffer)); 

3. Thread.setPriority(10);  //10 is the highest thread priority 

4. thread.start(); 
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9.3.2.3 Device 

Methods were required for direct calls on controller drivers such as “load 

trajectory”, “run trajectory”, etc. Simultaneously, the class implementing these methods 

needed to cooperate with other classes in direct contact with the system coordinator to 

create a producer-consumer relationship.  

Analysis 

• The class should be implemented as a consumer and have methods to control the 

peripheral controller in the manner dictated by the system coordinator. 

Design 

• The class is implemented as a thread to run concurrently with the producers.  

• The class retrieves data through the PushPullData class and frequently monitors the 

StateBuffer class for urgent signals. 

• A loop is implemented in its run() method to periodically read instructions from the 

coordinators (producers) through the StateBuffer class. It was more computationally 

efficient to temporarily halt the loop when there was no immediate instruction 

therefore the instruction-read method was cast as a synchronized method with a wait().  

Implementation 

The following is the section of its method for executing a “find home position” 

command. 

1.     case 8: { 

2. //mask all interrupts except excessive position interrupt 

3.             LM628.mask_reg(0x20); 

4.  //reset loop flag. This will cause the main loop to wait until next command   

5.             statebuffer.put_deviceRunFlag(false);              

6.             load_PID_Filter();  //call PID filter load method 

7.  //call reference switch driver 

8.             Reference_Switch_Driver home = new Reference_Switch_Driver("home"); 

9.             break; 

10.      } 

 

9.3.2.4 StateBuffer 

A class was required to hold high priority state information such as stop, run and 

suspend. 

Analysis 

• The class needs to employ safe methods which prevent race conditions or loss of data 

integrity.  
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Design 

• The StateBuffer class is designed with the same concept as that of PushPullData class. 

Command flags (as opposed to data in the latter) are held in its buffers. Secondly, 

emergency stop commands are implemented directly in this class. 

• The StateBuffer extends or inherits the properties of PushPullData, making it possible 

for instances of this class to have direct access to the latter. 

9.3.2.5 Interpolation_Server 

This class coordinates with the real-time coordinator to receive set-points, 

trajectory signals and clock synchronization signals.  

Analysis 

• The most important requirement is for the class to capture the real-time data stream 

and command the controller without any infringements. This means that method 

executions should be atomic and be guaranteed to commit.  

• The real-time coordinator multicasts all set-points to all nodes in the multicast group. 

Therefore the class should have an efficient means to identify and extract set-points 

addressed to its platform.   

Design 

• The class is designed to inherit a datagram socket connection from the 

DatagramServer class. 

• The class is given a high thread priority – above that of the Java Garbage Collection 

thread.  

• When this class is instantiated by the StateCoordinator class, a set-point index 

generated by the system coordinator is passed to it. This index is transformed into a 

read-pointer to mark the position of the set-point data in the multicast packet.  

Implementation 

The class is instantiated and started by the StateCoordinator as follows: 

1. Thread thread = null; 

2.  thread = new Thread(new Interpolation_Server(mode, true, statebuffer));    

3. rawJEM.setJEMPriority(thread, 26); // thread priority;    thread.start(); 
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9.3.2.6 Monitor 

Most communication across the network was designed to be connectionless in 

order to allow easy changes on the network. However, the system coordinator needed at 

least one connection-oriented link to serve as the life-line for emergency calls from the 

IMC, encoder readings and synch signals.  

Analysis 

The Monitor class should have the following attributes and functionality: 

• The class implements TCP socket communication with the system coordinator and has 

methods to send and receive data. 

• The priority level of an object of this class should be adjustable for high and low 

priority messages. 

Design 

The following describes the design of the Monitor.class. 

• The Monitor class inherits its server socket communication method from 

TCPServer.class in the com.IMC.network package. 

• The class is not implemented as a thread therefore its priority is not static. Rather, 

threads invoking a synchronized method of its object use a low-level method in the 

aJile API, to raise their own thread priority to a specified ceiling level. After returning 

from the synchronized method, the priority is restored to the priority prior to invoking 

the method. 

Examples 

The following examples show how the Monitor class methods may be applied.  

1. Monitor monitor;  //Monitor object 

2.  

3. // This procedure is  used by an interrupt listener to send an emergency signal 

4. com.ajile.jem.rawJEM.setCeiling(monitor,25); 

5. monitor.sendEmergencyStop();  

6.  

7. //This is used by the Device class during synchronized- position-mode operations   

8. monitor.send_flag(); //send a synch flag 

9.   

10. monitor.send_data(int data); //send encoder data 
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9.3.2.7 EncoderReader 

Analysis 

• The EncoderReader periodically reads the encoder signal from the controller’s decoder 

registry and dispatches it to the system coordinator. 

Design 

• The class uses the send_data method in the Monitor class to send signals by TCP. 

• The class is implemented as a thread. Before invoking the send() command, it calls on 

a synchronized method in the StateBuffer.class. If a higher priority operation is in 

process, the send() procedure is temporarily suspended.  

Implementation 

The following shows part of the body of EncoderReader class. 

1. public class EncoderReader extends Thread{ 

2. .. .. 

3. public synchronized void run(){ 

4.  while(true){ 

5. try { 

6. statebuffer.get_monitorBusyFlag(); //call synchronized method 

7. monitor.send_data(LM628.readPosition()); //send data 

8. Thread.sleep(Data.encoderRepInt); //frequency provided by user 

9. } 

10. catch (Exception ex) {}  }}} 

 

9.3.2.8 Counter 

The Counter class logs encoder positions in a buffer. The size of the buffer and 

frequency of logs is determined by the user before motion commences.  

Analysis 

The class has the following attributes and functionality: 

• Its integer array buffer should be protected from index or illegal exceptions to prevent 

garbage generated by uncaught exceptions.   

Design 

• The array size is determined by the calling method. 

• The logging method catches array exceptions locally. 

Implementation 

The following is the logging method of the class.  

1. public class Counter { 

2. .. .. 

3. public static void posCounter() { 
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4.        try { 

5.       position[index] = LM628.readPosition(); 

6.        index++; 

7.    }  catch (ArrayIndexOutOfBoundsException ex) {   } }} 

8. A typical invocation of the above method is as follows. 

9. int logCounter = in_packet.readInt();            //read user-defined buffer size 

10.  Counter.position = new int[logCounter];  //set counter size 

 

9.3.2.9 MainClass 

The MainClass is the first to be executed. Its functionalities and attributes are as 

follows: 

• It is responsible for instantiating and starting most of the coordinator threads, 

including StateCoordinator.class, MultiCasted_States.class and Device.class.  

• It sets the controller’s timer or clock. 

• It starts a web server.  

• It logs on to a time server to set JStick’s wall clock. 

9.3.3 Driver Abstractions 

The driver component is responsible for all low-level operations related to 

hardware switches, I/O and the motion controller. Most of the functionalities of its sub-

components have already been described in Chapter 4. Table 9.4 lists the drivers and a 

brief description of each.  The interfaces are given in Appendix B4. 

Table 9.4: Driver Component 

Driver Component Description  
LM628 

 
Contains methods to directly control the motion controller  

HSIO_Driver Driver for High Speed I/O operations between the controller 
and the JStick 

Board_Clock Enables/disables the board clock 

JStickTimer_tc2 Programmable timer 

LM628_Interrupt Receives and services hardware interrupts from the motion 
controller 

LimitSwitch Limit switch drivers 

Reference_Switch_Driver Reference or home switch driver 

GPIOPinA3 Digital I/O for external purposes 
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9.3.4 Network Abstractions 

The network sub-components are designed to be base classes for all required 

Ethernet connections. A description of each class is given in Table 9.5.  

Table 9.5: Network Component 

Network Component Description  
DatagramServer Creates Datagram Server Sockets 

MulticastServer Creates Multicast Server Sockets 

TCPServer Creates TCP Server Sockets 

 

9.3.4.1 DatagramServer 

The DatagramServer class provides the tools for all classes seeking to build a 

datagram server connection. 

Analysis 

The following are the attributes and functionality of the class. 

• Connections made should be memory efficient. 

• The class should leverage the creation of multi-server connections. 

Design 

• The class uses a memory efficient DatagramConnection method from aJile’s API, and 

optionally provides standard connection methods in the J2ME network API. 

• The class is instantiated with a server port number to allow multi-server connections. 

Implementation 

The interface is outlined in Appendix B5. A multi-server connection is simply 

established as follows.   

1. DatagramServer server1 = new DatagramServer(int port_1);  

2. DatagramServer server2 = new DatagramServer(int port_2); 

3. DatagramServer server3 = new DatagramServer(int port_3); 

 

9.3.4.2 MulticastServer  

The MulticastServer class provides tools for multicast connections. 

Analysis 

The following are the attributes and functionality of the class; 

• Connections established are memory efficient. 
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• The class method handles the protocol for joining multicast groups. 

Design 

• The class uses a memory efficient MulticastConnection method from aJile’s API as 

opposed to the standard connection method in the J2ME network API. 

• The class implements methods to join or leave a multicast group. 

Implementation 

The interface is outlined in Appendix B5. A multi-server connection is established 

as follows; 

1. MulticastServer server = new MulticastServer (String address, int port); 

 

9.3.4.3 TCPServer  

The TCPServer class provides the tools for building TCP multi-socket 

connections. 

Analysis 

The following are the attributes and functionality of the class; 

• Connections established are memory efficient. 

• The server connection waits to accept and open a connection with a client before 

releasing control of its socket to the implementing class. 

Design 

• The class uses a memory efficient StreamConnectionNotifier method from aJile’s API 

and also provides standard connection methods in the J2ME network API. 

9.3.5 User Interface and Plug-And-Play Abstractions 

Man-Machine Interface: If an embedded system has a man-machine 
interface, it must be specifically designed for the stated purpose and must be easy 
to operate. Ideally, the use of intelligent product should be self-explanatory, and 
not require any training or reference to an operating manual (Kopetz, 1996). 

The architecture provides a rich set of tools for PnP and man-machine interactions, 

transforming the otherwise black-box-like IMC modules into intelligent open modules. 

Using Java servlet technology, users can login to each IMC and view or change 

configurations and network services with a web browser. All sensitive transactions are 

password protected. The architecture uses Tynamo (Silverman, 2004) as the platform for 

building all servlets. Tynamo is one of the few ultra-concise web-servers designed 
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explicitly for embedded Java platforms. Before describing the sub-components, the 

following sections explain the underlying protocols leveraging these services. 

9.3.5.1 Servlet Technology 

Servlets are reusable Java applications which run on response/request-oriented 

web server. The server loads and executes the servlets, which accept zero or more requests 

from clients and return data to them. Functionally, they are similar to CGI scripts, but 

more platform-independent.  A few of the many applications of servlets include the 

following; 

• Servlets can process data posted over Https using an HTML form. 

• Servlets can accommodate multiple requests concurrently to allow collaboration 

between multiple users. 

• Servlets can forward requests to other servers and servlets in order to balance load 

among servers or partition a single logical service over several servlets.  

There are two types of servlets: 

1. Generic servlets are protocol independent, implying that they contain no built-in 

support for any transport protocols such as HTTP. 

2. HTTP servlets support the HTTP protocol and are more relevant in web browser 

environments.  

When a server loads a servlet, it runs the servlet’s initializer method, init(), only 

once. The init method may be overridden when developing the servlet.  Afterwards the 

servlet may handle client requests in its service method. The service method supports 

standard HTTP/1.1 requests by assigning each request to a designated method. When 

designing servlets, the following methods in the HttpServlet class may be overridden.  

• doGet, for servicing HTTP GET, conditional GET and HEAD requests. 

• doPost for handling HTTP POST request. 

• doPut for handling HTTP PUT request. 

• doDelete for handling HTTP DELETE requests. 

The above methods take two arguments: The first, HttpServletRequest, 

encapsulates the data from the client, while the second, HttpServletResponse, embodies 

the response to the client. An HttpServletRequest object provides access to form data, 

cookies, session information, and URL name-value pairs. See Sun Microsystems (1999), 
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Berners-Lee et al (1996), and HTML 4.0 (1998) for more information on servlet 

technology, HTTP/1.1, and the HTML specification respectively.    

9.3.5.2 The JmDNS Protocol 

The JmDNS protocol was designed for standard Java (J2SE). Hence, over fifty 

method calls and procedures had to be modified or replaced in order to port it to the Java-

CLDC profile running on the IMC controllers. All classes that dealt with network issues 

derived from java.network package, were substituted with CLDC equivalents or low-level 

detour methods. Many other classes like ThreadGroup, Iteration, etc not found in the 

CLDC package were substituted with other methods. The protocols were embedded in the 

IMC servers (servlets to be specific) to enable a web-based approach to register and 

discover services, and allow users to view and change configurations. The sub-

components constituting the user interface and PnP (automatic configuration) are listed in 

Table 9.6. The interfaces are outlined in Appendix B3.  

Table 9.6: Servlets Component 

Servlets Component Description  
JmDNS_Coordinator Implements JmDNS to register IMC services and discover 

specific services 

ConfigureDevice Creates a web-based interface for configuring the IMC 

EditJmDNS Creates a web-based interface for configuring the JmDNS 
services 

PositionDump Creates a web-based interface for viewing position logs 

ControllerInfo Creates a web-based interface for viewing info on the IMC  

ShutdownServlet Web-based interface for shutting down the web server 

 

9.3.5.3 JmDNS_Coordinator 

The JmDNS_Coordinator encapsulates the JmDNS protocol and is one of the first 

programs to be executed at runtime. Below are the attributes and functionality of this 

class. 

 Analysis 

• It is a servlet class and auto-started by the server. 

• The class uses JmDNS to register services and discover specific services. 

• Listeners continue running to detect changes on the network. 
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• The class removes registered services (local) when the IMC stalls or shuts down. 

• The servlet posts information on a web service. 

Design 

• The class is designed as an HTTP servlet. 

• The server is pre-configured to auto-start or load this servlet when the IMC node is 

started. 

• Its init method embodies methods to register and discover services; therefore this is 

done automatically at runtime.  

• A listener thread is kept alive to detect services added or removed. 

•  Discovered services are posted on to the com.IMC.database package.   

• The servlet provides a doGet method to post information in HTML format on a web 

browser. 

Implementation 

The init method of the servlet is as follows: 

1. public void init(ServletConfig config) throws ServletException 

2.   {  super.init(config); 

3.     try{ 

4.       //set HOST name in JmDNS 

5.       JmDNS.DEFAULT_HOST_NAME="JStick-"+Data.DEVICE_NAME;   

6.       jmdns = new JmDNS(); 

7.       listenerVector =new Vector(); // stored info. on services to be discovered 

8.     } 

9.     catch (IOException e) {   } 

10.     discoverJmDNS(); //invoke method to discover services       

11.       //don’t register services if controller needs to be initialized     

12.     if(!Data.initializeController){ 

13.        registerJmDNS();      

14. } 

15.  } 

 

The servlet has an inner class that implements the JmDNS listener. The skeletal 

illustration is as follows:  

120.   static class Listener implements ServiceListener { 

121.           .. .. 
122.     public void serviceAdded(ServiceEvent event) { 

123.            .. .. 
124.       //detect supervisor 

125.       if (type.startsWith("_supervisor._tcp.local.")) { 

126.         .. ..  
127.       } 

128.       //detect registered devices 

129.       if (type.startsWith("_device._pid")) { 
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130.         .. .. 
131.     } 

132. //detect services removed 

133.     public void serviceRemoved(ServiceEvent event) {      .. ..    }    } 

9.3.5.4 ConfigureDevice 

A class was needed to access and display configuration parameters and allow users 

to make changes. The attributes and functionality of the ConfigureDevice class are 

described below.  

Analysis 

• The class implements a servlet to publish the configuration of the IMC in HTML 

format. 

• The IMC configuration parameters such as screw-pitch factor, encoder resolution, etc 

can be changed by users by means of this servlet. 

• The servlet is protected to allow only authorized users to configure the device. 

Design 

• The class is designed to read configuration parameters from configuration files, 

present them in HTML format, and save changes to these files to persistent memory.  

• The class is structured to extend com.qindesign.servlet.AuthenticatedHttpServlet 

within the Tynamo API to provide security methods. 

• The class design overrides the following methods: 

o doGet to auto-generate HTML forms and handle doPost requests 

o doPost to auto-generate HTML forms and handle doGet requests 

o doUnauthorizedGet to handle unauthorized HTTP GET requests. 

o doUnauthorizedPost to handle unauthorized HTTP POST requests. 

o getRealm to get the realm based on the request. 

o isAuthorized to check if the given user/password is authorized in the given realm. 

Example 

Typical configuration browser displays when a client user queries the 

ConfigureDevice servlet are shown in the Figs. 9.2 and 9.3.  
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Figure 9.2: IMC Configuration Servlet II 

 
 

Figure 9.3: IMC Configuration Servlet II 
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9.3.5.5 EditJmDNS 

When a new service is added to an IMC programmatically, and this has to be 

announced to the network domain, the services have to be included in the list of services to 

be registered. Similarly, new services to be discovered have to be included in the service 

discovery list. The class implemented to handle this responsibility is described below. 

Analysis 

The class has the following attributes and actors: 

• The class implements a servlet to publish registered and discovered JmDNS services in 

HTML format. 

• An HTML based form is provided for users to edit, delete or add services. 

Design 

• The class is designed to read JmDNS data from a file and present them in HTML 

format and also save changes to files.  

• The class uses collaborative executions of doPost and doGet to display a hierarchy of 

HTML forms at the prompt of the user.  

Example 

Examples of the interfaces generated by the EditJmDNS servlet are shown in Fig. 

9.4 and 9.5 below. 

 

 
 

Figure 9.4: JmDNS Service/Discovery Browser 
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Figure 9.5: JmDNS Service/Discovery Editor Webpage 

9.3.5.6 PositionDump 

The servlet technology employed makes it possible to remotely monitor devices on 

a web browser. This section describes the design of a class for this purpose. 

Analysis 

The attributes and functionality of the class are as follows: 

• Encoder readings are periodically posted to the servlet. 

• The servlet posts a history (log) of encoder data. 

• The servlet encapsulates readings in HTML format in its doGet method. 

Design 

• Objects of EncoderReader and Counter in the com.IMC.coordination package are 

created to capture real-time and logged encoder data.  

• Encoder readings are wrapped in HTML format in the servlet’s doGet method. 

9.4 The System Coordinator Domain 

The System Coordinator domain handles all supervisory activities to guarantee the 

appropriate execution of tasks on the IMC controllers. All high-level tasks and commands 

are generated in this domain. These include human-machine interactions, system 

configuration, and Meta tasks such as “complex” inverse kinematics, which cannot be 
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handled by the IMC nodes or the real-time coordinator.  Table 9.7 shows the packages in 

this domain. 

Table 9.7: System Coordinator Software Packages 

Package Description 
com.coordinator.GUI Abstracts the Human-Machine Interface 

com.coordinator.coordination Protocols for commanding and coordinating activities 

com.coordinator.database Temporary and Permanent Global Repository 

com. coordinator.interpolation  Abstracts interpolation and kinematics algorithms 

com. coordinator.network Abstracts protocols for communication 

 

9.4.1 The Graphical User Interface (GUI) 

The GUI component contains programs which construct graphical interfaces for 

viewing, editing and sending commands to the IMC hosts. Table 9.8 lists the sub-

components in this package and brief descriptions. The interfaces are outlined in 

Appendix C4. 

Table 9.8: GUI Component 

GUI Component Description 
MainApplication Main program for starting the User Interface 

MainGUIFrame Presents the main GUI  

TrajDataFrame Constructs the GUI for viewing and editing motion parameters 

TrajTable Displays a table for constructing trajectories 

PIDTable Presents a table for viewing and editing PID parameters.  

 

9.4.1.1 MainApplication 

Since there can be only one “main method” in a Java application, the 

implementing class becomes the trigger point for the execution of the entire application. 

This section describes the design of the class starter. 

Analysis 

The attributes and actors of the MainApplication are as follows: 

• The MainApplication starts all network applications and a JmDNS implementation to 

discover and register services on the network. 

• This class also instantiates the main graphical user frame. 
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Design 

• The MainApplication constructor is designed to create objects of classes encapsulating 

network connectionless protocols such as DatagramSender and MulticastSender. At 

the time of the execution of this class, it is assumed that the connection parameters of 

the IMC hosts are not known.  

• The JmDNS coordinator is instantiated in this class before its lifecycle ends. 

9.4.1.2 MainGUIFrame 

A graphical user frame provides a user-friendly man-machine interaction. This 

section describes the main GUI frame for this purpose. 

Analysis 

The features and functionality of the class are as follows: 

• The main GUI provides a self-explanatory graphical frame for users to explore the 

various functionalities of the system. 

• The graphics show all registered IMC devices and graphical methods to logon to their 

web servers. 

• The graphical frame shows real-time encoder readings sent by the registered IMC 

devices. 

• The graphics provide tools and links to send control signals and parameters and also 

shutdown specific or all IMC devices.  

Design 

• The class is designed with Java graphical API tools in the javax.swing and java.awt 

packages and layout features from the Borland JBuilder’s, com.borland.jbcl.layout 

package (JBuilder, 2005).  

• The interface amalgamates all registered IMC hosts into one console, thus emulating a 

centralized system.  

• The design provides links to other graphical tools to edit or create motion commands. 

Implementation 

The diagram (Fig. 9.6) below illustrates the main GUI browser. 
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Figure 9.6: Main GUI Browser 

9.4.1.3 TrajDataFrame 

The TrajDataFrame class provides a graphical tool for editing motion trajectory 

parameters from saved files or creating new trajectories.  

Analysis 

The TrajDataFrame class embodies the following features and attributes. 

• The class projects a user-friendly interactive environment for selecting the trajectory 

type, configuration, and mode of interaction with the IMC hosts. 

• The class provides an editor for creating or editing motion trajectory or commands. 

Design 

• The design of the class is based on Java graphical API tools. 

• The class reads or writes user-provided data to the system coordinator’s database.  

Implementation 

An example of a graphical frame generated by the class is shown in the figures 

below. Figure 9.7 shows the configuration window for NC Code. Figure 9.8 illustrates 

trajectory set-points including via-points generated offline by the user. 
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Figure 9.7: Trajectory Editor I 

 
 

Figure 9.8: Trajectory Data and Configuration Browsers 
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9.4.1.4 TrajTable and PIDTable 

The TrajTable and PIDTable classes have similar attributes; both add methods 

from the javax.swing.table package to standard graphical methods described above to 

generate editable tables. TrajTable may be used to create new trajectories for position, 

velocity and synchronized position modes. Figure 9.9 shows a trajectory table for creating 

motion profiles for up to six end-device axes. PIDTable on the other hand may be used to 

generate new PID filter values for the IMC devices. Figure 9.10 illustrates the graphical 

table for editing PID settings.   

 

 
 

Figure 9.9: Trajectory Editor Frames 

 
 

Figure 9.10: PID Filter Parameter Editor 
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9.4.2 Coordination Abstractions 

The coordination component mirrors that of the IMC nodes. The sub-components 

in this package are listed in Table 9.9 and the interfaces are provided in Appendix C2. 

Table 9.9: System-Coordinator Coordination Components 

coordination Component Description 
JmDNS_Coordinator Implements JmDNS to register services and discover specific 

services 

JmDNS_Event_Server JmDNS_Coordinator calls this class to service events 
received 

ControllerIO Relays user commands in the GUI to the communication 
layer 

Monitor Receives IMC sensor data and messages by TCP 

SynchFlag Coordinates trajectory in synchronized-position mode  

Trajectory_Server Streams trajectory commands to IMC hosts 

 

9.4.2.1 JmDNS_Coordinator and JmDNS_Event_Server 

The JmDNS coordinator collaborates with JmDNS counterparts running on the 

IMC to create a unified system configuration with no user-intervention. At the start of 

execution, the system coordinator makes no assumption about the network configurations 

and services provided by the IMC hosts. It multicasts its own service parameters and 

executes a listener for IMC services. When service parameters are received, encapsulated 

network data such as IP addresses are extracted and utilized for connections with the IMC 

hosts.  

Analysis 

The functionality and attributes of the classes are as follows: 

• The JmDNS_Coordinator class uses JmDNS to register the system coordinator on the 

network. 

• The JmDNS_Coordinator class calls JmDNS_Event_Server to fire its listeners to 

detect incoming JmDNS events on the network and service them accordingly.  

Design 

• Like in the case of the IMC, the JmDNS_Coordinator and JmDNS_Event_Server are 

designed to implement JmDNS to register and discover services respectively.   

• The JmDNS_Event_Server is designed to service the following events: 
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o When an IMC controller service is detected, the device name is posted to its spot 

on the main graphical user interface and its IP configuration is mailed to a 

database. Subsequently, a client TCP thread is activated to connect with its TCP 

server.  

o When an IMC web service is detected, a corresponding “web” button is enabled 

on the user interface to allow the user to access its web-pages. 

o IMC multicast information detected are mailed to the database.  

• IMC devices disconnected from the network are removed automatically. 

• The JmDNS_Event_Server listener thread is kept alive to detect service changes on the 

network. 

9.4.2.2 ControllerIO 

The ControllerIO class interprets signals and commands from the graphical user 

interface and prepares them to be sent to the IMC hosts through the communication 

interface. The ControllerIO therefore plays the role of a resource controller.  

Analysis 

The attributes and functionalities of the class are enumerated below. 

• The class transforms all real-world representations to forms which can be understood 

by the IMC hosts. For example, commands like “run”, “home position” make sense in 

the concrete world but not in the IMC realm. 

• The class connects or matches commands and data to the appropriate communication 

channel. 

Design 

The class is designed as follows: 

• During the controller commissioning process, the system coordinator’s database is 

rehashed with connection and command information about the IMC subsystem. The 

IMC names are used to retrieve specific command keys. 

• The class is designed to inherit a datagram client socket to connect with the various 

IMC datagram servers. 
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Implementation 

The following is an example of how a jog command is sent to the controllers. The 

jog method below is called when a jog button is clicked in the graphical user interface. For 

example, the jog button for AXIS 1 executes the method following which in turn calls the 

corresponding method in the ControllerIO class; 

1. void axis_1Go_actionPerformed(ActionEvent e) { 

2.       controllerIO.jog("AXIS_1", "run"); 

3.   } 

4. public class ControllerIO extends DatagramSender{ 

5. .. .. .. 

6. public void jog(String device, String flag) { 

7.  

8.     for (int i = 0; i < DEVICES.length; i++) { 

9.       try { 

10.         if (device.equals(DEVICES[i]) | device.equals("ALL")) { 

11.           trajectory(AXIS_TRAJ[i][0], AXIS_TRAJ[i][1], AXIS_TRAJ[i][2], 

12.                      getDeviceIP(DEVICES[i]), 

13.                      getDevicePort(DEVICES[i]), getControlFlag(flag)); 

14.         } 

15.       } 

16.       catch (Exception ex) { }   }} 

17.     .. .. } 

 

The method getControlFlag(flag)) above is invoked from Data.class to retrieve 

the command key from a hash-table. 

9.4.2.3 Monitor 

The Monitor class is the client version of the Monitor class on the IMC hosts. A 

Monitor thread is created when an IMC is detected on the network. The thread then makes 

a request for a TCP connection with the server in order to receive emergency signals, 

encoder readings and synch signals.  

Analysis 

The Monitor class has the following attributes and functionality: 

• The class implements a TCP client socket communication.  

• Encoder readings are made available to the graphical user interface and any high level 

controller implemented.  

Design 

The following describes the design of the Monitor.class. 

• The Monitor class derives a client communication socket from TCP_Client class in the 

com.coordinator.network package and is implemented as a thread. 
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• Messages received are channelled to the data repository, graphical display or controller 

depending on the value of the flag prefixed to the data.  

Examples 

The example below shows how the Monitor thread coordinates synchronized-

position-mode motion within its thread body.  

1. public void run() { 

2. .. .. 

3. switch (readFlag) { 

4. case 1:   { 

5. //increment synch counter when a trajectory-end flag is received 

6.             Synch.put_flag(1);  

7. //if number of flags = number of threads (IMC hosts) send run command 

8.              if (Synch.get_flag() % Synch.get_threads() == 0) { 

9.               ControllerIO.setMulticast("run");    } 

10.             break;          } } }   

 
The Synch class is used as a repository for flags received from all Monitor threads 

during this type of motion s follows; 

1. public synchronized void put_flag(int i) { 

2.    synch = synch +i; 

3.     notifyAll(); 

4.   } 

5. //When a Monitor thread is created a thread-counter is incremented in the Synch class 

6.    public synchronized void put_threads(int i) { 

7.   threads += i; //thread counter 

8.    notifyAll(); 

9.  } 

10. //Method returns the number of synch flags received 

11. public synchronized int get_flag() { 

12.    return synch; 

13.   } 

14. //Method returns the number of Monitor threads  

15. public synchronized int get_threads() { 

16.    return threads; 

17.   } 

 

9.4.2.4 Trajectory_Server  

The Trajectory_server class communicates trajectory data to the StateCoordinator 

of each IMC.  

Analysis 

The attributes and functionalities of the class are as follows: 

• Large chunks of trajectory data are sliced into conveniently small pieces, packaged in 

datagram packets and sent over the network sequentially. 
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• The class negotiates with the IMC coordinators in order to ensure the integrity of data 

congruity. 

Design 

• The class is designed to have a handshake policy with each IMC. Therefore one class 

thread is created for each IMC. When a packet is sent, the thread switches to a 

blocking receive-state to receive a ready signal from the IMC. The next packet is then 

sent. This cycle continues until all the data is sent or the process is interrupted by a 

high level command. 

9.4.3 The Database Abstraction 

The database abstracts sub-component which are designed to store persistent and 

most transient data. Table 9.10 lists the sub-components and their descriptions. Their 

respective interfaces are outlined in Appendix C1. 

Table 9.10: System Coordinator Database Sub-Components 

Database Component Description 
Data Network, configuration and program data and access 

mechanisms 

JmDNS_DATA Repository for JmDNS services 

Traj_Configuration_Data Stores trajectory configuration data  

GCodeParser Parses NC code into machine readable format 

GCodeSender Sends NC code to the real-time interpolator 

 

9.4.3.1 Data 

The analysis and design of the Data class is described in this section. 

Analysis 

• The Data class stores all persistent data except trajectory and JmDNS data.  

• The class contains robust mechanisms to store and retrieve data, even when changes 

are unanticipated. 

Design 

• The Data class is designed to use the static modifier for all persistent data. 

• System commands and IMC information are placed in hash-tables and retrieved with 

keys. For example, when a device is registered, its IP address is put in an IP hashtable 
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and the device name becomes the key to retrieving the address. Since this credential is 

not hard-coded, changes have no ramification on calling methods.  

Example 

An example of a method in the Data class is illustrated below; 

1. public static void putDeviceIPInfo(String deviceName, String IP_Address, int port) 

2.  throws Exception {       

3.         hashIP.put(deviceName, IP_Address); 

4.         hashPort.put(deviceName,new Integer(port)); 

5.   }     

 

9.4.3.2 JmDNS_DATA and Traj_Configuration_Data 

All JmDNS data to be registered and discovered are stored in the JmDNS_DATA 

class as arrays. The JmDNS coordinator extends this class to get access to this data. The 

Traj_Configuration_Data class handles user-defined trajectory configuration parameters 

such as acceleration, interpolation periods, etc. These are held in arrays and stored in a 

configuration file defined by the user. 

9.4.3.3 GCodeParser  

NC machine code is usually written in a text format. The GCodeParser performs a 

syntax check on an NC G code file and transforms it into a data structure, which is suitable 

for an interpolator. This section describes the design of the parser. 

Analysis 

The attributes and functionalities of the GCodeParser are as follows: 

• The class reads a typical G code file and eliminates all non-motion related ASCII 

characters and comments. 

• Meaningful tokens are sequenced and end of command lines are properly delimited. 

• The results are saved in binary format. 

Design 

• The class is designed to use a combination of a file read pointer 

(DataInputStream.readLine) and a read marker (DataInputStream.mark) to search 

from the beginning of the file to the first command line, i.e., the first occurrence of the 

character N, n, G, or g followed by two digits. When the command line is detected, the 

marker places the read pointer at the beginning of this line. 
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• The G code is tokenized by this technique; the G commands are logically grouped into 

motion commands (G00, G01, G02, G03, F, etc), G commands (G52, G91, etc), and 

coordinates and federates (e.g., X2, F2, etc). When a motion command is read, it is 

buffered and prefixed to every coordinate. When another motion command is read, the 

previous command is replaced by the current, and so on.  

• All white spaces are removed and end-of-lines are delimited. The file is saved in 

ASCII binary big-endian format.  

Example 

The following typical G code for linear interpolation, 

1. NRC: Footprint: 70x70x30 mm, IN METRIC UNITS 

2. N60 G00 G90 G54 X6.317 Y11.209  

3. N80 G94 G01 X6.301 Y11.295 Z11.112 F2.5 

4. N100 X6.290 Y11.301 Z11.152 

 
is tokenized into the format below.  

1. g90 

2. g54 

3. g0 

4. x6.317 

5. y11.209 

6. g94 

7. g1 

8. x6.301 

9. y11.295 

10. z11.112 

11. f2.5 

12. g1 

13. x6.290 

14. y11.301 

15. z11.152 

 

9.4.3.4 GCodeSender 

The GCodeSender is used to send G code commands to the real-time coordinator. 

It extends the functionality of the GCodeParser and in addition calls a TCP client socket. 

9.4.4 The Interpolator Component 

The component described in this section is essential for all coordinated motion 

profiles. It is responsible for generating set-points through interpolation and transmitting 

these set-points. Set-points may be transmitted directly to the IMC hosts or through a real-

time coordinator. The Transmission and Transmission_ACK classes (Table 9.11) are 
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responsible for the communication transaction. The rest of the section describes the design 

and implementation of the interpolator. 

Table 9.11: System Coordinator Interpolator Sub-Components 

Interpolator 
Component 

Description 

Interpolator Trajectory interpolation  

Transmission Transmits set-points to controllers or real-time coordinator 

Transmission_ACK Receives acknowledgement from real-time coordinator 

Transmission_Flag Services acknowledgement flags 

 

9.4.4.1 Interpolator  

The interpolator design is based on the linear and circular interpolation algorithms 

discussed in Chapter 7. The original code was written in C++, and later ported to the Java-

based IMC architecture for this research. The flow diagram of the Interpolator class is 

shown in Fig 9.11. 
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Figure 9.11: Interpolator Flow Diagram 

The Interpolator class is instantiated with user-defined configurations. 

Configurations include, the interpolation minimum period, the number of controlled axes, 

acceleration/deceleration values, a Boolean to indicate whether motion profile should be 

ramped (acceleration/deceleration regimes), and an object of the class implementing the 

inverse kinematics of the controlled device. The system coordinator architecture, which 

hosts this class, is designed to run on Microsoft Windows XP. However, since Java is 

platform-independent, it is possible to run the system on other platforms – ideally a real-

time operating system. In the case of a real-time environment, set-points can be 
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transmitted deterministically to the IMC hosts. However, in the absence of such an 

operating environment, the IMC architecture provides a workaround by dedicating one of 

the IMC hosts for real-time coordination such as streaming set-points.  

9.4.5 Network Abstractions 

The network abstraction is the complement of the IMC network abstraction. 

Hence, communication components abstract client connections from this package to 

request connections with corresponding servers on the IMC hosts. The abstraction 

contains other classes to communicate with the real-time coordinator. The list and 

description of the sub-components of this package are shown in Table 9.12. 

Table 9.12: Network Package  

Network Components  Description 
DatagramSender Transmits control flags and data to IMC nodes 

McastDirect 
 

This is used by Interpolator.class to multicast set-points 
directly to IMC nodes 

MulticastSender For sending state signals by multicast to nodes 

TCP_Client Creates a TCP/IP data I/O stream socket 

UDP_Client Creates datagram client socket and has methods to 
transmit/receive data 

 

9.5 The IMC Real-Time Coordinator 

The real-time coordinator complements the system coordinator by providing 

services which the latter may not be able to provide. Table 9.13 shows the packages in the 

real-time coordinator. Only components in the first package will be discussed since the 

last two are similar to aforementioned ones. 

Table 9.13: Real-Time Coordinator Software Packages 

Package Description 
com.RTcoordinator.RTservices Contains real-time protocol services for coordinating with IMC 

nodes 

Kinematics.NRCTripod Contains inverse kinematics of the NRC Tripod 

com.RTcoordinator.network A group of standard IP protocols 
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9.5.1 Real-Time Services 

The real-time services package includes abstractions for real-time streaming of 

data, and clock synchronization. The package contents are listed in Table 9.14. The classes 

with asterisks bear resemblances with ones already discussed, so a concise description of 

them will ensue.  

Table 9.14: Real-Time Service Components 

Real Time Services Description 
CommandReceiver Receives commands from the system coordinator 

GCodeReceiver* Receives tokenized G Code from system coordinator and 
stores values in local directory 

Multicaster* Multicasts data to IMC nodes 

Interpolator* Real-time interpolator 

NetworkParameters* IP parameters 

Network_Analyzer* Measures network latency 

RTReceiver Receives data streams from System Coordinator 

RTDistribute Streams data in real-time to IMC nodes  

TCPReceiver Base class for TCP connections 

TimeStamper Uses hardware timer to timestamp events 

 

9.5.1.1 CommandReceiver  

The CommandReceiver class establishes a server-client relationship with the 

system coordinator through which various command flags are received.  The command 

structure is shown in Table 9.15. Descriptions of the analysis and design follow.  

Table 9.15: Real-time Coordinator Command Structure 

Command 
Flag 

Action to be Taken 

0 Suspend interpolation thread 

1 Release interpolation thread from suspend-mode 

2 Reset/restart interpolation 

3 Execute method/class to receive tokenized NC code, and store in persistent file.  

4 Prepare interpolation thread to execute locally stored NC code. Interpolation 
time, number of axes and acceleration value attached to packet.  

5 Interpolation values streamed by system coordinator. Prepare threads to receive 
data for real-time streaming to IMC nodes. Period attached to packet. 

6 Start threads in 5 to receive and distribute data 

7 Send contents of NC file 

8 Invoke method to measure network latency  

 



 177 

Analysis 

The attributes and functionalities of the CommandReceiver class are as follows: 

• The class is made as generic as possible to allow reusability on other platforms. 

• It responds to the various commands from the system coordinator listed above. 

Design 

For a generic design, implementation-specific methods are made abstract; the class 

inherits a datagram socket from the network package, and is implemented as a standard 

thread with the main loop in its run() method. Implementing classes may override 

hardware-specific methods such as the creation of real-time threads. 

Example    

The prominent feature of the implementation of this class is the real-time thread 

creation. The aJile CPU uses a cyclic executive model with preemption for real-time 

periodic threads with a context-switch of 1 µs. The data structure for this model is a cyclic 

array which is like a piano roll. The PianoRoll constructor provided in the aJile API, 

establishes the Piano Roll's length (duration) and beat. The cyclic data structure is used by 

the aJ-100 scheduler to keep the different periodic threads. An index pointer to the 

structure is incremented for every beat time and if a periodic thread is scheduled for that 

beat, it is executed. Below shows how the real-time threads for receiving (receiver object) 

and streaming data (distributor object) are created. 

1. void prepareDataStreamThreads(){ 

2. int n = 2; 

3. int k = 0; 

4. int T = period;                

5. int beat = 1 * T; 

6. int duration = n * beat;               

7. int period = 1 * beat; 

8. // max priority of the periodic threads: 

9. int priority = 14;                                           // use: 0 <= priority <= 14 

10. int receiveroffset = 0; 

11. int distributroffset = beat; 

12. //setup FIFO buffers 

13. InterruptSafeIntFifo buffer = new InterruptSafeIntFifo(num_axes * 5000); 

14. InterruptSafeIntFifo periodbuffer = new InterruptSafeIntFifo(5000); 

15. receiver = new RTReceiver(period, priority - 1, receiveroffset, buffer, 

16. periodbuffer); 

17. distributor = new RTDistribute(period, priority, distributroffset, 

18. buffer, periodbuffer,msender); 

19. pianoRoll = new PianoRoll(duration, beat);  

20. } 
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The network is analyzed once for a particular configuration.  

9.5.1.2 GCodeReceiver   

This class is instantiated to receive tokenized NC code from the coordinator via a 

TCP/IP connection. The data stream from the connection is wrapped in a file output 

stream for simultaneous data transfer to a created file.  

9.5.1.3 Interpolator, Multicaster and Network_Analyzer 

The Interpolator is similar to that of the coordinator, except that it is scheduled for 

periodic real-time executions. The Multicaster class is invoked by the interpolator to 

package and multicast data to the IMC nodes. The Network_Analyzer uses a datagram 

socket connection to carry out several request-response transactions with each IMC nodes. 

The average latency is then deduced and used to correct periodic schedules. 

9.6 Conclusion  

Details of the IMC software architecture have been presented in this chapter. An 

object-oriented architectural style based on Java is used in order to benefit from the 

inherent modular component properties this style provides. The architecture is 

implemented on the three separate domains of the IMC architecture; i.e., the IMC nodes, 

the system coordinator, and the real-time coordinator. Analysis, design, and 

implementation details are provided for the components of each domain. The architecture 

is designed from the onset to be modular, reusable, and easy to maintain. Hence 

component-style techniques are used such as separation of hardware-specific or 

implementation-specific components from generic components. Since Java is platform-

independent, with little modification, the implementation can run on different computing 

platforms. 
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10. SYSTEM EVALUATION 

10.1 Introduction 

System evaluation (and fine-tuning) is a very broad exercise which could pass for 

another major research projects. Therefore, this chapter provides a brief evaluation based 

on CNC requirements. This is one of the most stringent areas of application for IMC 

architecture. A demonstration on a parallel kinematic machine is also illustrated.  

Machine tools may be classified according to their time period for evaluating and 

generating axes commands. This period is commonly referred to as the servo cycle period. 

High performance controllers have servo cycle periods of less than 1 ms, while that of 

medium performance controllers lie between 1 ms and 7 ms. Low performance controllers 

have servo cycles greater than 7 ms. Most CNC machines for metal cutting fall within the 

medium to high categories (Bellini, et al., 2003). In addition, a controller’s block 

processing time reveals its ability to process geometric entities. For general machining, 10 

ms (or less) is adequate. In contrast, high-speed machining requires a block processing 

time of less than 2 ms. In view of these requirements, the distributed reconfigurable 

controller is evaluated based on the following criteria: 

1. Servo loop cycle time. 

2. Communication latency. 

3. Block processing time and real-timeliness. 

4. Synchronicity and positioning accuracy. 

5. Architectural flexibility. 

10.2 Sampling Time and Communication Latency  

The PID motion controller chip (LM628) on the IMC performs high speed 

trajectory generation (including ramping and slewing) at a maximum sampling speed of 

341 µs. This is the last and finest interpolation leading to commanding the axes drives. At 

this speed, trajectory calculation takes 120 µs, PID filter calculation adds 66 µs delay, and 

sample output latency is 13.3 µs. However, the output integrity of the motion chip may 
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deteriorate if its trajectory generator is updated (externally) faster than 10 ms. The JSticks 

which serve as the host to the motion control board communicates with the LM628 chip 

via its 8-bit high speed I/O (HSIO). The HSIO’s timing is reconfigurable enabling us to 

clock down from its maximum speed of 38.8 ns to 77.5 ns in order to meet the timing 

requirements of the motion control chip. It takes five 8-bit words to command and load up 

a set of trajectory parameters (velocity and position) into the LM628’s buffers. 

Considering read/write delays, the total execution time for this is at most 500 ns. It is 

therefore technically feasible for one JStick to host more than one LM628. At the moment 

only one JStick is mapped to each of our motion boards. The hosts receive set points from 

the interpolator every 10 ms and propagate them to the motion chips accordingly. 

Communication is via Ethernet’s multicast protocol (UDP/IP). Since UDP has an 

overhead of only 8 bytes, communication is very fast. With a payload of 8 bytes per each 

set-point and a bandwidth of 10 Mbps, it takes theoretically 1.6 µs for a packet to reach 

the communication interface of an IMC node. Accounting for jitter and processing time, 

the maximum latency is approximately 4 µs.  

10.3 Block Processing Time and Real-Timeliness 

The interpolator runs on a computing platform (JStick) dedicated for real-time 

coordination. The JStick platform executes real-time threads in a cyclic deterministic 

manner. Thread context switch takes only 1 µs, thereby providing acceptable real-time 

outputs. ISO G-code programs are loaded to the interpolator’s flash memory by Ethernet 

from a GUI program running on a regular PC. The JStick’s flash speed is 90 ns and its 

execution speed is 15 Mega bytecodes/s. To measure the average block processing speed, 

G1 and G2 codes were executed on the platform. An average time of 1.5 ms was obtained 

for 3-axis linear interpolation, and 2.0 ms for 2-axis circular interpolation. However, the 

block processing time is constrained by the hardware limitation of the motion controller 

chip to 10 ms as mentioned in the previous section. 

10.4 Synchronicity 

Synchronization is a critical issue with decentralized controllers. Three different 

timing analyses were conducted on a 3-axis machine with the aid of a logic analyzer. Each 

controller toggled one of its I/O pins just after executing its trajectory commands. The 
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respective pin activity timings were logged by the logic analyzer. In the first test case, 

there was no compensation for timing variations caused by network and processing delays. 

The worst case delay, as shown in Fig. 10.1 was about 1 ms, and over 20% of the data fell 

in this region. In the next test case, the clock synchronization scheme developed for the 

architecture (see Chapter 7) was implemented. The worst case delay fell appreciably to 0.1 

ms (Fig. 10.2). For even finer synchronization, the real-time coordinator was hardwired to 

the IMC controllers by an interrupt line. Thus the sequence of events was driven by 

interrupts from the real-time coordinator. The delay results are illustrated in Fig. 10.3. 

Delays are highly repeatable in this case, but this configuration is not a true distributed 

approach. This is illustrated to show the versatility of the architecture. 
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Figure 10.1: Timing Variations-Uncompensated Delays 
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Figure 10.2: Timing Variations- Compensated Delays 
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Figure 10.3: Timing Variation- Synchronization by Interrupts 

10.5 Positioning Accuracy 

Some position measurements are presented below to illustrate the performance of 

the controller on a 3-axis machine. The machine is equipped with d.c. motors directly 

connected to 5-mm pitch feed-screws and 360-line encoders (360 × 4 counts/rev). Thus 

the BLU (Basic Length Unit) is approximately 0.003 mm. Figure 10.4 shows a zigzag 

pattern move realized with a feed-rate of 900 mm/s. Figure 10.5 illustrates circular 

interpolation with a feed-rate of 350 mm/s and a radius of 5 mm (1440 counts). The 

trajectory errors associated with a 1-mm radius (288 counts), 5-mm radius and 25-mm 

radius circular paths are shown in Figs. 10.6 to 10. 8.  
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Figure 10.4: Linear Trajectory 
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Figure 10.5: Circular Trajectory – 5-mm radius 
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 Figure 10.6: Radial Error – 1-mm radius 
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Figure 10.7: Radial Error – 5-mm radius 
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Figure 10.8: Radial Error – 25-mm radius 

The error patterns are very similar and bound by a maximum of about 11 counts. 

Dry friction in the mechanical drives and interpolation approximations contribute 

significantly to these errors.  Blended moves are also very acceptable. In Fig 10.9, two 
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linear and one circular interpolations followed by another linear interpolation are executed 

in one trajectory path.  
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Figure 10.9: Combined Linear and Circular Paths 

10.6 Architectural Flexibility 

By virtue of the intelligent communication protocols and the modular nature of our 

hardware and software architecture, flexibility is greatly enhanced. When machine (or 

workstation) configurations such as the number of axes need to be scaled, control modules 

are added to the network to match the number of axes. The protocols described in Chapter 

6 automatically configure the network for such changes. The modular nature of the 

software architecture makes it easy to add modules to accommodate changes. For 

example, through software interfacing new algorithms for kinematics or interpolation can 

be readily integrated. Figure 10.10 illustrates the simulation of the guide (slider) 

movements of a parallel kinematic mechanism on a 3-axis table. 
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Figure 10.10: Tripod Slider Displacements 

10.7 Conclusion 

The architecture and development of a real-time modular controller architecture 

for easy reconfiguration has been described and analyzed. The work demonstrates the use 

of COTS components for cost-effectiveness and easy integration. The architecture allows 

devices to discover themselves and search for services or broadcast their services using the 

JmDNS protocol described in Chapter 5. The architecture may also be changed during 

initialization for optimal performance depending on the decision of a master controller. 

This broadens its range of application to other devices such as serial robots. Performance 

results show a close match with medium performance controllers while providing rich 

support for network connectivity.  
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11. CONCLUSION AND DISCUSSIONS 

11.1 Overview  

This research has presented the design and implementation of a modular controller 

for robot applications. The work progressed along two main directions. First, the field of 

controller architectures was reviewed to determine the necessary philosophy and 

components for a good design. Moreover, the requirements vis-à-vis shortcomings of 

current designs were investigated. Second, a controller was designed based on modular 

distributed concepts, off-the-shelf components, and reconfigurability. The design process 

itself was a little more chaotic than it appears in this thesis. In retrospect, most of the 

intermediary steps in the course of this project were reached before the requirement 

analysis was exhausted. This rationale, also called rapid prototyping in some literature, is 

quite suitable when dealing with a general problem space that is hard to model analytically 

or has not been previously investigated. Quite certainly, many system designers will 

intimate the same sentiments after attempting to mesh together seemingly conflicting 

goals. Nonetheless, a good design is an inherently creative activity with a sense of 

continuing finality.  

A summary of the thesis chapters is provided in the following. In addition, the 

major contributions are underscored. Finally, recommendations for future research 

directions in the area of reconfigurable controller design are provided.  

11.2 Summary of Results 

The overall objective of this research was to design and implement a modular 

reconfigurable controller prototype based on COTS components. The research objectives 

were outlined in Chapter 1 and are repeated in summary form in Table 11.1. 
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Table 11.1: Summary of Research Objectives 

Primary Objectives 

• Design a generic framework for a modular reconfigurable control 
architecture.  

• A simplistic design that fits into embedded low-cost systems. 

• A working prototype. 

Secondary Objectives 

A critical review of the state-of-the-art in control architecture, distributed 
communication paradigms, and reconfigurable networked systems. 

A synchronization algorithm and protocols to enable Ethernet to be used for 
real-time control. 

An operational software architecture based on modularity and reusability. 

Implementation and evaluation of the strengths of the prototype. 

 

11.2.1 Control Architecture Review Summary 

Chapter 1 emphasized the need for a well-conceived architecture and provided key 

issues for designing control architectures. A broad review of some state-of-the-art 

software and hardware architectures was provided. The review unveiled the ongoing 

research of designing controller architectures with superior flexibility and greater 

robustness to obsolescence than traditional ones. Certain concepts stood out in the 

discussion as the key enablers of this vision. First modularity should be pervasive 

throughout the design, in order to relax many constraints associated with traditional 

controllers such as complexity. Among the many hardware and software approaches, 

modularity based on off-the-shelf components and object-oriented techniques apparently 

have many advantages. Second the architecture should possess a well-designed 

communication framework that can support configuration changes. There is a dichotomy 

between enhanced flexibility and performance. Therefore, this necessitates a well-

designed communication architecture to provide a good balance. Third, intelligence should 

not be limited to the upper layers of a controller architecture hierarchy but distributed as 

much as possible – ultimately to sensors and actuators. This approach improves flexibility, 

fault-tolerance, and versatility. 
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11.2.2 Recapitulation of the IMC Architecture 

In Chapters 3 through 9, the IMC controller architecture was conceived and 

developed. The architecture defined the functionalities of various levels of a distributed 

layered-model. The concept also proposed embedding or dedicating a controller for each 

machine axis, a loosely-coupled coordination scheme that can auto-configure to tight-

coupling depending on the need, and a network system that can accommodate these 

requirements. Below is a summary of the salient properties of the architecture. 

• A distributed architecture based on a reference (abstract) architecture that defines the 

various hierarchical decompositions.  

• Loosely-coupled architectural elements (software and hardware) for easy system 

development and flexibility. This is primarily enabled by a modular hardware design, 

networked elements, and an object-oriented software architectural style. 

• Controller elements or nodes are designed to be plug-and-playable.  

• Cooperation protocols were developed to separate real-time from non real-time data 

flows. 

• A clock synchronization model was developed to provide a global time base. 

11.2.3 Prototype Development Summary 

In Chapter 4, the strengths and weaknesses of Java for real-time control were 

discussed. It was realized that Java potentially has several advantages over traditional C++ 

and Ada approaches. The main weakness of Java is that it was not originally designed to 

service real-time systems, hence its relatively slow and non-deterministic response. 

However, many measures are currently under way to develop real-time Java platforms. Of 

particular interest to us is the advent of COTS-embedded Java hardware processors which 

promise real-time computation. Consequently, in Chapter 5, a combined COTS Java-

processor based microcontroller (JStick) and motion controller boards were developed for 

each machine axis and code-named IMC (Intelligent Modular Controller). Details of the 

design procedure and timing analyses were discussed in this chapter.  

11.2.4 Summary of the IMC Communication Architecture 

Traditionally, Ethernet is used for non real-time communication because of the 

non-deterministic nature of its underlying protocols. Nonetheless, it provides superior 
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robustness to almost all other network communication standards. In Chapters 6, a case for 

using Ethernet for real-time communication was presented. The primary reason was to 

address the need to propagate this standard communication mechanism further to the 

controller arena. Currently, this field is inundated by keen competition between rival 

fieldbuses. Therefore, a typical industrial communication system (from enterprise level to 

field devices) needs several mediator or middleware devices to create a virtually 

homogenous environment. Obviously, this technology aggravates the complexity of the 

system. In order to create a truly homogenous environment, a flexible Ethernet-based real-

time communication architecture with implicit clock synchronization was developed for 

the IMC architecture. The following were the enabling concepts and technologies. 

• An automatic configuration protocol based on JmDNS was developed to run on each 

node. The protocol enables nodes to automatically subscribe for services they need and 

also publish their own services 

•  A switched-Ethernet was used to segment the network and create one collision 

domain per switch port. 

• There are two main execution flows which run concurrently. A client-server 

cooperation scheme is used for non real-time communication over the network, 

particularly monitoring operations. In contrast, a producer-consumer model is used for 

real-time communication. In addition, the latter provides greater flexibility than the 

former. 

• A dedicated real-time coordinator module was created to schedule hard-real time tasks 

for the IMC nodes in a static cyclic periodic manner (time-triggered computations). 

• External clock synchronization is not a singular activity but is concurrent with regular 

cyclic communication flows.  

11.2.5 Summary of Computational and Software Models  

Chapter 8 provided an overview of trajectory generation schemes for different 

mechanical platforms and the execution methodology developed for the architecture. The 

discussions focused on algorithms that can be decomposed according to the number of 

machine axes. Two fundamental interpolation schemes developed for the IMC system 

were linear and circular interpolations. In Chapter 9, the development process of the IMC 
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object-oriented software architecture was discussed. The architecture was designed and 

implemented on a conceptual framework of reusability and modularity, and this was 

empowered by component building blocks. The rationale behind this was to realize a 

system that is easy to maintain and configure for different end-devices. The development 

of components consisted of three major steps executed in a back and forth manner. First, 

the problem domain and sub-domains were analysed. This resulted in a set of entities 

(components) in the form of classes or objects, the relationship between these entities, and 

their functionalities. The next step was the design phase, where decisions were made 

based on the execution platform, the programming language and the operational 

constraints. The third step was the software implementation. The entire framework 

consisted of the IMC (axis-controller) domain, the real-time coordinator domain, and 

system coordinator domain. 

11.2.6 Summary of the Controller Performance 

An evaluation of the performance of the controller architecture was presented in 

Chapter 10. Table 11.2 shows a summary of the main evaluation results obtained. The 

controller met the expectations of a medium performance controller with latitude for 

tremendous improvement. The main limitation identified was the trajectory update rate of 

the motion controller chips employed in the design of the IMC.  

11.3 Research Achievements 

The main contributions of the work presented in this thesis are as follows: 

1. An Ethernet-based real-time communication architecture with implicit clock 

synchronization. The technology also enables the controller sub-component design to 

incorporate embedded web-servers for remote monitoring and system configuration.   

2. The development and demonstration of a protocol for automatic configuration (i.e., 

PnP) of controllers and other embedded shop floor devices.  

3. The design and implementation of a medium-performance flexible controller 

incorporating the above on a homogenous Java software and hardware processor 

environment.  
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Table 11.2: Performance Evaluation Results 

Evaluation Criteria Value 

Maximum servo loop cycle time 341 µs 

Communication latency 4 µs 

Block processing time 3-axis linear interpolation: 1.5 ms  
2-axis circular interpolation: 2.0 ms 

Synchronicity Synchronization through network: 
maximum jitter ≈ 1 ms  

Synchronization by interrupt line: 
maximum jitter ≈ 30 µs 

Positioning accuracy Max. radial error on 25 mm circle:     0.03 
mm (BLU ≈ 0.003mm) 

Architectural flexibility Easy to add/remove axis 
Quick adaptation to different mechanical 

platforms  

 

11.4 Discussions and Future Research Direction 

The Java-processor (aJile) used in the research is still in its infancy stage. We 

would like to see further development of this system and also other Java-based systems. 

Currently, the stripped-down version of Java (J2ME) that aJile uses makes programming a 

bit cumbersome. Moreover, a complete implementation of the real time specifications for 

Java (RTSJ) will enable designers to have a richer suite of scheduling methods at the 

kernel level. Presently, only fixed priority scheduling with preemption is supported by 

aJile.  

An implementation of the IEEE 1588 clock synchronization protocol on aJile-

based systems such as JStick is also greatly desired. This technology will require a more 

sophisticated Ethernet system that is capable of autonomous communication: In this case, 

control signals can be serviced directly by low-level communication protocols. This 

capability will free up computing resources for high-level tasks.  

There are research potentials in improving and extending the Zeroconf protocol to 

networked factory-floor equipment and even network-centric field devices. This protocol 

could mitigate the technical and time cost of reconfiguring machines. 
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Demonstrative work performed to evaluate the architecture was not very thorough 

due to time constraints. A full evaluation is necessary to characterize and tune various 

aspects of the architecture such as the ones outlined below:  

• For fault tolerance, an internal clock synchronization algorithm has to be incorporated 

into the current external synchronization method. 

• The software architecture has to be optimized for performance and openness.    

• Implementation of generalized kinematics for a wide-range of robotic devices should 

be investigated. 

• At the moment, high-level control algorithms such as adaptive control or cross-

coupling control have not been implemented. Fault tolerant independent control is 

definitely an interesting research area to be exploited. 

• The motion control chips used on the controller board are fixed PID types. We will 

like to see an upgrade with modern ASIC chips capable of handling more 

sophisticated algorithms. However, these chips are quite expensive and susceptible to 

obsolescence. Ultimately, we would like to develop a Field Programmable Gate Array 

(FPGA) system that can be configured for different motion control requirements.  
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APPENDIX A. THE IMC HARDWARE 

A1 IMC Motion Control Board Schematics 
 

This section illustrates the IMC hardware schematics. 

 

 
 

Figure A1: Motion Control Board (3.5mm x 3.2mm) 
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Figure A2: LM628 Pin-out to Header (H1), and Clock 

Title: IMC 

Date: Oct 2004 

Sheet: 1/5 

LM628 Interface 
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Figure A3: Encoder Interface and I/O to JStick SIMM Interface 

Title: IMC 

Date: Oct 2004 

Sheet: 2/5 

Encoder &I/O to SIMM 
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Figure A4: AD667 DAC Interface with Logic Devices 

Title: IMC 

Date: Oct 2004 

Sheet: 3/5 

DAC Input (Digital) 
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Figure A5: AD667 DAC Output Circuit 
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DAC Output (Analog) 
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Figure A6: Filters and Power Supply  
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Power Supply to DAC 
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Figure A7: IMC Ensemble 

 
A2 IMC Controller BOM 

This section shows the Bill of Materials (BOM). 

 
Table A1: Bill of Materials (2004) 

Part Value Device Package Price 
(CND$) 

C1 20pF Capacitor C1206 0.30 

C2 0.1uF Capacitor C – 2.5 0.20 

C3 0.1uF Capacitor C – 2.5 0.20 

C4 0.1uF Capacitor C – 2.5 0.20 

C5 0.1uF Capacitor C – 2.5 0.20 

C6 0.1uF Capacitor C – 2.5 0.20 

C7 0.1uF Capacitor C – 2.5 0.20 

C8 1uF Capacitor C – 2.5 0.55 

C9 1uF Capacitor C – 2.5 0.55 

C10 1uF Capacitor C – 2.5 0.55 

C11 0.1uF Capacitor C – 2.5 0.20 

C12 0.1uF Capacitor C – 2.5 0.20 

C12 0.1uF Capacitor C – 2.5 0.20 

     

JStick 

JSimm 
Backplane 
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Part Value Device Package Price 
(CND$) 

C14 10uF Capacitor C – 2.5 1.26 

C15 0.1uF Capacitor C – 2.5 0.20 

C16 0.1uF Capacitor C – 2.5 0.20 

C17 0.1uF Capacitor C – 2.5 0.20 

CLK 6 MHz Oscillator DIL08S 3.96 

DAC AD667 12-Bit DAC 
converter 

PLCC28 11.87 

DC-DC 1 Watt; 12VDC 
+/ -15VDC 

DC-DC 
Converter 

DIP 21.40 

F1 0.1A hold Resettable fuse  0.68 

F2 0.5A hold Resettable fuse  0.76 

H1 2 x 15; 2mm Header DIL 2 mm 5.24 

H2 2 x 15; 2.54mm Header DIL  5.00 

JP1 3-pin Jumper  0.60 

JP1 2 x 4 pin Jumper Dual straight 0.79 

L1 143 Ohm Ferrite Bead Axial 3.51 2.62 

L2 220 uH Inductor Radial  0.50 

L3 220 Ohm Inductor Radial  0.50 

L3 220 Ohm Inductor Radial  0.50 

LM LM628 Precision 
Motion 
Controller 

DIL28 35.20 

PI 100 Ohm Potentiometer SIL 2.13 

P2 100 Ohm Potentiometer SIL 2.13 

RN 220/330 Ohm Resistor 
Network 

SIL6 0.74 

T1 2 position Terminal block 3.81 mm 2.90 

T2 8 position Terminal block 3.81 mm 9.40 

T3 2 position Terminal block 3.81 mm 2.90 

T4 6 position Terminal block 3.81 mm 7.10 

V1 74377 D-Type FF SO20W 0.35 

V2 7404 Hex Inverter SO14 0.22 

V3 26LS32 Receiver S016 0.36 

Total 163.46 
PCB (with silk screen and masking) Onetime Setup Fee  121.00 

Fee per PCB $7.49 

Price for One Motion Control Board 291.94 
Price for 6 Motion Control Boards 1146.70 
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Table A2: IMC Microcontroller, Cables & Router (2003) 

Product Approx. Unit Cost ($US) 
JStick microcontroller 330.00 

JStick backplane 97.90 

Ribbon Cable and connectors 6.60 

Ethernet Cable (CAT5) 7.70 

Router (8 port) 99.00 

 
 
A2 Motion Control Chips 
 

Traditionally, two chips have dominated the embedded motion control and custom 

built applications arena. They are the Agilent4 HCTL-1100, and the National 

Semiconductor LM628 listed in Table A.1. The HCTL-1100 costs about US$ 49. The two 

chips are very similar in their features and operations. The HCTL-1100 is 5V CMOS, 

which makes it incompatible with JStick’s 5V TTL levels. Currently, many other motion 

control chips are being introduced on the market to replace these aging ones. Table A35 

gives a comparison overview of some popular ones.  

 
 

                                                 
4 The semiconductor branch of Agilent (formerly HP) is currently owned by Avago Technologies 

5 Randy Frank, Design News, Sept. 13, 2004. 
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Table A3: Comparison of Motion Control Chips  

Company  Description  Motor Types1  Features Package Price (US) 
Freescale 
Semiconductor 
56F8357 

16-bit DSP/MCU 
Hybrid (60MIPS 
@ 60MHz),  
76 I/O 

ACIM, BDC, 
BLDC, SRM, 
VRM, and 
Stepper Motors. 
12 PWM outputs 
(6 individually 
programmable) 

- 12 PWM 
outputs (6 
individually 
programmable) 
- 256K Flash  
- Four  4-
channel, 12-bit 
ADCs 

160-pin 
LQFP 

$17.92 in 
quantities of 
1,000 
Evaluation 
Module ($299) 

International 
Rectifier 
IRMCK201 

AC Servo Motor 
Control IC. Uses 
external MCU or 
host. 
54 I/O 

ACIM or ACPM 
Servo Drive 
System 

- Space Vector 
PWM with 12-
Bit resolution 
- 128 x 8 
EEPROM 
- 4-channel, 12-
bit ADC 

100-pin 
QFP 

$8.75 in qnties 
of 10,000 
Development 
System 
($1,999) 

Performance 
Motion Devices 
Inc. 
 MC58420 

Motion Processor 
with over 130 
commands. Uses 
external MCU or 
host. 
256 I/O 

DC servo, 
BLDC 
Microstepping, 
and Pulse and 
Direction 
Motors 

- 10-bit 20 kHz 
PWM or 160bit 
DAC motor 
control output 

144-pin 
TQFP 

$14.75 per axis 
in qnties of 
10,000 
Developer's Kit 
($995) 

Microchip 
Technology 
PIC18F4431 

8-bit MCU (10 
MIPS @ 40 MHz) 
36 I/O 

ACIM and 
BLDC 

- 8 Channels 14-
bit Power 
Control PWM 
- 16 KB Flash 
256B EEPROM 
- 9 channels of 
10-bit ADC 

44-pin 
TQFP 

Price: $5.20 in 
qnties of 10,000 
Development 
Board ($299) 

 

ST Micro-
electronics 
ST7MC1 

8-bit MCU 
(8MHz) 
60 I/O 

ACIM and 
BLDC 

- 6 high-sink 
PWM output 
channels for 
sinewave or 
trapezoidal 
control 
- 24KB Flash 
- 10-bit ADC 
with 16 input 
pins 

64-pin 
TQFP 

Price: $2.86 in 
qnties of 10,000 
Starter Kit 
($695) 

 

Texas 
Instruments 
TMS320R2811 

32-bit DSC 
(150MIPS @ 
150MHz) 
56 I/O 

Servo Control - 2 Event 
Managers each 
with 16-bit 
Compare/PWM 
- 20K x 16-bit 
SARAM 
- 12-bit, 16-
channel ADC 

128-pin 
PBK 

$9.11 in qnties 
of 1,000.Kit 
($495) 

¹Abbreviations: ACIM (AC Induction Motors); BDC (Brush DC motors); BLDC (Brushless DC motors); 
SRM (Switched Reluctance Motors); PM (Permanent Magnet); SARAM (Single Access RAM) 
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APPENDIX B: IMC SOFTWARE INTERFACE 

The IMC domain is responsible for axis-specific activities such as joint control. In 

addition, the domain contains many components for intelligent interaction with the rest of 

the system. Table B1 summarizes the software packages and their corresponding classes. 

The class interfaces are described in this appendix. 

 

 

Table B1: IMC Software 

Package Description Classes  
com.IMC.database Network, configuration data and data 

access methods 
Data 

PushPullData 

FIFO 

JmDNS_Coordinator_Data 

FileServer_ConfigFiles 

com.IMC.coordination Protocols for negotiating with system 
coordinator 

StateCoordinator 

MultiCasted_States 

Device 

StateBuffer 

Interpolation_Server 

Monitor 

EncoderReader 

com.IMC.drivers Low level drivers for the 
communicating with the LM628, 
interrupt services, and digital I/O 
drivers 

HSIO_Driver 

Board_Clock 

JStickTimer_tc2 

LM628_Interrupt 

LimitSwitch 

Reference_Switch_Driver 

GPIOPinA 

com.IMC.network Ethernet protocols DatagramServer 

MulticastServer 

TCPServer 

com.IMC.servlets Web interface for viewing/editing 
configuration and PnP mechanisms 

JmDNS_Coordinator 

ConfigureDevice 

EditJmDNS  
PositionDump 
ControllerInfo 

ShutdownServlet 
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B1 com.IMC.database  
Class Data 
public abstract class Data  

Contains default and user defined network and motion device settings 

Field Detail  

public static final int DEFAULT_MULTICAST_PORT_NUMBER 

 
public static final java.lang.String DEFAULT_MULTICAST_IP_ADDRESS 

 
public static final java.lang.String PRIORITY_MULTICAST_IP_ADDRESS 

 
public static final int DEFAULT_DATAGRAM_PORT_NUMBER 

 
public static final int PRIORITY_MULTICAST_PORT_NUMBER 

 
public static final int PRIORITY_DATAGRAM_PORT_NUMBER 

 
public static final int DEFAULT_MONITOR_SOCKET_PORT 

 
public static final java.lang.String DEFAULT_SUPERVISOR_IP 

 
public static final int DEFAULT_ENCODER_LINES 

 
public static int USER_ENCODER_LINES 

 
public static final int DEFAULT_LIMIT_SWITCHES 

 
public static int USER_LIMIT_SWITCHES 

 
public static final java.lang.String[] DEFAULT_DEVICE_NAMES 

 
public static java.lang.String DEVICE_NAME 

 
public static final double conversionFactor 

doubles are converted to integers by this parameter by the PC host before transmission over the 
network to the IMC.  

 
public static double mmToRevFactor 

conversion from travel distance in mm to rev (pitch-screw factor) 

 
public static final java.lang.String DEFAULTmmToRevFactor 

default conversion from travel distance in mm to rev = 1 

 
public static int PID_PROPORTIONAL 

 
public static int PID_INTEGRAL 

 
public static int PID_DERIVATIVE 

 
public static int PID_INTEGRAL_LIMIT 



213 

 
public static int PID_DERIVATIVE_SAMPLING_SIZE 

 
public static final int DEF_PID_PROPORTIONAL 

 
public static final int DEF_PID_INTEGRAL 

 
public static final int DEF_PID_DERIVATIVE 

 
public static final int DEF_PID_INTEGRAL_LIMIT 

 
public static final int DEF_PID_DERIVATIVE_SAMPLING_SIZE 

 
public static final int DEF_EXCESSIVE_POS_ERROR 

 
public static int encoderRepInt 

DEFAULT Encoder reporting interval = 100 

 
public static double speedOverRide 

 
public static int EXCESSIVE_POS_ERROR 

 
public static final java.lang.String CLOCKSOURCE 

DEFAULT clock source = BOARD_CLOCK 

 
public static int clock 

 
public static boolean initializeController 

Controller initialized flag 

 
public static int initializeControllerFlag 

Controller initialized flag saved to file 

 
public static boolean isInterpolationDone 

Interpolation complete flag - encoder read dump follows if true 

 
public static boolean togglePIN3 

flag for toggling pin 3 so it can be monitored on a logic analyzer 

 
public static double home_pos 

Default home position = 0 

 
public static int logGranularity 

Frequency of logging position data 

 
public static boolean logPositions 

Flag for position logging; default is false i.e. no logging 

 
public static final java.lang.String[] configinfo 

Configuration information containing services available on platform 

 
public static final java.lang.String[] config 
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default configuration information in matrix form 
 

com.IMC.database 
Class PushPullData 
public class PushPullData  

This Class manages data produced and consumed such as position set-points 

Field Detail  

 
private static int supervisorPort 

 
private static boolean isAbsolutePos 

 
private static boolean isAbsoluteVel 

 
public static com.IMC.database.FIFO posFIFOBuffer 

 
public static com.IMC.database.FIFO velFIFOBuffer 

 

Method Detail  

public synchronized double get_pos() 
Returns: 

position 

 
public synchronized void put_pos(double position) 

Used for single point move 
Parameters: 

position - double - position 

 
public synchronized double get_vel() 

if velocity is 0 thread calling this method will be put in a wait state until notified. This is used to 
synchronize start of motion. 

Returns: 
velocity 

 
public synchronized void put_vel(double velocity) 

For single position move 
Parameters: 

velocity - double - velocity 

 
public synchronized void put_accl(double acceleration) 

For single position move 
Parameters: 

acceleration - double 

 
public synchronized void put_isAbsolute(boolean isAbsPos, 
                                        boolean isAbsVel) 

For position and velocity 
Parameters: 

isAbsPos - true if position is absolute and false if relative 
isAbsVel - true if velocity is absolute 

 
public synchronized boolean isAbsolutePos() 
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Returns: 
true for absolute position 

 
public synchronized boolean isAbsoluteVel() 
Returns: 

true for abs velocity 

 
public synchronized double get_accl() 
Returns: 

acceleration requested by supervisor 

 
public synchronized int get_Profile_type() 
Returns: 

int indicating motion profile mode type requested by supervisor 

 
 
public synchronized void put_Profile_type(int type) 
Parameters: 

type - profile mode 

 
public synchronized void put_speedOverRide(int factor) 
Parameters: 

factor -  speed over-ride percentage; 100 => 1, ie no overider; 120 => 1.2 

 
public synchronized double get_speedOverRide() 
Returns: 

double speed Over-ride 

 
public static void createPosVelFIFO(int size) 

Creates one FIFO each for position & velocity data to be received from supervisor 
Parameters: 

size - size of each FIFO 

 
public synchronized int get_Filter(int i) 
Parameters: 

i - index for filter 
Returns: 

specific filter (eg proportional) value 

 
public synchronized void put_Filter(int data, 
                                    int i) 

sets PID filter values with user-defined data array 
Parameters: 

data - int; specific filter value 
i - position of parameter eg 1 for proportional, 2 for integral 

 
public static synchronized java.lang.String get_SupervisorIP() 
Returns: 

String - Supervisor's IP Address 

 
public synchronized void put_SupervisorIP(java.lang.String address) 

Stores supervisors IP address 
Parameters: 

address - String; IP address 
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public static synchronized int get_SupervisorPort() 
Returns: 

int Supervisor's IP port number 

 
public synchronized void put_SupervisorPort(int port) 

Stores supervisors IP port number 
Parameters: 

port - int port number 

 
 
com.IMC.database  
Class FIFO 
public class FIFO  

Contains various methods for managing a FIFO Buffer 

Constructor Detail  

public FIFO(int i) 
Parameters: 

i - buffer size 

 

Method Detail  

public synchronized void synchput(double i) 
puts a double i at the tail end of the FIFO. If FIFO is full wait until there is space, ie hold lock 
until notified 

 
public boolean isFull() 
Returns: 

true if FIFO is full 

 
public int getFree() 
Returns: 

amount of free space 

 
public synchronized double synchronized_Take() 

take double from head of FIFO. If it's empty hold lock until notified 
Returns: 

double 

 
public boolean isEmpty() 
Returns: 

true if FIFO is empty 

 
 

com.IMC.database  
Class FileServer_ConfigFiles 
public class FileServer_ConfigFiles 
extends com.IMC.database.JmDNS_Coordinator_Data  

CLDC storage connection. Utility class for storing configuration files. It contains methods to 
configure files 

Field Detail  
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private static final java.lang.String FILE_SYSTEM_MOUNT_POINT 
The name of the Flash File System mount point; 

 
private static final java.lang.String FILE_SYSTEM_ROOT 

top level of the flash file system. 

 
private static java.util.Vector fileContent 

contents of file 

 

Constructor Detail  

public FileServer_ConfigFiles() 
implicit call to the com.IMC.servlets.JmDNS_Coordinator 

 

Method Detail  

 
public void run() 

searches directories for configurations files and creates them if with default values if they don’t 
exist 

Throws: 
IOException -  

 
public java.lang.String getConfig(java.lang.String[] value) 

gets default configuration parameters from com.IMC.database.Data and converts them to a String 
Parameters: 

value - String[] contains configuration parameter 
Returns: 

String i.e, configuration parameter 

 
public static void getParameters(java.lang.String filename) 

retrieves stored controller configuration data from file and updates static variable in 
Constant.class 

Parameters: 
filename - String name of file 

 
public void createDir(java.lang.String path, 
                      java.lang.String filename) 

Creates a directory. 
Parameters: 

path - is the subdirectory to create the file in 
filename - is the name of the file to create 

Throws: 
IOException - if unable to access the file system 

 
public static void writeFile(java.lang.String filename, 
                             java.lang.String data) 

Writes data to a file. 
Parameters: 

filename - is the location where the data is to be written 
data - is the data to be stored in the file 

Throws: 
IOException - if unable to access the file system 

 
public void readFile(java.lang.String fileName) 
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Reads and displays the contents of a file. 
Parameters: 

fileName - specifies the file to be read. 
Throws: 

IOException - if unable to access the file system 

 
public void directory(java.lang.String path) 

Displays directory structure starting at a root directory. 
Parameters: 

path - specifies the root directory to display 
Throws: 

IOException - if unable to access the file system 

 
public void deleteFile(java.lang.String filename) 

Deletes a single file from the file system. 
Parameters: 

filename - specifies the file to be removed 

 
 

com.IMC.database  
Class FileService 
public class FileService  

This class contains all methods needed by servlets etc for different file I/O operations 

Method Detail  

public static synchronized java.util.Vector readFile(java.lang.String filename) 
Reads and displays the contents of a file into a Vector. 

Parameters: 
filename - String; specifies the file to be read. 

Returns: 
Vector holds contents of file 

Throws: 
IOException -  

 
public static synchronized void writeFile(java.lang.String filename, 
                                          java.util.Vector data) 

Writes data to file from a Vector. Elements are line separated 
Parameters: 

filename - String; name of file 
data - Vector; Vector containing data to be written 

Throws: 
IOException -  

 
public static void deleteDir(java.lang.String parentDir, 
                             java.lang.String dir) 

Deletes a single directory from the file system. 
Parameters: 

parentDir - directory that contains the directory to be deleted 
dir - name of the directory to be deleted 

Throws: 
IOException - if unable to delete file 

 
public static synchronized java.lang.String[] split(java.lang.String data, int n, char c) 
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method takes a string, splits it where there are commas and puts them in a String array of size n. 
This method is used to organize String data obtained from file for registering rendezvous 
services. Eg "_http._tcp.local., foo, 80, 0, 0, path=index.html" will be split into 6 strings; 
"_http._tcp.local." "foo" "80" "0" "0", "path=index.html" 

Parameters: 
data - String 
n - number of strings 
c - splitting is done wherever there is this character eg comma 

Returns: 
String[]; array containing data 

Throws: 
IndexOutOfBoundsException -  

 
public static boolean createRegister(java.lang.String type, 
                                     java.lang.String name, 
                                     int port, 
                                     java.lang.String text, 
                                     java.util.Vector register) 

Method used to create a JmDNS 'register service' string 
Parameters: 

type - String; eg "_http._tcp.local." 
name - String; eg "X TABLE" 
port - int; eg 6000 
text - String; eg "Controller for X Table" 
register - Vector; holds a concatenation of the above 

Returns: 
boolean 

 
public static java.lang.String removeAll(java.lang.String string, 
                                         char charc) 

method removes all characters (charc)such as white spaces from a string 
Parameters: 

string - String 
charc - char; character to remove from string 

Returns: 
String; string without charc above 

 
public static double stringToDouble(java.lang.String number) 

this method converts a number in String primitive to a double value. Method not available in Java 
CLDC API. 

Parameters: 
number - String; number in String form 

Returns: 
double; number cast as double 

 
 

com.IMC.database 
Class JmDNS_Coordinator_Data 
public class JmDNS_Coordinator_Data 
extends com.IMC.database.Data  

Class holds registers containing initial JmDNS data. 

Field Detail  

static java.lang.String discoverServicesFile 
contains initial JmDNS services to be discovered by JmDNS_Coordinator.class 
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public static java.lang.String registerServicesFile 

contains initial JmDNS services to be registered by JmDNS_Coordinator.class 

 

Method Detail  

public static java.lang.String[] constructRegisterString(boolean isDeviceNamed) 
constructs String[] buffer to hold JmDNS register parameters 

Parameters: 
if isDeviceNamed is true the name given to device is used, else the default name, X TABLE, is 
used 

Returns: 
String[] matrix containing all register values 

 
public static java.lang.String[] constructDiscoverString() 

constructs String[] buffer to hold JmDNS discover parameters 
Returns: 

String[] matrix containing all discover values 

 
public static java.lang.String registerSingle(java.lang.String type, 
                                              java.lang.String name, 
                                              int port, 
                                              int weight, 
                                              int priority, 
                                              java.lang.String text) 

constructs a buffer to hold one JmDNS service construct 
Parameters: 

type - JmDNS service type eg. _datagram._udp.local., 
_device._pid.local.,_http._tcp.local.,_mcast._udp.local.,_mcaststream._udp.local. 
name - name of service eg., DatagramServer, deviceName, MulticastReceiver MulticastStream. 
port - port number of service  
text - text information about service 

Returns: 
String comma separated concatenation of JmDNS service 

 
public static void discoverServices(java.lang.String[] data) 

returns line separated discover values as discoverServicesFile 
Parameters: 

data - String[] 

 
public static void registerAll(java.lang.String[] data) 

returns line separated register values as registerServicesFile 
Parameters: 

data - String[] 

 
public static void initJmDNS(boolean isDeviceNamed) 

This function executes registerAll() and discoverServices() if device has not been initialized or 
has been reconfigured registerAll() and discoverServices() 

Parameters: 
if - isDeviceNamed is true execute 

 
 
B2 com.IMC.coordination  
Class StateCoordinator 
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public class StateCoordinator 
extends com.IMC.network.DatagramServer 
implements java.lang.Runnable  

This class inherits datagram connection from DatagramServer for cooperating with supervisor 
through a FSM. See com.IMC.network.DatagramServer 

Field Detail  

private com.IMC.coordination.StateBuffer statebuffer 

 
public static int trajectory_data 

 
public static int trajectoryMode 

 
public static boolean isInterpolatorSocketOpen 

 
public static int max_trajectory_data_Size 

 
boolean receive_trajectory 

 
int state_Flag 

 
public byte[] in_buffer 

 
public final int inbuffer_length 

 
public javax.microedition.io.Datagram in_packet 

 
public javax.microedition.io.Datagram out_packet 

 

Constructor Detail  

 
public StateCoordinator(com.IMC.coordination.StateBuffer sbuffer) 

calls super class to open datagram connection to receive packets on port 
com.IMC.database.data.DEFAULT_DATAGRAM_PORT_NUMBER 

Parameters: 
sbuffer - = serverbuffer 

 

Method Detail  

 
public synchronized void run() 

Thread implementation for servicing datagrams received. State flags are received from supervisor 
and serviced; eg flag 0; receive single set of trajectory data (pos, vel accl) and flag device FSM to 
run trajectory right away; 

 
private void serviceTrajProfileDatagram(int profileType) 

Method services trajectory profile data. It uses a FIFO buffer and coordinates with supervisor as 
data stream in and is consumed. Thus large storage space for trajectory data is not needed 

Parameters: 
profileType - int; indicates which state or mode of trajectory is desired, ie synchronized, 
interpolation data, unsynchronized, break. 
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com.IMC.coordination  
Class Counter 
public class Counter  

Class implements methods to read and log encoder positions 

Field Detail  

public static int[] position 
array to store positions 

 
public static int messageCount 

index used to set granularity of logs; eg log every 3rd point 

 
public static int index 

position index 

 

Method Detail  

public static void posCounter() 
reads position into position[] 

 
 
public static void posCounter2() 

Logs according to granularity provided. This is used by a logging thread which runs continuously 

 
com.IMC.coordination  
Class Device 
public class Device 
extends java.lang.Thread  

This class makes several calls on drive the com.IMC.drivers.LM628 to command the LM628 for 
various moves. It also starts DatagramServer and Monitor thread objects and runs a thread with a 
Finite State Machine to service supervising coordinator's commands 

Field Detail  

private static com.IMC.coordination.StateBuffer statebuffer 

 
private static com.IMC.drivers.LM628 Model 

 
private com.IMC.coordination.StateCoordinator statecoordinator 

 
 
public static com.IMC.coordination.Monitor monitor 

 

Constructor Detail  

public Device(com.IMC.coordination.StateBuffer sbuffer) 
Instantiates lm628 with serverbuffer as its argument; Starts the dServer with serverbuffer as its 
argument; Starts the limit switch drivers 

Parameters: 
sbuffer -  

 

Method Detail  

public static void setPIDfilter() 
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Method to set the LM628 PID filter. Filter parameters are stored in sbuffer 

 
public synchronized void run() 

Attempts to initialize lm628. If successful the following are executed; Instantiates monitor with 
serverbuffer as argument; Starts FSM to service supervising coordinator commands 

 
 

com.IMC.coordination  
Class EncoderReader 
public class EncoderReader 
extends java.lang.Thread  

implements a low priority thread to read encoder position 

Field Detail  

private com.IMC.coordination.Monitor monitor 

 
private static com.IMC.coordination.StateBuffer serverbuffer 

 

Constructor Detail  

public EncoderReader(com.IMC.coordination.Monitor mon, 
                     com.IMC.coordination.StateBuffer sbuffer) 
Parameters: 

mon -  
sbuffer -  

 

Method Detail  

public synchronized void run() 
Method continuously reads encoder position and send it across network to supervisor 

 
 

com.IMC.coordination  
Class Interpolation_Server 
public class Interpolation_Server 
extends com.IMC.network.DatagramServer 
implements java.lang.Runnable  

This class implements a high priority thread to receive streams of multicasted setpoints from an 
interpolator for coordinated axes moves. 

Field Detail  

private static int mode 
mode = 0 => set LM628 to position mode ; mode=1 set LM628 in velocity mode 

 
private static int controlMode 

used in velocity mode to set direction of travel 

 
public static int axisNum 

unique ID of controller supplied by supervisor 

 
private static int bufSize 

datagram byte[] buffer size 
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private com.IMC.drivers.LM628 lm628 

 
private com.IMC.coordination.StateBuffer sbuffer 

 

Constructor Detail  

public Interpolation_Server(int modes, 
                            boolean flag, 
                            com.IMC.coordination.StateBuffer statebuffer) 

calls super class to open datagram connection to receive multicasts on 
com.IMC.database.PRIORITY_MULTICAST_PORT_NUMBER.; bufSize: 4 bytes for 
interpolation period, 4 bytes for each coordinated axis. , ie, bufSize = axisNum * 4 + 4; 

Parameters: 
modes - 0 -> position mode; 1-> velocity mode 
flag - true if datagramconnection has already been created 
statebuffer - StateBuffer 

 

Method Detail  

public void run() 
Thread's run method creates datagram packet with bufSize Field, creates high priority LM628 
object and runs the appropriate profile mode, ie position or velocity 

 
void positionMode(javax.microedition.io.Datagram packet) 

position Mode execution. Datagram containing velocities and positions are received. The ones 
meant for receiving controller are extracted based on its axisNum ID. Method loads the LM628 
controller with trajectory data each time data arrive 

Parameters: 
packet - Datagram; passed to it by run() method 

 
void velocityMode(javax.microedition.io.Datagram packet) 

velocity Mode execution. Datagram containing velocities and positions are received. The ones 
meant for receiving controller are extracted based on its axisNum ID. Method loads the LM628 
controller with trajectory data each time data arrive. When position direction changes, motor is 
commanded to change direction of rotation 

Parameters: 
packet - Datagram; passed to it by run() method 

 
 

com.IMC.coordination  
Class Interpolation_Server_Starter 
public class Interpolation_Server_Starter  

Class executes method to initialize and start the Interpolation_Server 

Method Detail  

public void startDatagramInterpolator(int mode, 
                                      com.IMC.coordination.StateBuffer statebuffer) 

Starts DatagramServerInterpolator 
Parameters: 

mode - int; 0 ->position mode; 1 -> velocity mode 
statebuffer - StateBuffer 
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com.IMC.coordination 
 Class MainClass 
public class MainClass 
extends com.IMC.coordination.StateBuffer 
implements java.lang.Runnable  

The main thread starts the controller. 

Constructor Detail  

 
public MainClass() 

 

Method Detail  

public void run() 
thread's run method creates a ServerBuffer object, serverbuffer and runs 
com.IMC.coordination.StateBuffer.startController synchronized method. This method waits for 
lock to be released by JmDNS_Coordinator.class, i.e., for supervising coordinator to logon. 
When lock is released, MultiCastServer.class and Device.class thread objects are started with 
serverbuffer as their arguments 

 
public static void main(java.lang.String[] arg) 

main method starts FileServer_ConfigFiles.run(), initiates clock for motion controller (if JStick 
clock is selected), and calls a NTP timer server with sntpReceiver() to set its base time 

Parameters: 
arg - String[] 

 
public static void sntpReceiver() 

Logs on to a time server and sets aJile’s wall date and clock 

 
 
com.IMC.coordination  
Class Monitor 
public class Monitor 
extends com.IMC.network.TCPServer  

Creates TCP server socket to send data, synch flags and messages to supervisor 

Field Detail  

private static java.io.DataOutputStream dataout 

 

Constructor Detail  

public Monitor(com.IMC.coordination.StateBuffer serverbuffer) 
Calls super class to create server socket connection on 
com.IMC.database.DEFAULT_MONITOR_SOCKET_PORT. Starts encoder reader which 
streams encoder positions 

Parameters: 
serverbuffer - ServerBuffer 

 

Method Detail  

public void send_data(int data) 
Parameters: 

data - int 
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public static void send_flag() 

Method sends synchronization flag to supervisor coordinator during synchronized motion 

 
public static void send_Text(java.lang.String text) 
Parameters: 

text - String 

 
public static void send_Stop() 

 
public static void sendEmergencyStop() 

 
public static void send_initialInfo() 

 
 
com.IMC.coordination  
Class MultiCasted_States 
public class MultiCasted_States 
extends com.IMC.network.MulticastServer 
implements java.lang.Runnable  

Receives motor STOP, RUN flags from supervisor and puts them in a StateBuffer object 

Field Detail  

private static com.IMC.coordination.StateBuffer statebuffer 

 
private static int mcastport 

Port number to listen on for multicast messages 

 
private static java.lang.String mcastaddress 

IP address to listen on for multicast messages 

 
public static int mcastFlag 

Flag value 

 

Constructor Detail  

public MultiCasted_States(com.IMC.coordination.StateBuffer s) 
Calls super class to join multicast group on 
com.IMC.database.data.Data.DEFAULT_MULTICAST_IP_ADDRESS and 
com.IMC.database.data.Data.DEFAULT_MULTICAST_PORT_NUMBER 

Parameters: 
s - StateBuffer 

 

Method Detail  

public void run() 
Uses the receiver to listen forever for state flags such as trajectory mode, start, stop, from 
supervisor. Flags are put in StateBuffer object 

 
 
com.IMC.coordination  
Class StateBuffer 
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public class StateBuffer 
extends com.IMC.database.PushPullData  

This Class contains registers which report states eg stop, start. It extends PushPullData @see 
com.com.IMC.data.PushPullData 

Field Detail  

private int stopState 

 
private static boolean deviceRunFlag 

 
public static boolean break_flag 

 
private static boolean check_BusyFlag 

Used in a synchronized method to put EncoderReader in wait 

 

Constructor Detail  

public StateBuffer() 
initializes flags 

 

Method Detail  

public synchronized int get_flag() 
get state of stopState flag. wait and notified() methods used by this method to put calling methods 
in wait or release them 

Returns: 
int stopState 

 
public synchronized void put_flag(int sbyte) 

Sets stopState 
Parameters: 

sbyte - int - if 0, FSM continues (or starts) trajectory; if 1 stops trajectory and puts objects calling 
on this method to wait for go cmd; if 2 hold and wait for lock to be released. This is used in cases 
where trajectory data is sent to two or more controllers. Method causes each controller to hold 
after receiving this data until it receives a multicast 'go' cmd. Multicast is used to effect 
synchronized motion 

 
public synchronized void get_monitorBusyFlag() 

Used in synchronized move and all high priority communications with supervisor to put objects 
calling on this method into a wait state 

 
public synchronized void put_monitorBusyFlag(boolean value) 

Used in synchronized move and all high priority communications with supervisor. Methods sets 
check_BusyFlag 

Parameters: 
value - boolean 

 
public synchronized void put_deviceRunFlag(boolean value) 

Sets deviceRunFlag. 
Parameters: 

value - true to release FSM to run, false otherwise 

 
public synchronized void get_deviceRunFlag() 

Method puts Device in wait until lock is released - to save CPU time 
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public synchronized void startController() 

Method to control start of controller. If controller needs to be restarted because some vital 
parameters have been changed, method will put calling object in wait state 

 
 

B3 com.IMC.servlets 
 Class PositionDump 
public class PositionDump 
extends javax.servlet.http.HttpServlet  

This servlet is for displaying encoder positions logged by the com.IMC.coordination.Counter in 
HTML format 

Method Detail  

public void init(javax.servlet.ServletConfig config) 
Server calls this method when servlet's URL is requested 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

 
protected void doGet(javax.servlet.http.HttpServletRequest req, 
                     javax.servlet.http.HttpServletResponse res) 

Queries com.IMC.coordination.Counter for position logs and displays them in HTML format 
Parameters: 

req - HttpServletRequest 
res - HttpServletResponse 

Throws: 
ServletException -  
IOException -  

 
 

com.IMC.servlets 
 Class ConfigureDevice 
public class ConfigureDevice 
extends com.qindesign.servlet.AuthenticatedHttpServlet  

This class executes servlet methods to create html GUI for user to configure the motion 
controller. It runs on a Tynamo server built for aJile's embedded Java devices 

Field Detail  

private java.lang.String filename 
configuration parameters in file /configuration/config.txt 
parameters are the field names below 

 
private static java.lang.String device 

 
private static java.lang.String encoder 

 
private static java.lang.String switches 

 
private static java.lang.String mmToRevFactor 

 
private static java.lang.String PROPORTIONAL 
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private static java.lang.String INTEGRAL 

 
private static java.lang.String DERIVATIVE 

 
private static java.lang.String INTEGRAL_LIMIT 

 
private static java.lang.String DERIVATIVE_SAMPLE 

 
private static java.lang.String encoderRepInt 

 
private static java.lang.String speedOverRide 

 
private static java.lang.String EXCESSIVE_POS 

 
private static java.lang.String clockSource 

 
private static java.lang.String restartFlag 

 
private static java.lang.String home

 
private static boolean restart 

restart controller flag 

 

Method Detail  

public void init(javax.servlet.ServletConfig config) 
The Server initiates this servlet with this method when its URL is requested by client. Method 
reads configuration file into configuration vector 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

 
 
public java.lang.String getRealm(javax.servlet.http.HttpServletRequest req) 

Required method. Gets the realm based on the request. 

 
public boolean isAuthorized(java.lang.String realm, 
                            java.lang.String user, 
                            java.lang.String pass) 

Required method. Checks if the given user/password is authorized in the given realm. 

 
protected void doUnauthorizedGet(javax.servlet.http.HttpServletRequest req, 
                                 javax.servlet.http.HttpServletResponse resp) 

Unauthorized GET request. 

 
protected void doUnauthorizedPost(javax.servlet.http.HttpServletRequest req, 
                                  javax.servlet.http.HttpServletResponse resp) 

Unauthorized POST request. 

 
protected void doGet(javax.servlet.http.HttpServletRequest req, 
                     javax.servlet.http.HttpServletResponse res) 
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generates html of controller configuration and handles GET requests from users (clients), ie 
generates HTML forms and text for users to change values; has control buttons for users to call 
doPost and also set controller up for desired configuration; Modifies configuration file and saves 
it in nonvolatile memory; alerts user to restart controller if configuration changes eg clock speed 
are critical. 

Parameters: 
req - HttpServletRequest; used to read incoming HTTP headers and HTML form data 
res - HttpServletResponse; used to specify the HTTP response line and headers 

Throws: 
ServletException -  
IOException -  

 
protected void doPost(javax.servlet.http.HttpServletRequest req, 
                      javax.servlet.http.HttpServletResponse res) 

doPost method generates html form for client to change controller configuration such as PID 
filter values, clock speed, etc. 

Parameters: 
req - HttpServletRequest 
res - HttpServletResponse 

Throws: 
ServletException -  
IOException -  

 
private void save() 

Method to save configuration file 
Throws: 

IOException -  

 
private void reset() 

Method to reset configuration file to default 
Throws: 

IOException -  

 
 

com.IMC.servlets 
 Class ControllerInfo 
public class ControllerInfo 
extends javax.servlet.http.HttpServlet  

This Servlet displays information about controller services and configuration 

Field Detail  

 
private java.util.Vector applications

 
private java.lang.String filename 

 
private com.IMC.database.FileService file 

 
private static java.util.Vector configuration 

 

Method Detail  

public void init(javax.servlet.ServletConfig config) 
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The Server initiates this servlet with this method when its URL is requested by client. Method 
reads configuration files into Vectors 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

 
protected void doGet(javax.servlet.http.HttpServletRequest req, 
                     javax.servlet.http.HttpServletResponse res) 
Parameters: 

req - HttpServletRequest 
res - HttpServletResponse 

Throws: 
ServletException -  
IOException -  

 
 

com.IMC.servlets  
Class EditJmDNS 
public class EditJmDNS 
extends javax.servlet.http.HttpServlet  

This class executes servlet methods to create html GUI for user to configure JmDNS 'discover' 
and 'register' services for this device It runs on a Tynamo server built for aJile's embedded Java 
devices 

Field Detail  

 
private static java.util.Vector viewListener 

Vector to hold JmDNS 'discover' data 

 
 
private static java.util.Vector viewRegister 

Vector to hold JmDNS 'register' data 

 

Method Detail  

public void init(javax.servlet.ServletConfig config) 
The Server initiates this servlet with this method when its URL is requested by client; Method 
reads contents of JmDNS 'discover' and 'register' files into viewListener and viewRegister 
Vectors 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

 
protected void doGet(javax.servlet.http.HttpServletRequest req, 
                     javax.servlet.http.HttpServletResponse res) 

generates html of JmDNS services on network and also services registered by controller; 
processes data posted by doPost(); has control buttons for users to call doPost 

Parameters: 
req - used to read incoming HTTP headers and HTML form data 
res - used to specify the HTTP response line and headers 

Throws: 
ServletException -  
IOException -  
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protected void doPost(javax.servlet.http.HttpServletRequest req, 
                      javax.servlet.http.HttpServletResponse res) 

Generates HTML forms for clients to change JmDNS settings, register services and also listen for 
specified services on the network 

Parameters: 
req - HttpServletRequest 
res - HttpServletResponse 

Throws: 
ServletException -  
IOException -  

 
 

com.IMC.servlets  
Class JmDNS_Coordinator 
public class JmDNS_Coordinator 
extends javax.servlet.http.HttpServlet  

The Server initiates this servlet automatically when the server is started. This is the main tool for 
the controller's PnP reconfigurability. When the controller starts the Server, this servlet listens for 
services on the network, ie, the Supervisor and other nodes on the network. Service info received 
contains all parameters to enable this controller to communicate appropriately. When services are 
removed the servlet notifies the controller. The servlet also registers or publishes services it 
provides eg motion control. Method reads configuration file into configuration vector 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

Field Detail  

private static java.util.Vector addBuffer 
holds services discovered 

 
private static java.util.Vector removeBuffer 

services removed from network 

 
private static java.util.Vector resolveBuffer 

services resolved 

 
private static java.util.Vector viewListener 

controller listens for services in this Vector 

 
private static java.util.Vector viewRegister 

controller registers services in this Vector 

 
public static javax.jmdns.JmDNS jmdns 

 
private static java.lang.String supervisorIP 

Supervisor's IP is stored by this string 

 
private static int supervisorPort 

 
public static java.util.Vector deviceName 

array for device names discovered on network 
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public static boolean isServiceRegistered 

 
private static java.util.Vector listenerVector 

holds listeners for viewListener Field 

 

Method Detail  

 
public void init(javax.servlet.ServletConfig config) 

This is called immediately when Server starts. Method starts JmDNS, executes methods to listen 
and discover services. If controller has been rebooted after a reconfiguration procedure which 
requires a reboot, the servlet registers its services. The servlet checks 
Constants.initializeController flag for this. 

Parameters: 
config - ServletConfig 

Throws: 
ServletException -  

 
public static void discoverJmDNS() 

Method executes a JmDNS service listener for each service to be discovered 

 
public static void registerJmDNS() 

Method calls registerJmDNS() for each service in viewRegister 

 
protected void doGet(javax.servlet.http.HttpServletRequest req, 
                     javax.servlet.http.HttpServletResponse res) 

Displays HTML showing services registered and discovered 
Parameters: 

req - HttpServletRequest 
res - HttpServletResponse 

Throws: 
ServletException -  
IOException -  

 
public static void registerAService(java.lang.String type, 
                                    java.lang.String name, 
                                    int port, 
                                    int weight, 
                                    int priority, 
                                    java.lang.String text) 

Method is called by registerJmDNS() for each service to be registered 

 
public static void unregisterAll() 

Method used to unregister all services 

 
 

B4 com.IMC.drivers  
Class Reference_Switch_Driver 
public class Reference_Switch_Driver  

Reference switch driver. 

Constructor Detail  

public Reference_Switch_Driver(java.lang.String device) 
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Moves motion device to its hardware reference switch. Implements a TriggerEventListener to 
service interrupt on the reference position pin. Also used to move device to its home position 

Parameters: 
device - String represents motion device. Home position for device is stored in its configuration 
file 

 

Method Detail  

void GotoHomePosition() 
Finds home position relative to reference switch as defined in configuration file 

 
 

com.IMC.drivers 
Class GPIOPinA3 
public class GPIOPinA3  

Class to assert JSimm pin A3 . 

Field Detail  

public static com.ajile.drivers.gpio.GpioPin pin3 
Creates General Purpose I/O pin A3 

 

Method Detail  

public static boolean state() 
Returns: 

true if pin is high; false if pin is low

 
public static boolean enable() 

Configures pin as output pin and drives it low 
Returns: 

true 

 
public static boolean disable() 

Configures pin as output pin and drives it high 
Returns: 

true 

 
 

com.IMC.drivers 
Class HSIO_Driver 
public class HSIO_Driver  

Sets up HSIO pins and configures the HSIO for read/write operations 

Field Detail  

private static final int HSIO_CS0_ADDRESS 
Chips Select CS0 address = 0x01400000; 

 
 
private int HSIOPortAddress 

HSIOPortAddress = HSIO_CS0_ADDRESS 

 

Constructor Detail  

public HSIO_Driver(int PinAddress, 
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                   byte A19_A16, 
                   int A20) 

creates a new HsioPort with port address PinAddress and a clock divider of A19_A16 on chip 
select 0. Wait bit is A20 

Parameters: 
PinAddress - The new HSIO address of the port. 
A19_A16 - clock divider bits of the HSIO address + 1. 
A20 - wait bit 

 
public HSIO_Driver(int PinAddress, 
                   byte A19_A16, 
                   int A20, 
                   boolean SelectCS1) 

creates a new HsioPort with port address PinAddress and a clock divider of A19_A16 on chip 
select 0 or 1. Wait bit is A20 

Parameters: 
PinAddress - The new HSIO address of the port. 
A19_A16 - clock divider bits of the HSIO address + 1. 
A20 wait bit 
SelectCS1 - true if CS1 false if CS0 should be selected 

 

Method Detail  

public void setHsioAddress(int PinAddress) 
Sets HSIO address in HSIO address space. It verifies that the address is only 12 bits and throws 
an IllegalArgumentException if it is not. 

Parameters: 
PinAddress - int 

Throws: 
IllegalArgumentException -  

 
public void setHsioTiming(byte A19_A16) 

sets the HSIO timing bits [19:16] in the JStik address to the low order bits of A19_A16. 
Parameters: 

A19_A16 - byte 
Throws: 

IllegalArgumentException - if there are more than 4 bits  

 
public void setHsioA20(int Tas) 

sets the HSIO wait state, A20. Can be 0 or 1. Adds one CLKO to the setup time from address 
asserted to RD or WR asserted. Also adds one CLKO period to the write hold time (WR negated 
to WAIT negated). 

Parameters: 
Tas - int 

Throws: 
IllegalArgumentException - if more than 1 bit ie decimal 1 

 
public void setChipSelect(boolean SelectCS1) 

Sets the chip select bit in the port address. * 
Parameters: 

SelectCS1 - if true, chip select 1 is selected. If false, chip select 0 is selected 

 
public int getRawJStikAddress() 

returns HSIOPortAddress for use with RawJem reads and writes without overhead. 
Returns: 
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int address of HSIOPortAddress 

 
public void setRawJStikAddress(int JStikAddress) 

Verifies that the address is a valid HSIO address in the JStik address space. A bad address can 
write to arbitrary places in memory and cause object and heap corruption. 

 
public int read() 

reads a byte from the HSIO port. 
Returns: 

The return value is an integer for performance reasons. 

 
public void write(int data) 

writes a byte to the HSIO port. data is an int to improve performance over the read, modify, write 
implementation of the JVM. The HSIO data bus is only 8 bits wide anyway, so the high order 24 
bits are not transmitted. 

Parameters: 
data - is the byte to be transmitted. 

 
 
com.IMC.drivers 
Class JStickTimer_tc2 
public class JStickTimer_tc2  

Usage of the 3rd aJ100 General Purpose Timer/Counter hardware with output on pin 15. Low 
Level Device Driver classes. This is used as an alternate clock source for the LM628. The neat 
thing is flexibility of clock control. Different clock speeds can be configured on this timer and 
diff sorts of interrupts may be received and serviced accordingly. LM628 requires clock speeds 
of between 1 and 6MHz inclusive. Jumper JP1 on the controller board has to be inserted on pins 
CLK2 and OUT!! 

Field Detail  

private com.ajile.drivers.gptc.TimerCounter tc2 

 
private static int prescalerReloadRegisterValue 

 
private static int reloadRegisterValue 

 

Constructor Detail  

public JStickTimer_tc2(double freqMHz) 
Configures the hardware timer 2 to generate frequency of 6MHz or less to clock the LM628. 

 
Method Detail  

public static void main(java.lang.String[] args) 
Create an Example instance then perform some operations on that instance. 

 
public static double freqCalculator(int PrescalerReloadRegisterValue, 
                                    int ReloadRegisterValue) 

method to calculate freq. given PrescalerReloadRegisterValue and setReloadRegisterValue 
Parameters: 

PrescalerReloadRegisterValue - int 
ReloadRegisterValue - int 

Returns: 
double frequency in MHz 
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public static void prescalerReloadValues(double freqMHz) 

This function calculates PrescalerReloadRegisterValue and setReloadRegisterValue for 
symmetrical square waves. 

Parameters: 
freqMHz - is the desired frequency 

Throws: 
java.lang.IllegalArgumentException - if frequency>6MHz 

 
 

com.IMC.drivers  
Class LimitSwitch_Left 
public class LimitSwitch_Left  

Contains methods to service interrupts received on left limit switch 

Field Detail  

final com.ajile.drivers.gpio.GpioPin pinA3 
set up GPIO pin connected to left limit switch 

 
com.IMC.coordination.Monitor monitor 

Monitor object sends interrupt messages to supervising coordinator

 

Constructor Detail  

public LimitSwitch_Left(com.IMC.coordination.Monitor mon) 
Funtion sets up a TriggerEventListener to receive and service interrupts Also debounces pin to 
avoid sporadic responses 

Parameters: 
mon - Monitor 

 
Method Detail  

void send() 
Used by Constructor to send emergency message if limit switch is triggered 

 
 

com.IMC.drivers  
Class LimitSwitch_Right 
public class LimitSwitch_Right  

Contains methods to service interrupts received on right limit switch 

Field Detail  

final com.ajile.drivers.gpio.GpioPin pinA4 
set up GPIO pin connected to right limit switch 

 
com.IMC.coordination.Monitor monitor 

Monitor object sends interrupt messages to supervising coordinator 

 
Constructor Detail  

public LimitSwitch_Right(com.IMC.coordination.Monitor mon) 
Funtion sets up a TriggerEventListener to receive and service interrupts Also debounces pin to 
avoid sporadic responses 

Parameters: 
mon - Monitor 



238 

 
Method Detail  

void send() 
Used by Constructor to send emergency message if limit switch is triggered 

 
 
com.IMC.drivers  
Class LM628 
public class LM628  

This class contains functions for commanding the LM628 and sending/receiving data from/to it. 
Field values are commands. Refer to the LM628 manual for definitions 

Field Detail  

public static final int RESET 

 
public static final int RSTI 

 
public static final int DFH 

 
public static final int SIP 

 
public static final int LPEI 

 
public static final int LPES 

 
public static final int SBPA 

 
public static final int SBPR 

 
public static final int MSKI 

 
public static final int LFIL 

 
public static final int UDF 

 
public static final int LTRJ 

 
public static final int STT 

 
public static final int RDSIGS 

 
public static final int RDIP 

 
public static final int RDDP 

 
public static final int RDRP 

 
public static final int RDDV 

 
public static final int RDRV 
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public static final int RDSUM 

 
public static final int PORT12 

 
private static final int addr 

address A0 of JStick HSIO 

 
private static final byte div 

HSIO Timing value; div = 1 

 
private static final int tas 

HSIO Wait value; tas =1; 

 
private static final int addrBase 

base address of JStick HSIO 

 
public static double NLINE 

number of encoder lines 

 
private static double CLK 

LM628 clock value 

 
private static int SMP_RT 

Sampling rate 

 
public static int rdataLM628 

variable for storing data read from LM628 

 
public static int rdstatusLM628 

variable for storing data LM628 status info 

 
private static final com.IMC.drivers.HSIO_Driver HSIO_ADDRESS_A0 

HSIO_Driver object for address A0 

 
private static com.IMC.drivers.HSIO_Driver HSIO_ADDRESS_BASE 

HSIO_Driver object for base address 

 
private static com.IMC.coordination.StateBuffer statebuffer 

 
private static double pos_Constant 

variable to store constant for calculating position 

 
private static double vel_Constant 

variable to store constant for calculating velocity 

 
private static double accl_Constant 

variable to store constant for calculating acceleration 

 
Constructor Detail  

public LM628() 
default constructor 
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public LM628(com.IMC.coordination.StateBuffer sbuffer) 
constructor initializes clock value, number of encoder lines and position, velocity and 
acceleration constants 

Parameters: 
sbuffer=statebuffer -  

 
Method Detail  

public static void check_busy_bit() 
Polls status byte until busy bit is cleared by the chip ie, = 0 

 
public static void write_command(int CMD) 

function writes command to the LM628 base address. On LM628 PS->low, CS->low, WR->low 
On JStick A0->low, CS0->low, WR->low. Each address pin (A0-A11) holds low if there's no 
RD/WR to it. 

Parameters: 
CMD - command value as in Fields 

 
public static void write_data(int data) 

Function writes data to the LM628 to address space A0. On LM628 PS->high, CS->low, WR-
>low On JStick A0->high, CS0->low, WR->low. 

Parameters: 
data - in integer form 

 
public static int read_data() 

Function reads data from the LM628 address space A0. On LM628 PS->high, CS->low, RD-
>low On JStick A0->high, CS0->low, RD->low. 

Returns: 
value read 

 
public static int read_status() 

Function reads the LM628 status register from base address. On LM628 PS->low, CS->low, RD-
>low. On JStick A0->low, CS0->low, RD->low. 

Returns: 
value read 

 
public static int read_signals_register() 

reads the LM628 16 bit signals register 
Returns: 

signals_reg 

 
public static void chk_motoroff() 

polls status register until motor off bit is set (1) 

 
public static void wait_traj_bit() 

polls status register bit until trajectory end bit is set (1) or a stop signal is received from a state 
machine 

 
public static void chk_breakpt() 

polls status register bit until breakpoint bit is set (1) or a stop signal is received from a state 
machine 

 
public static void waitTrajBit_log() 
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polls status register bit until trajectory end bit is set (1) or a stop signal is received from a state 
machine. In the meantime it logs positions 

 
public static void chkBreakpt_log() 

polls status register bit until breakpoint bit is set (1) or a stop signal is received from a state 
machine. In the meantime it logs positions 

 
public static void breakpoint(double FIN_POS, 
                              boolean isAbsolute) 

This method loads a breakpoint position as relative or absolute 
Parameters: 

FIN_POS - double ; final position. This is scaled up (see LM628 documentation) and type cast as 
an integer. Since Java integer is 32-bits long, method splits FIN_POS into 4 bytes and writes 
them a byte at a time starting with the MSB 
isAbsolute - boolean; true if FIN_POS is absolute 

 
public static synchronized void traj_sel(int high_byte, 
                                         int low_byte, 
                                         double FIN_POS, 
                                         double VEL_FIN, 
                                         double ACCL) 

The Trajectory command is followed by a 2-byte data containing motion configuration 
parameters, eg load relative position, position or velocity mode, etc. This is followed by the 
trajectory data in the order acceleration position velocity. Each is 32 bits (integer) so method 
splits each into 4 bytes and writes them starting with the MSB. 

Parameters: 
high_byte - high byte of trajectory command data 
low_byte - low byte of trajectory command configuration data 
FIN_POS - Final position 
VEL_FIN - Final velocity 
ACCL - Final acceleration see traj_sel method above 

 
public static synchronized void traj_sel_2(int control_bytes, 
                                           double FIN_POS, 
                                           double VEL_FIN, 
                                           double ACCL) 

The Trajectory command is followed by a 2-byte data containing motion configuration 
parameters, eg load relative position, position or velocity mode, etc. This is followed by the 
trajectory data in the order acceleration position velocity. Each is 32 bits (integer) so method 
splits each into 4 bytes and writes them starting with the MSB. 

Parameters: 
control_bytes - int; trajectory command configuration data. This is 2 bytes so it is split into 2 
bytes 
FIN_POS - Final position 
VEL_FIN - Final velocity 
ACCL - Final acceleration see traj_sel method above 

 
public static synchronized void traj_sel_3(double FIN_POS, 
                                           double VEL_FIN) 

This loads only position (in revs) and velocity (rev/s): trajectory control byte configures for 
absolute position and velocity 

Parameters: 
FIN_POS - Final position 
VEL_FIN - Final velocity see traj_sel method 
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public static synchronized void traj_sel_abs_Rel(double FIN_POS, 
                                                 double VEL_FIN, 
                                                 boolean isAbsolutePos, 
                                                 boolean isAbsoluteVel) 

Method loads only position (in revs) and velocity (rev/s): 
Parameters: 

FIN_POS - Final position 
VEL_FIN - Final velocity 
isAbsolutePos - true for absolute position or false for relative position 
isAbsoluteVel - true for absolute velocity or false for relative velocity see traj_sel method 

 
public static synchronized void trajSel_Vel(double VEL_FIN, 
                                            boolean isAbsolute) 

Method loads only velocity (mm/s) in velocity mode. 
Parameters: 

FIN_POS - Final position 
VEL_FIN - Final velocity 
isAbsolute - true for absolute velocity or false for relative velocity see traj_sel method 

 
public static synchronized void traj_sel_4(int mode, 
                                           double VEL_FIN) 

Method loads only velocity (mm/s) in velocity mode. 
Parameters: 

mode - used by trajectory configuration to determine motor direction 
VEL_FIN - Final velocity see traj_sel method 

 
 
public static synchronized void traj_sel_home(double VEL_FIN, 
                                              double ACCL) 

Method loads trajectory in velocity mode for moving motion device to its home position 
Parameters: 

VEL_FIN - Final velocity 
ACCL - acceleration see traj_sel method 

 
 
public static void filter_sel(int Kp, 
                              int Ki, 
                              int Kd, 
                              int Il, 
                              int CLK_SC) 

Programs the PID Filter 
Parameters: 

Kp - Proportional term 
Ki - Integral 
Kd - Derivative 
Il - Integral limit 
CLK_SC - programs derivative sampling rate 

 
 
public static synchronized void run_motor() 

Function to run motor 

 
 
public static void define_home() 

Defines home (position 0) 
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public static void excessivePosError(int EncoderCounts) 

method sets the condition for detecting excessive position error 
Parameters: 

EncoderCounts - int 

 
 
public static int readIndex() 

method for reading position recorded in the index register 
Returns: 

int; index position 

 
 
public static int readPosition() 

reads real position 
Returns: 

int; position 

 
 
public static int readVel() 

read real velocity 
Returns: 

int; velocity 

 
 
public static int readDesiredPosition() 

method to read desired position 
Returns: 

int; desired position 

 
public static void reset_interrupt_register(int value) 

Method to set interrupt register 
Parameters: 

value - register value desired. Zero in an interrupt register bit position resets the corresponding 
interrupt 

 
public static boolean initialize() 

Method for doing hardware and interrupt resets 
Returns: 

boolean true if successful 

 
public static void mask_reg(int mask_bits) 

method for masking interrupt bits in interrupt register 
Parameters: 

mask_bits - int 

 
public static void stop_Anywhere() 

method to halt motor abruptly 

 
public static void set_DAC() 

Method for calibrating the DAC [AD667]. The motor driver should be off. 1. set all bits to 0 by 
issuing a reverse velocity command and adjust the offset trimmer until the output is -10.00V. 2. 



244 

set all bits to 1 by issuing fwd velocity command and adjust the gain trimmer until the output is 
9.9976V. 

 
public static void reset() 

Method to do a soft reset of the LM628 

 
 

com.IMC.drivers  
Class Board_Clock 
public class Board_Clock  

Class to enable/disable the onboard clock. Its enable pin is hooked to JStick SIMM pin A6. 

Method Detail  
public static boolean disable() 

writes a zero to pin A6 to disable the onboard clock 
Returns: 

boolean; true 

 
public static boolean enable() 

writes a 1 to pin A6 to enable the onboard clock 
Returns: 

boolean; true 

 
 

com.IMC.drivers  
Class LM628_Interrupt 
public class LM628_Interrupt  

Contains method to receive and service hardware interrupts from the LM628 

Field Detail  

final com.ajile.drivers.gpio.GpioPin pinA1 

 
com.IMC.coordination.Monitor monitor 

Monitor.class object transmits interrupt condition to supervisor 

 
Constructor Detail  

public LM628_Interrupt(com.IMC.coordination.Monitor mon) 
Implements TriggerEventListener to receive and service interrupts 

Parameters: 
mon - Monitor = monitor as in field 

 
Method Detail  

void send() 
Sends interrupt info to supervisor 

 
 

com.IMC.drivers  
Class MotorAmp 
public class MotorAmp  

Class to enable/disable motor drivers. Motor amp's enable pin is hooked to JSimm pin A5 
through an inverter since pins are logic high when Jstick is powered. 
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Method Detail  

public static boolean enable() 
writes 0 to pin A5 to drive it low 

Returns: 
boolean true 

 
public static boolean disable() 

writes 1 to pin A5 to drive it high 
Returns: 

boolean; true 

 
 

B5 com.IMC.network 
Class TCPServer 
public class TCPServer  

Class creates a TCP server socket stream connection 

Field Detail  

public javax.microedition.io.StreamConnectionNotifier scn 

 
public javax.microedition.io.StreamConnection connection 

 
Constructor Detail  

public TCPServer(int server_port) 
Parameters: 

server_port - int 

 
 

com.IMC.network 
Class DatagramServer 
public class DatagramServer  

This class provides a CLDC DatagramConnection for datagram transmissions 

Field Detail  

public javax.microedition.io.DatagramConnection dgconn 

 
Constructor Detail  

public DatagramServer(int datagram_port) 
Parameters: 

datagram_port - int 

 
 

com.IMC.network  
Class MulticastServer 
public class MulticastServer  

Creates a Multicast socket 

Field Detail  

public javax.microedition.io.MulticastConnection mSocket 
Multicast Socket 

 
public int mGroup 
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Internet address group 

 
Constructor Detail  

public MulticastServer(java.lang.String multicast_address, 
                       int multicast_port) 
Parameters: 

multicast_address - String 
multicast_port - int 
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APPENDIX C: COORDINATOR SOFTWARE INTERFACE 

The System Coordinator domain handles all supervisory activities to guarantee the 

appropriate execution of tasks on the IMC controllers. All high-level tasks and commands 

are generated in this domain. These include human-machine interactions, system 

configuration, and Meta tasks such as “complex” inverse kinematics, which cannot be 

handled by the IMC nodes or the real-time coordinator. Table C1 shows the packages in 

this domain and their corresponding classes. The class interfaces are described in this 

appendix. 

 

 

Table C1: System Coordinator Software  

Package Description Classes 
com.coordinator.GUI Abstracts the Human-Machine 

Interface 
MainApplication 

MainGUIFrame 

TrajDataFrame 

TrajTable 

PIDTable 

com.coordinator.coordination Protocols for commanding and 
coordinating activities 

JmDNS_Coordinator 

JmDNS_Event_Server 

ControllerIO 

Monitor 

SynchFlag 

Trajectory_Server 

com.coordinator.database Temporary and permanent global 
repository 

Data 

JmDNS_DATA 

Traj_Configuration_Data  

GCodeParser 

GCodeSende 

com. coordinator.interpolation  Abstracts interpolation and 
kinematics algorithms 

Interpolator 

Transmission 

Transmission_ACK 

Transmission_Flag 

com. coordinator.network Abstracts protocols for 
communication 

DatagramSender 
McastDirect 
MulticastSender  
TCP_Client 
UDP_Client 
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C1 com.coordinator.database  
Class Traj_Configuration_Data 
public class Traj_Configuration_Data  

This class contains methods for initializing class for constructing trajectory set-points in 
TrajDataFrame.class 

Field Detail  

public static java.io.File getFileDirectory 
trajectory file "getFileDirectory" is used to find the parent directory 

 
public static java.lang.String AXES 

 
public static java.lang.String ACCELERATION 

 
public static java.lang.String INTERPOLATION_PERIOD 

 
public static java.lang.String INTERPOLATION_TYPE 

 
public static java.lang.String INTERPOLATION_PLATFORM 

 
public static java.lang.String COMMUNICATION_MODE 

 
public static java.lang.String CONTROLLER_MODE 

 
public static java.lang.String isAbsolute 

 
public static java.lang.String isAbsoluteVel 

 
public static java.lang.String[] AXIS_STRING 

"1","2","3","4","5","6","TRIPOD (5 AXIS)","PUMA" show up in combo box in TrajDataFrame 
class * 

 
public static final java.lang.String[] INTERPOL_TYPE_FIXED_STRING 

"breakpoint","nonbreakpoint", "nonbreakpoint (synchronized)","G CODE" show up in combo 
box in TrajDataFrame class * 

 
public static java.lang.String[] INTERPOL_TYPE_STRING 

 
public static java.lang.String[] INTERPOLATION_PLATFORM_STRING 

"Local Host", "JStick Host" show up in combo box in TrajDataFrame class 

 
public static java.lang.String[] COMMUNICATION_MODE_STRING 

"via RT JStick Host", "Multicast Direct" show up in combo box in TrajDataFrame class 

 
public static java.lang.String[] CONTROLLER_MODE_STRING 

"via RT JStick Host", "Multicast Direct" "Position Mode", "Velocity Mode" 

 
public static int counterSize 

controllers set their log buffers to this size 

 
public static int counterGranul 
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granularity or how often controllers log positions. This doesn't apply to GCode interpolation 
mode 

 

Constructor Detail  

public Traj_Configuration_Data(java.io.File getFileDirectory) 

Parameters: 
getFileDirectory - File; configuration file directory obtained from TrajDataFrame 

 

Method Detail  

public static void writeFile() 
this methods saves configuration parameters to trajConfig.txt which is in the same directory as 
user defined or selected trajectory data file 

 
public static void Configuration_Data() 

trajectory file "getFileDirectory" is used to find the parent directory this method attempts to fetch 
configuration parameters from trajConfig.txt. The parameters are used to update the 
TrajDataFrame GUI. If the file does not exists, default parameters are used and the trajConfig.txt 
is created with these values 

 
 
com.coordinator.database  
Class Data 
public class Data  

Class contains all network connection fields and control mode keys and values for hashtable it 
creates. 

Field Detail  

public static final int MONITOR_PORT 

 
public static final int MONITOR_PORT_TIMEOUT 

 
public static final int UDPdirectPort 

 
public static final int TCPdirectPort 

 
private static java.lang.String MULTICAST_IP_ADDRESS 

 
private static int MULTICAST_PORT_NUMBER 

 
public static boolean isJmDNSAlive 

 
public static int interpolatorTCPPort 

 
public static int interpolatorUDPPort 

 
public static int interpolatorUDPStreamPort 

 
public static java.lang.String interpolatorIP 

 
public static int McastDirectPort 
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public static java.lang.String McastDirectIP 

 
public static final java.lang.String[] DEVICES 

 
public static java.lang.String AXIS_1_IP 

 
public static java.lang.String AXIS_2_IP 

 
public static java.lang.String AXIS_3_IP 

 
public static java.lang.String AXIS_4_IP 

 
public static java.lang.String AXIS_5_IP 

 
public static java.lang.String AXIS_6_IP 

 
public static int AXIS_1_PORT 

 
public static int AXIS_2_PORT 

 
public static int AXIS_3_PORT 

 
public static int AXIS_4_PORT 

 
public static int AXIS_5_PORT 

 
public static int AXIS_6_PORT 

 
public static int AXIS_1_WEB_PORT 

 
public static int AXIS_2_WEB_PORT 

 
public static int AXIS_3_WEB_PORT 

 
public static int AXIS_4_WEB_PORT 

 
public static int AXIS_6_WEB_PORT 

 
public static java.lang.String[] CONTROL_MODES 

control modes; hastbale keys 

 
public static int[] CONTROL_FLAGS 

holds values for hashtable keys 

 

Method Detail  

public static int getControlFlag(java.lang.String flag) 
Stores and retrieves control flags from hashtable 

Parameters: 
flag - String 
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Returns: 
int; flag 

 
public static int getDeviceID(java.lang.String device) 

Stores ID of device detected on network to hashtable 

Parameters: 
device - String 

Returns: 
int; device ID 

Throws: 
Exception -  

 
public static int getDevicePort(java.lang.String device) 

Stores port nos. of devices detected on network in a hashtable 

Parameters: 
device - String 

Returns: 
int; port number 

Throws: 
Exception -  

 
public static java.lang.String getDeviceIP(java.lang.String device) 

Stores IP addresses of devices detected on network in a hashtable 

Parameters: 
device - String 

Returns: 
String; device 

Throws: 
Exception -  

 
 
public static java.lang.String putDeviceIPInfo(java.lang.String device 
     java.lang.String IP_Address, 
                                    int port) 

Stores IP address of device in hashIP and port number in hashPort 
Parameters: 

device - Device name; IP_Address - IP address; port – port number 

Throws: 
Exception -  

 
public static int getMulticastPort() 

Returns: 
int; main multicaster port number 

 
public static void putMulticastPort(int port) 

Parameters: 
port - int; main multicaster port number 

 
public static java.lang.String getMulticastIP() 

Returns: 
String; main multicaster IP address 
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public static void putMulticastIP(java.lang.String ip) 

Parameters: 
ip - String; main multicaster IP address 

 
public static java.lang.String getMcastDirectIP() 

Returns: 
String; IP address for multicaster streaming setpoints 

 
public static void putMcastDirectIP(java.lang.String ip) 

Parameters: 
ip - String; IP address for multicaster streaming setpoints 

 
public static int getMcastDirectPort() 

Returns: 
int; port number for multicaster streaming setpoints 

 
public static void putMcastDirectPort(int port) 

Parameters: 
port - int; port number for multicaster streaming setpoints 

 
public static int[] getInterpolatorPorts() 

Returns: 
int[]; holds interpolator's port numbers 

 
public static void putInterpolatorPorts(int tcpport, 
                                        int udpport, 
                                        int udpstreamport) 

Parameters: 
tcpport - int; interpolator's TCP port 
udpport - int; interpolator's UDP port 
udpstreamport - int; interpolator's UDP port for setpoint streaming 

 
public static java.lang.String getInterpolatorIP() 

Returns: 
String; interpolator's IP address 

 
public static void putInterpolatorIP(java.lang.String ip) 

Parameters: 
ip - String; puts interpolator's IP address in interpolatorIP 

 
 
com.coordinator.database 
Class DataTranspose 
public class DataTranspose  

Class has a method for transposing data in a file 

Constructor Detail  

public DataTranspose(java.io.File file, 
                     java.lang.String outFileName) 

Parameters: 
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file - File; input file 
outFileName - String 

 

Method Detail  

public static void main(java.lang.String[] args) 
main method executes DataTranspose 

Parameters: 
args - String[] 

 
 
com.coordinator.database  
Class FileDataToArrayConverter 
public class FileDataToArrayConverter  

Implements method to read trajectory data from file and store them in arrays according to the 
number of controllers 

Method Detail  

public static void dataServer(int type, 
                              java.io.File trajFile, 
                              int[] dataDim) 

Method called by TrajDataFrame.class to decompose trajectory data into arrays. 

Parameters: 
type - int; type=0->breakpoint, nonbreakpoint or synchronized trajectory mode type 
trajFile - File; trajectory file 
dataDim - int[]; array containing row and column sizes 

 
 
com.coordinator.database  
Class GCodeParser 
public class GCodeParser  

This class parses NC G Code for interpolation. 

Field Detail  

public static java.io.BufferedReader in 

 
public static java.io.DataOutputStream dout 

 
public static java.io.File file 

 

Constructor Detail  

public GCodeParser(java.io.File gfile) 

Parameters: 
gfile - File; G Code file 

 

Method Detail  

public void gCodeParser() 
Method to parse G Code into another file with the same name (and directory as the G Code file 
but with .bin extension ; In brief procedure is as ff; File ignores all comments prefixed to G 
Code; G Code commands are in 3 categories; motion parameters (eg G01, G02, G03, G00), state 
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(eg G90); coordinates (eg X90). Motion parameters are prefixed to coordinates by method, eg 
G01X90. If another motion parameter is read the previous is overwritten, eg G02X10. 

 
 
com.coordinator.database 
Class GCodeSender 
public class GCodeSender  

Sends parsed NC G code by TCP to JStick module designated for realtime interpolation This 
method tends to cause the module to draw excess current, likely due to the Ethernet controller set 
to TCP mode for this transaction. This causes the control module sharing the backplane to reset 
several times. Hence this method should probably be used only when the interpolator module has 
its own backplane 

Method Detail  

void gCodeParser() 

See Also: 
GCodeParser for implementation details. Coordinates in this method are converted to integers by 
scaling them by 1000. This is because it is computationally efficient for JSticks to receive 
datagrams containing integers than doubles. 

 
 
com.coordinator.database  
Class JmDNS_DATA 
public class JmDNS_DATA 
extends com.coordinator.database.Data  

Class holds JmDNS data 

Field Detail  

public static java.lang.String[] register 
array for services to be registered 

 
public static java.lang.String[] discover 

 

Constructor Detail  

public JmDNS_DATA() 
Fills register and discover arrays with data . Example register[0] = 
"_supervisor._tcp.local.,SUPERVISOR,MONITOR_DEFAULT_PORT,0,0"; discover[0] = 
"_http._tcp.local."; contains address and port of controller's server; connection info is used by 
GUI to create links discover[1] = "_mcast._udp.local."; contains address and port of controller's 
multicast receiver to connect with com.coordinator.network.MulticastSender discover[2] = 
"_device._pid.local.";contains address and port of controller's datagram server to connect with 
com.coordinator.network.DatagramSender. discover[3] = "_mcaststream._udp.local."; connection 
information for McastDirect 

See Also: 
com.coordinator.network.MulticastSender, com.coordinator.GUI.MainGUIFrame, 
com.coordinator.database.Data, com.coordinator.network.McastDirect, 
com.coordinator.network.DatagramSender 

 
C2 com.coordinator.coordination  
Class ControllerIO 
public class ControllerIO 
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extends com.coordinator.network.DatagramSender  
Regulator for setting up values and parameters to be sent to Controllers via datagram 

See Also: 
com.coordinator.network.DatagramSender. 

Constructor Detail  

public ControllerIO() 
creates trajectory array for holding pos, vel and accl for each device. This is used for single point 
(jog) mode 

 
Method Detail 

 
public void jog(java.lang.String device, 
                java.lang.String flag) 

Method for jogging axis or axes. 

Parameters: 
device - String 
flag - String; 

 
public void shutdownController(java.lang.String device, 
                               java.lang.String flag) 

method to send shutdown message to individual or all controllers 

 
public static void setMulticast(java.lang.String flag) 

method to send multicast run or stop flag to devices on the network 

 
public static void setDatagram(java.lang.String flag, 
                               int numaxes, 
                               double period, 
                               double accl) 

sends control flag and data to real-time interpolator. This interpolator may be put in a state to 
wait for G code or receive setpoints from local interpolator 

Parameters: 
flag - String; eg interpolator_viaRT_flag 
numaxes - int; number of coordinated axes 
period - double; period of interpolation 
accl - double; acceleration 

 
public static void setDatagram(java.lang.String flag, 
                               int[][] pid) 

For sending user-defined PID filter values 

Parameters: 
flag - String; if flag ==pidfilter send filter values to registered devices 
pid - array pid[m][n] for devices 

 
public void setDatagram(java.lang.String flag, 
                        double accl, 
                        int logSize) 

Parameters: 
flag - String; trajectory mode eg interpolator_gcode_velocitymode 
accl - double; acceleration 
logSize - int; size of log file 
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public void setDatagram(java.lang.String flag, 
                        int speedOverRide) 

sends speed Over-Ride value 

 
public void setDatagram(java.lang.String flag) 

for sending various signal (modes) to set the state of controllers. Signals are derived from 
com.coordinator.network.Database hastable keys 

Parameters: 
flag - String; key eg "drives_off" 

 
 
com.coordinator.coordination  
Class Trajectory_Server  
 
public class Trajectory_Server 
implements java.lang.Runnable  

When host PC or JStick is not used for explicit online interpolation, as in non-breakpoint, 
breakpoint and synchronized_non-break point modes, this thread class coordinates streaming of 
coarse trajectory data by datagram to controllers. When controller's receive buffers are full it 
informs its coordinator thread to send next batch. This enables us to use minimum resources on 
the controllers 

Field Detail  

public static final int maxDataRow_per_pkt 
Two columns of data (position, velocity) are packed into datagram. maxDataRow_per_pkt is the 
maximum n of the n x 2 matrix. 

 
java.lang.String address 

 
int port 

 
byte[] trajectory_data 

 
com.coordinator.network.UDP_Client udp 

 

Constructor Detail  

public Trajectory_Server(java.lang.String address, 
                         int port, 
                         int dataColumn) 

Parameters: 
ipAddress - String; IP Address of controller 
port - int; port number 
dataColumn - int; column position of data in trajectory file 

 

Method Detail  

public void run() 
Thread run method. Sends datagram packet containing a portion of data in trajectory file to 
controller and waits for acknowledgement before sending next packet - until all data is sent or a 
stop command is issued 
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com.coordinator.coordination 
Class JmDNS_Coordinator 
public class JmDNS_Coordinator 
extends com.coordinator.database.JmDNS_DATA  

Implements methods for providing a PnP interface with controllers. It uses JmDNS protocol to 
register and discover services. JmDNS_Event_Coordinator listener method is called by its 
discover method to listen for events. 

Constructor Detail  

public JmDNS_Coordinator() 
Initiates JmDNS 

 

Method Detail  

public java.lang.String[] split(java.lang.String data, 
                                int n, 
                                char c) 

method takes a string, splits it where there are characters (c) and puts them in a String array of 
size n 

Parameters: 
data - String 
n - int 
c - char 

Returns: 
String[] 

Throws: 
IndexOutOfBoundsException -  

 
public void registerAService(java.lang.String type, 
                             java.lang.String name, 
                             int port, 
                             int weight, 
                             int priority, 
                             java.lang.String text) 

Method registers one JmDNS service 

Parameters: 
type - String eg _supervisor._tcp.local. 
name - String eg SUPERVISOR 
port - int IP port number 
weight - int 
priority - int 
text - String 

 
public void registerServices() 

method registers all services in JmDNS_DATA register array 

 
public void discoverServices() 

used to discover services listed in JmDNS_DATA discover array 

 
public static void writeFile(java.io.File filename, 
                             java.util.Vector data) 

Utility method to implements ObjectOutputStream to write data to filename 

Parameters: 
filename - File 
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data - Vector 

 
public static java.util.Vector readFile(java.io.File filename) 

Utility program to read data from filename 

Parameters: 
filename - File 

Returns: 
Vector 

 
 
com.coordinator.coordination 
Class JmDNS_Event_Server 
class JmDNS_Event_Server 
extends com.coordinator.database.JmDNS_DATA 
implements javax.jmdns.ServiceListener, javax.jmdns.ServiceTypeListener  

Class for servicing events discovered by JmDNS on network. JmDNS_Coordinator calls this 
class to discover specified services. This class over writes serviceAdded, serviceRemoved and 
serviceResolved methods in javax.jmdns.ServiceListener and also serviceTypeAdded method in 
javax.jmdns.ServiceTypeListener. 

Field Detail  

private javax.jmdns.ServiceInfo serviceInfoDevice 

 
static final com.coordinator.coordination.SynchFlag SYNCH 

 

Method Detail  

public void serviceAdded(javax.jmdns.ServiceEvent event) 
Method used by JmDNS ServiceListener to listen for events; these incoming events are serviced; 
_mcast._udp.local.; _mcaststream._udp.local.; _device._pid; _http._tcp.local.; When connection 
information is received for each service, eg IP address for a controller's multicaster, the 
connection is launched. When _device._pid event is received, a Monitor thread is created with 
connection parameters and thread is executed to requests connection with controller's TCP server 

Parameters: 
event - javax.jmdns.ServiceEvent 

See Also: 
JmDNS_DATA, Monitor 

 
public void serviceRemoved(javax.jmdns.ServiceEvent event) 

This method services event removal from its host, ie users of services are informed; eg URL 
address is removed from GUI. 

Parameters: 
event – ServiceEvent 

 
 
com.coordinator.coordination  
Class Monitor 
public class Monitor 
extends com.coordinator.database.Data 
implements java.lang.Runnable  

The Monitor.class receives encoder positions from controllers and also trajectory end flags for 
synchronization via TCP client socket 
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See Also: 
com.coordinator.network.TCP_Client 

Constructor Detail  

public Monitor(int device, 
               javax.jmdns.ServiceInfo deviceInfo, 
               com.coordinator.coordination.SynchFlag synchflag, 
               java.lang.String add, 
               int portNo) 

Parameters: 
device - int 
deviceInfo - ServiceInfo 
synchflag - SynchFlag 
add - String; IP address 
portNo - int; port 

 

Method Detail  

public void run() 
Thread's run method receives encoder positions, synchronization flags, urgent and other info 
from controller 

 
 
com.coordinator.coordination  
Class SynchFlag 
public class SynchFlag  

This class stores synch flags received by the Monitor. In synchronized trajectory mode, each 
controller sends a flag to indicate end of trajectory and waits. When all flags have been received, 
i.e, synch==threads, synch is reset to 0 and MulticastSender is alerted by Monitor thread to 
multicast flag to alert them to run next trajectory. 

Field Detail  

public static int synch 
stores synch flags received 

 
public static int threads 

stores number of thread Monitors, ie number of controllers 

 

Method Detail  

public synchronized void put_flag(int i) 
increments synch by i, ie 1 

Parameters: 
i – int 
 

public synchronized void put_threads(int i) 
Each Monitor thread created calls this method to increment threads by i, ie 1 

Parameters: 
i - int 

 
public synchronized int get_flag() 

Returns: 
int; synch 
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public synchronized void reset_flag() 
sets synch to 0 

 
public synchronized int get_threads() 

Returns: 
int; number of threads. 

 
 
C3 com.coordinator.interpolation  
Class Transmission_Flag 
public class Transmission_Flag  

InterpolationData_Trans uses this class to get and set a boolean flag in this class 

Field Detail  

static boolean flag 

 

Method Detail  

public synchronized void getFlag() 
sets flag. If flag is false, method calling this (UDP.transaction) will be put in wait state until flag 
is true. 

 
public synchronized void setFlag(boolean sflag) 

sets flag and notifies UDP waiting on lock 

Parameters: 
sflag - boolean; flag 

 
 
com.coordinator.interpolation  
Class Interpolator 
public class Interpolator 
extends com.coordinator.interpolation.Transmission 
implements java.lang.Runnable  

NC code interpretation and interpolation is done in this class. The code was originally received 
from NRC-IMTI in C format and was designed for DSP's. Rodney converted it to Java and added 
protocols for transmitting data over network 

Constructor Detail  

 
public Interpolator(int numAxes, 
                    java.lang.String platformType, 
                    int period, 
                    boolean ACDEC, 
                    java.io.File file, 
                    java.lang.String transactionType, 
                    com.coordinator.network.McastFlag flag) 

Parameters: 
numAxes - int; number of axis 
platformType - String; JStick or local PC host 
period - int;interpolation period 
ACDEC - boolean; if true use acceleration and deceleration profiling in interpolation 
file - File; parsed Gcode file 
transactionType - String; viaRT,UDP,Multicast, ie communication mode 
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flag - McastFlag; use for interrupting interpolation 

 

Method Detail  

public void run() 
Thread's run method reads NC data, interpolates, calls inverse kinematics if needed and calls 
methods to send data to controllers either directly or through real-time JStick coordinator 

 
void readCoord_Circular() 

run() calls this method to read circular interpolation data 

 
void readCoord_linear() 

run() calls this method to read linear interpolation data 

 
private int InterpolationCoordinator(int axes) 

run() calls this method to coordinate interpolation, ie call axisInit1 followed by velocityInit1(), 
axisInit2(axes) and velocityInit2(). Number of interpolation steps are returned and used to 
calculate setpoints. After ach computation setpoints are sent on the network 

 
void tripodInvKin() 

calls tripod's inverse kinematics with translation and orientation derived from interpolation 

 
void axisOutput() 

method for passing setpoints to communication protocol 

 
 
com.coordinator.interpolation 
Class Transmission 
public class Transmission 
extends com.coordinator.database.Data  

Protocol for sending setpoints from interpolator to JStick coordinator 

Constructor Detail  

public Transmission(java.lang.String type) 
creates UDP socket 

Parameters: 
type - String; trajectory type, eg "via RT JStick Host" 

 

Method Detail  

public synchronized void transaction() 
creates and sends datagram packets containing setpoints. To avoid flooding the JStick 
coordinator, the size is limited to 576 bytes. The method works together with Transmission_ACK 
and Transmission_Flag to wait for response from the JStick coordinator before next UDP is sent. 
Method is interrupted by user stop command 

 
 
 
com.coordinator.interpolation 
Class Transmission_ACK 
public class Transmission_ACK 
extends com.coordinator.interpolation.Transmission 
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implements java.lang.Runnable  
UDP class calls this method to receive flag from JStick coordinator that it is ready for next batch 
of setpoints. 

Method Detail  

public void run() 
UDPExt thread's run method waits for datagram from coordinator; it uses UDP.class socket 
connection to receive, blocking until data arrives 

 
 
C4  com.coordinator.GUI 
Class TrajTable 
public class TrajTable 
extends javax.swing.JFrame  

This class shows a table for inputting trajectory data (position velocity) for all axes 

Constructor Detail  

public TrajTable() 
sets table (columns and rows) with headers 

 

Method Detail  

private void jbInit() 
sets graphical display parameters 

Throws: 
Exception -  

 
com.coordinator.GUI  
Class MainApplication 
public class MainApplication  

This is class is the application program for starting the Graphical User Interfaces 

Field Detail  

public static com.coordinator.GUI.MainGUIFrame frame 

 
private static com.coordinator.network.McastFlag mcastflag 

 

Constructor Detail  

public MainApplication() 
Sets graphical parameters for MainGUIFrame 

 

Method Detail  

public static void main(java.lang.String[] args) 
Starts Application and com.coordinator.coordination.JmDNS_Coordinator; 

Parameters: 
args - String[] 

 
com.coordinator.GUI 
Class MainGUIFrame 
public class MainGUIFrame 
extends javax.swing.JFrame  
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Constructor Detail  

public MainGUIFrame(com.coordinator.network.McastFlag flag) 

Parameters: 
flag - McastFlag 

 

Method Detail  

private void jbInit() 
Called by constructor to display graphics 

Throws: 
Exception -  

 
protected void processWindowEvent(java.awt.event.WindowEvent e) 

Overridden so we can exit when window is closed 

Parameters: 
e - WindowEvent 

 
void axis_1Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 1 Go button 

Parameters: 
e - ActionEvent 

 
void axis_2Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 2 Go button 

 
void axis_3Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 3 Go button 

 
void axis_4_Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 4 Go button 

 
void axis_5_Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 5 Go button 

 
void axis_6_Go_actionPerformed(java.awt.event.ActionEvent e) 

axis 6 Go button 

 
void go_actionPerformed(java.awt.event.ActionEvent e) 

Go button for synchronized moves 

 
void setPoints() 

method to pass (position, velocity, acceleration in textfield boxes to ControllerIO 

 
void runProfile_actionPerformed(java.awt.event.ActionEvent e) 

method below is for running different trajectory profile modes 

 
void stop_actionPerformed(java.awt.event.ActionEvent e) 

Method to call multicaster to stop controllers 

Parameters: 
e - ActionEvent 

 
void reference_actionPerformed(java.awt.event.ActionEvent e) 
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When 'reference position' button is clicked method alerts ControllerIO 

 
void Load_actionPerformed(java.awt.event.ActionEvent e) 

When 'Load trajectory' button is clicked method calls TrajDataApplication with file data 

Parameters: 
e - ActionEvent 

 
void driverson_actionPerformed(java.awt.event.ActionEvent e) 

When 'drives_on' button is clicked method alerts ControllerIO 

 
void driversoff_actionPerformed(java.awt.event.ActionEvent e) 

When 'drives_off' button is clicked method alerts ControllerIO 

 
void PIDFilter_actionPerformed(java.awt.event.ActionEvent e) 

method to execute PIDTable to show PID Filter table 

 
void dreference_actionPerformed(java.awt.event.ActionEvent e) 

When 'define_home' button is clicked method alerts ControllerIO 

 
public void setWebButton(java.lang.String device, 
                         java.lang.String flag, 
                         java.lang.String name) 

Method for setting and enabling web buttons 

Parameters: 
device - String; device 
flag - String; on button is enable; off it is disabled 
name - String 

 
void webButton1_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 1 

 
void webButton2_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 2 

 
void webButton3_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 3 

 
void webButton4_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 4 

 
void webButton5_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 5 

 
void webButton6_actionPerformed(java.awt.event.ActionEvent e) 

opens web browser for axis 6 

 
void New_actionPerformed(java.awt.event.ActionEvent e) 

method executes TrajTable for displaying and editing trajectory data 

 
void shutdown_actionPerformed(java.awt.event.ActionEvent e) 

method alerts controllerIO to shutdown controllers 

 
public static void setPowerButtons(java.lang.String device, 
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                                   java.lang.String flag) 
this method shows status of controllers (on or off) 

 
void axis_1_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_1 controller 

 
void axis_2_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_2 controller 

 
void axis_3_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_3 controller 

 
void axis_4_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_4 controller 

 
void axis_5_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_5 controller 

 
void axis_6_power_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO to shut down axis_6 controller 

 
void speedReady_actionPerformed(java.awt.event.ActionEvent e) 

handles speed over-ride GUI controls and alerts controllerIO 

 
void jCheckBox1_itemStateChanged(java.awt.event.ItemEvent e) 

all controllers may be shut down by this logic if a fault occurs on one of them 

 
void logButton_actionPerformed(java.awt.event.ActionEvent e) 

this method is for logging encoder positions of individual controllers 

 
public void updateProgressBar() 

progress bar for encoder logger 

 
public void zero_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO when 'go to zero position' button is clicked 

Parameters: 
e - ActionEvent 

 
public void Home_actionPerformed(java.awt.event.ActionEvent e) 

alerts controllerIO when 'home' button is clicked 

Parameters: 
e - ActionEvent 

 
 
com.coordinator.GUI  
Class PIDTable 
public class PIDTable 
extends javax.swing.JFrame  

This class implements the GUI for setting, editing and saving PID values 

Constructor Detail  

public PIDTable() 
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Method Detail  

private void jbInit() 
Called by Constructor to display graphics 

Throws: 
Exception -  

 
 
com.coordinator.GUI  
Class TrajDataApplication 
public class TrajDataApplication  

Field Detail  

boolean packFrame 
Application to execute TrajDataFrame.class GUI 

 

Constructor Detail  

public TrajDataApplication(java.io.File fileName) 
Called by MainGUIFrame with file as argument 

Parameters: 
fileName - File; file with trajectory data 

 
com.coordinator.GUI  
Class TrajDataFrame 
public class TrajDataFrame 
extends javax.swing.JFrame  

This class displays a GUI for choosing trajectory type, platform, communication type and 
modifying trajectory data 

Constructor Detail  

public TrajDataFrame(java.io.File file) 
Constructs the frame 

 

Method Detail  

private void jbInit() 
Component initialization called by constructor 

 
public void jComboBox1ListStart(java.lang.String firstItem) 

method to populate interpolation data type list when GUI shows up 

 
public void jComboBox1List(java.lang.String firstItem) 

method to populate interpolation data type list when GUI resets 

 
public void jComboBox2List(java.lang.String firstItem) 

method to populate interpolation platform list 

 
public void jComboBox3List(java.lang.String firstItem) 

populate number of axis list 

 
public void jComboBox4List(java.lang.String firstItem) 
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populate motion controller mode list 

 
public void jComboBox5List(java.lang.String firstItem) 

populate motion communication mode list 

 
public void jComboBox5List2(java.lang.String firstItem) 

Populate motion communication mode list. This is used for interpolation modes other than G 
Code {"TCP Direct", "UDP Direct"} 

 
public int[] fileArrayDim() 

measures the row and column sizes; used for trajectory types other than G Code 

 
public void fileTypeTest() 

tests for the type of data file 

 
boolean saveFile() 

method to save current file configuration and trajectory data files 

 
boolean saveAsFile() 

Save current file, asking user for new destination name. 

 
protected void processWindowEvent(java.awt.event.WindowEvent e) 

Overridden so we can exit when window is closed 

 
void trajTypeCombo_actionPerformed(java.awt.event.ActionEvent e) 

Method to handle trajectory type selected 

Parameters: 
e - ActionEvent 

 
void platformCombo_actionPerformed(java.awt.event.ActionEvent e) 

HANDLES INTERPOLATION PLATFORM selected 

Parameters: 
e - ActionEvent 

 
void AxesCombo_actionPerformed(java.awt.event.ActionEvent e) 

Handles AXES (e.g. 2, 4) selected 

 
void contModeCombo_actionPerformed(java.awt.event.ActionEvent e) 

handles CONTROLLER MODE selected 

 
void comModeCombo_actionPerformed(java.awt.event.ActionEvent e) 

handles COMMUNICATION MODE selected; e.g. "via RT JStick Host", "Multicast Direct" 

Parameters: 
e - ActionEvent 

 
void OK_actionPerformed(java.awt.event.ActionEvent e) 

handles OK button as ff; set acceleration, period and abs/relative strings in 
Traj_Configuration_Data handles selection of non-break point trajectory type handles condition 
for break point trajectory type and alerts controllerIO handles condition for "nonbreakpoint 
(synchronized)" trajectory type and alerts controllerIO handles condition for G Code; 
interpolation on real time JStick and alerts controllerIO handles condition, local interpolation, 
setpoints transmission, which may be option 1 (viaRT) transmits setpoints to a real time module 
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which in turn distributes to controllers option 2 (UDPdirect) transmits directly to controllers by 
UDP option 3 (McastDirect) transmits to controllers by multicast and alerts controllerIO 

Parameters: 
e - ActionEvent 

 
 
C5  com.coordinator.network  
Class UDP_Client 
public class UDP_Client  

Class for creating and sending datagrams via a datagram client socket 

Field Detail  

java.lang.String address 

 
int port 

 
byte[] data 

 
java.net.DatagramPacket outpacket 

 
java.net.DatagramPacket inpacket 

 
java.net.DatagramSocket ds 

 
java.net.InetAddress inetaddr 

 

Constructor Detail  

public UDP_Client(java.lang.String address, 
                  int port, 
                  byte[] data) 

prepares a DatagramPacket dp and DatagramSocket ds 

Parameters: 
address - String 
port - int 
data - byte[] 

 

Method Detail  

public void send() 
sends Datagrampacket out_packet by DatagramSocket ds 

 
public void send(byte[] outdata) 

sends outdata in Datagrampacket out_packet by DatagramSocket ds 

Parameters: 
outdata -  

 
public void receive(byte[] in_buffer) 

receives datagram into in_buffer 

Parameters: 
in_buffer -  
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com.coordinator.network  
Class DatagramSender 
public class DatagramSender 
extends com.coordinator.database.Data  

Transmits control flags and data to JStick servers 

Method Detail  

public static void trajectory(double pos, 
                              double vel, 
                              double accl, 
                              java.lang.String dgramipaddr, 
                              int dgramport, 
                              int mode) 

transmits datagram to controllers for jogging axes 

Parameters: 
pos - double; position 
vel - double; velocity 
accl - double; acceleration 
dgramipaddr - String; IP address 
dgramport - int; port number 
mode - int; informs controllers of this mode, i.e. jogging 

 
public static void sendFilter(java.lang.String dgramipaddr, 
                              int dgramport, 
                              int index, 
                              int[][] PID, 
                              int flag) 

Sends PID filter parameters to controllers 

Parameters: 
dgramipaddr - String; IP address of controller 
dgramport - int; datagram port 
index - index for device 
PID - Proportional, Integral, Derivative 
flag - shows data type, i.e. PID data 

 
public static void control(java.lang.String dgramipaddr, 
                           int dgramport, 
                           int mode, 
                           int value) 

Sends datagram containing speed over-ride 

Parameters: 
dgramipaddr - String; ip address 
dgramport - int; ip port 
mode - int; flags motion controllers 
value - int; speed over-ride value 

 
public static void control(java.lang.String dgramipaddr, 
                           int dgramport, 
                           int mode) 

Sends various command flags to motion controllers; 

Parameters: 
dgramipaddr - String; IP address 
dgramport - int; IP port number 
mode - shows data type e.g. 6 => turn on motor drive; 
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public static void control(java.lang.String dgramipaddr, 
                           int dgramport, 
                           int mode, 
                           double accl, 
                           boolean isAbsolute, 
                           boolean isAbsoluteVel, 
                           int pktSize, 
                           int logSize, 
                           int logGran) 

This method is used in break-pt, non break pt and synchronized trajectory modes to set the states 
of controllers for this mode 

Parameters: 
dgramipaddr - String; IP Address 
dgramport - int; Port number 
mode - int; flag to set controller state 
accl - double; acceleration 
isAbsolute - boolean; true if positions are absolute 
isAbsoluteVel - boolean; true if velocities are absolute 
pktSize - int; used to set buffer size for incoming packets 
logSize - int; used to set number of position values to log 
logGran - int; used to set log granularity, ie frequency of log 

 
public static void control(java.lang.String dgramipaddr, 
                           int dgramport, 
                           int mode, 
                           double accel, 
                           int axisNum, 
                           int logSize) 

For G-code interpolation mode: 

Parameters: 
dgramipaddr - String; IP Address 
dgramport - int; Port number 
mode - int; flag to set controller state 
accel - double; acceleration 
axisNum - int; axis ID 
logSize - int; size of position data to log 

 
public static void control(java.lang.String dgramipaddr, 
                           int dgramport, 
                           int mode, 
                           int numaxes, 
                           double interpTime, 
                           double acceln) 

sends data to JStick interpolator 

Parameters: 
dgramipaddr - String; IP Address 
dgramport - int; Port number 
mode - indicates the type of data 
numaxes - int; number of axes 
interpTime - double; period of interpolation 
acceln - double; acceleration 

 
com.coordinator.network 
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Class McastDirect 
public class McastDirect  

This class is used by com.coordinator.interpolation.Interpolator to multicast setpoints directly to 
controllers 

Constructor Detail  

public McastDirect(java.lang.String ipaddr, 
                   int port) 

Parameters: 
ipaddr - String; IP address of controller 
port - int; port 

 

Method Detail  

public static void multicastDirect(int[] data) 
Method for multicasting setpoints to controllers 

Parameters: 
data - int[]; setpoints 

 
com.coordinator.network  
Class McastFlag 
public class McastFlag  

contains methods for flagging controllers when a user issues a stop command 

Field Detail  

public static boolean flag 

 

Method Detail  

public synchronized void put_runStatusFlag(boolean pflag) 
sets run pflag 

Parameters: 
pflag - boolean 

 
public synchronized boolean get_runStatusFlag() 

Returns: 
flag boolean 

 
com.coordinator.network  
Class MulticastSender 
public class MulticastSender 
extends com.coordinator.database.Data  

Class for sending state signals by multicast to JStick servers 

Method Detail  

public static void run(byte[] flag) 

Parameters: 
flag - signal to be sent to controllers 

 
com.coordinator.network 
Class TCP_Client 
public class TCP_Client  
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This class creates a TCP client socket and has methods to create DataInput and DataOutput 
streams on this socket 

Field Detail  

java.io.DataInputStream data_in 

 
java.io.DataOutputStream data_out 

 
java.net.Socket client_socket 

 
int timeout 

 
java.lang.String address 

 
int port 

 

Constructor Detail  

public TCP_Client(java.lang.String address, 
                  int port, 
                  int timeout) 

Creates a client socket and waits forever until server is found 

Parameters: 
address - IP Address 
port -  
timeout - Connection timeout 

 

Method Detail  

public java.io.DataInputStream dataInStream() 
Creates an input TCP stream for the client socket 

Returns: 
DataInputStream 

 
public java.io.DataOutputStream dataOutStream() 

Creates an output TCP stream for the client socket 

Returns: 
DataOutputStream 

 
public void close_Stream() 

 
 


