

Introduction

- Sulfur (S) fertilizers may be applied to wheat, canola and yellow pea crops in the seed-row at the time of seeding. S fertilizers available to growers on the Canadian Prairies include soluble sulfate forms (ammonium sulfate and potassium sulfate); partially soluble forms (calcium sulfate or 'gypsum'); insoluble forms that undergo oxidation (elemental S); and liquid ammonium thiosulfate (ATS) that forms sulfate and elemental S upon application to soil.
- Such fertilizers may be applied in the seed-row at the time of seeding in the spring as a starter nutrient source. Depending on fertilizer S form, rate and crop, there is a limit to how much can be safely placed in the seed-row.

Study Objectives

To evaluate the crop response in yield and plant S uptake to different S fertilizer forms added in the seed-row over two growing seasons.

Materials and Methods

Study Sites:

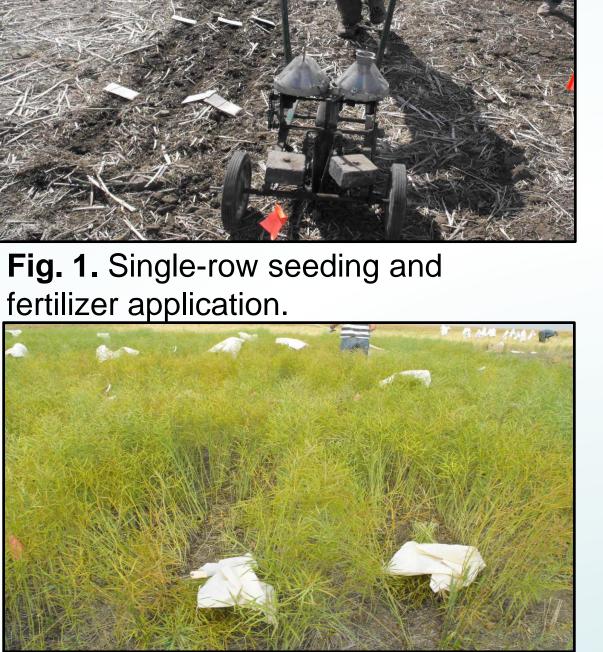
1) Brown Chernozem; Ardill Association loam near Central Butte, SK.

2) Gray Luvisol; Waitville Association loam near Star City, SK.

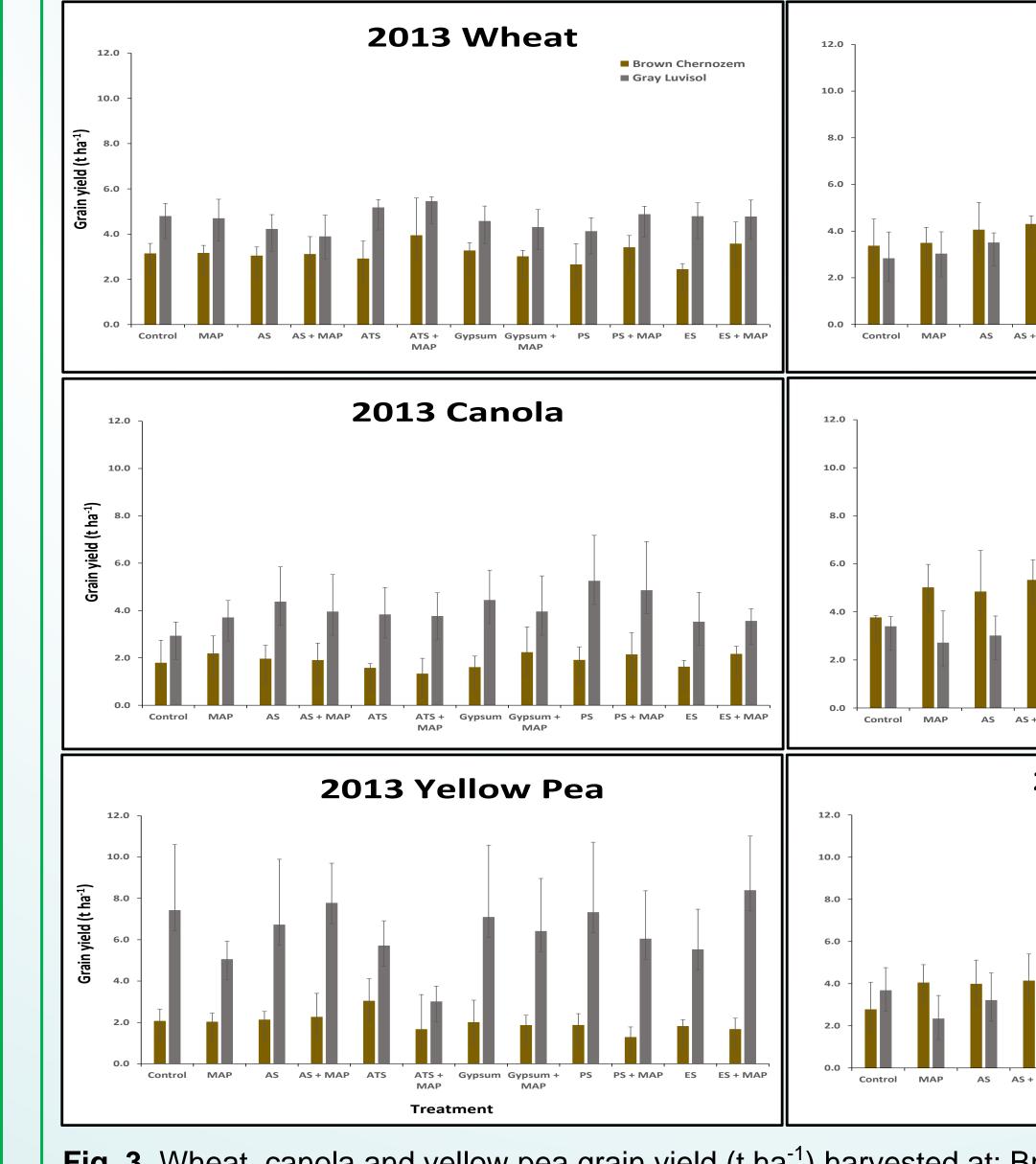
Cropping history of the two sites was typical, with fields well managed and having history of fertilizer use. Soil available S was considered marginal while soil available P was marginal to sufficient.

Seeding and Fertilization:

Plots (3.0 m X 1.0 m) were seeded at a row spacing of 25 cm (Fig. 1) to: HRS wheat (Waskeda), canola (Liberty Link-150) and yellow peas (Meadow). S and P (as P_2O_5 , 11-52-0, MAP) fertilizer treatments were applied in the seed-row during seeding (Table 1).


Treatments were replicated 4 times for each crop. Prior to seeding, wheat and canola plots were broadcast fertilized with 100 kg N ha⁻¹ as urea.

Plant Sampling:


1.0 m row-length crop samples (Fig. 2) were harvested in each treatment.

Crop Response to Seed-Row Placed Sulfur Fertilizers

¹Department of Soil Science, 51 Campus Drive, University of Saskatchewan, SA8. ²Agriculture & Agrifood Canada (AAFC), Melfort, SK, CANADA S0E 1A0.

		-			ble 1. Tr		nts and a	applicati	on rates					
	Tre						reatments					Application Rates		
										IN [.]	S kg ha ⁻¹)	$P_2O_5^{\circ}$		
				C	ontrol (N	only)				100	xg na)			
					ontrol (N	+ P onl	y)			100		20		
Ammonium								,		100	20			
Fig. 1. Single-row seeding and										100	20			
fertilizer application. Gypsum (C										100 100	20 20			
Potassium Elemental								/		100	20 20			
				Contraction of the second	mmoniun	`	,			100	20	20		
Gypsum										100	20	20		
										100 100	20	20		
Potassium Elemental											20 20	20 20		
					nmonium thiosu		as 12-0-0-26 in 2	2013, 15-0-0-2		100	20	20		
					broadcast as ure oadcast pre-seed			ola crops pre-se	eed. No urea					
-ig. 2. 1.0 m r samples.	ow-lengt			0	added as P_2O_5 ec		-	noammonium	phosphate).					
Fable 2. Sulfur uptake in wheat, canola and yellow permutation WHEAT								ernozem	and G	and Gray Luvisol soils. YELLOW PEA				
reatments	Brown Gray Brown Gray			Gray	CANOLA Brown Gray Brown Gray				Brown	Gray	Brown	Gray		
	Chernozem	Luvisol	Chernozem	Luvisol	Chernozem		Chernozen take (kg ha ⁻¹)	n Luvisol	Chernozen	n Luvisol	Chernozem	Luviso		
ontrol (N only)	2013 14.5 ab	3 16.2 bc	201 15.6 bc	4 11.7 a	201 24.0 a	3 22.0 a	20 45.2 bc	14 15.5 c	20 10.8 a	13 15.8 a	20 1 9.8 ab	1 4 9.7 ab		
ontrol (N + P only)	14.8 ab	15.6 bc	15.3 c	10.4 a	28.3 a	21.6 a	58.6 abc	12.8 c	12.3 a	12.5 a	13.9 ab	7.1 b		
nmonium sulfate nmonium thiosulfate	17.6 ab 16.7 ab	15.3 bc 14.3 c	19.6 abc 22.5 a	14.3 a 15.6 a	27.8 a 27.9 a	32.8 a 27.3 a	65.6 ab 58.3 abc	20.6 bc 22.9 abc	10.3 a 15.1 a	18.3 a 19.7 a	13.0 ab 14.5 a	13.9 a 10.2 al		
/psum	18.4 ab	21.1 ab	17.7 abc	13.8 a	26.3 a	41.6 a	47.8 bc	23.5 abc	14.3 a	17.3 a	9.0 b	8.2 ab		
tassium sulfate emental sulfur	23.9 a 15.6 ab	23.9 a 17.1 bc	19.5 abc 21.7 ab	13.8 a 13.6 a	25.7 a 22.1 a	41.1 a 36.9 a	38.3 c 61.1 abc	18.3 c 19.5 c	11.0 a 10.8 a	9.4 a 20.1 a	9.8 ab 11.6 ab	6.2 b 9.4 ab		
nmonium sulfate + P nmonium thiosulfate + P	14.6 ab 12.8 b	16.8 bc 15.7 bc	16.9 abc 17.3 abc	12.9 a 11.7 a	27.4 a 23.0 a	28.0 a 39.4 a	58.8 abc 58.7 abc	34.0 a 32.6 ab	15.0 a 12.9 a	18.0 a 21.4 a	14.2 a 10.9 ab	8.3 ab 10.3 at		
vpsum + P	12.8 b 17.1 ab	20.0 abc	17.5 abc	11.7 a 12.5 a	29.2 a	37.5 a	71.4 a	21.9 abc	12.9 a 12.7 a	21.4 a 16.6 a	10.9 ab 12.7 ab	10.5 at 11.1 at		
tassium sulfate + P emental S + P	12.0 b 16.5 ab	15.9 bc 15.5 bc	16.6 abc 14.3 c	12.8 a 13.3 a	22.7 a 29.4 a	27.3 a 19.6 a	56.9 abc 51.6 abc	14.1 c 14.6 c	8.4 a 9.6 a	15.3 a 15.9 a	12.4 ab 11.4 ab	9.1 ab 11.3 ał		
× S Fertlizer effect														
Value ($P \le 0.05$) Value	0.038 2.18	<0.0001 5.33	0.581 0.76	0.989 0.11	0.953 0.38	0.046 2.13	0.570 0.78	0.103 2.00	0.479 0.99	0.078 1.89	0.808 0.45	0.775 0.50		
EM††	2.091	1.495	2.19	1.98	4.486	5.957	8.07	4.28	2.469	2.964	1.80	2.25		
									2014 V	lhoat				
12.0		2013	Wheat		n Chernozem uvisol	12.0		2		viicat	 Brown Ch Gray Luvis 			
10.0 -						10.0 -								
- 0.8 -						8.0 -								
Grain yield (t ha-1)	II	ĪĪ	ΙI	T T	I I	6.0 -	[_]	ТŢт	I, I	I Ī-	_ T	- T		
4.0 -			i i l			4.0 -								
2.0						2.0 -								
Control MAP 4	AS AS + MAP AT	S ATS + C MAP	Gypsum Gypsum + P MAP	PS PS + MAP	ES ES + MAP	Co	ontrol MAP A	AS AS + MAP A	TS ATS + Gyp MAP	osum Gypsum + MAP	PS PS + MAP E	S ES + MAI		
12.0 2013 Canola						12.0			2014 C	anola				
10.0 -						10.0 -								
d (t ha ⁻¹)				Тт		8.0 -				Т	T -			
Grain yield (t ha ⁻¹)	ĪĪ	T -	ĪŢ		Ŧ	6.0 -	I	I	I					
4.0 -	11				Ţ	4.0 -		III	I II					
2.0 -	i i i	I	i i i			2.0 -								
0.0 Control MAP	AS AS + MAP A	ATS ATS + MAP	Gypsum Gypsum + MAP	PS PS + MAP	ES ES + MAP	0.0 C	ontrol MAP A	AS AS + MAP A	TS ATS + Gyr MAP	osum Gypsum + MAP	PS PS + MAP E	S ES + MA		
2012 Vollow Doo						2014 Yellow Pea								
2013 Yellow Pea						12.0								
	ĪĪ			Ţ	Ţ	10.0 -								
10.0 -	L i I	Т				8.0 -								
		-				6.0 -	ΤΙΪ	τŢ			T I I	T		
rain yield (t ha ⁻¹)		Ī	I ,			4.0 -								
Grain yield (t ha ⁻¹)				I I		2.0 -								
Brain vield (t ha ⁻¹)					╶━━─┬─━━─┐	0.0				. —				
Grain yield (t ha ⁻¹)	AS AS+MAP AT	TS ATS + MAP Treatm	MAP	PS PS + MAP	ES ES + MAP	0.0 + Co	ntrol MAP A	S AS + MAP A	rs ATS + Gyp MAP Treatme	sum Gypsum+ MAP nt	PS PS + MAP E	S ES + MA		
Grain yield (t ha ⁻¹)		MAP Treatn	ment						MAP Treatme	MAP nt				
Grain vield (t hard) 6.0 4.0 2.0 0.0 Control MAP	canola a	Treatr	nent llow pea	grain y	ield (t ha	⁻¹) har	vested a	t: Browr	Treatment Cherne	DZEM ((Central B			
6.0 6.0 4.0 2.0 0.0 Control MAP	canola a sol (Star	and yel City) s	llow pea g sites in fal	grain y II 2013	ield (t ha and fall :	⁻¹) har 2014.	vested a Error bar	t: Browr rs denot	Treatment Cherne e stand	ozem ((ard erro	Central B or of the	utte)		

T. King¹, J. Schoenau¹, H. Ahmed¹, R. Hangs¹, S.S. Malhi² and R. Urton¹

Results and Discussion

- Addition of sulfate and ATS increased S uptake in wheat, canola and pea, at Brown Chernozem and Gray Luvisol sites in 2013 (Table 2).
- S uptake in canola at Brown Chernozem site for all treatments in 2014 was greater than 2013, reflecting better growing conditions and grain yields in 2014, compared to 2013.
- Calcium sulfate (gypsum) plus MAP, and potassium sulfate plus MAP added to canola at Gray Luvisol site in both years increased yields (Fig. 3).
- The addition of MAP fertilizer did not significantly affect wheat, canola and yellow pea grain yields, consistent with adequate soil available P at sites (Fig. 3).
- Addition of ATS + MAP in seed row reduced germination and emergence of canola and pea at both sites in 2013 and 2014, owing to problems in separation between liquid fertilizer and seed.
- Limited response of wheat to addition of S fertilizers at Brown Chernozem and Gray Luvisol sites in both years of the study suggests that of the three crops evaluated, wheat is least responsive to S fertilization.
- Subsoil reserves of sulfate in the Brown Chernozem soil likely contributed to lack of response of any crop to added S fertilizer in 2013, while high moisture conditions in 2014 resulted in response to S, despite the presence of sulfate at depth.

Conclusions

- Thiosulfate and sulfate sources, especially calcium sulfate (gypsum), applied in the seed-row at 20 kg S ha⁻¹ were generally effective in enhancing S uptake and yield of canola in these marginally S deficient soils.
- Responses to seed-placed S fertilizer depend on S fertilizer form, crop, growing conditions, soil S status and factors affecting seed safety.

Acknowledgements

Saskatchewan Agricultural Development Fund Saskatchewan Canola Development Commission Saskatchewan Pulse Growers Western Grains Research Foundation